WorldWideScience

Sample records for cancer cells hct116

  1. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  2. Rhein induces apoptosis of HCT-116 human colon cancer cells via ...

    African Journals Online (AJOL)

    Rhein, a major compound in rhubarb, has been found to have anti-tumor properties in many human cancer cells. However, the details about rhein suppressing the growth of human colon cancer cells remained elusive. In this paper, we explored the potential of rhein as a chemotherapeutic agent on HCT- 116 cells and ...

  3. Procaine Induces Epigenetic Changes in HCT116 Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hussein Sabit

    2016-01-01

    Full Text Available Colon cancer is the third most commonly diagnosed cancer in the world, and it is the major cause of morbidity and mortality throughout the world. The present study aimed at treating colon cancer cell line (HCT116 with different chemotherapeutic drug/drug combinations (procaine, vorinostat “SAHA,” sodium phenylbutyrate, erlotinib, and carboplatin. Two different final concentrations were applied: 3 μM and 5 μM. Trypan blue test was performed to assess the viability of the cell before and after being treated with the drugs. The data obtained showed that there was a significant decrease in the viability of cells after applying the chemotherapeutic drugs/drug combinations. Also, DNA fragmentation assay was carried out to study the effect of these drugs on the activation of apoptosis-mediated DNA degradation process. The results indicated that all the drugs/drug combinations had a severe effect on inducing DNA fragmentation. Global DNA methylation quantification was performed to identify the role of these drugs individually or in combination in hypo- or hypermethylating the CpG dinucleotide all over the genome of the HCT116 colon cancer cell line. Data obtained indicated that different combinations had different effects in reducing or increasing the level of methylation, which might indicate the effectiveness of combining drugs in treating colon cancer cells.

  4. Evodiamine Induces Apoptosis and Inhibits Migration of HCT-116 Human Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lv-Cui Zhao

    2015-11-01

    Full Text Available Evodiamine (EVO exhibits strong anti-cancer effects. However, the effect of EVO on the human colorectal cancer cell line HCT-116 has not been explored in detail, and its underlying molecular mechanisms remain unknown. In the present study, cell viability was assessed by Cell Counting Kit-8 (CCK-8. Cell cycle and apoptosis were measured by flow cytometry, and morphological changes in the nucleus were examined by fluorescence microscopy and Hoechst staining. Cell motility was detected by Transwell assay. ELISA was used to assess the protein levels of autocrine motility factor (AMF in the cell supernatant, and protein expression was determined by Western blotting. Our results showed that EVO inhibited the proliferation of HCT-116 cells, caused accumulation of cells in S and G2/M phases, and reduced the levels of the secreted form of AMF. The protein levels of tumor suppressor protein (p53, Bcl-2 Associated X protein (Bax, B cell CLL/lymphoma-2 (Bcl-2, phosphoglucose isomerase (PGI, phosphorylated signal transducers and activators of transcription 3 (p-STAT3 and matrix metalloproteinase 3 (MMP3 were altered in cells treated with EVO. Taken together, our results suggest that EVO modulates the activity of the p53 signaling pathway to induce apoptosis and downregulate MMP3 expression by inactivating the JAK2/STAT3 pathway through the downregulation of PGI to inhibit migration of HCT-116 human colorectal cancer cells.

  5. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  6. Methylselenol, a selenium metabolite, plays common and different roles in cancerous colon HCT116 cell and noncancerous NCM460 colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Briske-Anderson, Mary; Wu, Min; Moyer, Mary P

    2012-01-01

    Methylselenol is hypothesized to be a critical selenium metabolite for anticancer action, and differential chemopreventive effects of methylselenol on cancerous and noncancerous cells may play an important role. In this study, the submicromolar concentrations of methylselenol were generated by incubating methionase with seleno-L methionine, and colon-cancer-derived HCT-116 cells and noncancerous colon NCM460 cells were exposed to methylselenol. Methylselenol exposure inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase and an induction of apoptosis in HCT116, but to a much lesser extent in NCM460 colon cells. Similarly, the examination of mitogen-activated protein kinase (MAPK) and cellular myelocytomatosis oncogene (c-Myc) signaling status revealed that methylselenol inhibited the phosphorylation of extracellular-regulated kinase1/2 and p38 mitogen-activated protein kinase and the expression of c-Myc in HCT116 cells, but also to a lesser extent in NCM460 cells. The other finding is that methylselenol inhibits sarcoma kinase phosphorylation in HCT116 cells. In contrast, methylselenol upregulated the phosphorylation of sarcoma and focal adhesion kinase survival signals in the noncancerous NCM460 cells. Collectively, methylselenol's stronger potential of inhibiting cell proliferation/survival signals in the cancerous HCT116 cells when compared with that in noncancerous NCM460 cells may partly explain the potential of methylselenol's anticancer action.

  7. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  8. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  9. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells.

    Science.gov (United States)

    Liu, Kuo-Ching; Shih, Ting-Ying; Kuo, Chao-Lin; Ma, Yi-Shih; Yang, Jiun-Long; Wu, Ping-Ping; Huang, Yi-Ping; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-01-01

    Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.

  10. H2S-induced S-sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells.

    Science.gov (United States)

    Untereiner, Ashley A; Oláh, Gabor; Módis, Katalin; Hellmich, Mark R; Szabo, Csaba

    2017-07-15

    Cystathionine-β-synthase (CBS) is upregulated and hydrogen sulfide (H 2 S) production is increased in colon cancer cells. The functional consequence of this response is stimulation of cellular bioenergetics and tumor growth and proliferation. Lactate dehydrogenase A (LDHA) is also upregulated in various colon cancer cells and has been previously implicated in tumor cell bioenergetics and proliferation. In the present study, we sought to determine the potential interaction between the H 2 S pathway and LDH activity in the control of bioenergetics and proliferation of colon cancer, using the colon cancer line HCT116. Low concentrations of GYY4137 (a slow-releasing H 2 S donor) enhanced mitochondrial function (oxygen consumption, ATP production, and spare respiratory capacity) and glycolysis in HCT116 cells. SiRNA-mediated transient silencing of LDHA attenuated the GYY4137-induced stimulation of mitochondrial respiration, but not of glycolysis. H 2 S induced the S-sulfhydration of Cys163 in recombinant LDHA, and stimulated LDHA activity. The H 2 S-induced stimulation of LDHA activity was absent in C163A LDHA. As shown in HCT116 cell whole extracts, in addition to LDHA activation, GYY4137 also stimulated LDHB activity, although to a smaller extent. Total cellular lactate and pyruvate measurements showed that in HCT116 cells LDHA catalyzes the conversion of pyruvate to lactate. Total cellular lactate levels were increased by GYY4137 in wild-type cells (but not in cells with LDHA silencing). LDHA silencing sensitized HCT116 cells to glucose oxidase (GOx)-induced oxidative stress; this was further exacerbated with GYY4137 treatment. Treatment with low concentrations of GYY4137 (0.3mM) or GOx (0.01U/ml) significantly increased the proliferation rate of HCT116 cells; the effect of GOx, but not the effect of GYY4137 was attenuated by LDHA silencing. The current report points to the involvement of LDHA in the stimulatory effect of H 2 S on mitochondrial respiration in colon

  11. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells

    Directory of Open Access Journals (Sweden)

    Sun Xiao-Feng

    2010-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenously expressed noncoding RNAs with important biological and pathological functions. Although several studies have shown that microRNA-31 (miR-31 is obviously up-regulated in colorectal cancer (CRC, there is no study on the functional roles of miR-31 in CRC. Methods Anti-miR™ miRNA 31 inhibitor (anti-miR-31 is a sequence-specific and chemically modified oligonucleotide to specifically target and knockdown miR-31 molecule. The effect of anti-miR-31 transfection was investigated by real-time PCR. HCT-116p53+/+ and HCT-116p53-/-colon cancer cells were treated by anti-miR-31 with or without 5-fluorouracil (5-FU, cell proliferation was determined by MTT assay; apoptosis was detected by DAPI staining; cell cycle was evaluated by flow cytometry; colony formation, migration and invasion assays were performed to investigate the effect of suppression of miR-31 on the cell lines. Results Real-time PCR results showed that anti-miR-31 was efficiently introduced into the cells and reduced miR-31 levels to 44.1% in HCT-116p53+/+ and 67.8% in HCT-116p53-/-cell line (p = 0.042 and 0.046. MTT results showed that anti-miR-31 alone had no effect on the proliferation of HCT-116p53+/+ or HCT-116p53-/-. However, when combined with 5-FU, anti-miR-31 inhibited the proliferation of the two cell lines as early as 24 h after exposure to 5-FU (p = 0.038 and 0.044. Suppression of miR-31 caused a reduction of the migratory cells by nearly 50% compared with the negative control in both HCT-116p53+/+ and HCT-116p53-/-(p = 0.040 and 0.001. The invasive ability of the cells were increased by 8-fold in HCT-116p53+/+ and 2-fold in HCT-116p53-/- (p = 0.045 and 0.009. Suppression of miR-31 had no effect on cell cycle and colony formation (p > 0.05. Conclusions Suppression of miR-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells.

  12. Thymol Elicits HCT-116 Colorectal Carcinoma Cell Death Through Induction of Oxidative Stress.

    Science.gov (United States)

    Chauhan, Anil Kumar; Bahuguna, Ashutosh; Paul, Souren; Kang, Sun Chul

    2018-02-07

    Colon cancer is one of the most deadly and common carcinomas occurring worldwide and there have been many attempts to treat this cancer. The present work was designed in order to evaluate thymol as a potent drug against colon cancer. Cytotoxicity of thymol at different concentrations was evaluated against a human colon carcinoma cell line (HCT-116 cells). Fluorescent staining was carried out to evaluate the level of ROS as well as mitochondrial and DNA fragmentation and immunoblot analysis were performed to confirm apoptosis and mitoptosis. Results of the study demonstrated that thymol efficiently created an oxidative stress environment inside HCT-116 cells, a colorectal carcinoma cell line, through induction of ROS production along with intense damage to DNA and mitochondria, as observed through Hoechst and rhodamine 123 staining, respectively. Moreover, expression of PARP-1, p-JNK, cytochrome-C and caspase-3 proteins was up-regulated, suggesting HCT-116 cells underwent mitoptotic cell death. Therefore, thymol could be used as a potent drug against colon cancer due to its lower toxicity and prevalence in natural medicinal plants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells.

    Science.gov (United States)

    Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H

    2011-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 μmol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. Copyright © 2011, Taylor & Francis Group, LLC

  14. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells.

    Science.gov (United States)

    Cho, Sun-Mi; Lee, Eun-Ok; Kim, Sung-Hoon; Lee, Hyo-Jeong

    2014-07-30

    The essential oil of Pinus koraiensis (EOPK) is biologically active compound obtained from the leaves of P. koraiensis. The goal of this study was to investigate the anti-cancer mechanism of EOPK in HCT116 colorectal cancer cells. HCT116 cell proliferation was assessed by conducting crystal violet and BrdU assays. To assess the effects of EOPK on cell migration, we performed a wound-healing assay. Further, the contribution of PAK1 to EOPK-induced AKT and extracellular signal-regulated kinase (ERK) suppression was assessed by siRNA-mediated PAK1 knockdown. Changes to the expression and phosphorylation of PAK1 and its effectors were determined by western blotting, and changes to the actin cytoskeleton were determined by performing an immunofluorescence assay. EOPK significantly decreased HCT116 cell proliferation and migration, and induced G1 arrest without affecting normal cells. Additionally, EOPK suppressed the expression of PAK1, and decreased ERK and AKT phosphorylation in HCT116 cells. Finally, EOPK suppressed β-catenin, cyclin D1, and CDK4/6 expression. Our studies indicate that EOPK significantly reduced proliferation and migration of colorectal cancer cells. Furthermore, EOPK suppressed PAK1 expression in a dose-dependent manner, and this suppression of PAK1 led to inhibition of ERK, AKT, and β-catenin activities. Our findings suggest that EOPK exerts its anticancer activity via the inhibition of PAK1 expression, suggesting it may be a potent chemotherapeutic agent for colorectal cancer.

  15. Apoptosis inducing activity of benzophenanthridine-type alkaloids and 2-arylbenzofuran neolignans in HCT116 colon carcinoma cells.

    Science.gov (United States)

    Mansoor, Tayyab A; Borralho, Pedro M; Luo, Xuan; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-07-15

    Thirteen compounds belonging to different classes of alkaloids (1-9) and lignans (10-13), isolated from the methanol extract of roots of the African medicinal plant Zanthoxylum capense, were assayed for their ability as apoptosis inducers in HCT116 colon carcinoma cells. The cytotoxicity of these compounds was evaluated in HCT116 colon carcinoma cells by the MTS assay. Out of the tested compounds, three benzophenanthridine alkaloids (1, 4, and 7), a dibenzyl butyrolactone lignan (10), and two 2-arylbenzofuran neolignans (12 and 13) displayed significant cytotoxicity to HCT116 cells, confirmed by the Guava ViaCount viability assay. The selected compounds (1, 4, 7, 10, 12, and 13) were further tested for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Morphologic evaluation of HCT116 nuclei following Hoechst staining and fluorescence microscopy revealed that compounds 1, 4, 7, 10, 12, and 13 induced apoptosis in HCT116 colon carcinoma cells, producing similar, or higher, apoptosis levels when compared with 5-fluorouracil (5-FU), the cornerstone cytotoxic used in colon cancer treatment for several decades. In fact, HCT116 cells developed morphological changes characteristic of apoptosis, including chromatin condensation, nuclear fragmentation and formation of apoptotic bodies. Importantly, compounds 4 and 13 at 20 μM were the most promising in this study, inducing respectively ∼11- and 7-fold increases in apoptotic cells as compared to vehicle control, whereas 5-FU increased apoptosis by ∼2-fold. Apoptosis induction for compounds 4 and 13 was further confirmed by caspase-3-like activity assays, which showed respectively ∼2- and 1.5-fold increases in caspase-3-like activity compared to vehicle control. These results suggested that specific benzophenanthridine alkaloids and 2-arylbenzofuran neolignans isolated from Zanthoxylum capense show strong anticancer

  16. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    Science.gov (United States)

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  17. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/{beta}-catenin signaling pathway in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); Kim, Chul Young [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of); College of Pharmacy, Hanyang University, Ansan 426-791 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Functional Food Center, Korea Institute of Science and Technology, Gangneung 210-340 (Korea, Republic of)

    2012-11-16

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  18. Dibenzocyclooctadiene lignans, gomisins J and N inhibit the Wnt/β-catenin signaling pathway in HCT116 cells

    International Nuclear Information System (INIS)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye; Lee, Hee Ju; Kim, Chul Young; Nho, Chu Won

    2012-01-01

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/β-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: ► Gomisins J and N inhibited Wnt/β-catenin signaling pathway in HCT116 cells. ► Gomisins J and N disrupted the binding of β-catenin to specific DNA sequences, TBE. ► Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. ► Gomisins J and N inhibited the expression of Cyc D1, a Wnt/β-catenin target gene. -- Abstract: Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/β-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/β-catenin signaling by disrupting the interaction between β-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the β-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/β-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/β-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.

  19. Monoterpene bisindole alkaloids, from the African medicinal plant Tabernaemontana elegans, induce apoptosis in HCT116 human colon carcinoma cells.

    Science.gov (United States)

    Mansoor, Tayyab A; Borralho, Pedro M; Dewanjee, Saikat; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-09-16

    Tabernaemontana elegans is a medicinal plant used in African traditional medicine to treat several ailments including cancer. The aims of the present study were to identify anti-cancer compounds, namely apoptosis inducers, from Tabernaemontana elegans, and hence to validate its usage in traditional medicine. Six alkaloids, including four monomeric indole (1-3, and 6) and two bisindole (4 and 5) alkaloids, were isolated from the methanolic extract of Tabernaemontana elegans roots. The structures of these compounds were characterized by 1D and 2D NMR spectroscopic and mass spectrometric data. Compounds 1-6 along with compound 7, previously isolated from the leaves of the same species, were evaluated for in vitro cytotoxicity against HCT116 human colon carcinoma cells by the MTS metabolism assay. The cytotoxicity of the most promising compounds was corroborated by Guava-ViaCount flow cytometry assays. Selected compounds were next studied for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Among the tested compounds (1-7), the bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were found to be cytotoxic to HCT116 cells at 20 µM, with compound 5 being more cytotoxic than the positive control 5-Fluorouracil (5-FU), at a similar dose. In fact, even at 0.5 µM, compound 5 was more potent than 5-FU. Compounds 4 and 5 induced characteristic patterns of apoptosis in HCT116 cancer cells including, cell shrinkage, condensation, fragmentation of the nucleus, blebbing of the plasma membrane and chromatin condensation. Further, general caspase-3-like activity was increased in cells exposed to compounds 4 and 5, corroborating the nuclear morphology evaluation assays. Bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were characterized as potent apoptosis inducers in HCT116 human colon carcinoma cells and as possible lead/scaffolds for

  20. Differential cellular responses to prolonged LDR-IR in MLH1-proficient and MLH1-deficient colorectal cancer HCT116 cells.

    Science.gov (United States)

    Yan, Tao; Seo, Yuji; Kinsella, Timothy J

    2009-11-15

    MLH1 is a key DNA mismatch repair (MMR) protein involved in maintaining genomic stability by participating in the repair of endogenous and exogenous mispairs in the daughter strands during S phase. Exogenous mispairs can result following treatment with several classes of chemotherapeutic drugs, as well as with ionizing radiation. In this study, we investigated the role of the MLH1 protein in determining the cellular and molecular responses to prolonged low-dose rate ionizing radiation (LDR-IR), which is similar to the clinical use of cancer brachytherapy. An isogenic pair of MMR(+) (MLH1(+)) and MMR(-) (MLH1(-)) human colorectal cancer HCT116 cells was exposed to prolonged LDR-IR (1.3-17 cGy/h x 24-96 h). The clonogenic survival and gene mutation rates were examined. Cell cycle distribution was analyzed with flow cytometry. Changes in selected DNA damage repair proteins, DNA damage response proteins, and cell death marker proteins were examined with Western blotting. MLH1(+) HCT116 cells showed greater radiosensitivity with enhanced expression of apoptotic and autophagic markers, a reduced HPRT gene mutation rate, and more pronounced cell cycle alterations (increased late-S population and a G(2)/M arrest) following LDR-IR compared with MLH1(-) HCT116 cells. Importantly, a progressive increase in MLH1 protein levels was found in MLH1(+) cells during prolonged LDR-IR, which was temporally correlated with a progressive decrease in Rad51 protein (involved in homologous recombination) levels. MLH1 status significantly affects cellular responses to prolonged LDR-IR. MLH1 may enhance cell radiosensitivity to prolonged LDR-IR through inhibition of homologous recombination (through inhibition of Rad51).

  1. Xylopine Induces Oxidative Stress and Causes G2/M Phase Arrest, Triggering Caspase-Mediated Apoptosis by p53-Independent Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Luciano de Souza Santos

    2017-01-01

    Full Text Available Xylopine is an aporphine alkaloid that has cytotoxic activity to cancer cells. In this study, the underlying mechanism of xylopine cytotoxicity was assessed in human colon carcinoma HCT116 cells. Xylopine displayed potent cytotoxicity in different cancer cell lines in monolayer cultures and in a 3D model of cancer multicellular spheroids formed from HCT116 cells. Typical morphology of apoptosis, cell cycle arrest in the G2/M phase, increased internucleosomal DNA fragmentation, loss of the mitochondrial transmembrane potential, and increased phosphatidylserine externalization and caspase-3 activation were observed in xylopine-treated HCT116 cells. Moreover, pretreatment with a caspase-3 inhibitor (Z-DEVD-FMK, but not with a p53 inhibitor (cyclic pifithrin-α, reduced xylopine-induced apoptosis, indicating induction of caspase-mediated apoptosis by the p53-independent pathway. Treatment with xylopine also caused an increase in the production of reactive oxygen/nitrogen species (ROS/RNS, including hydrogen peroxide and nitric oxide, but not superoxide anion, and reduced glutathione levels were decreased in xylopine-treated HCT116 cells. Application of the antioxidant N-acetylcysteine reduced the ROS levels and xylopine-induced apoptosis, indicating activation of ROS-mediated apoptosis pathway. In conclusion, xylopine has potent cytotoxicity to different cancer cell lines and is able to induce oxidative stress and G2/M phase arrest, triggering caspase-mediated apoptosis by the p53-independent pathway in HCT116 cells.

  2. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer.

    Science.gov (United States)

    Kim, Hak-Su; Wannatung, Tirawat; Lee, Sooho; Yang, Woo Kyeom; Chung, Sung Hyun; Lim, Jong-Seok; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2012-09-01

    Tumor hypoxia is considered the best validated target in clinical oncology because of its significant contribution to chemotherapy failure and drug resistance. As an approach to target hypoxia, we assessed the potential of quercetin, a flavonoid widely distributed in plants, as a anticancer agent under hypoxic conditions and examined its pharmacological mechanisms by primarily focusing on the role of AMP-activated protein kinase (AMPK). Quercetin significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model with a substantial reduction of AMPK activity. In a cell culture system, quercetin more dramatically induced apoptosis of HCT116 cancer cells under hypoxic conditions than normoxic conditions, and this was tightly associated with inhibition of hypoxia-induced AMPK activity. An in vitro kinase assay demonstrated that quercetin directly inhibits AMPK activity. Inhibition of AMPK by expressing a dominant-negative form resulted in an increase of apoptosis under hypoxia, and a constitutively active form of AMPK effectively blocked quercetin-induced apoptosis under hypoxia. Collectively, our data suggest that quercetin directly inhibits hypoxia-induced AMPK, which plays a protective role against hypoxia. Quercetin also reduced the activity of hypoxia-inducible factor-1 (HIF-1), a major transcription factor for adaptive cellular response to hypoxia. Moreover, quercetin sensitized HCT116 cancer cells to the anticancer drugs cisplatin and etoposide under hypoxic conditions. Our findings suggest that AMPK may serve as a novel target for overcoming tumor hypoxia-associated negative aspects.

  3. Novel piplartine-containing ruthenium complexes: synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells.

    Science.gov (United States)

    D'Sousa Costa, Cinara O; Araujo Neto, João H; Baliza, Ingrid R S; Dias, Rosane B; Valverde, Ludmila de F; Vidal, Manuela T A; Sales, Caroline B S; Rocha, Clarissa A G; Moreira, Diogo R M; Soares, Milena B P; Batista, Alzir A; Bezerra, Daniel P

    2017-11-28

    Piplartine (piperlongumine) is a plant-derived molecule that has been receiving intense interest due to its anticancer characteristics that target the oxidative stress. In the present paper, two novel piplartine-containing ruthenium complexes [Ru(piplartine)(dppf)(bipy)](PF 6 ) 2 (1) and [Ru(piplartine)(dppb)(bipy)](PF 6 ) 2 (2) were synthesized and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes are more potent than metal-free piplartine in a panel of cancer cell lines on monolayer cultures, as well in 3D model of cancer multicellular spheroids formed from human colon carcinoma HCT116 cells. Mechanistic studies uncovered that the complexes reduced the cell growth and caused phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase-3 activation and loss of the mitochondrial transmembrane potential on HCT116 cells. Moreover, the pre-treatment with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, reduced the complexes-induced apoptosis, indicating cell death by apoptosis through caspase-dependent and mitochondrial intrinsic pathways. Treatment with the complexes also caused a marked increase in the production of reactive oxygen species (ROS), including hydrogen peroxide, superoxide anion and nitric oxide, and decreased reduced glutathione levels. Application of N-acetyl-cysteine, an antioxidant, reduced the ROS levels and apoptosis induced by the complexes, indicating activation of ROS-mediated apoptosis pathway. RNA transcripts of several genes, including gene related to the cell cycle, apoptosis and oxidative stress, were regulated under treatment. However, the complexes failed to induce DNA intercalation. In conclusion, the complexes are more potent than piplartine against different cancer cell lines and are able to induce caspase-dependent and mitochondrial intrinsic apoptosis on HCT116 cells by ROS-mediated pathway.

  4. Combination of Quercetin and Kaempferol enhances in vitro Cytotoxicity on Human Colon Cancer (HCT-116 Cells

    Directory of Open Access Journals (Sweden)

    Sara Jaramillo-Carmona

    2014-05-01

    Full Text Available Colon cancer is one of the most common types of cancer malignancy. Although flavonoids naturally occur as mixtures, little information is available regarding the additive or synergistic biochemical interactions between flavonoids. The objectives of this study were to examine the feasibility of combining two major structurally related flavonoids, quercetin and kaempferol, to affect the cell viability, cell cycle, and proliferation of the human colon cancer HCT-116 cell line. The combination of quercetin and kaempferol exhibited a greater cytotoxic efficacy than did either quercetin or kaempferol alone. This effect was highest and acted in a synergistic fashion in a 2-fold quercetin and 1-fold kaempferol IC50 combination, which also arrested cell growth in the G2/M phase and suppressed proliferation. Our observations support a structure-activity relationship based on the presence of 3’–OH moiety and/or 4’–OH moiety on the B-ring of flavonoids.

  5. Evaluation of anti-HER2 scFv-conjugated PLGA–PEG nanoparticles on 3D tumor spheroids of BT474 and HCT116 cancer cells

    International Nuclear Information System (INIS)

    Le, Thi Thuy Duong; Pham, Thu Hong; Ngo, Thi Hong Giang; Le, Quang Huan; Nguyen, Trong Nghia; Hoang, Thi My Nhung

    2016-01-01

    Three-dimensional culture cells (spheroids) are one of the multicellular culture models that can be applied to anticancer chemotherapeutic development. Multicellular spheroids more closely mimic in vivo tumor-like patterns of physiologic environment and morphology. In previous research, we designed docetaxel-loaded pegylated poly(D, L-lactide-co-glycolide) nanoparticles conjugated with anti-HER2 single chain antibodies (scFv–Doc–PLGA–PEG) and evaluated them in 2D cell culture. In this study, we continuously evaluate the cellular uptake and cytotoxic effect of scFv–Doc–PLGA–PEG on a 3D tumor spheroid model of BT474 (HER2-overexpressing) and HCT116 (HER2-underexpressing) cancer cells. The results showed that the nanoparticle formulation conjugated with scFv had a significant internalization effect on the spheroids of HER2-overexpressing cancer cells as compared to the spheroids of HER2-underexpressing cancer cells. Therefore, cytotoxic effects of targeted nanoparticles decreased the size and increased necrotic score of HER2-overexpressing tumor spheroids. Thus, these scFv–Doc–PLGA–PEG nanoparticles have potential for active targeting for HER2-overexpressing cancer therapy. In addition, BT474 and HCT116 spheroids can be used as a tumor model for evaluation of targeting therapies. (paper)

  6. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells*

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-01-01

    Objective: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. Methods: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. Results: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 μmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. Conclusions: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway. PMID:25091987

  7. Piper betle leaf extract enhances the cytotoxicity effect of 5-fluorouracil in inhibiting the growth of HT29 and HCT116 colon cancer cells.

    Science.gov (United States)

    Ng, Pek Leng; Rajab, Nor Fadilah; Then, Sue Mian; Mohd Yusof, Yasmin Anum; Wan Ngah, Wan Zurinah; Pin, Kar Yong; Looi, Mee Lee

    2014-08-01

    The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.

  8. A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells.

    Science.gov (United States)

    Du, Peng; Saidu, Nathaniel Edward Bennett; Intemann, Johanna; Jacob, Claus; Montenarh, Mathias

    2014-06-01

    Chalcogen-based redox modulators over the years have attracted considerable attention as anti-cancer agents. New selenium- and tellurium-containing compounds with a polar head group and aryl-groups of various lengths have recently been reported as biologically active in several organisms. In the present study, we used the most active of the tellurium compound DP41, and its selenium counterpart DP31 to investigate their effects on the human cancer cell line HCT116. Cells were treated with DP41 or DP31 and the formation of superoxide radicals was determined using dihydroethidium. Cell cycle analysis and apoptosis was determined by cytofluorimetry. Proteins involved in ER signaling and apoptosis were determined by Western blot analysis and fluorescence microscopy. With 50μM of DP41, we observed an increase in O2(-) formation. There was, however, no such increase in O2(-) after treatment with the corresponding selenium compound under the same conditions. In the case of DP41, the production of O2(-) radicals was followed by an up-regulation of Nrf2, HO-1, phospho-eIF2α and ATF4. CHOP was also induced and cells entered apoptosis. Unlike the cancer cells, normal retinal epithelial ARPE-19 cells did not produce elevated levels of O2(-) radicals nor did they induce the ER signaling pathway or apoptosis. The tellurium-containing compound DP41, in contrast to the corresponding selenium compound, induces O2(-) radical formation and oxidative and ER stress responses, including CHOP activation and finally apoptosis. These results indicate that DP41 is a redox modulating agent with promising anti-cancer potentials. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  10. Activations of Both Extrinsic and Intrinsic Pathways in HCT 116 Human Colorectal Cancer Cells Contribute to Apoptosis through p53-Mediated ATM/Fas Signaling by Emilia sonchifolia Extract, a Folklore Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lan

    2012-01-01

    Full Text Available Emilia sonchifolia (L. DC (Compositae, an herbaceous plant found in Taiwan and India, is used as folk medicine. The clinical applications include inflammation, rheumatism, cough, cuts fever, dysentery, analgesic, and antibacteria. The activities of Emilia sonchifolia extract (ESE on colorectal cancer cell death have not been fully investigated. The purpose of this study explored the induction of apoptosis and its molecular mechanisms in ESE-treated HCT 116 human colorectal cancer cells in vitro. The methanolic ESE was characterized, and γ-humulene was formed as the major constituent (63.86%. ESE induced cell growth inhibition in a concentration- and time-dependent response by MTT assay. Apoptotic cells (DNA fragmentation, an apoptotic catachrestic were found after ESE treatment by TUNEL assay and DNA gel electrophoresis. Alternatively, ESE stimulated the activities of caspase-3, -8, and -9 and their specific caspase inhibitors protected against ESE-induced cytotoxicity. ESE promoted the mitochondria-dependent and death-receptor-associated protein levels. Also, ESE increased ROS production and upregulated the levels of ATM, p53, and Fas in HCT 116 cells. Strikingly, p53 siRNA reversed ESE-reduced viability involved in p53-mediated ATM/Fas signaling in HCT 116 cells. In summary, our result is the first report suggesting that ESE may be potentially efficacious in the treatment of colorectal cancer.

  11. Food Additive Sodium Benzoate (NaB Activates NFκB and Induces Apoptosis in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Betul Yilmaz

    2018-03-01

    Full Text Available NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM–50 mM treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis.

  12. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  13. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung-Mi [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Yun, Ji Ho [Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 210-340 (Korea, Republic of); Lee, Dong Hwa [Department of Food Science and Nutrition, Andong National University, Andong 760-749 (Korea, Republic of); Park, Young Gyun [Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 210-340 (Korea, Republic of); Son, Kun Ho [Department of Food Science and Nutrition, Andong National University, Andong 760-749 (Korea, Republic of); Nho, Chu Won, E-mail: cwnho@kist.re.kr [Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, 210-340 (Korea, Republic of); Kim, Yeong Shik, E-mail: kims@snu.ac.kr [Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of)

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.

  14. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    International Nuclear Information System (INIS)

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-01-01

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus

  15. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1

    International Nuclear Information System (INIS)

    Bolloskis, Michael P.; Carvalho, Fabiana P.; Loo, George

    2016-01-01

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. - Highlights: • PEITC increased HO-1 expression in HCT116 cells. • PEITC-induced HO-1 upregulation was impaired in iron-depleted HCT116 cells. • Impairment of PEITC-induced HO-1 upregulation was

  16. Chitosan oligosaccharides with degree of polymerization 2-6 induces apoptosis in human colon carcinoma HCT116 cells.

    Science.gov (United States)

    Zou, Pan; Yuan, Shoujun; Yang, Xin; Zhai, Xingchen; Wang, Jing

    2018-01-05

    Colon cancer is the third most common cancer, and yet there is a lack of effective therapeutic method with low side effects. Chitosan oligosaccharides (COS) is derived from chitosan after chitin deacetylation, and attracts more interests due to smaller molecular weight and soluble property. Previously, COS, mainly absorbed through intestinal epithelia, has been reported to exhibit many bioactivities, especially its anti-tumor effect. Recent references pay little attention to molecular weight distribution which is crucial for understanding its biological behavior. Here, we studied reducing sugar content and degree of polymerization (DP) of COS. 86.73% reducing sugar exists in COS sample and the content of chitosan fractions with 2-6 is 85.8%. COS suppressed the growth of HCT116 cells in vitro and in vivo, and the inhibition rate of tumor weight in vivo was high up to 58.6%. Moreover, the morphology observation, flow cytometry analysis and mRNA expression were applied to study the apoptosis related mechanism. COS treatment promoted mitosis, late stage apoptosis and S cell cycle arrest in HCT116 cells, and enhanced the mRNA expression of BAK and reduce BCL-2 and BCL-x L . These findings may provide an important clue for clinical applications of COS as anti-tumor drug or pharmaceutic adjuvant in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets.

    Science.gov (United States)

    Marimuthu, Srinivasan; Chivukula, Raghavender S V; Alfonso, Lloyd F; Moridani, Majid; Hagen, Fred K; Bhat, G Jayarama

    2011-11-01

    Epidemiological and clinical observations provide consistent evidence that regular intake of aspirin may effectively inhibit the occurrence of epithelial tumors; however, the molecular mechanisms are not completely understood. In the present study, we determined the ability of aspirin to acetylate and post-translationally modify cellular proteins in HCT-116 human colon cancer cells to understand the potential mechanisms by which it may exerts anti-cancer effects. Using anti-acetyl lysine antibodies, here we demonstrate that aspirin causes the acetylation of multiple proteins whose molecular weight ranged from 20 to 200 kDa. The identity of these proteins was determined, using immuno-affinity purification, mass spectrometry and immuno-blotting. A total of 33 cellular proteins were potential targets of aspirin-mediated acetylation, while 16 were identified as common to both the control and aspirin-treated samples. These include enzymes of glycolytic pathway, cytoskeleton proteins, histones, ribosomal and mitochondrial proteins. The glycolytic enzymes which were identified include aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase M2, and lactate dehydrogenase A and B chains. Immunoblotting experiment showed that aspirin also acetylated glucose-6-phosphate dehydrogenase and transketolase, both enzymes of pentose phosphate pathway involved in ribonucleotide biosynthesis. In vitro assays of these enzymes revealed that aspirin did not affect pyruvate kinase and lactate dehydrogenase activity; however, it decreased glucose 6 phosphate dehydrogenase activity. Similar results were also observed in HT-29 human colon cancer cells. Selective inhibition of glucose-6-phosphate dehydrogenase may represent an important mechanism by which aspirin may exert its anti-cancer effects through inhibition of ribonucleotide synthesis.

  18. Combination of Albendazole and 2-Methoxyestradiol significantly improves the survival of HCT-116 tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Ehteda, Anahid; Galettis, Peter; Pillai, Krishna; Morris, David L

    2013-01-01

    Albendazole (ABZ) is a microtubule-targeting anthelmintic with a remarkable activity against a variety of human cancer cells. In this study, we examined if the antitumor activity of ABZ could be enhanced by its combination with other microtubule-binding agents. The interactions between ABZ and microtubule-binding agents, paclitaxel, vinblastine, colchicine, and 2-methoxyestradiol were characterized using median effect analysis method in HCT-116 colorectal cancer cells and DU145 prostate cancer cell line. The mechanism underlying the synergistic interaction related to tubulin polymerization and apoptosis was then investigated. Finally, the effect of the combination therapy on the survival of HCT-116 tumor-bearing nude mice was evaluated. Among the tested drugs, a synergistic anti-proliferative effect was observed with the combination of low concentrations of ABZ plus colchicine and ABZ plus 2-methoxyestradiol (2ME). Exploring the mechanism of the interaction between ABZ and 2ME revealed that the combination therapy synergistically activated the extrinsic pathway of apoptosis. Consistent with in vitro results, the combination of low concentration of ABZ with 2ME prolonged the survival of mice-bearing HCT-116 tumors. High concentration of ABZ in combination with 2ME, however, proved to be less effective than ABZ alone. The combination of low doses of ABZ and 2ME has shown promising results in our pre-clinical model. Additionally, the finding that the combination of two microtubule-binding agents that share the same binding site can act synergistically may lead to the development of new therapeutic strategies in cancer treatment

  19. Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines.

    Science.gov (United States)

    Riaz, Muhammad; Bilal, Aishah; Ali, Muhammad Shaiq; Fatima, Itrat; Faisal, Amir; Sherkheli, Muhammad Azhar; Asghar, Adnan

    2017-03-01

    Parasitic Cuscuta reflexa Roxb. possesses many medicinal properties and is a rich source of a variety of biologically relevant natural products. Natural products are the prime source of leads, drugs, and drug templates, and many of the anticancer and antiviral drugs are either based on natural product or derived from them. Cancer is a devastating disease and one of the leading causes of death worldwide despite improvements in patient survival during the past 50 years; new and improved treatments for cancer are therefore actively sought. Colorectal cancer is the fourth most prevalent cancer worldwide and is responsible for nearly 9% of all cancer deaths. Our search for anticancer natural products from C. reflexa has yielded four natural products: Scoparone (1), p-coumaric acid (2), stigmasta-3,5-diene (3) and 1-O-p-hydroxycinnamoylglucose (4) and among them 1-O-p-hydroxycinnamoyldlucose (4) showed promising antiproliferative activities in HCT116 colorectal cell lines, whereas compounds 1-3 showed moderate activities.

  20. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.

    Science.gov (United States)

    Mustapha, Nadia; Pinon, Aline; Limami, Youness; Simon, Alain; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-05-01

    Limited success has been achieved in extending the survival of patients with metastatic colorectal cancer (CRC). There is a strong need for novel agents in the treatment and prevention of CRC. Therefore, in the present study we evaluated the antiproliferative and pro-apoptotic potential of Crataegus azarolus ethyl acetate extract in HCT-116 and HT-29 human colorectal cancer cell lines. Moreover, we attempted to investigate the signaling pathways that should be involved in its cytotoxic effect. The Crataegus azarolus ethyl acetate extract-induced growth inhibitory effect was associated with DNA fragmentation, sub-G1 peak, loss of mitochondrial potential, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, ethyl acetate extract of Crataegus azarolus induced the cleavage of caspase-8. It has no effect on steady-state levels of total Bcl-2 protein. Whereas Bax levels decreased significantly in a dose-dependent manner in both tested cell lines. Taken together, these findings confirm the involvement of the extrinsic pathway of apoptosis. The apoptotic cell death induced by ethyl acetate extract of Crataegus azarolus was accompanied by an enhancement of the p21 expression but not through p53 activation in human colorectal cancer cells. The above-mentioned data provide insight into the molecular mechanisms of Crataegus azarolus ethyl acetate extract-induced apoptosis in CRC. Therefore, this compound should be a potential anticancer agent for the treatment of CRC. © 2015 Wiley Periodicals, Inc.

  1. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect.

    Science.gov (United States)

    Renaud, Stéphanie; Corcé, Vincent; Cannie, Isabelle; Ropert, Martine; Lepage, Sylvie; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2015-08-01

    Tumor cell growth requires large iron quantities and the deprivation of this metal induced by synthetic metal chelators is therefore an attractive method for limiting the cancer cell proliferation. The antiproliferative effect of the Quilamine HQ1-44, a new iron chelator vectorized toward tumor cells by a polyamine chain, is related to its high selectivity for the Polyamine Transport System (PTS), allowing its preferential uptake by tumoral cells. The difference in PTS activation between healthy cells and tumor cells enables tumor cells to be targeted, whereas the strong dependence of these cells on iron ensures a secondary targeting. Here, we demonstrated in vitro that HQ1-44 inhibits DNA synthesis and cell proliferation of HCT116 cells by modulating the intracellular metabolism of both iron and polyamines. Moreover, in vivo, in xenografted athymic nude mice, we found that HQ1-44 was as effective as cis-platin in reducing HCT116 tumor growth, without its side effects. Furthermore, as suggested by in vitro data, the depletion in exogenous or endogenous polyamines, known to activate the PTS, dramatically enhanced the antitumor efficiency of HQ1-44. These data support the need for further studies to assess the value of HQ1-44 as an adjuvant treatment in cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of Tumor Necrosis Factor-α on Morphology and Mechanical Properties of HCT116 Human Colon Cancer Cells Investigated by Atomic Force Microscopy.

    Science.gov (United States)

    Liu, Huiqing; Wang, Nan; Zhang, Zhe; Wang, Hongda; Du, Jun; Tang, Jilin

    2017-01-01

    Chronic inflammation orchestrates the tumor microenvironment and is strongly associated with cancer. Tumor necrosis factor- α (TNF α ) is involved in tumor invasion and metastasis by inducing epithelial to mesenchymal transition (EMT). This process is defined by the loss of epithelial characteristics and gain of mesenchymal traits. The mechanisms of TNF α -induced EMT in cancer cells have been well studied. However, mechanical properties have not yet been probed. In this work, atomic force microscopy (AFM) was applied to investigate the morphology and mechanical properties of EMT in HCT116 human colon cancer cells. A remarkable morphological change from cobblestone shape to spindle-like morphology was observed. In parallel, AFM images showed that the cellular cytoskeleton was rearranged from a cortical to a stress-fiber pattern. Moreover, cell stiffness measurements indicated that Young's modulus of cells gradually reduced from 1 to 3 days with TNF α -treatment, but it has an apparent increase after 4 days of treatment compared with that for 3 days. Additionally, Young's modulus of the cells treated with TNF α for 4 days is slightly larger than that for 1 or 2 days, but still less than that of the untreated cells. Our work contributes to a better understanding of colorectal cancer metastasis induced by inflammation.

  3. Effects of Tumor Necrosis Factor-α on Morphology and Mechanical Properties of HCT116 Human Colon Cancer Cells Investigated by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Huiqing Liu

    2017-01-01

    Full Text Available Chronic inflammation orchestrates the tumor microenvironment and is strongly associated with cancer. Tumor necrosis factor-α (TNFα is involved in tumor invasion and metastasis by inducing epithelial to mesenchymal transition (EMT. This process is defined by the loss of epithelial characteristics and gain of mesenchymal traits. The mechanisms of TNFα-induced EMT in cancer cells have been well studied. However, mechanical properties have not yet been probed. In this work, atomic force microscopy (AFM was applied to investigate the morphology and mechanical properties of EMT in HCT116 human colon cancer cells. A remarkable morphological change from cobblestone shape to spindle-like morphology was observed. In parallel, AFM images showed that the cellular cytoskeleton was rearranged from a cortical to a stress-fiber pattern. Moreover, cell stiffness measurements indicated that Young’s modulus of cells gradually reduced from 1 to 3 days with TNFα-treatment, but it has an apparent increase after 4 days of treatment compared with that for 3 days. Additionally, Young’s modulus of the cells treated with TNFα for 4 days is slightly larger than that for 1 or 2 days, but still less than that of the untreated cells. Our work contributes to a better understanding of colorectal cancer metastasis induced by inflammation.

  4. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C

    DEFF Research Database (Denmark)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-01-01

    that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor...... contribution to SAC silencing in HCT116 cells. Strikingly in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E...

  5. Gallic acid induced apoptotic events in HCT-15 colon cancer cells

    Science.gov (United States)

    Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu

    2016-01-01

    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438

  6. (3'R)-hydroxytabernaelegantine C: A bisindole alkaloid with potent apoptosis inducing activity in colon (HCT116, SW620) and liver (HepG2) cancer cells.

    Science.gov (United States)

    Paterna, Angela; Gomes, Sofia E; Borralho, Pedro M; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2016-12-24

    Tabernaemontana elegans Stapf. (Apocynaceae) is a medicinal plant traditionally used in African countries to treat cancer. To discover new apoptosis inducing lead compounds from T. elegans and provide scientific validation of the ethnopharmacological use of this plant. Through fractionation, (3'R)-hydroxytaberanelegantine C (1), a vobasinyl-iboga bisindole alkaloid, was isolated from a cytotoxic alkaloid fraction of the methanol extract of T. elegans roots. Its structure was identified by spectroscopic methods, mainly 1D and 2D NMR experiments. Compound 1 was evaluated for its ability to induce apoptosis in HCT116 and SW620 colon and HepG2 liver carcinoma cells. The cell viability of compound 1 was evaluated by the MTS and lactate dehydrogenase (LDH) assays. Induction of apoptosis was analyzed through Guava ViaCount assay, by flow cytometry, caspase-3/7 activity assays and evaluation of nuclear morphology by Hoechst staining. To determine the molecular pathways elicited by 1 exposure, immunoblot analysis was also performed. (3'R)-hydroxytaberanelegantine C (1) displayed strong apoptosis induction activity as compared to 5-fluorouracil (5-FU), the most used anticancer agent in colorectal cancer treatment. In the MTS assay, compound 1 exhibited IC 50 values similar or lower than 5-FU in the three cell lines tested. The IC 50 value of 1 was also calculated in CCD18co normal human colon fibroblasts. The lactate dehydrogenase assay showed increased LDH release by compound 1, and the Guava ViaCount assay revealed that 1 significantly increased the incidence of apoptosis to a further extent than 5-FU. Moreover, the induction of apoptosis was corroborated by evaluation of nuclear morphology by Hoechst staining and caspase-3/7 activity assays of 1 treated cells. As expected, in immunoblot analysis, compound 1 treatment led to poly(ADP-ribose) polymerase cleavage. This was accompanied by decreased anti-apoptotic proteins Bcl-2 and XIAP steady state levels in all three cancer

  7. Evaluation of 6-chloro-N-[3,4-disubstituted-1,3-thiazol-2(3H)-ylidene]-1,3-benzothiazol-2-amine Using Drug Design Concept for Their Targeted Activity Against Colon Cancer Cell Lines HCT-116, HCT15, and HT29.

    Science.gov (United States)

    Zhu, Ming-Li; Wang, Cui-Yue; Xu, Cheng-Mian; Bi, Wei-Ping; ZHou, Xiu-Ying

    2017-03-05

    BACKGROUND Colorectal adenocarcinoma is the second leading cause of cancer-related death in the world. The stage of the disease is related to the survival of the patient, and in early phases surgery is the main modality of treatment. The main aim of modern medicinal chemistry is to synthesize small molecules via drug designing, especially by targeting tumor cells. MATERIAL AND METHODS A new series of 19 compounds containing benzothiazole and thiazole were designed. Molecular docking studies were performed on the designed series of molecules. Compounds showing good binding affinity towards the EGFR receptor were selected for synthetic studies. Characterization of the synthesized compounds was done by FTIR, 1HNMR, Mass and C, H, N, analysis. RESULTS The anticancer evaluation of the synthesized compounds was done at NIC, USA at a single dose against colon cancer cell lines HCT 116, HCT15, and HC 29. The active compounds were further evaluated for the 5-dose testing. Compounds were designed by using docking analysis. To ascertain the interaction of EGFR tyrosine kinase binding, energy calculation was used. CONCLUSIONS The results of the present study indicate that the designed compounds show good activity against colon cancer cell lines, which may be further studied to design new potential molecules.

  8. In vitro activities of inulin fermentation products to HCT-116 cells enhanced by the cooperation between exogenous strains and adult faecal microbiota.

    Science.gov (United States)

    Yin, Dan-Ting; Fu, Yu; Zhao, Xin-Huai

    2018-01-10

    Inulin was fermented by adult faecal microbiota and 10 exogenous strains for 24 or 48 h. The contents of acetate, propionate, butyrate and lactate were quantified in the fermented products, and the growth-inhibitory and apoptosis-inducing effects on a human colon cell line (HCT-116 cells) were assessed. Most of these strains increased contents of acetate, propionate and butyrate, and promoted lactate conversion. Correlation analysis suggested that butyrate and lactate in the fermentation products were positively and negatively correlated with the measured inhibition ratios (p inulin fermentation products with higher anti-colon cancer activity.

  9. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    International Nuclear Information System (INIS)

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-01-01

    Highlights: ► We investigate mechanisms responsible for butyrate resistance in colon cancer cells. ► Tcf3 modulates butyrate’s effects on Wnt activity and cell growth in resistant cells. ► Tcf3 modulation of butyrate’s effects differ by cell context. ► Cell cycle factors are overexpressed in the resistant cells. ► Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G 1 to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  10. Capecitabine treatment of HCT-15 colon cancer cells induces ...

    African Journals Online (AJOL)

    HCT-15 cells caused condensation of DNA and induced apoptosis in a concentration- ... Conclusion: Capecitabine treatment causes inhibition of colon cancer growth via the mitochondrial ... fluoropyrimidine aimed to selectively transfer 5-.

  11. Reduction of Orc6 expression sensitizes human colon cancer cells to 5-fluorouracil and cisplatin.

    Directory of Open Access Journals (Sweden)

    Elaine J Gavin

    Full Text Available Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53 and HCT116 (null-p53 colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt treatment. Decreased Orc6 expression in HCT-116 (wt-p53 cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53 cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53 cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53 cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45beta and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.

  12. Specific Reagent for Cr(III): Imaging Cellular Uptake of Cr(III) in Hct116 Cells and Theoretical Rationalization.

    Science.gov (United States)

    Ali, Firoj; Saha, Sukdeb; Maity, Arunava; Taye, Nandaraj; Si, Mrinal Kanti; Suresh, E; Ganguly, Bishwajit; Chattopadhyay, Samit; Das, Amitava

    2015-10-15

    A new rhodamine-based reagent (L1), trapped inside the micellar structure of biologically benign Triton-X 100, could be used for specific recognition of Cr(III) in aqueous buffer medium having physiological pH. This visible light excitable reagent on selective binding to Cr(III) resulted in a strong fluorescence turn-on response with a maximum at ∼583 nm and tail of that luminescence band extended until 650 nm, an optical response that is desired for avoiding the cellular autofluorescence. Interference studies confirm that other metal ions do not interfere with the detection process of Cr(III) in aqueous buffer medium having pH 7.2. To examine the nature of binding of Cr(III) to L1, various spectroscopic studies are performed with the model reagent L2, which tend to support Cr(III)-η(2)-olefin π-interactions involving two olefin bonds in molecular probe L1. Computational studies are also performed with another model reagent LM to examine the possibility of such Cr(III)-η(2)-olefin π-interactions. Presumably, polar functional groups of the model reagent LM upon coordination to the Cr(III) center effectively reduce the formal charge on the metal ion and this is further substantiated by results of the theoretical studies. This assembly is found to be cell membrane permeable and shows insignificant toxicity toward live colon cancer cells (Hct116). Confocal laser scanning microscopic studies further revealed that the reagent L1 could be used as an imaging reagent for detection of cellular uptake of Cr(III) in pure aqueous buffer medium by Hct116 cells. Examples of a specific reagent for paramagnetic Cr(III) with luminescence ON response are scanty in the contemporary literature. This ligand design helped us in achieving the turn on response by utilizing the conversion from spirolactam to an acyclic xanthene form on coordination to Cr(III).

  13. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  14. Synergistic inhibition of the APC/C by the removal of APC15 in HCT116 cells lacking UBE2C.

    Science.gov (United States)

    Garvanska, Dimitriya H; Larsen, Marie Sofie Yoo; Nilsson, Jakob

    2016-10-15

    The spindle assembly checkpoint (SAC) inhibits the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores by generating a diffusible inhibitor termed the mitotic checkpoint complex (MCC). At metaphase, rapid activation of the APC/C requires removal of the MCC, a process that has been shown to depend on the APC/C E2 enzymes, UBE2C and UBE2S. Here we investigate the in vivo role of the APC/C E2 enzymes in SAC silencing using CRISPR/Cas9 genetically engineered HCT116 UBE2C or UBE2S null cell lines. Using live cell assays, we show that UBE2C and UBE2S make a minor contribution to SAC silencing in HCT116 cells. Strikingly, in cells specifically lacking UBE2C, we observe a strong synergistic inhibition of mitotic progression when we stabilize the MCC on the APC/C by depleting APC15, potentially reflecting increased competition between the MCC and the remaining initiating E2 enzyme UBE2D. In conclusion, we provide in vivo insight into the APC/C E2 module and its interplay with SAC silencing components. © 2016. Published by The Company of Biologists Ltd.

  15. Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells

    International Nuclear Information System (INIS)

    Shin, Hye Kyung; Kim, Mi Sook; Jeong, Jae Hoon

    2010-01-01

    To investigate the radiosensitizing effect of the selective epidermal growth factor receptor (EGFR) inhibitor nimotuzumab in human colorectal cancer cell lines. Four human colorectal cancer cell lines, HCT-8, LoVo, WiDr, and HCT-116 were treated with nimotuzumab and/or radiation. The effects on cell proliferation, viability, and cell cycle progression were measured by MTT, clonogenic survival assay, flow cytometry, and Western blot. An immunoblot analysis revealed that EGFR phosphorylation was inhibited by nimotuzumab in colorectal cancer cell lines. Under these experimental conditions, pre-treatment with nimotuzumab increased radiosensitivity of colorectal cancer cell lines, except for cell line HCT-116. However, cell proliferation or cell cycle progression was not affected by the addition of nimotuzumab, irrespective of irradiation. Nimotuzumab enhanced the radiosensitivity of colorectal cancer cells in vitro by inhibiting EGFR-mediated cell survival signaling. This study provided a rationale for the clinical application of the selective EGFR inhibitor, nimotuzumab in combination with radiation in colorectal cancer cells.

  16. Transforming growth factor beta receptor 2 (TGFBR2 changes sialylation in the microsatellite unstable (MSI Colorectal cancer cell line HCT116.

    Directory of Open Access Journals (Sweden)

    Jennifer Lee

    Full Text Available Aberrant glycosylation is a common feature of many malignancies including colorectal cancers (CRCs. About 15% of CRC show the microsatellite instability (MSI phenotype that is associated with a high frequency of biallelic frameshift mutations in the A10 coding mononucleotide microsatellite of the transforming growth factor beta receptor 2 (TGFBR2 gene. If and how impaired TGFBR2 signaling in MSI CRC cells affects cell surface glycan pattern is largely unexplored. Here, we used the TGFBR2-deficient MSI colon carcinoma cell line HCT116 as a model system. Stable clones conferring doxycycline (dox-inducible expression of a single copy wildtype TGFBR2 transgene were generated by recombinase-mediated cassette exchange (RMCE. In two independent clones, dox-inducible expression of wildtype TGFBR2 protein and reconstitution of its signaling function was shown. Metabolic labeling experiments using the tritiated sialic acid precursor N-acetyl-D-mannosamine (ManNAc revealed a significant decline (∼30% of its incorporation into newly synthesized sialoglycoproteins in a TGFBR2-dependent manner. In particular, we detected a significant decrease of sialylated ß1-integrin upon reconstituted TGFBR2 signaling which did not influence ß1-integrin protein turnover. Notably, TGFBR2 reconstitution did not affect the transcript levels of any of the known human sialyltransferases when examined by real-time RT- PCR analysis. These results suggest that reconstituted TGFBR2 signaling in an isogenic MSI cell line model system can modulate sialylation of cell surface proteins like ß1-integrin. Moreover, our model system will be suitable to uncover the underlying molecular mechanisms of altered MSI tumor glycobiology.

  17. ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial - Mesenchymal Transition in Colon Cancer Cells.

    Science.gov (United States)

    Guo, Cao; Ma, Junli; Deng, Ganlu; Qu, Yanlin; Yin, Ling; Li, Yiyi; Han, Ying; Cai, Changjing; Shen, Hong; Zeng, Shan

    2017-01-01

    Background: Oxaliplatin (OXA) chemotherapy is widely used in the clinical treatment of colon cancer. However, chemo-resistance is still a barrier to effective chemotherapy in cases of colon cancer. Accumulated evidence suggests that the epithelial mesenchymal transition (EMT) may be a critical factor in chemo-sensitivity. The present study investigated the effects of Zinc finger E-box binding homeobox 1 (ZEB1) on OXA-sensitivity in colon cancer cells. Method: ZEB1expression and its correlation with clinicopathological characteristics were analyzed using tumor tissue from an independent cohort consisting of 118 colon cancer (CC) patients who receiving OXA-based chemotherapy. ZEB1 modulation of OXA-sensitivity in colon cancer cells was investigated in a OXA-resistant subline of HCT116/OXA cells and the parental colon cancer cell line: HCT116. A CCK8 assay was carried out to determine OXA-sensitivity. qRT-PCR, Western blot, Scratch wound healing and transwell assays were used to determine EMT phenotype of colon cells. ZEB1 knockdown using small interfering RNA (siRNA) was used to determine the ZEB1 contribution to OXA-sensitivity in vitro and in vivo (in a nude mice xenograft model). Result: ZEB1 expression was significantly increased in colon tumor tissue, and was correlated with lymph node metastasis and the depth of invasion. Compared with the parental colon cancer cells (HCT116), HCT116/OXA cells exhibited an EMT phenotype characterized by up-regulated expression of ZEB1, Vimentin, MMP2 and MMP9, but down-regulated expression of E-cadherin. Transfection of Si-ZEB1 into HCT116/OXA cells significantly reversed the EMT phenotype and enhanced OXA-sensitivity in vitro and in vivo . Conclusion: HCT116/OXA cells acquired an EMT phenotype. ZEB1 knockdown effectively restored OXA-sensitivity by reversing EMT. ZEB1 is a potential therapeutic target for the prevention of OXA-resistance in colon cancer.

  18. Tirapazamine causes vascular dysfunction in HCT-116 tumour xenografts

    International Nuclear Information System (INIS)

    Huxham, Lynsey A.; Kyle, Alastair H.; Baker, Jennifer H.E.; McNicol, Krista L.; Minchinton, Andrew I.

    2006-01-01

    Background and purpose: Tirapazamine is a hypoxic cytotoxin currently undergoing Phase II/III clinical evaluation in combination with radiation and chemotherapeutics for the treatment of non-hematological cancers. Tissue penetration studies using multicellular models have suggested that tirapazamine exposure may be limited to cells close to blood vessels. However, animal studies show tirapazamine enhances the anti-tumour activity of radiation and chemotherapy and clinical studies with tirapazamine, so far, are promising. To investigate this apparent paradox we examined the microregional effects of tirapazamine in vivo by mapping drug effects with respect to the position of blood vessels in tumour cryosections. Patients and methods: Tirapazamine was administered i.p. to mice bearing HCT-116 tumours, which were excised at various times after treatment. Images of multiple-stained cryosections were overlaid to provide microregional information on the relative position of proliferating cells, hypoxia, perfusion and vasculature. Results: We observed extensive and permanent vascular dysfunction in a large proportion of tumours from mice treated with tirapazamine. In the affected tumours, blood flow ceased in the centrally located tumour vessels, leaving a rim of functional vessels around the periphery of the tumour. This vascular dysfunction commenced within 24 h after tirapazamine administration and the areas affected appeared to be replaced by necrosis over the following 24-48 h. Conclusions: Because the majority of hypoxic cells are located in the center of tumours we propose that the activity of tirapazamine in vivo may be related to its effects on tumour vasculature and that its activity against hypoxic cells located distal to functional blood vessels may not be as important as previously believed

  19. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Petersen, Jørgen; Nielsen, Søren Jensby

    2010-01-01

    in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 muM belinostat were analysed by 2-D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed...

