WorldWideScience

Sample records for cancer cells expressing

  1. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  2. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  3. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  4. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  5. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  6. Impact of Annexin A3 expression in gastric cancer cells.

    Science.gov (United States)

    Yu, S Y; Li, Y; Fan, L Q; Zhao, Q; Tan, B B; Liu, Y

    2014-01-01

    Annexin A3 participates in various biological processes, including tumorigenesis, drug resistance, and metastasis. The aim of this study was to investigate the expression of Annexin A3 in gastric cancer and its relationship with cell differentiation, migration, and invasion of gastric cancer cells. Annexin A3 expression in gastric cancer tissues was detected by quantitative real-time PCR and Western blotting. The proliferation of gastric cancer cells was measured by the MTT assay. Cell migration and invasion were determined via wound healing and transwell assays, respectively. Knock down of endogenous Annexin A3 in gastric cancer BGC823 cells was performed using siRNA technology. The expression of Annexin A3 was significantly upregulated in gastric cancer tissues, and negatively correlated with the differentiation degree. Silencing of endogenous Annexin A3 suppressed the proliferation, migration, and invasion of BGC823 cells. Additionally, the expression of p21, p27, TIMP-1, and TIMP-2 was upregulated, and the expression of PCNA, cyclin D1, MMP-1, and MMP-2 decreased in cells treated with Annexin A3-siRNA. Annexin A3 was upregulated in gastric cancer cells. Deletion of endogenous Annexin A3 significantly inhibited gastric cancer cell proliferation, migration, and invasion.

  7. Metastasis regulation by PPARD expression in cancer cells

    Science.gov (United States)

    Zuo, Xiangsheng; Xu, Weiguo; Xu, Min; Tian, Rui; Moussalli, Micheline J.; Mao, Fei; Zheng, Xiaofeng; Wang, Jing; Morris, Jeffrey S.; Eng, Cathy; Maru, Dipen M.; Rashid, Asif; Broaddus, Russell; Wei, Daoyan; Hung, Mien-Chie; Sood, Anil K.

    2017-01-01

    Peroxisome proliferator–activated receptor–δ (PPARD) is upregulated in many major human cancers, but the role that its expression in cancer cells has in metastasis remains poorly understood. Here, we show that specific PPARD downregulation or genetic deletion of PPARD in cancer cells significantly repressed metastasis in various cancer models in vivo. Mechanistically, PPARD promoted angiogenesis via interleukin 8 in vivo and in vitro. Analysis of transcriptome profiling of HCT116 colon cancer cells with or without genetic deletion of PPARD and gene expression patterns in The Cancer Genome Atlas colorectal adenocarcinoma database identified novel pro-metastatic genes (GJA1, VIM, SPARC, STC1, SNCG) as PPARD targets. PPARD expression in cancer cells drastically affected epithelial-mesenchymal transition, migration, and invasion, further underscoring its necessity for metastasis. Clinically, high PPARD expression in various major human cancers (e.g., colorectal, lung, breast) was associated with significantly reduced metastasis-free survival. Our results demonstrate that PPARD, a druggable protein, is an important molecular target in metastatic cancer. PMID:28097239

  8. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Kimitoshi Kohno

    2011-10-01

    Full Text Available We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143 regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1, aurora kinase B (AURKB and some minichromosome maintenance complex components (MCM. However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  9. Forced Expression of ZNF143 Restrains Cancer Cell Growth

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Hiroto, E-mail: h-izumi@med.uoeh-u.ac.jp; Yasuniwa, Yoshihiro; Akiyama, Masaki; Yamaguchi, Takahiro; Kuma, Akihiro; Kitamura, Noriaki; Kohno, Kimitoshi [Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-19

    We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.

  10. Expression of basal cell keratins in human prostate cancer metastases and cell lines.

    NARCIS (Netherlands)

    Leenders, G.J.L.H. van; Aalders, M.W.; Hulsbergen-van de Kaa, C.A.; Ruiter, D.J.; Schalken, J.A.

    2001-01-01

    Within normal human prostate epithelium, basal and luminal cells can be discriminated by their expression of keratins (K). While basal cells express K5/14, luminal cells show expression of K8/18 and an intermediate cell population can be identified by co-expression of K5/18. Prostate cancer is predo

  11. Heterogeneity of aberrant immunoglobulin expression in cancer cells

    Institute of Scientific and Technical Information of China (English)

    Duosha Hu; Ya Cao; Zhi Duan; Ming Li; Yiqun Jiang; Haidan Liu; Hui Zheng; Lili Li; Ann M Bode; Zigang Dong

    2011-01-01

    Accumulating evidence has shown that immunoglobulin (Ig) is 'unexpectedly' expressed by epithelial cancer cells and that it can promote tumor growth.The main purpose of this study was to explore the components of the cancerous Ig and its possible function.The presence of cancerous Ig in the Golgi apparatus was confirmed by immunofluorescence,indirectly suggesting that the cancerous Ig was processed and packaged in cancer cells.Western blot analysis and ELISA results indicated that cancer cells produced membrane Ig and secreted Ig into the supernatant fraction.The cancerous Ig consists of an α heavy chain and a κ light chain.Finally,by analyzing the Ig components pulled down by protein A beads,the cancerous Ig was found to be structurally distinct from normal Ig.The cancerous Ig was truncated or aberrant.Although the underlying mechanism that causes the abnormalities has not been determined,our current discoveries strengthen our previous findings and promise fruitful future explorations.

  12. Expression of tumor antigens on primary ovarian cancer cells compared to established ovarian cancer cell lines

    Science.gov (United States)

    Kloudová, Kamila; Hromádková, Hana; Partlová, Simona; Brtnický, Tomáš; Rob, Lukáš; Bartůňková, Jiřina; Hensler, Michal; Halaška, Michael J.; Špíšek, Radek; Fialová, Anna

    2016-01-01

    In order to select a suitable combination of cancer cell lines as an appropriate source of antigens for dendritic cell-based immunotherapy of ovarian cancer, we analyzed the expression level of 21 tumor associated antigens (BIRC5, CA125, CEA, DDX43, EPCAM, FOLR1, Her-2/neu, MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MUC-1, NY-ESO-1, PRAME, p53, TPBG, TRT, WT1) in 4 established ovarian cancer cell lines and in primary tumor cells isolated from the high-grade serous epithelial ovarian cancer tissue. More than 90% of tumor samples expressed very high levels of CA125, FOLR1, EPCAM and MUC-1 and elevated levels of Her-2/neu, similarly to OVCAR-3 cell line. The combination of OV-90 and OVCAR-3 cell lines showed the highest overlap with patients' samples in the TAA expression profile. PMID:27323861

  13. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues.

    Directory of Open Access Journals (Sweden)

    Gayatri Gowrishankar

    Full Text Available F18 2-Fluoro 2-deoxyglucose (FDG has been the gold standard in positron emission tomography (PET oncologic imaging since its introduction into the clinics several years ago. Seeking to complement FDG in the diagnosis of breast cancer using radio labeled fructose based analogs, we investigated the expression of the chief fructose transporter-GLUT 5 in breast cancer cells and human tissues. Our results indicate that GLUT 5 is not over-expressed in breast cancer tissues as assessed by an extensive immunohistochemistry study. RT-PCR studies showed that the GLUT 5 mRNA was present at minimal amounts in breast cancer cell lines. Further knocking down the expression of GLUT 5 in breast cancer cells using RNA interference did not affect the fructose uptake in these cell lines. Taken together these results are consistent with GLUT 5 not being essential for fructose uptake in breast cancer cells and tissues.