  20. Efficacy of the MEK Inhibitor Cobimetinib and its Potential Application to Colorectal Cancer Cells.

    Science.gov (United States)

    Gong, Shu; Xu, Dongsheng; Zhu, Jialin; Zou, Fangdong; Peng, Rui

    2018-05-22

    Mutations in the Ras/Raf/MEK/ERK pathway are detected in 50% of colorectal cancer cases and play a crucial role in cancer development and progression. Cobimetinib is a MEK inhibitor approved for the treatment of advanced melanoma and inhibits the cell viability of other types of cancer cells. HCT116 colorectal cancer cells were treated with cobimetinib, and MTT assay, colony formation assay, and flow cytometry were used to evaluate cell viability, cell cycle, and apoptosis, respectively. The expression of genes associated with the cell cycle and apoptosis were evaluated by quantitative real-time PCR and western blotting. To explore use of cobimetinib in colorectal cancer treatment and further understand its mechanisms, RNA-seq technology was used to identify differentially expressed genes (DEGs) between cobimetinib-treated and untreated HCT116 cells. Furthermore, we compared these DEGs with Gene Expression Omnibus data from colorectal cancer tissues and normal colonic epithelial tissues. We found that cobimetinib not only inhibited cell proliferation but also induced G1 phase arrest and apoptosis in HCT116 colorectal cancer cells, suggesting that cobimetinib may useful in colorectal cancer therapy. After cobimetinib treatment, 3,495 DEGs were obtained, including 2,089 upregulated genes and 1,406 downregulated genes, and most of these DEGs were enriched in the cell cycle, DNA replication, and DNA damage repair pathways. Our results revealed that some genes with high expression in colorectal cancer tissues were downregulated by cobimetinib in HCT116 cells, including CCND1, E2F1, CDC25C, CCNE2, MYC, and PCNA. These genes have vital roles in DNA replication and the cell cycle. Furthermore, genes with low expression in colorectal cancer tissues were upregulated by cobimetinib, including PRKCA, PI3K, RTK, and PKC. Based on our results, the PKC and PI3K pathways were activated after cobimetinib treatment, and inhibition of these two pathways can increase the cytotoxicity

  1. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Science.gov (United States)

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB

    OpenAIRE

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-01-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ ac...

  3. Characterization of the N-methoxyindole-3-carbinol (NI3C)–Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines

    DEFF Research Database (Denmark)

    Neave, Antje S.; Sarup, Sussi; Seidelin, Michel

    2005-01-01

    Recent results have shown that indole-3-carbinol (I3C) inhibits the cellular growth of human cancer cell lines. In some cruciferous vegetables, another indole, N-methoxyindole-3-carbinol (NI3C), is found beside I3C. Knowledge about the biological effects of NI3C is limited. The aim of the present...... study was to show the effect of NI3C on cell growth of two human colon cancer cell lines, DLD-1 and HCT-116. For the first time it is shown that NI3C inhibits cellular growth of DLD-1 and HCT-116 and that NI3C is a more potent inhibitor of cell proliferation than I3C. In addition to the inhibition...... of cellular proliferation, NI3C caused an accumulation of HCT-116 cells in the G2/M phase, in contrast to I3C, which led to an accumulation of the colon cells in G0/G1 phase. Furthermore, NI3C delays the G1-S phase transition of synchronized HCT-116 cells. The indole-mediated cell-cycle arrest may be related...

  4. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells.

    Science.gov (United States)

    Yan, Chen; Luo, Lan; Guo, Chang-Ying; Goto, Shinji; Urata, Yoshishige; Shao, Jiang-Hua; Li, Tao-Sheng

    2017-03-01

    Cancer stem cells (CSCs) are known to be drug resistant. Mitophagy selectively degrades unnecessary or damaged mitochondria by autophagy during cellular stress. To investigate the potential role of mitophagy in drug resistance in CSCs, we purified CD133 + /CD44 + CSCs from HCT8 human colorectal cancer cells and then exposed to doxorubicin (DXR). Compared with parental cells, CSCs were more resistant to DXR treatment. Although DXR treatment enhanced autophagy levels in both cell types, the inhibition of autophagy by ATG7 silencing significantly increased the toxicity of DXR only in parental cells, not in CSCs. Interestingly, the level of mitochondrial superoxide was detected to be significantly lower in CSCs than in parental cells after DXR treatment. Furthermore, the mitophagy level and expression of BNIP3L, a mitophagy regulator, were significantly higher in CSCs than in parental cells after DXR treatment. Silencing BNIP3L significantly halted mitophagy and enhanced the sensitivity to DXR in CSCs. Our data suggested that mitophagy, but not non-selective autophagy, likely contributes to drug resistance in CSCs isolated from HCT8 cells. Further studies in other cancer cell lines will be needed to confirm our findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I

    2016-01-01

    Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498

  6. The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Tae-Wook Chung

    Full Text Available Cisplatin (cis-diamminedichloroplatinum, CDDP is a well-known chemotherapeutic agent for the treatment of several cancers. However, the precise mechanism underlying apoptosis of cancer cells induced by CDDP remains unclear. In this study, we show mechanistically that CDDP induces GM3-mediated apoptosis of HCT116 cells by inhibiting cell proliferation, and increasing DNA fragmentation and mitochondria-dependent apoptosis signals. CDDP induced apoptosis within cells through the generation of reactive oxygen species (ROS, regulated the ROS-mediated expression of Bax, Bcl-2, and p53, and induced the degradation of the poly (ADP-ribosyl polymerase (PARP. We also checked expression levels of different gangliosides in HCT116 cells in the presence or absence of CDDP. Interestingly, among the gangliosides, CDDP augmented the expression of only GM3 synthase and its product GM3. Reduction of the GM3 synthase level through ectopic expression of GM3 small interfering RNA (siRNA rescued HCT116 cells from CDDP-induced apoptosis. This was evidenced by inhibition of apoptotic signals by reducing ROS production through the regulation of 12-lipoxigenase activity. Furthermore, the apoptotic sensitivity to CDDP was remarkably increased in GM3 synthase-transfected HCT116 cells compared to that in controls. In addition, GM3 synthase-transfected cells treated with CDDP exhibited an increased accumulation of intracellular ROS. These results suggest the CDDP-induced oxidative apoptosis of HCT116 cells is mediated by GM3.

  7. Comparative proteomic analysis of colon cancer cell HCT-15 in response to all-trans retinoic acid treatment.

    Science.gov (United States)

    Zhao, Jie; Wen, Gaotian; Ding, Ming; Pan, Jian-Yi; Yu, Mei-Lan; Zhao, Fukun; Weng, Xia-Lian; Du, Jiang-Li

    2012-12-01

    Colon cancer is one of the most common malignances. In vitro and in vivo study show that retinoic acids inhibit a wide variety of cancer cells but the molecular mechanism of their anti-tumor effects are not yet fully understood. Alltrans retinoic acid (ATRA), an isomer of retinoic acid, can inhibit the proliferation of HCT-15 human colon cancer cell line. A proteomic analysis was performed using HCT-15 treated with ATRA to further elucidate the retinoic acid signaling pathway and its anti-tumor effect mechanism. MTT results showed that the growth of HCT-15 cells were significantly inhibited by ATRA. The alkaline phosphatase activity assay showed that ATRA failed to induce the differentiation of HCT-15. The DNA ladder detection showed that ATRA induced apoptosis in HCT-15. Two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF mass spectrometry identified 13 differentially expressed proteins in HCT-15 cells after all-trans retinoic acid treatment. Among the identified differentially expressed proteins, there were four scaffold proteins (YWHAE, SFN, YWHAB, and YWHAZ), two ubiquitin modification related proteins (ISG-15 and UBE2N), two translational initiation factors (EIF1AX and EIF3K), two cytoskeleton related proteins (EZRI and CNN3), two proteinmodification related proteins (TXNDC17 and PIMT), and one enzyme related to phospholipid metabolism (PSP). Both EZRI and UBE2N were rendered to western-blot validation and the results were consistent with the two-dimension electrophoresis analysis. In this study, the differentially expressed proteins in HCT-15 treated by ATRA were identified, which will assist the further elucidation of the anti-tumor mechanism of retinoic acids.

  8. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  9. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  10. Acquisition of 5-fluorouracil resistance induces epithelial-mesenchymal transitions through the Hedgehog signaling pathway in HCT-8 colon cancer cells.

    Science.gov (United States)

    Liu, Yanjun; DU, Fangfang; Zhao, Qiannan; Jin, Jian; Ma, Xin; Li, Huazhong

    2015-06-01

    Colon cancer has a high incidence in individuals >60-years-old. The commonly used chemotherapeutic agent, 5-fluorouracil (5-FU), has gradually lost its potency in treating colorectal cancer following the acquisition of resistance. Drug resistance is usually associated with epithelial-mesenchymal transitions (EMTs) in cancer cells. In the present study, the EMT phenotypes of two colon cancer cell lines, wild-type (HCT-8/WT) and 5-FU-resistant (HCT-8/5-FU), were characterized following the analysis of cellular migration, proliferation, morphology and molecular changes. In order to further clarify the mechanism of EMT in HCT-8/5-FU cells, the effect of EMT pathway inhibitors upon drug sensitivity was investigated. The results revealed that the Hedgehog signaling pathway inhibitor, GDC0449, reversed drug resistance. Therefore, inhibition of the Hedgehog pathway may provide a novel chemotherapeutic strategy for the treatment of patients with 5-FU-resistant colon cancer.

  11. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.

    Directory of Open Access Journals (Sweden)

    Mehdi Shakibaei

    Full Text Available OBJECTIVE: Treatment of colorectal cancer (CRC remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50-60%. Cancer stem cells (CSC are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin in context of DNA mismatch repair (MMR status and CSC activity in 3D cultures of CRC cells. METHODS: High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3 and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. RESULTS: Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. CONCLUSION: Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract.

  12. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.

    Science.gov (United States)

    Shakibaei, Mehdi; Buhrmann, Constanze; Kraehe, Patricia; Shayan, Parviz; Lueders, Cora; Goel, Ajay

    2014-01-01

    Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50-60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract).

  13. A Ribonuclease Isolated from Wild Ganoderma Lucidum Suppressed Autophagy and Triggered Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiuli Dan

    2016-07-01

    Full Text Available The mushroom Ganoderma lucidum (G. lucidum has been consumed in China as a medicine for promoting health and longevity for thousands of years. Due to its paramount and multiple pharmaceutical effects, G. lucidum has received considerable attention from researchers and its chemical constituents as well as their respective functions were gradually unveiled by using modern research methods. Herein, we reported the isolation of a protein (GLR with anti-colorectal cancer activities from G. lucidum. This protein is a 17.4-kDa RNA degrading enzyme (ribonuclease and was purified by using liquid chromatography procedures. GLR manifested potent anti-proliferative and anti-colony formation activities on HT29 and HCT116 colorectal cancer cells by inducing cell cycle arrest in G1 phase through the regulation of cyclin D1 and P53 expression. GLR was demonstrated to induce cell apoptosis in HCT116 cells by activating unfolded protein response and caspase-9 regulated pathways. Besides, the ability to undergo autophagy which is a stress adaption mechanism to cope with metabolic crisis was significantly suppressed by GLR treatment in HCT116 cells. The activation of apoptosis in GLR-treated HT29 cells was, however, independent of caspase-9 and the suppression of autophagy was also relatively minor. Thus the apoptosis of HT29 cells triggered by GLR was much milder than that in HCT116 cells. Our findings show that the RNase from G. lucidum may be one of the bioactive components that contribute to the anti-colorectal cancer activity of G. lucidum.

  14. A Ribonuclease Isolated from Wild Ganoderma Lucidum Suppressed Autophagy and Triggered Apoptosis in Colorectal Cancer Cells.

    Science.gov (United States)

    Dan, Xiuli; Liu, Wenlong; Wong, Jack H; Ng, Tzi B

    2016-01-01

    The mushroom Ganoderma lucidum (G. lucidum) has been consumed in China as a medicine for promoting health and longevity for thousands of years. Due to its paramount and multiple pharmaceutical effects, G. lucidum has received considerable attention from researchers and its chemical constituents as well as their respective functions were gradually unveiled by using modern research methods. Herein, we reported the isolation of a protein (Ganoderma lucidum ribonuclease, GLR) with anti-colorectal cancer activities from G. lucidum. This protein is a 17.4-kDa RNA degrading enzyme (ribonuclease) and was purified by using liquid chromatography procedures. GLR manifested potent anti-proliferative and anti-colony formation activities on HT29 and HCT116 colorectal cancer cells by inducing cell cycle arrest in G1 phase through the regulation of cyclin D1 and P53 expression. GLR was demonstrated to induce cell apoptosis in HCT116 cells by activating unfolded protein response and caspase-9 regulated pathways. Besides, the ability to undergo autophagy which is a stress adaption mechanism to cope with metabolic crisis was significantly suppressed by GLR treatment in HCT116 cells. The activation of apoptosis in GLR-treated HT29 cells was, however, independent of caspase-9 and the suppression of autophagy was also relatively minor. Thus the apoptosis of HT29 cells triggered by GLR was much milder than that in HCT116 cells. Our findings show that the RNase from G. lucidum may be one of the bioactive components that contribute to the anti-colorectal cancer activity of G. lucidum.

  15. GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yajing Wang

    2016-01-01

    Full Text Available Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA. Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer.

  16. GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway.

    Science.gov (United States)

    Wang, Yajing; Lu, Ping; Zhang, Weifeng; Du, Qianming; Tang, Jingjing; Wang, Hong; Lu, Jinrong; Hu, Rong

    2016-01-01

    Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA). Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer.

  17. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    Purpose: To investigate anticancer effects of bergenin on human colorectal cancer cell lines. Methods: Human colorectal adenocarcinoma cell line HCT116 was treated with various concentrations of bergenin for 24 and 48 h. Cell viability, apoptosis, cell cycle arrest and reactive oxygen species (ROS) level were analyzed ...

  18. Hybrid liposomes showing enhanced accumulation in tumors as theranostic agents in the orthotopic graft model mouse of colorectal cancer.

    Science.gov (United States)

    Okumura, Masaki; Ichihara, Hideaki; Matsumoto, Yoko

    2018-11-01

    Hybrid liposomes (HLs) can be prepared by simply sonicating a mixture of vesicular and micellar molecules in a buffer solution. This study aimed to elucidate the therapeutic effects and ability of HLs to detect (diagnosis) cancer in an orthotopic graft mouse model of colorectal cancer with HCT116 cells for the use of HLs as theranostic agents. In the absence of a chemotherapeutic drug, HLs exhibited therapeutic effects by inhibiting the growth of HCT116 colorectal cancer cells in vitro, possibly through an increase in apoptosis. Intravenously administered HLs also caused a remarkable reduction in the relative cecum weight in an orthotopic graft mouse model of colorectal cancer. A decrease in tumor size in the cecal sections was confirmed by histological analysis using HE staining. TUNEL staining indicated an induction of apoptosis in HCT116 cells in the orthotopic graft mouse model of colorectal cancer. For the detection (diagnosis) of colorectal cancer by HLs, the accumulation of HLs encapsulating a fluorescent probe (ICG) was observed in HCT116 cells in the in vivo colorectal cancer model following intravenous administration. These data indicate that HLs can accumulate in tumor cells in the cecum of the orthotopic graft mouse model of colorectal cancer for a prolonged period of time, and inhibit the growth of HCT116 cells.

  19. Radiation sensitization studies by silymarin on HCT-15 cells

    International Nuclear Information System (INIS)

    Lal, Mitu; Gupta, Damodar; Arora, R.

    2014-01-01

    Radiotherapy has been widely used for treatment of human cancers. However, cancer cells develop radioresistant phenotypes following multiple exposures to the treatment agent that decrease the efficacy of radiotherapy. Here it was investigated that the radiation sensitization effects of silymarin found in colon cancer. The aim of this study was to investigate mechanisms involved in radiation sensitization growth inhibitory effect of silymarin in combination with radiation, in Human colon carcinoma (HCT-15). The human colon carcinoma was utilized and SRB-assay was performed to study anti-proliferative effect of silymarin in combination with gamma radiation (2 Gy) appropriate radiation dose was optimized and confirmed by clonogenic assay. Microscopic analysis was done by staining with Hoechst-33342, DAPI, Propidium iodide to confirm the presence of apoptosis. Nitric oxide production, changes in lipid peroxidation, Cell cycle analysis were carried out and mitochondrial membrane potential was measured by uptake of cationic dye JC-1 by using flow cytometer. Silymarin in combination with radiation (2 Gy) inhibited 70% ± 5% population growth of HCT-15 cells in time and dose dependent manner. Pre treatment of cells with silymarin for 30 min before radiation was found to be most effective for radiation sensitization. There was 25% increase in levels of nitric oxide as compare to control, whereas 2.5 fold change in lipid peroxidation with respect to control. IR-induced apoptosis in HCT-15 cell line was significantly enhanced by silymarin, as reflected by viability, DNA fragmentation, and mitochondrial dysfunction. Additionally, silymarin in combination with IR is found to be effective in sensitization of HCT-15 cells. In vivo studies on development of tumor and sensitization aspects needs to done in future. (author)

  20. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey.

    Science.gov (United States)

    Afrin, Sadia; Forbes-Hernandez, Tamara Y; Gasparrini, Massimiliano; Bompadre, Stefano; Quiles, José L; Sanna, Gavino; Spano, Nadia; Giampieri, Francesca; Battino, Maurizio

    2017-03-11

    Honey is a natural product known to modulate several biological activities including cancer. The aim of the present study was to examine the phytochemical content and the antioxidant activity of Strawberry tree ( Arbutus unedo ) honey (STH) and its cytotoxic properties against human colon adenocarcinoma (HCT-116) and metastatic (LoVo) cell lines in comparison with Manuka ( Leptospermum scoparium ) honey (MH). Several unifloral STH and MH were analyzed for their phenolic, flavonoid, amino acid and protein contents, as well as their radical scavenging activities. STH from the Berchidda area showed the highest amount of phenolic, flavonoid, amino acid and protein content, and antioxidant capacity compared to MH. Both STH and MH induced cytotoxicity and cell death in a dose- and time-dependent manner in HCT-116 and LoVo cells, with less toxicity on non-cancer cells. Compared to MH, STH showed more effect at lower concentrations on HCT-116 and LoVo cells. In addition, both honeys increased intracellular reactive oxygen species (ROS) generation. In HCT-116 cells, STH and MH induced similar ROS production but in LoVo cells STH induced a higher percentage of ROS compared to MH. Our results indicate that STH and MH can induce cell growth inhibition and ROS generation in colon adenocarcinoma and metastatic cells, which could be due to the presence of phytochemicals with antioxidant properties. These preliminary results are interesting and suggest a potential chemopreventive action which could be useful for further studies in order to develop chemopreventive agents for colon cancer.

  1. Strawberry-Tree Honey Induces Growth Inhibition of Human Colon Cancer Cells and Increases ROS Generation: A Comparison with Manuka Honey

    Directory of Open Access Journals (Sweden)

    Sadia Afrin

    2017-03-01

    Full Text Available Honey is a natural product known to modulate several biological activities including cancer. The aim of the present study was to examine the phytochemical content and the antioxidant activity of Strawberry tree (Arbutus unedo honey (STH and its cytotoxic properties against human colon adenocarcinoma (HCT-116 and metastatic (LoVo cell lines in comparison with Manuka (Leptospermum scoparium honey (MH. Several unifloral STH and MH were analyzed for their phenolic, flavonoid, amino acid and protein contents, as well as their radical scavenging activities. STH from the Berchidda area showed the highest amount of phenolic, flavonoid, amino acid and protein content, and antioxidant capacity compared to MH. Both STH and MH induced cytotoxicity and cell death in a dose- and time-dependent manner in HCT-116 and LoVo cells, with less toxicity on non-cancer cells. Compared to MH, STH showed more effect at lower concentrations on HCT-116 and LoVo cells. In addition, both honeys increased intracellular reactive oxygen species (ROS generation. In HCT-116 cells, STH and MH induced similar ROS production but in LoVo cells STH induced a higher percentage of ROS compared to MH. Our results indicate that STH and MH can induce cell growth inhibition and ROS generation in colon adenocarcinoma and metastatic cells, which could be due to the presence of phytochemicals with antioxidant properties. These preliminary results are interesting and suggest a potential chemopreventive action which could be useful for further studies in order to develop chemopreventive agents for colon cancer.

  2. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    He, Licheng; Lu, Na; Dai, Qinsheng; Zhao, Yue; Zhao, Li; Wang, Hu; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2013-01-01

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  3. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

    Science.gov (United States)

    Tentori, Lucio; Leonetti, Carlo; Muzi, Alessia; Dorio, Annalisa Susanna; Porru, Manuela; Dolci, Susanna; Campolo, Federica; Vernole, Patrizia; Lacal, Pedro Miguel; Praz, Françoise; Graziani, Grazia

    2013-07-01

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.

  4. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin

    Science.gov (United States)

    Zhang, Xiu-Lai; Chen, Min-Li; Zhou, Sheng-Li

    2015-01-01

    Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to determine the cell survival rate and cell invasion, respectively. MicroRNAs and mRNAs expression were quantified by real-time PCR. β-catenin and matrix metalloproteinases (MMP-2 and MMP-9) expression were assayed by western blotting. β-Catenin-specific small interfering RNA (Si-β-catenin) and miR-182 mimics were transfected in cells to investigate the mechanism underlying the effects of fentanyl on the colorectal tumor and HCT116 cells. Results: Treatment with fentanyl inhibited the tumor growth and HCT116 cells invasion. Fentanyl also downregulated the expression of β-catenin and miR-182 in both xenograft tumors and HCT116 cells, and decreased the protein level of MMP-9 in HCT116 cells. Downregulation of β-Catenin resulted in the decrease of miR-182 expression in colorectal cells. In addition, the overexpression of miR-182 reversed the effect of fentanyl on MMP-9 expression and cell invasion of HCT116 cells. Conclusions: The current study demonstrated that the inhibition of tumor growth and cell invasion in colorectal cancer by fentanyl is probably due to downregulation of miR-182 and MMP-9 expression by β-catenin. PMID:25755709

  5. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway.

    Science.gov (United States)

    Zeriouh, Wafa; Nani, Abdelhafid; Belarbi, Meriem; Dumont, Adélie; de Rosny, Charlotte; Aboura, Ikram; Ghanemi, Fatima Zahra; Murtaza, Babar; Patoli, Danish; Thomas, Charles; Apetoh, Lionel; Rébé, Cédric; Delmas, Dominique; Khan, Naim Akhtar; Ghiringhelli, François; Rialland, Mickael; Hichami, Aziz

    2017-01-01

    Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice. We observed that oleaster leaf polyphenol-rich infusion limited HCT116 tumor growth in vivo. Investigations of PEOL on two human CRC cell lines showed that PEOL induced apoptosis in HCT116 and HCT8 cells. We demonstrated an activation of caspase-3, -7 and -9 by PEOL and that pre-treatment with the pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), prevented PEOL-induced cell death. We observed an involvement of the mitochondrial pathway in PEOL-induced apoptosis evidenced by reactive oxygen species (ROS) production, a decrease of mitochondrial membrane potential, and cytochrome c release. Increase in intracellular Ca2+ concentration induced by PEOL represents the early event involved in mitochondrial dysfunction, ROS-induced endoplasmic reticulum (ER) stress and apoptosis induced by PEOL, as ruthenium red, an inhibitor of mitochondrial calcium uptake inhibited apoptotic effect of PEOL, BAPTA/AM inhibited PEOL-induced ROS generation and finally, N-acetyl-L-cysteine reversed ER stress and apoptotic effect of PEOL. These results demonstrate that polyphenols from oleaster leaves might have a strong potential as chemopreventive agent in colorectal cancer.

  6. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Guanghui Ni

    2018-02-01

    Full Text Available Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant. Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC50 = 1.80 μM, HCT-116 (IC50 = 11.50 μM and MDA-MB-231 (IC50 = 53.91 μM. In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO2 on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  7. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells.

    Science.gov (United States)

    Ni, Guanghui; Tang, Yanling; Li, Minxin; He, Yuefeng; Rao, Gaoxiong

    2018-02-01

    Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant.) Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC 50 = 1.80 μM), HCT-116 (IC 50 = 11.50 μM) and MDA-MB-231 (IC 50 = 53.91 μM). In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO₂ on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  8. The Association of CXC Receptor 4 Mediated Signaling Pathway with Oxaliplatin-Resistant Human Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Wen-Shih Huang

    Full Text Available The stromal cell-derived factor-1 (SDF-1/CXC receptor 4 (CXCR4 axis plays an important role in tumor angiogenesis and invasiveness in colorectal cancer (CRC progression. In addition, metastatic CRC remains one of the most difficult human malignancies to treat because of its chemoresistant behavior. However, the mechanism by which correlation occurs between CXCR4 and the clinical response of CRC to chemotherapy remains unknown. We generated chemoresistant cells with increasing doses of oxaliplatin (OXA and 5-Fluorouracil (5FU to develop resistance at a clinical dose. We found that the putative markers did not change in the parental cells, but HCT-116/OxR and HCT-116/5-FUR were more aggressive and had higher tumor growth (demonstrated by wound healing, chemotaxis assay, and a nude mice xenograft model with the use of oxaliplatin. Apoptosis induced by oxaliplatin treatment was significantly decreased in HCT-116/OxR compared to the parental cells. Moreover, HCT-116/OxR cells displayed increased levels of p-gp, p-Akt p-ERK, p-IKBβ, CXCR4, and Bcl-2, but they also significantly inhibited the apoptotic pathways when compared to the parental strain. We evaluated the molecular mechanism governing the signaling pathway associated with anti-apoptosis activity and the aggressive status of chemoresistant cells. Experiments involving specific inhibitors demonstrated that the activation of the pathways associated with CXCR4, ERK1/2 mitogen-activated protein kinase (MAPK, and phosphatidylinositol 3-kinase (PI3K/Akt is critical to the functioning of the HCT-116/OxR and HCT-116/5-FUR characteristics of chemosensitivity. These findings elucidate the mechanism of CXCR4/PI3K/Akt downstream signaling and provide strategies to inhibit CXCR4 mediated signaling pathway in order to overcome CRC's resistance to chemotherapy.

  9. Imaging Nuclear-Cytoplasmic Dynamics in Primary and Metastatic Colon Cancer in Nude Mice.

    Science.gov (United States)

    Hasegawa, Kosuke; Suetsugu, Atsushi; Nakamura, Miki; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Bouvet, Michael; Shimizu, Masahito; Hoffman, Robert M

    2016-05-01

    Colon cancer frequently results in metastasis to the liver, where it becomes the main cause of death. However, the cell cycle in primary tumors and metastases is poorly understood. We developed a mouse model of liver metastasis using the human colon cancer cell line HCT-116, which expresses green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm (HCT-116-GFP-RFP). HCT-116 GFP-RFP cells were injected into the spleen of nu/nu nude mice. HCT-116-GFP-RFP cells subsequently formed primary tumors in the spleen, as well as metastatic colonies in the liver and retroperitoneum by 28 days after cell transplantation. Using an Olympus FV1000 confocal microscope, it was possible to clearly image mitosis of the dual-colored colon cancer cells in the primary tumor as well as liver and other metastases. Multi-nucleate cancer cells, in addition to mono-nucleate cancer cells and their mitosis, were observed in the primary tumor and metastasis. Multi-nucleate HCT-116-GFP-RFP cells were also observed after culture of the primary and metastatic tumors. A similar ratio of mono-nucleate, multi-nucleate, and mitotic cells grew from the primary and metastatic tumors in culture, suggesting similarity of the nuclear-cytoplasmic dynamics of primary and metastatic cancer cells, further emphasizing the stochastic nature of metastasis. Our results demonstrate a similar heterogeneity of nuclear-cytoplasmic dynamics within primary tumors and metastases, which may be an important factor in the stochastic nature of metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Synsepalum dulcificum extracts exhibit cytotoxic activity on human colorectal cancer cells and upregulate c-fos and c-jun early apoptotic gene expression

    Directory of Open Access Journals (Sweden)

    Jichang Seong

    2018-01-01

    Full Text Available Objective: To explore cytotoxicity of Synsepalum dulcificum (S. dulcificum Daniell (Sapotaceae on human colon cancer (HCT-116 and HT-29, human monocytic leukemia (THP-1 and normal (HDFn cell lines, and its effect on the expression of early apoptotic genes, c-fos and c-jun. Methods: Leaf, stem and berry of S. dulcificum were separately extracted by using 2 solvents, 10% ethanol (EtOH and 80% methanol (MeOH. PrestoBlue® cell viability assay and qRT-PCR assay were conducted to examine the above objectives respectively. Results: Stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum were cytotoxic to HCT-116 and HT-29 human colon cancer cells. For HCT-116, IC50 values of these 3 extracts were not significantly different (P>0.05 from that of the positive control bleomycin (IC50 of 33.57 μg/mL, while for HT-29, IC50 values of these 3 extracts were significantly lower (P<0.05 than that of bleomycin (IC50 of 25.24 μg/mL. None of the extracts were cytotoxic to the THP-1 monocytic leukemia cells and HDFn normal human dermal fibroblasts. For both HCT-116 and HT-29, these extracts significantly up-regulated (P<0.05 the expression of c-fos and c-jun compared to the untreated negative control. Conclusions: The results of this study suggest that cytotoxicity of stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum on HCT-116 and HT-29 colon cancer cells is due to the induced apoptosis which is caused by the up-regulation of the expression of early apoptotic genes, c-fos and c-jun.

  11. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    Science.gov (United States)

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  12. The role of hERG1 ion channels in epithelial-mesenchymal transition and the capacity of riluzole to reduce cisplatin resistance in colorectal cancer cells.

    Science.gov (United States)

    Fortunato, Angelo

    2017-08-01

    The transition of cells from the epithelial to the mesenchymal state (EMT) plays an important role in tumor progression. EMT allows cells to acquire mobility, stem-like behavior and resistance to apoptosis and drug treatment. These features turn EMT into a central process in tumor biology. Ion channels are attractive targets for the treatment of cancer since they play critical roles in controlling a wide range of physiological processes that are frequently deregulated in cancer. Here, we investigated the role of ether-a-go-go-related 1 (hERG1) ion channels in the EMT of colorectal cancer cells. We studied the epithelial-mesenchymal profile of different colorectal cancer-derived cell lines and the expression of hERG1 potassium channels in these cell lines using real-time PCR. Next, we knocked down hERG1 expression in HCT116 cells using lentivirus mediated RNA interference and characterized the hERG1 silenced cells in vitro and in vivo. Finally, we investigated the capacity of riluzole, an ion channel-modulating drug used in humans to treat amyotrophic lateral sclerosis, to reduce the resistance of the respective colorectal cancer cells to the chemotherapeutic drug cisplatin. We found that of the colorectal cancer-derived cell lines tested, HCT116 showed the highest mesenchymal profile and a high hERG1 expression. Subsequent hERG1 expression knockdown induced a change in cell morphology, which was accompanied by a reduction in the proliferative and tumorigenic capacities of the cells. Notably, we found that hERG1expression knockdown elicited a reversion of the EMT profile in HCT116 cells with a reacquisition of the epithelial-like profile. We also found that riluzole increased the sensitivity of HCT116 cisplatin-resistant cells to cisplatin. Our data indicate that hERG1 plays a role in the EMT of colorectal cancer cells and that its knockdown reduces the proliferative and tumorigenic capacities of these cells. In addition, we conclude that riluzole may be used in

  13. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  14. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  15. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haogang [Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China); Jia, Ruichun [Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China); Wang, Chunjing; Hu, Tianming [Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China); Wang, Fujing, E-mail: wangfujing-hyd@163.com [Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China)

    2014-09-26

    Highlights: • Piceatannol induces apoptosis in cultured CRC cells. • Piceatannol promotes expression of miR-129. • miR-129 mediates proapoptotic effects of piceatannol. - Abstract: Piceatannol, a naturally occurring analog of resveratrol, has been confirmed as an antitumor agent by inhibiting proliferation, migration, and metastasis in diverse cancer. However, the effect and mechanisms of piceatannol on colorectal cancer (CRC) have not been well understood. This study aimed to test whether piceatannol could inhibit growth of CRC cells and reveal its underlying molecular mechanism. MTT assay was used to detect the cell viability in HCT116 and HT29 cells. Flow cytometry analysis was employed to measure apoptosis of CRC cells. Bcl-2, Bax and caspase-3 levels were analyzed by Western blot and miR-129 levels were determined by real-time RT-PCR. Our study showed that piceatannol inhibited HCT116 and HT29 cells growth in a concentration- and time-dependent manner. Piceatannol induced apoptosis by promoting expression of miR-129, and then inhibiting expression of Bcl-2, an known target for miR-129. Moreover, knock down of miR-129 could reverse the reduction of cell viability induced by piceatannol in HCT116 and HT29 cells. Taken together, our study unraveled the ability of piceatannol to suppress colorectal cancer growth and elucidated the participation of miR-129 in the anti-cancer action of piceatannol. Our findings suggest that piceatannol can be considered to be a promising anticancer agent for CRC.

  16. p53 is important for the anti-proliferative effect of ibuprofen in colon carcinoma cells

    International Nuclear Information System (INIS)

    Janssen, Astrid; Schiffmann, Susanne; Birod, Kerstin; Maier, Thorsten J.; Wobst, Ivonne; Geisslinger, Gerd; Groesch, Sabine

    2008-01-01

    S-ibuprofen which inhibits the cyclooxygenase-1/-2 and R-ibuprofen which shows no COX-inhibition at therapeutic concentrations have anti-carcinogenic effects in human colon cancer cells; however, the molecular mechanisms for these effects are still unknown. Using HCT-116 colon carcinoma cell lines, expressing either the wild-type form of p53 (HCT-116 p53 wt ) or being p(HCT-116 p53 -/- ), we demonstrated that both induction of a cell cycle block and apoptosis after S- and R-ibuprofen treatment is in part dependent on p53. Also in the in vivo nude mice model HCT-116 p53 -/- xenografts were less sensitive for S- and R-ibuprofen treatment than HCT-116 p53 wt cells. Furthermore, results indicate that induction of apoptosis in HCT-116 p53 wt cells after ibuprofen treatment is in part dependent on a signalling pathway including the neutrophin receptor p75 NTR , p53 and Bax

  17. A mechanically-induced colon cancer cell population shows increased metastatic potential

    KAUST Repository

    Tang, Xin; Kuhlenschmidt, Theresa B; Li, Qian; Ali, Shahjahan; Lezmi, Stephane; Chen, Hong; Pires-Alves, Melissa; Laegreid, William W; Saif, Taher A; Kuhlenschmidt, Mark S

    2014-01-01

    Background: Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition.Methods: Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher's exact test.Results: Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells.Conclusions: Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular

  18. A mechanically-induced colon cancer cell population shows increased metastatic potential

    KAUST Repository

    Tang, Xin

    2014-05-29

    Background: Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition.Methods: Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher\\'s exact test.Results: Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells.Conclusions: Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular

  19. Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells.

    Science.gov (United States)

    Kim, Jong-Sik; Baek, Seung Joon; Bottone, Frank G; Sali, Tina; Eling, Thomas E

    2005-09-01

    To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.

  20. Prolonged exposure of colon cancer cells to 5-fluorouracil nanoparticles improves its anticancer activity

    Directory of Open Access Journals (Sweden)

    Essam Tawfik

    2017-02-01

    Full Text Available In this study, we aimed to improve the anticancer effect of 5-FU on human colon cancer cell lines by incorporating in poly(d,l lactic-co-glycolic acid (PLGA nanoparticles (NPs. The 5-FU-PLGA NPs were prepared by nanoprecipitation technique. Prepared NPs were moderately dispersed with an average diameter of 133 ± 25.19 nm. Scanning Electron Microscope (SEM images revealed spherical structures with subtle surface irregularity. Free 5-FU dose–response curves were constructed (12.5–2000 μM using MTT assay on HCT 116 and HT-29 cell lines for 1, 3, and 5 days. The calculated IC50 on HCT 116 were 185 μM after 1 day, 11.3 μM after 3 days, and 1.48 μM after 5 days. On HT-29, IC50 was only reached after 5 days of 5-FU treatment (11.25 μM. The HCT 116 viability following treatment with 100 μM 5-FU in free or NPs forms for 3 days was 38.8% and 18.6%, respectively. Similarly, when 250 μM was applied, HCT 116 viability was 17.03% and 14.6% after treatment with free and NPs forms of 5-FU, respectively. Moreover, HT-29 cell viability after 250 μM 5-FU treatment in free or NPs forms was 55.45% and 34.01%, respectively. We also noticed that HCT 116 cells were more sensitive to 5-FU-PLGA NPs as compared to HT-29 cells. Overall, our data indicate that 5-FU activity is time dependent and the prolonged effects created by PLGA NPs may contribute, at least in part, to the noticed enhancement of the anticancer activity of 5-FU drug.

  1. Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells.

    Science.gov (United States)

    Zhang, Zhiyu; Wang, Chong-Zhi; Du, Guang-Jian; Qi, Lian-Wen; Calway, Tyler; He, Tong-Chuan; Du, Wei; Yuan, Chun-Su

    2013-07-01

    Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human colon cancer remains unclear. Here we attempted to elucidate the anticarcinogenic mechanism of genistein in human colon cancer cells. First we evaluated the growth inhibitory effect of genistein and two other isoflavones, daidzein and biochanin A, on HCT-116 and SW-480 human colon cancer cells. In addition, flow cyto-metry was performed to observe the morphological changes in HCT-116/SW-480 cells undergoing apoptosis or cell cycle arrest, which had been visualized using Annexin V-FITC and/or propidium iodide staining. Real-time PCR and western blot analyses were also employed to study the changes in expression of several important genes associated with cell cycle regulation. Our data showed that genistein, daidzein and biochanin A exhibited growth inhibitory effects on HCT-116/SW-480 colon cancer cells and promoted apoptosis. Genistein showed a significantly greater effect than the other two compounds, in a time- and dose-dependent manner. In addition, genistein caused cell cycle arrest in the G2/M phase, which was accompanied by activation of ATM/p53, p21waf1/cip1 and GADD45α as well as downregulation of cdc2 and cdc25A demonstrated by q-PCR and immunoblotting assay. Interestingly, genistein induced G2/M cell cycle arrest in a p53-dependent manner. These findings exemplify that isoflavones, especially genistein, could promote colon cancer cell growth inhibition and facilitate apoptosis and cell cycle arrest in the G2/M phase. The ATM/p53-p21 cross-regulatory network may play a crucial role in mediating the anticarcinogenic activities of genistein in colon cancer.

  2. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    Science.gov (United States)

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells

    Science.gov (United States)

    Kwak, Youngeun

    2015-01-01

    BACKGROUND/OBJECTIVES Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo. PMID:25671062

  4. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.

    Science.gov (United States)

    Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M

    2008-06-01

    Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.

  5. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells

    International Nuclear Information System (INIS)

    Meerson, Ari; Yehuda, Hila

    2016-01-01

    Obesity is a risk factor for colorectal cancer (CRC). Normal and tumor cells respond to metabolic hormones, such as leptin and insulin. Thus, obesity-associated resistance to these hormones likely leads to changes in gene expression and behavior of tumor cells. However, the mechanisms affected by leptin and insulin signaling in CRC cells remain mostly unknown. We hypothesized that microRNAs (miRNAs) are involved in the regulation of tumorigenesis-related gene expression in CRC cells by leptin and insulin. To test this hypothesis, miRNA levels in the CRC-derived cell lines HCT-116, HT-29 and DLD-1 were profiled, following leptin and insulin treatment. Candidate miRNAs were validated by RT-qPCR. Predicted miRNA targets with known roles in cancer, were validated by immunoblots and reporter assays in HCT-116 cells. Transfection of HCT-116 cells with candidate miRNA mimic was used to test in vitro effects on proliferation and invasion. Of ~800 miRNAs profiled, miR-4443 was consistently up-regulated by leptin and insulin in HCT-116 and HT-29, but not in DLD-1, which lacked normal leptin receptor expression. Dose response experiments showed that leptin at 100 ng/ml consistently up-regulated miR-4443 in HCT-116 cells, concomitantly with a significant decrease in cell invasion ability. Transfection with miR-4443 mimic decreased invasion and proliferation of HCT-116 cells. Moreover, leptin and miR-4443 transfection significantly down-regulated endogenous NCOA1 and TRAF4, both predicted targets of miR-4443 with known roles in cancer metastasis. miR-4443 was found to directly regulate TRAF4 and NCOA1, as validated by a reporter assay. The up-regulation of miR-4443 by leptin or insulin was attenuated by the inhibition of MEK1/2. Our findings suggest that miR-4443 acts in a tumor-suppressive manner by down-regulating TRAF4 and NCOA1 downstream of MEK-C/EBP-mediated leptin and insulin signaling, and that insulin and/or leptin resistance (e.g. in obesity) may suppress this pathway

  6. Data showing the circumvention of oxaliplatin resistance by vatalanib in colon cancer.

    Science.gov (United States)

    To, Kenneth K W; Poon, Daniel C; Wei, Yuming; Wang, Fang; Lin, Ge; Fu, Li-Wu

    2016-06-01

    We have recently reported that vatalanib, an orally active small molecule multi-tyrosine kinase inhibitor (Hess-Stumpp et al., 2005 [1]), can sensitize multidrug resistant (MDR) colon cancer cells to chemotherapy under hypoxia by inhibiting two MDR transporters ABCB1 and ABCG2 (To et al., 2015 [2]). This data article describes the possible circumvention of resistance to specifically platinum (Pt)-based anticancer drugs by vatalanib via inhibition of two other efflux transporters ABCC2 and ATP7A. Data from the flow cytometric transporter efflux assay showed specific inhibition of ABCC2 activity by vatalanib in stable transfected cells and ABCC2-overexpressing oxaliplatin-resistant colon cancer cells HCT116/Oxa. We also performed the transporter ABCC2 ATPase assay and showed an increase in ATP hydrolysis by ABCC2 in the presence of vatalanib. ATP7A mRNA expression was also shown to be upregulated in HCT116/Oxa cells. Vatalanib was shown to suppress this upregulated ATP7A expression. Data from the cellular Pt accumulation assay showed a lower Pt accumulation in HCT116/Oxa cells than the parental sensitive HCT116 cells. Vatalanib was shown to increase cellular Pt accumulation in a concentration-dependent manner. Combination of oxaliplatin and vatalanib was shown to restore the suppressed apoptosis in HCT116/Oxa cells.

  7. Data showing the circumvention of oxaliplatin resistance by vatalanib in colon cancer

    Directory of Open Access Journals (Sweden)

    Kenneth K.W. To

    2016-06-01

    Full Text Available We have recently reported that vatalanib, an orally active small molecule multi-tyrosine kinase inhibitor (Hess-Stumpp et al., 2005 [1], can sensitize multidrug resistant (MDR colon cancer cells to chemotherapy under hypoxia by inhibiting two MDR transporters ABCB1 and ABCG2 (To et al., 2015 [2]. This data article describes the possible circumvention of resistance to specifically platinum (Pt-based anticancer drugs by vatalanib via inhibition of two other efflux transporters ABCC2 and ATP7A. Data from the flow cytometric transporter efflux assay showed specific inhibition of ABCC2 activity by vatalanib in stable transfected cells and ABCC2-overexpressing oxaliplatin-resistant colon cancer cells HCT116/Oxa. We also performed the transporter ABCC2 ATPase assay and showed an increase in ATP hydrolysis by ABCC2 in the presence of vatalanib. ATP7A mRNA expression was also shown to be upregulated in HCT116/Oxa cells. Vatalanib was shown to suppress this upregulated ATP7A expression. Data from the cellular Pt accumulation assay showed a lower Pt accumulation in HCT116/Oxa cells than the parental sensitive HCT116 cells. Vatalanib was shown to increase cellular Pt accumulation in a concentration-dependent manner. Combination of oxaliplatin and vatalanib was shown to restore the suppressed apoptosis in HCT116/Oxa cells.

  8. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells.

    Science.gov (United States)

    Karthikeyan, Chandrabose; Lee, Crystal; Moore, Joshua; Mittal, Roopali; Suswam, Esther A; Abbott, Kodye L; Pondugula, Satyanarayana R; Manne, Upender; Narayanan, Narayanan K; Trivedi, Piyush; Tiwari, Amit K

    2015-02-01

    Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline, exhibited more than ten-fold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and sub-micromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and five-fold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Synthesis and biological evaluation of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives as inhibitors of colon cancer cell growth

    Directory of Open Access Journals (Sweden)

    Tie-Ling Li

    2015-08-01

    Full Text Available A convenient synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives was reported using 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with different aromatic amines using silica sulfuric acid. The compounds were tested for their anticancer activity against colon (HCT-116 and S1-MI-80, prostate (PC3 and DU-145, breast (MCF-7 and MDAMB-231 cancer cells. These com-pounds showed more selectivity and potent cytotoxic activity against colon cancer cells. 3c was tested against five other colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo, which had similar cytotoxicity and selectivity. 3c did not induce PXR-regulated ABCB1 or ABCG2 transporters. In fact, 3c induced cytotoxicity in HEK293 cells over expressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. It was cytotoxic approximately 3- and 5-fold to resistant colon carcinoma S1-MI-80 cells. 3c also produced concentration-dependent changes in HCT-116 colon cancer cells, in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation.

  10. Frondoside A Enhances the Anti-Cancer Effects of Oxaliplatin and 5-Fluorouracil on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Samir Attoub

    2018-05-01

    Full Text Available Over recent years, we have demonstrated that Frondoside A, a triterpenoid glycoside isolated from an Atlantic sea cucumber, has potent in vitro and in vivo anti-cancer effects against human pancreatic, breast, and lung cancer. We have also demonstrated that Frondoside A is able to potentiate and/or synergize the anti-cancer effects of major classical cytotoxic agents, namely, gemcitabine, paclitaxel, and cisplatin, in the treatment of pancreatic, breast, and lung cancer, respectively. This study evaluates the impact of Frondoside A alone and in combination with the standard cytotoxic drugs oxaliplatin and 5-fluorouracil (5-FU in the treatment of colon cancer using three human colon cancer cell lines, namely, HT-29, HCT-116, and HCT8/S11. We demonstrate that Frondoside A, oxaliplatin, and 5-FU cause a concentration- and time-dependent reduction in the number of HT-29 colon cancer cells. A concentration of 2.5 µM of Frondoside A led to almost 100% inhibition of cell numbers at 72 h. A similar effect was only observed with a much higher concentration (100 µM of oxaliplatin or 5-FU. The reduction in cell numbers by Frondoside A, oxaliplatin, and 5-FU was also confirmed in two other colon cancer cell lines, namely, HCT8/S11 and HCT-116, treated for 48 h. The combinations of low concentrations of these drugs for 48 h in vitro clearly demonstrated that Frondoside A enhances the inhibition of cell numbers induced by oxaliplatin or 5-FU. Similarly, such a combination also efficiently inhibited colony growth in vitro. Interestingly, we found that the inhibition of ERK1/2 phosphorylation was significantly enhanced when Frondoside A was used in combination treatments. Moreover, we show that Frondoside A and 5-FU, when used alone, induce a concentration-dependent induction of apoptosis and that their pro-apoptotic effect is dramatically enhanced when used in combination. We further demonstrate that apoptosis induction upon the treatment of colon cancer

  11. Synthesis and Characterization of a New Benzoindole Derivative with Apoptotic Activity Against Colon Cancer Cells.

    Science.gov (United States)

    Hajiaghaalipour, Fatemeh; Faraj, Fadhil L; Bagheri, Elham; Ali, Hapipah M; Abdulla, Mahmood Ameen; Majid, Nazia A

    2017-01-01

    Colorectal cancer is the third most common form of cancer in both men and women around the world. The chemistry and biological study of heterocyclic compounds have been an interesting area for a long time in pharmaceutical and medicinal chemistry. A new synthetic compound, 2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)-3-((2-hydroxyphenyl)amino) acrylaldehyde, abbreviated as DBID, was prepared through the reaction of 2-(diformylmethylidene)-1,1- dimethylbenzo[e]indole with 2-aminophenol. The chemical structure of the synthesized compound was characterized by 1H NMR, 13C NMR and APT-NMR spectroscopy and confirmed by elemental analysis (CHN). The compound was screened for the antiproliferation effect against colorectal cancer cell line, HCT 116 and its possible mechanism of action was elucidated. To determine the IC50 value, the MTT assay was used and its apoptosisinducing effect was investigated. DBID inhibited the proliferation of HCT 116 cells with an IC50 of 9.32 µg/ml and significantly increased the levels of caspase -8, -9 and -3/7 in the treated cells compared to untreated cells. Apoptosis features in HCT 116 cell was detected in treated cells by using the AO/PI staining that confirmed that the cells had undergone remarkable morphological changes in apoptotic bodies. Furthermore, this changes in expression of caspase -8, -9 and -3 were confirmed by gene and protein quantification using RT-PCR and western blot analysis, respectively. The current study showed that the DBID compound has demonstrated chemotherapeutic activity which was evidenced by significant increases in the expression and activation of caspase and exploit the apoptotic signaling pathways to trigger cancer cell death. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib.

    Science.gov (United States)

    Wang, Chen; Jette, Nicholas; Moussienko, Daniel; Bebb, D Gwyn; Lees-Miller, Susan P

    2017-04-01

    The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Myotubularin-Related Phosphatase 3 Promotes Growth of Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Bo’an Zheng

    2014-01-01

    Full Text Available Due to changes in lifestyle, particularly changes in dietary habits, colorectal cancer (CRC increased in recent years despite advances in treatment. Nearly one million new cases diagnosed worldwide and half a million deaths make CRC a leading cause of cancer mortality. In the present study, we aimed to investigate the role of myotubularin-related phosphatase 3 (MTMR3 in CRC cell growth via lentivirus-mediated small interfering RNA (siRNA transduction in human colon cancer cell lines HCT116 and SW1116. The effect of MTMR3 knockdown on cell growth was evaluated by MTT, colony formation, and flow cytometry assays. The effect of MTMR3 knockdown on cell apoptosis was evaluated by flow cytometry with Annexin V/7-AAD double staining. The activation of apoptotic markers, Bad and PARP, was detected using Intracellular Signaling Array. Knockdown of MTMR3 resulted in a significant reduction in cell proliferation in both HCT116 and SW1116 cells. Moreover, knockdown of MTMR3 led to S phase cell cycle arrest. Furthermore, knockdown of MTMR3 induced cell apoptosis via phosphorylation of Bad and cleavage of PARP. These results indicate that MTMR3 may play an important role in the progression of CRC and suggest that siRNA mediated silencing of MTMR3 could be an effective tool in CRC treatment.

  14. Blocking hepatic metastases of colon cancer cells using an shRNA against Rac1 delivered by activatable cell-penetrating peptide.

    Science.gov (United States)

    Bao, Ying; Guo, Huihui; Lu, Yongliang; Feng, Wenming; Sun, Xinrong; Tang, Chengwu; Wang, Xiang; Shen, Mo

    2016-11-22

    Hepatic metastasis is one of the critical progressions of colon cancer. Blocking this process is key to prolonging survival time in cancer patients. Studies on activatable cell-penetrating peptides (dtACPPs) have demonstrated their potential as gene carriers. It showed high tumor cell-targeting specificity and transfection efficiency and low cytotoxicity in the in vitro settings of drug delivery. However, using this system to silence target genes to inhibit metastasis in colorectal cancer cells has not been widely reported and requires further investigation. In this study, we observed that expression of Rac1, a key molecule for cytoskeletal reorganization, was higher in hepatic metastatic tumor tissue compared with prime colon cancer tissue and that patients with high Rac1-expressing colon cancer showed shorter survival time. Base on these findings, we created dtACPP-PEG-DGL (dtACPPD)/shRac1 nanoparticles and demonstrated that they downregulated Rac1 expression in colon cancer cells. Moreover, we observed inhibitory effects on migration, invasion and adhesion in HCT116 colorectal cancer cells in vitro, and our results showed that Rac1 regulated colon cancer cell matrix adhesion through the regulation of cytofilament dynamics. Moreover, mechanically, repression of Rac1 inhibiting cells migration and invasion by enhancing cell to cell adhesion and reducing cell to extracellular matrix adhesion. Furthermore, when atCDPPD/shRac1 nanoparticles were administered intravenously to a HCT116 xenograft model, significant tumor metastasis to the liver was inhibited. Our results suggest that atCDPP/shRac1 nanoparticles may enable the blockade of hepatic metastasis in colon cancer.

  15. PPARδ deficiency disrupts hypoxia-mediated tumorigenic potential of colon cancer cells.

    Science.gov (United States)

    Jeong, Eunshil; Koo, Jung Eun; Yeon, Sang Hyeon; Kwak, Mi-Kyoung; Hwang, Daniel H; Lee, Joo Young

    2014-11-01

    Peroxisome proliferator-activated receptor (PPAR) δ is highly expressed in colon epithelial cells and closely linked to colon carcinogenesis. However, the role of PPARδ in colon cancer cells in a hypoxic tumor microenvironment is not fully understood. We found that expression of the tumor-promoting cytokines, IL-8 and VEGF, induced by hypoxia (colon cancer cells. Consequently, PPARδ-knockout colon cancer cells exposed to hypoxia and deferoxamine failed to stimulate endothelial cell vascularization and macrophage migration/proliferation, whereas wild-type cells were able to induce angiogenesis and macrophage activation in response to hypoxic stress. Hypoxic stress induced transcriptional activation of PPARδ, but not its protein expression, in HCT116 cells. Exogenous expression of p300 potentiated deferoxamine-induced PPARδ transactivation, while siRNA knockdown of p300 abolished hypoxia- and deferoxamine-induced PPARδ transactivation. PPARδ associated with p300 upon hypoxic stress as demonstrated by coimmunoprecipitation studies. PI3K inhibitors or siRNA knockdown of Akt suppressed the PPARδ transactivation induced by hypoxia and deferoxamine in HCT116 cells, leading to decreased expression of IL-8 and VEGF. Collectively, these results reveal that PPARδ is required for hypoxic stress-mediated cytokine expression in colon cancer cells, resulting in promotion of angiogenesis, macrophage recruitment, and macrophage proliferation in the tumor microenvironment. p300 and the PI3K/Akt pathway play a role in the regulation of PPARδ transactivation induced by hypoxic stress. Our results demonstrate the positive crosstalk between PPARδ in tumor cells and the hypoxic tumor microenvironment and provide potential therapeutic targets for colon cancer. © 2014 Wiley Periodicals, Inc.

  16. BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) triggers epithelial-mesenchymal transition in colorectal cancer cells via PI3K/Akt/Snail signaling pathway.

    Science.gov (United States)

    Wang, Fei; Ruan, Xin-Jian; Zhang, Hong-Yan

    2015-01-01

    The gut is in direct contact with BDE-99 (2,2',4,4',5-pentabromodiphenyl ether), one of the most abundant PBDE congeners in the environment and in human tissues. The objective of the present study was to investigate the effects of BDE-99 on colorectal cancer (CRC) cells. The effects of BDE-99 on cell proliferation were measured by CCK-8 assay in the CRC cell line HCT-116. Wound healing and transwell migration/invasion assays were used to test the migration and invasion of CRC cells. Factors related to epithelial-to-mesenchymal transition (EMT) were measured by real-time PCR and Western blot analysis for mRNA and protein levels, respectively. BDE-99 was found to increase migration and invasion and trigger EMT in HCT-116 cells; EMT was characterized by cells acquiring mesenchymal spindle-like morphology and by increased expression of N-cadherin with a concomitant decrease in E-cadherin. BDE-99 treatment also increased the protein and mRNA levels of the transcription factor Snail, but not Slug, Twist, and ZEB1. Knockdown of Snail by siRNA significantly attenuated BDE-99-induced EMT in HCT-116 cells, suggesting that Snail plays a crucial role in BDE-99-induced EMT. The PI3K/Akt inhibitor LY294002 completely blocked BDE-99-induced Snail and invasion of HCT-116 cells. Our results revealed that BDE-99 can trigger the EMT of colon cancer cells via the PI3K/AKT/Snail signaling pathway. This study provides new insight into the tumorigenesis and metastasis of CRC stimulated by BDE-99 and possibly other PBDE congeners.

  17. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    Science.gov (United States)

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  18. The Indolic Diet-Derivative, 3,3′-Diindolylmethane, Induced Apoptosis in Human Colon Cancer Cells through Upregulation of NDRG1

    Directory of Open Access Journals (Sweden)

    A. Lerner

    2012-01-01

    Full Text Available N-myc downstream regulated gene-1 participates in carcinogenesis, angiogenesis, metastases, and anticancer drug resistance. In the present study, we analyzed the expression pattern of N-myc downstream regulated gene-1 following treatment of human colonic cancer cell lines; HCT-116 (well differentiated with wild-type p53 gene and Colo-320 (poorly differentiated with mutant p53 gene, with 3,3′-diindolylmethane, a well-established proapoptotic agent product derived from indole-3-carbinol. Treatment of Colo-320 and HCT-116 with 3,3′-diindolylmethane disclosed inhibition of cell viability in a dose-dependent manner, mediated through apoptosis induction. The increased expression of N-myc downstream regulated gene-1 was detected only in poorly differentiated colon cancer cells, Colo-320 cell line. Our results suggest that N-myc downstream regulated gene-1 expression is enhanced by 3,3′-diindolylmethane in poorly differentiated cells and followed by induction of apoptosis. 3,3′-diindolylmethane induced apoptosis may represent a new regulator of N-myc downstream regulated gene-1 in poorly differentiated colonic cancer cells.

  19. Colon cancer proliferating desulfosinigrin in wasabi (Wasabia japonica).

    Science.gov (United States)

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2004-01-01

    A reduced incidence of different types of cancer has been linked to consumption of Brassica vegetables, and there is evidence that glucosinolates (GSLs) and their hydrolysis products play a role in reducing cancer risk. Wasabi (Wasabia japonica) and horseradish (Armoracia rusticana), both Brassica vegetables, are widely used condiments both in Japanese cuisine and in the United States. Desulfosinigrin (DSS) (1) was isolated from a commercially available wasabi powder and from fresh wasabi roots. Sinigrin (2) was isolated from horseradish roots. DSS and sinigrin were evaluated for their inhibitory effects on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes, on lipid peroxidation, and on the proliferation of human colon (HCT-116), breast (MCF-7), lung (NCIH460), and central nervous system (CNS, SF-268) cancer cell lines. DSS did not inhibit COX enzymes or lipid peroxidation at 250 microg/ml. Sinigrin inhibited lipid peroxidation by 71% at 250 microg/ml. However, DSS promoted the growth of HCT-116 (colon) and NCI H460 (lung) human cancer cells as determined by the MTT assay in a concentration-dependent manner. At 3.72 microg/ml, a 27% increase in the number of viable human HCT-116 colon cancer cells was observed; the corresponding increases at 7.50 and 15 microg/ml were 42 and 69%, respectively. At 60 microg/ml, DSS doubled the number of HCT-16 colon cancer cells. For NCI H460 human lung cancer cells, DSS at 60 microg/ml increased the cell number by 20%. Sinigrin showed no proliferating effect on the tumor cells tested. This is the first report of the tumor cell-proliferating activity by a desulfoglucosinolate, the biosynthetic precursor of GSLs found in Brassica spp.