  14. Expression of Telomerase Activity in Gastric Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between telomerase activity and biological behavior in human gastric cells and appraise the clinical significance of detecting telomerase activity. Methods The telomerase activity in 47 gastric cancer tissue samples,their matched nomal tissues,7 gastric ulcer and 2 gastric cancer cell lines was detected using a PCR-based non-radioisotopic telomeric repeat amplification protocol(TRAP) assay. Results None of the 47 samples from normal gastric tissues expressed telomerase activity.The 41 of 47 cases of gastric cancer presented telomerase activity with an 87.2% positive rate (P<0.001). 2/2 gastric cancer cell lines and 0/7 gastric ulcer line were also positive for telmerase activity.The activity of telomerase was associated with the pathological differentiation of gastric cancer. Conclusion Telomerase activity may be related to the biological behavior of gastric cancer and can help in assessing the malignant poten-tial of gastric cancer.Telomerase activity will be a good diagnostic marker for the detection of gastric cancer.

  15. DUAL ROLES OF CANCER CELL-EXPRESSED IMMUNOGLOBULINS IN CANCER IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Gregory Lee

    2014-01-01

    Full Text Available While the expression of immunoglobulins and T cell receptors on cancer cells has been well-established for decades, the potential roles and mechanisms of action of these cancerous antigen receptors have not been fully elucidated. A monoclonal antibody designated as RP215, which reacts specifically with the carbohydrate-associated epitope located on the heavy chain region of cancerous immunoglobulins and T cell receptors, was used as a unique probe to study the roles of antigen receptors in the immunology of cancer cells. Through extensive cell-based biological and immunological studies, it was found that both anti-antigen receptors and RP215 demonstrated similar actions on the gene regulations involved in the growth/proliferation of cancer cells, as well as on toll-like receptors involved in innate immunity. In addition, RP215-specific cancerous immunoglobulins are believed to capture or neutralize circulating antigen/antibodies which may be harmful to cancer cells within the human body. In contrast to normal B and T cells and their respective receptors in the conventional immune system, cancer cells co-express both immunoglobulins and T cell receptors and immune protection is exercised by unique mechanisms. For example, these cancer cell-expressed antigen receptors display a lack of class switching, limited hyper-mutation, aberrant glycosylations and a strong influence on the toll-like receptors of cancer cells. Therefore, it is hypothesized that both normal and cancerous immune systems may co-exist and operate simultaneously within the human body. The balance of these two immune factors for respective surveillance and protection may be relevant to the outcome of cancer immunotherapy in humans. A potential therapeutic strategy is being developed by using RP215 as a drug candidate to target cancer cells based on these observations.

  16. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle

    -derived antigenic peptides, a function which is currently explored in immunotherapeutic approaches against cancer. Additionally, membrane-bound Hsp70 can stimulate antigen presenting cells to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells...... frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 cell surface expression on cancer...... cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 cell surface expression was confined...

  17. Implication of expression of Nanog in prostate cancer cells and their stem cells.

    Science.gov (United States)

    Gong, Chen; Liao, Hui; Guo, Fengjin; Qin, Liang; Qi, Jun

    2012-04-01

    Recent studies suggested that the prostate cancer may arise from prostate cancer stem cells that share some same characteristics with normal stem cells. The purpose of this study was to detect the differences of Nanog expression between PC3 prostate cancer cell line and its tumor stem cells, and the relationship was preliminarily examined between Nanog and prostate cancer and its tumor stem cells. By using magnetic active cell sorting (MACS), we isolated a population of CD44(+)/CD133(+) prostate cancer cells that display stem cell characteristics from PC3 cell line. Immunohistochemistry revealed positive expressions of CD44, CD133 and α(2)β(1)-integin in the isolated cells. CCK-8 analysis showed that isolated cells had a strong proliferative ability. The formation of the cell spheres in serum-free medium and holoclones in serum-supplied medium showed that the cells were capable of self-renewing, indicating that the isolated cells were a population of cancer stem-like cells derived from PC3 cell line. Western blotting exhibited that the isolated cells had higher experession of Nanog, an embryonic stem marker, as compared with PC3 cells. Our study showed that Nanog might be helpful in sustaining the self-renewal and the undifferentiation of prostate cancer stem cells, and may serve as a marker for prostate cancer stem cells for isolation and identification.

  18. Immunglobulin Expression and Its Biological Significance in Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Duosha Hu; Hui Zheng; Haidan Liu; Ming Li; Wei Ren; Wei Liao; Zhi Duan; Lili Li; Ya Cao

    2008-01-01

    It is generally believed that the expression of a gene iS restricted "within the right place and at the right time".This principle has long been considered applicable as well to the expression of immunoglobulin(Ig)lymphocytes of B cell lineage.However,increasing evidence has shown Ig "paradoxically" expressed in malignant tumors of epitheliaI origin.We reviewed the recent progress in the study of cancer-derived Ig,and also discussed its mechanisms and possible functions,trying to arouse interest and attention to those working in the field of immunology and oncology.

  19. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    Science.gov (United States)

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  20. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells.

    Science.gov (United States)

    Long, Jun; Zhang, Xulong; Wen, Mingjie; Kong, Qingli; Lv, Zhe; An, Yunqing; Wei, Xiao-Qing

    2013-01-01

    Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.

  1. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    , membrane-bound Hsp70 can stimulate antigen presenting cells (APCs) to release proinflammatory cytokines and can provide a target structure for NK cell-mediated lysis. Human cancer cells frequently express Hsp70 on their cell surface, whereas the corresponding normal tissues do not. In addition, several...... clinically applied reagents, such as alkyl-lysophospholipides, chemotherapeutic agents, and anti-inflammatory reagents, have been found to enhance Hsp70 surface expression on cancer cells. We have found that inhibition of histone deacetylase (HDAC) activity leads to surface expression of Hsp70 on various...... hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC-inhibitor mediated Hsp70 surface expression was confined to the apoptotic Annexin V positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis...

  2. Differential expression of bitter taste receptors in non-cancerous breast epithelial and breast cancer cells.

    Science.gov (United States)

    Singh, Nisha; Chakraborty, Raja; Bhullar, Rajinder Pal; Chelikani, Prashen

    2014-04-04

    The human bitter taste receptors (T2Rs) are chemosensory receptors that belong to the G protein-coupled receptor superfamily. T2Rs are present on the surface of oral and many extra-oral cells. In humans 25 T2Rs are present, and these are activated by hundreds of chemical molecules of diverse structure. Previous studies have shown that many bitter compounds including chloroquine, quinidine, bitter melon extract and cucurbitacins B and E inhibit tumor growth and induce apoptosis in cancer cells. However, the existence of T2Rs in cancer cell is not yet elucidated. In this report using quantitative (q)-PCR and flow cytometry, we characterized the expression of T2R1, T2R4, T2R10, T2R38 and T2R49 in the highly metastatic breast cancer cell line MDA-MB-231, poorly metastatic cell line MCF-7, and non-cancerous mammary epithelial cell line MCF-10A. Among the 5 T2Rs analyzed by qPCR and flow cytometry, T2R4 is expressed at 40-70% in mammary epithelial cells in comparison to commonly used breast cancer marker proteins, estrogen receptor and E-cadherin. Interestingly, the expression of T2R4 was downregulated in breast cancer cells. An increase in intracellular calcium mobilization was observed after the application of bitter agonists, quinine, dextromethorphan, and phenylthiocarbamide that are specific for some of the 5 T2Rs. This suggests that the endogenous T2Rs expressed in these cells are functional. Taken together, our novel findings suggest that T2Rs are differentially expressed in mammary epithelial cells, with some T2Rs downregulated in breast cancer cells.

  3. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells

    DEFF Research Database (Denmark)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B;

    2013-01-01

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles...... of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced...... significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest...

  4. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  5. Targeting aberrant expression of Notch-1 in ALDH(+) cancer stem cells in breast cancer.

    Science.gov (United States)

    Pal, Deeksha; Kolluru, Venkatesh; Chandrasekaran, Balaji; Baby, Becca V; Aman, Masarath; Suman, Suman; Sirimulla, Suman; Sanders, Mary Ann; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2017-03-01

    We have previously reported that high aldehyde dehydrogenase (ALDH) enzyme activity in breast cancer cells results in breast cancer stem cell (BCSC) properties by upregualting Notch-1 and epithelial mesenchymal markers. This results in chemoresistance in breast cancer. Here, we examined the functional and clinical significance of ALDH expression by measuring the ALDH levels in breast cancer tissues by immunohistochemistry. There was a significantly higher ALDH expression in higher grade breast cancer tumor tissues (Grade- II and III) versus normal breast tissues. Injection of BCSC (ALDH(+) and CD44(+) /CD22(-) ) cells resulted in aggressive tumor growth in athymic mice versus ALDH(-) cells. The ALDH(+) and CD44(+) /CD22(-) tumors grow rapidly and are larger than ALDH(-) tumors which were slow growing and smaller. Molecularly, ALDH(+) tumors expressed higher expression of Notch-1 and EMT markers than ALDH(-) tumors. Oral administration of the naturally occurring Psoralidin (Pso, 25 mg/kg of body weight) significantly inhibited the growth in ALDH(+) and ALDH(-) tumors as well. Psoralidin inhibited Notch-1 mediated EMT activation in ALDH(+) and ALDH(-) tumors-this confirms our in vitro findings. Our results suggest that Notch-1 could be an attractive target and inhibition of Notch-1 by Psoralidin may prevent pathogenesis of breast cancer as well as metastasis. © 2016 Wiley Periodicals, Inc.

  6. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available BACKGROUND: Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. METHODS: Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. RESULTS: Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. CONCLUSIONS: Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  7. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-05-01

    Full Text Available Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress.

  8. Restoration of p53 Expression in Human Cancer Cell Lines Upregulates the Expression of Notch1: Implications for Cancer Cell Fate Determination after Genotoxic Stress1

    Science.gov (United States)

    Alimirah, Fatouma; Panchanathan, Ravichandran; Davis, Francesca J; Chen, Jianming; Choubey, Divaker

    2007-01-01

    Following genotoxic stress, transcriptional activation of target genes by p53 tumor suppressor is critical in cell fate determination. Here we report that the restoration of p53 function in human cancer cell lines that are deficient in p53 function upregulated the expression of Notch1. Interestingly, the expression of wild-type p53 in human prostate and breast cancer cell lines correlated well with increased expression of Notch1. Furthermore, knockdown of p53 expression in cancer cells that express wild-type p53 resulted in reduced expression of Notch1. Importantly, genotoxic stress to cancer cells that resulted in activation of p53 also upregulated the expression of Notch1. Moreover, p53-mediated induction of Notch1 expression was associated with stimulation of the activity of Notch-responsive reporters. Notably, p53 differentially regulated the expression of Notch family members: expression of Notch2 and Notch4 was not induced by p53. Significantly, treatment of cells with gamma secretase inhibitor, an inhibitor of Notch signaling, increased susceptibility to apoptosis in response to genotoxic stress. Together, our observations suggest that p53-mediated upregulation of Notch1 expression in human cancer cell lines contributes to cell fate determination after genotoxic stress. PMID:17534448

  9. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V...... activity selectively induces surface expression of Hsp70 on hematopoietic cancer cells and that this may increase immunorecognition of these cells.......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...

  10. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells.

    Science.gov (United States)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Arsenic trioxide (As2O3) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As2O3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As2O3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As2O3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As2O3 than HPV 16-positive CaSki and SiHa cells. After As2O3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As2O3 is a potential anticancer drug for cervical cancer.

  11. Activation of TIM1 induces colon cancer cell apoptosis via modulating Fas ligand expression.

    Science.gov (United States)

    Wang, Hao; Zhang, Xueyan; Sun, Wenjing; Hu, Xiaocui; Li, Xiaolin; Fu, Songbin; Liu, Chen

    2016-04-29

    The pathogenesis of colon cancer is unclear. It is proposed that TIM1 has an association with human cancer. The present study aims to investigate the role of TIM1 activation in the inhibition of human colon cancer cells. In this study, human colon cancer cell line, HT29 and T84 cells were cultured. The expression of TIM1 was assessed by real time RT-PCR and Western blotting. The TIM1 on the cancer cells was activated in the culture by adding recombinant TIM4. The chromatin structure at the FasL promoter locus was assessed by chromatin immunoprecipitation. The apoptosis of the cancer cells was assessed by flow cytometry. The results showed that human colon cancer cell lines, HT29 cells and T84 cells, expressed TIM1. Activation of TIM1 by exposing the cells to TIM4 significantly increased the frequency of apoptotic colon cancer cells. The expression of FasL was increased in the cancer cells after treating by TIM4. Blocking Fas or FasL abolished the exposure to TIM4-induced T84 cell apoptosis. In conclusion, HT29 cells and T84 cells express TIM1; activation TIM1 can induce the cancer cell apoptosis. TIM1 may be a novel therapeutic target of colon cancer.

  12. Relation of cell proliferation to expression of peripheral benzodiazepine receptors in human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    2000-08-01

    Peripheral benzodiazepine receptor (PBR) agonist [(3)H]Ro5-4864 has been shown to bind with high affinity to the human breast cancer cell line BT-20. Therefore, we investigated different human breast cancer cell lines with regard to binding to [(3)H]Ro5-4864 and staining with the PBR-specific monoclonal antibody 8D7. Results were correlated with cell proliferation characteristics. In flow cytometric analysis, the estrogen receptor (ER)-negative breast cancer cell lines BT-20, MDA-MB-435-S, and SK-BR-3 showed significantly higher PBR expression (relative fluorescence intensity) than the ER-positive cells T47-D, MCF-7 and BT-474 (Pdiazepam-binding inhibitor are possibly involved in the regulation of cell proliferation of human breast cancer cell lines.

  13. Effects of resistin-like molecule β over-expression on gastric cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-Duan Zheng; Chun-Lei Yang; Teng Qi; Meng Qi; Ling Tong; Qiang-Song Tong

    2012-01-01

    AIM:To investigate the effects of resistin-like molecule β (RELMβ) over-expression on the invasion,metastasis and angiogenesis of gastric cancer cells.METHODS:Human RELMβ encoding expression vector was constructed and transfected into the RELMβ lowly-expressed gastric cancer cell lines SGC-7901 and MKN-45.Gene expression was measured by Western blotting,reverse transcription polymerase chain reaction (PCR) and real-time quantitative PCR.Cell proliferation was measured by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry,colony formation and 5-ethynyl-20-deoxyuridine incorporation assays.The in vitro migration,invasion and metastasis of cancer cells were measured by cell adhesion assay,scratch assay and matrigel invasion assay.The angiogenic capabilities of cancer cells were measured by tube formation of endothelial cells.RESULTS:Transfection of RELMβ vector into SGC-7901 and MKN-45 cells resulted in over-expression of RELMβ,which did not influence the cellular proliferation.However,over-expression of RELMβ suppressed the in vitro adhesion,invasion and metastasis of cancer cells,accompanied by decreased expression of matrix metalloproteinase-2 (MMP-2) and MMP-9.Moreover,transfection of RELMβ attenuated the expression of vascular endothelial growth factor and in vitro angiogenic capabilities of cancer cells.CONCLUSION:Over-expression of RELMβ abolishes the invasion,metastasis and angiogenesis of gastric cancer cells in vitro,suggesting its potentials as a novel therapeutic target for gastric cancer.

  14. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Directory of Open Access Journals (Sweden)

    Dam Phuongan

    2011-06-01

    Full Text Available Abstract Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH receptor (LHR expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours. Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are

  15. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  16. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  17. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    Science.gov (United States)

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  18. Expression of Uncoupling Protein 2 in Breast Cancer Tissue and Drug-resistant Cells

    Institute of Scientific and Technical Information of China (English)

    Sun Yan; Yuan Yuan; Zhang Lili; Zhu Hong; Hu Sainan

    2013-01-01

    Objective:To explore the expression of uncoupling protein-2 (UCP2) in clinical breast cancer tissue and drug-resistant cells. Methods:The expression of UCP2 in breast cancer tissue and normal tissue adjacent to carcinoma as well as breast cancer cell MCF-7 and paclitaxel-resistant cell MX-1/T were respectively detected by immunohistochemistry and Western blot. Results:The expression of UCP2 in breast cancer tissue was signiifcantly higher than in normal tissue adjacent to carcinoma, and that in paclitaxel-resistant cell MX-1/T obviously higher than in breast cancer cell MCF-7. Conclusion:UCP2 is highly expressed in breast cancer tissue and drug-resistant cells.