  20. Differential expression of nanog1 and nanogp8 in colon cancer cells

    International Nuclear Information System (INIS)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki; Nakagama, Hitoshi; Okamoto, Koji

    2012-01-01

    Highlights: ► Nanog is expressed in a majority of colon cancer cell lines examined. ► Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. ► Nanog mediates cell proliferation of colon cancer cells. ► Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  1. Differential expression of nanog1 and nanogp8 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Okamoto, Koji, E-mail: kojokamo@ncc.go.jo [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  2. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543

    International Nuclear Information System (INIS)

    Ju, TongFa; Gao, DaQuan; Fang, Zheng-yu

    2016-01-01

    In this study, we showed that PF-543, a novel sphingosine kinase 1 (SphK1) inhibitor, exerted potent anti-proliferative and cytotoxic effects against a panel of established (HCT-116, HT-29 and DLD-1) and primary human colorectal cancer (CRC) cells. Its sensitivity was negatively associated with SphK1 expression level in the CRC cells. Surprisingly, PF-543 mainly induced programmed necrosis, but not apoptosis, in the CRC cells. CRC cell necrotic death was detected by lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP) collapse and mitochondrial P53-cyclophilin-D (Cyp-D) complexation. Correspondingly, the necrosis inhibitor necrostatin-1 largely attenuated PF-543-induced cytotoxicity against CRC cells. Meanwhile, the Cyp-D inhibitors (sanglifehrin A and cyclosporin A), or shRNA-mediated knockdown of Cyp-D, remarkably alleviated PF-543-induced CRC cell necrotic death. Reversely, over-expression of wild-type Cyp-D in HCT-116 cells significantly increased PF-543's sensitivity. In vivo, PF-543 intravenous injection significantly suppressed HCT-116 xenograft growth in severe combined immunodeficient (SCID) mice, whiling remarkably improving the mice survival. The in vivo activity by PF-543 was largely attenuated when combined with the Cyp-D inhibitor cyclosporin A. Collectively, our results demonstrate that PF-543 exerts potent anti-CRC activity in vitro and in vivo. Mitochondrial programmed necrosis pathway is likely the key mechanism responsible for PF-543's actions in CRC cells. - Highlights: • PF-543 is anti-proliferative and cytotoxic to established and primary CRC cells. • PF-543 induces programmed necrosis, but not apoptosis, in CRC cells. • Modulation of mitochondrial protein cyclophilin-D alters PF-543's sensitivity. • PF-543 inhibits HCT-116 xenograft growth in SCID mice, improving mice survival. • Co-administration of cyclophilin-D inhibitor CsA inhibits PF-543's activity in vivo.

  3. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543

    Energy Technology Data Exchange (ETDEWEB)

    Ju, TongFa [Department of Anal-colorectal Surgery, HangZhou First People' s Hospital, HangZhou (China); Gao, DaQuan [Hematological Department, HangZhou First People' s Hospital, HangZhou (China); Fang, Zheng-yu, E-mail: fangzhengyu158@sina.com [Department of Anal-colorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou (China)

    2016-02-12

    In this study, we showed that PF-543, a novel sphingosine kinase 1 (SphK1) inhibitor, exerted potent anti-proliferative and cytotoxic effects against a panel of established (HCT-116, HT-29 and DLD-1) and primary human colorectal cancer (CRC) cells. Its sensitivity was negatively associated with SphK1 expression level in the CRC cells. Surprisingly, PF-543 mainly induced programmed necrosis, but not apoptosis, in the CRC cells. CRC cell necrotic death was detected by lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP) collapse and mitochondrial P53-cyclophilin-D (Cyp-D) complexation. Correspondingly, the necrosis inhibitor necrostatin-1 largely attenuated PF-543-induced cytotoxicity against CRC cells. Meanwhile, the Cyp-D inhibitors (sanglifehrin A and cyclosporin A), or shRNA-mediated knockdown of Cyp-D, remarkably alleviated PF-543-induced CRC cell necrotic death. Reversely, over-expression of wild-type Cyp-D in HCT-116 cells significantly increased PF-543's sensitivity. In vivo, PF-543 intravenous injection significantly suppressed HCT-116 xenograft growth in severe combined immunodeficient (SCID) mice, whiling remarkably improving the mice survival. The in vivo activity by PF-543 was largely attenuated when combined with the Cyp-D inhibitor cyclosporin A. Collectively, our results demonstrate that PF-543 exerts potent anti-CRC activity in vitro and in vivo. Mitochondrial programmed necrosis pathway is likely the key mechanism responsible for PF-543's actions in CRC cells. - Highlights: • PF-543 is anti-proliferative and cytotoxic to established and primary CRC cells. • PF-543 induces programmed necrosis, but not apoptosis, in CRC cells. • Modulation of mitochondrial protein cyclophilin-D alters PF-543's sensitivity. • PF-543 inhibits HCT-116 xenograft growth in SCID mice, improving mice survival. • Co-administration of cyclophilin-D inhibitor CsA inhibits PF-543's activity in vivo.

  4. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  5. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-01-01

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  6. Lgr5 Methylation in Cancer Stem Cell Differentiation and Prognosis-Prediction in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Shasha Su

    Full Text Available Leucine-rich-repeat-containing G-protein-coupled receptor 5 (lgr5 is a candidate marker for colorectal cancer stem cells (CSC. In the current study, we investigated the methylation status within thelgr5 promoter and evaluated its relationship with CSC differentiation, prognosis for colorectal cancer, and its clinicopathological features.The methylation status within Lgr5 promoter was detected with a methylation-specific PCR in six colorectal cancer cell lines as well as 169 primary colorectal tumor tissues. Differentiation of CSC was examined with immunofluorescence and immunocytochemistry. Down-regulation of lgr5 was achieved with gene-specific siRNA. The associations between lgr5 methylation and the clinicopathological features as well as survival of patients were analyzed with statistical methods.The lgr5 promoter was methylated to different degrees for the six colorectal cell lines examined, with complete methylation observed in HCT116 cells in which the lgr5 expression was partially recovered following DAC treatment. The stem-cell sphere formation from HCT116 cells was accompanied by increasing methylation within the lgr5 promoter and decreasing expression of lgr5. Knocking down lgr5 by siRNA also led to stem-cell spheres formation. Among primary colorectal tumors, 40% (67/169 were positive for lgr5 methylation, while none of the normal colon tissues were positive for lgr5 methylation. Furthermore, lgr5 methylation significantly associated with higher tumor grade, and negative distant metastasis (p < 0.05, as well as better prognosis (p = 0.001 in patients with colorectal cancer.Our data suggests that lgr5 methylation, through the regulation of lgr5 expression and colorectal CSC differentiation, may constitute a novel prognostic marker for colorectal cancer patients.

  7. Effect of β,β-Dimethylacrylshikonin on Inhibition of Human Colorectal Cancer Cell Growth in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Ting Feng

    2012-07-01

    Full Text Available In traditional Chinese medicine, shikonin and its derivatives, has been used in East Asia for several years for the prevention and treatment of several diseases, including cancer. We previously identified that β,β-dimethylacrylshikonin (DA could inhibit hepatocellular carcinoma growth. In the present study, we investigated the inhibitory effects of DA on human colorectal cancer (CRC cell line HCT-116 in vitro and in vivo. A viability assay showed that DA could inhibit tumor cell growth in a time- and dose-dependent manner. Flow cytometry showed that DA blocks the cell cycle at G0/G1 phase. Western blotting results demonstrated that the induction of apoptosis by DA correlated with the induction of pro-apoptotic proteins Bax, and Bid, and a decrease in the expression of anti-apoptotic proteins Bcl-2 and Bcl-xl. Furthermore, treatment of HCT-116 bearing nude mice with DA significantly retarded the growth of xenografts. Consistent with the results in vitro, the DA-mediated suppression of HCT-116 xenografts correlated with Bax and Bcl-2. Taken together, these results suggest that DA could be a novel and promising approach to the treatment of CRC.

  8. Genetic disruption of tubulin acetyltransferase, αTAT1, inhibits proliferation and invasion of colon cancer cells through decreases in Wnt1/β-catenin signaling

    International Nuclear Information System (INIS)

    Oh, Somi; You, Eunae; Ko, Panseon; Jeong, Jangho; Keum, Seula; Rhee, Sangmyung

    2017-01-01

    Microtubules are required for diverse cellular processes, and abnormal regulation of microtubule dynamics is closely associated with severe diseases including malignant tumors. In this study, we report that α-tubulin N-acetyltransferase (αTAT1), a regulator of α-tubulin acetylation, is required for colon cancer proliferation and invasion via regulation of Wnt1 and its downstream genes expression. Public transcriptome analysis showed that expression of ATAT1 is specifically upregulated in colon cancer tissue. A knockout (KO) of ATAT1 in the HCT116 colon cancer cell line, using the CRISPR/Cas9 system showed profound inhibition of proliferative and invasive activities of these cancer cells. Overexpression of αTAT1 or the acetyl-mimic K40Q α-tubulin mutant in αTAT1 KO cells restored the invasiveness, indicating that microtubule acetylation induced by αTAT1 is critical for HCT116 cell invasion. Analysis of colon cancer-related gene expression in αTAT1 KO cells revealed that the loss of αTAT1 decreased the expression of WNT1. Mechanistically, abrogation of tubulin acetylation by αTAT1 knockout inhibited localization of β-catenin to the plasma membrane and nucleus, thereby resulting in the downregulation of Wnt1 and of its downstream genes including CCND1, MMP-2, and MMP-9. These results suggest that αTAT1-mediated Wnt1 expression via microtubule acetylation is important for colon cancer progression. - Highlights: • Ablation of αTAT1 inhibits HCT116 colon cancer cell invasion. • αTAT1/acetylated microtubules regulate expression of Wnt1/β-catenin target genes. • Acetylated microtubules regulate cellular localization of β-catenin. • Loss of αTAT1 prevents Wnt1 from inducing β-catenin-dependent and -independent pathways.

  9. MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L

    Science.gov (United States)

    Arivazhagan, Roshini; Lee, Jaesuk; Bayarsaikhan, Delger; Kwak, Peter; Son, Myeongjoo; Byun, Kyunghee; Salekdeh, Ghasem Hosseini; Lee, Bonghee

    2018-01-01

    DNA Directed Polymerase Zeta Catalytic Subunit (REV3L) has recently emerged as an important oncogene. Although the expressions of REV3L are similar in normal and cancer cells, several mutations in REV3L have been shown to play important roles in cancer. These mutations cause proteins misfolding and mislocalization, which in turn alters their interactions and biological functions. miRNAs play important regulatory roles during the progression and metastasis of several human cancers. This study was undertaken to determine how changes in the location and interactions of REV3L regulate colon cancer progression. REV3L protein mislocalization confirmed from the immunostaining results and the known interactions of REV3L was found to be broken as seen from the PLA assay results. The mislocalized REV3L might interact with new proteins partners in the cytoplasm which in turn may play role in regulating colon cancer progression. hsa-miR-340 (miR-340), a microRNA down-regulated in colon cancer, was used to bind to and downregulate REV3L, and found to control the proliferation and induce the apoptosis of colon cancer cells (HCT-116 and DLD-1) via the MAPK pathway. Furthermore, this down-regulation of REV3L also diminished colon cancer cell migration, and down-regulated MMP-2 and MMP-9. Combined treatment of colon cancer cells with miR-340 and 5-FU enhanced the inhibitory effects of 5-FU. In addition, in vivo experiments conducted on nude mice revealed tumor sizes were smaller in a HCT-116-miR-340 injected group than in a HCT-116-pCMV injected group. Our findings suggest mutations in REV3L causes protein mislocalization to the cytoplasm, breaking its interaction and is believed to form new protein interactions in cytoplasm contributing to colon cancer progression. Accordingly, microRNA-340 appears to be a good candidate for colon cancer therapy. PMID:29435169

  10. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment

    OpenAIRE

    Banerjee, Aditi; Ahmed, Hafiz; Yang, Peixin; Czinn, Steven J.; Blanchard, Thomas G.

    2016-01-01

    The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histo...

  11. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

    Science.gov (United States)

    Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

    2015-01-01

    Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

  12. Extracellular vesicle-mediated phenotype switching in malignant and non-malignant colon cells

    International Nuclear Information System (INIS)

    Mulvey, Hillary E.; Chang, Audrey; Adler, Jason; Del Tatto, Michael; Perez, Kimberly; Quesenberry, Peter J.; Chatterjee, Devasis

    2015-01-01

    Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype. EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample. Co-cultures were performed with 1459 cells and malignant vesicles, as well as HCT116 cells and non-malignant vesicles. Malignant phenotype was measured using soft agar colony formation assay. Co-cultures were also analyzed for protein levels using mass spectrometry. The importance of 14-3-3 zeta/delta in transfer of malignant phenotype was explored using siRNA. Additionally, luciferase reporter assay was used to measure the transcriptional activity of NF-κB. This study demonstrates the ability of EVs derived from malignant colon cancer cell line and malignant patient tissue to induce the malignant phenotype in non-malignant colon cells. Similarly, EVs derived from non-malignant colon cell lines and normal patient tissue reversed the malignant phenotype of HCT116 cells. Cells expressing an EV-induced malignant phenotype showed increased transcriptional activity of NF-κB which was inhibited by the NF--κB inhibitor, BAY117082. We also demonstrate that knock down of 14-3-3 zeta/delta reduced anchorage-independent growth of HCT116 cells and 1459 cells co-cultured with HCT derived EVs. Evidence of EV-mediated induction of malignant phenotype, and reversal of malignant phenotype, provides rational basis for further study of the role of EVs in tumorigenesis. Identification of 14-3-3 zeta/delta as up-regulated in malignancy suggests its potential as a putative drug target for the treatment of colorectal cancer

  13. TSA-induced DNMT1 down-regulation represses hTERT expression via recruiting CTCF into demethylated core promoter region of hTERT in HCT116.

    Science.gov (United States)

    Choi, Jee-Hye; Min, Na Young; Park, Jina; Kim, Jin Hong; Park, Soo Hyun; Ko, Young Jong; Kang, Yoonsung; Moon, Young Joon; Rhee, Sangmyung; Ham, Seung Wook; Park, Ae Ja; Lee, Kwang-Ho

    2010-01-01

    Trichostatin A (TSA), an inhibitor of histone deacetylase, is a well-known antitumor agent that effectively and selectively induces tumor growth arrest and apoptosis. Recently, it was reported that hTERT is one of the primary targets for TSA-induced apoptosis in cancer cells but the mechanism of which has not yet been elucidated. In the present study, to better understand the epigenetic regulation mechanism responsible for the repression of hTERT by TSA, we examined expression of hTERT in the HCT116 colon cancer cell line after treatment with TSA and performed site-specific CpG methylation analysis of the hTERT promoter. We found that TSA-induced the demethylation of site-specific CpGs on the promoter of hTERT, which was caused by down-regulation of DNA methyltransferase 1 (DNMT1). Among the demethylated region, the 31st-33rd CpGs contained a binding site for CTCF, an inhibitor of hTERT transcription. ChIP analysis revealed that TSA-induced demethylation of the 31st-33rd CpGs promoted CTCF binding on hTERT promoter, leading to repression of hTERT. Taken together, down-regulation of DNMT1 by TSA caused demethylation of a CTCF binding site on the hTERT promoter, the result of which was repression of hTERT via recruitment of CTCF to the promoter. Copyright 2009 Elsevier Inc. All rights reserved.

  14. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells.

    Science.gov (United States)

    Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong

    2018-04-01

    This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.

  15. Synthesis and Cytotoxic Evaluation of a Series of 2-Amino-Naphthoquinones against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Thiago A. P. de Moraes

    2014-08-01

    Full Text Available The cytotoxicity of a series of aminonaphthoquinones resulting from the reaction of suitable aminoacids with 1,4-naphthoquinone was assayed against SF-295 (glioblastoma, MDAMB-435 (breast, HCT-8 (colon, HCT-116 (colon, HL-60 (leukemia, OVCAR-8 (ovarian, NCI-H358M (bronchoalveolar lung carcinoma and PC3-M (prostate cancer cells and also against PBMC (peripheral blood mononuclear cells. The results demonstrated that all the synthetic aminonaphthoquinones had relevant cytotoxic activity against all human cancer lines used in this experiment. Five of the compounds showed high cytotoxicity and selectivity against all cancer cell lines tested (IC50 = 0.49 to 3.89 µg·mL−1. The title compounds were less toxic to PBMC, since IC50 was 1.5 to eighteen times higher (IC50 = 5.51 to 17.61 µg·mL−1 than values shown by tumour cell lines. The mechanism of cell growth inhibition and structure–activity relationships remains as a target for future investigations.

  16. PES1 regulates sensitivity of colorectal cancer cells to anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Qu, Like, E-mail: qulike@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Meng, Lin; Liu, Caiyun; Wu, Jian [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Shou, Chengchao, E-mail: scc@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)

    2013-02-15

    Highlights: ► PES1 was overexpressed in diverse cancer cell lines. ► PES1-ablation enhances DNA damage response by decreasing DNA repair. ► PES1-ablation increases the sensitivity of HCT116 cells to chemotherapeutic agents. ► PES1-ablation is associated with diminished nuclear entry of RAD51. -- Abstract: PES1 (also known as Pescadillo), a nucleolar protein, was involved in biogenesis of ribosomal RNA. Up-regulation of PES1 has been documented in some human cancers, indicating that PES1 may play some crucial roles in tumorigenesis. In our previous study, it was found that silencing of PES1 resulted in decreased proliferation of colorectal cancer cells. We also noticed that depletion of PES1 altered expression profiles of diverse genes. In the present study, we validated the expression changes of a subset of genotoxic stress-related genes in PES1-silenced HCT116 cells by quantitative RT-PCR. The steady and etoposide-induced phosphorylated H2AX (γ-H2AX) were higher in PES1-silenced cells than in control cells. Besides, etoposide-induced γ-H2AX persisted longer in PES1-silenced cells after removing the etoposide. Next, results of comet assay revealed decreased DNA repair after PES1-ablation. PES1-ablated cells were more sensitive to chemotherapeutic agents, which could be reversed by reconstitution with exogenous PES1. Furthermore, deletion of PES1 diminished steady and DNA damage-induced levels of nuclear RAD51. Our results uncover a potential role of PES1 in chemoresistance by regulating DNA damage response in colorectal cancer cells.

  17. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2009-11-01

    Full Text Available Naphthalimides, particularly amonafide and 2-(2-dimethylamino-6-thia-2-aza-benzo[def]chrysene-1,3-diones (R16, have been identified to possess anticancer activities and to induce G2-M arrest through inhibiting topoisomerase II accompanied by Chk1 degradation. The current study was designed to precisely dissect the signaling pathway(s responsible for the naphthalimide-induced cell cycle arrest in human colon carcinoma HCT116 cells. Using phosphorylated histone H3 and mitotic protein monoclonal 2 as mitosis markers, we first specified the G2 arrest elicited by the R16 and amonafide. Then, R16 and amonafide were revealed to induce phosphorylation of the DNA damage sensor ataxia telangiectasia-mutated (ATM responding to DNA double-strand breaks (DSBs. Inhibition of ATM by both the pharmacological inhibitor caffeine and the specific small interference RNA (siRNA rescued the G2 arrest elicited by R16, indicating its ATM-dependent characteristic. Furthermore, depletion of Chk2, but not Chk1 with their corresponding siRNA, statistically significantly reversed the R16- and amonafide-triggered G2 arrest. Moreover, the naphthalimides phosphorylated Chk2 in an ATM-dependent manner but induced Chk1 degradation. These data indicate that R16 and amonafide preferentially used Chk2 as evidenced by the differential ATM-executed phosphorylation of Chk1 and Chk2. Thus, a clear signaling pathway can be established, in which ATM relays the DNA DSBs signaling triggered by the naphthalimides to the checkpoint kinases, predominantly to Chk2,which finally elicits G2 arrest. The mechanistic elucidation not only favors the development of the naphthalimides as anticancer agents but also provides an alternative strategy of Chk2 inhibition to potentiate the anticancer activities of these agents.

  18. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression.

    Science.gov (United States)

    Zhai, Hui-Yuan; Sui, Ming-Hua; Yu, Xiao; Qu, Zhen; Hu, Jin-Chen; Sun, Hai-Qing; Zheng, Hai-Tao; Zhou, Kai; Jiang, Li-Xin

    2016-09-16

    BACKGROUND Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. MATERIAL AND METHODS qRT-PCR was used to analyze the expression level of TUG1 and p63 in 75 colon cancer tissues and the matched adjacent non-tumor tissue. In vitro, cultured colon cancer cell lines HCT-116 and LoVo were used as cell models. TUG1 and p63 were silenced via transferring siRNA into HCT-116 or LoVo. The effects of TUG1 were investigated by examining cell proliferation, apoptosis, and migration. RESULTS Among the 75 colon cancer cases, the expression of TUG1 was significantly higher in colon cancer tissues compared with the matched adjacent non-tumor tissue, while p63 expression was lower in the tumor tissue. In HCT-116 and LoVo, the expression of TUG1 was significantly increased by p63 siRNA transfection. Furthermore, down-regulation of TUG1 by siRNA significantly inhibited the cell proliferation and promoted colon cancer cell apoptosis. In addition, inhibition of TUG1 expression significantly blocked the cell migration ability of colon cancer cells. CONCLUSIONS LncRNA TUG1 may serve as a potential oncogene for colon cancer. Overexpressed TUG1 may contribute to promoting cell proliferation and migration in colon cancer cells.

  19. Wnt/catenin β1/microRNA 183 predicts recurrence and prognosis of patients with colorectal cancer.

    Science.gov (United States)

    Chen, Yuzhuo; Song, Weiliang

    2018-04-01

    The present study assessed the association between the Wnt/catenin β1 (CTNNB1)/microRNA (miR)183 signaling pathway and the recurrence and prognosis of colorectal cancer. The expression of Wnt, CTNNB1 and miR183 in primary colorectal cancer tissue was increased compared with that in the paracarcinoma tissue. Disease-free survival and overall survival were decreased in patients with colorectal cancer and increased miR183 expression compared with those in patients with colorectal cancer and decreased miR183 expression. The human colorectal cancer cell line HCT-116 was treated with 5 µM inhibitor of Wnt response (IWR-2) for 24 h to inhibit Wnt protein expression. Downregulating Wnt and CTNNB1 expression inhibited the viability of, and induced cell death and caspase 3 protein expression in, HCT-116 cells. The expression of BCL2 associated X protein and miR183 was increased, and cyclin D1 protein expression was suppressed, by the downregulation of Wnt and CTNNB1 expression in HCT-116 cells. Collectively, the results of the present study suggested that the Wnt/CTNNB1/miR183 signaling pathway may represent a promising biomarker for the recurrence and prognosis of colorectal cancer.

  20. Hyperthermia enhances radiosensitivity of colorectal cancer cells through ROS inducing autophagic cell death.

    Science.gov (United States)

    Ba, Ming-Chen; Long, Hui; Wang, Shuai; Wu, Yin-Bing; Zhang, Bo-Huo; Yan, Zhao-Fei; Yu, Fei-Hong; Cui, Shu-Zhong

    2018-04-01

    Hyperthermia (HT) enhances the anti-cancer effects of radiotherapy (RT), but the precise biochemical mechanisms involved are unclear. This study was aim to investigate if mild HT sensitizes colorectal cancer cells to RT through reactive oxygen species (ROS)-inducing autophagic cell death in a mice model of HCT116 human colorectal cancer. HCT116 mice model were randomly divided into five groups: mock group, hyperthermia group (HT), radiotherapy group (RT), HT + RT group, and HT + RT +N-acetyl L-cysteine (NAC) group (HT + CT + NAC). After four weeks of treatment, cancer growth inhibition, rate and mitochondrial membrane potential were measured with MTT and JC-1 assays, respectively, while ROS were estimated fluorimetrically. The relationship of these parameters to expressions of autophagy-related genes Beclin1, LC3B, and mTOR was analyzed. Gene expression was measured by Real-Time polymerase chain reaction (RT-PCR). There were significant increases in ROS levels and mitochondrial membrane potential in the HT + RT group. ROS levels in the HT + RT group increased more significantly than in any other group. In contrast, ROS levels in the HT + RT + NAC group were significantly decreased relative to the HT + RT group. The number of autophagic bodies in HT + RT group was higher than that of mock group. There were significant increases in the expression of Beclin1 and LC3B genes, while mTOR expression was significantly decreased in the HT + CT group. Treatment with NAC reversed the pattern of these changes. These results indicate that HT enhances the radiosensitivity of colorectal cancer cells to RT through ROS inducing autophagic cell death. © 2017 Wiley Periodicals, Inc.

  1. Inhibitory effects of different forms of tocopherols, tocopherol phosphates, and tocopherol quinones on growth of colon cancer cells.

    Science.gov (United States)

    Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S

    2013-09-11

    Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.

  2. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lenz Heinz-Josef

    2009-11-01

    Full Text Available Abstract Background Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes. Methods HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity® Pathway Analysis. Results Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed. Conclusion This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets

  3. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  4. Curcumin-Free Turmeric Exhibits Activity against Human HCT-116 Colon Tumor Xenograft: Comparison with Curcumin and Whole Turmeric

    Science.gov (United States)

    Prasad, Sahdeo; Tyagi, Amit K.; Siddik, Zahid H.; Aggarwal, Bharat B.

    2017-01-01

    Extensive research within last two decades has indicated that curcumin extracted from turmeric (Curcuma longa), exhibits anticancer potential, in part through the modulation of inflammatory pathways. However, the residual antitumor activity of curcumin-free turmeric (CFT) relative to curcumin or turmeric is not well-understood. In the present study, therefore, we determined activities of these agents in both in vitro and in vivo models of human HCT-116 colorectal cancer (CRC). When examined in an in vitro antiproliferative, clonogenic or anti-inflammatory assay system, we found that curcumin was highly active whereas turmeric and CFT had relatively poor activity against CRC cells. However, when examined in vivo at an oral dose of either 100 or 500 mg/kg given to nude mice bearing CRC xenografts, all three preparations of curcumin, turmeric, and CFT similarly suppressed the growth of the xenograft. The effect of CFT on suppression of tumor growth was dose-dependent, with 500 mg/kg tending to be more effective than 100 mg/kg. Interestingly, 100 mg/kg curcumin or turmeric was found to be more effective than 500 mg/kg. When examined in vivo for the expression of biomarkers associated with cell survival (cIAP-1, Bcl-2, and survivin), proliferation (Ki-67 and cyclin D1) and metastasis (ICAM-1 and VEGF), all were down-modulated. These agents also suppressed inflammatory transcription factors (NF-κB and STAT3) in tumor cells. Overall, our results with CFT provide evidence that turmeric must contain additional bioactive compounds other than curcumin that, in contrast to curcumin, exhibit greater anticancer potential in vivo than in vitro against human CRC. Moreover, our study highlights the fact that the beneficial effects of turmeric and curcumin in humans may be more effectively realized at lower doses, whereas CFT could be given at higher doses without loss in favorable activity. PMID:29311914

  5. Curcumin-Free Turmeric Exhibits Activity against Human HCT-116 Colon Tumor Xenograft: Comparison with Curcumin and Whole Turmeric

    Directory of Open Access Journals (Sweden)

    Sahdeo Prasad

    2017-12-01

    Full Text Available Extensive research within last two decades has indicated that curcumin extracted from turmeric (Curcuma longa, exhibits anticancer potential, in part through the modulation of inflammatory pathways. However, the residual antitumor activity of curcumin-free turmeric (CFT relative to curcumin or turmeric is not well-understood. In the present study, therefore, we determined activities of these agents in both in vitro and in vivo models of human HCT-116 colorectal cancer (CRC. When examined in an in vitro antiproliferative, clonogenic or anti-inflammatory assay system, we found that curcumin was highly active whereas turmeric and CFT had relatively poor activity against CRC cells. However, when examined in vivo at an oral dose of either 100 or 500 mg/kg given to nude mice bearing CRC xenografts, all three preparations of curcumin, turmeric, and CFT similarly suppressed the growth of the xenograft. The effect of CFT on suppression of tumor growth was dose-dependent, with 500 mg/kg tending to be more effective than 100 mg/kg. Interestingly, 100 mg/kg curcumin or turmeric was found to be more effective than 500 mg/kg. When examined in vivo for the expression of biomarkers associated with cell survival (cIAP-1, Bcl-2, and survivin, proliferation (Ki-67 and cyclin D1 and metastasis (ICAM-1 and VEGF, all were down-modulated. These agents also suppressed inflammatory transcription factors (NF-κB and STAT3 in tumor cells. Overall, our results with CFT provide evidence that turmeric must contain additional bioactive compounds other than curcumin that, in contrast to curcumin, exhibit greater anticancer potential in vivo than in vitro against human CRC. Moreover, our study highlights the fact that the beneficial effects of turmeric and curcumin in humans may be more effectively realized at lower doses, whereas CFT could be given at higher doses without loss in favorable activity.

  6. Anticancer Activity of Ramalin, a Secondary Metabolite from the Antarctic Lichen Ramalina terebrata, against Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sung-Suk Suh

    2017-08-01

    Full Text Available Colorectal cancer is a leading cause of death worldwide and occurs through the highly complex coordination of multiple cellular pathways, resulting in carcinogenesis. Recent studies have increasingly revealed that constituents of lichen extracts exhibit potent pharmaceutical activities, including anticancer activity against various cancer cells, making them promising candidates for new anticancer therapeutic drugs. The main objective of this study was to evaluate the anticancer capacities of ramalin, a secondary metabolite from the Antarctic lichen Ramalina terebrata, in the human colorectal cancer cell line HCT116. In this study, ramalin displayed concentration-dependent anticancer activity against HCT116 cells, significantly suppressing proliferation and inducing apoptosis. Furthermore, ramalin induced cell cycle arrest in the gap 2/mitosis (G2/M phase through the modulation of hallmark genes involved in the G2/M phase transition, such as tumour protein p53 (TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A, cyclin-dependent kinase 1 (CDK1 and cyclin B1 (CCNB1. At both the transcriptional and translational level, ramalin caused a gradual increase in the expression of TP53 and its downstream gene CDKN1A, while decreasing the expression of CDK1 and CCNB1 in a concentration-dependent manner. In addition, ramalin significantly inhibited the migration and invasion of colorectal cancer cells in a concentration-dependent manner. Taken together, these data suggest that ramalin may be a therapeutic candidate for the targeted therapy of colorectal cancer.

  7. Targeting the PI3K signaling pathway in KRAS mutant colon cancer

    International Nuclear Information System (INIS)

    Hong, Suntaek; Kim, SoYoung; Kim, Hye Youn; Kang, Myunghee; Jang, Ho Hee; Lee, Won-Suk

    2015-01-01

    Metastatic colorectal cancer (CRC) patients with v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are resistant to monoclonal antibody that targets the epidermal growth factor receptor such as cetuximab. BKM120 targets phosphatidylinositide-3-kinase (PIK3CA), but it is unknown whether BKM120 can reverse cetuximab resistance in KRAS mutant CRC. Human CRC cell lines with KRAS mutations (DLD-1, HCT116, and LoVo) were used to test the effect of cetuximab, BKM120, and cetuximab plus BKM120 on cell proliferation in vitro and in vivo. BKM120 reduced cell proliferation in a concentration-dependent manner in the LoVo (PI3KCA wild type) as well as the HCT116 and DLD1 cells (that carry a PI3KCA mutation). BKM120 only inhibited ERK phosphorylation in LoVo cells (PIK3CA wild type), but not in DLD1 or HCT116 cells at a concentration of 1 μmol/L. Treatment with cetuximab and BKM120 significantly reduced the growth of xenograft tumors originating from KRAS mutant cells compared with cetuximab alone (P = 0.034). BKM120 may overcome cetuximab resistance in colon cancer cells with KRAS mutation

  8. Fem1b, a proapoptotic protein, mediates proteasome inhibitor-induced apoptosis of human colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Sansom, Owen J; Porecha, Nehal; Raich, Natacha; Du, Liqin; Maher, Joseph F

    2010-02-01

    In the treatment of colon cancer, the development of resistance to apoptosis is a major factor in resistance to therapy. New molecular approaches to overcome apoptosis resistance, such as selectively upregulating proapoptotic proteins, are needed in colon cancer therapy. In a mouse model with inactivation of the adenomatous polyposis coli (Apc) tumor suppressor gene, reflecting the pathogenesis of most human colon cancers, the gene encoding feminization-1 homolog b (Fem1b) is upregulated in intestinal epithelium following Apc inactivation. Fem1b is a proapoptotic protein that interacts with apoptosis-inducing proteins Fas, tumor necrosis factor receptor-1 (TNFR1), and apoptotic protease activating factor-1 (Apaf-1). Increasing Fem1b expression induces apoptosis of cancer cells, but effects on colon cancer cells have not been reported. Fem1b is a homolog of feminization-1 (FEM-1), a protein in Caenorhabditis elegans that is regulated by proteasomal degradation, but whether Fem1b is likewise regulated by proteasomal degradation is unknown. Herein, we found that Fem1b protein is expressed in primary human colon cancer specimens, and in malignant SW620, HCT-116, and DLD-1 colon cancer cells. Increasing Fem1b expression, by transfection of a Fem1b expression construct, induced apoptosis of these cells. We found that proteasome inhibitor treatment of SW620, HCT-116, and DLD-1 cells caused upregulation of Fem1b protein levels, associated with induction of apoptosis. Blockade of Fem1b upregulation with morpholino antisense oligonucleotide suppressed the proteasome inhibitor-induced apoptosis of these cells. In conclusion, the proapoptotic protein Fem1b is downregulated by the proteasome in malignant colon cancer cells and mediates proteasome inhibitor-induced apoptosis of these cells. Therefore, Fem1b could represent a novel molecular target to overcome apoptosis resistance in therapy of colon cancer.

  9. The coffee diterpene kahweol suppresses the cell proliferation by inducing cyclin D1 proteasomal degradation via ERK1/2, JNK and GKS3β-dependent threonine-286 phosphorylation in human colorectal cancer cells.

    Science.gov (United States)

    Park, Gwang Hun; Song, Hun Min; Jeong, Jin Boo

    2016-09-01

    Kahweol as a coffee-specific diterpene has been reported to exert anti-cancer properties. However, the mechanism responsible for the anti-cancer effects of kahweol is not fully understood. The main aim of this investigation was to determine the effect of kahweol on cell proliferation and the possible mechanisms in human colorectal cancer cells. Kahweol inhibited markedly the proliferation of human colorectal cancer cell lines such as HCT116, SW480. Kahweol decreased cyclin D1 protein level in HCT116 and SW480 cells. Contrast to protein levels, cyclin D1 mRNA level and promoter activity did not be changed by kahweol treatment. MG132 treatment attenuated kahweol-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in kahweol-treated cells. Kahweol increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated cyclin D1 degradation by kahweol. Inhibition of ERK1/2 by PD98059, JNK by SP600125 or GSK3β by LiCl suppressed cyclin D1 phosphorylation and downregulation by kahweol. Furthermore, the inhibition of nuclear export by LMB attenuated cyclin D1 degradation by kahweol. In conclusion, kahweol-mediated cyclin D1 degradation may contribute to the inhibition of the proliferation in human colorectal cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Directory of Open Access Journals (Sweden)

    Ki Jung Lim

    Full Text Available Cell-penetrating peptides (CPPs have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2 was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57. The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv directed toward a mutated K-ras (G12V. BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  11. A cancer specific cell-penetrating peptide, BR2, for the efficient delivery of an scFv into cancer cells.

    Science.gov (United States)

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.

  12. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  13. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    Science.gov (United States)

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. TAS-116, a novel Hsp90 inhibitor, selectively enhances radio-sensitivity of human cancer cells to X-rays and carbon ion radiation

    Science.gov (United States)

    Lee, Younghyun; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A.; Okayasu, Ryuichi

    2016-01-01

    Hsp90 inhibitors have been investigated as cancer therapeutics in mono-therapy and to augment radiotherapy, however serious adverse effects of early generation Hsp90 inhibitors limited their development. TAS-116 is a novel Hsp90 inhibitor with lower adverse effects than other Hsp90 inhibitors, and here we investigated the radio-sensitizing effects of TAS-116 in low LET X-ray, and high LET carbon ion irradiated human cancer cells and mouse tumor xenografts. TAS-116 decreased cell survival of both X-ray and carbon ion-irradiated human cancer cell lines (HeLa and H1299 cells), and similar to other Hsp90 inhibitors, it did not affect radiosensitivity of non-cancerous human fibroblasts. TAS-116 increased the number of radiation-induced γ-H2AX foci, and delayed the repair of DNA double-strand breaks (DSBs). TAS-116 reduced the expression of proteins that mediate repair of DSBs by homologous recombination (RAD51) and non-homologous end joining (Ku, DNA-PKcs), and suppressed formation of RAD51 foci and phosphorylation/activation of DNA-PKcs. TAS-116 also decreased expression of the cdc25 cell cycle progression marker, markedly increasing G2/M arrest. Combined treatment of mouse tumor xenografts with carbon ions and TAS-116 showed promising delay in tumor growth compared to either individual treatment. These results demonstrate that TAS-116 radio-sensitizes human cancer cells to both X rays and carbon ions by inhibiting the two major DSB repair pathways, and these effects were accompanied by marked cell cycle arrest. The promising results of combination TAS-116 + carbon ion radiation therapy of tumor xenografts justify further exploration of TAS-116 as an adjunct to radiotherapy using low or high LET radiation. PMID:28062703

  15. Cytotoxic Effect of Luteolin on Human Colorectal Cancer Cell Line (HCT-15: Crucial Involvement of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Pandurangan

    2013-10-01

    Full Text Available Background: Colorectal cancer, a major health concern worldwide, is the third mostcommon form of cancer and second leading cause of cancer-related deaths. Theflavonoids are naturally occurring diphenylpropanoids ubiquitous in plant foods andimportant components of the human diet. Luteolin, a bioflavonoid, possesses manybeneficial effects including antioxidant, anti-inflammatory, anti-allergic activities. Methods:We used the HCT-15 colon adenocarcinoma cell line in this study. Cellswere treated with luteolin (100 µM. Results: Membrane damage markers such as alkaline phosphatase and lactatedehydrogenase were analyzed in a time-dependent manner. Luteolin increased reactiveoxygen species in a time-dependent manner. DNA damage, a hallmark of apoptosis,was induced by luteolin as analyzed by agarose gel electrophoresis. Conclusion: Luteolin acts as a potential cytotoxic agent that can be used to treatcolorectal cancer.

  16. Inflammasome-independent NLRP3 is required for epithelial-mesenchymal transition in colon cancer cells.

    Science.gov (United States)

    Wang, Hong; Wang, Yajing; Du, Qianming; Lu, Ping; Fan, Huimin; Lu, Jinrong; Hu, Rong

    2016-03-15

    Inflammasome NLRP3 plays a crucial role in the process of colitis and colitis--associated colon cancer. Even though much is known regarding the NLRP3 inflammasome that regulates pro-inflammatory cytokine release in innate immune cells, the role of NLRP3 in non-immune cells is still unclear. In this study, we showed that NLRP3 was highly expressed in mesenchymal-like colon cancer cells (SW620), and was upregulated by tumor necrosis factors-α (TNF-α) and transforming growth factor-β1 (TGF-β1) respectively, during EMT in colon cancer epithelial cells HCT116 and HT29. Knockdown of NLRP3 retained epithelial spindle-like morphology of HCT116 and HT29 cells and reversed the mesenchymal characteristic of SW620 cells, indicated by the decreased expression of vimentin and MMP9 and increased expression of E-cadherin. In addition, knockdown of NLRP3 in colorectal carcinoma cells displayed diminished cell migration and invasion. Interestingly, during the EMT process induced by TNF-α or TGF-β1, the cleaved caspase-1 and ASC speck were not detected, indicating that NLRP3 functions in an inflammasome-independent way. Further studies demonstrated that NLRP3 protein expression was regulated by NF-κB signaling in TNF-α or TGF-β1-induced EMT, as verified by the NF-κB inhibitor Bay 11-7082. Moreover, NLRP3 knockdown reduced the expression of Snail1, indicating that NLRP3 may promote EMT through regulating Snail1. In summary, our results showed that the NLRP3 expression, not the inflammasome activation, was required for EMT in colorectal cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Prophylactic effects of triptolide on colon cancer development in ...

    African Journals Online (AJOL)

    Purpose: To investigate effects of triptolide on colon cancer cell growth and its capacity to prevent tumor development in an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of colon cancer. Methods: HCT116 cell viability and migration potential were assessed. Control and AOM/DSS-treated mice (with and ...

  18. Benzylidene derivatives of andrographolide inhibit growth of breast and colon cancer cells in vitro by inducing G1 arrest and apoptosis

    Science.gov (United States)

    Jada, S R; Matthews, C; Saad, M S; Hamzah, A S; Lajis, N H; Stevens, M F G; Stanslas, J

    2008-01-01

    Background and purpose: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death. Experimental approach: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry. Key results: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G1 arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis. Conclusion and implications: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G1 phase cell cycle arrest, coupled with induction of apoptosis. PMID:18806812

  19. Loss of insulin-like growth factor II imprinting is a hallmark associated with enhanced chemo/radiotherapy resistance in cancer stem cells.

    Science.gov (United States)

    Zhao, Xin; Liu, Xiaoliang; Wang, Guanjun; Wen, Xue; Zhang, Xiaoying; Hoffman, Andrew R; Li, Wei; Hu, Ji-Fan; Cui, Jiuwei

    2016-08-09

    Insulin-like growth factor II (IGF2) is maternally imprinted in most tissues, but the epigenetic regulation of the gene in cancer stem cells (CSCs) has not been defined. To study the epigenetic mechanisms underlying self-renewal, we isolated CSCs and non-CSCs from colon cancer (HT29, HRT18, HCT116), hepatoma (Hep3B), breast cancer (MCF7) and prostate cancer (ASPC) cell lines. In HT29 and HRT18 cells that show loss of IGF2 imprinting (LOI), IGF2 was biallelically expressed in the isolated CSCs. Surprisingly, we also found loss of IGF2 imprinting in CSCs derived from cell lines HCT116 and ASPC that overall demonstrate maintenance of IGF2 imprinting. Using chromatin conformation capture (3C), we found that intrachromosomal looping between the IGF2 promoters and the imprinting control region (ICR) was abrogated in CSCs, in parallel with loss of IGF2 imprinting in these CSCs. Loss of imprinting led to increased IGF2 expression in CSCs, which have a higher rate of colony formation and greater resistance to chemotherapy and radiotherapy in vitro. These studies demonstrate that IGF2 LOI is a common feature in CSCs, even when the stem cells are derived from a cell line in which the general population of cells maintain IGF2 imprinting. This finding suggests that aberrant IGF2 imprinting may be an intrinsic epigenetic control mechanism that enhances stemness, self-renewal and chemo/radiotherapy resistance in cancer stem cells.

  20. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Paul Mason

    Full Text Available Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.

  1. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids.

    Science.gov (United States)

    Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G F; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara

    2012-01-01

    Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.

  2. Cancer Cell Cytotoxicities of 1-(4-Substitutedbenzoyl-4-(4-chlorobenzhydrylpiperazine Derivatives

    Directory of Open Access Journals (Sweden)

    Mine Yarim

    2012-06-01

    Full Text Available A series of novel 1-(4-substitutedbenzoyl-4-(4-chlorobenzhydrylpiperazine derivatives 5ag was designed by a nucleophilic substitution reaction of 1-(4-chlorobenzhydrylpiperazine with various benzoyl chlorides and characterized by elemental analyses, IR and 1H nuclear magnetic resonance spectra. Cytotoxicity of the compounds was demonstrated on cancer cell lines from liver (HUH7, FOCUS, MAHLAVU, HEPG2, HEP3B, breast (MCF7, BT20, T47D, CAMA-1, colon (HCT-116, gastric (KATO-3 and endometrial (MFE-296 cancer cell lines. Time-dependent cytotoxicity analysis of compound 5a indicated the long-term in situ stability of this compound. All compounds showed significant cell growth inhibitory activity on the selected cancer cell lines.

  3. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    International Nuclear Information System (INIS)

    El-Awady, Raafat A.; Saleh, Ekram M.; Ezz, Marwa; Elsayed, Abeer M.

    2011-01-01

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide ± celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 following all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: → Celecoxib may enhance effects of anticancer drugs. → Its combination with four drugs was tested in five cancer cell

  4. Cytotoxicity of selected Cameroonian medicinal plants and Nauclea pobeguinii towards multi-factorial drug-resistant cancer cells.

    Science.gov (United States)

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Seukep, Jackson A; Ngadjui, Bonaventure T; Efferth, Thomas

    2015-09-04

    Malignacies are still a major public concern worldwide and despite the intensive search for new chemotherapeutic agents, treatment still remains a challenging issue. This work was designed to assess the cytotoxicity of six selected Cameroonian medicinal plants, including Nauclea pobeguinii and its constituents 3-acetoxy-11-oxo-urs-12-ene (1), p-coumaric acid (2), citric acid trimethyl ester (3), resveratrol (4), resveratrol β- D -glucopyranoside (5) and strictosamide (6), against 8 drug-sensitive and multidrug-resistant (MDR) cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of the crude extracts and compounds, whilst column chromatography was used to isolate the constituents of Nauclea pobeguinii. Structural characterization of isolated compounds was performed using nuclear magnetic resonance (NMR) spectroscopic data. Preliminary experiments on leukemia CCRF-CEM cells at 40 μg/mL showed that the leaves and bark extracts from Tragia benthamii, Canarium schweinfurthii, Myrianthus arboreus, Dischistocalyx grandifolius and Fagara macrophylla induced more than 50 % growth of this cell line contrary to the leaves and bark extracts of N. pobeguinii. IC50 values below or around 30 μg/mL were obtained with leaves and bark extracts of N. pobeguinii towards two and five, respectively, of the 8 tested cancer cell lines. The lowest IC50 value was obtained with the bark extract of N. pobeguinii against HCT116 (p53 (-/-) ) colon cancer cells (8.70 μg/mL). Compounds 4 and 6 displayed selective activity on leukemia and carcinoma cells, whilst 1-3 were not active. IC50 values below 100 μM were recorded with compound 5 on all 9 tested cancer cell lines as well as with 4 against 7 out of 8 and 6 against 2 out of 8 cell lines. Collateral sensitivity was observed in CEM/ADR5000 leukemia cells, MDA-MB-231-BCRP breast adenocarcinoma cells (0.53-fold), HCT116 (p53 (+/+) ) cells, human U87MG.ΔEGFR glioblastome multiforme cells to the methanolic

  5. Effect of β,β-Dimethylacrylshikonin on Inhibition of Human Colorectal Cancer Cell Growth in Vitro and in Vivo

    OpenAIRE

    Fan, Yingying; Jin, Shaoju; He, Jun; Shao, Zhenjun; Yan, Jiao; Feng, Ting; Li, Hong

    2012-01-01

    In traditional Chinese medicine, shikonin and its derivatives, has been used in East Asia for several years for the prevention and treatment of several diseases, including cancer. We previously identified that β,β-dimethylacrylshikonin (DA) could inhibit hepatocellular carcinoma growth. In the present study, we investigated the inhibitory effects of DA on human colorectal cancer (CRC) cell line HCT-116 in vitro and in vivo. A viability assay showed th...

  6. CysLT(1)R antagonists inhibit tumor growth in a xenograft model of colon cancer.

    Science.gov (United States)

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21(WAF/Cip1) (Pcolon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells.

  7. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    International Nuclear Information System (INIS)

    Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin; Kim, Yun Gi; Shin, Jeon-Soo; Kim, Hoguen

    2012-01-01

    Highlights: ► Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. ► Inhibition of PKC-ζ leads to significant reduction of the secreted HMGB1. ► Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. ► Activation of PKC-ζ in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-ζ, λ, and ι) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-ζ by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-ζ in colon cancer tissues. Our findings suggest that PKC-ζ is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  8. Anticancer potential of Hericium erinaceus extracts against particular human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Younis AM

    2017-06-01

    Full Text Available Cancer is a leading cause of death worldwide. Cancer resulted in 8.2 million human deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2013 to 22 million within the next two decades. Mushrooms are extensively used as nutritional supplements in many countries. Moreover, mushrooms have many medicinal properties, including anticancer activity. In this study, the anticancer activity of different polar and non-polar extracts of Hericium erinaceus were evaluated against different human cancer cell lines including human liver carcinoma (Hep G2, the human colonic epithelial carcinoma (HCT 116, the human cervical cancer cells (HeLa and the human breast adenocarcinoma (MCF-7 using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Furthermore, as a control, the cytotoxicity effect of the different extracts were tested against isolated mouse hepatocytes. It was observed that the extracts by water and methanol from fresh and lyophilized fruiting bodies of H. erinaceus had the strongest anticancer effect. In contrast, the extracts by ether and ethyl acetate from mycelia and broth of H. erinaceus showed lower anticancer activity against the tested carcinoma cell lines. The highest anticancer activity was recorded for aqueous extract of lyophilized fruiting bodies with half maximal inhibitory concentration (IC50 values of 6.1±0.2, 5.1±0.1, 5.7±0.2 and 5.8±0.3 µg/ml against Hep G2, HCT 116, HeLa and MCF-7 cells, respectively with non-significant effect on the normal mouse hepatocytes. To summarise, polar extracts of H. erinaceus can be good sources for isolating natural anticancer compounds. I recommend further chemical studies to isolate the active principles of the extract of H. erinaceus evaluated in the present.

  9. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells.

    Science.gov (United States)

    Obakan-Yerlikaya, Pinar; Arisan, Elif Damla; Coker-Gurkan, Ajda; Adacan, Kaan; Ozbey, Utku; Somuncu, Berna; Baran, Didem; Palavan-Unsal, Narcin

    2017-06-01

    Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca 2+ ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells. © 2017 Wiley Periodicals, Inc.

  10. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Breuzard, G.; Angiboust, J.-F.; Jeannesson, P.; Manfait, M.; Millot, J.-M.

    2004-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  11. Overexpression of arginine transporter CAT-1 is associated with accumulation of L-arginine and cell growth in human colorectal cancer tissue.

    Directory of Open Access Journals (Sweden)

    Ying Lu

    Full Text Available We previously showed that L-arginine (Arg accumulates in colorectal cancer tissues. The aim of this study was to investigate the mechanism by which Arg accumulates and determine its biological significance. The concentration of Arg and Citrulline (Cit in sera and tumor tissues from colorectal cancer (CRC patients was analyzed by high-performance liquid chromatography (HPLC. The expression of Arg transporters was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR and immunohistochemical analysis of tissue microarray. We also transfected the colon cancer cell line HCT-116 with siRNA specific for the Arg transporter CAT-1 and measured the induction of apoptosis by flow cytometry and cell proliferation by MTT assay. Consistent with our previous results, serum Arg and Cit concentrations in colorectal cancer patients were significantly lower than those in normal volunteers, while Arg and Cit concentrations in colorectal cancer tissues were significantly higher than in matched adjacent normal colon tissues. Quantitative RT-PCR showed that the CAT-1 gene was highly overexpressed in 70.5% of colorectal cancer tissue samples relative to adjacent normal colon tissues in all 122 patients with colorectal cancer. Immunohistochemical analysis of tissue microarray confirmed that the expression of CAT-1 was higher in all 25 colorectal cancer tissues tested. CAT-1 siRNA significantly induced apoptosis of HCT-116 cells and subsequently inhibited cell growth by 20-50%. Our findings indicate that accumulation of L-Arg and Cit and cell growth in colorectal cancer tissues is associated with over-expression of the Arg transporter gene CAT-1. Our results may be useful for the development of molecular diagnostic tools and targeted therapy for colorectal cancer.

  12. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  13. Drug resistance in colorectal cancer cell lines is partially associated with aneuploidy status in light of profiling gene expression

    DEFF Research Database (Denmark)

    Guo, Jiao; Xu, Shaohang; Huang, Xuanlin

    2016-01-01

    A priority in solving the problem of drug resistance is to understand the molecular mechanism of how a drug induces the resistance response within cells. Because many cancer cells exhibit chromosome aneuploidy, we explored whether changes of aneuploidy status result in drug resistance. Two typical...... colorectal cancer cells, HCT116 and LoVo, were cultured with the chemotherapeutic drugs irinotecan (SN38) or oxaliplatin (QxPt), and the non- and drug-resistant cell lines were selected. Whole exome sequencing (WES) was employed to evaluate the aneuploidy status of these cells, and RNAseq and LC-MS/MS were...... the aneuploidy status in cancer cells, which was partially associated with the acquired drug resistance....

  14. Human colon cancer targeted pro-apoptotic, anti-metastatic and cytostatic effects of binuclear Silver(I)-N-Heterocyclic carbene (NHC) complexes.

    Science.gov (United States)

    Asif, Muhammad; Iqbal, Muhammad Adnan; Hussein, Mouayed A; Oon, Chern Ein; Haque, Rosenani A; Khadeer Ahamed, Mohamed B; Abdul Majid, Aman Shah; Abdul Majid, Amin Malik Shah

    2016-01-27

    The current mechanistic study was conducted to explore the effects of increased lipophilicity of binuclear silver(I)-NHC complexes on cytotoxicity. Two new silver(I)-N-Heterocyclic Carbene (NHC) complexes (3 and 4), having lypophilic terminal alkyl chains (Octyl and Decyl), were derived from meta-xylyl linked bis-benzimidazolium salts (1 and 2). Each of the synthesized compounds was characterized by microanalysis and spectroscopic techniques. The complexes were tested for their cytotoxicity against a panel of human cancer c as well normal cell lines using MTT assay. Based on MTT assay results, complex 4 was found to be selectively toxic towards human colorectal carcinoma cell line (HCT 116). Complex 4 was further studied in detail to explore the mechanism of cell death and findings of the study revealed that complex 4 has promising pro-apoptotic and anti-metastatic activities against HCT 116 cells. Furthermore, it showed pronounced cytostatic effects in HCT 116 multicellular spheroid model. Hence, binuclear silver(I)-NHC complexes with longer terminal aliphatic chains have worth to be further studied against human colon cancer for the purpose of drug development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Naoki [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); College of Life and Health Sciences, Chubu University, Kasugai (Japan); Omori, Yukari [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Suzuki, Motoshi [Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kyogashima, Mamoru [Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama (Japan); Nakamura, Mitsuhiro [Department of Drug Information, Gifu Pharmaceutical University, Gifu (Japan); Tamiya-Koizumi, Keiko [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Nozawa, Yoshinori [Tokai Gakuin University, Kakamigahara (Japan); Murate, Takashi, E-mail: murate@isc.chubu.ac.jp [College of Life and Health Sciences, Chubu University, Kasugai (Japan)

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  16. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    International Nuclear Information System (INIS)

    Mizutani, Naoki; Omori, Yukari; Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi; Suzuki, Motoshi; Kyogashima, Mamoru; Nakamura, Mitsuhiro; Tamiya-Koizumi, Keiko; Nozawa, Yoshinori; Murate, Takashi

    2016-01-01

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  17. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hanna; Park, Minhee; Shin, Nara; Kim, Gamin [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Yun Gi [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul 110-744 (Korea, Republic of); Shin, Jeon-Soo [Department of Microbiology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Kim, Hoguen, E-mail: hkyonsei@yuhs.ac [Department of Pathology, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemoon-Ku, Seoul (Korea, Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Specific enzyme for HMGB1 phosphorylation and its secretion is proposed. Black-Right-Pointing-Pointer Inhibition of PKC-{zeta} leads to significant reduction of the secreted HMGB1. Black-Right-Pointing-Pointer Phosphorylation of specific site of HMGB1 redirects its secretion in cancer cells. Black-Right-Pointing-Pointer Activation of PKC-{zeta} in cancers explains the enhanced HMGB1 secretion. -- Abstract: High mobility group box-1 (HMGB1), a nuclear protein, is overexpressed and secreted in cancer cells. Phosphorylation on two different nuclear localization signal regions are known to be important for the nuclear-to-cytoplasmic transport and secretion of HMGB1. However, little is known about the biochemical mechanism of HMGB1 modifications and its subsequent secretion from cancer cells. To identify the specific enzyme and important sites for HMGB1 phosphorylation, we screened the protein kinase C (PKC) family in a colon cancer cell line (HCT116) for HMGB1 binding by pull-down experiments using a 3XFLAG-HMGB1 construct. Strong interactions between atypical PKCs (PKC-{zeta}, {lambda}, and {iota}) and cytoplasmic HMGB1 were observed in HCT116 cells. We further identified the most critical PKC isotype that regulates HMGB1 secretion is PKC-{zeta} by using PKC inhibitors and siRNA experiments. The serine residues at S39, S53 and S181 of HMGB1 were related to enhancing HMGB1 secretion. We also demonstrated overexpression and activation of PKC-{zeta} in colon cancer tissues. Our findings suggest that PKC-{zeta} is involved in the phosphorylation of HMGB1, and the phosphorylation of specific serine residues in the nuclear localization signal regions is related to enhanced HMGB1 secretion in colon cancer cells.

  18. Cytotoxic effects of the newly-developed chemotherapeutic agents 17-AAG in combination with oxaliplatin and capecitabine in colorectal cancer cell lines.

    Science.gov (United States)

    Mohammadian, Mahshid; Zeynali, Shima; Azarbaijani, Anahita Fathi; Khadem Ansari, Mohammad Hassan; Kheradmand, Fatemeh

    2017-12-01

    The use of heat shock protein 90 inhibitors like 17-allylamino-17-demethoxy-geldanamycin (17-AAG) has been recently introduced as an attractive anticancer therapy. It has been shown that 17-AAG may potentiate the inhibitory effects of some classical anticolorectal cancer (CRC) agents. In this study, two panels of colorectal carcinoma cell lines were used to evaluate the effects of 17-AAG in combination with capecitabine and oxaliplatin as double and triple combination therapies on the proliferation of CRC cell lines. HT-29 and all HCT-116 cell lines were seeded in culture media in the presence of different doses of the mentioned drugs in single, double, and triple combinations. Water-soluble tetrazolium-1 (WST-1) assay was used to investigate cell proliferation 24 h after treatments. Then, dose-response curves were plotted using WST-1outputs, and IC 50 values were determined. For double and triple combinations respectively 0.5 × IC 50 and 0.25 × IC 50 were used. Data was analyzed with the software CompuSyn. Drug interactions were analyzed using Chou-Talalay method to calculate the combination index (CI).The data revealed that 17-AAG shows a potent synergistic interaction (CI 1) in HT-29 and a synergistic effect (CI AAG with oxaliplatin or capecitabine might be effective against HCT-116 and HT-29 cell lines. However, in triple combinations, positive results were seen only against HCT-116. Further investigation is suggested to confirm the effectiveness of these combinations in clinical trials.

  19. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes.

    Science.gov (United States)

    Ahmed, Farrukh Rafiq; Shoaib, Muhammad Harris; Azhar, Mudassar; Um, Soong Ho; Yousuf, Rabia Ismail; Hashmi, Shahkamal; Dar, Ahsana

    2015-11-01

    Halloysite is a clay mineral with chemical similarity to kaolin, a pharmaceutical ingredient. It consists of mainly aluminosilicate nanotubular particles in the size range of ∼ 200-1000 nm. Many studies have tried to empirically explore this novel clay for its potential in drug delivery systems but no work has yet studied its cytotoxicity from the perspective of oral drug delivery system. In this study, the halloysite nanotubes (HNTs) were subjected to size distribution analyses, which reveal more than 50% of nanotubes in the size range of 500 nm and rest mainly in the sub micrometer range. HNTs were then evaluated for in-vitro cytotoxicity against HCT116 (colorectal carcinoma) and HepG2 (hepatocellular carcinoma) cells which represent the earliest entry point and the first accumulating organ, respectively, for nanoparticles en-route to systemic circulation after oral delivery. Moreover, HNTs were tested for their cytogenetic toxicity against human peripheral blood lymphocytes. Both these results collectively indicated that HNTs are generally safe at practical concentrations of excipients for oral dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Osteopontin Promotes Cell Migration and Invasion, and Inhibits Apoptosis and Autophagy in Colorectal Cancer by activating the p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ren-hong Huang

    2017-04-01

    Full Text Available Background: Osteopontin (OPN is highly expressed in colorectal cancer (CRC and is associated with disease progression in vivo. High levels of OPN have been demonstrated to predict low survival rates in CRC. Autophagy is a process of self-digestion, which is thought to play a significant role in carcinogenesis. However, the mechanisms of OPN's effects on CRC cell autophagy have not been elucidated. Therefore, we aimed to investigate possible mechanisms of OPN's effects on CRC autophagy. Methods: HCT116 cell proliferation, apoptosis, and migration and invasion ability were identified by cell counting k¡t-8 assay, flow cytometry, wound healing assay, and transwell chamber invasion assay, respectively. The ratios of proteins LC3-II/LC3-I, P62, and Atg7 were analyzed by Western-blot. Expressions of Beclin-1, Atg4b, Bnip3, and Vps34, both in transcriptional and translational levels, were analyzed and compared by RT-PCR and Western blot. Immunofluorescence and co-focusing experiments were used to investigate the formation of autophagosomes. Results: The results showed that OPN can promote cell proliferation, migration, and invasion, as well as inhibit cell apoptosis. It was also demonstrated that OPN could inhibit cell autophagy. Further experiments revealed that the inhibitory effect of OPN on autophagy could be reversed by blocking the p38 MAPK pathway in HCT116 cells. Conclusion: OPN is involved in HCT116 cell progression and is capable of inhibiting cell autophagy possibly by activating the p38 MAPK signaling pathway, implying that OPN could be a potential novel molecular therapeutic biomarker in patients with CRC.

  2. The glutamate transport inhibitor DL-Threo-β-Benzyloxyaspartic acid (DL-TBOA) differentially affects SN38- and oxaliplatin-induced death of drug-resistant colorectal cancer cells

    International Nuclear Information System (INIS)

    Pedraz-Cuesta, Elena; Christensen, Sandra; Jensen, Anders A.; Jensen, Niels Frank; Bunch, Lennart; Romer, Maria Unni; Brünner, Nils; Stenvang, Jan; Pedersen, Stine Falsig

    2015-01-01

    Colorectal cancer (CRC) is a leading cause of cancer death globally and new biomarkers and treatments are severely needed. Here, we employed HCT116 and LoVo human CRC cells made resistant to either SN38 or oxaliplatin, to investigate whether altered expression of the high affinity glutamate transporters Solute Carrier (SLC)-1A1 and -1A3 (EAAT3, EAAT1) is associated with the resistant phenotypes. Analyses included real-time quantitative PCR, immunoblotting and immunofluorescence analyses, radioactive tracer flux measurements, and biochemical analyses of cell viability and glutathione content. Results were evaluated using one- and two-way ANOVA and Students two-tailed t-test, as relevant. In SN38-resistant HCT116 and LoVo cells, SLC1A1 expression was down-regulated ~60 % and up-regulated ~4-fold, respectively, at both mRNA and protein level, whereas SLC1A3 protein was undetectable. The changes in SLC1A1 expression were accompanied by parallel changes in DL-Threo-β-Benzyloxyaspartic acid (TBOA)-sensitive, UCPH101-insensitive [ 3 H]-D-Aspartate uptake, consistent with increased activity of SLC1A1 (or other family members), yet not of SLC1A3. DL-TBOA co-treatment concentration-dependently augmented loss of cell viability induced by SN38, while strongly counteracting that induced by oxaliplatin, in both HCT116 and LoVo cells. This reflected neither altered expression of the oxaliplatin transporter Cu 2+ -transporter-1 (CTR1), nor changes in cellular reduced glutathione (GSH), although HCT116 cell resistance per se correlated with increased cellular GSH. DL-TBOA did not significantly alter cellular levels of p21, cleaved PARP-1, or phospho-Retinoblastoma protein, yet altered SLC1A1 subcellular localization, and reduced chemotherapy-induced p53 induction. SLC1A1 expression and glutamate transporter activity are altered in SN38-resistant CRC cells. Importantly, the non-selective glutamate transporter inhibitor DL-TBOA reduces chemotherapy-induced p53 induction and augments

  3. Curcumin synergizes with resveratrol to inhibit colon cancer.

    Science.gov (United States)

    Majumdar, Adhip P N; Banerjee, Sanjeev; Nautiyal, Jyoti; Patel, Bhaumik B; Patel, Vaishali; Du, Jianhua; Yu, Yingjie; Elliott, Althea A; Levi, Edi; Sarkar, Fazlul H

    2009-01-01

    Development and progression of many malignancies, including colorectal cancer, are associated with activation of multiple signaling pathways. Therefore, inhibition of these signaling pathways with noncytotoxic natural products represents a logical preventive and/or therapeutic approach for colon cancer. Curcumin and resveratrol, both of which inhibit the growth of transformed cells and colon carcinogenesis, were selected to examine whether combining them would be an effective preventive and/or therapeutic strategy for colon cancer. Indeed, the combination of curcumin and resveratrol was found to be more effective in inhibiting growth of p53-positive (wt) and p53-negative colon cancer HCT-116 cells in vitro and in vivo in SCID xenografts of colon cancer HCT-116 (wt) cells than either agent alone. Analysis by Calcusyn software showed synergism between curcumin and resveratrol. The inhibition of tumors in response to curcumin and/or resveratrol was associated with the reduction in proliferation and stimulation of apoptosis accompanied by attenuation of NF-kappaB activity. In vitro studies have further demonstrated that the combinatorial treatment caused a greater inhibition of constitutive activation of EGFR and its family members as well as IGF-1R. Our current data suggest that the combination of curcumin and resveratrol could be an effective preventive/therapeutic strategy for colon cancer.

  4. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers.

    Directory of Open Access Journals (Sweden)

    Patrícia M R Pereira

    Full Text Available Photodynamic Therapy (PDT relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4 in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.

  5. Cytotoxic Effects and Anti-Angiogenesis Potential of Pistachio (Pistacia vera L.) Hulls against MCF-7 Human Breast Cancer Cells.

    Science.gov (United States)

    Seifaddinipour, Maryam; Farghadani, Reyhaneh; Namvar, Farideh; Mohamad, Jamaludin; Abdul Kadir, Habsah

    2018-01-05

    Pistachio ( Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC 50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.

  6. A novel RNA sequencing data analysis method for cell line authentication.

    Directory of Open Access Journals (Sweden)

    Erik Fasterius

    Full Text Available We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.

  7. In vitro efficacy of a novel chemoradiopotentiator-taxoltere metro

    International Nuclear Information System (INIS)

    Yang Lixi; Wang Huijuan; Holton, Robert A.

    2000-01-01

    Purpose: To evaluate the in vitro cytotoxic and radiopotentiating effects of a novel paclitaxel analog (taxoltere metro) on Chinese hamster ovary (CHO) cells and human colon cancer cells. Methods and Materials: Three cell lines (CHO cells, HCT116 human colon carcinoma cells [paclitaxel-sensitive], and VM46 cells [paclitaxel-resistant subline of HCT116]) were employed in this study. Cell survival was determined using the standard colony-forming assay. The ID 50 value (drug concentrations required to reduce colony formation to 50% of the control value) was determined as a cytotoxic index from each cell survival curve. The sensitizer enhancement ratio (SER) as a radiopotentiating endpoint was determined as the ratio of the D 0 values (with or without drugs) under hypoxic or air conditions. Results: Taxoltere metro was 5-15 times more effective in killing CHO cells than paclitaxel under both hypoxic and euoxic treatment conditions. Cytocidal effects of taxoltere metro on HCT116 cells and VM46 cells were 28 and 70 times higher than those of paclitaxel (p < 0.001), respectively. Taxoltere metro also produced significant radiopotentiating effects on euoxic CHO and HCT116 cells, but not on hypoxic cells. The SER value of taxoltere metro for CHO cells was about 2.3 at a dose of 100 nM. With HCT116 cells, taxoltere metro yielded an SER of 1.2 at the low dose of 10 nM. In contrast, the parent compound paclitaxel yielded little or no radiosensitization with either CHO or HCT116 cells. Conclusion: The results demonstrate that taxoltere metro is significantly more potent than paclitaxel in chemoradiopotentiating CHO cells and HCT116 human colon carcinoma cells. The data strongly suggest that taxoltere metro could be a promising chemoradiopotentiating agent for treatment of cancer

  8. Andrographolide enhanced 5-fluorouracil-induced antitumor effect in colorectal cancer via inhibition of c-MET pathway

    Directory of Open Access Journals (Sweden)

    Su M

    2017-11-01

    Full Text Available Meng Su,1 Baoli Qin,1 Fang Liu,2 Yuze Chen,2 Rui Zhang2 1Department of Internal Medicine, 2Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, China Abstract: Colorectal cancer (CRC is the third most common malignant neoplasm worldwide. 5-Fluorouracil (5-Fu is the most important chemotherapeutic drug used for the treatment of CRC. However, resistance to 5-Fu therapies is a growing concern in CRC clinical practice recently. Andrographolide (Andro is a main bioactive constituent of the herb Andrographis paniculata, which has various biological effects including anti-inflammation and antitumor activities. In the present study, we investigated the effects of combined Andro with 5-Fu against CRC HCT-116 cells. In vitro studies showed that Andro synergistically enhanced the anti-proliferation effect of 5-Fu on HCT-116 cells due to increased apoptotic cells. Meanwhile, results of the enzyme linked immunosorbent assay indicated that the level of phosphorylated cellular-mesenchymal to epithelial transition factor (p-MET was decreased by the combination treatment. Further study suggested that Andro promoted the antitumor effect of 5-Fu by downregulating the level of p-MET. In conclusion, these results confirmed the synergistic antitumor activity of Andro on CRC and provide evidence for possible clinical application of Andro for enhancing the antitumor effect of 5-Fu in CRC treatment. Keywords: Andro, 5-Fu, HCT-116 cells, apoptosis, p-MET

  9. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil.

    Science.gov (United States)

    Sánchez-Aragó, María; Cuezva, José M

    2011-02-08

    Metabolic reprogramming resulting in enhanced glycolysis is a phenotypic trait of cancer cells, which is imposed by the tumor microenvironment and is linked to the down-regulation of the catalytic subunit of the mitochondrial H+-ATPase (β-F1-ATPase). The bioenergetic signature is a protein ratio (β-F1-ATPase/GAPDH), which provides an estimate of glucose metabolism in tumors and serves as a prognostic indicator for cancer patients. Targeting energetic metabolism could be a viable alternative to conventional anticancer chemotherapies. Herein, we document that the bioenergetic signature of isogenic colon cancer cells provides a gauge to predict the cell-death response to the metabolic inhibitors, 3-bromopyruvate (3BrP) and iodoacetate (IA), and the anti-metabolite, 5-fluorouracil (5-FU). The bioenergetic signature of the cells was determined by western blotting. Aerobic glycolysis was determined from lactate production rates. The cell death was analyzed by fluorescence microscopy and flow cytometry. Cellular ATP concentrations were determined using bioluminiscence. Pearson's correlation coefficient was applied to assess the relationship between the bioenergetic signature and the cell death response. In vivo tumor regression activities of the compounds were assessed using a xenograft mouse model injected with the highly glycolytic HCT116 colocarcinoma cells. We demonstrate that the bioenergetic signature of isogenic HCT116 cancer cells inversely correlates with the potential to execute necrosis in response to 3BrP or IA treatment. Conversely, the bioenergetic signature directly correlates with the potential to execute apoptosis in response to 5-FU treatment in the same cells. However, despite the large differences observed in the in vitro cell-death responses associated with 3BrP, IA and 5-FU, the in vivo tumor regression activities of these agents were comparable. Overall, we suggest that the determination of the bioenergetic signature of colon carcinomas could

  10. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Cuezva José M

    2011-02-01

    Full Text Available Abstract Background Metabolic reprogramming resulting in enhanced glycolysis is a phenotypic trait of cancer cells, which is imposed by the tumor microenvironment and is linked to the down-regulation of the catalytic subunit of the mitochondrial H+-ATPase (β-F1-ATPase. The bioenergetic signature is a protein ratio (β-F1-ATPase/GAPDH, which provides an estimate of glucose metabolism in tumors and serves as a prognostic indicator for cancer patients. Targeting energetic metabolism could be a viable alternative to conventional anticancer chemotherapies. Herein, we document that the bioenergetic signature of isogenic colon cancer cells provides a gauge to predict the cell-death response to the metabolic inhibitors, 3-bromopyruvate (3BrP and iodoacetate (IA, and the anti-metabolite, 5-fluorouracil (5-FU. Methods The bioenergetic signature of the cells was determined by western blotting. Aerobic glycolysis was determined from lactate production rates. The cell death was analyzed by fluorescence microscopy and flow cytometry. Cellular ATP concentrations were determined using bioluminiscence. Pearson's correlation coefficient was applied to assess the relationship between the bioenergetic signature and the cell death response. In vivo tumor regression activities of the compounds were assessed using a xenograft mouse model injected with the highly glycolytic HCT116 colocarcinoma cells. Results We demonstrate that the bioenergetic signature of isogenic HCT116 cancer cells inversely correlates with the potential to execute necrosis in response to 3BrP or IA treatment. Conversely, the bioenergetic signature directly correlates with the potential to execute apoptosis in response to 5-FU treatment in the same cells. However, despite the large differences observed in the in vitro cell-death responses associated with 3BrP, IA and 5-FU, the in vivo tumor regression activities of these agents were comparable. Conclusions Overall, we suggest that the

  11. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells.

    Science.gov (United States)

    Dia, Vermont P; Krishnan, Hari B

    2016-09-15

    Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity of BG-4 may be responsible for its capability to cause cytotoxicity to HCT-116 and HT-29 human colon cancer cells with ED50 values of 134.4 and 217.0 μg/mL after 48 h of treatment, respectively. The mechanism involved in the cytotoxic effect may be associated with induction of apoptosis as evidenced by increased percentage of HCT-116 and HT-29 colon cancer cells undergoing apoptosis from 5.4% (untreated) to 24.8% (BG-4 treated, 125 μg/mL for 16 h) and 8.5% (untreated) to 31.9% (BG-4 treated, 125 μg/mL for 16 h), respectively. The molecular mechanistic explanation in the apoptosis inducing property of BG-4 is due to reduced expression of Bcl-2 and increased expression of Bax leading to increased expression of caspase-3 and affecting the expression of cell cycle proteins p21 and CDK2. This is the first report on the anti-cancer potential of a novel bioactive peptide isolated from Momordica charantia in vitro supporting the potential therapeutic property of BG-4 against colon cancer that must be addressed using in vivo models of colon carcinogenesis.

  12. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  13. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter.

    Science.gov (United States)

    Kim, Joo Ae; Lee, Somyoung; Kim, Da-Eun; Kim, Moonil; Kwon, Byoung-Mog; Han, Dong Cho

    2015-06-01

    Heat shock factor 1 (HSF1) is a transcription factor for heat shock proteins (HSPs) expression that enhances the survival of cancer cells exposed to various stresses. HSF1 knockout suppresses carcinogen-induced cancer induction in mice. Therefore, HSF1 is a promising therapeutic and chemopreventive target. We performed cell-based screening with a natural compound collection and identified fisetin, a dietary flavonoid, as a HSF1 inhibitor. Fisetin abolished heat shock-induced luciferase activity with an IC50 of 14 μM in HCT-116 cancer cells. The treatment of HCT-116 with fisetin inhibited proliferation with a GI50 of 23 μM. When the cells were exposed to heat shock in the presence of fisetin, the induction of HSF1 target proteins, such as HSP70, HSP27 and BAG3 (Bcl-2-associated athanogene domain 3), were inhibited. HSP70/BAG3 complexes protect cancer cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. The downregulation of HSP70/BAG3 by fisetin significantly reduced the amounts of Bcl-2, Bcl-xL and Mcl-1 proteins, subsequently inducing apoptotic cell death. Chromatin immunoprecipitation assays showed that fisetin inhibited HSF1 activity by blocking the binding of HSF1 to the hsp70 promoter. Intraperitoneal treatment of nude mice with fisetin at 30mg/kg resulted in a 35.7% (P < 0.001) inhibition of tumor growth. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effect of low dose radiation on cell cycle and expression of its related proteins of HCT-8 cells

    International Nuclear Information System (INIS)

    Xu Ying; Ma Kewei; Li Wei; Wang Guanjun

    2009-01-01

    Objective: To study the effects of low dose radiation (LDR) on cell cycle and the expression of its related proteins of HCT-8 cells and provide theoretical basis for clinical application of LDR. Methods: Human colon carcinoma cells (HCT-8) cultivated in vitro were divided into seven groups: sham radiation group (0 mGy), LDR groups (25, 50, 75, 100 and 200 mGy) and high dose radiation group (1000 mGy). The proliferation rate was detected with the method of cell count and MTT, the ratios of G 0 /G 1 , S, G 2 /M in cell cycle were determined with flow cytometry after LDR, The cell cycle and expressions of related signal proteins were analyzed with protein assay system. Results: The results of cell count and MTT showed that there were no significant differences of proliferation rate of HCT-8 cells between 25, 50, 75, 100, 200 mGy LDR groups and sham radiation group (P>0.05); compared with high dose radiation group, there were significant differences (P 0 /G 1 phase of HCT-8 cells increased (P>0.05), the ratio of S phase decreased significantly (P 2 /M phase increased obviously (P 0 /G 1 , S, and G 2 /M phases of HCT-8 cells 48 h after radiation compared with sham radiation group (P>0.05). The protein assay result indicated that the expressions of AKt, PCNA, p27, CDK2, cyclin E, EGFR, ERK1/2, p-ERK, p-GSK-32/β in HCT-8 cells after LDR decreased compared with sham radiation group. Conclusion: LDR has no stimulating effect on HCT-8 cells. However, to some extent LDR suppress the expressions of some proteins related to proliferation and cell cycle. (authors)

  15. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Sabita N., E-mail: sabivan@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Department of Biological Sciences, Alabama State University, Montgomery, AL 36104 (United States); Kala, Rishabh [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Tollefsbol, Trygve O., E-mail: trygve@uab.edu [Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294 (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Comprehensive Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2014-05-15

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  16. Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate

    International Nuclear Information System (INIS)

    Saldanha, Sabita N.; Kala, Rishabh; Tollefsbol, Trygve O.

    2014-01-01

    Bioactive compounds are considered safe and have been shown to alter genetic and epigenetic profiles of tumor cells. However, many of these changes have been reported at molecular concentrations higher than physiologically achievable levels. We investigated the role of the combinatorial effects of epigallocatechin gallate (EGCG), a predominant polyphenol in green tea, and sodium butyrate (NaB), a dietary microbial fermentation product of fiber, in the regulation of survivin, which is an overexpressed anti-apoptotic protein in colon cancer cells. For the first time, our study showed that the combination treatment induced apoptosis and cell cycle arrest in RKO, HCT-116 and HT-29 colorectal cancer cells. This was found to be regulated by the decrease in HDAC1, DNMT1, survivin and HDAC activity in all three cell lines. A G2/M arrest was observed for RKO and HCT-116 cells, and G1 arrest for HT-29 colorectal cancer cells for combinatorial treatment. Further experimentation of the molecular mechanisms in RKO colorectal cancer (CRC) cells revealed a p53-dependent induction of p21 and an increase in nuclear factor kappa B (NF-κB)-p65. An increase in double strand breaks as determined by gamma-H2A histone family member X (γ-H2AX) protein levels and induction of histone H3 hyperacetylation was also observed with the combination treatment. Further, we observed a decrease in global CpG methylation. Taken together, these findings suggest that at low and physiologically achievable concentrations, combinatorial EGCG and NaB are effective in promoting apoptosis, inducing cell cycle arrest and DNA-damage in CRC cells. - Highlights: • EGCG and NaB as a combination inhibits colorectal cancer cell proliferation. • The combination treatment induces DNA damage, G2/M and G1 arrest and apoptosis. • Survivin is effectively down-regulated by the combination treatment. • p21 and p53 expressions are induced by the combination treatment. • Epigenetic proteins DNMT1 and HDAC1 are

  17. Cytotoxic, antimigratory, pro-and antioxidative activities of extracts from medicinal mushrooms on colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Šeklić Dragana S.

    2016-01-01

    Full Text Available Methanol extracts of five commercially available mushroom species (Phellinus linteus (Berk. et Curt Teng, Cordyceps sinensis (Berk. Sacc., Lentinus edodes (Berk. Pegler, Coprinus comatus (O. F. Müll. Pers. and Ganoderma lucidum (Curtis P. Karst, traditionally used as anticancer agents, were evaluated in vitro for their total phenol and flavonoid contents, cytotoxic and antimigratory activities and antioxidant/prooxidant effects on colon cancer cell lines (HCT-116 and SW-480. Spectrophotometric methods were used for the determination of total phenol content, flavonoid concentrations and DPPH activity of the extracts. Cytotoxic activity was measured by the MTT assay. The antimigratory activity of extracts was determined using the Transwell assay and immunofluorescence staining of β-catenin. The prooxidant/antioxidant status was followed by measuring the superoxide anion radical (O2•-, nitrite and reduced glutathione (GSH concentrations. Our results show that the highest phenolic and flavonoid content was found in P. linteus, and its DPPH-scavenging capacity was significantly higher than in other samples. The P. linteus extract significantly decreased cell viability of both tested cancer cell lines. All other extracts selectively inhibited SW-480 cell viability, but did not show significant cytotoxic activity. The mushroom extracts caused changes in the prooxidant/antioxidant status of cells, inducing oxidative stress. All extracts tested on HCT-116 cells demonstrated significant antimigratory effects, which correlated with increased production of O2•- and a reduced level of β-catenin protein expression, while only P. linteus showed the same effect on SW-480 cells. The results of the present research indicate that the mushroom extracts causes oxidative stress which has a pronounced impact on the migratory status of colon cancer cell lines. [Projekat Ministarstva nauke Republike Srbije, br. III41010

  18. Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    International Nuclear Information System (INIS)

    Mahyar-Roemer, Mojgan; Köhler, Hans; Roemer, Klaus

    2002-01-01

    The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

  19. Epifluorescent imaging study of the effect of anti-diabetic drug metformin on colorectal cancer cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Venkatasubramani P

    2017-12-01

    Full Text Available Metformin, a widely used anti-diabetic drug, has recently been associated with inhibition of cell proliferation in multiple cancers. However, it is not clear if the reduction in proliferation on treatment with metformin is a result of cell death or slowdown in the rate of growth of cancer cells, because cell viability assays measure only the number of cells at the beginning and end of the experiment. The aim of this study is to utilize a fluorescent imaging technique to directly follow cell death overtime in order to investigate the effect of metformin on colorectal cancer cells HCT116 and SW480. Epifluorescent imaging analysis carried out using ImageXpress Micro XLS High-Content Imaging System show that there is no significant change in cell death observed in the cancer cell lines, as compared to the control, over multiple closely spaced time points, suggesting that metformin in pharmacological doses may not be an effective inducer of cell death in these colon cancer cell lines.

  20. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  1. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  3. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    International Nuclear Information System (INIS)

    Hao, Hui-fang; Takaoka, Munenori; Bao, Xiao-hong; Wang, Zhi-gang; Tomono, Yasuko; Sakurama, Kazufumi; Ohara, Toshiaki; Fukazawa, Takuya; Yamatsuji, Tomoki; Fujiwara, Toshiyoshi; Naomoto, Yoshio

    2012-01-01

    Highlights: ► A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. ► TAE226 suppressed proliferation and migration, with a modest effect on adhesion. ► Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. ► TAE226 treatment suppressed the progression of peritoneal dissemination. ► Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken together, a possible strategy for inhibiting peritoneal dissemination by targeting FAK with TAE226 appears to be applicable

  4. Oral administration of FAK inhibitor TAE226 inhibits the progression of peritoneal dissemination of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Hui-fang [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Takaoka, Munenori [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Bao, Xiao-hong [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Wang, Zhi-gang [College of Life Science, Inner Mongolia University, The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Hohhot 010021 (China); Tomono, Yasuko [Division of Molecular and Cell Biology, Shigei Medical Research Institute, 2117 Yamada, Okayama 700-0202 (Japan); Sakurama, Kazufumi; Ohara, Toshiaki [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Fukazawa, Takuya; Yamatsuji, Tomoki [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan); Fujiwara, Toshiyoshi [Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558 (Japan); Naomoto, Yoshio, E-mail: ynaomoto@med.kawasaki-m.ac.jp [Department of General Surgery, Kawasaki Medical School, 2-1-80 Nakasange, Kita-ku, Okayama 700-8505 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A novel FAK inhibitor TAE226 suppressed FAK activity in HCT116 colon cancer cells. Black-Right-Pointing-Pointer TAE226 suppressed proliferation and migration, with a modest effect on adhesion. Black-Right-Pointing-Pointer Silencing of FAK by siRNA made no obvious difference on cancer cell attachment. Black-Right-Pointing-Pointer TAE226 treatment suppressed the progression of peritoneal dissemination. Black-Right-Pointing-Pointer Oral administration of TAE226 prolonged the survival of tumor-bearing mice. -- Abstract: Peritoneal dissemination is one of the most terrible types of colorectal cancer progression. Focal adhesion kinase (FAK) plays a crucial role in the biological processes of cancer, such as cell attachment, migration, proliferation and survival, all of which are essential for the progression of peritoneal dissemination. Since we and other groups have reported that the inhibition of FAK activity exhibited a potent anticancer effect in several cancer models, we hypothesized that TAE226, a novel ATP-competitive tyrosine kinase inhibitor designed to target FAK, can prevent the occurrence and progression of peritoneal dissemination. In vitro, TAE226 greatly inhibited the proliferation and migration of HCT116 colon cancer cells, while their adhesion on the matrix surface was minimally inhibited when FAK activity and expression was suppressed by TAE226 and siRNA. In vivo, when HCT116 cells were intraperitoneally inoculated in mice, the cells could attach to the peritoneum and begin to grow within 24 h regardless of the pretreatment of cells with TAE226 or FAK-siRNA, suggesting that FAK is not essential, at least for the initial integrin-matrix contact. Interestingly, the treatment of mice before and after inoculation significantly suppressed cell attachment to the peritoneum. Furthermore, oral administration of TAE226 greatly reduced the size of disseminated tumors and prolonged survival in tumor-bearing mice. Taken

  5. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells.

    Science.gov (United States)

    Amen, Yhiya M; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Mira, Amira; Shimizu, Kuniyoshi

    2016-07-01

    A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.

  6. E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation

    International Nuclear Information System (INIS)

    Hao, Hongying; Dong, Yanbin; Bowling, Maria T; Gomez-Gutierrez, Jorge G; Zhou, H Sam; McMasters, Kelly M

    2007-01-01

    PUMA is a pro-apoptotic Bcl-2 family member that has been shown to be involved in apoptosis in many cell types. We sought to ascertain whether induction of PUMA plays a crucial role in E2F-1-induced apoptosis in melanoma cells. PUMA gene and protein expression levels were detected by real-time PCR and Western blot in SK-MEL-2 and HCT116 cell lines after Ad-E2F-1 infection. Activation of the PUMA promoter by E2F-1 overexpression was detected by dual luciferase reporter assay. E2F-1-induced Bax translocation was shown by immunocytochemistry. The induction of caspase-9 activity was measured by caspase-9 colorimetric assay kit. Up-regulation of the PUMA gene and protein by E2F-1 overexpression was detected by real-time PCR and Western blot analysis in the SK-MEL-2 melanoma cell line. In support of this finding, we found six putative E2F-1 binding sites within the PUMA promoter. Subsequent dual luciferase reporter assay showed that E2F-1 expression could increase the PUMA gene promoter activity 9.3 fold in SK-MEL-2 cells. The role of PUMA in E2F-1-induced apoptosis was further investigated in a PUMA knockout cell line. Cell viability assay showed that the HCT116 PUMA-/- cell line was more resistant to Ad-E2F-1-mediated cell death than the HCT116 PUMA+/+ cell line. Moreover, a 2.2-fold induction of the PUMA promoter was also noted in the HCT116 PUMA+/+ colon cancer cell line after Ad-E2F-1 infection. Overexpression of a truncated E2F-1 protein that lacks the transactivation domain failed to up-regulate PUMA promoter, suggesting that PUMA may be a transcriptional target of E2F-1. E2F-1-induced cancer cell apoptosis was accompanied by Bax translocation from the cytosol to mitochondria and the induction of caspase-9 activity, suggesting that E2F-1-induced apoptosis is mediated by PUMA through the cytochrome C/Apaf-1-dependent pathway. Our studies strongly demonstrated that E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation. The signaling

  7. Inhibition of PCAF Histone Acetyltransferase, Cytotoxicity and Cell Permeability of 2-Acylamino-1-(3- or 4-Carboxy-phenylbenzamides

    Directory of Open Access Journals (Sweden)

    Eunsook Ma

    2012-11-01

    Full Text Available Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs in the cell and they also have relevance in oncology. We synthesized a series of 2-acylamino-1-(3- or 4-carboxyphenylbenzamides 8–19 bearing C6, C8, C10, C12, C14, and C16 acyl chains at the 2-amino position of 2-aminobenzoic acid. Enzyme inhibition of these compounds was investigated using in vitro PCAF HAT assays. The inhibitory activities of compounds 8–10, 16, and 19 were similar to that of anacardic acid, and 17 was found to be more active than anacardic acid at 100 μM. Compounds 11–15 showed the low inhibitory activity on PCAF HAT. The cytotoxicity of the synthesized compounds was evaluated by SRB (sulforhodamine B assay against seven human cancer cell lines: HT-29 (colon, HCT-116 (colon, MDA-231 (breast, A549 (lung, Hep3B (hepatoma, HeLa (cervical and Caki (kidney and one normal cell line (HSF. Compound 17 was more active than anacardic acid against human colon cancer (HCT 116, IC50: 29.17 μM, human lung cancer (A549, IC50: 32.09 μM cell lines. 18 was more active than anacardic acid against human colon cancer (HT-29, IC50: 35.49 μM and HCT 116, IC50: 27.56 μM, human lung cancer (A549, IC50: 30.69 μM, and human cervical cancer (HeLa, IC50: 34.41 μM cell lines. The apparent permeability coefficient (Papp, cm/s values of two compounds (16 and 17 were evaluated as 68.21 and 71.48 × 10−6 cm/s by Caco-2 cell permeability assay.

  8. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL

  9. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    International Nuclear Information System (INIS)

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: ► In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. ► The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). ► Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. ► Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  10. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    Science.gov (United States)

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  11. Inhibition of PCAF histone acetyltransferase, cytotoxicity and cell permeability of 2-acylamino-1-(3- or 4-carboxy-phenyl)benzamides.

    Science.gov (United States)

    Park, Woong Jae; Ma, Eunsook

    2012-11-05

    Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs) in the cell and they also have relevance in oncology. We synthesized a series of 2-acylamino-1-(3- or 4-carboxyphenyl)benzamides 8–19 bearing C6, C8, C10, C12, C14, and C16 acyl chains at the 2-amino position of 2-aminobenzoic acid. Enzyme inhibition of these compounds was investigated using in vitro PCAF HAT assays. The inhibitory activities of compounds 8–10, 16, and 19 were similar to that of anacardic acid, and 17 was found to be more active than anacardic acid at 100 μM. Compounds 11–15 showed the low inhibitory activity on PCAF HAT. The cytotoxicity of the synthesized compounds was evaluated by SRB (sulforhodamine B) assay against seven human cancer cell lines: HT-29 (colon), HCT-116 (colon), MDA-231 (breast), A549 (lung), Hep3B (hepatoma), HeLa (cervical) and Caki (kidney) and one normal cell line (HSF). Compound 17 was more active than anacardic acid against human colon cancer (HCT 116, IC(50): 29.17 μM), human lung cancer (A549, IC₅₀: 32.09 μM) cell lines. 18 was more active than anacardic acid against human colon cancer (HT-29, IC₅₀: 35.49 μM and HCT 116, IC₅₀: 27.56 μM), human lung cancer (A549, IC₅₀: 30.69 μM), and human cervical cancer (HeLa, IC₅₀: 34.41 μM) cell lines. The apparent permeability coefficient (P(app), cm/s) values of two compounds (16 and 17) were evaluated as 68.21 and 71.48 × 10⁻⁶ cm/s by Caco-2 cell permeability assay.

  12. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    Science.gov (United States)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  13. Down-regulation of UDP-glucose dehydrogenase affects glycosaminoglycans synthesis and motility in HCT-8 colorectal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tsung-Pao; Pan, Yun-Ru; Fu, Chien-Yu; Chang, Hwan-You, E-mail: hychang@life.nthu.edu.tw

    2010-10-15

    UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellular spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.

  14. Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression.

    Science.gov (United States)

    Wang, Weicheng; Guo, Wenjie; Li, Lele; Fu, Zan; Liu, Wen; Gao, Jian; Shu, Yongqian; Xu, Qiang; Sun, Yang; Gu, Yanhong

    2016-12-01

    5-FU is the first line therapy for colorectal cancer, however, treatment effect is often hampered by the development of drug resistance or toxicity at high doses. Andrographolide is a natural diterpenoid from Andrographis paniculata which has anti-bacterial, anti-antiviral and anti-inflammation activities. In the current study, we test the hypothesis that Andrographolide reverses 5-FU resistance in colorectal cancer and examine the underlying mechanism. In vitro and vivo studies indicated that Andrographolide treatment significantly re-sensitizes HCT116/5-FUR cells (HCT116 cells which are 5-FU resistant) to cytotoxicity of 5-FU. Mechanism analysis showed that Andrographolide/5-FU co-treatment elevated apoptosis level of HCT116/5-FUR cells with highly increased level of BAX. By using biotin-Andrographolide pull down and cellular thermal shift assay, we found out that Andrographolide can directly target to BAX. Andrographolide-BAX interaction prevented BAX degradation, enhancing mitochondria-mediated apoptosis thus reversed 5-FU resistance while BAX silence diminished this effect. Further, by analyzing patient samples who received 5-FU involved chemotherapy, we found that expression level of BAX is correlated with PFS. Our results here provide a novel combination treatment strategy, especially for patients with 5-FU-resistant tumors expressing low level of BAX. Meanwhile, we also proposed that BAX expression may be a predicted and prognosis marker of 5-FU involved chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dragon (RGMb) induces oxaliplatin resistance in colon cancer cells.

    Science.gov (United States)

    Shi, Ying; Huang, Xiao-Xiao; Chen, Guo-Bin; Wang, Ying; Zhi, Qiang; Liu, Yuan-Sheng; Wu, Xiao-Ling; Wang, Li-Fen; Yang, Bing; Xiao, Chuan-Xing; Xing, Hui-Qin; Ren, Jian-Lin; Xia, Yin; Guleng, Bayasi

    2016-07-26

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC.

  16. Differential control of growth, apoptotic activity and gene expression in human colon cancer cells by extracts derived from medicinal herbs, Rhazya stricta and Zingiber officinale and their combination.

    Science.gov (United States)

    Elkady, Ayman I; Hussein, Rania Abd El Hamid; Abu-Zinadah, Osama A

    2014-11-07

    To investigate the effects of extracts from Rhazya stricta (R. stricta) and Zingiber officinale (Z. officinale) on human colorectal cancer cells. Human colorectal cancer cells (HCT116) were subjected to increasing doses of crude alkaloid extracts from R. stricta (CAERS) and crude flavonoid extracts from Z. officinale (CFEZO). Cells were then harvested after 24, 48 or 72 h and cell viability was examined by trypan blue exclusion dye test; clonogenicity and soft agar colony-forming assays were also carried out. Nuclear stain (Hoechst 33342), acridine orange/ethidium bromide double staining, agarose gel electrophoresis and comet assays were performed to assess pro-apoptotic potentiality of the extracts. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), using gene-specific primers and Western blot analyses were performed to assess the impact of CAERS and CFEZO on the expression levels of key regulatory proteins in HCT116 cells. Treatment with a combination of CAERS and CFEZO synergistically suppressed the proliferation, colony formation and anchorage-independent growth of HCT116 cells. Calculated IC50, after 24, 48 and 72 h, were 70, 90 and 130 μg/mL for CAERS, 65, 85 and 120 μg/mL for CFEZO and 20, 25 and 45 μg/mL for both agents, respectively. CAERS- and CFEZO-treated cells exhibited morphologic and biochemical features of apoptotic cell death. The induction of apoptosis was associated with the release of mitochondrial cytochrome c, an increase in the Bax/Bcl-2 ratio, activation of caspases 3 and 9 and cleavage of poly ADP-ribose polymerase. CAERS and CFEZO treatments downregulated expression levels of anti-apoptotic proteins including Bcl-2, Bcl-X, Mcl-1, survivin and XIAP, and upregulated expression levels of proapoptotic proteins such as Bad and Noxa. CAERS and CFEZO treatments elevated expression levels of the oncosuppressor proteins, p53, p21 and p27, and reduced levels of the oncoproteins, cyclin D1, cyclin/cyclin-dependent kinase-4 and

  17. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    anticancer drugs as well as new chemotherapy adjuvants that enhance efficacy and diminish side effects of chemotherapeutic agent. In this study, bergenin showed significant inhibitory effect on the growth of HCT116 cells. Bergenin induced ROS-mediated DNA damage, which resulted in G1 phase arrest and inhibited the.

  18. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin-Two Main Metabolites of Curcuma longa-in Cancer Cells.

    Science.gov (United States)

    Ooko, Edna; Kadioglu, Onat; Greten, Henry J; Efferth, Thomas

    2017-01-01

    Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa . This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53 +/+ and HCT116p53 -/- colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription ( TFAM, TCERG1, RGS13, C11orf31 ), apoptosis-regulation ( CRADD, CDK7, CDK19, CD81, TOM1 ) signal transduction ( NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27 ) DNA repair ( TOPBP1, RPA2 ), mRNA metabolism ( RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2 ), and transporter genes ( ABCA1 ) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA.

  19. Development of an Anti-HER2 Monoclonal Antibody H2Mab-139 Against Colon Cancer.

    Science.gov (United States)

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Kato, Yukinari

    2018-02-01

    Human epidermal growth factor receptor 2 (HER2) expression has been reported in several cancers, such as breast, gastric, lung, pancreatic, and colorectal cancers. HER2 is overexpressed in those cancers and is associated with poor clinical outcomes. Trastuzumab, a humanized anti-HER2 antibody, provides significant survival benefits for patients with HER2-overexpressing breast cancers and gastric cancers. In this study, we developed a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-139 (IgG 1 , kappa) and investigated it against colon cancers using flow cytometry, western blot, and immunohistochemical analyses. Flow cytometry analysis revealed that H 2 Mab-139 reacted with colon cancer cell lines, such as Caco-2, HCT-116, HCT-15, HT-29, LS 174T, COLO 201, COLO 205, HCT-8, SW1116, and DLD-1. Although H 2 Mab-139 strongly reacted with LN229/HER2 cells on the western blot, we did not observe a specific signal for HER2 in colon cancer cell lines. Immunohistochemical analyses revealed sensitive and specific reactions of H 2 Mab-139 against colon cancers, indicating that H 2 Mab-139 is useful in detecting HER2 overexpression in colon cancers using flow cytometry and immunohistochemical analyses.

  20. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  1. The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Tarig Magdeldin

    2014-07-01

    Full Text Available The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti–epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01. Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.

  2. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    Directory of Open Access Journals (Sweden)

    Eugene B. Chang

    2013-01-01

    Full Text Available Compound K (20-O-beta-D-glucopyranosyl-20(S-protopanaxadiol, CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC. A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.

  3. Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Lee

    Full Text Available Although inactivating frameshift mutations in the Transforming growth factor beta receptor type 2 (TGFBR2 gene are considered as drivers of microsatellite unstable (MSI colorectal tumorigenesis, consequential alterations of the downstream target proteome are not resolved completely. Applying a click-it chemistry protein labeling approach combined with mass spectrometry in a MSI colorectal cancer model cell line, we identified 21 de novo synthesized proteins differentially expressed upon reconstituted TGFBR2 expression. One candidate gene, the TGF-ß family member Growth differentiation factor-15 (GDF-15, exhibited TGFBR2-dependent transcriptional upregulation causing increased intracellular and extracellular protein levels. As a new TGFBR2 target gene it may provide a link between the TGF-ß branch and the BMP/GDF branch of SMAD-mediated signaling.

  4. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  5. Small molecule inhibitors of ERCC1-XPF protein-protein interaction synergize alkylating agents in cancer cells.

    Science.gov (United States)

    Jordheim, Lars Petter; Barakat, Khaled H; Heinrich-Balard, Laurence; Matera, Eva-Laure; Cros-Perrial, Emeline; Bouledrak, Karima; El Sabeh, Rana; Perez-Pineiro, Rolando; Wishart, David S; Cohen, Richard; Tuszynski, Jack; Dumontet, Charles

    2013-07-01

    The benefit of cancer chemotherapy based on alkylating agents is limited because of the action of DNA repair enzymes, which mitigate the damage induced by these agents. The interaction between the proteins ERCC1 and XPF involves two major components of the nucleotide excision repair pathway. Here, novel inhibitors of this interaction were identified by virtual screening based on available structures with use of the National Cancer Institute diversity set and a panel of DrugBank small molecules. Subsequently, experimental validation of the in silico screening was undertaken. Top hits were evaluated on A549 and HCT116 cancer cells. In particular, the compound labeled NSC 130813 [4-[(6-chloro-2-methoxy-9-acridinyl)amino]-2-[(4-methyl-1-piperazinyl)methyl

  6. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    Science.gov (United States)

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  7. Chlorogenic acid complex (CGA7, standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells

    Directory of Open Access Journals (Sweden)

    K. Gouthamchandra

    2017-09-01

    Full Text Available Coffee is commonly consumed beverage in the world and it has been suggested to have beneficial effect. Chlorogenic acids (CGAs are main ingredient of coffee beans which has been extensively used in nutraceuticals and medicine. Recently, various therapeutic effects of chlorogenic acids have been investigated. However, there are limited studies to investigate its anticancer properties. In the present study, we have used chlorogenic acid complex (CGA7 a decaffeinated water soluble green coffee bean extract to evaluate its cytotoxic effect on human and mouse cancer cell lines by using different approaches. From our results we found CGA7 treatment induces cell death in a dose and time dependent manner in different cancer cell lines. Further, CGA7 induced apoptosis was characterized by DNA fragmentation, PARP-1 cleavage, caspase-9 activation, and down regulation of Bcl-2, an anti-apoptotic protein and up regulation of pro-apoptotic protein BAX. Overall findings indicated that CGA7 complex a potent anticancer molecule found in green coffee beans could be a safe bioactive ingredient for prevention of cancer.

  8. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  9. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  10. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    International Nuclear Information System (INIS)

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-01

    Highlights: ► Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. ► PCA enhanced transcriptional downregulation of cyclin D1 gene. ► PCA suppressed HDAC2 expression and activity. ► These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  11. The Cytotoxic Effect of Small and Large Molecules of PMF Fraction Extracted from Camel Urine on Cancer Cells

    KAUST Repository

    Khorshid, Faten

    2015-01-10

    Aim of the work: Animal urine, including that of camels, has long been used for the therapeutic management of human ailments. In this study, we sought to characterize the cytotoxic properties of newly derived purified fractions from previously described camel urine extract (PMF) on various cancer cell lines. Methodology: Two new size dissimilar fractions of PMF (large and small) were obtained by fractionalizing PMF using 3kD and 50kD membrane filters. A SRB cytotoxicity assay of the PMF fractions was performed on cancer cell lines (A549, HCT116, HepG2, MCF-7, U251 and Hela) as well as normal cell lines (human fibroblast cell line and Vero). Results: This study showed that the newly derived and more purified fraction of PMF (new PMF) possesses effective and selective anti-cancer properties against several types of cancer cell lines. Conclusion: This study, as well as previous ones, suggests that camel urine extracts (old and new PMF) may provide newer therapeutic alternatives to clinically manage cancer patients. However, further studies are needed to verify these positive preliminary results.

  12. Methylselenol, a selenium metabolite, modulates p53 pathway and inhibits the growth of colon cancer xenografts in Balb/c mice.

    Science.gov (United States)

    Zeng, Huawei; Cheng, Wen-Hsing; Johnson, Luann K

    2013-05-01

    It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth. Copyright © 2013. Published by Elsevier Inc.

  13. Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M; Ho, Baotran; Zheng, Min; Magis, Andrew; Ostrov, David; Morrison, Carl; Cance, William G

    2013-01-01

    Focal Adhesion Kinase (FAK) is a 125 kDa non-receptor kinase that plays a major role in cancer cell survival and metastasis. We performed computer modeling of the p53 peptide containing the site of interaction with FAK, predicted the peptide structure and docked it into the three-dimensional structure of the N-terminal domain of FAK involved in the complex with p53. We screened small molecule compounds that targeted the site of the FAK-p53 interaction and identified compounds (called Roslins, or R compounds) docked in silico to this site. By different assays in isogenic HCT116p53 + / + and HCT116 p53 - / - cells we identified a small molecule compound called Roslin 2 (R2) that bound FAK, disrupted the binding of FAK and p53 and decreased cancer cell viability and clonogenicity in a p53-dependent manner. In addition, dual-luciferase assays demonstrated that the R2 compound increased p53 transcriptional activity that was inhibited by FAK using p21, Mdm-2, and Bax-promoter targets. R2 also caused increased expression of p53 targets: p21, Mdm-2 and Bax proteins. Furthermore, R2 significantly decreased tumor growth, disrupted the complex of FAK and p53, and up-regulated p21 in HCT116 p53 + / + but not in HCT116 p53 - / - xenografts in vivo. In addition, R2 sensitized HCT116p53 + / + cells to doxorubicin and 5-fluorouracil. Thus, disruption of the FAK and p53 interaction with a novel small molecule reactivated p53 in cancer cells in vitro and in vivo and can be effectively used for development of FAK-p53 targeted cancer therapy approaches

  14. Pharmacogenomic Characterization and Isobologram Analysis of the Combination of Ascorbic Acid and Curcumin—Two Main Metabolites of Curcuma longa—in Cancer Cells

    Science.gov (United States)

    Ooko, Edna; Kadioglu, Onat; Greten, Henry J.; Efferth, Thomas

    2017-01-01

    Curcuma longa has long been used in China and India as anti-inflammatory agent to treat a wide variety of conditions and also as a spice for varied curry preparations. The chemoprofile of the Curcuma species exhibits the presence of varied phytochemicals with curcumin being present in all three species but AA only being shown in C. longa. This study explored the effect of a curcumin/AA combination on human cancer cell lines. The curcumin/AA combination was assessed by isobologram analysis using the Loewe additivity drug interaction model. The drug combination showed additive cytotoxicity toward CCRF-CEM and CEM/ADR5000 leukemia cell lines and HCT116p53+/+ and HCT116p53−/− colon cancer cell line, while the glioblastoma cell lines U87MG and U87MG.ΔEGFR showed additive to supra-additive cytotoxicity. Gene expression profiles predicting sensitivity and resistance of tumor cells to induction by curcumin and AA were determined by microarray-based mRNA expressions, COMPARE, and hierarchical cluster analyses. Numerous genes involved in transcription (TFAM, TCERG1, RGS13, C11orf31), apoptosis-regulation (CRADD, CDK7, CDK19, CD81, TOM1) signal transduction (NR1D2, HMGN1, ABCA1, DE4ND4B, TRIM27) DNA repair (TOPBP1, RPA2), mRNA metabolism (RBBP4, HNRNPR, SRSF4, NR2F2, PDK1, TGM2), and transporter genes (ABCA1) correlated with cellular responsiveness to curcumin and ascorbic acid. In conclusion, this study shows the effect of the curcumin/AA combination and identifies several candidate genes that may regulate the response of varied cancer cells to curcumin and AA. PMID:28210221

  15. MLH1 function is context dependent in colorectal cancers.

    Science.gov (United States)

    Jackson, Thomas; Ahmed, Mohamed A H; Seth, Rashmi; Jackson, Darryl; Ilyas, Mohammad

    2011-02-01

    Loss of mismatch repair (MMR) function in sporadic colorectal cancer occurs most commonly because of inactivation of MLH1, and it causes an increase in mutation rate. However, it is uncertain whether loss of MMR alters any other cellular function. The aim of this study was to investigate the role of MMR in regulating cell numbers and apoptosis. MLH1 protein levels were manipulated by (a) cloning and forcibly expressing MLH1 in HCT116 (a cell line with MLH1 mutation) and RKO (a cell line with MLH1 silencing), and (b) knockdown of MLH1 in SW480 (a cell line with normal MMR function). Cell number and apoptotic bodies were measured in standard and 'high stress' (ie, after staurosporine exposure) conditions. Restoration of MLH1 function in HCT116 and RKO resulted in increased cell number (pculture conditions. However, on induction of apoptotic stress, restoration of MLH1 resulted in reduced cell numbers (pcontext dependent: in 'low stress' conditions it may act to inhibit apoptosis, while in 'high stress' conditions it may induce apoptosis. However, within the context of chromosomal instability, the effect of MLH1 on cell numbers is limited.

  16. Derricin and derricidin inhibit Wnt/β-catenin signaling and suppress colon cancer cell growth in vitro.

    Directory of Open Access Journals (Sweden)

    Barbara F Fonseca

    Full Text Available Overactivation of the Wnt/β-catenin pathway in adult tissues has been implicated in many diseases, such as colorectal cancer. Finding chemical substances that can prevent this phenomenon is an emerging problem. Recently, several natural compounds have been described as Wnt/β-catenin inhibitors and might be promising agents for the control of carcinogenesis. Here, we describe two natural substances, derricin and derricidin, belonging to the chalcone subclass, that show potent transcriptional inhibition of the Wnt/β-catenin pathway. Both chalcones are able to affect the cell distribution of β-catenin, and inhibit Wnt-specific reporter activity in HCT116 cells and in Xenopus embryos. Derricin and derricidin also strongly inhibited canonical Wnt activity in vitro, and rescued the Wnt-induced double axis phenotype in Xenopus embryos. As a consequence of Wnt/β-catenin inhibition, derricin and derricidin treatments reduce cell viability and lead to cell cycle arrest in colorectal cancer cell lines. Taken together, our results strongly support these chalcones as novel negative modulators of the Wnt/β-catenin pathway and colon cancer cell growth in vitro.

  17. Global phosphotyrosine proteomics identifies PKCδ as a marker of responsiveness to Src inhibition in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Eliot T McKinley

    Full Text Available Sensitive and specific biomarkers of protein kinase inhibition can be leveraged to accelerate drug development studies in oncology by associating early molecular responses with target inhibition. In this study, we utilized unbiased shotgun phosphotyrosine (pY proteomics to discover novel biomarkers of response to dasatinib, a small molecule Src-selective inhibitor, in preclinical models of colorectal cancer (CRC. We performed unbiased mass spectrometry shotgun pY proteomics to reveal the pY proteome of cultured HCT-116 colonic carcinoma cells, and then extended this analysis to HCT-116 xenograft tumors to identify pY biomarkers of dasatinib-responsiveness in vivo. Major dasatinib-responsive pY sites in xenograft tumors included sites on delta-type protein kinase C (PKCδ, CUB-domain-containing protein 1 (CDCP1, Type-II SH2-domain-containing inositol 5-phosphatase (SHIP2, and receptor protein-tyrosine phosphatase alpha (RPTPα. The pY313 site PKCδ was further supported as a relevant biomarker of dasatinib-mediated Src inhibition in HCT-116 xenografts by immunohistochemistry and immunoblotting with a phosphospecific antibody. Reduction of PKCδ pY313 was further correlated with dasatinib-mediated inhibition of Src and diminished growth as spheroids of a panel of human CRC cell lines. These studies reveal PKCδ pY313 as a promising readout of Src inhibition in CRC and potentially other solid tumors and may reflect responsiveness to dasatinib in a subset of colorectal cancers.

  18. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  19. Moringa oleifera Root Induces Cancer Apoptosis more Effectively than Leave Nanocomposites and Its Free Counterpart

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Abdalla, Aboelfetoh M; Ali, Naglaa A; Zoheir, Khairy MA

    2017-01-01

    Medicinal plants are important elements of indigenous medical system that have persisted in developing countries. Many of the botanical chemo-preventions currently used as potent anticancer agents. However, some important anticancer agents are still extracted from plants because they cannot be synthesized chemically on a commercial scale due to their complex structures that often contain several chiral centers. The aim of this study was to test different extracts from the Moringa oleifera leaves (ML), its PLGA-CS-PEG nanocomposites (MLn), as well as root core (Rc) and outer (Ro) parts for activity against hepatocarcinoma HepG2, breast MCF7, and colorectal HCT 116/ Caco-2 cells in vitro. Nano-composites were prepared and characterized. Then, the nanocomposites and the free counterparts were screened on different propagated cancer cell lines. The underlying cytotoxic impact was followed using apoptosis measurements. All extracts kill the different cancer cells with different ratios, but intriguingly, the root core extract could kill the majority of cancer cells (approximately 70-80%), while sparing normal BHK-21 cells with minimal inhibitory effect (approximately 30-40%). Apoptotic cell increment came to confirm the cytotoxic effects of these extracts on HCT 116 cells (Rc: 212% and Ro: 180%, respectively) and HepG2 cells (ML: 567.5% and MLn: 608%, respectively) compared to control (100%) mechanistically wise. Moringa oleifera nanocomposites may have potential for use as a natural source of anti-cancer compounds. PMID:28843248

  20. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Christoph Campregher

    Full Text Available BACKGROUND/AIM: Elevated microsatellite instability at selected tetranucleotide repeats (EMAST is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. METHODS: HCT116 and HCT116+chr3 (both MSH3-deficient and primary human colon epithelial cells (HCEC, MSH3-wildtype were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs were assessed by Comet assay. RESULTS: Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4 at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50, apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. CONCLUSIONS: MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon

  1. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation

    International Nuclear Information System (INIS)

    Graham, Elizabeth G.; MacNeill, Christopher M.; Levi-Polyachenko, Nicole H.

    2013-01-01

    Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood–peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-α in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400–500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT–FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50–60 % decrease in colorectal cancer cell viability compared to a 4–10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.

  2. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Elizabeth G.; MacNeill, Christopher M.; Levi-Polyachenko, Nicole H., E-mail: nlevi@wakehealth.edu [Wake Forest University School of Medicine, Department of Plastic and Reconstructive Surgery (United States)

    2013-05-15

    Peritoneal metastases of colorectal cancer are a significant challenge in the field of medicine today due to poor results of systemic chemotherapy caused by the poor diffusion of drugs across the blood-peritoneal barrier. Multi-walled carbon nanotubes (MWNTs) are a biocompatible nanomaterial that strongly absorb near-infrared light to locally heat the surrounding area. Colorectal cancer is known to overexpress folate receptor; therefore, folic acid (FA) was covalently attached to MWNTs to target colorectal cancer cells. Results from real-time polymerase chain reaction found differing expression of folate receptor-{alpha} in two colorectal cancer cell lines, RKO and HCT116, as well as a healthy epithelial cell line, HEPM. A spectrophotometric method was developed to quantify the mass of MWNTs bound to cells, and it was determined that FA-targeted MWNTs resulted in a 400-500 % greater affinity for colorectal cancer cells than untargeted MWNTs. The non-cancerous cell line, HEPM, had higher non-specific MWNT interaction and similar MWNT-FA affinity. Stimulated by 1,064 nm light, FA-functionalized MWNTs caused a 50-60 % decrease in colorectal cancer cell viability compared to a 4-10 % decrease caused by untargeted MWNTs. Our results indicate that FA-targeted MWNTs may increase the therapeutic index of MWNT-induced photothermal therapy.

  3. Mitochondrial control of cell death induced by hyperosmotic stress.

    Science.gov (United States)

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  4. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Wei-Chih [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Plichta, Zdeněk [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Lee, Wen-Chien [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China)

    2014-01-01

    Magnetic poly(glycidyl methacrylate)-based macroporous microspheres with an average particle size of 4.2 μm were prepared using a modified multi-step swelling polymerization method and by introducing amino functionality on their surfaces. Antibody molecules were oxidized on their carbohydrate moieties and bound to the amino-containing magnetic microspheres via a site-directed procedure. CD133-positive cells could be effectively captured from human cancer cell lines (HepG2, HCT116, MCF7, and IMR-32) by using magnetic microspheres conjugated to an anti-human CD133 antibody. After further culture, the immunocaptured CD133-expressing cells from IMR-32 proliferated and gradually detached from the magnetic microspheres. Flow-cytometric analysis confirmed the enrichment of CD133-expressing cells by using the antibody-bound magnetic microspheres. Such microspheres suitable for immunocapture are very promising for cancer diagnosis because the CD133-expressing cells in cancer cell lines have been suggested to be cancer stem cells. - Highlights: • Multi-step swelling polymerization produced poly(glycidyl methacrylate) microspheres. • Anti-human CD133 antibodies were bound to the amino-containing magnetic microspheres. • CD133-positive cells were effectively captured from human cancer cell lines. • Immunocaptured CD133-expressing cells proliferated and were detached from microspheres. • Enrichment of CD133-expressing cells was confirmed by flow-cytometric analysis.

  5. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  6. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal.

    Science.gov (United States)

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-05-20

    Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood. Recently, miRNAs are reported to be relevant to the self-renewal ability of cancer stem cells. In this study, we first isolated colorectal cancer stem cell from colorectal cancer cell line HCT-116 by 1% low serum culture. Then we conducted a comprehensive analysis based on the miRNAs profiles data of both colorectal cancer stem cells and normal cultured colorectal cancer cells. Pathway analysis revealed multiple pathways including Jak-STAT, TGF-beta, PI3K-Akt and MAPK signaling pathway that are correlated to colorectal cancer. Further, we constructed a miRNA-mRNA network, based on which, several miRNA/mRNA pairs were ranked according to their impact index to the self-renewal of colorectal cancer stem cells. Further biological experiment showed that up-regulation of miR-92a-3p led to cell cycle arrest and reduced colony formation. This work provides clues to find the new potential biomarkers for colorectal cancer stem cell diagnosis and select effective miRNAs for targeted therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    International Nuclear Information System (INIS)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-01-01

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice

  8. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling [Department of Clinical Laboratory, Tongren Hospital, Shanghai (China); Shen, Jie, E-mail: tongrensj163@163.com [Department of Administrative, Tongren Hospital, No. 786 Yuyuan Road, Changning District, Shanghai (China)

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  9. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Directory of Open Access Journals (Sweden)

    Susan Richter

    Full Text Available Zinc finger nucleases (ZFN are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK, in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116. All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002 and 4.3±0.8% (p = 0.001 for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  10. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Science.gov (United States)

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G; Ronimus, Ron S; McGee, Sean L; Wilson, William R

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  11. Discovery and structure-activity relationship of novel 4-hydroxy-thiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators.