  19. Correlation between Twist expression and multidrug resistance of breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yue-Xi Wang; Xiao-Mei Chen; Jun Yan; Zhi-Ping Li

    2016-01-01

    Objective:To study the correlation between Twist expression and multidrug resistance of breast cancer cell lines. Methods:Human breast cancer cell lines MCF-7, cisplatin-resistant human breast cancer cell lines MCF-7/DDP, doxorubicin-resistant human breast cancer cell lines MCF-7/Adr and taxol-resistant human breast cancer cell lines MCF/PTX were cultured, Twist in human breast cancer cell lines MCF-7 was overexpressed and treated with doxorubicin, and then cell viability and expression levels of EMT marker molecules and related signaling pathway molecules were detected. Results:mRNA contents and protein contents of Twist in drug-resistant breast cancer cell lines MCF-7/DDP, MCF-7/Adr and MCF/PTX were higher than those in MCF-7 cell lines;after doxorubicin treatment, inhibitory rates of cell viability in MCF-7 cell lines were higher than those in MCF-7/Adr and MCF-7/Twist cell lines;E-cadherin expression levels in MCF-7/Adr cell lines and MCF-7/Twist cell lines were lower than those in MCF-7 cell lines, and mRNA contents and protein contents of N-cadherin, Vimentin, TGF-β, Smad, Wnt,β-catenin, TNF-αand NF-kB were higher than those in MCF-7 cell lines. Conclusion:Increased expression of Twist is associated with the occurrence of drug resistance in breast cancer cells.

  20. Expression profiling of colon cancer cell lines and colon biopsies: Towards a screening system for potential cancer-preventive compounds

    NARCIS (Netherlands)

    Erk, van M.J.; Krul, C.A.M.; Caldenhoven, E.; Stierum, R.H.; Peters, W.H.; Woutersen, R.A.; Ommen, van B.

    2005-01-01

    Interest in mechanisms of colon cancer prevention by food compounds is strong and research in this area is often performed with cultured colon cancer cells. In order to assess utility for screening of potential cancer-preventive (food) compounds, expression profiles of 14 human cell lines derived fr

  1. Expression profiling of colon cancer cell lines and colon biopsies: towards a screening system for potential cancer-preventive compounds.

    NARCIS (Netherlands)

    Erk, M.J. van; Krul, C.A.; Caldenhoven, E.; Stierum, R.H.; Peters, W.H.M.; Woutersen, R.A.; Ommen, B.

    2005-01-01

    Interest in mechanisms of colon cancer prevention by food compounds is strong and research in this area is often performed with cultured colon cancer cells. In order to assess utility for screening of potential cancer-preventive (food) compounds, expression profiles of 14 human cell lines derived fr

  2. Expression and Clinical Significance of REGy in Gastric Cancer Tissue and Variously Differentiated Gastric Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Tian Tian; Xiaoyi Wang; Fan Li; Guosheng Ren

    2009-01-01

    OBJECTIVE To evaluate the REGy expression in gastric cancer tissue and gastric cancer cell lines of various differentiation levels and its clinical significance.METHODS Immunohistochemistry was used to detect the expression of REGy protein in 70 specimens of gastric cancer and 30 specimens of normal gastric mucosa. The relationship between the expression of REGy protein and the biological behaviors of gastric cancer was analyzed. RT-PCR and Western blot were used to detect the mRNA level and the protein expression of REGγ in normal gastric cell line GES-1, well differentiated gastric cancer cell line MKN-28, moderately differentiated gastric cancer cell line SGC-7901 and poorly differentiated gastric cancer cell line BGC-823.RESULTS The expression rate of REGγprotein in gastric cancer tissue (52/70, 74.29%) was significantly higher than that in normal gastric tissue (12/30, 40%) (P<0.01). The expression rate of REGywas correlated with tumor size (P<0.01), lymph node metastasis (P<0.05), differentiation degree (P<0.01), infiltration depth (P<0.01)and distant metastasis (P<0.05). RT-PCR analysis showed that theexpression of REGγ mRNA was 0.459±0.079 in the normal gastric mucosa cell line, 0.588±0.118 in the well differentiated gastric cancer cell line, 0.715±0.066 in the moderately differentiated gastric cancer cell line, and 0.873±0.099 in the poorly differentiated gastric cancer cell line, showing a negative correla- tion between REGγmRNA expression and differentiation level (P <0.05). Western blot analysis showed that the expression of REGy protein was 0.712±0.065 in the normal gastric mucosa cell line, 1.176±0.185 in the well differentiated gastric cancer cell line, 1.533 ±0.127 in the moderately differentiated gastric cancer cell line, and 2.061±0.398 in the poorly differentiated gastric cancer cell line, showing a negative correlation between REGγprotein expression and differentiation level (P<0.05).CONCLUSION REGγ is expressed in gastric cancer

  3. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells.

    Science.gov (United States)

    Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose

    2017-03-01

    One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.

  4. Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo

    Directory of Open Access Journals (Sweden)

    Anastassiou Dimitris

    2011-12-01

    Full Text Available Abstract Background The biological mechanisms underlying cancer cell motility and invasiveness remain unclear, although it has been hypothesized that they involve some type of epithelial-mesenchymal transition (EMT. Methods We used xenograft models of human cancer cells in immunocompromised mice, profiling the harvested tumors separately with species-specific probes and computationally analyzing the results. Results Here we show that human cancer cells express in vivo a precise multi-cancer invasion-associated gene expression signature that prominently includes many EMT markers, among them the transcription factor Slug, fibronectin, and α-SMA. We found that human, but not mouse, cells express the signature and Slug is the only upregulated EMT-inducing transcription factor. The signature is also present in samples from many publicly available cancer gene expression datasets, suggesting that it is produced by the cancer cells themselves in multiple cancer types, including nonepithelial cancers such as neuroblastoma. Furthermore, we found that the presence of the signature in human xenografted cells was associated with a downregulation of adipocyte markers in the mouse tissue adjacent to the invasive tumor, suggesting that the signature is triggered by contextual microenvironmental interactions when the cancer cells encounter adipocytes, as previously reported. Conclusions The known, precise and consistent gene composition of this cancer mesenchymal transition signature, particularly when combined with simultaneous analysis of the adjacent microenvironment, provides unique opportunities for shedding light on the underlying mechanisms of cancer invasiveness as well as identifying potential diagnostic markers and targets for metastasis-inhibiting therapeutics.

  5. Imaging Cancer Cells Expressing the Folate Receptor with Carbon Dots Produced from Folic Acid.

    Science.gov (United States)

    Bhunia, Susanta Kumar; Maity, Amit Ranjan; Nandi, Sukhendu; Stepensky, David; Jelinek, Raz

    2016-04-01

    Development of new imaging tools for cancer cells in vitro and in vitro is important for advancing cancer research, elucidating drug effects upon cancer cells, and studying cellular processes. We showed that fluorescent carbon dots (C-dots) synthesized from folic acid can serve as an effective vehicle for imaging cancer cells expressing the folate receptor on their surface. The C-dots, synthesized through a simple one-step process from folic acid as the carbon source, exhibited selectivity towards cancer cells displaying the folate receptor, making such cells easily distinguishable in fluorescence microscopy imaging. Biophysical measurements and competition experiments both confirmed the specific targeting and enhanced uptake of C-dots by the folate receptor-expressing cells. The folic acid-derived C-dots were not cytotoxic, and their use in bioimaging applications could aid biological studies of cancer cells, identification of agonists/antagonists, and cancer diagnostics.

  6. [Clinical significance of cyclin Dl expression in non-small cell lung cancer].

    Science.gov (United States)

    Dworakowska, Dorota

    2005-01-01

    Lung cancer remains interdisciplinary problem. The genetic alterations in non-small cell lung cancer (NSCLC) are related to tumor suppressor genes and proto-oncogenes. CCND1 gene, coding cyclin DI, in correlation with pRb is involved in regulation of cell cycle arrest in G1 phase. Amplification of CCND1 gene and cyclin D1 over-expression was found in several cancers including head and neck cancers or colorectal cancer, where these alterations were correlated with worse prognosis. The literature addressing the clinical significance of CCND1 gene amplification/expression in NSCLC remains poor and prognostic value of these alterations in that cancer is still controversial.

  7. Cell Adhesion Regulates Expression of the Androgen Receptor and Coregulators in Different Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2007-02-01

    Full Text Available Prostate cancer cells adhere to a tumor basement membrane, while secretoryepithelial cells reside in a suprabasal cell compartment. Since tumor cells are derived fromsuprabasal epithelial cells, they experience de-novo substratum adhesion in the context ofoncogenesis. We therefore analyzed whether cell-matrix adhesion could affect the proteinexpression and activity of the AR. In this study, AR protein expression declined uponsuspension of BPH-1-AR cells, but not in PC-3-AR cells shown by Western blot. In a timecourse study, BPH-1 cell lost AR expression within 6 hours, and the synthetic androgen,R1881 reduced the loss of AR expression. We further explored the mechanism of AR loss insuspended BPH-1 cells. BPH-1-AR cells underwent apoptosis (anoikis when suspended for2 - 5 hours. Suspension did not induce significant apoptosis or decreasing of AR expressionin PC-3 cells. Inhibition of apoptosis in suspended BPH-1-AR cells, either by expression ofBcl-2 or Bcl-xl or by treatment with Z-VAD, a caspase inhibitor, prevented loss of ARprotein. In contrast, the calpain protease inhibitor , ALLN, accelerated the loss of AR proteinexpression. Additionally, cell-matrix adhesion changed the expression of coregulators of ARin the mRNA level of prostate cancer cells. Our results demonstrate that AR proteinexpression was reduced through activation of cell death pathways, and thus indirectly through cell suspension in BPH-AR cells. The activity of AR can also be regulated by adhesion in PC-3-AR and LNCaP cells through affecting the coregulators level.

  8. Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells.

    Science.gov (United States)

    Liang, Yuh-Jin; Ding, Yao; Levery, Steven B; Lobaton, Marlin; Handa, Kazuko; Hakomori, Sen-itiroh

    2013-03-26

    Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced through epithelial-mesenchymal transition, using mass spectrometry, TLC immunostaining, and cell staining. We found that (i) Fuc-(n)Lc4Cer and Gb3Cer were drastically reduced in CSCs, whereas GD2, GD3, GM2, and GD1a were greatly increased in CSCs; (ii) among various glycosyltransferases tested, mRNA levels for ST3GAL5, B4GALNT1, ST8SIA1, and ST3GAL2 were increased in CSCs, which could explain the increased expression of GD3, GD2, GM2, and GD1a in CSCs; (iii) the majority of GD2+ cells and GD3+ cells were detected in the CD44(hi)/CD24(lo) cell population; and (iv) knockdown of ST8SIA1 and B4GALNT1 significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest a possible novel approach in targeting human breast CSCs to interfere with cancer recurrence.

  9. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  10. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most...... cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2...... and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  11. Expression of nucleostemin in prostate cancer and its effect on the proliferation of PC-3 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Nucleostemin is essential for the proliferation and survival of stem and cancer cells,but it is unknown whether this newly identified molecule is involved in prostate cancer pathogenesis.Methods Total RNA and protein were extracted from prostate cancer tissues and PC-3,LNCap and DU145 cell lines.The nucleostemin mRNA and protein expression were measured by RT-PCR and Western blot.Immunohistochemistry was also used to detect the nucleostemin protein expression in prostate cancer tissues and PC-3 cells.A nucleostemin specific,short hairpin RNA,expression plasmid was used to transfect PC-3 cells.The changes of nucleostemin gene were detected and the proliferative capacity of the cells was determined.Results Nucleostemin was highly expressed in prostate cancer tissues and cell lines.Nucleostemin expression level in the silencer group PC-3 cells remarkably reduced.The proliferation rate of silencer group PC-3 cells decreased and the percentage of G1 stage cells increased.The neoplasm forming capacity in nude mice of the silencer group PC-3 cells decreased significantly.Conclusions Nucleostemin is highly expressed in prostate cancer tissues and cell lines.The proliferative capacity of PC-3 cells is remarkably reduced after silencing nucleostemin gene expression.

  12. Differential expression of nanog1 and nanogp8 in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Tatsuya; Sato, Ai; Ohata, Hirokazu; Sakai, Hiroaki [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Nakagama, Hitoshi, E-mail: hnakagam@ncc.go.jp [Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Okamoto, Koji, E-mail: kojokamo@ncc.go.jo [Division of Cancer Differentiation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Nanog is expressed in a majority of colon cancer cell lines examined. Black-Right-Pointing-Pointer Both nanog1 and nanogp8 are expressed in colon cancer cells with varying ratios. Black-Right-Pointing-Pointer Nanog mediates cell proliferation of colon cancer cells. Black-Right-Pointing-Pointer Nanog predominantly localizes in cytoplasm of colon cancer cells. -- Abstract: Nanog, a homeodomain transcription factor, is an essential regulator for promotion of self-renewal of embryonic stem cells and inhibition of their differentiation. It has been demonstrated that nanog1 as well as nanogp8, a retrogene of nanog1, is preferentially expressed in advanced stages of several types of cancer, suggesting their involvement during cancer progression. Here, we investigated the expression of Nanog in well-characterized colon cancer cell lines. Expression of Nanog was detectable in 5 (HCT116, HT29, RKO, SW48, SW620) out of seven cell lines examined. RNA expression analyses of nanog1 and nanogp8 indicated that, while nanog1 was a major form in SW620 as well as in teratoma cells Tera-2, nanogp8 was preferentially expressed in HT29 and HCT116. In accordance with this, shRNA-mediated knockdown of nanog1 caused the reduction of Nanog in SW620 but not in HT29. Inhibition of Nanog in SW620 cells negatively affected cell proliferation and tumor formation in mouse xenograft. Biochemical subcellular fractionation and immunostaining analyses revealed predominant localization of Nanog in cytoplasm in SW620 and HT29, while it was mainly localized in nucleus in Tera-2. Our data indicate that nanog1 and nanogp8 are differentially expressed in colon cancer cells, and suggest that their expression contributes to proliferation of colon cancer cells.

  13. Stage-specific embryonic antigen: determining expression in canine glioblastoma, melanoma, and mammary cancer cells

    Science.gov (United States)

    Ito, Daisuke

    2017-01-01

    The expression of stage-specific embryonic antigens (SSEAs) was determined in several types of canine cancer cells. Flow cytometry showed SSEA-1 expression in glioblastoma, melanoma, and mammary cancer cells, although none expressed SSEA-3 or SSEA-4. Expression of SSEA-1 was not detected in lymphoma, osteosarcoma, or hemangiosarcoma cell lines. Relatively stable SSEA-1 expression was observed between 24 and 72 h of culture. After 8 days in culture, sorted SSEA-1− and SSEA-1+ cells re-established SSEA-1 expression to levels comparable to those observed in unsorted cells. Our results document, for the first time, the expression of SSEA-1 in several canine cancer cell lines. PMID:27456773

  14. Human recombinant erythropoietin does not promote cancer growth in presence of functional receptors expressed in cancer cells.