    Science.gov (United States)

    Li, Ridong; Ning, Xianling; Zhou, Shuo; Lin, Zhiqiang; Wu, Xingyu; Chen, Hong; Bai, Xinyu; Wang, Xin; Ge, Zemei; Li, Runtao; Yin, Yuxin

    2018-01-01

    Pyruvate kinase M2 isoform (PKM2) is a crucial protein responsible for aerobic glycolysis of cancer cells. Activation of PKM2 may alter aberrant metabolism in cancer cells. In this study, we discovered a 4-hydroxy-thiazolidine-2-thione compound 2 as a novel PKM2 activator from a random screening of an in-house compound library. Then a series of novel 4-hydroxy-thiazolidine-2-thione derivatives were designed and synthesized for screening as potent PKM2 activators. Among these, some compounds showed higher PKM2 activation activity than lead compound 2 and also exhibited significant anti-proliferative activities on human cancer cell lines at nanomolar concentration. The compound 5w was identified as the most potent antitumor agent, which showed excellent anti-proliferative effects with IC 50 values from 0.46 μM to 0.81 μM against H1299, HCT116, Hela and PC3 cell lines. 5w also showed less cytotoxicity in non-tumor cell line HELF compared with cancer cells. In addition, Preliminary pharmacological studies revealed that 5w arrests the cell cycle at the G2/M phase in HCT116 cell line. The best PKM2 activation by compound 5t was rationalized through docking studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. An Apta-Biosensor for Colon Cancer Diagnostics

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh Raji

    2015-09-01

    Full Text Available This paper reports the design and implementation of an aptasensor using a modified KCHA10a aptamer. This aptasensor consists of a functionalized electrodes using various materials including 11-mercaptoandecanoic acid (11-MUA and modified KCHA10a aptamer. The HCT 116, HT 29 and HEp-2 cell lines are used in this study to demonstrate the functionality of aptasensor for colon cancer detection purposes. Flow cytometry, fluorescence microscopy and electrochemical cyclic voltammetry are used to verify the binding between the target cells and aptamer. The limit of detection (LOD of this aptasensor is equal to seven cancer cells. Based on the experimental results, the proposed sensor can be employed for point-of-care cancer disease diagnostics.

  13. Time- and cell-resolved dynamics of redox-sensitive Nrf2, HIF and NF-κB activities in 3D spheroids enriched for cancer stem cells

    Directory of Open Access Journals (Sweden)

    Anna P. Kipp

    2017-08-01

    Full Text Available Cancer cells have an altered redox status, with changes in intracellular signaling pathways. The knowledge of how such processes are regulated in 3D spheroids, being well-established tumor models, is limited. To approach this question we stably transfected HCT116 cells with a pTRAF reporter that enabled time- and cell-resolved activity monitoring of three redox-regulated transcription factors Nrf2, HIF and NF-κB in spheroids enriched for cancer stem cells. At the first day of spheroid formation, these transcription factors were activated and thereafter became repressed. After about a week, both HIF and Nrf2 were reactivated within the spheroid cores. Further amplifying HIF activation in spheroids by treatment with DMOG resulted in a dominant quiescent stem-cell-like phenotype, with high resistance to stress-inducing treatments. Auranofin, triggering oxidative stress and Nrf2 activation, had opposite effects with increased differentiation and proliferation. These novel high-resolution insights into spatiotemporal activation patterns demonstrate a striking coordination of redox regulated transcription factors within spheroids not occurring in conventional cell culture models. Keywords: Redox regulation, Cancer stem cells, Spheroids, Nrf2, HIF, NF-κB

  14. Chemopreventive Effects of Oplopantriol A, a Novel Compound Isolated from Oplopanax horridus, on Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    2014-07-01

    Full Text Available Oplopanax horridus is a North American botanical that has received limited investigations. We previously isolated over a dozen of the constituents from O. horridus, and among them oplopantriol A (OPT A is a novel compound. In this study, we firstly evaluated the in vivo chemoprevention activities of OPT A using the xenograft colon cancer mouse model. Our data showed that this compound significantly suppressed tumor growth with dose-related effects (p < 0.01. Next, we characterized the compound’s growth inhibitory effects in human colorectal cancer cell lines HCT-116 and SW-480. With OPT A treatment, these malignant cells were significantly inhibited in both a concentration- and time-dependent manner (both p < 0.01. The IC50 was approximately 5 µM for HCT-116 and 7 µM for SW-480 cells. OPT A significantly induced apoptosis and arrested the cell cycle at the G2/M phase. From further mechanism explorations, our data showed that OPT A significantly upregulated the expression of a cluster of genes, especially the tumor necrosis factor receptor family and caspase family, suggesting that the tumor necrosis factor-related apoptotic pathway plays a key role in OPT A induced apoptosis.

  15. Cytotoxic activity and apoptosis-inducing potential of di-spiropyrrolidino and di-spiropyrrolizidino oxindole andrographolide derivatives.

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Dey

    Full Text Available Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively and substitution of different functional groups (-CH3, -OCH3 and halogens were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells. Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively, none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5, MiaPaCa-2 (GI50 11.2 and HepG2 (GI50 16.6 cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-κB p65, PI3K and p-Akt; translocation of P53/P21, NF-κB p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide.

  16. Cytotoxic Activity and Apoptosis-Inducing Potential of Di-spiropyrrolidino and Di-spiropyrrolizidino Oxindole Andrographolide Derivatives

    Science.gov (United States)

    Hazra, Abhijit; Naskar, Subhendu; Nandy, Abhishek; Munda, Rudra Narayan; Das, Subhadip; Chatterjee, Nabanita; Mondal, Nirup Bikash; Banerjee, Sukdeb; Saha, Krishna Das

    2013-01-01

    Anticancer role of andrographolide is well documented. To find novel potent derivatives with improved cytotoxicity than andrographolide on cancer cells, two series of di-spiropyrrolidino- and di-spiropyrrolizidino oxindole andrographolide derivatives prepared by cyclo-addition of azomethine ylide along with sarcosine or proline (viz. sarcosine and proline series respectively) and substitution of different functional groups (-CH3, -OCH3 and halogens) were examined for their cytotoxic effect on a panel of six human cancer cell lines (colorectal carcinoma HCT116 cells, pancreatic carcinoma MiaPaCa-2 cells, hepatocarcinoma HepG2 cells, cervical carcinoma HeLa cells, lung carcinoma A549 and melanoma A375 cells). Except halogen substituted derivatives of proline series (viz. CY2, CY14 and CY15 for Br, Cl and I substitution respectively), none of the other derivatives showed improved cytotoxicity than andrographolide in the cancer cell lines examined. Order of cytotoxicity of the potent compounds is CY2>CY14>CY15>andrographolide. Higher toxicity was observed in HCT116, MiaPaCa-2 and HepG2 cells. CY2, induced death of HCT116 (GI50 10.5), MiaPaCa-2 (GI50 11.2) and HepG2 (GI50 16.6) cells were associated with cell rounding, nuclear fragmentation and increased percentage of apoptotic cells, cell cycle arrest at G1 phase, ROS generation, and involvement of mitochondrial pathway. Upregulation of Bax, Bad, p53, caspases-3,-9 and cleaved PARP; downregulation of Bcl-2, cytosolic NF-κB p65, PI3K and p-Akt; translocation of P53/P21, NF-κB p65 were seen in CY2 treated HCT116 cells. Thus, three halogenated di-spiropyrrolizidino oxindole derivatives of andrographolide are found to be more cytotoxic than andrographolide in some cancer cells. The most potent derivative, CY2 induced death of the cancer cells involves ROS dependent mitochondrial pathway like andrographolide. PMID:23472133

  17. Polyyne-Enriched Extract from Oplopanax elatus Significantly Ameliorates the Progression of Colon Carcinogenesis in ApcMin/+ Mice

    Directory of Open Access Journals (Sweden)

    Xin Qiao

    2017-09-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer in the world. Oplopanax elatus is widely used in traditional medicine. However, little is known about its pharmacological effects and bioactive compounds. We evaluated the effects of the polyyne-enriched extract from O. elatus (PEO on the progression of colon carcinogenesis in ApcMin/+ mice. In addition, these effects were also investigated in HCT116 and SW480 cells. After PEO oral administration (0.2% diet for 12 weeks, PEO significantly improved body weight changes and reduced the tumor burden and tumor multiplicity compared with the untreated mice. Meanwhile, western blot and immunohistochemistry results showed PEO significantly reduced the expression of β-catenin and cyclinD1 in both small intestine and the colon tissues compared with the untreated mice. In addition, PEO treatment significant decreased the cell viability in both HCT116 and SW480 cell lines. It also decreased the levels of β-catenin, cyclinD1, c-myc and p-GSK-3β in HCT116 and SW480 cells at 25 μM. These results indicate that PEO may have potential value in prevention of colon cancer by down-regulating Wnt-related protein.

  18. Impact of MLH1 expression on tumor evolution after curative surgical tumor resection in a murine orthotopic xenograft model for human MSI colon cancer.

    Science.gov (United States)

    Meunier, Katy; Ferron, Marianne; Calmel, Claire; Fléjou, Jean-François; Pocard, Marc; Praz, Françoise

    2017-09-01

    Colorectal cancers (CRCs) displaying microsatellite instability (MSI) most often result from MLH1 deficiency. The aim of this study was to assess the impact of MLH1 expression per se on tumor evolution after curative surgical resection using a xenograft tumor model. Transplantable tumors established with the human MLH1-deficient HCT116 cell line and its MLH1-complemented isogenic clone, mlh1-3, were implanted onto the caecum of NOD/SCID mice. Curative surgical resection was performed at day 10 in half of the animals. The HCT116-derived tumors were more voluminous compared to the mlh1-3 ones (P = .001). Lymph node metastases and peritoneal carcinomatosis occurred significantly more often in the group of mice grafted with HCT116 (P = .007 and P = .035, respectively). Mlh1-3-grafted mice did not develop peritoneal carcinomatosis or liver metastasis. After surgical resection, lymph node metastases only arose in the group of mice implanted with HCT116 and the rate of cure was significantly lower than in the mlh1-3 group (P = .047). The murine orthotopic xenograft model based on isogenic human CRC cell lines allowed us to reveal the impact of MLH1 expression on tumor evolution in mice who underwent curative surgical resection and in mice whose tumor was left in situ. Our data indicate that the behavior of MLH1-deficient CRC is not only governed by mutations arising in genes harboring microsatellite repeated sequences but also from their defect in MLH1 as such. © 2017 Wiley Periodicals, Inc.

  19. MicroRNA-98 Suppress Warburg Effect by Targeting HK2 in Colon Cancer Cells.

    Science.gov (United States)

    Zhu, Weimin; Huang, Yijiao; Pan, Qi; Xiang, Pei; Xie, Nanlan; Yu, Hao

    2017-03-01

    Warburg effect is a hallmark of cancer cells. Accumulating evidence suggests that microRNAs (miRs) could regulate such metabolic reprograming. Aberrant expression of miR-98 has been observed in many types of cancers. However, its functions and significance in colon cancer remain largely elusive. To investigate miR-98 expression and the biological functions in colon cancer progression. miR-98 expression levels were determined by quantitative RT-PCR in 215 cases of colon cancer samples. miR-98 mimic or inhibitor was used to test the biological functions in SW480 and HCT116 cells, followed by cell proliferation assay, lactate production, glucose uptake, and cellular ATP levels assay and extracellular acidification rates measurement. Western blot and luciferase assay were used to identify the target of miR-98. miR-98 was significantly down-regulated in colon cancer tissues compared to adjacent colon tissues and acted as a suppressor for Warburg effect in cancer cells. miR-98 inhibited glycolysis by directly targeting hexokinase 2, or HK2, illustrating a novel pathway to mediate Warburg effect of cancer cells. In vitro experiments further indicated that HK2 was involved in miR-98-mediated suppression of glucose uptake, lactate production, and cell proliferation. In addition, we detected HK2 expression in colon cancer tissues and found that the expressions of miR-98 and HK2 were negatively correlated. miR-98 acts as tumor suppressor gene and inhibits Warburg effect in colon cancer cells, which provided potential targets for clinical treatments.

  20. miR-497 suppresses epithelial–mesenchymal transition and metastasis in colorectal cancer cells by targeting fos-related antigen-1

    Directory of Open Access Journals (Sweden)

    Zhang N

    2016-10-01

    Full Text Available Nan Zhang,1 Quan Shen,2 Pingping Zhang3 1Department of General Surgery, First Affiliated Hospital of Henan University of Chinese Medicine, 2Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, 3Department of Integrated Chinese and Western Medicine, Tianjin First Central Hospital, Tianjin, People’s Republic of China Objective: MicroRNAs have key roles in tumor metastasis. The acquisition of metastatic capability by cancer cells is associated with epithelial–mesenchymal transition (EMT. Here, we describe the role and molecular mechanism of miR-497 in colorectal cancer (CRC cell EMT, migration, and invasion.Methods: Quantitative real-time polymerase chain reaction and Western blot assays were performed to detect the expression levels of miR-497 and Fos-related antigen-1 (Fra-1 in the CRC cells. HCT116 and SW480 cells with miR-497 overexpression or Fra-1 low expression were constructed by lipofection. Target prediction and luciferase reporter assays were performed to investigate whether Fra-1 is one of the targets of miR-497. Western blot and Transwell assays were performed to detect the effects of miR-497 and Fra-1 on CRC cell EMT, migration and invasion.Results: We searched the miRanda, TargetScan, and PicTar databases and found that Fra-1, a key driver of CRC metastasis, is a potential target of miR-497. Quantitative real-time polymerase chain reaction and Western blot analysis verified downregulation of miR-497 and upregulation of Fra-1 in CRC cells. Western blot and Transwell assays showed that overexpression of miR-497 suppresses CRC cell EMT, migration, and invasion. Luciferase gene reporter assay revealed that Fra-1 is a downstream target of miR-497 as miR-497 bound directly to the 3' untranslated region of Fra-1 messenger RNA. An inverse correlation was also found between miR-497 and Fra-1 in HCT116 and SW480 cells. Furthermore, knockdown of Fra-1 recuperated the effects of miR-497 overexpression

  1. Investigation of the cytotoxicity, apoptosis and pharmacokinetics of Raddeanin A.

    Science.gov (United States)

    Gu, Guiying; Qi, Huanhuan; Jiang, Tianyue; Ma, Bo; Fang, Zheng; Xu, Hong; Zhang, Qi

    2017-03-01

    Raddeanin A, one of the triterpenoid saponins extracted from Anemone raddeana rhizome of the Ranunculaceae family, has demonstrated the ability to inhibit the growth of human hepatic and gastric cancer cells. However, the effects of Raddeanin A on human colon cancer cells have not been investigated extensively. The present study aimed to examine the antiproliferative and apoptosis-inducing effects of Raddeanin A on the HCT-116 human colon cancer cell line in vitro , and evaluate the pharmacokinetic and biodistribution properties of Raddeanin A in mice following a single oral administration. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the in vitro cytotoxicity of Raddeanin A against HCT-116 cells. 4',6-Diamidino-2-phenylindole, dihydrochloride staining and flow cytometry were performed to further examine the apoptosis-inducing capability of Raddeanin A. The concentrations of Raddeanin A in the plasma and tissues were analyzed using liquid chromatography-tandem mass spectrometry. Raddeanin A showed a dose-dependent antiproliferative effect towards the HCT-116 cells, with a half maximal inhibitory concentration of ~1.4 µM. Treatment with Raddeanin A resulted in a significant induction of apoptosis, observed as apparent morphological changes of the nuclei, with a total apoptotic ratio of 41.8% at a concentration of 3 µM. Low concentrations of Raddeanin A were detected in the heart, liver, spleen, lung, kidney and plasma of the mice following oral administration, however, the majority of the Raddeanin A was distributed in the intestinal tract, particularly in the colon and caecum. These present study confirmed the growth-inhibitory and apoptosis-inducing effects of Raddeanin A on HCT-116 cells and performed preliminary examinations of its pharmacokinetic properties, which provide a foundation for further investigating the inhibitory mechanism on the colon cancer cells in vivo .

  2. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways. Published by Elsevier Inc.

  3. Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways

    Directory of Open Access Journals (Sweden)

    Chen J

    2014-07-01

    Full Text Available Jiezhong Chen,1,2 Renfu Shao,3 Li Li,4 Zhi Ping Xu,4 Wenyi Gu4 1School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, 2Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, 3GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, 4Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia Abstract: Colon cancer is the third most common cancer and the third largest cause of cancer-related death. Fluorouracil (5-FU is the front-line chemotherapeutic agent for colon cancer. However, its response rate is less than 60%, even in combination with other chemotherapeutic agents. The side effects of 5-FU also limit its application. Nanoparticles have been used to deliver 5-FU, to increase its effectiveness and reduce side effects. Another common approach for colon cancer treatment is targeted therapy against the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway. A recently-invented inhibitor of this pathway, BEZ-235, has been tested in several clinical trials and has shown effectiveness and low side effects. Thus, it is a very promising drug for colon cancer treatment. The combination of these two drugs, especially nanoparticle-packed 5-FU and BEZ-235, has not been studied. In the present study, we demonstrated that nanoparticles of layered double hydroxide (LDH loaded with 5-FU were more effective than a free drug at inhibiting colon cancer cell growth, and that a combination treatment with BEZ-235 further increased the sensitivity of colon cancer cells to the treatment of LDH-packed 5-FU (LDH-5-FU. BEZ-235 alone can decrease colon cancer HCT-116 cell viability to 46% of the control, and the addition of LDH-5-FU produced a greater effect, reducing cell survival to 8% of the control. Our data indicate that the combination therapy of

  4. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner.

    Science.gov (United States)

    Oh, Seon Hee; Kim, Young Soon; Lim, Sung Chul; Hou, Yi Feng; Chang, In Youb; You, Ho Jin

    2008-11-01

    Although capsaicin, a pungent component of red pepper, is known to induce apoptosis in several types of cancer cells, the mechanisms underlying capsaicin-induced cytotoxicity are unclear. Here, we showed that dihydrocapsaicin (DHC), an analog of capsaicin, is a potential inducer of autophagy. DHC was more cytotoxic than capsaicin in HCT116, MCF-7 and WI38 cell lines. Capsaicin and DHC did not affect the sub-G(1) apoptotic peak, but induced G(0)/G(1) arrest in HCT116 and MCF-7 cells. DHC caused the artificial autophagosome marker GFP-LC3 to redistribute and upregulated expression of autophagy-related proteins. Blocking of autophagy by 3-methyladenine (3MA) as well as siRNA Atg5 induced a high level of caspase-3 activation. Although pretreatment with zVAD completely inhibited caspase-3 activation by 3MA, it did not prevent cell death. DHC-induced autophagy was enhanced by zVAD pretreatment, as shown by increased accumulation of LC3-II protein. DHC attenuated basal ROS levels through catalase induction; this effect was enhanced by antioxidants, which increased both LC3-II expression and caspase-3 activation. The catalase inhibitor 3-amino-1,2,4-triazole (3AT) abrogated DHC-induced expression of LC3-II, overexpression of the catalase gene increased expression of LC3-II protein, and knockdown decreased it. Additionally, DHC-induced autophagy was independent of p53 status. Collectively, DHC activates autophagy in a p53-independent manner and that may contribute to cytotoxicity of DHC.

  5. CD133 expression is not selective for tumor initiating or radioresistant cell populations in the CRC line HCT-116

    International Nuclear Information System (INIS)

    Seidel, Claudia; Dietrich, Antje; Wondrak, Marit; Kunz-Schughart, Leoni A.; Grade, Marian; Ried, Thomas

    2009-01-01

    The hypothesis of certain subpopulations of cancer cells with stem-cell like characteristics that might be responsible for treatment resistance and recurrence of disease is still challenging and under quite controversial discussion. In most studies, surrogate cell surface antigens such as the 92-110 kDa transmembrane glycoprotein CD133 (human Prominin-1) were labeled to isolate particular small cancer cell populations for studying their tumorigenic potential. In colorectal carcinomas (CRC) for example, a small CD133 positive (CD133 + ) cell population has recently been described to be enriched for tumor-initiating/cancer stem cells (TIC/CSC) as compared to the CD133 negative (CD133) population. Furthermore, it was documented that the CD133 + subpopulation could exclusively be maintained in culture as spheres under serum-free conditions. Addition of serum resulted in cell differentiation, growth in 2-D and downregulation of CD133 expression. This would imply that established colorectal cancer (CRC) cell lines that have been grown under adherent, serum-supplemented conditions for years should be devoid of CD133 + cells and TIC/CSC, respectively, which seems contradictory to the finding that many CRC lines produce tumors in nude mice models. In order to gain insight into this paradox, we studied the expression of CD133 in numerous established CRC lines under standard culture conditions and chose one particular cell line based on its expression pattern to study the behavior of CD133 + / CD133 - subpopulations

  6. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  7. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    International Nuclear Information System (INIS)

    Li, Hua; Lee, Hwa Jin; Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young; Ryu, Jae-Ha

    2014-01-01

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer

  8. Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Lee, Hwa Jin [Department of Natural Medicine Resources, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711 (Korea, Republic of); Ahn, Yeon Hwa; Kwon, Hye Jin; Jang, Chang-Young; Kim, Woo-Young [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of); Ryu, Jae-Ha, E-mail: ryuha@sookmyung.ac.kr [College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women’s University, 52 Hyochangwon-Gil, Yongsan-Gu, Seoul 140-742 (Korea, Republic of)

    2014-01-03

    Highlights: •Tussilagone (TSL) was purified from plant as an inhibitor of Wnt/β-catenin pathway. •TSL suppressed the β-catenin/T-cell factor transcriptional activity. •The proteasomal degradation of β-catenin was induced by TSL. •TSL suppressed the Wnt/β-catenin target genes, cyclin D1 and c-myc. •TSL inhibit the proliferation of colon cancer cells. -- Abstract: Abnormal activation of the Wnt/β-catenin signaling pathway frequently induces colon cancer progression. In the present study, we identified tussilagone (TSL), a compound isolated from the flower buds of Tussilago farfara, as an inhibitor on β-catenin dependent Wnt pathway. TSL suppressed β-catenin/T-cell factor transcriptional activity and down-regulated β-catenin level both in cytoplasm and nuclei of HEK293 reporter cells when they were stimulated by Wnt3a or activated by an inhibitor of glycogen synthase kinase-3β. Since the mRNA level was not changed by TSL, proteasomal degradation might be responsible for the decreased level of β-catenin. In SW480 and HCT116 colon cancer cell lines, TSL suppressed the β-catenin activity and also decreased the expression of cyclin D1 and c-myc, representative target genes of the Wnt/β-catenin signaling pathway, and consequently inhibited the proliferation of colon cancer cells. Taken together, TSL might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.

  9. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Laura Tiberio

    Full Text Available Angiogenesis plays a crucial role in tumor growth and progression. Low expression of mineralocorticoid receptor (MR in several malignant tumors correlates with disease recurrence and overall survival. Previous studies have shown that MR expression is decreased in colorectal cancer (CRC. Here we hypothesize that decreased MR expression can contribute to angiogenesis and poor patient survival in colorectal malignancies. In a cohort of CRC patients, we analyzed tumor MR expression, its correlation with tumor microvascular density and its impact on survival. Subsequently, we interrogated the role of MR in angiogenesis in an in vitro model, based on the colon cancer cell line HCT116, ingenierized to re-express a physiologically controlled MR. In CRC, decreased MR expression was associated with increased microvascular density and poor patient survival. In pchMR transfected HCT116, aldosterone or natural serum steroids largely inhibited mRNA expression levels of both VEGFA and its receptor 2/KDR. In CRC, MR activation may significantly decrease angiogenesis by directly inhibiting dysregulated VEGFA and hypoxia-induced VEGFA mRNA expression. In addition, MR activation attenuates the expression of the VEGF receptor 2/KDR, possibly dampening the activation of a VEGFA/KDR dependent signaling pathway important for the survival of tumor cells under hypoxic conditions.

  10. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrea del Pilar Sánchez-Camargo

    2016-12-01

    Full Text Available In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116. The processes, carried out under optimal conditions, were: (1 pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent at lab-scale; (2 Single-step supercritical fluid extraction (SFE at pilot scale; (3 Intensified two-step sequential SFE at pilot scale; (4 Integrated PLE plus supercritical antisolvent fractionation (SAF at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight, this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA and carnosol (CS at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide, suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts.

  12. Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway.

    Science.gov (United States)

    Lin, Jinshun; Jin, Xiuli; Bu, Yiwen; Cao, Deliang; Zhang, Nannan; Li, Shangfu; Sun, Qinsheng; Tan, Chunyan; Gao, Chunmei; Jiang, Yuyang

    2012-12-28

    A novel approach to synthesize RITA by practical palladium-catalyzed C-C bond-forming Suzuki reactions at room temperature was developed, which was used for deriving a series of substituted tricyclic α-heteroaryl (furan/thiophene) analogues of RITA under mild conditions. These novel analogues showed notable antiproliferative activity against cancer cell lines with wild-type p53 (i.e., HCT116, A549, MCF-7 and K562), but much less activity in HCT116/p53(-/-) cells. In particular, compound 1f demonstrated promising antiproliferative activity compared to RITA, with IC(50) = 28 nM in MCF-7 vs. 54 nM for RITA, and cancer cell selectivity. Compound 1f markedly activated p53 in HCT116 cells at 100 nM, triggering apoptosis. Importantly, we found that both RITA and compound 1f induced G(0)/G(1) cell cycle arrest by up-regulating miR-34a, which in turn down-regulated the expression of cell cycle-related proteins CDK4 and E2F1. In summary, this study reports an effective synthetic approach for RITA and its analogues, and elucidates a novel antiproliferative mechanism of these compounds.

  13. Cyr61 Expression is associated with prognosis in patients with colorectal cancer

    International Nuclear Information System (INIS)

    Jeong, Dongjun; Soo Lee, Moon; Kim, Chang-Jin; Jun Baek, Moo; Heo, Suhak; Sung Ahn, Tae; Lee, Sookyoung; Park, Soyoung; Kim, Hyungjoo; Park, Doosan; Byung Bae, Sang; Lee, Sung Soo

    2014-01-01

    Cysteine-rich 61 (Cyr61), a member of the CCN protein family, possesses diverse functionality in cellular processes such as adhesion, migration, proliferation, and survival. Cyr61 can also function as an oncogene or a tumour suppressor, depending on the origin of the cancer. Only a few studies have reported Cyr61 expression in colorectal cancer. In this study, we assessed the Cyr61 expression in 251 colorectal cancers with clinical follow up. We examined Cyr61 expression in 6 colorectal cancer cell lines (HT29, Colo205, Lovo, HCT116, SW480, SW620) and 20 sets of paired normal and colorectal cancer tissues by western blot. To validate the association of Cyr61 expression with clinicopathological parameters, we assessed Cyr61 expression using tissue microarray analysis of primary colorectal cancer by immunohistochemical analysis. We verified that all of the cancer cell lines expressed Cyr61; 2 cell lines (HT29 and Colo205) demonstrated Cyr61 expression to a slight extent, while 4 cell lines (Lovo, HCT116, SW480, SW620) demonstrated greater Cyr61 expression than HT29 and Colo205 cell lines. Among the 20 cases of paired normal and tumour tissues, greater Cyr61 expression was observed in 16 (80%) tumour tissues than in normal tissues. Furthermore, 157 out of 251 cases (62.5%) of colorectal cancer examined in this study displayed strong Cyr61 expression. Cyr61 expression was found to be associated with pN (p = 0.018). Moreover, Cyr61 expression was associated with statistically significant cancer-specific mortality (p = 0.029). The duration of survival was significantly lesser in patients with Cyr61 high expression than in patients with Cyr61 low expression (p = 0.001). These results suggest that Cyr61 expression plays several important roles in carcinogenesis and may also be a good prognostic marker for colorectal cancer. Our data confirmed that Cyr61 was expressed in colorectal cancers and the expression was correlated with worse prognosis of colorectal cancers

  14. Inhibition of in vitro growth and arrest in the G0/G1 phase of HCT8 line human colon cancer cells by kaempferide triglycoside from Dianthus caryophyllus.

    Science.gov (United States)

    Martineti, Valentina; Tognarini, Isabella; Azzari, Chiara; Carbonell Sala, Silvia; Clematis, Francesca; Dolci, Marcello; Lanzotti, Virginia; Tonelli, Francesco; Brandi, Maria Luisa; Curir, Paolo

    2010-09-01

    The effects of phytoestrogens have been studied in the hypothalamic-pituitary-gonadal axis and in various non-gonadal targets. Epidemiologic and experimental evidence indicates a protective effect of phytoestrogens also in colorectal cancer. The mechanism through which estrogenic molecules control colorectal cancer tumorigenesis could possibly involve estrogen receptor beta, the predominantly expressed estrogen receptor subtype in colon mucosa.To validate this hypothesis, we therefore used an engineered human colon cancer cell line induced to overexpress estrogen receptor beta, beside its native cell line, expressing very low levels of ERbeta and not expressing ERalpha; as a phytoestrogenic molecule, we used kaempferide triglycoside, a glycosylated flavonol from a Dianthus caryophyllus cultivar. The inhibitory properties of this molecule toward vegetal cell growth have been previously demonstrated: however, no data on its activity on animal cell or information about the mechanism of this activity are available. Kaempferide triglycoside proved to inhibit the proliferation of native and estrogen receptor beta overexpressing colon cancer cells through a mechanism not mediated by ligand binding dependent estrogen receptor activation. It affected HCT8 cell cycle progression by increasing the G(0)/G(1) cell fraction and in estrogen receptor beta overexpressing cells increased two antioxidant enzymes. Interestingly, the biological effects of this kaempferide triglycoside were strengthened by the presence of high levels of estrogen receptor beta.Pleiotropic molecular effects of phytoestrogens may explain their protective activity against colorectal cancer and may represent an interesting area for future investigation with potential clinical applications. Copyright 2010 John Wiley & Sons, Ltd.

  15. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  16. Phage display selection of fully human antibody fragments to inhibit growth-promoting effects of glycine-extended gastrin 17 on human colorectal cancer cells.

    Science.gov (United States)

    Khajeh, Shirin; Tohidkia, Mohammad Reza; Aghanejad, Ayuob; Mehdipour, Tayebeh; Fathi, Farzaneh; Omidi, Yadollah

    2018-06-09

    Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity. ELISA screening and sequence analysis identified 2 scFvs and 4 V L antibody fragments. Kinetic analysis of the antibody fragments by SPR revealed K D values to be in the nanomolar range (87.9-334 nM). The selected anti-G17-Gly antibody fragments were analyzed for growth inhibition and apoptotic assays in a CRC cell line, HCT-116, which is well-characterized for expressing gastrin intermediate species but not amidated gastrin. The antibody fragments exhibited significant inhibition of HCT-116 cells proliferation ranging from 36.5 to 73% of controls. Further, Annexin V/PI staining indicated that apoptosis rates of scFv H8 and V L G8 treated cells were 45.8 and 63%, respectively. Based on these results, we for the first time, demonstrated the isolation of anti-G17-Gly human scFv and V L antibodies with potential therapeutic applications in G17-Gly-responsive tumors.

  17. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    International Nuclear Information System (INIS)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  18. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-01-01

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation

  19. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Changyuan [College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Minle; Tong, Xuemei [Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Hu, Xiaowen; Yang, Xuhan [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Yan, Xiaomei [School of Life Sciences & Biotechnology, Shanghai JiaoTong University, Shanghai 200240 (China); He, Lin, E-mail: helinhelin@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Wan, Chunling, E-mail: clwan@sjtu.edu.cn [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China)

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  20. Relationship between Gene Body DNA Methylation and Intragenic H3K9me3 and H3K36me3 Chromatin Marks

    OpenAIRE

    Hahn, Maria A.; Wu, Xiwei; Li, Arthur X.; Hahn, Torsten; Pfeifer, Gerd P.

    2011-01-01

    To elucidate the relationship between intragenic DNA methylation and chromatin marks, we performed epigenetic profiling of chromosome 19 in human bronchial epithelial cells (HBEC) and in the colorectal cancer cell line HCT116 as well as its counterpart with double knockout of DNMT1 and DNMT3B (HCT116-DKO). Analysis of H3K36me3 profiles indicated that this intragenic mark of active genes is associated with two categories of genes: (i) genes with low CpG density and H3K9me3 in the gene body or ...

  1. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lu-Ying; Deng, Jun; Xiang, Xiao-Jun; Zhang, Ling; Yu, Feng; Chen, Jun; Sun, Zhe; Feng, Miao; Xiong, Jian-Ping, E-mail: jpxiong@medmail.com.cn

    2015-02-06

    Highlights: • miR-320 plays a significant role in chemoresistance. • This role might be attribute to targeting FOXM1. • The Wnt/β-catenin pathway also involves in this chemotherapy sensitivity. - Abstract: miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. In addition, miR-320 could inactive the activity of Wnt/β-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320–FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer.

  2. Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype

    International Nuclear Information System (INIS)

    Lentini, Laura; Amato, Angela; Schillaci, Tiziana; Di Leonardo, Aldo

    2007-01-01

    Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN). CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy), and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT-PCR. We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116). We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. Our results show that centrosome amplification alone is not sufficient

  3. Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype

    Directory of Open Access Journals (Sweden)

    Schillaci Tiziana

    2007-11-01

    Full Text Available Abstract Background Genetic instability is a hallmark of tumours and preneoplastic lesions. The predominant form of genome instability in human cancer is chromosome instability (CIN. CIN is characterized by chromosomal aberrations, gains or losses of whole chromosomes (aneuploidy, and it is often associated with centrosome amplification. Centrosomes control cell division by forming a bipolar mitotic spindle and play an essential role in the maintenance of chromosomal stability. However, whether centrosome amplification could directly cause aneuploidy is not fully established. Also, alterations in genes required for mitotic progression could be involved in CIN. A major candidate is represented by Aurora-A/STK15 that associates with centrosomes and is overexpressed in several types of human tumour. Methods Centrosome amplification were induced by hydroxyurea treatment and visualized by immunofluorescence microscopy. Aurora-A/STK15 ectopic expression was achieved by retroviral infection and puromycin selection in HCT116 tumour cells. Effects of Aurora-A/STK15 depletion on centrosome status and ploidy were determined by Aurora-A/STK15 transcriptional silencing by RNA interference. Changes in the expression levels of some mitotic genes were determined by Real time RT-PCR. Results We investigated whether amplification of centrosomes and overexpression of Aurora-A/STK15 induce CIN using as a model system a colon carcinoma cell line (HCT116. We found that in HCT116 cells, chromosomally stable and near diploid cells harbouring a MIN phenotype, centrosome amplification induced by hydroxyurea treatment is neither maintained nor induces aneuploidy. On the contrary, ectopic overexpression of Aurora-A/STK15 induced supernumerary centrosomes and aneuploidy. Aurora-A/STK15 transcriptional silencing by RNA interference in cells ectopically overexpressing this kinase promptly decreased cell numbers with supernumerary centrosomes and aneuploidy. Conclusion Our

  4. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment.

    Science.gov (United States)

    Banerjee, Aditi; Ahmed, Hafiz; Yang, Peixin; Czinn, Steven J; Blanchard, Thomas G

    2016-07-05

    The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histone-associated-DNA-fragments, and increase cleaved caspase-3 levels. Andrographolide also induced significantly higher expression of endoplasmic reticulum (ER) stress proteins GRP-78 and IRE-1 by 48 h but not PERK or ATF6. Apoptosis signaling molecules BAX, spliced XBP-1 and CHOP were also significantly increased. Moreover, chemical inhibition of ER stress or IRE-1 depletion with siRNA in andrographolide treated cells significantly limited expression of IRE-1 and CHOP as determined by immunofluorescence staining, real time PCR, or immunobloting. This was accompanied by a decreased BAX/Bcl-2 ratio. Andrographolide significantly promotes cancer cell death compared to normal cells. These data demonstrate that andrographolide associated ER stress contributes to apoptosis through the activation of a pro-apoptotic GRP-78/IRE-1/XBP-1/CHOP signaling pathway.

  5. The Effect of Sulfated (1→3-α-l-Fucan from the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Olesia S. Vishchuk

    2013-01-01

    Full Text Available Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3-α-l-fucan with sulfate groups at C2 and C4 of the α-l-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer.

  6. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Science.gov (United States)

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  7. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  8. Rhein induces apoptosis of HCT-116 human colon cancer cells via ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    3) Inhibiting migration and invasion. It was found that rhein inhibited the protein expression of activity of matrix metalloproteinase-2 (MMP-2) and the gene expression of. MMP-9 by modulation of NF-κB activation pathway, and.

  9. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    International Nuclear Information System (INIS)

    Araújo, E.S.S. de; Vasques, L.R.; Stabellini, R.; Krepischi, A.C.V.; Pereira, L.V.

    2014-01-01

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A

  10. Stability of XIST repression in relation to genomic imprinting following global genome demethylation in a human cell line

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, E.S.S. de [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Vasques, L.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Stabellini, R.; Krepischi, A.C.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Pereira, L.V. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-10-17

    DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.

  11. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  12. Allogeneic hematopoietic cell transplantation (allogeneic HCT) for treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL).

    Science.gov (United States)

    Burke, Michael J; Cao, Qing; Trotz, Barb; Weigel, Brenda; Kumar, Ashish; Smith, Angela; Verneris, Michael R

    2009-12-15

    Allogeneic hematopoietic cell transplant (HCT) with best available donor for children with Philadelphia positive (Ph+) acute lymphoblastic leukemia (ALL) has previously been considered standard practice. Since the introduction of imatinib into the treatment of this disease, the role of allogeneic HCT is more uncertain. We investigated the impact of remission status, graft source, and imatinib use on transplant outcomes for 37 children with Ph+ ALL who received an allogeneic HCT at the University of Minnesota between 1990 and 2006. The median age at HCT was 7.47 (range; 1.4-16.4) years. Thirteen patients received imatinib therapy pre- and/or post-HCT (imatinib group) and 24 patients, received either no imatinib (n = 23) or only post-HCT relapse (n = 1) (non-imatinib group). There was no difference in disease-free survival (DFS) or relapse between the imatinib and non-imatinib groups at 3 years (62%/15% vs. 53%/26%; P = 0.99; 0.81, respectively). There was no significant difference in transplant outcomes between matched related donor or unrelated donor (umbilical cord blood or matched unrelated marrow) recipients whereas patients receiving allogeneic HCT in first remission (CR1) had superior DFS and less relapse compared to patients transplanted in >or=CR2 (71%/16% vs. 29%/36%; P = 0.01; P = 0.05). Based on this retrospective analysis at a single institution, the use of imatinib either pre- and/or post-transplant does not appear to significantly impact outcomes for children with Ph+ ALL and allogeneic HCT with the best available donor should be encouraged in CR1.

  13. Cytotoxicity of Gemcitabine-Loaded-Microemulsions in Breast and ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antitumor activity of gemcitabine (GEM), incorporated in microemulsions with varying surfactant-to-oil (S/O) ratio, against MCF-7 breast cancer cells and HCT 116 colon cancer cells. Methods: The microemulsion formulations consisted of Tween 80, Span 20, isopropyl myristate (IPM) and aqueous ...

  14. 1-L-MT, an IDO inhibitor, prevented colitis-associated cancer by inducing CDC20 inhibition-mediated mitotic death of colon cancer cells.

    Science.gov (United States)

    Liu, Xiuting; Zhou, Wei; Zhang, Xin; Ding, Yang; Du, Qianming; Hu, Rong

    2018-04-01

    Indoleamine 2,3-dioxygenase 1 (IDO1), known as IDO, catabolizes tryptophan through kynurenine pathway, whose activity is correlated with impaired clinical outcome of colorectal cancer. Here we showed that 1-L-MT, a canonical IDO inhibitor, suppressed proliferation of human colorectal cancer cells through inducing mitotic death. Our results showed that inhibition of IDO decreased the transcription of CDC20, which resulted in G2/M cycle arrest of HCT-116 and HT-29. Furthermore, 1-L-MT induced mitochondria injuries and caused apoptotic cancer cells. Importantly, 1-L-MT protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and size. What is more, IDO1-/- mice exhibited fewer tumor burdens and reduced proliferation in the neoplastic epithelium, while, 1-L-MT did not exhibit any further protective effects on IDO-/- mice, confirming the critical role of IDO and the protective effect of 1-L-MT-mediated IDO inhibition in CRC. Furthermore, 1-L-MT also alleviated CRC in Rag1-/- mice, demonstrating the modulatory effects of IDO independent of its role in modulating adaptive immunity. Taken together, our findings validated that the anti-proliferation effect of 1-L-MT in vitro and the prevention of CRC in vivo were through IDO-induced cell cycle disaster of colon cancer cells. Our results identified 1-L-MT as a promising candidate for the chemoprevention of CRC. © 2018 UICC.

  15. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja

    2013-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer deaths in Western countries. A significant number of CRC patients undergoing curatively intended surgery subsequently develop recurrence and die from the disease. MicroRNAs (miRNAs) are aberrantly expressed in cancers and appear to have......-3p in a second independent cohort of 43 CRC patients, using single TaqMan® microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified...... as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel...

  16. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.

    Science.gov (United States)

    François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier

    2011-11-04

    Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines.

    Science.gov (United States)

    Campbell, Sharon E; Stone, William L; Lee, Steven; Whaley, Sarah; Yang, Hongsong; Qui, Min; Goforth, Paige; Sherman, Devin; McHaffie, Derek; Krishnan, Koyamangalath

    2006-01-17

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-gamma-tocopherol isoform is found primarily in the US diet, while RRR-alpha-tocopherol is highest in the plasma. The effectiveness of RRR-alpha- and RRR-gamma-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-alpha- or RRR-gamma-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-gamma-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-alpha-tocopherol did not. Further, RRR-gamma-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-gamma-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-gamma-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-gamma-tocopherol without damage to

  18. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    International Nuclear Information System (INIS)

    Campbell, Sharon E; Krishnan, Koyamangalath; Stone, William L; Lee, Steven; Whaley, Sarah; Yang, Hongsong; Qui, Min; Goforth, Paige; Sherman, Devin; McHaffie, Derek

    2006-01-01

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth

  19. Antioxidant Capacity, Cytotoxicity, and Acute Oral Toxicity of Gynura bicolor

    Directory of Open Access Journals (Sweden)

    Wuen Yew Teoh

    2013-01-01

    Full Text Available Gynura bicolor (Compositae which is widely used by the locals as natural remedies in folk medicine has limited scientific studies to ensure its efficacy and nontoxicity. The current study reports the total phenolic content, antioxidant capacity, cytotoxicity, and acute oral toxicity of crude methanol and its fractionated extracts (hexane, ethyl acetate, and water of G. bicolor leaves. Five human colon cancer cell lines (HT-29, HCT-15, SW480, Caco-2, and HCT 116, one human breast adenocarcinoma cell line (MCF7, and one human normal colon cell line (CCD-18Co were used to evaluate the cytotoxicity of G. bicolor. The present findings had clearly demonstrated that ethyl acetate extract of G. bicolor with the highest total phenolic content among the extracts showed the strongest antioxidant activity (DPPH radical scavenging assay and metal chelating assay, possessed cytotoxicity, and induced apoptotic and necrotic cell death, especially towards the HCT 116 and HCT-15 colon cancer cells. The acute oral toxicity study indicated that methanol extract of G. bicolor has negligible level of toxicity when administered orally and has been regarded as safe in experimental rats. The findings of the current study clearly established the chemoprevention potential of G. bicolor and thus provide scientific validation on the therapeutic claims of G. bicolor.

  20. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pan, Li; Zhang, Yuming; Zhao, Wanlu; Zhou, Xia; Wang, Chunxia; Deng, Fan

    2017-07-01

    Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and underlying mechanism of oleandrin on human colon cancer cells. The cytotoxicity and IC50 of five small molecule compounds (oleandrin, neriifolin, strophanthidin, gitoxigenin, and convallatoxin) in human colon cancer cell line SW480 cells and normal human colon cell line NCM460 cells were determined by cell counting and MTT assays, respectively. Apoptosis was determined by staining cells with annexin V-FITC and propidium iodide, followed by flow cytometry. Intracellular Ca 2+ was determined using Fluo-3 AM,glutathione (GSH) levels were measured using a GSH detection kit,and the activity of caspase-3, -9 was measured using a peptide substrate. BAX, pro-caspase-3, -9, cytochrome C and BCL-2 expression were determined by Western blotting. Oleandrin significantly decreased cell viabilities in SW480, HCT116 and RKO cells. The IC50 for SW480 cells was 0.02 µM, whereas for NCM460 cells 0.56 µM. More interestingly, the results of flow cytometry showed that oleandrin potently induced apoptosis in SW480 and RKO cells. Oleandrin downregulated protein expression of pro-caspase-3, -9, but enhanced caspase-3, -9 activities. These effects were accompanied by upregulation of protein expression of cytochrome C and BAX, and downregulation of BCL-2 protein expression in a concentration-dependent manner. Furthermore, oleandrin increased intracellular Ca 2+ concentration, but decreased GSH concentration in the cells. The present results suggest that oleandrin induces apoptosis in human colorectal cancer cells via the mitochondrial pathway. Our findings provide new insight into the mechanism of anti-cancer property of oleandrin.

  1. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  2. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  3. Hematopoietic Cell Transplantation for Systemic Mature T-Cell Non-Hodgkin Lymphoma

    Science.gov (United States)

    Smith, Sonali M.; Burns, Linda J.; van Besien, Koen; LeRademacher, Jennifer; He, Wensheng; Fenske, Timothy S.; Suzuki, Ritsuro; Hsu, Jack W.; Schouten, Harry C.; Hale, Gregory A.; Holmberg, Leona A.; Sureda, Anna; Freytes, Cesar O.; Maziarz, Richard Thomas; Inwards, David J.; Gale, Robert Peter; Gross, Thomas G.; Cairo, Mitchell S.; Costa, Luciano J.; Lazarus, Hillard M.; Wiernik, Peter H.; Maharaj, Dipnarine; Laport, Ginna G.; Montoto, Silvia; Hari, Parameswaran N.

    2013-01-01

    Purpose To analyze outcomes of hematopoietic cell transplantation (HCT) in T-cell non-Hodgkin lymphoma. Patients and Methods Outcomes of 241 patients (112 anaplastic large-cell lymphoma, 102 peripheral T-cell lymphoma not otherwise specified, 27 angioimmunoblastic T-cell lymphoma) undergoing autologous HCT (autoHCT; n = 115; median age, 43 years) or allogeneic HCT (alloHCT; n = 126; median age, 38 years) were analyzed. Primary outcomes were nonrelapse mortality (NRM), relapse/progression, progression-free survival (PFS), and overall survival (OS). Patient, disease, and HCT-related variables were analyzed in multivariate Cox proportional hazard models to determine association with outcomes. Results AutoHCT recipients were more likely in first complete remission (CR1; 35% v 14%; P = .001) and with chemotherapy-sensitive disease (86% v 60%; P < .001), anaplastic large-cell histology (53% v 40%; P = .04), and two or fewer lines of prior therapy (65% v 44%; P < .001) compared with alloHCT recipients. Three-year PFS and OS of autoHCT recipients beyond CR1 were 42% and 53%, respectively. Among alloHCT recipients who received transplantations beyond CR1, 31% remained progression-free at 3 years, despite being more heavily pretreated and with more refractory disease. NRM was 3.5-fold higher (95% CI, 1.80 to 6.99; P < .001) for alloHCT. In multivariate analysis, chemotherapy sensitivity (hazard ratio [HR], 1.8; 95% CI, 1.16 to 2.87) and two or fewer lines of pretransplantation therapy (HR, 5.02; 95% CI, 2.15 to 11.72) were prognostic of survival. Conclusion These data describe the roles of autoHCT and alloHCT in T-cell non-Hodgkin lymphoma and suggest greater effectiveness earlier in the disease course, and limited utility in multiply relapsed disease. Notably, autoHCT at relapse may be a potential option for select patients, particularly those with anaplastic large-cell lymphoma histology. PMID:23897963

  4. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition

    International Nuclear Information System (INIS)

    Hackl, Christina; Stoeltzing, Oliver; Lang, Sven A; Moser, Christian; Mori, Akira; Fichtner-Feigl, Stefan; Hellerbrand, Claus; Dietmeier, Wolfgang; Schlitt, Hans J; Geissler, Edward K

    2010-01-01

    Activating transcription factor-3 (ATF3) is involved in the complex process of cellular stress response. However, its exact role in cancer is discussed controversially because both tumor suppressive and oncogenic effects have been described. Here we followed-up on our previous observation that inhibition of Hsp90 may increase ATF3 expression and sought to determine the role of ATF3 in colon cancer. Regulation of ATF3 was determined in cancer cells using signaling inhibitors and a heat-shock protein-90 (Hsp90) antagonist. Human HCT116 cancer cells were stably transfected with an ATF3-shRNA or a luciferase-shRNA expression plasmid and alterations in cell motility were assessed in migration assays. The impact of ATF3 down-regulation on cancer growth and metastasis were investigated in a subcutaneous tumor model, a model of hepatic tumor growth and in a model of peritoneal carcinomatosis. Human colon cancer tissues were analyzed for ATF3 expression. The results show that therapeutic Hsp90 inhibition substantially up-regulates the expression of ATF3 in various cancer cells, including colon, gastric and pancreatic cancer. This effect was evident both in vitro and in vivo. RNAi mediated knock-down of ATF3 in HCT116 colon cancer cells significantly increased cancer cell migration in vitro. Moreover, in xenogenic mouse models, ATF3 knock-down promoted subcutaneous tumor growth and hepatic metastasis, as well as peritoneal carcinomatosis. Importantly, ATF3 expression was lower in human colon cancer specimens, as compared to corresponding normal surrounding tissues, suggesting that ATF3 may represent a down-regulated tumor suppressor in colon cancer. In conclusion, ATF3 down-regulation in colon cancer promotes tumor growth and metastasis. Considering that blocking Hsp90 induces ATF3 expression, Hsp90 inhibition may represent a valid strategy to treat metastatic colon cancer by up-regulating this anti-metastatic transcription factor

  5. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  6. Nexrutine Inhibits Cancer Cell Growth as a Consequence of Mitochondrial Damage and Mitophagy

    Directory of Open Access Journals (Sweden)

    Xiang Wu

    2015-05-01

    Full Text Available Background/Aims: Nexrutine is an herbal extract of Phellodendron amurense and has been used as nutrient supplement in China as well as America. Potential protection effect of Nexrutine has been reported. Methods: To investigate the mechanism of Nexrutine, we used the HeLa, U2OS and HCT116 as a model. Based on the acidification of cell culture media, we examined the lactate, mitochondria damage as well as mitophagy status by corresponding assay. Results: Our data suggest that Nexrutine alters the cellular glucose metabolism to promote lactate production. This effect is caused by mitochondrial damage, not an alteration to lactate dehydrogenase activity. As a result of the mitochondrial damage, cell proliferation was inhibited and was associated with an elevation in p21/p27 proteins, which are both important cell cycle inhibitors. As another consequence of the mitochondrial damage, mitophagy was highly activated in Nexrutine-treated cells in a dose-dependent manner. When the autophagy pathway was blocked by siRNAs against BECN1 or ATG7, the growth inhibition caused by Nexrutine was reversed. Conclusion: Our study revealed that autophagy plays an important role in the inhibition of cancer cell proliferation by Nexrutine.

  7. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tripti Tamhane

    2015-12-01

    Full Text Available The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015 [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

  8. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    International Nuclear Information System (INIS)

    Sugimasa, Hironobu; Taniue, Kenzui; Kurimoto, Akiko; Takeda, Yasuko; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells

  9. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugimasa, Hironobu; Taniue, Kenzui [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Kurimoto, Akiko [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Oncology Research Laboratories, Daiichi Sankyo Co., Ltd, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, 140-8710 (Japan); Takeda, Yasuko; Kawasaki, Yoshihiro [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032 (Japan)

    2015-03-27

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a multi-functional protein involved in transcription, mRNA splicing, mRNA stabilization and translation. Although hnRNP K has been suggested to play a role in the development of many cancers, its molecular function in colorectal cancer has remained elusive. Here we show that hnRNP K plays an important role in the mitotic process in HCT116 colon cancer cells. Furthermore, we demonstrate that hnRNP K directly transactivates the NUF2 gene, the product of which is a component of the NDC80 kinetochore complex and which is known to be critical for a stable spindle microtubule-kinetochore attachment. In addition, knockdown of both hnRNP K and NUF2 caused failure in metaphase chromosome alignment and drastic decrease in the growth of colon cancer cells. These results suggest that the hnRNP K-NUF2 axis is important for the mitotic process and proliferation of colon cancer cells and that this axis could be a target for the therapy of colon cancer. - Highlights: • hnRNP K is required for the tumorigenicity of colon cancer cells. • hnRNP K binds to the promoter region of NUF2 and activates its transcription. • NUF2 expression is correlated with hnRNP K expression in colorectal cancer tissue. • hnRNP K and NUF2 are required for metaphase chromosome alignment. • The hnRNP K-NUF2 axis is important for the proliferation of colon cancer cells.

  10. Microneedle Platforms for Cell Analysis

    KAUST Repository

    Kavaldzhiev, Mincho

    2017-11-01

    Micro-needle platforms are the core components of many recent drug delivery and gene-editing techniques, which allow for intracellular access, controlled cell membrane stress or mechanical trapping of the nucleus. This dissertation work is devoted to the development of micro-needle platforms that offer customized fabrication and new capabilities for enhanced cell analyses. The highest degree of geometrical flexibility is achieved with 3D printed micro-needles, which enable optimizing the topographical stress environment for cells and cell populations of any size. A fabrication process for 3D-printed micro-needles has been developed as well as a metal coating technique based on standard sputter deposition. This extends the functionalities of the platforms by electrical as well as magnetic features. The micro-needles have been tested on human colon cancer cells (HCT116), showing a high degree of biocompatibility of the platform. Moreover, the capabilities of the 3D-printed micro-needles have been explored for drug delivery via the well-established electroporation technique, by coating the micro-needles with gold. Antibodies and fluorescent dyes have been delivered to HCT116 cells and human embryonic kidney cells with a very high transfection rate up to 90%. In addition, the 3D-printed electroporation platform enables delivery of molecules to suspended cells or adherent cells, with or without electroporation buffer solution, and at ultra-low voltages of 2V. In order to provide a micro-needle platform that exploits existing methods for mass fabrication a custom designed template-based process has been developed. It has been used for the production of gold, iron, nickel and poly-pyrrole micro-needles on silicon and glass substrates. A novel delivery method is introduced that activates the micro-needles by electromagnetic induction, which enables to wirelessly gain intracellular access. The method has been successfully tested on HCT116 cells in culture, where a time

  11. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.

    Science.gov (United States)

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-09-27

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.

  12. Acetyl-CoA Carboxylase-α Inhibitor TOFA Induces Human Cancer Cell Apoptosis

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-fang; Cao, Deliang

    2009-01-01

    Acetyl-CoA carboxylase-α (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC50 at approximately 5.0, 5.0, and 4.5 μg/ml, respectively. TOFA at 1.0–20.0 μg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 μM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis. PMID:19450551

  13. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis.

    Science.gov (United States)

    Wang, Chun; Xu, Canxin; Sun, Mingwei; Luo, Dixian; Liao, Duan-Fang; Cao, Deliang

    2009-07-31

    Acetyl-CoA carboxylase-alpha (ACCA) is a rate-limiting enzyme in long chain fatty acid synthesis, playing a critical role in cellular energy storage and lipid synthesis. ACCA is upregulated in multiple types of human cancers and small interfering RNA-mediated ACCA silencing in human breast and prostate cancer cells results in oxidative stress and apoptosis. This study reports for the first time that TOFA (5-tetradecyloxy-2-furoic acid), an allosteric inhibitor of ACCA, is cytotoxic to lung cancer cells NCI-H460 and colon carcinoma cells HCT-8 and HCT-15, with an IC(50) at approximately 5.0, 5.0, and 4.5 microg/ml, respectively. TOFA at 1.0-20.0 microg/ml effectively blocked fatty acid synthesis and induced cell death in a dose-dependent manner. The cell death was characterized with PARP cleavage, DNA fragmentation, and annexin-V staining, all of which are the features of the apoptosis. Supplementing simultaneously the cells with palmitic acids (100 microM), the end-products of the fatty acid synthesis pathway, prevented the apoptosis induced by TOFA. Taken together, these data suggest that TOFA is a potent cytotoxic agent to lung and colon cancer cells, inducing apoptosis through disturbing their fatty acid synthesis.

  14. Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Nikodinovic-Runic, Jasmina; Mojic, Marija; Kang, Yijin; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Vasiljevic, Branka; Stamenkovic, Vojislav R.; Senerovic, Lidija

    2014-01-01

    Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 mu g ml(-1). Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changed the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.

  15. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

    Science.gov (United States)

    Khurshed, Mohammed; Aarnoudse, Niels; Hulsbos, Renske; Hira, Vashendriya V V; van Laarhoven, Hanneke W M; Wilmink, Johanna W; Molenaar, Remco J; van Noorden, Cornelis J F

    2018-06-07

    Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1 MUT ) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely-used anticancer agent cisplatin in IDH1 MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1 MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1 MUT cancer cells, as compared with IDH1 wild-type ( IDH1 WT ) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1 MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1 MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1 MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutated cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

  16. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    2015-01-01

    Full Text Available Among important components of American ginseng, protopanaxadiol (PPD showed more active anticancer potential than other triterpenoid saponins. In this study, we determined the in vivo effects of PPD in a mouse cancer model first. Then, using human colorectal cancer cell lines, we observed significant cancer cell growth inhibition by promoting G1 cell cycle redistribution and apoptosis. Subsequently, we characterized the downstream genes targeted by PPD in HCT-116 cancer cells. Using Affymetrix high density GeneChips, we obtained the gene expression profile of the cells. Microarray data indicated that the expression levels of 76 genes were changed over two-fold after PPD, of which 52 were upregulated while the remaining 24 were downregulated. Ingenuity pathway analysis of top functions affected was carried out. Data suggested that by regulating the interactions between p53 and DR4/DR5, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL pathway played a key role in the action of PPD, a promising colon cancer inhibitory compound.

  17. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol.

    Science.gov (United States)

    Zhang, Zhiyu; Li, Zejuan; Wu, Xiaohui; Zhang, Chun-Feng; Calway, Tyler; He, Tong-Chuan; Du, Wei; Chen, Jianjun; Wang, Chong-Zhi; Yuan, Chun-Su

    2015-01-01

    Among important components of American ginseng, protopanaxadiol (PPD) showed more active anticancer potential than other triterpenoid saponins. In this study, we determined the in vivo effects of PPD in a mouse cancer model first. Then, using human colorectal cancer cell lines, we observed significant cancer cell growth inhibition by promoting G1 cell cycle redistribution and apoptosis. Subsequently, we characterized the downstream genes targeted by PPD in HCT-116 cancer cells. Using Affymetrix high density GeneChips, we obtained the gene expression profile of the cells. Microarray data indicated that the expression levels of 76 genes were changed over two-fold after PPD, of which 52 were upregulated while the remaining 24 were downregulated. Ingenuity pathway analysis of top functions affected was carried out. Data suggested that by regulating the interactions between p53 and DR4/DR5, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway played a key role in the action of PPD, a promising colon cancer inhibitory compound. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  18. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer

    Directory of Open Access Journals (Sweden)

    Campos da Paz M

    2012-10-01

    Full Text Available Mariana Campos da Paz,1 Maria de Fátima M Almeida Santos,1 Camila MB Santos,2 Sebastião W da Silva,2 Lincoln Bernardo de Souza,3 Emília CD Lima,3 Renata C Silva,1 Carolina M Lucci,1 Paulo César Morais,2 Ricardo B Azevedo,1 Zulmira GM Lacava11Instituto de Ciências Biológicas; 2Instituto de Física, Universidade de Brasília, Brasília, DF, Brazil; 3Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, BrazilAbstract: Nanosized maghemite particles were synthesized, precoated (with dimercaptosuccinic acid and surface-functionalized with anticarcinoembryonic antigen (anti-CEA and successfully used to target cell lines expressing the CEA, characteristic of colorectal cancer (CRC cells. The as-developed nanosized material device, consisting of surface decorated maghemite nanoparticles suspended as a biocompatible magnetic fluid (MF sample, labeled MF-anti-CEA, was characterized and tested against two cell lines: a high-CEA expressing cell line (LS174T and a low-CEA expressing cell line (HCT116. Whereas X-ray diffraction was used to assess the average core size of the as-synthesized maghemite particles (average 8.3 nm in diameter, dynamic light scattering and electrophoretic mobility measurements were used to obtain the average hydrodynamic diameter (550 nm and the zeta-potential (−38 mV of the as-prepared and maghemite-based nanosized device, respectively. Additionally, surface-enhanced Raman spectroscopy (SERS was used to track the surface decoration of the nanosized maghemite particles from the very first precoating up to the attachment of the anti-CEA moiety. The Raman peak at 1655 cm−1, absent in the free anti-CEA spectrum, is the signature of the anti-CEA binding onto the precoated magnetic nanoparticles. Whereas MTT assay was used to confirm the low cell toxicity of the MF-anti-CEA device, ELISA and Prussian blue iron staining tests performed with both cell lines (LS174T and HCT116 confirm that the as-prepared MF

  19. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    Science.gov (United States)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  20. The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells.

    Science.gov (United States)

    Jumpertz, Sandra; Hennes, Thomas; Asare, Yaw; Vervoorts, Jörg; Bernhagen, Jürgen; Schütz, Anke K

    2014-09-01

    COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood. Wnt/β-catenin signaling is aberrant in most CRC cells, resulting in increased levels of oncogenic β-catenin and thus tumor progression. Under physiological conditions, β-catenin levels are tightly regulated by continuous proteasomal degradation. We recently showed that knockdown of CSN5 in model and CRC cells results in decreased (phospho)-β-catenin levels. Reduced β-catenin levels were associated with an attenuated proliferation rate of different CRC cell types after CSN5 knockdown. The canonical Wnt pathway involves degradation of β-catenin by a β-TrCP1-containing E3 ligase, but is mostly non-functional in CRC cells. We thus hypothesized that alternative β-catenin degradation mediated by SIAH-1 (seven in absentia homolog-1), is responsible for the effect of CSN5 on β-catenin signaling in CRC cells. We found that SIAH-1 plays an essential role in β-catenin degradation in HCT116 CRC cells and that CSN5 affects β-catenin target gene expression in these cells. Of note, CSN5 affected SIAH-1 mRNA and SIAH-1 protein levels. Moreover, β-catenin and SIAH-1 form protein complexes with CSN5 in HCT116 cells. Lastly, we demonstrate that CSN5 promotes SIAH-1 degradation in HCT116 and SW480 cells and that this is associated with its deNEDDylase activity. In conclusion, we have identified a CSN5/β-catenin/SIAH-1 interaction network that might control β-catenin degradation in CRC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity.

    Science.gov (United States)

    Jin, Zhe-Zhu; Wang, Wei; Fang, Di-Long; Jin, Yong-Jun

    2016-09-30

    We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Regiospecific Synthesis of Ring A Fused Withaferin A Isoxazoline Analogues: Induction of Premature Senescence by W-2b in Proliferating Cancer Cells.

    Science.gov (United States)

    Rasool, Faheem; Nayak, Debasis; Katoch, Archana; Faheem, Mir Mohd; Yousuf, Syed Khalid; Hussain, Nazar; Belawal, Chetan; Satti, N K; Goswami, Anindya; Mukherjee, Debaraj

    2017-10-23

    Induction of premature senescence represents a novel functional strategy to curb the uncontrolled proliferation of malignant cancer cells. This study unveils the regiospecific synthesis of novel isoxazoline derivatives condensed to ring A of medicinal plant product Withaferin-A. Intriguingly, the cis fused products with β-oriented hydrogen exhibited excellent cytotoxic activities against proliferating human breast cancer MCF7 and colorectal cancer HCT-116 cells. The most potent derivative W-2b triggered premature senescence along with increase in senescence-associated β-galactosidase activity, G2/M cell cycle arrest, and induction of senescence-specific marker p21 Waf1/Cip1 at its sub-toxic concentration. W-2b conferred a robust increase in phosphorylation of mammalian checkpoint kinase-2 (Chk2) in cancer cells in a dose-dependent manner. Silencing of endogenous Chk2 by siRNA divulged that the amplification of p21 expression and senescence by W-2b was Chk2-dependent. Chk2 activation (either by ectopic overexpression or through treatment with W-2b) suppressed NM23-H1 signaling axis involved in cancer cell proliferation. Finally, W-2b showed excellent in vivo efficacy with 83.8% inhibition of tumor growth at a dose of 25 mg/kg, b.w. in mouse mammary carcinoma model. Our study claims that W-2b could be a potential candidate to limit aberrant cellular proliferation rendering promising improvement in the treatment regime in cancer patients.

  3. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells.

    Science.gov (United States)

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)-p53-p21(Cip1/WAF1) pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Sherman Devin

    2006-01-01

    Full Text Available Abstract Background Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. Methods The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29 and primary colon cells (CCD-112CoN, nontransformed normal phenotype was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Results Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. Conclusion This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR

  5. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  6. A Mechanism for the Temporal Potentiation of Genipin to the Cytotoxicity of Cisplatin in Colon Cancer Cells.

    Science.gov (United States)

    Wang, Ruihua; MoYung, K C; Zhao, Y J; Poon, Karen

    2016-01-01

    To investigate the potentiation effect of Genipin to Cisplatin induced cell senescence in HCT-116 colon cancer cells in vitro. Cell viability was estimated by Propidium iodide and Hoechst 3342, reactive oxygen species (ROS) with DHE, mitochondrial membrane potential (MMP) with JC-1 MMP assay Kit and electron current production with microbial fuel cells (MFC). Genipin inhibited the UCP2 mediated anti-oxidative proton leak significantly promoted the Cisplatin induced ROS and subsequent cell death, which was similar to that of UCP2-siRNA. Cells treated with Cisplatin alone or combined with Genipin, ROS negatively, while MMP positively correlated with cell viability. Cisplatin induced ROS was significantly decreased by detouring electrons to MFC, or increased by Genipin combined treatment. Compensatory effects of UCP2 up-regulation with time against Genipin treatment were suggested. Shorter the Genipin treatment before Cisplatin better promoted the Cisplatin induced ROS and subsequent cell death. The interaction of leaked electron with Cisplatin was important during ROS generation. Inhibition of UCP2-mediated proton leak with Genipin potentiated the cytotoxicity of Cisplatin. Owing to the compensatory effects against Genipin, shorter Genipin treatment before Cisplatin was recommended in order to achieve better potentiation effect.

  7. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Xing Fan

    2018-04-01

    Full Text Available Background/Aims: Induction of oxidative stress and reactive oxygen species (ROS mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Method: Superoxide production with MB exposure in colorectal cancer (CRC cells was measured using lucigenin chemiluminescence and real-time PCR. MB’s inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB’s effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB’s effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS with gas chromatography-mass spectrometry (GC-MS was performed to determine MB’s effect on total metabolite variation in CRC cells. Results: We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05 after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH, suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Conclusion: Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis.

  8. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer.

    Science.gov (United States)

    Fan, Xing; Rao, Jun; Zhang, Ziwei; Li, Dengfeng; Cui, Wenhao; Zhang, Jun; Wang, Hua; Tou, Fangfang; Zheng, Zhi; Shen, Qiang

    2018-01-01

    Induction of oxidative stress and reactive oxygen species (ROS) mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB) is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Superoxide production with MB exposure in colorectal cancer (CRC) cells was measured using lucigenin chemiluminescence and real-time PCR. MB's inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB's effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB's effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS) with gas chromatography-mass spectrometry (GC-MS) was performed to determine MB's effect on total metabolite variation in CRC cells. We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05) after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH), suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. PTTG1 attenuates drug-induced cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yunguang Tong

    Full Text Available As PTTG1 (pituitary tumor transforming gene abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1(-/- exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1(-/- senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001. p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1(-/- cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1(-/- cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1(-/- HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1(-/- tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes.

  10. Antiproliferative Effects of Tetrabuthylammonium Chloride Ionic Liquid on HCT 8 Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Gabi Dumitrescu

    2017-05-01

    Full Text Available The ionic liquids have attracted a great of attention in the scientific community due to their potential pharmaceutical such as antimicrobial. In this paper, the main objective was the assessment of the cytotoxic effect of tetrabutylammonium chloride against HCT 8 human colon carcinoma cell line. The cells were cultured in 75 cm2 culture flasks  using RPMI medium supplemented with 10% inactivated fetal bovine serum (FBS, penicillin (100 IU/mL and streptomycin (100 μg/mL and maintained at 37 °C and 5% CO2. Before achieving viability test, the cells were harvested using trypsin solution (0.25%. Then, the cells were seeded in 24 – well plates at a density of 5 x 105 cells/mL in 100 µL medium/well in order to reach confluence. After 24 h, the medium was replaced with fresh medium containing different concentrations of ionic liquid, respectively, 0.085, 0.17, 0.34, 0.68 and 1.36 mg /mL. Control group contained cells without treatment. Cell proliferation kinetics have been studied at 24 and 48 h after IL treatment, following trypsinization and counting total cells per plate by using a Trypan blue dye and a hemocytometer. Data obtained from the growth kinetics assay shows that the tetrabutylammonium chloride (TBAC had an inhibitory effect on the growth of cells in a concentration dependent manner. The maximum inhibitory effect on HCT 8 cells it was obtained at 1.36 mg TBAC/mL.

  11. Synthesis and biological assessment of novel acylhydrazone derivatives of 2-methyl-1,4-naphthoquinone

    Directory of Open Access Journals (Sweden)

    Kamal Bouhadir

    2017-10-01

    Full Text Available Naphthoquinones are medicinally important molecules with a diverse array of biological properties such as antimicrobial, antifungal, antiviral, anti-inflammatory, anti-artherosclerotic and anticarcinogenic activities. In this study, we report the simple and direct preparation of a new group of novel menadione-hydrazone conjugates by reaction of 2-methyl-1,4-naphthoquinones with several aliphatic, aromatic and nucleobase hydrazides. The menadione-hydrazone conjugates were produced in excellent yields and characterized by IR, NMR and HRMS. The menadione derivatives were tested for their anticancer effects against human colon cancer HCT116 and human breast cancer MCF-7 cell lines. Interestingly, the molecules displayed disparate activities against both cell lines; the menadione hydrazones derived from the lipophilic myristic hydrazide and stearic hydrazide exhibited the most potent activity against HCT116 cell lines with IC50 of 89 and 64 μM. The most effective compounds against MCF-7 cells were the lauric hydrazide and benzoic hydrazide-derived menadione hydrazones with IC50 of 56 µM.

  12. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene-derived aminophosphonates.

    Science.gov (United States)

    Lewkowski, Jarosław; Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Kontek, Renata; Gajek, Gabriela

    2016-01-01

    A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM).

  13. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

    Directory of Open Access Journals (Sweden)

    Jarosław Lewkowski

    2016-06-01

    Full Text Available A large series of variously substituted amino(pyren-1-ylmethylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-ylmethylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-ylmethylphosphonic acid displayed strong fluorescence (ΦF = 0.68 in phosphate-buffered saline (PBS. The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenylamino(pyren-1-ylmethylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM, simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM.

  14. Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2015-12-01

    Full Text Available A well characterized strain, Streptomyces pluripotens MUSC 137 was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The biological activities of this particular strain of Streptomyces were then explored. For experimentation, the extract of fermentation was prepared by using solvent extraction method. The antioxidant activity was examined by using DPPH assay. The cytotoxicity activity of extract was assessed against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480 & HT-29, breast cancer cell (MCF-7, lung cancer cell (A549, prostate cancer cell (DU145 and cervical cancer cell (Ca Ski. The results showed MUSC 137 extract possessed significant antioxidant activity and cytotoxic effect against some of the tested cancer cell lines. Lowest IC50 was recorded in MCF-7 cells (61.33 ± 17.10 µg/mL, followed by HCT-116 and A549. Subsequently, the extract was subjected to chemical analysis using GC-MS, which led to the identification of chemical constituents present in the extract of MUSC 137. The analysis resulted in the identification of chemical constituents including deferoxamine and pyrrolizidines related-compounds which may responsible for antioxidant and cytotoxic activities observed. The result of the present investigation is the first report on the potential antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137.

  15. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Joong-Gook Kim

    Full Text Available Exposure of cells to ionizing radiation (IR induces, not only, activation of multiple signaling pathways that play critical roles in cell fate determination, but also alteration of molecular pathways involved in cell death or survival. Recently, DNA methylation has been established as a critical epigenetic process involved in the regulation of gene expression in cancer cells, suggesting that DNA methylation inhibition may be an effective cancer treatment strategy. Because alterations of gene expression by DNA methylation have been considered to influence radioresponsiveness, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC, on radiosensitivity. In addition, we investigated the underlying cellular mechanisms of combination treatments of ionizing irradiation (IR and 5-aza-dC in human colon cancer cells. Colon cancer cell lines were initially tested for radiation sensitivity by IR in vitro and were treated with two different doses of 5-aza-dC. Survival of these cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and clonogenic assays. The effects of 5-aza-dC along with irradiation on cell growth, cell cycle distribution, apoptosis, and apoptosis-related gene expression were examined. Combination irradiation treatment with 5-aza-dC significantly decreased growth activity compared with irradiation treatment alone or with 5-aza-dC treatment alone. The percentage of HCT116 cells in the sub-G1 phase and their apoptotic rate was increased when cells were treated with irradiation in combination with 5-aza-dC compared with either treatment alone. These observations were strongly supported by increased caspase activity, increased comet tails using comet assays, and increased protein levels of apoptosis-associated molecules (caspase 3/9, cleaved PARP. Our data demonstrated that 5-aza-dC enhanced radiosensitivity in colon cancer cells, and the combination effects of 5

  16. Cell surface response of chemically transformed, malignant mouse embryonal fibroblasts and human colon cancer cells to the maturation-promoting agent, N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Marks, M.E.

    1985-01-01

    The lactoperoxidase/ 125 I radioiodination procedure was used to probe the cell surface of normal, nontransformed AKR-2B mouse embryo fibroblasts and malignant, permanently methylcholanthrene-transformed AKR-2B (AKR-MCA) cells to establish the relationship between cell surface changes and transformation/differentiation in this call system. AKR-MCA cells displayed surface alterations secondary to N,N-dimethylformamide (DFM)-promoted differentiation. Growth of AKR-MCA cells in DMF virtually eliminated the 85,000 and 63,000 molecular weight surface proteins susceptible to radioiodination and increased surface material of ∼200,000 molecular weight. Thus, surface profiles of DFM-treated AKR-MCA cells were essentially identical to those of nontransformed AKR-2B cells. Experimentation was extended to a cultured human colon cancer cell line (HCT MOSER). HCT MOSER cells exposed to DMF manifested marked, reversible morphological and surface changes which occurred as a function of time of growth in DMF and DMF concentration. Interestingly, material reactive with anti-fibronectin was found on the surfaces and in the culture medium of DFM-treated HCT MOSER cells

  17. Bio-Catalytic Structural Transformation of Anti-cancer Steroid, Drostanolone Enanthate with Cephalosporium aphidicola and Fusarium lini, and Cytotoxic Potential Evaluation of Its Metabolites against Certain Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    M. Iqbal Choudhary

    2017-12-01

    Full Text Available In search of selective and effective anti-cancer agents, eight metabolites of anti-cancer steroid, drostanolone enanthate (1, were synthesized via microbial biotransformation. Enzymes such as reductase, oxidase, dehydrogenase, and hydrolase from Cephalosporium aphidicola, and Fusarium lini were likely involved in the biotransformation of 1 into new metabolites at pH 7.0 and 26°C, yielding five new metabolites, 2α-methyl-3α,14α,17β-trihydroxy-5α-androstane (2, 2α-methyl-7α-hydroxy-5α-androstan-3,17-dione (3, 2-methylandrosta-11α-hydroxy-1, 4-diene-3,17-dione (6, 2-methylandrosta-14α-hydroxy-1,4-diene-3,17-dione (7, and 2-methyl-5α-androsta-7α-hydroxy-1-ene-3,17-dione (8, along with three known metabolites, 2α-methyl-3α,17β-dihydroxy-5α-androstane (4, 2-methylandrosta-1, 4-diene-3,17-dione (5, and 2α-methyl-5α-androsta-17β-hydroxy-3-one (9, on the basis of NMR, and HREI-MS data, and single-crystal X-ray diffraction techniques. Interestingly, C. aphidicola and F. lini were able to catalyze hydroxylation only at alpha positions of 1. Compounds 1–9 showed a varying degree of cytotoxicity against HeLa (human cervical carcinoma, PC3 (human prostate carcinoma, H460 (human lung cancer, and HCT116 (human colon cancer cancer cell lines. Interestingly, metabolites 4 (IC50 = 49.5 ± 2.2 μM, 5 (IC50 = 39.8 ± 1.5 μM, 6 (IC50 = 40.7 ± 0.9 μM, 7 (IC50 = 43.9 ± 2.4 μM, 8 (IC50 = 19.6 ± 1.4 μM, and 9 (IC50 = 25.1 ± 1.6 μM were found to be more active against HeLa cancer cell line than the substrate 1 (IC50 = 54.7 ± 1.6 μM. Similarly, metabolites 2 (IC50 = 84.6 ± 6.4 μM, 3 (IC50 = 68.1 ± 1.2 μM, 4 (IC50 = 60.4 ± 0.9 μM, 5 (IC50 = 84.0 ± 3.1 μM, 6 (IC50 = 58.4 ± 1.6 μM, 7 (IC50 = 59.1 ± 2.6 μM, 8 (IC50 = 51.8 ± 3.4 μM, and 9 (IC50 = 57.8 ± 3.2 μM were identified as more active against PC-3 cancer cell line than the substrate 1 (IC50 = 96.2 ± 3.0 μM. Metabolite 9 (IC50 = 2.8 ± 0.2 μM also showed potent anticancer

  18. MicroRNA-96 Promotes Tumor Invasion in Colorectal Cancer via RECK.

    Science.gov (United States)

    Iseki, Yasuhito; Shibutani, Masatsune; Maeda, Kiyoshi; Nagahara, Hisashi; Fukuoka, Tatsunari; Matsutani, Shinji; Hirakawa, Kosei; Ohira, Masaichi

    2018-04-01

    miR-96 is reported to inhibit reversion cysteine-rich Kazal motif (RECK), which is associated with tumor invasion, in solid cancer types (e.g. breast cancer, non-small cell lung cancer, esophageal cancer). The purpose of this study is to clarify whether miR-96 is similarly associated with tumor invasion in colorectal cancer. We performed western blotting to investigate the expression of RECK when miR-96 mimics or inhibitors were transferred into HCT-116 colorectal cancer cells. The RECK mRNA level was assessed by a reverse transcription polymerase chain reaction. An invasion assay was used to evaluate tumor invasion. The expression of RECK was inhibited by the transfection of miR-96 mimics. RECK mRNA level was reduced by miR-96 mimics and increased by miR-96 inhibitor. In the invasion assay, miR-96 mimics were shown to promote tumor invasion. miR-96 may be associated with tumor invasion through inhibition of RECK expression in colorectal cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Identification of miRNAs associated with recurrence of stage II colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Tobiasen, Heidi; Schepeler, Troels

    2011-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer deaths. Twenty-five percent of the patients radically treated for a stage II CRC (no lymph node or distant metastasis) later develop recurrence and dies from the disease. MicroRNAs (miRNAs) are aberrantly expressed or mutated in human...... target prediction and transcript profiling. Initially, miRNA over-expression in HCT116 cells was followed by transcriptional profiling of transfected cells using GeneChip Human Exon 1.0 ST Arrays. Three in silico predicted miRNA targets showing differential mRNA expression upon miRNA up-regulation were...... cancers, and function either as tumour suppressors or oncogenes. Additionally, they also appear to have both diagnostic and prognostic significance. The aim of the present study was to identify miRNAs associated with recurrence of stage II CRC, followed up by an investigation of how these potential...

  20. p53 is involved in clearance of ionizing radiation-induced RAD51 foci in a human colon cancer cell line

    International Nuclear Information System (INIS)

    Orre, Lukas M.; Stenerloew, Bo; Dhar, Sumeer; Larsson, Rolf; Lewensohn, Rolf; Lehtioe, Janne

    2006-01-01

    We have investigated p53-related differences in cellular response to DNA damaging agents, focusing on p53s effects on RAD51 protein level and sub-cellular localization post exposure to ionizing radiation. In a human colon cancer cell line, HCT116 and its isogenic p53-/- subcell line we show here p53-independent RAD51 foci formation but interestingly the resolution of RAD51 foci showed clear p53 dependence. In p53 wt cells, but not in p53-/- cells, RAD51 protein level decreased 48 h post irradiation and fluorescence immunostaining showed resolution of RAD51 foci and relocalization of RAD51 to nucleoli at time points corresponding to the decrease in RAD51 protein level. Both cell lines rejoined DNA double strand breaks efficiently with similar kinetics and p53 status did not influence sensitivity to DNA damaging agents. We suggest that p53 has a role in RAD51 clearance post DSB repair and that nucleoli might be sites of RAD51 protein degradation

  1. Synthesis, fluorescence properties and the promising cytotoxicity of pyrene–derived aminophosphonates

    Science.gov (United States)

    Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Gajek, Gabriela

    2016-01-01

    Summary A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM). PMID:27559373

  2. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  3. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion.

    Science.gov (United States)

    Lin, Yuan-Na; Bhuwania, Ridhirama; Gromova, Kira; Failla, Antonio Virgilio; Lange, Tobias; Riecken, Kristoffer; Linder, Stefan; Kneussel, Matthias; Izbicki, Jakob R; Windhorst, Sabine

    2015-07-30

    Drosophila homologue of Diaphanous 1 (DIAPH1) regulates actin polymerization and microtubule (MT) stabilization upon stimulation with lysophosphatidic acid (LPA). Recently, we showed strongly reduced lung metastasis of DIAPH1-depleted colon cancer cells but we found accumulations of DIAPH1-depleted cells in bone marrow. Here, we analyzed possible organ- or tissue-specific metastasis of DIAPH1-depleted HCT-116 cells. Our data confirmed that depletion of DIAPH1 strongly inhibited lung metastasis and revealed that, in contrast to control cells, DIAPH1-depleted cells did not form metastases in further organs. Detailed mechanistic analysis on cells that were not stimulated with LPA to activate the cytoskeleton-modulating activity of DIAPH1, revealed that even under basal conditions DIAPH1 was essential for cellular adhesion to collagen. In non-stimulated cells DIAPH1 did not control actin dynamics but, interestingly, was essential for stabilization of microtubules (MTs). Additionally, DIAPH1 controlled directed vesicle trafficking and with this, local clustering of the adhesion protein integrin-β1 at the plasma membrane. Therefore, we conclude that under non-stimulating conditions DIAPH1 controls cellular adhesion by stabilizing MTs required for local clustering of integrin-β1 at the plasma membrane. Thus, blockade of DIAPH1-tubulin interaction may be a promising approach to inhibit one of the earliest steps in the metastatic cascade of colon cancer.

  4. Three New Resveratrol Derivatives from the Mangrove Endophytic Fungus Alternaria sp.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    2014-05-01

    Full Text Available Three new resveratrol derivatives, namely, resveratrodehydes A–C (1–3, were isolated from the mangrove endophytic fungus Alternaria sp. R6. The structures of these compounds were elucidated by analysis of their MS, 1D and 2D NMR spectroscopic data. All compounds showed broad-spectrum inhibitory activities against three human cancer cell lines including human breast MDA-MB-435, human liver HepG2, and human colon HCT-116 by MTT assay (IC50 < 50 μM. Among them, compounds 1 and 2 both exhibited marked cytotoxic activities against MDA-MB-435 and HCT-116 cell lines (IC50 < 10 μM. Additionally, compounds 1 and 3 showed moderate antioxidant activity by DPPH radical scavenging assay.

  5. Role of Peroxiredoxin I in Rectal Cancer and Related to p53 Status

    International Nuclear Information System (INIS)

    Chen, Miao-Fen; Lee, Kuan-Der; Yeh, Chung-Hung; Chen, Wen-Cheng; Huang, Wen-Shih; Chin, Chih-Chien; Lin, Paul- Yang; Wang, Jeng-Yi

    2010-01-01

    Background: Neoadjuvant chemoradiotherapy is widely accepted for the treatment of localized rectal cancer. Although peroxiredoxin I (PrxI) and p53 have been implicated in carcinogenesis and cancer treatment, the role of PrxI and its interaction with p53 in the prognosis and treatment response of rectal cancer remain relatively unstudied. Methods and Materials: In the present study, we examined the levels of PrxI and p53 in rectal cancer patients using membrane arrays and compared them with normal population samples. To demonstrate the biologic changes after manipulation of PrxI expression, we established stable transfectants of HCT-116 (wild-type p53) and HT-29 (mutant p53) cells with a PrxI silencing vector. The predictive capacities of PrxI and p53 were also assessed by relating the immunohistochemical staining of a retrospective series of rectal cancer cases to the clinical outcome. Results: The membrane array and immunochemical staining data showed that PrxI, but not p53, was significantly associated with the tumor burden. Our immunochemistry findings further indicated that PrxI positivity was linked to a poor response to neoadjuvant therapy and worse survival. In cellular and animal experiments, the inhibition of PrxI significantly decreased tumor growth and sensitized the tumor to irradiation, as indicated by a lower capacity to scavenge reactive oxygen species and more extensive DNA damage. The p53 status might have contributed to the difference between HCT-116 and HT-29 after knockdown of PrxI. Conclusion: According to our data, the level of PrxI combined with the p53 status is relevant to the prognosis and the treatment response. We suggested that PrxI might be a new biomarker for rectal cancer.

  6. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  7. Essential oils from Egyptian aromatic plants as antioxidant and novel anticancer agents in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Ramadan, M. M.

    2015-06-01

    Full Text Available Inhibitors of tumor growth using extracts from aromatic plants are rapidly emerging as important new drug candidates for cancer therapy. The cytotoxicity and in vitro anticancer evaluation of the essential oils from thyme, juniper and clove has been assessed against five different human cancer cell lines (liver HepG2, breast MCF-7, prostate PC3, colon HCT116 and lung A549. A GC/MS analysis revealed that α-pinene, thymol and eugenol are the major components of Egyptian juniper, thyme and clove oils with concentrations of 31.19%, 79.15% and 82.71%, respectively. Strong antioxidant profiles of all the oils are revealed in vitro by DPPH and β-carotene bleaching assays. The results showed that clove oil was similarly potent to the reference drug, doxorubicin in prostate, colon and lung cell lines. Thyme oil was more effective than the doxorubicin in breast and lung cell lines while juniper oil was more effective than the doxorubicin in all the tested cancer cell lines except prostate cancer. In conclusion, the essential oils from Egyptian aromatic plants can be used as good candidates for novel therapeutic strategies for cancer as they possess significant anticancer activity.Los inhibidores de crecimiento de tumores usando extractos de plantas aromáticas están emergiendo con rapidez como nuevos e importantes medicamentos para el tratamiento del cáncer. La citotoxicidad y la acción anticancerígena in vitro de aceites esenciales de tomillo, enebro y clavo han sido evaluadas en cinco líneas celulares de cáncer humano (hígado HepG2, mama MCF-7, próstata PC3, colon HCT116 y pulmón A549. Los análisis de GC/MS mostraron que α-pineno, timol y eugenol son los principales componentes de los aceites egipcios de enebro, tomillo y clavo, con concentraciones de 31,19%, 79,15% y 82,71%, respectivamente. Se demuestra, mediante ensayos in vitro de blanqueo de DPPH y β-caroteno, el enérgico perfil antioxidante de todos los aceites. Los resultados

  8. Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action

    International Nuclear Information System (INIS)

    Williams, Jennie L.; Ji, Ping; Ouyang, Nengtai; Kopelovich, Levy; Rigas, Basil

    2011-01-01

    Nitric oxide-donating aspirin (NO-ASA) is a promising agent for cancer prevention. Although studied extensively, its molecular targets and mechanism of action are still unclear. S-nitrosylation of signaling proteins is emerging as an important regulatory mechanism by NO. Here, we examined whether S-nitrosylation of the NF-κB, p53, and Wnt signaling proteins by NO-ASA might explain, in part, its mechanism of action in colon cancer. NO-ASA releases significant amounts of NO detected intracellularly in HCT116 and HT-29 colon cells. Using a modified biotin switch assay we demonstrated that NO-ASA S-nitrosylates the signaling proteins p53, β-catenin, and NF-κB, in colon cancer cells in a time- and concentration-dependent manner. NO-ASA suppresses NF-κB binding to its cognate DNA oligonucleotide, which occurs without changes in the nuclear levels of the NF-κB subunits p65 and p50 and is reversed by dithiothreitol that reduces -S-NO to -SH. In addition to S-nitrosylation, we documented both in vitro and in vivo widespread nitration of tyrosine residues of cellular proteins in response to NO-ASA. Our results suggest that the increased intracellular NO levels following treatment with NO-ASA modulate cell signaling by chemically modifying key protein members of signaling cascades. We speculate that S-nitrosylation and tyrosine nitration are responsible, at least in part, for the inhibitory growth effect of NO-ASA on cancer cell growth and that this may represent a general mechanism of action of NO-releasing agents.

  9. Protein nitration and nitrosylation by NO-donating aspirin in colon cancer cells: Relevance to its mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jennie L.; Ji, Ping; Ouyang, Nengtai [Division of Cancer Prevention, Stony Brook University, HSC, T17-080, Stony Brook, NY 11794-8173 (United States); Kopelovich, Levy [Division of Cancer Prevention NCI, NIH, Bethesda, MD (United States); Rigas, Basil, E-mail: basil.rigas@stonybrook.edu [Division of Cancer Prevention, Stony Brook University, HSC, T17-080, Stony Brook, NY 11794-8173 (United States)

    2011-06-10

    Nitric oxide-donating aspirin (NO-ASA) is a promising agent for cancer prevention. Although studied extensively, its molecular targets and mechanism of action are still unclear. S-nitrosylation of signaling proteins is emerging as an important regulatory mechanism by NO. Here, we examined whether S-nitrosylation of the NF-{kappa}B, p53, and Wnt signaling proteins by NO-ASA might explain, in part, its mechanism of action in colon cancer. NO-ASA releases significant amounts of NO detected intracellularly in HCT116 and HT-29 colon cells. Using a modified biotin switch assay we demonstrated that NO-ASA S-nitrosylates the signaling proteins p53, {beta}-catenin, and NF-{kappa}B, in colon cancer cells in a time- and concentration-dependent manner. NO-ASA suppresses NF-{kappa}B binding to its cognate DNA oligonucleotide, which occurs without changes in the nuclear levels of the NF-{kappa}B subunits p65 and p50 and is reversed by dithiothreitol that reduces -S-NO to -SH. In addition to S-nitrosylation, we documented both in vitro and in vivo widespread nitration of tyrosine residues of cellular proteins in response to NO-ASA. Our results suggest that the increased intracellular NO levels following treatment with NO-ASA modulate cell signaling by chemically modifying key protein members of signaling cascades. We speculate that S-nitrosylation and tyrosine nitration are responsible, at least in part, for the inhibitory growth effect of NO-ASA on cancer cell growth and that this may represent a general mechanism of action of NO-releasing agents.

  10. CENPA overexpression promotes genome instability in pRb-depleted human cells

    Directory of Open Access Journals (Sweden)

    Lentini Laura

    2009-12-01

    Full Text Available Abstract Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss. Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC. However, despite MAD2 up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed BRCA1 overexpression that seemed responsible for MAD2 up-regulation. Post-transcriptional silencing of CENPA by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells. Conclusion Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing CENPA overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.

  11. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    International Nuclear Information System (INIS)

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-01-01

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway

  12. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  13. TRAIL-receptor preferences in pancreatic cancer cells revisited: Both TRAIL-R1 and TRAIL-R2 have a licence to kill

    International Nuclear Information System (INIS)

    Mohr, Andrea; Yu, Rui; Zwacka, Ralf M.

    2015-01-01

    TRAIL is a potent and specific inducer of apoptosis in tumour cells and therefore is a possible new cancer treatment. It triggers apoptosis by binding to its cognate, death-inducing receptors, TRAIL-R1 and TRAIL-R2. In order to increase its activity, receptor-specific ligands and agonistic antibodies have been developed and some cancer types, including pancreatic cancer, have been reported to respond preferentially to TRAIL-R1 triggering. The aim of the present study was to examine an array of TRAIL-receptor specific variants on a number of pancreatic cancer cells and test the generality of the concept of TRAIL-R1 preference in these cells. TRAIL-R1 and TRAIL-R2 specific sTRAIL variants were designed and tested on a number of pancreatic cancer cells for their TRAIL-receptor preference. These sTRAIL variants were produced in HEK293 cells and were secreted into the medium. After having measured and normalised the different sTRAIL variant concentrations, they were applied to pancreatic and control cancer cells. Twenty-four hours later apoptosis was measured by DNA hypodiploidy assays. Furthermore, the specificities of the sTRAIL variants were validated in HCT116 cells that were silenced either for TRAIL-R1 or TRAIL-R2. Our results show that some pancreatic cancer cells use TRAIL-R1 to induce cell death, whereas other pancreatic carcinoma cells such as AsPC-1 and BxPC-3 cells trigger apoptosis via TRAIL-R2. This observation extended to cells that were naturally TRAIL-resistant and had to be sensitised by silencing of XIAP (Panc1 cells). The measurement of TRAIL-receptor expression by FACS revealed no correlation between receptor preferences and the relative levels of TRAIL-R1 and TRAIL-R2 on the cellular surface. These results demonstrate that TRAIL-receptor preferences in pancreatic cancer cells are variable and that predictions according to cancer type are difficult and that determining factors to inform the optimal TRAIL-based treatments still have to be identified

  14. The oncogenic role of microRNA-130a/301a/454 in human colorectal cancer via targeting Smad4 expression.

    Directory of Open Access Journals (Sweden)

    Lin Liu

    Full Text Available Transforming growth factor (TGF-β/Smad signaling plays an important role in colon cancer development, progression and metastasis. In this study we demonstrated that the microRNA-130a/301a/454 family is up-regulated in colon cancer tissues compared to paired adjacent normal mucosa, which share the same 3'-untranslational region (3'-UTR binding seed sequence and are predicated to target Smad4. In colorectal cancer HCT116 and SW480 cells, overexpression of miRNA-130a/301a/454 mimics enhances cell proliferation and migration, while inhibitors of these miRNAs affect cell survival. The biological function of miRNA-130a/301a/454 on colon cancer cells is likely mediated by suppression of Smad4, and the up-regulation of the miRNAs is correlated with Smad4 down-regulation in human colon cancers. Collectively, these results suggest that miRNA-130a/301a/454 are novel oncogenic miRNAs contributing to colon tumorigenesis by regulating TGF-β/Smad signaling, which may have potential application in cancer therapy.

  15. The Oncogenic Role of microRNA-130a/301a/454 in Human Colorectal Cancer via Targeting Smad4 Expression

    Science.gov (United States)

    Chen, Lin; Dong, Guanglong; Du, Xiaohui; Wu, Xin; Tang, Yun; Han, Weidong

    2013-01-01

    Transforming growth factor (TGF)-β/Smad signaling plays an important role in colon cancer development, progression and metastasis. In this study we demonstrated that the microRNA-130a/301a/454 family is up-regulated in colon cancer tissues compared to paired adjacent normal mucosa, which share the same 3′-untranslational region (3′-UTR) binding seed sequence and are predicated to target Smad4. In colorectal cancer HCT116 and SW480 cells, overexpression of miRNA-130a/301a/454 mimics enhances cell proliferation and migration, while inhibitors of these miRNAs affect cell survival. The biological function of miRNA-130a/301a/454 on colon cancer cells is likely mediated by suppression of Smad4, and the up-regulation of the miRNAs is correlated with Smad4 down-regulation in human colon cancers. Collectively, these results suggest that miRNA-130a/301a/454 are novel oncogenic miRNAs contributing to colon tumorigenesis by regulating TGF-β/Smad signaling, which may have potential application in cancer therapy. PMID:23393589

  16. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  17. Antitumor Activity of a 5-Hydroxy-1H-Pyrrol-2-(5H-One-Based Synthetic Small Molecule In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yunyun Geng

    Full Text Available Alternative chemo-reagents are in great demand because chemotherapy resistance is one of the major challenges in current cancer treatment. 5-hydoxy-1H-pyrrol-2-(5H-one is an important N-heterocyclic scaffold that is present in natural products and medicinal chemistry. However, its antitumor activity has not been systematically explored. In this study, we screened a panel of 5-hydoxy-1H-pyrrol-2-(5H-one derivatives and identified compound 1d as possessing strong anti-proliferative activity in multiple cancer cell lines. Cell cycle analysis revealed that 1d can induce S-phase cell cycle arrest and that HCT116 was sensitive to 1d-induced apoptosis. Further analysis indicated that 1d preferentially induced DNA damage and p53 activation in HCT116 cells and that 1d-induced apoptosis is partly dependent on p53. Furthermore, we showed that 1d significantly suppressed tumor growth in xenograft tumor models in vivo. Taken together, our results suggest that 5-hydoxy-1H-pyrrol-2-(5H-one derivatives bear potential antitumor activity and that 1d is an effective agent for cancer treatment.

  18. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  19. Developing and Evaluating In Vitro Effect of Poly(Ethylene Glycol) Conjugated Curcumin on Human Cancer Cell Lines.

    Science.gov (United States)

    Tung, Bui Thanh; Hai, Nguyen Thanh; Son, Phan Ke

    2016-01-01

    Curcumin has been shown to possess strong cytotoxic effect against various cancer cell lines. However, curcumin has not applied as a drug for treatment of cancer yet due to low solubility in water and low bioavailability. The aims of this study were to prepare a new polyethylene glycol (PEG) conjugated curcumin and to evaluate its antitumor activity in vitro. PEG-CUR was prepared by the reaction between curcumin and PEG. PEG-CUR which was characterized by SEM, TEM, FTIR, DSC and 1H NMR analysis. The physicochemical parameters of PEG-CUR such as zeta potential, size distribution, solubility and percentage of curcumin were also investigated. Our results showed that the percentage of curcumin in PEG-CUR was 13.26 ± 1.25 %. PEG-CUR has nanosize values of 96.3 nm and the zeta potential values of - 48.4 mV. The PEG-CUR showed significantly increasing curcumin's solubility in water and another medium such as in 0,1 N HCl, phosphate buffer pH 4.5 and pH 6.8 solution and n-octanol. Our data also have shown cytotoxicity effect of PEG-CUR was much greater than curcumin-free in two different HepG2 and HCT116 cancer cell lines. It could be concluded from our results that the PEG-CUR may be a potential candidate for cancer treatment. Further studies are needed to evaluate the antitumor efficacy of PEG-CUR in vivo.

  20. The inflammatory mediator leukotriene D4 induces subcellular β-catenin translocation and migration of colon cancer cells

    International Nuclear Information System (INIS)

    Salim, Tavga; Sand-Dejmek, Janna; Sjölander, Anita

    2014-01-01

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D 4 (LTD 4 ) exerts its effects through the CysLT 1 receptor. We previously reported an upregulation of CysLT 1 R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD 4 on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD 4 stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD 4 significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD 4 can be blocked by the inhibition of CysLT 1 R. Furthermore, LTD 4 induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT 1 and the Wnt/β-catenin pathway. In conclusion, LTD 4 , which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D 4 (LTD 4 ) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD 4 triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD 4 also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells

  1. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla).

    Science.gov (United States)

    Ma, Jun; Luo, Xiao-Dong; Protiva, Petr; Yang, Hui; Ma, Cuiying; Basile, Margaret J; Weinstein, I Bernard; Kennelly, Edward J

    2003-07-01

    Activity-guided fractionation of a methanol extract from the fruit of Manilkara zapota cv. Tikal resulted in the isolation of two new antioxidants, methyl 4-O-galloylchlorogenate (1) and 4-O-galloylchlorogenic acid (2), along with eight known polyphenolic antioxidants, namely, methyl chlorogenate (3), dihydromyricetin (4), quercitrin (5), myricitrin (6), (+)-catechin (7), (-)-epicatechin (8), (+)-gallocatechin (9), and gallic acid (10). Of the 10 polyphenols, 1 showed the highest antioxidant activity (IC(50) = 12.9 microM) in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assay and displayed cytotoxicity in the HCT-116 and SW-480 human colon cancer cell lines with IC(50) values of 190 and 160 microM, respectively. Compound 2 showed high antioxidant activity (IC(50) = 23.5 microM) in the DPPH free-radical assay and displayed cytotoxicity in the HCT-116 and SW-480 human colon cancer cell lines with IC(50) values of 154 and 134 microM, respectively.

  2. Discovery of new A- and B-type laxaphycins with synergistic anticancer activity.

    Science.gov (United States)

    Cai, Weijing; Matthew, Susan; Chen, Qi-Yin; Paul, Valerie J; Luesch, Hendrik

    2018-05-15

    Two new cyclic lipopeptides termed laxaphycins B4 (1) and A2 (2) were discovered from a collection of the marine cyanobacterium Hormothamnion enteromorphoides, along with the known compound laxaphycin A. The planar structures were solved based on a combined interpretation of 1D and 2D NMR data and mass spectral data. The absolute configurations of the subunits were determined by chiral LC-MS analysis of the hydrolysates, advanced Marfey's analysis and 1D and 2D ROESY experiments. Consistent with similar findings on other laxaphycin A- and B-type peptides, laxaphycin B4 (1) showed antiproliferative effects against human colon cancer HCT116 cells with IC 50 of 1.7 µM, while laxaphycins A and A2 (2) exhibited weak activities. The two major compounds isolated from the sample, laxaphycins A and B4, were shown to act synergistically to inhibit the growth of HCT116 colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3.

    Science.gov (United States)

    Zhang, Ting; Jiang, Bo; Zou, Shi-Tao; Liu, Fen; Hua, Dong

    2015-02-14

    To investigate the role of the overexpression of B7-H3 in apoptosis in colorectal cancer cell lines and the underlying molecular mechanisms. SW620 cells that highly overexpressed B7-H3 (SW620-B7-H3-EGFP) and HCT8 cells stably transfected with B7-H3 shRNA (HCT8-shB7-H3) were previously constructed in our laboratory. Cells transfected with pIRES2-EGFP were used as negative controls (SW620-NC and HCT8-NC). Real-time PCR and western blotting analysis were used to detect the mRNA and protein expressions of the apoptosis regulator proteins Bcl-2, Bcl-xl and Bax. A cell proliferation assay was used to evaluate the survival rate and drug sensitivity of the cells. The effect of drug resistance was detected by a cell cycle assay. Active caspase-3 western blotting was used to reflect the anti-apoptotic ability of cells. Western blotting was also performed to determine the expression of proteins associated with the Jak2-STAT3 signaling pathway and the apoptosis regulator proteins after the treatment with AG490, a Jak2 specific inhibitor, in B7-H3 overexpressing cells. The data were analyzed by GraphPad Prism 6 using a non-paired t-test. Whether by overexpression in SW620 cells or downregulation in HCT8, B7-H3 significantly affected the expression of anti- and pro-apoptotic proteins, at both the transcriptional and translational levels, compared with the negative control (P overexpression increased the drug resistance of cells and resulted in a higher survival rate (P overexpression inhibited apoptosis in colorectal cancer cell lines (P overexpression improved Jak2 and STAT3 phosphorylation and, in turn, increased the expression of the downstream anti-apoptotic proteins B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-xl, based on western blotting (P overexpressing cells with the Jak2-specific inhibitor AG490, the phosphorylation of Jak2 and STAT3, and the expression of Bcl-2 and Bcl-xl, decreased accordingly (P overexpression of B7-H3 induces resistance to apoptosis in colorectal cancer

  4. Synthesis and evaluation of modified chalcone based p53 stabilizing agents

    KAUST Repository

    Iftikhar, Sunniya; Khan, Sardraz; Bilal, Aishah; Manzoor, Safia; Abdullah, Muhammad; Emwas, Abdul-Hamid M.; Sioud, Salim; Gao, Xin; Chotana, Ghayoor Abbas; Faisal, Amir; Saleem, Rahman Shah Zaib

    2017-01-01

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (Cal-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-hour post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.

  5. Synthesis and evaluation of modified chalcone based p53 stabilizing agents

    KAUST Repository

    Iftikhar, Sunniya

    2017-07-15

    Tumor suppressor protein p53 induces cell cycle arrest and apoptotic cell death in response to various cellular stresses thereby preventing cancer development. Activation and stabilization of p53 through small organic molecules is, therefore, an attractive approach for the treatment of cancers retaining wild-type p53. In this context, a series of nineteen chalcones with various substitution patterns of functional groups including chloro, fluoro, methoxy, nitro, benzyloxy, 4-methyl benzyloxy was prepared using Claisen-Schmidt condensation. The compounds were characterized using NMR, HRMS, IR and melting points. Evaluation of synthesized compounds against human colorectal (HCT116) and breast (Cal-51) cancer cell lines revealed potent antiproliferative activities. Nine compounds displayed GI50 values in the low micromolar to submicromolar range; for example (E)-1-phenyl-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (SSE14108) showed GI50 of 0.473 ± 0.043 µM against HCT116 cells. Further analysis of these compounds revealed that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (SSE14105) and (E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (SSE14106) caused rapid (4 and 8-hour post-treatment) accumulation of p53 in HCT116 cells similar to its induction by positive control, Nutlin-3. Such activities were absent in 3-(4-methoxyphenyl)propiophenone (SSE14106H2) demonstrating the importance of conjugated ketone for antiproliferative and p53 stabilizing activity of the chalcones. We further evaluated p53 levels in the presence of cycloheximide (CHX) and the results showed that the p53 stabilization was regulated at post-translational level through blockage of its degradation. These chalcones can, therefore, act as fragment leads for further structure optimization to obtain more potent p53 stabilizing agents with enhanced anti-proliferative activities.

  6. 21 CFR 1271.265 - Receipt, predistribution shipment, and distribution of an HCT/P.

    Science.gov (United States)

    2010-04-01

    ... DRUG ADMINISTRATION HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.265 Receipt, predistribution shipment, and distribution of an HCT/P. (a) Receipt. You must... distribution of an HCT/P. 1271.265 Section 1271.265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  7. Sleep disruption among cancer patients following autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Nelson, Ashley M; Jim, Heather S L; Small, Brent J; Nishihori, Taiga; Gonzalez, Brian D; Cessna, Julie M; Hyland, Kelly A; Rumble, Meredith E; Jacobsen, Paul B

    2018-03-01

    Despite a high prevalence of sleep disruption among hematopoietic cell transplant (HCT) recipients, relatively little research has investigated its relationships with modifiable cognitive or behavioral factors or used actigraphy to characterize sleep disruption in this population. Autologous HCT recipients who were 6-18 months post transplant completed self-report measures of cancer-related distress, fear of cancer recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors upon enrollment. Patients then wore an actigraph for 7 days and completed a self-report measure of sleep disruption on day 7 of the study. Among the 84 participants (age M = 60, 45% female), 41% reported clinically relevant sleep disruption. Examination of actigraph data confirmed that, on average, sleep was disrupted (wake after sleep onset M = 66 min) and sleep efficiency was less than recommended (sleep efficiency M = 78%). Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and inhibitory sleep behaviors were related to self-reported sleep disruption (p valuesdisruption after transplant. Cancer-related distress, fear of recurrence, dysfunctional sleep cognitions, and maladaptive sleep behaviors are related to self-reported sleep disruption and should be considered targets for cognitive behavioral intervention in this population.

  8. The inflammatory mediator leukotriene D{sub 4} induces subcellular β-catenin translocation and migration of colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Tavga [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Sand-Dejmek, Janna [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden); Section of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö (Sweden); Bayer HealthCare, Pharmaceuticals Medical Affairs, Solna (Sweden); Sjölander, Anita, E-mail: anita.sjolander@med.lu.se [Division of Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Clinical Research Center, Skåne University Hospital, Malmö (Sweden)

    2014-02-15

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D{sub 4} (LTD{sub 4}) exerts its effects through the CysLT{sub 1} receptor. We previously reported an upregulation of CysLT{sub 1}R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD{sub 4} on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD{sub 4} stimulation led to an increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD{sub 4} significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD{sub 4} can be blocked by the inhibition of CysLT{sub 1}R. Furthermore, LTD{sub 4} induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT{sub 1} and the Wnt/β-catenin pathway. In conclusion, LTD{sub 4}, which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D{sub 4} (LTD{sub 4}) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD{sub 4} triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD{sub 4} also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells.

  9. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Dajani Olav

    2011-10-01

    Full Text Available Abstract Background Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Methods Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF. DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Results Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC, whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K, TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. Conclusions While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116

  10. Role of protein kinase C and epidermal growth factor receptor signalling in growth stimulation by neurotensin in colon carcinoma cells

    International Nuclear Information System (INIS)

    Müller, Kristin M; Tveteraas, Ingun H; Aasrum, Monica; Ødegård, John; Dawood, Mona; Dajani, Olav; Christoffersen, Thoralf; Sandnes, Dagny L

    2011-01-01

    Neurotensin has been found to promote colon carcinogenesis in rats and mice, and proliferation of human colon carcinoma cell lines, but the mechanisms involved are not clear. We have examined signalling pathways activated by neurotensin in colorectal and pancreatic carcinoma cells. Colon carcinoma cell lines HCT116 and HT29 and pancreatic adenocarcinoma cell line Panc-1 were cultured and stimulated with neurotensin or epidermal growth factor (EGF). DNA synthesis was determined by incorporation of radiolabelled thymidine into DNA. Levels and phosphorylation of proteins in signalling pathways were assessed by Western blotting. Neurotensin stimulated the phosphorylation of both extracellular signal-regulated kinase (ERK) and Akt in all three cell lines, but apparently did so through different pathways. In Panc-1 cells, neurotensin-induced phosphorylation of ERK, but not Akt, was dependent on protein kinase C (PKC), whereas an inhibitor of the β-isoform of phosphoinositide 3-kinase (PI3K), TGX221, abolished neurotensin-induced Akt phosphorylation in these cells, and there was no evidence of EGF receptor (EGFR) transactivation. In HT29 cells, in contrast, the EGFR tyrosine kinase inhibitor gefitinib blocked neurotensin-stimulated phosphorylation of both ERK and Akt, indicating transactivation of EGFR, independently of PKC. In HCT116 cells, neurotensin induced both a PKC-dependent phosphorylation of ERK and a metalloproteinase-mediated transactivation of EGFR that was associated with a gefitinib-sensitive phosphorylation of the downstream adaptor protein Shc. The activation of Akt was also inhibited by gefitinib, but only partly, suggesting a mechanism in addition to EGFR transactivation. Inhibition of PKC blocked neurotensin-induced DNA synthesis in HCT116 cells. While acting predominantly through PKC in Panc-1 cells and via EGFR transactivation in HT29 cells, neurotensin used both these pathways in HCT116 cells. In these cells, neurotensin-induced activation of ERK

  11. Metabolomics analysis of metabolic effects of nicotinamide phosphoribosyltransferase (NAMPT inhibition on human cancer cells.

    Directory of Open Access Journals (Sweden)

    Vladimir Tolstikov

    Full Text Available Nicotinamide phosphoribosyltransferase (NAMPT plays an important role in cellular bioenergetics. It is responsible for converting nicotinamide to nicotinamide adenine dinucleotide, an essential molecule in cellular metabolism. NAMPT has been extensively studied over the past decade due to its role as a key regulator of nicotinamide adenine dinucleotide-consuming enzymes. NAMPT is also known as a potential target for therapeutic intervention due to its involvement in disease. In the current study, we used a global mass spectrometry-based metabolomic approach to investigate the effects of FK866, a small molecule inhibitor of NAMPT currently in clinical trials, on metabolic perturbations in human cancer cells. We treated A2780 (ovarian cancer and HCT-116 (colorectal cancer cell lines with FK866 in the presence and absence of nicotinic acid. Significant changes were observed in the amino acids metabolism and the purine and pyrimidine metabolism. We also observed metabolic alterations in glycolysis, the citric acid cycle (TCA, and the pentose phosphate pathway. To expand the range of the detected polar metabolites and improve data confidence, we applied a global metabolomics profiling platform by using both non-targeted and targeted hydrophilic (HILIC-LC-MS and GC-MS analysis. We used Ingenuity Knowledge Base to facilitate the projection of metabolomics data onto metabolic pathways. Several metabolic pathways showed differential responses to FK866 based on several matches to the list of annotated metabolites. This study suggests that global metabolomics can be a useful tool in pharmacological studies of the mechanism of action of drugs at a cellular level.

  12. Effect of Sterols Isolated from Myrtillocactus geometrizans on Growth Inhibition of Colon and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mario Augusto Bolaños-Carrillo

    2015-01-01

    Full Text Available Objective. To explore the effect of peniocerol and macdougallin on HCT-15 and MCF-7 cells proliferation, cell cycle, apoptosis, and PARP cleavage. Methods. HCT-15 and MCF-7 cells were treated with various concentrations of peniocerol and macdougallin (10–80 μM during 24 or 48 h. Crystal Violet Assay was used to evaluate the inhibition effect. Cell cycle regulation was examined by a propidium iodide method. Cell apoptosis was detected through both Annexin–V FLUOS/PI double-labeled cytometry assays and Western blot was applied to assess PARP cleavage. Results. Peniocerol and macdougallin induced growth inhibition and apoptosis in vitro in a time- and dose-dependent manner. Moreover, peniocerol and macdougallin induced arrest of cell cycle-dependent manner and increased the proportion of cells in G0/G1 phase. PARP cleavage in HCT-15 and MCF-7 cells was induced by treatment with peniocerol and macdougallin after 36 hours. Conclusions. Our results showed that the mechanism of cytotoxicity displayed by peniocerol and macdougallin is related to cell cycle arrest and apoptosis in both cell lines. This is a significant observation because it helps to understand the way some oxysterols isolated from Myrtillocactus geometrizans develop their biological activities against cancer cells.

  13. Chemical Characterization and Antitumor Activities of Polysaccharide Extracted from Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Zengenni Liang

    2014-05-01

    Full Text Available Ganoderma lucidum polysaccharide (GLP is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose polymerase (PARP. These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK pathways.

  14. Chemical Characterization and Antitumor Activities of Polysaccharide Extracted from Ganoderma lucidum

    Science.gov (United States)

    Liang, Zengenni; Yi, Youjin; Guo, Yutong; Wang, Rencai; Hu, Qiulong; Xiong, Xingyao

    2014-01-01

    Ganoderma lucidum polysaccharide (GLP) is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK) by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose) polymerase (PARP). These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK) pathways. PMID:24857920

  15. Molecular profiling of ALDH1+ colorectal cancer stem cells reveals preferential activation of MAPK, FAK, and oxidative stress prosurvival signalling pathways

    DEFF Research Database (Denmark)

    Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Fahad, Mohamed

    2018-01-01

    enrichment related to DNA damage, MAPK, FAK, oxidative stress response, and Wnt signalling. ALDH+ cells showed enhanced ROS stress resistance, whereas MAPK/FAK pathway pharmacologic inhibition limited their survival. Conversely, 5-fluorouracil increased the ALDH+ cell fraction among the SW403, HCT116 and SW.......006) and poor DFS (p = 0.05), thus implicating ALDH1A1 and POU5F1 in CRC prognosis. Our data reveal distinct molecular signature of ALDH+ CSCs in CRC and suggest pathways relevant for successful targeted therapies and management of CRC....

  16. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    International Nuclear Information System (INIS)

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-01-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  17. Deoxycholate, an Endogenous Cytotoxin/Genotoxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Claire M. Payne

    2009-01-01

    Full Text Available We report that deoxycholate (DOC, a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460, and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting, an increase in acidic vesicles (fluorescence spectroscopy of monodansycadaverine and lysotracker red probes, and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting. The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapamycin (activator of autophagy pre-treatment of NCM-460 cells significantly (P<.05 decreased, and 3-MA (inhibitor of autophagy significantly (P<.05 increased the cell loss caused by DOC treatment, alone. Rapamycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory, resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents.

  18. Deoxycholate, an Endogenous Cytotoxin/Geno toxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    International Nuclear Information System (INIS)

    Payne, C.M.; Skillicorn, C.C.; Holubec, H.; Bernstein, C.; Dvorak, K.; Bernstein, H.; Moyer, M.P.; Garewal, H.

    2009-01-01

    We report that deoxycholate (DOC), a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460), and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting), an increase in acidic vesicles (fluorescence spectroscopy of monodansylcadaverine and lyso tracker red probes), and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting). The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapa mycin (activator of autophagy) pre-treatment of NCM-460 cells significantly (P<.05) decreased, and 3-MA (inhibitor of autophagy) significantly (P<.05) increased the cell loss caused by DOC treatment, alone. Rapa mycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory), resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process) increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents.

  19. Design and development of hyaluronan-functionalized polybenzofulvene nanoparticles as CD44 receptor mediated drug delivery system

    Science.gov (United States)

    Licciardi, Mariano; Scialabba, Cinzia; Giammona, Gaetano; Paolino, Marco; Razzano, Vincenzo; Grisci, Giorgio; Giuliani, Germano; Makovec, Francesco; Cappelli, Andrea

    2017-06-01

    A tri-component polymer brush (TCPB ), composed of a polybenzofulvene copolymer bearing low molecular weight hyaluronic acid (HA) on the surface of its cylindrical brush-like backbone and oligo-PEG fractions, was employed in the preparation of 350 nm nanostructured drug delivery systems capable of delivering the anticancer drug doxorubicin. The obtained drug delivery systems were characterized on the basis of drug loading and release, dimensions and zeta potential, morphology and in vitro cell activity, and uptake on three different human cell lines, namely the bronchial epithelial 16HBE, the breast adenocarcinoma MCF-7, and the colon cancer HCT116 cells. Finally, the ability of doxorubicin-loaded TCPB nanoparticles (DOXO-TCPB) to be internalized into cancer cells by CD44 receptor mediated uptake was assessed by means of uptake studies in HCT cells. These data were supported by anti-CD44-FITC staining assay. The proposed TCPB nanostructured drug delivery systems have many potential applications in nanomedicine, including cancer targeted drug delivery.