    Science.gov (United States)

    Belda-Iniesta, Cristóbal; Perona, Rosario; Carpeño, Javier de Castro; Cejas, Paloma; Casado, Enrique; Manguan-García, Cristina; Ibanez de Caceres, Inmaculada; Sanchez-Perez, Isabel; Andreu, Francisco Bernabeu; Ferreira, Javier Alves; Aguilera, Alfredo; de la Peña, Javier; Perez-Sánchez, Elia; Madero, Rosario; Feliu, Jaime; Sereno, María; González-Barón, Manuel

    2007-10-01

    Human recombinant erythropoietin (hrEPO) therapy might be associated with tumor progression and death. This effect has been suggested to be secondary to rhEPO binding to its receptor (EPOR) expressed on cancer cells. However, there are several concerns about EPOR functionality when expressed on cancer cells. In this paper we have provided evidence that EPOR expressed in cancer cells could be implicated in proliferation events because a transfection of EPOR siRNA to EPOR-expressing bladder cancer cells resulted in a marked reduction in cell growth. However, these cell lines do not grow in the presence of hrEPO. Furthermore, bladder cancer patients that expressed EPOR in tumor samples had a reduced survival in absence of rhEPO treatment. Therefore, EPOR is implicated in bladder cancer growth but this effect appears to be independent from rhEPO supplementation. Reports which suggest that rhEPO promotes cancer growth due to the expression of EPOR in cancer cells must be observed with caution since in the presence of functional EPOR rhEPO does not promote growth.

  15. The expression andprognostic value ofprotein tyrosine kinase 6 inearly-stage cervical squamous cell cancer

    Institute of Scientific and Technical Information of China (English)

    XiaoJingWang; YingXiong; ZeBiaoMa; JianChuanXia; YanFangLi

    2016-01-01

    Background:Protein tyrosine kinase 6 (PTK6) is overexpressed in many epithelial tumors and predicts poor progno‑sis. However, PTK6 expression status and its role in cervical squamous cell cancer are unknown. This study aimed to investigate the expression level and clinical signiifcance of PTK6 in early‑stage cervical squamous cell cancer. Methods:Quantitative reverse transcription‑polymerase chain reaction (qRT‑PCR) and western blotting analysis were performed to detect PTK6 mRNA and protein expression levels in 10 freshly frozen, early‑stage cervical squamous cell cancer specimens and adjacent non‑tumorous cervical tissues. The expression of PTK6 was detected using immuno‑histochemical staining in 150 formalin‑ifxed, paraffn‑embedded, early‑stage cervical squamous cell cancer sections and 10 normal cervical tissue sections. Results:The mRNA and protein levels of PTK6 in cancer tissues were higher than those in adjacent non‑tumorous cervical tissues. Immunohistochemical analysis showed that PTK6 was not expressed in normal cervical tissues but was overexpressed in the cytoplasm of cervical squamous cell cancer cells. The level of PTK6 expression was signiif‑cantly associated with tumor grade (P=0.020). The 5‑year overall survival rate of patients with high PTK6 expression was lower than that of patients with low PTK6 expression (81.3% vs. 96.2%,P=0.008). Multivariate Cox regression analysis showed that the expression level of PTK6 in cervical squamous cell cancer was an independent prognostic factor for patient survival (hazard ratio=5.999, 95% conifdence interval 1.622–22.191,P Conclusions:PTK6 is overexpressed in cervical squamous cell cancer. Increased PTK6 expression is associated with reduced 5‑year overall survival. PTK6 expression is an independent prognostic predictor for cervical cancer.

  16. Expression of T cell factor-4 in non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    LI Chun-yan; WANG Yan; CUI Ze-shi; WANG En-hua

    2005-01-01

    Background T cell factor- 4 (TCF- 4) plays an important role in development and carcinogenesis. Recently, the role of TCF- 4 has been described in colon cancer and other cancers. However, whether TCF- 4 plays a similar role in lung cancer is unknown. To answer this question, we studied the expression of TCF- 4 protein and mRNA in non-small-cell lung cancer (NSCLC) and the relation of TCF- 4 expression pattern to histological type and cell differentiation. Methods Tissue samples from sixty cases of pathologically diagnosed NSCLC and eight normal tissue samples were obtained between September 2001 and March 2003. Immunohistochemistry was used to investigate the distribution of TCF- 4 protein. The staining patterns of the tumors were divided into 4 categories: nuclear staining alone or nuclear staining greater than cytoplasmic staining; cytoplasmic staining or cytoplasmic staining greater than nuclear staining; equal nuclear and cytoplasmic staining; no nuclear staining or cytoplasmic staining. The integrated optical density (OD) values of all sections were analyzed by UIC MetaMorph image analysis software. The expression of TCF- 4 mRNA was detected by one-step reverse transcription-polymerase chain reaction (RT-PCR). The integrated density values of the PCR products were analyzed semi-quantitatively.Results Immunohistochemistry showed that there was no expression of TCF- 4 in normal tissue. However, TCF- 4 was expressed in 86.7% (52/60) of NSCLC samples, mainly in the nuclei of tumor cells. Furthermore, there was a significant difference in TCF- 4 localization patterns between squamous cell carcinomas and adenocarcinomas (P<0.05). The integrated OD values of TCF- 4 expression was significantly higher in tumors with moderate-poor cell differentiation than in well differentiated tumors (51.63±6.67 vs 46.13±12.31, P<0.01). There was no TCF- 4 mRNA expression in normal tissue. However, 63.9% (23/36) of carcinoma samples expressed TCF- 4 mRNA. TCF- 4 mRNA expression was

  17. Chemokine CXCL16 Expression Suppresses Migration and Invasiveness and Induces Apoptosis in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yeying Fang

    2014-01-01

    Full Text Available Background. Increasing evidence argues that soluble CXCL16 promotes proliferation, migration, and invasion of cancer cells in vitro. However, the role of transmembrane or cellular CXCL16 in cancer remains relatively unknown. In this study, we determine the function of cellular CXCL16 as tumor suppressor in breast cancer cells. Methods. Expression of cellular CXCL16 in breast cancer cell lines was determined at both RNA and protein levels. In vitro and in vivo studies that overexpressed or downregulated CXCL16 were conducted in breast cancer cells. Results. We report differential expression of cellular CXCL16 in breast cancer cell lines that was negatively correlated with cell invasiveness and migration. Overexpression of CXCL16 in MDA-MB-231 cells led to a decrease in cell invasion and migration and induced apoptosis of the cells; downregulation of CXCL16 in MCF-7 cells increased cell migration and invasiveness. Consistent with the in vitro data, CXCL16 overexpression inhibited tumorigenesis in vivo. Conclusions. Cellular CXCL16 suppresses invasion and metastasis of breast cancer cells in vitro and inhibits tumorigenesis in vivo. Targeting of cellular CXCL16 expression is a potential therapeutic strategy for breast cancer.

  18. High expression of hTERT and stemness genes in BORIS/CTCFL positive cells isolated from embryonic cancer cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In tumors, it is aberrantly expressed although its functions are not completely well-defined. To better understand the functions of BORIS in cancer, we selected the embryonic cancer cells as a model. Using a molecular beacon, which specifically targets BORIS mRNA, we demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3-5% of total. The BORIS-positive cells isolated using BORIS-molecular beacon, expressed higher telomerase hTERT, stem cell (NANOG, OCT4, SOX2 and cancer stem cell marker genes (CD44 and ALDH1 compared to the BORIS-negative tumor cells. In order to define the functional role of BORIS, stable BORIS-depleted embryonic cancer cells were generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell and cancer stem cell marker genes. Moreover, the BORIS knockdown increased cellular senescence in embryonic cancer cells, revealing a putative role of BORIS in the senescence biological program. Our data indicate an association of BORIS expressing cells subpopulation with the expression of stemness genes, highlighting the critical role played by BORIS in embryonic neoplastic disease.