  20. Induction of tumor cell death through targeting tubulin and evoking dysregulation of cell cycle regulatory proteins by multifunctional cinnamaldehydes.

    Science.gov (United States)

    Nagle, Amrita A; Gan, Fei-Fei; Jones, Gavin; So, Choon-Leng; Wells, Geoffrey; Chew, Eng-Hui

    2012-01-01

    Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2)/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2) phase. G(2) arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2) to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2) phase, resulting in apoptotic cell death characterized by emergence

  1. MicroRNA-103 Promotes Colorectal Cancer by Targeting Tumor Suppressor DICER and PTEN

    Directory of Open Access Journals (Sweden)

    Li Geng

    2014-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms for miRNAs in colorectal cancer remain largely unknown. Here, we found that miR-103 is up-regulated in colorectal cancer and its overexpression is closely associated with tumor proliferation and migration. In addition, repressing the expression of miR-103 apparently inhibits colorectal cancer cell proliferation and migration in vitro and HCT-116 xenograft tumor growth in vivo. Subsequent software analysis and dual-luciferase reporter assay identified two tumor suppressor genes DICER and PTEN as direct targets of miR-103, and up-regulation of DICER and PTEN obtained similar results to that occurred in the silencing of miR-103. In addition, restoration of DICER and PTEN can inhibit miR-103-induced colorectal cancer cell proliferation and migration. Our data collectively demonstrate that miR-103 is an oncogene miRNA that promotes colorectal cancer proliferation and migration through down-regulation of the tumor suppressor genes DICER and PTEN. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for colorectal cancer treatment.

  2. Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum).

    Science.gov (United States)

    González-Sarrías, Antonio; Yuan, Tao; Seeram, Navindra P

    2012-05-01

    Maplexins A-I are a series of structurally related gallotannins recently isolated from the red maple (Acer rubrum) species. They differ in number and location of galloyl derivatives attached to 1,5-anhydro-glucitol. Here, maplexins A-I were evaluated for anticancer effects against human tumorigenic (colon, HCT-116; breast, MCF-7) and non-tumorigenic (colon, CCD-18Co) cell lines. The maplexins which contained two (maplexins C-D) or three (maplexins E-I) galloyl derivatives each, inhibited cancer cell growth while those with only one galloyl group (maplexins A-B) did not. Moreover, maplexins C-D showed greater antiproliferative effects than maplexins E-I (IC(50)=59.8-67.9 and 95.5-108.5 μM vs. 73.7-165.2 and 115.5-182.5 μM against HCT-116 and MCF-7 cells, respectively). Notably, the cancer cells were up to 2.5-fold more sensitive to the maplexins than the normal cells. In further mechanistic studies, maplexins C-D (at 75 μM concentrations) induced apoptosis and arrested cell cycle (in the S-phase) of the cancer cells. These results suggest that the number of galloyl groups attached to the 1,5-anhydro-glucitol moiety in these gallotannins are important for antiproliferative activity. Also, this is the first in vitro anticancer study of maplexins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cellular effects of the microtubule-targeting agent peloruside A in hypoxia-conditioned colorectal carcinoma cells.

    Science.gov (United States)

    Řehulka, Jiří; Annadurai, Narendran; Frydrych, Ivo; Znojek, Pawel; Džubák, Petr; Northcote, Peter; Miller, John H; Hajdúch, Marián; Das, Viswanath

    2017-07-01

    Hypoxia is a prominent feature of solid tumors, dramatically remodeling microtubule structures and cellular pathways and contributing to paclitaxel resistance. Peloruside A (PLA), a microtubule-targeting agent, has shown promising anti-tumor effects in preclinical studies. Although it has a similar mode of action to paclitaxel, it binds to a distinct site on β-tubulin that differs from the classical taxane site. In this study, we examined the unexplored effects of PLA in hypoxia-conditioned colorectal HCT116 cancer cells. Cytotoxicity of PLA was determined by cell proliferation assay. The effects of a pre-exposure to hypoxia on PLA-induced cell cycle alterations and apoptosis were examined by flow cytometry, time-lapse imaging, and western blot analysis of selected markers. The hypoxia effect on stabilization of microtubules by PLA was monitored by an intracellular tubulin polymerization assay. Our findings show that the cytotoxicity of PLA is not altered in hypoxia-conditioned cells compared to paclitaxel and vincristine. Furthermore, hypoxia does not alter PLA-induced microtubule stabilization nor the multinucleation of cells. PLA causes cyclin B1 and G2/M accumulation followed by apoptosis. The cellular and molecular effects of PLA have been determined in normoxic conditions, but there are no reports of PLA effects in hypoxic cells. Our findings reveal that hypoxia preconditioning does not alter the sensitivity of HCT116 to PLA. These data report on the cellular and molecular effects of PLA in hypoxia-conditioned cells for the first time, and will encourage further exploration of PLA as a promising anti-tumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determination of anti-cancer constituents in oplopanax horridus and oplopanax elatus

    International Nuclear Information System (INIS)

    Liu, P.; Gu, Y.; Dou, D.; Kang, T.; Smith, D.

    2012-01-01

    A rapid and reliable RP-HPLC method for the analysis of 3a-hydroxylup -20(29)-ene-23,28-dioic acid and 3 alpha -hydroxylup-20(29) -ene-23, 28-dioic acid-3-O-beta-D-glucoside in leaves of Oplopanax horridus and O. elatus was established, and their contents changes between species and different cultivated places were compared. The established analysis method presented good results and could be used as a method for the quality control of leaves of O. horridus and O. elatus. Meanwhile, the inhibitory effect of 1 and 2 on human hepatoma carcinoma cell (HepG-2) were examined and their IC/sub 50/ were determined to be 41.15 mu M and 120.06 mu M indicating that the anti-cancer activity of 1 was stronger than that of its glycoside. Moreover, the inhibitions of 1 on human colon cancer cell line (HCT116), human lung carcinoma cell line (NCI-H460) and human gastric cancer cell line (MGC803) were further tested, and the IC/sub 50/ were determined to be 21.40 mu M, 22.80 mu M and 21.26 mu M, respectively. While the inhibition of 1 on human pancreatic cancer cell line (PANC-1) was insignificant, indicating 1 possessed selectivity for the anti-cancer activity. (author)

  5. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity

    International Nuclear Information System (INIS)

    Qi, Wentao; Weber, Christopher R; Wasland, Kaarin; Savkovic, Suzana D

    2011-01-01

    Soy consumption is associated with a lower incidence of colon cancer which is believed to be mediated by one of its of components, genistein. Genistein may inhibit cancer progression by inducing apoptosis or inhibiting proliferation, but mechanisms are not well understood. Epidermal growth factor (EGF)-induced proliferation of colon cancer cells plays an important role in colon cancer progression and is mediated by loss of tumor suppressor FOXO3 activity. The aim of this study was to assess if genistein exerts anti-proliferative properties by attenuating the negative effect of EGF on FOXO3 activity. The effect of genistein on proliferation stimulated by EGF-mediated loss of FOXO3 was examined in human colonic cancer HT-29 cells. EGF-induced FOXO3 phosphorylation and translocation were assessed in the presence of genistein. EGF-mediated loss of FOXO3 interactions with p53 (co-immunoprecipitation) and promoter of p27kip1 (ChIP assay) were examined in presence of genistein in cells with mutated p53 (HT-29) and wild type p53 (HCT116). Silencing of p53 determined activity of FOXO3 when it is bound to p53. Genistein inhibited EGF-induced proliferation, while favoring dephosphorylation and nuclear retention of FOXO3 (active state) in colon cancer cells. Upstream of FOXO3, genistein acts via the PI3K/Akt pathway to inhibit EGF-stimulated FOXO3 phosphorylation (i.e. favors active state). Downstream, EGF-induced disassociation of FOXO3 from mutated tumor suppressor p53, but not wild type p53, is inhibited by genistein favoring FOXO3-p53(mut) interactions with the promoter of the cell cycle inhibitor p27kip1 in colon cancer cells. Thus, the FOXO3-p53(mut) complex leads to elevated p27kip1 expression and promotes cell cycle arrest. These novel anti-proliferative mechanisms of genistein suggest a possible role of combining genistein with other chemoreceptive agents for the treatment of colon cancer

  6. Epigenetic-Mediated Downregulation of μ-Protocadherin in Colorectal Tumours

    Science.gov (United States)

    Mateusz, Bujko; Paulina, Kober; Małgorzata, Statkiewicz; Michal, Mikula; Marcin, Ligaj; Lech, Zwierzchowski; Jerzy, Ostrowski; Aleksander, Siedlecki Janusz

    2015-01-01

    Carcinogenesis involves altered cellular interaction and tissue morphology that partly arise from aberrant expression of cadherins. Mucin-like protocadherin is implicated in intercellular adhesion and its expression was found decreased in colorectal cancer (CRC). This study has compared MUPCDH (CDHR5) expression in three key types of colorectal tissue samples, for normal mucosa, adenoma, and carcinoma. A gradual decrease of mRNA levels and protein expression was observed in progressive stages of colorectal carcinogenesis which are consistent with reports of increasing MUPCDH 5′ promoter region DNA methylation. High MUPCDH methylation was also observed in HCT116 and SW480 CRC cell lines that revealed low gene expression levels compared to COLO205 and HT29 cell lines which lack DNA methylation at the MUPCDH locus. Furthermore, HCT116 and SW480 showed lower levels of RNA polymerase II and histone H3 lysine 4 trimethylation (H3K4me3) as well as higher levels of H3K27 trimethylation at the MUPCDH promoter. MUPCDH expression was however restored in HCT116 and SW480 cells in the presence of 5-Aza-2′-deoxycytidine (DNA methyltransferase inhibitor). Results indicate that μ-protocadherin downregulation occurs during early stages of tumourigenesis and progression into the adenoma-carcinoma sequence. Epigenetic mechanisms are involved in this silencing. PMID:25972897

  7. Potential Anti-Inflammatory Effects of the Hydrophilic Fraction of Pomegranate (Punica granatum L. Seed Oil on Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Susan Costantini

    2014-06-01

    Full Text Available In this work, we characterized conjugated linolenic acids (e.g., punicic acid as the major components of the hydrophilic fraction (80% aqueous methanol extract from pomegranate (Punica granatum L. seed oil (PSO and evaluated their anti-inflammatory potential on some human colon (HT29 and HCT116, liver (HepG2 and Huh7, breast (MCF-7 and MDA-MB-231 and prostate (DU145 cancer lines. Our results demonstrated that punicic acid and its congeners induce a significant decrease of cell viability for two breast cell lines with a related increase of the cell cycle G0/G1 phase respect to untreated cells. Moreover, the evaluation of a great panel of cytokines expressed by MCF-7 and MDA-MB-231 cells showed that the levels of VEGF and nine pro-inflammatory cytokines (IL-2, IL-6, IL-12, IL-17, IP-10, MIP-1α, MIP-1β, MCP-1 and TNF-α decreased in a dose dependent way with increasing amounts of the hydrophilic extracts of PSO, supporting the evidence of an anti-inflammatory effect. Taken together, the data herein suggest a potential synergistic cytotoxic, anti-inflammatory and anti-oxidant role of the polar compounds from PSO.

  8. Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense.

    Science.gov (United States)

    Kuete, Victor; Sandjo, Louis P; Wiench, Benjamin; Efferth, Thomas

    2013-08-26

    Echinops giganteus, Imperata cylindrica, Piper capense and Xylopia aethiopica are four medicinal spices used in Cameroon to treat cancers. The above plants previously displayed cytotoxicity against leukemia CCRF-CEM and CEM/ADR5000 cell lines as well as human pancreatic MiaPaCa-2 cells. The present study aims at emphasizing the study of the cytotoxicity and the modes of action of the above plants on a panel of ten cancer cell lines including various sensitive and drug-resistant phenotypes. The study has been extended to the isolation of the bioactive constituents from Echinops giganteus. The cytotoxicity of the extracts was determined using a resazurin reduction assay, whereas the caspase-Glo assay was used to detect the activation of caspases 3/7, caspase 8 and caspase 9 in cells treated with the four extracts. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells, analysis of mitochondrial membrane potential (MMP) as well as measurement of reactive oxygen species (ROS). The four tested extracts inhibited the proliferation of all tested cancer cell lines including sensitive and drug-resistant phenotypes. Collateral sensitivity of cancer cells to the extract of Echinops giganteus was generally better than to doxorubicin. The recorded IC50 ranges were 3.29 µg/mL [against human knockout clones HCT116 (p53(-/-)) colon cancer cells] to 14.32 µg/mL (against human liver hepatocellular carcinoma HepG2 cells) for the crude extract from Echinops giganteus, 4.17 µg/mL (against breast cancer cells transduced with control vector MDA-MB231 cells) to 19.45 µg/mL (against MDA-MB-231 BCRP cells) for that of Piper capense, 4.11 µg/mL (against leukemia CCRF-CEM cells) to 30.60 µg/mL (against leukemia HL60AR cells) for Xylopia aethiopica, 3.28 µg/mL [against HCT116 (p53(-/-)) cells] to 33.43 µg/mL (against HepG2 cells) for Imperata cylindica and 0.11 µg/mL (against CCRF-CEM cells) to 132.47 µg/mL (against HL60AR cells) for doxorubicin. The four

  9. Cationic lipid-based nanoparticles mediate functional delivery of acetate to tumor cells in vivo leading to significant anticancer effects

    Directory of Open Access Journals (Sweden)

    Brody LP

    2017-09-01

    Full Text Available Leigh P Brody,1,* Meliz Sahuri-Arisoylu,1,* James R Parkinson,1 Harry G Parkes,2 Po Wah So,3 Nabil Hajji,4 E Louise Thomas,1 Gary S Frost,5 Andrew D Miller,6,* Jimmy D Bell1,* 1Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 2CR-UK Clinical MR Research Group, Institute of Cancer Research, Sutton, Surrey, 3Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 4Department of Medicine, Division of Experimental Medicine, Centre for Pharmacology & Therapeutics, Toxicology Unit, Imperial College London, 5Faculty of Medicine, Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, 6Institute of Pharmaceutical Science, King’s College London, London, UK *These authors contributed equally to this work Abstract: Metabolic reengineering using nanoparticle delivery represents an innovative therapeutic approach to normalizing the deregulation of cellular metabolism underlying many diseases, including cancer. Here, we demonstrated a unique and novel application to the treatment of malignancy using a short-chain fatty acid (SCFA-encapsulated lipid-based delivery system – liposome-encapsulated acetate nanoparticles for cancer applications (LITA-CAN. We assessed chronic in vivo administration of our nanoparticle in three separate murine models of colorectal cancer. We demonstrated a substantial reduction in tumor growth in the xenograft model of colorectal cancer cell lines HT-29, HCT-116 p53+/+ and HCT-116 p53-/-. Nanoparticle-induced reductions in histone deacetylase gene expression indicated a potential mechanism for these anti-proliferative effects. Together, these results indicated that LITA-CAN could be used as an effective direct or adjunct therapy to treat malignant transformation in vivo. Keywords: lipid-based nanoparticles, liposomes

  10. Synthesis, Characterization and In Vitro Anticancer Activity of C-5 Curcumin Analogues with Potential to Inhibit TNF-α-Induced NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Amit Anthwal

    2014-01-01

    Full Text Available In a search of new compounds active against cancer, synthesis of a series of C-5 curcumin analogues was carried out. The new compounds demonstrated good cytotoxicity against chronic myeloid leukemia (KBM5 and colon cancer (HCT116 cell lines. Further, these compounds were found to have better potential to inhibit TNF-α-induced NF-κB activation in comparison to curcumin, which show their potential to act as anti-inflammatory agents. Some compounds were found to show higher cytotoxicity against cancer cell lines in comparison to curcumin used as standard.

  11. MEGF6 Promotes the Epithelial-to-Mesenchymal Transition via the TGFβ/SMAD Signaling Pathway in Colorectal Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Hanqing Hu

    2018-04-01

    Full Text Available Background/Aims: Colorectal cancer (CRC is a malignancy that has high morbidity and mortality and is initiated from accumulative genetic events. Although much effort has been made to elucidate the genetic mechanism underlying this disease, it still remains unknown. Here, we discovered a novel role for multiple epidermal growth factor-like domains protein 6 (MEGF6 in CRC, namely, that it induces the epithelial-to-mesenchymal transition (EMT to promote CRC metastasis via the transforming growth factor beta (TGFβ/SMAD signaling pathway. Methods: RNA sequencing data from the Gene Expression Omnibus database were analyzed using R software. Based on The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD cohort, the clinical significance of MEGF6 was investigated. HCT8R, HCT116, and LoVo CRC cells were transfected with small interfering RNA against MEGF6, and their proliferation and sensitivity to fluorouracil were evaluated with the MTT cell proliferation and colony formation assays. Proteins associated with cell growth were detected by western blot analysis. The apoptosis of cells was evaluated by Annexin V/propidium iodide staining, and transwell assays were performed to assess the involvement of MEGF6 in cell migration. Markers of EMT and TGFβ/SMAD signaling were evaluated by quantitative PCR and western blotting, and the correlation between MEGF6 and these markers was assessed in the TCGA colon and renal adenocarcinoma cohort. Results: The results showed that MEGF6 was upregulated in HCT8R cells. In addition, MEGF6 was significantly overexpressed in tumor tissue and predicted a poor survival in the TCGA-COAD cohort. Moreover, MEGF6 accelerated CRC cell growth and inhibited apoptosis, and promoted CRC metastasis by inducing the EMT. Finally, we found that TGFβ/SMAD signaling triggered the expression of Slug, which regulates the MEGF6-mediated EMT. Conclusions: MEGF6 may serve as an oncogene to promote cell proliferation and inhibit apoptosis

  12. Expression and promoter DNA methylation of MLH1 in colorectal cancer and lung cancer.

    Science.gov (United States)

    Ma, Yunxia; Chen, Yuan; Petersen, Iver

    2017-04-01

    Aberrant DNA methylation is a common molecular feature in human cancer. The aims of this study were to analyze the methylation status of MLH1, one of the DNA mismatch repair (MMR) genes, in human colorectal and lung cancer and to evaluate its clinical relevance. The expression of MLH1 was analyzed in 8 colorectal cancer (CRC) and 8 lung cancer cell lines by real-time RT-PCR and western blotting. The MLH1 protein expression was evaluated by immunohistochemistry on tissue microarrays including 121 primary CRC and 90 lung cancer patient samples. In cancer cell lines, the methylation status of MLH1 promoter and exon 2 was investigated by bisulfite sequencing (BS). Methylation-specific-PCR (MSP) was used to evaluate methylation status of MLH1. The expression of MLH1 mRNA was detected in 8 CRC cell lines as well as normal colonic fibroblast cells CCD-33Co. At protein levels, MLH1 was lost in one CRC cell line HCT-116 and normal cells CCD-33Co. No methylation was found in the promoter and exon 2 of MLH1 in CRC cell lines. MLH1 was expressed in 8 lung cancer cell lines at both mRNA and protein levels. Compared to cancer cells, normal bronchial epithelial cells (HBEC) had lower expression of MLH1 protein. In primary CRC, 54.5% of cases exhibited positive staining, while 47.8% of lung tumors were positive for MLH1 protein. MSP analysis showed that 58 out of 92 (63.0%) CRC and 41 out of 73 (56.2%) lung cancer exhibited MLH1 methylation. In CRC, the MLH1 methylation was significantly associated with tumor invasion in veins (P=0.012). However, no significant links were found between MLH1 expression and promoter methylation in both tumor entities. MLH1 methylation is a frequent molecular event in CRC and lung cancer patients. In CRC, methylation of MLH1 could be linked to vascular invasiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. 3D cell cultures of human head and neck squamous cell carcinoma cells are radiosensitized by the focal adhesion kinase inhibitor TAE226

    International Nuclear Information System (INIS)

    Hehlgans, Stephanie; Lange, Inga; Eke, Iris; Cordes, Nils

    2009-01-01

    Background and purpose: Focal adhesion kinase (FAK), a main player in integrin signaling and survival, is frequently overexpressed in human cancers and therefore postulated as potential target in cancer therapy. The aim of this study was to evaluate the radiosensitizing potential of the FAK inhibitor TAE226 in three-dimensional (3D) tumor cell cultures. Materials and methods: Head and neck squamous cell carcinoma (HNSCC) cells (FaDu, UT-SCC15, UT-SCC45), lung cancer cells (A549), colorectal carcinoma cells (DLD-1, HCT-116) and pancreatic tumor cells (MiaPaCa2, Panc1) were treated with different concentrations of TAE226 (0-1 μm; 1 or 24 h) without or in combination with irradiation (0-6 Gy, X-ray, single dose). Subsequently, 3D clonogenic survival assays (laminin-rich extracellular matrix) and Western blotting (expression/phosphorylation, e.g. FAK, Akt, ERK1/2) were performed. Results: All investigated 3D cell cultures showed a dose-dependent reduction in clonogenic survival by TAE226. Intriguingly, TAE226 only significantly radiosensitized 3D HNSCC cell cultures accompanied by a pronounced dephosphorylation of FAK, Akt and ERK1/2. Conclusions: Our data demonstrate TAE226 as potent FAK inhibitor that enhances the cellular radiosensitivity particularly of HNSCC cells grown in a 3D cell culture model. Future in vitro and in vivo investigations will clarify, to which extent this approach might be clinically relevant for radiotherapy of HNSCC.

  14. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38α activation, while it impairs tumor growth through p38α-independent mechanisms

    Science.gov (United States)

    Priego, Neibla; Arechederra, María; Sequera, Celia; Bragado, Paloma; Vázquez-Carballo, Ana; Gutiérrez-Uzquiza, Álvaro; Martín-Granado, Víctor; Ventura, Juan José; Kazanietz, Marcelo G.; Guerrero, Carmen; Porras, Almudena

    2016-01-01

    C3G, a Guanine nucleotide Exchange Factor (GEF) for Rap1 and R-Ras, has been shown to play important roles in development and cancer. Previous studies determined that C3G regulates cell death through down-regulation of p38α MAPK activity. Here, we found that C3G knock-down in MEFs and HCT116 cells promotes migration and invasion through Rap1-mediated p38α hyper-activation. These effects of C3G were inhibited by Rap1 knock-down or inactivation. The enhanced migration observed in C3G depleted HCT116 cells was associated with reduction in E-cadherin expression, internalization of ZO-1, actin cytoskeleton reorganization and decreased adhesion. We also found that matrix metalloproteases MMP2 and MMP9 are involved in the pro-invasive effect of C3G down-regulation. Additionally, our studies revealed that both C3G and p38α collaborate to promote growth of HCT116 cells in vitro and in vivo, possibly by enhancing cell survival. In fact, knocking-down C3G or p38α individually or together promoted cell death in vitro, although only the double C3G-p38α silencing was able to increase cell death within tumors. Notably, we found that the pro-tumorigenic function of C3G does not depend on p38α or Rap1 activation. Altogether, our studies uncover novel mechanisms by which C3G controls key aspects of tumorigenesis. PMID:27286263

  15. Automation of 3D cell culture using chemically defined hydrogels.

    Science.gov (United States)

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  16. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  17. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali; Mishra, Snehasis; Manna, Krishnendu; Mallick, Arijit; Das Saha, Krishna; Bhaumik, Asim

    2017-01-01

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  18. Covalent Organic Framework Material bearing Phloroglucinol Building Units as a Potent Anticancer Agent

    KAUST Repository

    Bhanja, Piyali

    2017-08-23

    Covalent organic frameworks (COFs) having periodicity in pores of nanoscale dimensions can be suitably designed for the organic building units bearing reactive functional groups at their surfaces. Thus, they are an attractive option as an anticancer agent to overcome the limitations of chemotherapy. Herein, we first report a new porous biodegradable nitrogen containing COF material, EDTFP-1 (ethylenedianiline-triformyl phloroglucinol), synthesized using 4,4\\'-ethylenedianiline and 2,4,6-triformylphloroglucinol via Schiff base condensation reaction. EDTFP-1 exhibited 3D-hexagonal porous structure with average pores of ca. 1.5 nm dimension. Here, we have explored the anti-cancer potentiality of EDTFP-1. Result demonstrated an enhanced cytotoxicity was observed against four cancer cells HCT 116, HepG2, A549, and MIA-Paca2 with significant lower IC50 on HCT116 cells. Additionally, EDTFP-1-induced cell death was associated with the characteristic apoptotic changes like cell membrane blebbing, nuclear DNA fragmentation, externalization of phosphatidylserine from the cell membrane followed by a loss of mitochondrial membrane potential as well as modulation of pro and anti-apoptotic proteins. Further, the result depicted a direct correlation between the generations of ROS with mitochondrial-dependant apoptosis through the involvement of p53 phosphorylation upon EDTFP-1 induction, suggesting this COF material is a novel chemotherapeutic agent for cancer treatment.

  19. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling.

    Science.gov (United States)

    Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua

    2018-02-01

    Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley

  20. Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multi-factorial drug resistant cancer cells.

    Science.gov (United States)

    Mbaveng, Armelle T; Manekeng, Hermione T; Nguenang, Gaelle S; Dzotam, Joachim K; Kuete, Victor; Efferth, Thomas

    2018-08-10

    Recommendations have been made stating that ethnopharmacological usages such as immune and skin disorders, inflammatory, infectious, parasitic and viral diseases should be taken into account if selecting plants for anticancer screening, since these reflect disease states bearing relevance to cancer or cancer-like symptoms. Cameroonian medicinal plants investigated in this work are traditionally used to treat cancer or ailments with relevance to cancer or cancer-like symptoms. In this study, 21 methanol extracts from 18 Cameroonian medicinal plants were tested in leukemia CCRF-CEM cells, and the best extracts were further tested on a panel of human cancer cell lines, including various multi-drug-resistant (MDR) phenotypes. Mechanistic studies were performed with the three best extracts. Resazurin reduction assay was used to evaluate cytotoxicity and ferroptotic effects of methanol extracts from different plants. Flow cytometry was used to analyze cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of extracts from Curcuma longa rhizomes (CLR), Lycopersicon esculentum leaves (LEL), and Psidium guajava bark (PGB). In a pre-screening of all extracts, 13 out of 21 (61.9%) had IC 50 values below 80 µg/mL. Six of these active extracts displayed IC 50 values below 30 µg/mL: Cola pachycarpa leaves (CPL), Curcuma longa rhizomes (CLR), Lycopersicon esculentum leaves, Persea americana bark (PAB), Physalis peruviana twigs (PPT) and Psidium guajava bark (PGB). The best extracts displayed IC 50 values from 6.25 µg/mL (against HCT116 p53 -/- ) to 10.29 µg/mL (towards breast adenocarcinoma MDA-MB-231-BCRP cells) for CLR, from 9.64 µg/mL (against breast adenocarcinoma MDA-MB-231 cells) to 57.74 µg/mL (against HepG2 cells) for LEL and from 1.29 µg/mL (towards CEM/ADR5000 cells) to 62.64 µg/mL (towards MDA-MB-231 cells) for PGB. CLR and PGB induced apoptosis in CCRF-CEM cells via caspases activation, MMP depletion

  1. Trachylobane and kaurane diterpenes from Croton floribundus spreng

    Energy Technology Data Exchange (ETDEWEB)

    Uchoa, Paula Karina S.; Silva Junior, Jose Nunes da; Silveira, Edilberto Rocha; Lima, Mary Anne S., E-mail: mary@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Fortaleza, CE (Brazil); Braz-Filho, Raimundo [Laboratorio de Ciencias Quimicas, Centro de Ciencias Tecnologicas, Universidade Estadual do Norte Fluminense, Campo dos Goytacazes, RJ (Brazil); Costa-Lotufo, Leticia Veras; Araujo, Ana Jersia; Moraes, Manoel Odorico de; Pessoa, Claudia do O [Departamento de Farmacologia e Fisiologia, Centro de Ciencias da Saude, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2013-09-01

    A new trachylobane diterpene ent-trachyloban-18,19-diol (1) was isolated from root bark of Croton floribundus, along with known diterpenes ent-trachyloban-19-oic acid (2), 15{beta}-hydroxy-ent-trachyloban-19-oic acid (3), ent-trachyloban-19-ol (4), ent-kaur-16-en-19-oic acid (5), ent-kaur-16-ene-6{alpha},19-diol (6) and ent-16{alpha}-hydroxykaur-11-en-19-oic acid (7). ent-trachyloban-18,19-diol (1) was submitted to derivatization reactions affording four new compounds (8-11). Cytotoxic activity of diterpenes 1, 3, 4, 7-11 against three human cancer cell lines was evaluated. No compounds showed cytotoxic potential with IC{sub 50} values greater than 25 {mu}g/mL. Compound 6 was evaluated against five human cancer cell lines, showing moderate effect against three cancer cell lines, MDA-MB-435, HCT-8 and HCT-116, with IC{sub 50} values of 14.32, 13.47 and 12.1 {mu}g/mL, respectively. (author)

  2. Trachylobane and kaurane diterpenes from Croton floribundus spreng

    International Nuclear Information System (INIS)

    Uchôa, Paula Karina S.; Silva Junior, José Nunes da; Silveira, Edilberto Rocha; Lima, Mary Anne S.; Braz-Filho, Raimundo; Costa-Lotufo, Letícia Veras; Araújo, Ana Jérsia; Moraes, Manoel Odorico de; Pessoa, Claudia do Ó

    2013-01-01

    A new trachylobane diterpene ent-trachyloban-18,19-diol (1) was isolated from root bark of Croton floribundus, along with known diterpenes ent-trachyloban-19-oic acid (2), 15β-hydroxy-ent-trachyloban-19-oic acid (3), ent-trachyloban-19-ol (4), ent-kaur-16-en-19-oic acid (5), ent-kaur-16-ene-6α,19-diol (6) and ent-16α-hydroxykaur-11-en-19-oic acid (7). ent-trachyloban-18,19-diol (1) was submitted to derivatization reactions affording four new compounds (8-11). Cytotoxic activity of diterpenes 1, 3, 4, 7-11 against three human cancer cell lines was evaluated. No compounds showed cytotoxic potential with IC 50 values greater than 25 μg/mL. Compound 6 was evaluated against five human cancer cell lines, showing moderate effect against three cancer cell lines, MDA-MB-435, HCT-8 and HCT-116, with IC 50 values of 14.32, 13.47 and 12.1 μg/mL, respectively. (author)

  3. Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Science.gov (United States)

    Song, Xinxin; Kim, Seog-Young; Lee, Yong J.

    2013-01-01

    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. PMID:24013390

  4. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  5. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  6. Respiration-averaged CT for attenuation correction in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Cheng, Nai-Ming; Ho, Kung-Chu; Yen, Tzu-Chen; Yu, Chih-Teng; Wu, Yi-Cheng; Liu, Yuan-Chang; Wang, Chih-Wei

    2009-01-01

    Breathing causes artefacts on PET/CT images. Cine CT has been used to reduce respiratory artefacts by acquiring multiple images during a single breathing cycle. The aim of this prospective study in non-small-cell lung cancer (NSCLC) patients was twofold. Firstly, we sought to compare the motion artefacts in PET/CT images attenuation-corrected with helical CT (HCT) and with averaged CT (ACT), which provides an average of cine CT images. Secondly, we wanted to evaluate the differences in maximum standardized uptake values (SUV max ) between HCT and ACT. Enrolled in the study were 80 patients with NSCLC. PET images attenuation-corrected with HCT (PET/HCT) and with ACT (PET/ACT) were obtained in all patients. Misregistration was evaluated by measurement of the curved photopenic area in the lower thorax of the PET images for all patients and direct measurement of misregistration for selected lesions. SUV max was measured separately at the primary tumours, regional lymph nodes, and background. A total of 80 patients with NSCLC were included. Significantly lower misregistrations were observed in PET/ACT images than in PET/HCT images (below-thoracic misregistration 0.25±0.58 cm vs. 1.17±1.17 cm, p max were noted in PET/ACT images than in PET/HCT images in the primary tumour (p max in PET/ACT images was higher by 0.35 for the main tumours and 0.34 for lymph nodes. Due to its significantly reduced misregistration, PET/ACT provided more reliable SUV max and may be useful in treatment planning and monitoring the therapeutic response in patients with NSCLC. (orig.)

  7. Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer

    International Nuclear Information System (INIS)

    Rawluszko, Agnieszka A; Bujnicka, Katarzyna E; Horbacka, Karolina; Krokowicz, Piotr; Jagodziński, Paweł P

    2013-01-01

    Colorectal cancer (CRC) is one of the most common and comprehensively studied malignancies. Hypoxic conditions during formation of CRC may support the development of more aggressive cancers. Hypoxia inducible factor (HIF), a major player in cancerous tissue adaptation to hypoxia, is negatively regulated by the family of prolyl hydroxylase enzymes (PHD1, PHD2, PHD3) and asparaginyl hydroxylase, called factor inhibiting HIF (FIH). PHD1, PHD2, PHD3 and FIH gene expression was evaluated using quantitative RT-PCR and western blotting in primary colonic adenocarcinoma and adjacent histopathologically unchanged colonic mucosa from patients who underwent radical surgical resection of the colon (n = 90), and the same methods were used for assessment of PHD3 gene expression in HCT116 and DLD-1 CRC cell lines. DNA methylation levels of the CpG island in the promoter regulatory region of PHD1, PHD2, PHD3 and FIH were assessed using bisulfite DNA sequencing and high resolution melting analysis (HRM) for patients and HRM analysis for CRC cell lines. We found significantly lower levels of PHD1, PHD2 and PHD3 transcripts (p = 0.00026; p < 0.00001; p < 0.00001) and proteins (p = 0.004164; p = 0.0071; p < 0.00001) in primary cancerous than in histopathologically unchanged tissues. Despite this, we did not observe statistically significant differences in FIH transcript levels between cancerous and histopathologically unchanged colorectal tissue, but we found a significantly increased level of FIH protein in CRC (p = 0.0169). The reduced PHD3 expression was correlated with significantly increased DNA methylation in the CpG island of the PHD3 promoter regulatory region (p < 0.0001). We did not observe DNA methylation in the CpG island of the PHD1, PHD2 or FIH promoter in cancerous and histopathologically unchanged colorectal tissue. We also showed that 5-Aza-2’-deoxycytidine induced DNA demethylation leading to increased PHD3 transcript and protein level in HCT116 cells. We

  8. Improvement of internal tumor volumes of non-small cell lung cancer patients for radiation treatment planning using interpolated average CT in PET/CT.

    Directory of Open Access Journals (Sweden)

    Yao-Ching Wang

    Full Text Available Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT or positron emission tomography (PET images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpolated average CT (IACT as attenuation correction (AC to diminish the occurrence of this scenario. Thirteen non-small cell lung cancer patients were recruited for the present comparison study. Each patient had full-inspiration, full-expiration CT images and free breathing PET images by an integrated PET/CT scan. IACT for AC in PET(IACT was used to reduce the PET/CT misalignment. The standardized uptake value (SUV correction with a low radiation dose was applied, and its tumor volume delineation was compared to those from HCT/PET(HCT. The misalignment between the PET(IACT and IACT was reduced when compared to the difference between PET(HCT and HCT. The range of tumor motion was from 4 to 17 mm in the patient cohort. For HCT and PET(HCT, correction was from 72% to 91%, while for IACT and PET(IACT, correction was from 73% to 93% (*p<0.0001. The maximum and minimum differences in SUVmax were 0.18% and 27.27% for PET(HCT and PET(IACT, respectively. The largest percentage differences in the tumor volumes between HCT/PET and IACT/PET were observed in tumors located in the lowest lobe of the lung. Internal tumor volume defined by functional information using IACT/PET(IACT fusion images for lung cancer would reduce the inaccuracy of tumor delineation in radiation therapy planning.

  9. Opposing effects of low versus high concentrations of water soluble vitamins/dietary ingredients Vitamin C and niacin on colon cancer stem cells (CSCs).

    Science.gov (United States)

    Sen, Utsav; Shenoy P, Sudheer; Bose, Bipasha

    2017-10-01

    Colorectal cancer is one of the global causes of cancer deaths. Cancer stem cells (CSCs) inside the tumour niche responsible for metastasis and relapses, and hence need to be targeted for cancer therapeutics. Although dietary fibre and lifestyle changes have been recommended as measures for colorectal cancer prevention, no such recommendations are available for using water soluble vitamins as prophylaxis measure for colorectal cancers. High dose of Vitamin C has been proven to selectively kill colon cancer cells having BRAF and KRAS mutations by inducing oxidative stress. In this study, we show for the first time the opposing effects of the low and high dose of Vitamin C and vitamin B3 on colon CSCs isolated from HT-29 and HCT-15 colorectal carcinoma cell lines. At small doses, both of these vitamins exerted a cell proliferative effect only on CSCs, while there was no change in the proliferation status of non-stem cancer cells and wild-type (WT) populations. On the other hand, the death effects induced by high doses of Vitamin C and B3 were of the order of 50-60% and ∼30% on CSCs from HT-29 and HCT15, respectively. Interestingly, the control fibroblast cell line (NIH3T3) was highly refractory all the tested concentrations of Vitamin C and B3, except for the highest dose - 10,000 μg of Vitamin C that induced only 15% of cell death. Hence, these results indicate the future scope of use of therapeutic doses of Vitamin C and B3 especially in patients with advanced colorectal cancer. © 2017 International Federation for Cell Biology.

  10. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh-Raji

    2016-07-01

    Full Text Available In this paper, a label-free aptamer based detection system (apta-DS was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide/N-hydroxysuccinimide (NHS. The cyclic voltammetry (CV and chronopotentiometry (CP methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO. In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study’s results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.

  11. Induction of tumor cell death through targeting tubulin and evoking dysregulation of cell cycle regulatory proteins by multifunctional cinnamaldehydes.

    Directory of Open Access Journals (Sweden)

    Amrita A Nagle

    Full Text Available Multifunctional trans-cinnamaldehyde (CA and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA and 5-fluoro-2-hydroxycinnamaldehyde (FHCA being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA, were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2 phase. G(2 arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2 to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2 phase, resulting in apoptotic cell death characterized by

  12. Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Harvey Mario

    2010-01-01

    Full Text Available Abstract Background UDP-glucuronosyltransferase 1A1 (UGT1A1 is a pivotal enzyme involved in metabolism of SN-38, the active metabolite of irinotecan commonly used to treat metastatic colorectal cancer. We previously demonstrated aberrant methylation of specific CpG dinucleotides in UGT1A1-negative cells, and revealed that methylation state of the UGT1A1 5'-flanking sequence is negatively correlated with gene transcription. Interestingly, one of these CpG dinucleotides (CpG -4 is found close to a HNF1 response element (HRE, known to be involved in activation of UGT1A1 gene expression, and within an upstream stimulating factor (USF binding site. Results Gel retardation assays revealed that methylation of CpG-4 directly affect the interaction of USF1/2 with its cognate sequence without altering the binding for HNF1-alpha. Luciferase assays sustained a role for USF1/2 and HNF1-alpha in UGT1A1 regulation in colon cancer cells. Based on the differential expression profiles of HNF1A gene in colon cell lines, we also assessed whether methylation affects its expression. In agreement with the presence of CpG islands in the HNF1A promoter, treatments of UGT1A1-negative HCT116 colon cancer cells with a DNA methyltransferase inhibitor restore HNF1A gene expression, as observed for UGT1A1. Conclusions This study reveals that basal UGT1A1 expression in colon cells is positively regulated by HNF1-alpha and USF, and negatively regulated by DNA methylation. Besides, DNA methylation of HNF1A could also play an important role in regulating additional cellular drug metabolism and transporter pathways. This process may contribute to determine local inactivation of drugs such as the anticancer agent SN-38 by glucuronidation and define tumoral response.

  13. Synthesis, in-vitro cytotoxicity of 1H-benzo[f]chromene derivatives and structure-activity relationships of the 1-aryl group and 9-position.

    Science.gov (United States)

    Mohamed, Hany M; Fouda, Ahmed M; Khattab, Essam S A E H; Agrody, Ahmed M El-; Afifi, Tarek H

    2017-05-01

    A series of 1H-benzo[f]chromene-2-carbonitriles was synthesized and evaluated for their cytotoxic activities against MCF-7, HCT-116, and HepG-2 cancer cells. The SAR studies reported that the substitution in the phenyl ring at 1-position of 1H-benzo[f]chromene nucleus with the specific group, H atom, or methoxy group at 9-position increases the ability of the molecule against the different cell lines.

  14. 2-D Difference in gel electrophoresis combined with Pro-Q Diamond staining: a successful approach for the identification of kinase/phosphatase targets.

    Science.gov (United States)

    Orsatti, Laura; Forte, Eleonora; Tomei, Licia; Caterino, Marianna; Pessi, Antonello; Talamo, Fabio

    2009-07-01

    The protein tyrosine phosphatase PRL-3 is an appealing therapeutic cancer target for its well described involvement in the metastasis progression. Nevertheless, very little is known about PRL-3 role in tumorigenesis. In the attempt to identify the protein target of this phosphatase we have devised a model system based on the use of highly invasive HCT116 colon cancer cells over-expressing PRL-3. We used 2-D difference gel electrophoresis combined with the fluorescence staining Pro-Q Diamond selective for phosphorylated proteins to monitor changes in the phosphorylation status of possible substrates. Proteins whose phosphorylation level was negatively affected by PRL-3 over-expression were identified by MS. Two proteins were found to be significantly dephosphorylated in this condition, the cytoskeletal protein ezrin and elongation factor 2. Ezrin has already been described as having a proactive role in cancer metastasis through control of its phosphorylation status, and the PRL-3-induced modulation of ezrin phosphorylation in HCT116 and human umblical vascular endothelial cells is the subject of a separate paper by Forte et al. [Biochim. Biophys. Acta 2008, 1783, 334-344]. The combination of 2-D difference in gel electrophoresis and Pro-Q Diamond was hence confirmed successful in analyzing changes of protein phosphorylation which enable the identification of kinase/phosphatase targets.

  15. A mobile school-based HCT service - is it youth friendly?

    Science.gov (United States)

    Lawrence, Estelle; Struthers, Patricia; Van Hove, Geert

    2016-12-01

    Despite an increase in HIV Counselling and Testing (HCT), few young people have been tested. It has been suggested that they do not test because formal health services (where HCT is provided) are often not youth friendly. The World Health Organisation describes a youth-friendly health service (YFHS) as one which is accessible, equitable, acceptable, appropriate, and effective. A mobile school-based model has been implemented by a non-governmental organisation in Cape Town in an attempt to make HCT more youth friendly and accessible to young people. The objective of this study was to explore whether this mobile school-based HCT service is youth friendly. The study was descriptive, using three qualitative data collection methods: observation of the HCT site at two secondary schools; interviews with six service providers; and direct observation of 21 HCT counselling sessions. The mobile school-based HCT service fulfilled some of the criteria for being a YFHS. The service was equitable in that all students, irrespective of race, gender, age, or socio-economic status, were free to use the service. It was accessible in terms of location and cost, but students were not well informed to make decisions about using the service. The service was acceptable in that confidentiality was guaranteed and the service providers were friendly and non-judgemental, but it was not considered acceptable in that there was limited privacy. The service was appropriate in that HCT is recommended as an intervention for decreasing the transmission of HIV, based on evidence and expert opinion; however, in this case, HCT was provided as a stand-alone service rather than part of a full package of services. Moreover, studies have suggested that young people want to know their HIV status. The service was ineffective in that it identified students who are HIV positive; however, these students were not assisted to access care. Providing HCT in the school setting may make HCT more accessible for

  16. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  17. MicroRNA-124 (MiR-124 Inhibits Cell Proliferation, Metastasis and Invasion in Colorectal Cancer by Downregulating Rho-Associated Protein Kinase 1(ROCK1

    Directory of Open Access Journals (Sweden)

    Liqing Zhou

    2016-05-01

    Full Text Available Background/Aims: MiR-124 inhibits neoplastic transformation, cell proliferation, and metastasis and downregulates Rho-associated protein kinase (ROCK1 in Colorectal Cancer (CRC. The aim of this study was to further investigate the roles and interactions of ROCK1 and miR-124 and the effects of knockdown of ROCK1and MiR-124 in human Colorectal Cancer (CRC. Methods: Three Colorectal cancer cell lines (HCT116, HT29 and SW620 and one Human Colonic Mucosa Epithelial cell line (NCM460 were studied. The protein expression of ROCK1 was examined by Western-blot and qRT-PCR were performed to examine the expression levels of ROCK1 mRNA and miR-124. Furthermore, We performed transfection of cancer cell line (SW620 with pre-miR-124(mimics, anti-miR-124(inhibitor, ROCK1 siRNA and the control, then observed the affects of ROCK1 protein expression by westen-blot, cell proliferation by EDU (5-ethynyl-2'deoxyuridine assay and expression levels of ROCK1mRNA by qRT-PCR . A soft agar formation assay, Migration and invasion assays were used to determine the effect of regulation of miR-124 and ROCK1, and survivin on the transformation and invasion capability of colorectal cancer cell. Results: MiR-124 expression was significantly downregulated in CRC cell lines compare to normal (P 0.05. ROCK1 mRNA was unaltered in cells transfected with miR-124 mimic and miR-124 inhibitor, compared to normal controls. There was a significant reduction in ROCK1 protein in cells transfected with miR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P Conclusions: In conclusion, our results demonstrated that miR-124 not only promoted cancer cell hyperplasia and significantly associated with CRC metastasis and progression, but also downregulated ROCK1 protein expression. More importantly, increased ROCK1 expression or inhibited miR-124 expression may constitute effective new therapeutic strategies for the treatment of renal cancer in the future.

  18. The cumulative burden of double-stranded DNA virus detection after allogeneic HCT is associated with increased mortality.

    Science.gov (United States)

    Hill, Joshua A; Mayer, Bryan T; Xie, Hu; Leisenring, Wendy M; Huang, Meei-Li; Stevens-Ayers, Terry; Milano, Filippo; Delaney, Colleen; Sorror, Mohamed L; Sandmaier, Brenda M; Nichols, Garrett; Zerr, Danielle M; Jerome, Keith R; Schiffer, Joshua T; Boeckh, Michael

    2017-04-20

    Strategies to prevent active infection with certain double-stranded DNA (dsDNA) viruses after allogeneic hematopoietic cell transplantation (HCT) are limited by incomplete understanding of their epidemiology and clinical impact. We retrospectively tested weekly plasma samples from allogeneic HCT recipients at our center from 2007 to 2014. We used quantitative PCR to test for cytomegalovirus, BK polyomavirus, human herpesvirus 6B, HHV-6A, adenovirus, and Epstein-Barr virus between days 0 and 100 post-HCT. We evaluated risk factors for detection of multiple viruses and association of viruses with mortality through day 365 post-HCT with Cox models. Among 404 allogeneic HCT recipients, including 125 cord blood, 125 HLA-mismatched, and 154 HLA-matched HCTs, detection of multiple viruses was common through day 100: 90% had ≥1, 62% had ≥2, 28% had ≥3, and 5% had 4 or 5 viruses. Risk factors for detection of multiple viruses included cord blood or HLA-mismatched HCT, myeloablative conditioning, and acute graft-versus-host disease ( P values < .01). Absolute lymphocyte count of <200 cells/mm 3 was associated with greater virus exposure on the basis of the maximum cumulative viral load area under the curve (AUC) ( P = .054). The maximum cumulative viral load AUC was the best predictor of early (days 0-100) and late (days 101-365) overall mortality (adjusted hazard ratio [aHR] = 1.36, 95% confidence interval [CI] [1.25, 1.49], and aHR = 1.04, 95% CI [1.0, 1.08], respectively) after accounting for immune reconstitution and graft-versus-host disease. In conclusion, detection of multiple dsDNA viruses was frequent after allogeneic HCT and had a dose-dependent association with increased mortality. These data suggest opportunities to improve outcomes with better antiviral strategies. © 2017 by The American Society of Hematology.

  19. Prevention and management guidelines to oral health care for patients with head and neck cancer: HCT20, Carisolv and Chlorhexidine varnish are suggested

    International Nuclear Information System (INIS)

    Silva Guerra, Eliete Neves da; Melo, N.S. de

    2004-01-01

    Orofacial complications are unfortunately common with all modalities used in the management of patients with head and neck cancer. It is well known that hypo salivation develops if radiation therapy involves the salivary glands. A significant decrease in salivary volume can adversely affect oral comfort, mucous health, dentition, deglutition and mastication. Xerostomia may lead to consumption of diet high in carbohydrates and make good oral hygiene difficult. The purpose of this study is to report a new prevention and management guidelines to oral and dental health care for patients with head and neck cancer who will treat with radiotherapy. New materials as HCT20, Carisolv and chlorhexidine varnish are suggested. (author)

  20. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro.

    Science.gov (United States)

    Dorward, Hilary S; Du, Alice; Bruhn, Maressa A; Wrin, Joseph; Pei, Jinxin V; Evdokiou, Andreas; Price, Timothy J; Yool, Andrea J; Hardingham, Jennifer E

    2016-02-24

    Aquaporins (AQP) are water channel proteins that enable fluid fluxes across cell membranes, important for homeostasis of the tissue environment and for cell migration. AQP1 knockout mouse models of human cancers showed marked inhibition of tumor-induced angiogenesis, and in pre-clinical studies of colon adenocarcinomas, forced over-expression of AQP1 was shown to increase angiogenesis, invasion and metastasis. We have synthesized small molecule antagonists of AQP1. Our hypothesis is that inhibition of AQP1 will reduce migration and invasiveness of colon cancer cells, and the migration and tube-forming capacity of endothelial cells in vitro. Expression of AQP1 in cell lines was assessed by quantitative (q) PCR, western blot and immunofluorescence, while expression of AQP1 in human colon tumour tissue was assessed by immunohistochemistry. The effect of varying concentrations of the AQP1 inhibitor AqB013 was tested on human colon cancer cell lines expressing high versus low levels of AQP1, using wound closure (migration) assays, matrigel invasion assays, and proliferation assays. The effect of AqB013 on angiogenesis was tested using an endothelial cell tube-formation assay. HT29 colon cancer cells with high AQP1 levels showed significant inhibition of migration compared to vehicle control of 27.9% ± 2.6% (p migration of HCT-116 cells with low AQP1 expression. In an invasion assay, HT29 cells treated with 160 μM of AqB013, showed a 60.3% ± 8.5% decrease in invasion at 144 hours (p < 0.0001) and significantly decreased rate of invasion compared with the vehicle control (F-test, p = 0.001). Almost complete inhibition of endothelial tube formation (angiogenesis assay) was achieved at 80 μM AqB013 compared to vehicle control (p < 0.0001). These data provide good evidence for further testing of the inhibitor as a therapeutic agent in colon cancer.

  1. Maximizing the Therapeutic Efficacy of Imatinib Mesylate-Loaded Niosomes on Human Colon Adenocarcinoma Using Box-Behnken Design.

    Science.gov (United States)

    Kassem, Mohammed A; El-Sawy, Hossam S; Abd-Allah, Fathy I; Abdelghany, Tamer M; El-Say, Khalid M

    2017-01-01

    This research purposed to formulate an optimized imatinib mesylate (IM)-loaded niosomes to improve its chemotherapeutic efficacy. The influence of 3 formulation factors on niosomal vesicular size (Y 1 ), zeta potential (Y 2 ), entrapment capacity percentage (Y 3 ), the percentage of initial drug release after 2 h (Y 4 ), and the percentage of cumulative drug release after 24 h (Y 5 ) were studied and optimized using Box-Behnken design. Optimum desirability was specified and the optimized formula was prepared, stability tested, morphologically examined, checked for vesicular bilayer formation and evaluated for its in vitro cytotoxicity on 3 different cancer cell lines namely MCF-7, HCT-116, and HepG-2 in addition to 1 normal cell line to ensure its selectivity against cancer cells. The actual responses of the optimized IM formulation were 425.36 nm, -62.4 mV, 82.96%, 18.93%, and 89.45% for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 , respectively. The optimized IM-loaded niosomes confirmed the spherical vesicular shape imaged by both light and electron microscopes and further proven by differential scanning calorimetry. Moreover, the optimized formula exhibited improved stability on storage at 4 ± 2°C and superior efficacy on MCF7, HCT-116, and HepG2 as IC 50 values were 6.7, 16.4, and 7.3 folds less than those of free drug, respectively. Interestingly, IC 50 of the optimized formula against normal cell line was ranged from 3 to 11 folds higher than in different cancer cells indicating a higher selectivity of the optimized formula to cancer cells. In conclusion, the incorporation of IM in niosomes enhanced its efficacy and selectivity toward cancer cells, presenting a promising tool to fight cancer using this approach. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells.

    Science.gov (United States)

    González-Sarrías, Antonio; Li, Liya; Seeram, Navindra P

    2012-07-01

    Phenolic-enriched extracts of maple sap and syrup, obtained from the sugar and red maple species (Acer saccharum Marsh, A. rubrum L., respectively), are reported to show anticancer effects. Despite traditional medicinal uses of various other parts of these plants by Native Americans, they have not been investigated for anticancer activity. Here leaves, stems/twigs, barks and sapwoods of both maple species were evaluated for antiproliferative effects against human colon tumorigenic (HCT-116, HT-29, Caco-2) and non-tumorigenic (CCD-18Co) cells. Extracts were standardized to total phenolic and ginnalin-A (isolated in our laboratory) levels. Overall, the extracts inhibited the growth of the colon cancer more than normal cells (over two-fold), their activities increased with their ginnalin-A levels, with red > sugar maple extracts. The red maple leaf extract, which contained the highest ginnalin-A content, was the most active extract (IC₅₀  = 35 and 16 µg/mL for extract and ginnalin-A, respectively). The extracts were not cytotoxic nor did they induce apoptosis of the colon cancer cells. However, cell cycle analyses revealed that the antiproliferative effects of the extracts were mediated through cell cycle arrest in the S-phase. The results from the current study suggest that these maple plant part extracts may have potential anticolon cancer effects. Copyright © 2011 John Wiley & Sons, Ltd.

  3. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  4. Neurotensin Phosphorylates GSK-3α/β through the Activation of PKC in Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Qingding Wang

    2006-09-01

    Full Text Available Neurotensin (NT, a gastrointestinal hormone, binds its receptor [neurotensin receptor (NTR] to regulate the growth of normal and neoplastic intestinal cells; molecular mechanisms remain largely undefined. Glycogen synthase kinase-3 (GSK-3 regulates diverse cellular processes, including cell growth and apoptosis. Here, we show that NT induces the phosphorylation of GSK-3α/β in the human colon cancer cell line HT29, HCT116, or SW480, which possesses high-affinity NTR. The effect of NT was blocked by inhibitors of protein kinase C (PKC, but not by inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK1 or phosphatidylinositol-3 kinase, suggesting a predominant role for PKC in GSK-3β phosphorylation by NT. Pretreatment with Gö6976 (which inhibits PKCα and PKCβ1 or downregulation of endogenous PKCα or PKCβ1 blocked NT-mediated GSK-3β (but not GSK-3α phosphorylation. Moreover, a selective PKCβ inhibitor, LY379196, reduced NT-mediated GSK-3β (but not GSK-3α phosphorylation, suggesting a role for PKCbβ in the NT-mediated phosphorylation of GSK-3β and an undefined kinase in the NT-mediated phosphorylation of GSK-3α. Treatment with NT or the GSK-3 inhibitor SB216763 increased the expression of cyclin D1, a downstream effector protein of GSK-3 and a critical protein for the proliferation of various cells. Our results indicate that NT uses PKC-dependent pathways to modulate GSK-3, which may play a role in the NT regulation of intestinal cell growth.

  5. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    Science.gov (United States)

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  6. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    International Nuclear Information System (INIS)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-01-01

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  7. A mobile school-based HCT service – is it youth friendly?

    Directory of Open Access Journals (Sweden)

    Estelle Lawrence

    2016-01-01

    Full Text Available Background: Despite an increase in HIV Counselling and Testing (HCT, few young people have been tested. It has been suggested that they do not test because formal health services (where HCT is provided are often not youth friendly. The World Health Organisation describes a youth-friendly health service (YFHS as one which is accessible, equitable, acceptable, appropriate, and effective. A mobile school-based model has been implemented by a non-governmental organisation in Cape Town in an attempt to make HCT more youth friendly and accessible to young people. The objective of this study was to explore whether this mobile school-based HCT service is youth friendly. Methods: The study was descriptive, using three qualitative data collection methods: observation of the HCT site at two secondary schools; interviews with six service providers; and direct observation of 21 HCT counselling sessions. Key Results: The mobile school-based HCT service fulfilled some of the criteria for being a YFHS. The service was equitable in that all students, irrespective of race, gender, age, or socio-economic status, were free to use the service. It was accessible in terms of location and cost, but students were not well informed to make decisions about using the service. The service was acceptable in that confidentiality was guaranteed and the service providers were friendly and non-judgemental, but it was not considered acceptable in that there was limited privacy. The service was appropriate in that HCT is recommended as an intervention for decreasing the transmission of HIV, based on evidence and expert opinion; however, in this case, HCT was provided as a stand-alone service rather than part of a full package of services. Moreover, studies have suggested that young people want to know their HIV status. The service was ineffective in that it identified students who are HIV positive; however, these students were not assisted to access care. Conclusion: Providing HCT

  8. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  9. Synthesis and Cytotoxicity of 2,3-Enopyranosyl C-Linked Conjugates of Genistein

    Directory of Open Access Journals (Sweden)

    Wieslaw Szeja

    2014-05-01

    Full Text Available A series of glycoconjugates, derivatives of genistein containing a C-glycosylated carbohydrate moiety, were synthesized and their anticancer activity was tested in vitro in the human cell lines HCT 116 and DU 145. The target compounds 15–17 were synthesized by treating ω-bromoalkyl C-glycosides derived from L-rhamnal (1 with a tetrabutylammonium salt of genistein. The new, metabolically stable analogs of previously studied O-glycosidic genistein derivatives inhibited proliferation of cancer cell lines through inhibition of the cell cycle.

  10. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-01-01

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G 1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21 Waf1/Cip1 and p27 Kip1 ; and knockdown of p27 kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  11. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation.

    Science.gov (United States)

    Gröschl, Benedikt; Bettstetter, Marcus; Giedl, Christian; Woenckhaus, Matthias; Edmonston, Tina; Hofstädter, Ferdinand; Dietmaier, Wolfgang

    2013-04-01

    DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC. Copyright © 2012 UICC.

  12. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma.

    Science.gov (United States)

    Hanif, Zahid; Ahmed, Farrukh R; Shin, Seung Won; Kim, Young-Kee; Um, Soong Ho

    2014-07-01

    A controlled preparation of cellulose nanocrystals of different sizes and shapes has been carried out by acid hydrolysis of microcrystalline cellulose. The size- and concentration-dependent toxicity effects of the resulting cellulose nanocrystals were evaluated against two different cell lines, NIH3T3 murine embryo fibroblasts and HCT116 colon adenocarcinoma. It could serve as a therapeutic platform for cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prevention and management guidelines to oral health care for patients with head and neck cancer: HCT20, Carisolv and Chlorhexidine varnish are suggested; Protocolo de prevencao e tratamento de sequelas bucais em pacientes submetidos a radioterapia: uso do HCT20, Carisolv e verniz de clorexidina

    Energy Technology Data Exchange (ETDEWEB)

    Silva Guerra, Eliete Neves da; Melo, N.S. de

    2004-06-01

    Orofacial complications are unfortunately common with all modalities used in the management of patients with head and neck cancer. It is well known that hypo salivation develops if radiation therapy involves the salivary glands. A significant decrease in salivary volume can adversely affect oral comfort, mucous health, dentition, deglutition and mastication. Xerostomia may lead to consumption of diet high in carbohydrates and make good oral hygiene difficult. The purpose of this study is to report a new prevention and management guidelines to oral and dental health care for patients with head and neck cancer who will treat with radiotherapy. New materials as HCT20, Carisolv and chlorhexidine varnish are suggested. (author)

  14. Pretreatment Hematocrit Is Superior to Hemoglobin as a Prognostic Factor for Triple Negative Breast Cancer.

    Science.gov (United States)

    Chen, Bo; Dai, Danian; Tang, Hailin; Ai, Xiaohong; Chen, Xi; Zhang, Xiaoyan; Li, Zhiyan; Xie, Xiaoming

    2016-01-01

    Anemia usually refers to low hemoglobin (Hb) levels. Previous studies indicated that anemia negatively influence the survival in various cancers. Hematocrit (HCT) is the volume percentage of red blood cells in blood, which could indicate anemia in both individuals and populations. This study compared the value of HCT with that of Hb for predicting outcomes of patients who underwent treatment for triple negative breast cancer (TNBC). A retrospective study of 293 triple negative breast cancer patients, accepting treatment from January 2004 to December 2009 at Sun Yat-sen University Cancer Center, was conducted. Kaplan-Meier curves and multivariate Cox proportional models were used to calculate disease free survival (DFS) and overall survival (OS). The cut-off value of HCT was 35.9% determined by X-tile software analysis. The cut-off value of Hb was 12.0 g/dl based on the World Health Organization (WHO) criteria. In univariate analysis, low HCT and low Hb were both significantly associated with decreased DFS and OS. In multivariate analysis, HCT (HR: 0.570; 95% CI: 0.331-0.981, P = 0.042 for DFS; HR: 0.456; 95% CI: 0.256-0.813, P = 0.008 for OS) was still identified as independent predictor of outcome, but not Hb. Pretreatment low HCT is independently associated with poor prognosis in TNBC patients. However, HCT was found to be superior to Hb in terms of predicting breast cancer mortality. In the future, large-scale prospective studies or validation studies are needed to verify our findings.

  15. Capecitabine treatment of HCT-15 colon cancer cells induces ...

    African Journals Online (AJOL)

    15 colon carcinoma cells and investigate the underlying mechanism. Methods: Phase-contrast microscopy was used for the examination of morphological changes while flow cytometry was employed for the analysis of cell cycle distribution, ...

  16. Design, Synthesis and Evaluation of N13-Substituted Evodiamine Derivatives against Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Senchuan Song

    2013-12-01

    Full Text Available Attempting to improve the anticancer activity and solubility of evodiamine in simulated gastric fluid (SGF and simulated intestinal fluid (SIF solutions, thirty-eight N13-substituted evodiamine derivatives were designed, synthesized and tested for antitumor activities against six kinds of human cancer cell lines, namely prostate cancer (DU-145 and PC-3, lung cancer (H460, breast cancer (MCF-7, colon cancer (HCT-5 and glioblastoma (SF-268. The solubility of these compounds in SGF and SIF solutions was evaluated, and apoptosis induced by 2-2, 2-3, 2-16 and 3-2 was determined. The results showed: (1 among all compounds examined, 2-16 showed the highest antitumor activity and a broader spectrum of activity, with IC50 values ranging from 1–2 µM; (2 their solubility was obviously improved; (3 2-3, 2-16 and 3-2 had a significant impact inducing apoptosis in some cancer cell lines. The preliminary structure-activity relationships of these derivatives were discussed.

  17. EMMPRIN is associated with S100A4 and predicts patient outcome in colorectal cancer

    Science.gov (United States)

    Boye, K; Nesland, J M; Sandstad, B; Haugland Haugen, M; Mælandsmo, G M; Flatmark, K

    2012-01-01

    Background: Proteolytic enzymes and their regulators have important biological roles in colorectal cancer by stimulating invasion and metastasis, which makes these factors attractive as potential prognostic biomarkers. Methods: The expression of extracellular matrix metalloproteinase inducer (EMMPRIN) was characterised using immunohistochemistry in primary tumours from a cohort of 277 prospectively recruited colorectal cancer patients, and associations with expression of S100A4, clinicopathological parameters and patient outcome were investigated. Results: One hundred and ninety-eight samples (72%) displayed positive membrane staining of the tumour cells, whereas 10 cases (4%) were borderline positive. EMMPRIN expression was associated with shorter metastasis-free, disease-specific and overall survival in both univariate and multivariate analyses. The prognostic impact was largely confined to TNM stage III, and EMMPRIN-negative stage III patients had an excellent prognosis. Furthermore, EMMPRIN was significantly associated with expression of S100A4, and the combined expression of these biomarkers conferred an even poorer prognosis. However, there was no evidence of direct regulation between the two proteins in the colorectal cancer cell lines HCT116 and SW620 in siRNA knockdown experiments. Conclusion: EMMPRIN is a promising prognostic biomarker in colorectal cancer, and our findings suggest that it could be used in the selection of stage III patients for adjuvant therapy. PMID:22782346

  18. Comparing outcomes of matched related donor and matched unrelated donor hematopoietic cell transplants in adults with B-Cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Segal, Eric; Martens, Michael; Wang, Hai-Lin; Brazauskas, Ruta; Weisdorf, Daniel; Sandmaier, Brenda M; Khoury, H Jean; de Lima, Marcos; Saber, Wael

    2017-09-01

    Allogeneic hematopoietic cell transplantation (HCT) using human leukocyte antigen (HLA)-matched related donors (RDs) and allogeneic HCT using HLA-matched unrelated donors (URDs) produce similar outcomes for patients with acute myelogenous leukemia, whereas the donor source has been reported to be a predictor of outcomes in myelodysplastic syndrome. Post-HCT outcomes for 1458 acute lymphoblastic leukemia patients from 2000 to 2011 were analyzed, and RD and URD transplants were compared. The median age was 37 years (range, 18-69 years). In the multivariate analysis, HLA 8/8 allele-matched URD recipients had similar transplant-related mortality (TRM) and all-cause mortality in comparison with RD recipients (hazard ratios [HRs], 1.16 [95% confidence interval (CI), 0.91-1.48] and 1.01 [95% CI, 0.85-1.19], respectively); 7/8 URD recipients had a greater risk of TRM and all-cause mortality in comparison with RD recipients (HRs, 1.92 [95% CI, 1.47-2.52] and 1.29 [95% CI, 1.05-1.58], respectively). The risk of TRM and all-cause mortality was also greater for 7/8 URD recipients versus 8/8 URD recipients. Compared with RD recipients, both 8/8 and 7/8 URD recipients had a lower risk of relapse (HRs, 0.77 [95% CI, 0.62-0.97] and 0.75 [95% CI, 0.56-1.00], respectively). Both 8/8 and 7/8 URD recipients had a greater risk of acute graft-versus-host disease (GVHD; HRs, 2.18 [95% CI, 1.76-2.70] and 2.65 [95% CI, 2.06-3.42], respectively) and chronic GVHD (HRs, 1.28 [95% CI, 1.06-1.55] and 1.46 [95% CI, 1.14-1.88], respectively) in comparison with RD recipients. In the absence of RD transplantation, 8/8 URD transplantation is a viable alternative with similar survival outcomes, whereas 7/8 URD transplantation is associated with poorer overall survival. Cancer 2017;123:3346-55. © 2017 American Cancer Society. © 2017 American Cancer Society.

  19. Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT

    NARCIS (Netherlands)

    Choi, S.W.; Braun, T.; Henig, I.; Gatza, E.; Magenau, J.; Parkin, B.; Pawarode, A.; Riwes, M.; Yanik, G.; Dinarello, C.A.; Reddy, P.

    2017-01-01

    The oral histone deacetylase (HDAC) inhibitor (vorinostat) is safe and results in low incidence of acute graft-versus-host disease (GVHD) after reduced-intensity conditioning, related donor hematopoietic cell transplantation (HCT). However, its safety and efficacy in preventing acute GVHD in

  20. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil

    Directory of Open Access Journals (Sweden)

    Tan Loh eTeng Hern

    2015-11-01

    Full Text Available A Streptomyces strain, MUM256 was isolated from Tanjung Lumpur mangrove soil in Malaysia. Characterization of the strain showed that it has properties consistent with those of the members of the genus Streptomyces. In order to explore the potential bioactivities, extract of the fermented broth culture of MUM256 was prepared with organic solvent extraction method. DPPH and SOD activity were utilized to examine the antioxidant capacity and the results have revealed the potency of MUM256 in superoxide anion scavenging activity in dose-dependent manner. The cytotoxicity of MUM256 extract was determined using cell viability assay against 8 different panels of human cancer cell lines. Among all the tested cancer cells, HCT116 was the most sensitive toward the extract treatment. At the highest concentration of tested extract, the result showed 2.3, 2.0 and 1.8 folds higher inhibitory effect against HCT116, HT29 and Caco-2 respectively when compared to normal cell line. This result has demonstrated that MUM256 extract was selectively cytotoxic towards colon cancer cell lines. In order to determine the constituents responsible for its bioactivities, the extract was then subjected to chemical analysis using GC-MS. The analysis resulted in the identification of chemical constituents including phenolic and pyrrolopyrazine compounds which may responsible for antioxidant and anticancer activities observed. Based on the findings of this study, the presence of bioactive constituents in MUM256 extract could be a potential source for the development of antioxidative and chemopreventive agents.

  1. Anti-Cancer Activity of Lobaric Acid and Lobarstin Extracted from the Antarctic Lichen Stereocaulon alpnum

    Directory of Open Access Journals (Sweden)

    Ju-Mi Hong

    2018-03-01

    Full Text Available Lobaric acid and lobarstin, secondary metabolites derived from the antarctic lichen Stereocaulon alpnum, exert various biological activities, including antitumor, anti-proliferation, anti-inflammation, and antioxidant activities. However, the underlying mechanisms of these effects have not yet been elucidated in human cervix adenocarcinoma and human colon carcinoma. In the present study, we evaluated the anticancer effects of lobaric acid and lobarstin on human cervix adenocarcinoma HeLa cells and colon carcinoma HCT116 cells. We show that the proliferation of Hela and HCT116 cells treated with lobaric acid and lobarstin significantly decreased in a dose- and time-dependent manner. Using flow cytometry analysis, we observed that the treatment with these compounds resulted in significant apoptosis in both cell lines, following cell cycle perturbation and arrest in G2/M phase. Furthermore, using immunoblot analysis, we investigated the expression of cell cycle and apoptosis-related marker genes and found a significant downregulation of the apoptosis regulator B-cell lymphoma 2 (Bcl-2 and upregulation of the cleaved form of the poly (ADP-ribose polymerase (PARP, a DNA repair and apoptosis regulator. These results suggest that lobaric acid and lobarstin could significantly inhibit cell proliferation through cell cycle arrest and induction of apoptosis via the mitochondrial apoptotic pathway in cervix adenocarcinoma and colon carcinoma cells. Taken together, our data suggests that lobaric acid and lobarstin might be novel agents for clinical treatment of cervix adenocarcinoma and colon carcinoma.

  2. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  3. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Yeol; Bae, Young-Seuk, E-mail: ysbae@knu.ac.kr

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)–p53–p21{sup Cip1/WAF1} pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. - Highlights: • FoxO3a overexpression inhibited ROS production mediated by CK2α knockdown. • CK2α downregulation induced nuclear export of FoxO3a via AKT activation. • CK2α downregulation reduced transcription of FoxO3a target genes including SOD. • CK2α upregulation elevated nuclear import and target gene expression of FoxO3a. • This study indicates that CK2 can modulate the intracellular ROS level via FoxO3a.

  4. Benzimidazoles as new scaffold of sirtuin inhibitors: green synthesis, in vitro studies, molecular docking analysis and evaluation of their anti-cancer properties.

    Science.gov (United States)

    Yoon, Yeong Keng; Ali, Mohamed Ashraf; Wei, Ang Chee; Shirazi, Amir Nasrolahi; Parang, Keykavous; Choon, Tan Soo

    2014-08-18

    Two series of novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. Among the newly synthesized compounds, compound 4j displayed the best inhibitory activity for SIRT1 (IC50 = 54.21 μM) as well as for SIRT2 (IC50 = 26.85 μM). Cell proliferation assay showed that compound 4j possessed good antitumor activity against three different types of cancer cells derived from colon (HCT-116), breast (MDA-MB-468) and blood-leukemia (CCRF-CEM) with cell viability of 40.0%, 53.2% and 27.2% respectively at 50 μM. Docking analysis of representative compound 4j into SIRT2 indicated that the interaction with receptor was primarily due to hydrogen bonding and π-π stacking interactions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Real-time monitoring of cisplatin-induced cell death.

    Directory of Open Access Journals (Sweden)

    Hamed Alborzinia

    Full Text Available Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  6. Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT.

    Science.gov (United States)

    Choi, Sung Won; Braun, Thomas; Henig, Israel; Gatza, Erin; Magenau, John; Parkin, Brian; Pawarode, Attaphol; Riwes, Mary; Yanik, Greg; Dinarello, Charles A; Reddy, Pavan

    2017-10-12

    The oral histone deacetylase (HDAC) inhibitor (vorinostat) is safe and results in low incidence of acute graft-versus-host disease (GVHD) after reduced-intensity conditioning, related donor hematopoietic cell transplantation (HCT). However, its safety and efficacy in preventing acute GVHD in settings of heightened clinical risk that use myeloablative conditioning, unrelated donor (URD), and methotrexate are not known. We conducted a prospective, phase 2 study in this higher-risk setting. We enrolled 37 patients to provide 80% power to detect a significant difference in grade 2 to 4 acute GVHD of 50% compared with a reduction in target to 28%. Eligibility included adults with a hematological malignancy to receive myeloablative HCT from an available 8/8-HLA matched URD. Patients received GVHD prophylaxis with tacrolimus and methotrexate. Vorinostat (100 mg twice daily) was started on day -10 and continued through day +100 post-HCT. Median age was 56 years (range, 18-69 years), and 95% had acute myelogenous leukemia or high-risk myelodysplastic syndrome. Vorinostat was safe and tolerable. The cumulative incidence of grade 2 to 4 acute GVHD at day 100 was 22%, and for grade 3 to 4 it was 8%. The cumulative incidence of chronic GVHD was 29%; relapse, nonrelapse mortality, GVHD-free relapse-free survival, and overall survival at 1 year were 19%, 16%, 47%, and 76%, respectively. Correlative analyses showed enhanced histone (H3) acetylation in peripheral blood mononuclear cells and reduced interleukin 6 ( P = .028) and GVHD biomarkers (Reg3, P = .041; ST2, P = .002) at day 30 post-HCT in vorinostat-treated subjects compared with similarly treated patients who did not receive vorinostat. Vorinostat for GVHD prevention is an effective strategy that should be confirmed in a randomized phase 3 study. This trial was registered at www.clinicaltrials.gov as #NCT01790568. © 2017 by The American Society of Hematology.

  7. In Vitro and In Vivo Enhancement of Chemoradiation Using the Oral PARP Inhibitor ABT-888 in Colorectal Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, Joseph W., E-mail: jwshelt@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Waxweiler, Timothy V.; Landry, Jerome; Gao, Huiying; Xu, Yanbo; Wang, Lanfang [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); El-Rayes, Bassel [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Shu, Hui-Kuo G. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2013-07-01

    Purpose: Poly(ADP-ribose) polymerase plays a critical role in the recognition and repair of DNA single-strand breaks and double-strand breaks (DSBs). ABT-888 is an orally available inhibitor of this enzyme. This study seeks to evaluate the use of ABT-888 combined with chemotherapy and radiation therapy (RT) in colorectal carcinoma models. Methods and Materials: RT clonogenic assays were performed on HCT116 and HT29 cells treated with 5-fluorouracil, irinotecan, or oxaliplatin with or without ABT. The surviving fraction at 2 Gy and dose-modifying factor at 10% survival were analyzed. Synergism was assessed by isobologram analysis for combination therapies. γH2AX and neutral comet assays were performed to assess the effect of therapy on DSB formation/repair. In vivo assessments were made by use of HCT116 cells in a xenograft mouse model. Tumor growth delay was measured at a volume of 500 mm{sup 3}. Results: Both lines were radiosensitized by ABT alone, and ABT further increased chemotherapy dose-modifying factors to the 1.6 to 1.8 range. All combinations were synergistic (combination indices <0.9). ABT treatment significantly increased DSB after RT (γH2AX, 69% vs 43%; P=.017) and delayed repair. We found tumor growth delays of 7.22 days for RT; 11.90 days for RT and ABT; 13.5 days for oxaliplatin, RT, and ABT; 14.17 days for 5-fluorouracil, RT, and ABT; and 23.81 days for irinotecan, RT, and ABT. Conclusion: ABT-888 radiosensitizes at similar or higher levels compared with classic chemotherapies and acts synergistically with these chemotherapies to enhance RT effects. In vivo confirmation of these results indicates a potential role for combining its use with existing chemoradiation regimens.

  8. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  9. Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells.

    Science.gov (United States)

    Linford, Andrea; Yoshimura, Shin-ichiro; Nunes Bastos, Ricardo; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J; Barr, Francis A

    2012-05-15

    Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. INVITRO STUDIES ON THE EFFECT OF CURCUMA LONGA METHANOL EXTRACTS IN COLORECTAL HCT116 CELL LINES

    OpenAIRE

    Madhuri B S , Dinesh Bhaskar , Balasubramanian Sathyamurthy*

    2017-01-01

    The leaves of Curcuma longa is commonly known as gummy gardenia/cambi gum tree. It is traditional medicinal plant grown in India, have many medicinal and therapeutic properties in diseases such as inflammatory bowel disease, pancreatitis, arthritis, and chronic anterior uveitis. This leaf extracts are found to have antioxidant, chemopreventive agents, anti-inflammatory and anti cancer activities. Curcumin is the active principle which is responsible for anticancer effects. This work was aimed...

  11. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah

    2005-01-01

    99m Tc-sestamibi(MIBI) and 99m Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99m Tc-MIBI and 99m Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  12. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  13. Design, Synthesis and Biological Evaluation of Novel Bromophenol Derivatives Incorporating Indolin-2-One Moiety as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2015-02-01

    Full Text Available A series of bromophenol derivatives containing indolin-2-one moiety were designed and evaluated that for their anticancer activities against A549, Bel7402, HepG2, HeLa and HCT116 cancer cell lines using MTT assay in vitro. Among them, seven compounds (4g–4i, 5h, 6d, 7a, 7b showed potent activity against the tested five human cancer cell lines. Wound-healing assay demonstrated that compound 4g can be used as a potent compound for inactivating invasion and metastasis by inhibiting the migration of cancer cells. The structure–activity relationships (SARs of bromophenol derivatives had been discussed, which were useful for exploring and developing bromophenol derivatives as novel anticancer drugs.

  14. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ya C Wu

    Full Text Available Hydrogen sulfide (H(2S is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC and a panel of colon cancer cell lines (HT-29, SW1116, HCT116 were exposed to H(2S at concentrations similar to those found in the human colon. H(2S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2S was accompanied by G(1-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip. Moreover, exposure to H(2S led to features characteristic of autophagy, including increased formation of LC3B(+ autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2S. Further mechanistic investigation revealed that H(2S stimulated the phosphorylation of AMP-activated protein kinase (AMPK and inhibited the phosphorylation of mammalian target of rapamycin (mTOR and S6 kinase. Inhibition of AMPK significantly reversed H(2S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  15. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.

    Science.gov (United States)

    Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.

  16. N-Methyl-N'-nitro-N-nitrosoguanidine-induced senescence-like growth arrest in colon cancer cells is associated with loss of adenomatous polyposis coli protein, microtubule organization, and telomeric DNA

    Directory of Open Access Journals (Sweden)

    Narayan Satya

    2004-01-01

    Full Text Available Abstract Background Cellular senescence is a state in which mammalian cells enter into an irreversible growth arrest and altered biological functions. The senescence response in mammalian cells can be elicited by DNA-damaging agents. In the present study we report that the DNA-damaging agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG is able to induce senescence in the HCT-116 colon cancer cell line. Results Cells treated with lower concentrations of MNNG (0–25 microM for 50 h showed a dose-dependent increase in G2/M phase arrest and apoptosis; however, cells treated with higher concentrations of MNNG (50–100 microM showed a senescence-like G0/G1 phase arrest which was confirmed by increased expression of β-galactosidase, a senescence induced marker. The G2/M phase arrest and apoptosis were found to be associated with increased levels of p53 protein, but the senescence-like G0/G1 phase arrest was dissociated with p53 protein levels, since the p53 protein levels decreased in senescence-like arrested cells. We further, determined whether the decreased level of p53 was a transcriptional or a translational phenomenon. The results revealed that the decreased level of p53 protein in senescence-like arrested cells was a transcriptional phenomenon since p53 mRNA levels simultaneously decreased after treatment with higher concentrations of MNNG. We also examined the effect of MNNG treatment on other cell cycle-related proteins such as p21, p27, cyclin B1, Cdc2, c-Myc and max. The expression levels of these proteins were increased in cells treated with lower concentrations of MNNG, which supported the G2/M phase arrest. However, cells treated with higher concentrations of MNNG showed decreased levels of these proteins, and hence, may not play a role in cell cycle arrest. We then examined a possible association of the expression of APC protein and telomeric DNA signals with cellular senescence in MNNG-treated cells. We found that protein and m

  17. Identification of N-[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]-2-hydroxybenzamide (CGK-101) as a Small Molecule Inhibitor of the Wnt/β-catenin Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seoyoung; Oh, Sangtaek [Kookmin Univ., Seoul (Korea, Republic of); Lee, Jeehyun; Lee, Jung Sook; Song, Gyuyong [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-04-15

    We identified CGK-101 as an antiproliferative agent that acts against HCT116 colon cancer cells. CGK-101 induced the degradation of intracellular β-catenin, thereby suppressing the Wnt/β-catenin pathway. Therefore, CGK-101 can be developed as a preventive or therapeutic agent against various cancers that involve abnormal β-catenin accumulation. Colorectal cancer is the most prevalent type of cancer and the second leading cause of cancer-related mortalities in Western countries. Current therapies for colorectal cancer rely on surgical resection, which is rarely curative in advanced disease, and traditional cytotoxic agents exhibit limited effects. Therefore, it is crucial to develop new therapeutic strategies that are based on defined molecular lesions.

  18. Dual modality CT/PET imaging in lung cancer staging

    International Nuclear Information System (INIS)

    Diaz, Gabriel A.

    2005-01-01

    Purpose: To compare the diagnostic capability of PET-HCT image fusion and helical computed tomography (HCT) for nodal and distant metastases detection in patients with lung cancer. Material and methods: Between February, 2003 and March, 2004 sixty-six consecutive lung cancer patients (45 men and 21 women, mean ages: 63 years old, range: 38 to 96 years old) who underwent HCT and PET-HCT fusion imaging were evaluated retrospectively. All patients had histological confirmation of lung cancer and a definitive diagnosis established on the basis of pathology results and/or clinical follow-up. Results: For global nodal staging (hilar and mediastinal) HCT showed a sensitivity, specificity, positive predictive value and negative predictive value of 72%, 47%, 62% and 58% respectively, versus 94%, 77%, 83% and 92% corresponding to PET-HCT examination. For assessment of advanced nodal stage (N3) PET-HCT showed values of 92%, 100%, 100% and 98% respectively. For detection of distant metastasis, HCT alone had values of 67%, 93%, 84% and 83% respectively versus 100%, 98%, 96% and 100% for the PET-HCT fusion imaging. In 20 (30%) patients under-staged or over-staged on the basis of HCT results, PET-HCT allowed accurate staging. Conclusions: PET-HCT fusion imaging was more effective than HCT alone for nodal and distant metastasis detection and oncology staging. (author)

  19. Quantification of nanowire uptake by live cells

    KAUST Repository

    Margineanu, Michael B.

    2015-05-01

    Nanostructures fabricated by different methods have become increasingly important for various applications at the cellular level. In order to understand how these nanostructures “behave” and for studying their internalization kinetics, several attempts have been made at tagging and investigating their interaction with living cells. In this study, magnetic iron nanowires with an iron oxide layer are coated with (3-Aminopropyl)triethoxysilane (APTES), and subsequently labeled with a fluorogenic pH-dependent dye pHrodo™ Red, covalently bound to the aminosilane surface. Time-lapse live imaging of human colon carcinoma HCT 116 cells interacting with the labeled iron nanowires is performed for 24 hours. As the pHrodo™ Red conjugated nanowires are non-fluorescent outside the cells but fluoresce brightly inside, internalized nanowires are distinguished from non-internalized ones and their behavior inside the cells can be tracked for the respective time length. A machine learning-based computational framework dedicated to automatic analysis of live cell imaging data, Cell Cognition, is adapted and used to classify cells with internalized and non-internalized nanowires and subsequently determine the uptake percentage by cells at different time points. An uptake of 85 % by HCT 116 cells is observed after 24 hours incubation at NW-to-cell ratios of 200. While the approach of using pHrodo™ Red for internalization studies is not novel in the literature, this study reports for the first time the utilization of a machine-learning based time-resolved automatic analysis pipeline for quantification of nanowire uptake by cells. This pipeline has also been used for comparison studies with nickel nanowires coated with APTES and labeled with pHrodo™ Red, and another cell line derived from the cervix carcinoma, HeLa. It has thus the potential to be used for studying the interaction of different types of nanostructures with potentially any live cell types.

  20. Tumor cell proliferation and cyclooxygenase inhibitory constituents in horseradish (Armoracia rusticana) and Wasabi (Wasabia japonica).

    Science.gov (United States)

    Weil, Marvin J; Zhang, Yanjun; Nair, Muraleedharan G

    2005-03-09

    Cyclooxygenase and human tumor cell growth inhibitory extracts of horseradish (Armoracia rusticana) and wasabi (Wasabia japonica) rhizomes upon purification yielded active compounds 1-3 from horseradish and 4 and 5 from wasabi rhizomes. Spectroscopic analyses confirmed the identities of these active compounds as plastoquinone-9 (1), 6-O-acyl-beta-d-glucosyl-beta-sitosterol (2), 1,2-dilinolenoyl-3-galactosylglycerol (3), linolenoyloleoyl-3-beta-galactosylglycerol (4), and 1,2-dipalmitoyl-3-beta-galactosylglycerol (5). 3-Acyl-sitosterols, sinigrin, gluconasturtiin, and phosphatidylcholines isolated from horseradish and alpha-tocopherol and ubiquinone-10 from wasabi rhizomes isolated were inactive in our assays. At a concentration of 60 microg/mL, compounds 1 and 2 selectively inhibited COX-1 enzyme by 28 and 32%, respectively. Compounds 3, 4, and 5 gave 75, 42, and 47% inhibition of COX-1 enzyme, respectively, at a concentration of 250 microg/mL. In a dose response study, compound 3 inhibited the proliferation of colon cancer cells (HCT-116) by 21.9, 42.9, 51.2, and 68.4% and lung cancer cells (NCI-H460) by 30, 39, 44, and 71% at concentrations of 7.5, 15, 30, and 60 microg/mL, respectively. At a concentration of 60 microg/mL, compound 4 inhibited the growth of colon, lung, and stomach cancer cells by 28, 17, and 44%, respectively. This is the first report of the COX-1 enzyme and cancer cell growth inhibitory monogalactosyl diacylglycerides from wasabi and horseradish rhizomes.

  1. Platinum(IV) complex LA-12 induces cell cycle phase specific apoptosis in colon carcinoma cell line HCT-116

    Czech Academy of Sciences Publication Activity Database

    Vondálová Blanářová, Olga; Jelínková, Iva; Jendželovský, R.; Souček, Karel; Hofmanová, Jiřina; Sova, P.; Kozubík, Alois

    2009-01-01

    Roč. 276, č. 1 (2009), s. 256-257 ISSN 1742-464X. [34th FEBS Congress. 04.07.2009-09.07.2009, Prague] R&D Projects: GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA301/07/1557 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : platinum drugs * cell cycle apoptosis Subject RIV: BO - Biophysics

  2. In vitro biologic efficacy of sunitinib drug-eluting beads on human colorectal and hepatocellular carcinoma-A pilot study.

    Directory of Open Access Journals (Sweden)

    Steven Lahti

    Full Text Available Sunitinib drug eluting beads (DEB are a novel anti-angiogenic bead preparation for use in transarterial chemoembolization. However, systematic studies of sunitinib DEB's effect on cancer cells have not been reported. Herein, we assess their direct biologic efficacy against carcinoma cell lines and correlate cell viability with drug release in vitro.Sunitinib-HCl (10mg/mL in Milli-Q water was mixed with LC Bead® 300-500μm (Biocompatibles UK Ltd.. Loading and release were assessed by measurement of drug UV absorbance using UV-visible spectrophotometer. Viability of human colorectal cancer (CRC, HCT116 and HT29 and hepatocellular carcinoma (HCC, HepG2 cells upon exposure to sunitinib DEB was measured using a bioluminescent assay. Drug concentration during exposure was quantified using HPLC.When added to cultured HepG2 cells, sunitinib DEB rapidly inhibited viability with a significant decrease observed within 1 hour of incubation. Viability of HCT116 and HT29 cells decreased relatively slower, with significant reductions observed after 8 and 24 hours, respectively. After 24 hours there was nearly complete inhibition of all three cell lines. There was no difference in viability observed between cells treated with 5 μl, 10 μL, or 20 μL of sunitinib DEB. HPLC analysis of the cell culture supernatant demonstrated saturation of the cell medium within approximately 4 hours for each amount added, with sunitinib achieving a final concentration of 17.61 μM (SE ±1.01.Sunitinib can be efficiently loaded to and released from LC beads, and the resulting sunitinib DEB demonstrate strong in vitro inhibition of human CRC and HCC cells.

  3. Acriflavine enhances the antitumor activity of the chemotherapeutic drug 5-fluorouracil in colorectal cancer cells.

    Science.gov (United States)

    Zargar, Parisa; Ghani, Esmaeel; Mashayekhi, Farideh Jalali; Ramezani, Amin; Eftekhar, Ebrahim

    2018-06-01

    5-Fluorouracil (5-FU)-based chemotherapy improves the overall survival rates of patients with colorectal cancer (CRC). However, only a small proportion of patients respond to 5-FU when used as a single agent. The aim of the present study was to investigate whether the anticancer property of 5-FU is potentiated by combination treatment with acriflavine (ACF) in CRC cells. Additionally, the potential underlying molecular mechanisms of the cytotoxic effect of ACF were determined. The cytotoxic effects of ACF, 5-FU and irinotecan on different CRC cell lines with different p53 status were investigated using an MTT assay. SW480 cells that express a mutated form of p53 and two other CRC cell lines were used, HCT116 and LS174T, with wild-type p53. To determine the effect of ACF on the sensitivity of cells to 5-FU, cells were co-treated with the 30% maximal inhibitory concentration (IC 30 ) of ACF and various concentrations of 5-FU, or pretreated with the IC 30 of ACF and various concentrations of 5-FU. To assess the mechanism of action of ACF, cells were treated with IC 30 values of the compound and then the reverse transcription-quantitative polymerase chain reaction was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α) and topoisomerase 2. Results indicate that pretreatment with ACF markedly sensitized CRC cells to the cytotoxic effects of 5-FU, whereas simultaneous treatment with ACF and 5-FU were not able to alter the resistance of CRC cells to 5-FU. In comparison with irinotecan, ACF was a more potent agent for enhancing the antitumor activity of 5-FU. ACF did not alter the mRNA levels of either HIF-1α or topoisomerase 2. The results of the present study reveal for the first time that pretreatment of CRC cells with ACF markedly increases the cytotoxic effects of 5-FU, regardless of the p53 status of cells.

  4. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  5. Chemistry and Selective Tumor Cell Growth Inhibitory Activity of Polyketides from the South China Sea Sponge Plakortis sp.

    Science.gov (United States)

    Li, Jiao; Li, Cui; Riccio, Raffaele; Lauro, Gianluigi; Bifulco, Giuseppe; Li, Tie-Jun; Tang, Hua; Zhuang, Chun-Lin; Ma, Hao; Sun, Peng; Zhang, Wen

    2017-05-03

    Simplextone E ( 1 ), a new metabolite of polyketide origin, was isolated with eight known analogues ( 2 - 9 ) from the South China Sea sponge Plakortis sp. The relative configuration of the new compound was elucidated by a detailed analysis of the spectroscopic data and quantum mechanical calculation of NMR chemical shifts, aided by the newly reported DP4+ approach. Its absolute configuration was determined by the TDDFT/ECD calculation. Simplextone E ( 1 ) is proven to be one of the isomers of simplextone D. The absolute configuration at C-8 in alkyl chain of plakortone Q ( 2 ) was also assigned based on the NMR calculation. In the preliminary in vitro bioassay, compounds 6 and 7 showed a selective growth inhibitory activity against HCT-116 human colon cancer cells with IC 50 values of 8.3 ± 2.4 and 8.4 ± 2.3 μM, corresponding to that of the positive control, adriamycin (IC 50 4.1 μM). The two compounds also showed selective activities towards MCF-7 human breast cancer and K562 human erythroleukemia cells while compound 3 only displayed weak activity against K562 cells.

  6. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  7. Fas ligand expression in human and mouse cancer cell lines; a caveat on over-reliance on mRNA data

    Directory of Open Access Journals (Sweden)

    Ryan Aideen E

    2006-02-01

    Full Text Available Abstract Background During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies reporting that tumor cells of varying origin do not express FasL. In the present study, we aimed to comprehensively characterize FasL expression in tumors of both murine and human origin over a 72 hour time period. Methods RNA and protein was extracted from six human (SW620, HT29, SW480, KM12SM, HCT116, Jurkat and three mouse (CMT93, CT26, B16F10 cancer cell lines at regular time intervals over a 72 hour time period. FasL expression was detected at the mRNA level by RT-PCR, using intron spanning primers, and at the protein level by Western Blotting and immunofluorescence, using a polyclonal FasL- specific antibody. Results Expression of FasL mRNA and protein was observed in all cell lines analysed. However, expression of FasL mRNA varied dramatically over time, with cells negative for FasL mRNA at many time points. In contrast, 8 of the 9 cell lines constitutively expressed FasL protein. Thus, cells can abundantly express FasL protein at times when FasL mRNA is absent. Conclusion These findings demonstrate the importance of complete analysis of FasL expression by tumor cells in order to fully characterize its biological function and may help to resolve the discrepancies present in the literature regarding FasL expression and tumor immune privilege.

  8. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    Science.gov (United States)

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mirnajafizadeh, Fatemeh; Ramsey, Deborah; McAlpine, Shelli [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Fan; Reece, Peter [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Stride, John Arron, E-mail: j.stride@unsw.edu.au [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2016-07-01

    Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4′,6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5 g/L, which makes them of potential use in biological imaging applications. - Highlights: • Highly luminescent ZnSe(S) QDs were synthesized using a simple, one-step hydrothermal method. • The as-synthesized QDs were found to be nontoxic in the presence of biological cells. • The QDs were stable in biological media with identical emission profile to that in water.

  10. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  11. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  12. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-20

    Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  13. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.

    Directory of Open Access Journals (Sweden)

    Jessica Marinello

    Full Text Available Topoisomerase I-DNA-cleavage complexes (Top1cc stabilized by camptothecin (CPT have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.

  14. Isolation of C11 Cyclopentenones from Two Didemnid Species, Lissoclinum sp. and Diplosoma sp.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Ueda

    2009-12-01

    Full Text Available A series of new C11 cyclopentenones 1-7 was isolated, together with four known metabolites 9/10, 12 and 13, from the extract of the didemnid ascidian Lissoclinum sp. The other didemnid ascidian Diplosoma sp. contained didemnenones 1, 2 and 5, and five known metabolites 8-12. The structures of 1-7 were elucidated by spectroscopic analyses. Cytotoxicity of the isolated compounds was evaluated against three human cancer cell lines (HCT116, A431 and A549.

  15. Additional file 5: Figure S5. of Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms

    OpenAIRE

    Wagner, Jessica; Leah Kline, C.; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik

    2018-01-01

    Analysis of regorafenib and ONC201 mechanism in combination. A) HUVEC representative images of sprouting from HUVECs grown on Matrigel. B) Quantitation of HUVEC sprouting and branching after 12 hours. C) HCT116 cells from live cell imaging using CHOP-800 and Actin-700 on LiCor Odyssey. Cells treated for 48 hours. ONC201: 5 μM. HUVECS N=4, ONC201 treatment 5 μM, Regorafenib 1 mg/ml. (PPTX 623 kb)

  16. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside.

    Science.gov (United States)

    López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga

    2016-04-01

    Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.

  17. Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2 Correlates with Poor Prognosis in Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Haiyan Yan

    Full Text Available Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2 is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lung adenocarcinoma, implying the role of DYRK2 as a potential oncogene. However, its clinical role in colorectal cancer (CRC has not been explored. In this study, we analyzed the expression of DYRK2 from Oncomine database and found that DYRK2 level is lower in primary or metastatic CRC compared to adjacent normal colon tissue or non-metastatic CRC, respectively, in 6 colorectal carcinoma data sets. The correlation between DYRK2 expression and clinical outcome in 181 CRC patients was also investigated by real-time PCR and IHC. DYRK2 expression was significantly down-regulated in colorectal cancer tissues compared with adjacent non-tumorous tissues. Functional studies confirmed that DYRK2 inhibited cell invasion and migration in both HCT116 and SW480 cells and functioned as a tumor suppressor in CRC cells. Furthermore, the lower DYRK2 levels were correlated with tumor sites (P = 0.023, advanced clinical stages (P = 0.006 and shorter survival in the advanced clinical stages. Univariate and multivariate analyses indicated that DYRK2 expression was an independent prognostic factor (P < 0.001. Taking all, we concluded that DYRK2 a novel prognostic biomarker of human colorectal cancer.

  18. Bax/Tubulin/Epithelial-Mesenchymal Pathways Determine the Efficacy of Silybin Analog HM015k in Colorectal Cancer Cell Growth and Metastasis

    Directory of Open Access Journals (Sweden)

    Haneen Amawi

    2018-05-01

    Full Text Available The inhibition of apoptosis, disruption of cellular microtubule dynamics, and over-activation of the epithelial mesenchymal transition (EMT, are involved in the progression, metastasis, and resistance of colorectal cancer (CRC to chemotherapy. Therefore, the design of a molecule that can target these pathways could be an effective strategy to reverse CRC progression and metastasis. In this study, twelve novel silybin derivatives, HM015a-HM015k (15a−15k and compound 17, were screened for cytotoxicity in CRC cell lines. Compounds HM015j and HM015k (15k and 15j significantly decreased cell proliferation, inhibited colony formation, and produced cell cycle arrest in CRC cells. Furthermore, 15k significantly induced the formation of reactive oxygen species and apoptosis. It induced the cleavage of the intrinsic apoptotic protein (Bax p21 to its more efficacious fragment, p18. Compound 15k also inhibited tubulin expression and disrupted its structure. Compound 15k significantly decreased metastatic LOVO cell migration and invasion. Furthermore, 15k reversed mesenchymal morphology in HCT116 and LOVO cells. Additionally, 15k significantly inhibited the expression of the mesenchymal marker N-cadherin and upregulated the expression of the epithelial marker, E-cadherin. Compound 15k inhibited the expression of key proteins known to induce EMT (i.e., DVL3, β-catenin, c-Myc and upregulated the anti-metastatic protein, cyclin B1. Overall, in vitro, 15k significantly inhibited CRC progression and metastasis by inhibiting apoptosis, tubulin activity and the EMT pathways. Overall, these data suggest that compound 15k should be tested in vivo in a CRC animal model for further development.

  19. The anti-proliferative effect of L-carnosine correlates with a decreased expression of hypoxia inducible factor 1 alpha in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Barbara Iovine

    Full Text Available In recent years considerable attention has been given to the use of natural substances as anticancer drugs. The natural antioxidant dipeptide L-carnosine belongs to this class of molecules because it has been proved to have a significant anticancer activity both in vitro and in vivo. Previous studies have shown that L-carnosine inhibits the proliferation of human colorectal carcinoma cells by affecting the ATP and Reactive Oxygen Species (ROS production. In the present study we identified the Hypoxia-Inducible Factor 1α (HIF-1α as a possible target of L-carnosine in HCT-116 cell line. HIF-1α protein is over-expressed in multiple types of human cancer and is the major cause of resistance to drugs and radiation in solid tumours. Of particular interest are experimental data supporting the concept that generation of ROS provides a redox signal for HIF-1α induction, and it is known that some antioxidants are able to suppress tumorigenesis by inhibiting HIF-1α. In the current study we found that L-carnosine reduces the HIF-1α protein level affecting its stability and decreases the HIF-1 transcriptional activity. In addition, we demonstrated that L-carnosine is involved in ubiquitin-proteasome system promoting HIF-1α degradation. Finally, we compared the antioxidant activity of L-carnosine with that of two synthetic anti-oxidant bis-diaminotriazoles (namely 1 and 2, respectively. Despite these three compounds have the same ability in reducing intracellular ROS, 1 and 2 are more potent scavengers and have no effect on HIF-1α expression and cancer cell proliferation. These findings suggest that an analysis of L-carnosine antioxidant pathway will clarify the mechanism underlying the anti-proliferative effects of this dipeptide on colon cancer cells. However, although the molecular mechanism by which L-carnosine down regulates or inhibits the HIF-1α activity has not been yet elucidated, this ability may be promising in treating hypoxia

  20. NDV-induced apoptosis in absence of Bax; evidence of involvement of apoptotic proteins upstream of mitochondria

    Directory of Open Access Journals (Sweden)

    Molouki Aidin

    2012-08-01

    Full Text Available Abstract Background Recently it was shown that following infection of HeLa cells with Newcastle disease virus (NDV, the matrix (M protein binds to Bax and subsequently the intrinsic pathway of apoptosis is activated. Moreover, there was very little alteration on mRNA and protein levels of Bax and Bcl-2 after infection with NDV. Finding In order to further investigate the role of members of the Bcl-2 family, Bax-knockout and wild-type HCT116 cells were infected with NDV strain AF2240. Although both cells underwent apoptosis through the activation of the intrinsic pathway and the release of cytochrome c from mitochondria, the percentage of dead Bax-knockout cells was significantly lower than wt cells (more than 10% at 48 h post-infection. In a parallel experiment, the effect of NDV on HT29 cells, that are originally Bcl-2-free, was studied. Apoptosis in HT29 cells was associated with Bax redistribution from cytoplasm to mitochondria, similar to that of HeLa and wt HCT116 cells. Conclusion Although the presence of Bax during NDV-induced apoptosis contributes to a faster cell death, it was concluded that other apoptotic protein(s upstream of mitochondria are also involved since cancer cells die whether in the presence or absence of Bax. Therefore, the classic Bax/Bcl-2 ratio may not be a major determinant in NDV-induced apoptosis.

  1. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  2. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Directory of Open Access Journals (Sweden)

    Zarbock Ralf

    2012-03-01

    Full Text Available Abstract Background Surfactant protein C (SP-C is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy

  3. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  4. In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites.

    Directory of Open Access Journals (Sweden)

    Eliška Potůčková

    Full Text Available Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT, demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma, non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1 promote the redox cycling of iron; (2 bind and mobilize iron from labile intracellular pools; and (3 prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.

  5. Lung cancer, intracellular signaling pathways, and preclinical models

    International Nuclear Information System (INIS)

    Mordant, P.

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Activation of phosphatidylinositol-3-kinase (PI3K)-AKT and Kirsten rat sarcoma viral oncogene homologue (KRAS) can induce cellular immortalization, proliferation, and resistance to anticancer therapeutics such as epidermal growth factor receptor inhibitors or chemotherapy. This study assessed the consequences of inhibiting these two pathways in tumor cells with activation of KRAS, PI3K-AKT, or both. We investigated whether the combination of a novel RAF/vascular endothelial growth factor receptor inhibitor, RAF265, with a mammalian target of rapamycin (mTOR) inhibitor, RAD001 (everolimus), could lead to enhanced anti-tumoral effects in vitro and in vivo. To address this question, we used cell lines with different status regarding KRAS, PIK3CA, and BRAF mutations, using immunoblotting to evaluate the inhibitors, and MTT and clonogenic assays for effects on cell viability and proliferation. Subcutaneous xenografts were used to assess the activity of the combination in vivo. RAD001 inhibited mTOR downstream signaling in all cell lines, whereas RAF265 inhibited RAF downstream signaling only in BRAF mutant cells. In vitro, addition of RAF265 to RAD001 led to decreased AKT, S6, and Eukaryotic translation initiation factor 4E binding protein 1 phosphorylation in HCT116 cells. In vitro and in vivo, RAD001 addition enhanced the anti-tumoral effect of RAF265 in HCT116 and H460 cells (both KRAS mut, PIK3CA mut); in contrast, the combination of RAF265 and RAD001 yielded no additional activity in A549 and MDAMB231 cells. The combination of RAF and mTOR inhibitors is effective for enhancing anti-tumoral effects in cells with deregulation of both RAS-RAF and PI3K, possibly through the cross-inhibition of 4E binding protein 1 and S6 protein. We then focus on animal models. Preclinical models of NSCLC require better clinical relevance to study disease mechanisms and innovative

  6. p21 promotes oncolytic adenoviral activity in ovarian cancer and is a potential biomarker

    Directory of Open Access Journals (Sweden)

    Lockley Michelle

    2010-07-01

    Full Text Available Abstract The oncolytic adenovirus dl922-947 replicates selectively within and lyses cells with a dysregulated Rb pathway, a finding seen in > 90% human cancers. dl922-947 is more potent than wild type adenovirus and the E1B-deletion mutant dl1520 (Onyx-015. We wished to determine which host cell factors influence cytotoxicity. SV40 large T-transformed MRC5-VA cells are 3-logs more sensitive to dl922-947 than isogenic parental MRC5 cells, confirming that an abnormal G1/S checkpoint increases viral efficacy. The sensitivity of ovarian cancer cells to dl922-947 varied widely: IC50 values ranged from 51 (SKOV3ip1 to 0.03 pfu/cell (TOV21G. Cells sensitive to dl922-947 had higher S phase populations and supported earlier E1A expression. Cytotoxicity correlated poorly with both infectivity and replication, but well with expression of p21 by microarray and western blot analyses. Matched p21+/+ and -/- Hct116 cells confirmed that p21 influences dl922-947 activity in vitro and in vivo. siRNA-mediated p21 knockdown in sensitive TOV21G cells decreases E1A expression and viral cytotoxicity, whilst expression of p21 in resistant A2780CP cells increases virus activity in vitro and in intraperitoneal xenografts. These results highlight that host cell factors beyond simple infectivity can influence the efficacy of oncolytic adenoviruses. p21 expression may be an important biomarker of response in clinical trials.

  7. DNA-PK/Ku complex binds to latency-associated nuclear antigen and negatively regulates Kaposi's sarcoma-associated herpesvirus latent replication

    International Nuclear Information System (INIS)

    Cha, Seho; Lim, Chunghun; Lee, Jae Young; Song, Yoon-Jae; Park, Junsoo; Choe, Joonho; Seo, Taegun

    2010-01-01

    During latent infection, latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus (KSHV) plays important roles in episomal persistence and replication. Several host factors are associated with KSHV latent replication. Here, we show that the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku70, and Ku86 bind the N-terminal region of LANA. LANA was phosphorylated by DNA-PK and overexpression of Ku70, but not Ku86, impaired transient replication. The efficiency of transient replication was significantly increased in the HCT116 (Ku86 +/-) cell line, compared to the HCT116 (Ku86 +/+) cell line, suggesting that the DNA-PK/Ku complex negatively regulates KSHV latent replication.

  8. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    Science.gov (United States)

    Fayad, Walid; Fryknäs, Mårten; Brnjic, Slavica; Olofsson, Maria Hägg; Larsson, Rolf; Linder, Stig

    2009-10-02

    Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  9. Preparation and Biological Evaluation of Two Novel Platinum(II Complexes Based on the Ligands of Dipicolyamine Bisphosphonate Esters

    Directory of Open Access Journals (Sweden)

    Ling Qiu

    2016-02-01

    Full Text Available Two new platinum(II-based complexes bearing a bone-targeting group were synthesized and characterized. They both have excellent affinity for hydroxyapatite (HA, which is abundant in human bone tissues. Their antitumor activities against five human cancer cell lines (U2OS, A549, HCT116, MDA-MB-231 and HepG2 were evaluated and compared with cisplatin (CDDP. Though the antitumor efficacies of new complexes are lower than that of CDDP, they show higher selectivity against the HepG2 hepatoma cell line than the L02 normal liver cell line. Morphology studies exhibited typical characteristics of cell apoptosis and the cell cycle distribution analysis indicated that the complexes can inhibit cancer cells by inducing cell cycle arrest at the G2/M phase, a similar mechanism of action to CDDP.

  10. Long non-coding RNA AFAP1-AS1 facilitates tumor growth and promotes metastasis in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Xu Han

    Full Text Available BACKGROUND AND OBJECTIVE: Long non-coding RNAs can regulate tumorigenesis of various cancers. Dys-regulation of lncRNA-AFAP1-AS1 has not been studied in colorectal carcinoma (CRC. This study was to examine the function involvement of AFAP1-AS1 in tumor growth and metastasis of CRC. METHODS: Relative expression of AFAP1-AS1 in CRC tissues and CRC cells lines was determined using quantitative real-time PCR (qRT-PCR. Functional involvement of AFAP1-AS1 in tumor proliferation and metastasis was evaluated in AFAP1-AS1-specific siRNA-treated CRC cells and in CRC cell xenograft. Expression of epithelial-mesenchymal transition (EMT-related gene expression was determined using western blot. RESULTS: Relative expression of AFAP1-AS1 was significantly elevated in CRC tissues and CRC HCT116 and SW480 cell lines. AFAP1-AS1 knock-down suppressed SW480 cell proliferation, colony formation, migration and invasion. Also AFAP1-AS1 knock-down inhibited tumor metastasis-associated genes expression in terms of EMT. This carcinostatic action by AFAP1-AS1 knock-down was further confirmed by suppression of tumor formation and hepatic metastasis of CRC cells in nude mice. CONCLUSION: lncRNA-AFAP1-AS1 knock-down exhibits antitumor effect on colorectal carcinoma in respects of suppression of cell proliferation and metastasis of cancer cells.

  11. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    International Nuclear Information System (INIS)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra; De Ridder, Mark

    2013-01-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes

  12. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  13. Increased Water Solubility of the Curcumin Derivatives via Substitution with an Acetoxy Group at the Central Methylene Moiety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Kyoung; Mok, Hyejung; Chong, Youhoon [Konkuk Univ., Seoul (Korea, Republic of)

    2012-09-15

    Curcumin (diferuloyl methane), a natural yellow pigment in the roots of turmeric, has been considered as one of the most promising chemopreventive agents against a variety of human cancers. Curcumin is known to exhibit its antiproliferative effect against various cancer cells through cell cycle arrest and induction of apoptosis. Although not as potent as many other cytotoxic agents, curcumin has been demonstrated to be safe in humans at relatively high doses (10 grams/day), making it an attractive target for chemotherapeutic drug discovery efforts. Two compounds with meta-methoxy substituents (2 and 3) maintained comparable antiproliferative activity with curcumin (1). In contrast, the acetoxy-curcuminoids (8-14) showed moderate to potent activity against all three cancer cell lines tested (Table 1). In particular, the colon cancer cell (HCT116) was most susceptible to the acetoxy-curcuminoids (8-12, Table 1) to show 2-2.5 times increase in EC{sub 50} values compared with that of curcumin (1, Table 1). In this series, like the simple curcuminoids (2-7), the aromatic meta-methoxy substituent turned out to be critical for the antiproliferative effect, and the corresponding acetoxy-curcuminoids 10 and 11 showed the most potent activity against HCT116 with EC{sub 50} values of 18.5 μM and 16.9 μM, respectively. Also noteworthy is the broad spectrum antiproliferative effect of the acetoxy-curcuminoid 11 with a free catechol moiety, which exhibited almost similar antiproliferative activity against all three cancer cell lines tested. Taken together, through evaluation of solubility as well as antiproliferative effect of the acetoxy-curcuminoids, we figured out that the acetoxy group substituted at the central methylene unit which served to enhance the solubility of the corresponding curcuminoids also played a key role in potentiating their antiproliferative effect. Thus, upon combination of the methylenyl acetoxy group and the aromatic meta-methoxy group on the curcumin

  14. Increased Water Solubility of the Curcumin Derivatives via Substitution with an Acetoxy Group at the Central Methylene Moiety

    International Nuclear Information System (INIS)

    Kim, Mi Kyoung; Mok, Hyejung; Chong, Youhoon

    2012-01-01

    Curcumin (diferuloyl methane), a natural yellow pigment in the roots of turmeric, has been considered as one of the most promising chemopreventive agents against a variety of human cancers. Curcumin is known to exhibit its antiproliferative effect against various cancer cells through cell cycle arrest and induction of apoptosis. Although not as potent as many other cytotoxic agents, curcumin has been demonstrated to be safe in humans at relatively high doses (10 grams/day), making it an attractive target for chemotherapeutic drug discovery efforts. Two compounds with meta-methoxy substituents (2 and 3) maintained comparable antiproliferative activity with curcumin (1). In contrast, the acetoxy-curcuminoids (8-14) showed moderate to potent activity against all three cancer cell lines tested (Table 1). In particular, the colon cancer cell (HCT116) was most susceptible to the acetoxy-curcuminoids (8-12, Table 1) to show 2-2.5 times increase in EC 50 values compared with that of curcumin (1, Table 1). In this series, like the simple curcuminoids (2-7), the aromatic meta-methoxy substituent turned out to be critical for the antiproliferative effect, and the corresponding acetoxy-curcuminoids 10 and 11 showed the most potent activity against HCT116 with EC 50 values of 18.5 μM and 16.9 μM, respectively. Also noteworthy is the broad spectrum antiproliferative effect of the acetoxy-curcuminoid 11 with a free catechol moiety, which exhibited almost similar antiproliferative activity against all three cancer cell lines tested. Taken together, through evaluation of solubility as well as antiproliferative effect of the acetoxy-curcuminoids, we figured out that the acetoxy group substituted at the central methylene unit which served to enhance the solubility of the corresponding curcuminoids also played a key role in potentiating their antiproliferative effect. Thus, upon combination of the methylenyl acetoxy group and the aromatic meta-methoxy group on the curcumin framework

  15. Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers.

    Directory of Open Access Journals (Sweden)

    Luke C Pilling

    Full Text Available Variability in red blood cell volumes (distribution width, RDW increases with age and is strongly predictive of mortality, incident coronary heart disease and cancer. We investigated inherited genetic variation associated with RDW in 116,666 UK Biobank human volunteers.A large proportion RDW is explained by genetic variants (29%, especially in the older group (60+ year olds, 33.8%, <50 year olds, 28.4%. RDW was associated with 194 independent genetic signals; 71 are known for conditions including autoimmune disease, certain cancers, BMI, Alzheimer's disease, longevity, age at menopause, bone density, myositis, Parkinson's disease, and age-related macular degeneration. Exclusion of anemic participants did not affect the overall findings. Pathways analysis showed enrichment for telomere maintenance, ribosomal RNA, and apoptosis. The majority of RDW-associated signals were intronic (119 of 194, including SNP rs6602909 located in an intron of oncogene GAS6, an eQTL in whole blood.Although increased RDW is predictive of cardiovascular outcomes, this was not explained by known CVD or related lipid genetic risks, and a RDW genetic score was not predictive of incident disease. The predictive value of RDW for a range of negative health outcomes may in part be due to variants influencing fundamental pathways of aging.

  16. Methylthio-Aspochalasins from a Marine-Derived Fungus Aspergillus sp.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2014-09-01

    Full Text Available Two novel aspochalasins, 20-β-methylthio-aspochalsin Q (named as aspochalasin V, (1 and aspochalasin W (2, were isolated from culture broth of Aspergillus sp., which was found in the gut of a marine isopod Ligia oceanica. The structures were determined on the basis of NMR and mass spectral data analysis. This is the first report about methylthio-substituted aspochalasin derivatives. Cytotoxicity against the prostate cancer PC3 cell line and HCT116 cell line was assayed using the MTT method. Apochalasin V showed moderate activity at IC50 values of 30.4 and 39.2 μM, respectively.

  17. Synthesis of isatin thiosemicarbazones derivatives: in vitro anti-cancer, DNA binding and cleavage activities.

    Science.gov (United States)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B; Abdul Majid, A M S

    2014-05-05

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A Pansharpening Method Based on HCT and Joint Sparse Model

    Directory of Open Access Journals (Sweden)

    XU Ning

    2016-04-01

    Full Text Available A novel fusion method based on the hyperspherical color transformation (HCT and joint sparsity model is proposed for decreasing the spectral distortion of fused image further. In the method, an intensity component and angles of each band of the multispectral image is obtained by HCT firstly, and then the intensity component is fused with the panchromatic image through wavelet transform and joint sparsity model. In the joint sparsity model, the redundant and complement information of the different images can be efficiently extracted and employed to yield the high quality results. Finally, the fused multi spectral image is obtained by inverse transforms of wavelet and HCT on the new lower frequency image and the angle components, respectively. Experimental results on Pleiades-1 and WorldView-2 satellites indicate that the proposed method achieves remarkable results.

  19. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study.

    Directory of Open Access Journals (Sweden)

    Oh Young Bang

    Full Text Available Cancer and stroke, which are known to be associated with one another, are the most common causes of death in the elderly. However, the pathomechanisms that lead to stroke in cancer patients are not well known. Circulating extracellular vesicles (EVs play a role in cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke.Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhesion molecule [CD326], tissue factor (TF [CD142], endothelial cells (CD31+CD42b-, and platelets (CD62P were measured using flow cytometry in (a 155 patients with ischemic stroke and active cancer (116 - cancer-related, 39 - conventional stroke mechanisms, (b 25 patients with ischemic stroke without cancer, (c 32 cancer patients without stroke, and (d 101 healthy subjects.The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs. The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+ were higher in cancer-related stroke than in other groups (P<0.05 in all the cases. Path analysis showed that cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer levels. Poor correlation was observed between TF+ EV and D-dimer, and path analysis demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy independent of the levels of TF+ EVs.Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ischemic stroke via TF-independent mechanisms.

  20. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Changhua, E-mail: chkoukou@hotmail.com [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Zhou, Tian [Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Han, Xilin; Zhuang, Huijie [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Qian, Haixin, E-mail: qianhaixin@hotmail.com [The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000 (China)

    2015-08-21

    Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling. - Highlights: • Promoter methylation of LRIG1 occurred in colorectal cancer cells and tumors. • Restoration of LRIG1 inhibits tumor growth in vitro and in vivo. • Overexpression or knockdown of LRIG1 regulates EGFR/AKT and downstream apoptosis. • Methylation of LRIG1 correlates with its mRNA and protein downregulation. • LRIG1 was firstly identified as an epigenetic target in cancer.