  19. Differences in integrin expression and signaling within human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Yongqing

    2011-07-01

    Full Text Available Abstract Background Integrins are used as prognostic indicators in breast cancer. Following engagement with extracellular matrix proteins, their signaling influences numerous cellular processes including migration, proliferation, and death. Integrin signaling varies between cell types through differential expression of integrin subunits, and changes within a given cell upon exposure to a cell agonist or through changes in its surroundings. These variations in signaling can profoundly affect the phenotypic, tumorogenecity and metastatic properties of cancer cells. In the present study, we investigated if there were differences in the expression of integrins, integrin structures, and integrin co-receptors within three breast cancer cells and if these differences effected integrin signaling. Methods Expression of integrins, urokinase receptor and vascular endothelial cell growth factor receptor (VEGFR in metastatic MDA-MB-435 and MDA-MB-231, non-metastatic MCF7 and non-breast cancer Hek-293 cells was measured by flow cytometry. Cell adhesion was assessed using collagen, fibrinogen, fibronectin and vitronectin coated plates. Changes in kinase levels following PMA stimulation, and cell adhesion-induced activation of kinases were determined by western blot analysis. Distribution of actin stress fibers and focal adhesions was assessed by immunocytochemistry. Results All cells expressed αv integrins, while high β5 and αvβ5 expression was restricted to the cancer cells and high β3 and αvβ3 expression was restricted to MDA-MB-435 cells. The two metastatic cells were the least adhesive, but all cells adhered well to most proteins in the absence of PMA. All proliferating cells expressed activated pSrc, but only proliferating metastatic cells expressed high pMEK levels. PMA treatment resulted in time-dependent changes in activated kinase levels, and only MDA-MB-231 cells constitutively expressed high levels of activated pMEK. MDA-MB-435 cells formed

  20. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    Science.gov (United States)

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  1. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc-gene-family...... expression correlated with proliferative parameters. All tumours expressed at least one myc family member at the mRNA level. Exclusive c-myc mRNA expression was demonstrated in 8 tumours, L-myc in 7 and N-myc in I. Five tumours expressed both c-myc and L-myc, and 2 tumours expressed both c-myc and N...

  2. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  3. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    Science.gov (United States)

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity.

  4. Regulation of catalase expression in healthy and cancerous cells.

    Science.gov (United States)

    Glorieux, Christophe; Zamocky, Marcel; Sandoval, Juan Marcelo; Verrax, Julien; Calderon, Pedro Buc

    2015-10-01

    Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy.

  5. miR-21 Expression in Cancer Cells may Not Predict Resistance to Adjuvant Trastuzumab in Primary Breast Cancer

    DEFF Research Database (Denmark)

    Nielsen, Boye Schnack; Balslev, Eva; Poulsen, Tim Svenstrup

    2014-01-01

    , predominantly in cancer cells, or in both stromal and cancer cells. There was no obvious difference between the HER2-positive and HER2-negative tumors in terms of the miR-21 expression patterns and intensities. To explore the possibility that miR-21 expression levels and/or cellular localization could predict...... expression patterns and intensities revealed no association between the miR-21 scores in the cancer cell population (p = 0.69) or the stromal cells population (p = 0.13) and recurrent disease after adjuvant trastuzumab. Thus, our findings show that elevated miR-21 expression does not predict resistance......Trastuzumab is established as standard care for patients with HER2-positive breast cancer both in the adjuvant and metastatic setting. However, 50% of the patients do not respond to the trastuzumab therapy, and therefore new predictive biomarkers are highly warranted. MicroRNAs (miRs) constitute...

  6. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  7. Inhibition of Hec1 expression enhances the sensitivity of human ovarian cancer cells to paclitaxel

    Institute of Scientific and Technical Information of China (English)

    Qing-qing MO; Ping-bo CHEN; Xin JIN; Qian CHEN; Lan TANG; Bei-bei WANG; Ke-zhen LI

    2013-01-01

    Aim:Hec1,a member of the Ndc80 kinetochore complex,is highly expressed in cancers.The aim of this study was to explore the role and mechanism of action of Hec1 with respect to the cytotoxicity of paclitaxel in ovarian cancer.Methods:Thirty ovarian cancer samples and 6 normal ovarian samples were collected.Hec1 expression in these samples was determined with immunohistochemistry.Ovarian cancer cell lines A2780,OV2008,C13K,SKOV3,and CAOV3 and A2780/Taxol were examined.Cell apoptosis and cell cycle analysis were detected with flow cytometric technique.siRNA was used to delete Hec1 in the cells.The expression of related mRNAs and proteins was measured using RT-PCR and Western blot analysis,respectively.Results:Hec1 expression was significantly higher in ovarian cancer samples than in normal ovarian samples,and was associated with paclitaxel-resistance and poor prognosis.Among the 6 ovarian cancer cell lines examined,Hec1 expression was highest in paclitaxelresistant A2780/Taxol cells,and lowest in A2780 cells.Depleting Hec1 in A2780/Taxol cells with siRNA decreased the IC5o value of paclitaxel by more than 10-fold (from 590±26.7 to 45.6±19.4 nmol/L).Depleting Hec1 in A2780 cells had no significant effect on the paclitaxel sensitivity.In paclitaxel-treated A2780/Taxol cells,depleting Hec1 significantly increased the cleaved PARP and Bax protein levels,and decreased the Bcl-xL protein level.Conclusion:Hec1 overexpression is associated with the progression and poor prognosis of ovarian cancer.Inhibition of Hec1 expression can sensitize ovarian cancer cells to paclitaxel.

  8. Expression of cancer stem cell surface markers after chemotherapeutic drug treatment to reflect breast cancer cell regrowth

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Wings Tjing Yung Loo; Louis Wing Cheong Chow; Kelly Wei Yu Rui

    2014-01-01

    Objective To detect the cell viability and the expressions of stem cell surface markers after chemotherapeutic drug treatment. Methods We observed the cytotoxic effects of three chemotherapeutic agents [ epirubicin ( Epi ) , fluorouracil ( 5-FU ) and cyclophosphamide ( Cyc ) ] in three cell lines, and the cell viabilities after removed these chemotherapeutic agents. Expressions of stem cell surface markers CD44, CD24, CD90, CD14 and aldehyde dehydrogenase1(ALDH1) in breast cancer cells were analyzed by real-time PCR. The post hoc analysis (Tukey’s tests) in conjunction with one-way ANOVA was used for statistical analysis. Results The initial cytotoxic efficacy was most notable. After the treatment of the same therapeutic agents, cell viability was decreased by 64. 8% 35. 14%, 32. 25% in BT-483 cells, 66. 4%, 22. 94% and 45. 88% in MDA-MB-231 cells, 97. 1%, 99. 5% and 76. 4% in MCF cells. The difference was significant compared with that before treatment ( P=0. 000 ) . However, the inhibitory effects were diminished after chemotherapeutic agent withdrawal. Cell viabilities were increased to 167. 9%, 212. 04% and 188. 66% in MDA-MB-231 cells at 48 h after withdrawal. At 72 h after withdrawal, cell viability was increased with a significant difference in three cell lines (all P values=0. 000). Expressions of CD44 and ALDH1 were most prevalent for MDA-MB-231, BT-483 and MCF-7 cells. ALDH1 mRNA level was significant higher in BT-483 ( HER-2 overexpression cell line) than MDA-MB-231 ( triple negative cell line ) ( P = 0. 012 ) . CD14 mRNA level in MCF-7 cells were significantly lower than that in MDA-MB-231 and BT-483 (P=0. 003, 0. 001). BT-483 showed significantly higher level of CD44 than MDA-MB-231 and MCF-7 cell line (P= 0.013, 0.020), and no significant difference was detected between MDA-MB-231 and MCF-7 breast cancer cells ( P=0. 955 ) . CD90 mRNA expressions were detected in MDA-MB-231 cells and MCF-7 cells, but not in BT-483 cells. Conclusion Some malignant

  9. Annexin 1: differential expression in tumor and mast cells in human larynx cancer.

    Science.gov (United States)

    Silistino-Souza, Rosana; Rodrigues-Lisoni, Flávia C; Cury, Patricia M; Maniglia, José V; Raposo, Luis S; Tajara, Eloiza H; Christian, Helen C; Oliani, Sonia M

    2007-06-15

    Annexin 1 protein (ANXA1) expression was evaluated in tumor and mast cells in human larynx cancer and control epithelium. The effect of the exogenous ANXA1 (peptide Ac 2-26) was also examined during the cellular growth of the Hep-2 human larynx epidermoid carcinoma cell line. This peptide inhibited the proliferation of the Hep-2 cells within 144 hr. In surgical tissue specimens from 20 patients with larynx cancer, ultrastructural immunocytochemistry analysis showed in vivo down-regulation of ANXA1 expression in the tumor and increased in mast cells and Hep-2 cells treated with peptide Ac2-26. Combined in vivo and in vitro analysis demonstrated that ANXA1 plays a regulatory role in laryngeal cancer cell growth. We believe that a better understanding of the regulatory mechanisms of ANXA1 in tumor and mast cells may lead to future biological targets for the therapeutic intervention of human larynx cancer.

  10. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  11. Expression and alternative splicing pattern of human telomerase reverse transcriptase in human lung cancer cells.

    Science.gov (United States)

    Fujiwara, Masachika; Kamma, Hiroshi; Wu, Wenwen; Hamasaki, Makoto; Kaneko, Setsuko; Horiguchi, Hisashi; Matsui-Horiguchi, Miwa; Satoh, Hiroaki

    2004-04-01

    Telomerase activity is generally considered to be necessary for cancer cells to avoid senescence. The expression of human telomerase reverse transcriptase (hTERT) is believed to be a rate-limiting step in telomerase activation. Recently, it has been proposed that the alternative splicing of hTERT is also involved in regulation of telomerase activity. However, the regulatory mechanism of telomerase in cancer cells has not been thoroughly investigated. To clarify it in lung cancer cells, we measured the expression of the hTERT transcript, analyzed its alternative splicing by RT-PCR, and compared it with telomerase activity and telomere length. The expression of the hTERT transcript was positively correlated with telomerase activity in lung cancer cells. Cancer cells with high telomerase activity contained 4 splicing variants of hTERT, and the full-length variant was 31.3-54.2% of the total transcripts. Cells of the TKB-20 cell line, which has extremely low telomerase activity, showed a different splicing pattern of hTERT in addition to low expression. The functional full-length variant was scarcely detected in TKB-20 cells, suggesting that the telomerase activity was repressed by alternative splicing of hTERT. Telomere length was not necessarily correlated with telomerase activity or hTERT expression in lung cancer cells. Cells of the TKB-4 cell line that also showed relatively low telomerase activity (as TKB-20 cells) had long telomeres. In conclusion, hTERT expression is regulated at both the transcriptional and post-transcriptional levels in lung cancer cells, and the alternative splicing of hTERT is involved in the control of telomerase activity.

  12. Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions.

    Science.gov (United States)

    Chen, Yao-Tseng; Panarelli, Nicole C; Piotti, Kathryn C; Yantiss, Rhonda K

    2014-05-01

    Cancer-testis (CT) antigens are attractive tumor antigens for cancer immunotherapy. They comprise a group of proteins normally expressed in germ cells and aberrantly activated in a variety of human cancers. The protein expression of eight cancer-testis antigens [MAGEA, NY-ESO-1, GAGE, MAGEC1 (CT7), MAGEC2 (CT10), CT45, SAGE1, and NXF2] was evaluated by immunohistochemistry in 61 esophageal carcinomas (40 adenocarcinoma and 21 squamous cell carcinoma), 50 gastric carcinomas (34 diffuse and 16 intestinal type), and 141 colorectal carcinomas. The highest frequency of expression was found in esophageal squamous cell carcinomas: Positive staining for MAGEA, CT45, CT7, SAGE1, GAGE, NXF2, NY-ESO-1, and CT10 was observed in 57%, 38%, 33%, 33%, 29%, 29%, 19%, and 14% of squamous cell carcinomas, respectively. Similar staining patterns were observed in squamous dysplasias. Expression frequencies of cancer-testis antigens were seen in 2% to 24% of gastroesophageal adenocarcinomas and were not significantly different between adenocarcinomas of the stomach versus the esophagus, or between diffuse and intestinal types of gastric adenocarcinomas. Colorectal cancers did not express NY-ESO-1, CT7, CT10, or GAGE, and only infrequently expressed SAGE1 (0.7%) MAGEA (1.4%), CT45 (3.5%), and NXF2 (8.5%). We conclude that cancer-testis antigens are frequently expressed in esophageal squamous neoplasms. Although cancer-testis antigens are generally considered to be expressed later in tumor progression, they are found in squamous dysplasias, suggesting a potential diagnostic role for cancer-testis antigens in the evaluation of premalignant squamous lesions.

  13. EXPRESSION OF PHOSPHO-(-CATENIN AND ITS SIGNIFICANCE IN NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    林东; 王恩华; 张志坤; 徐洪涛; 李庆昌; 邱雪杉

    2003-01-01

    Objective: To investigate phospho-(-catenin expression in non-small cell lung cancer (NSCLC) and to study the relationship between phospho-(-catenin expression and some clinical pathological factors. Methods: The expression of phospho-(-catenin in 67 primary NSCLC cases detected immunohistochemically. Results: phospho- (-catenin was not expressed in normal bronchial mucous cell and showed cytoplasmic and nuclear expression in NSCLC cell. Total positive expression rate reached 62.7%, and positive expression rate of nucleus was 38.8%. The positive expression rate (87.5%) and nuclear expression rate of adenocarcinoma (62.5%) were apparently higher than those of squamous cell cancer (40.0% and 17.1%) (P<0.01). Expression of phospho-(-catenin had no relationship to differentiation degree and lymphatic metastasis. The postoperative survival time is not related to phospho-(- catenin expression. (Log-rank test, P=0.9198; P=0.6274). COX model analysis showed that tumor stage and differentiation are independent risk factors to prognosis (P=0.001; P=0.020). Conclusion: NSCLC cells show positive expression of phospho-(-catenin, phospho-(-catenin nuclear expression is relevant to histological types. There is no difference in postoperative survival time between patients with phospho-(-catenin positive expression and patients with negative expression, expression of phospho-(- catenin is not independent risk factor to prognosis.

  14. Effects of navelbine and docetaxel on gene expression in lung cancer cell strains

    Institute of Scientific and Technical Information of China (English)

    Li CAI; Hai-ying DONG; Guang-jie SUI

    2005-01-01

    Aim: To search genes sensitivity to the anti-cancer drugs navelbine (NVB) and docetaxel (DOC) in small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) cell strains. Methods: The sensitivity of 4 strains of SCLC and 6 strains of NSCLC to NVB and DOC was evaluated using the MTT assay. The expression of 1291 sensitive-related genes to the anti-cancer drugs in 10 lung cancer cell strains was measured using cDNA macroarrays and the relationship was analyzed.Results: In total, there were 56 (r≥0.4) genes sensitive to NVB and DOC. For NVB: 36 genes were sensitive to NVB, 20 co-expressed genes between the SCLC+NSCLC set and the NSCLC set; 27 expressed genes and 7 specially expressed genes in the SCLC+NSCLC set; and 29 expressed genes and 9 specially expressed genes in the NSCLC set. For DOC, 50 genes were sensitive to DOC, 12co-expressed genes between the SCLC+NSCLC set and the NSCLC set; 24expressed genes and 12 specially expressed genes in the SCLC+NSCLC set; and 38 expressed genes and 26 specially expressed genes in the NSCLC set. The genes sensitive to NVB and DOC in lung-cancer cell stains were mainly divided into the following 4 categories: signal transduction molecules, cell factors, transcription factors and metabolism-related enzymes and inhibitors. Conclusions:There were obvious differences in genes related to NVB and DOC between SCLC and NSCLC cell strains, but the same as categories of function.

  15. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Directory of Open Access Journals (Sweden)

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  16. Stem cell-like gene expression in ovarian cancer predicts type II subtype and prognosis.

    Directory of Open Access Journals (Sweden)

    Matthew Schwede

    Full Text Available Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age, the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further

  17. Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer.

    Science.gov (United States)

    Bao, Bin; Ali, Shadan; Ahmad, Aamir; Li, Yiwei; Banerjee, Sanjeev; Kong, Dejuan; Aboukameel, Amro; Mohammad, Ramzi; Van Buren, Eric; Azmi, Asfar S; Sarkar, Fazlul H

    2014-08-15

    Pancreatic cancer (PC) is one of the most deadly cancers. The higher mortality is in part due to treatment resistance and early onset of metastasis. The existence of cancer-stem-like cells (CSLCs) has been widely accepted to be responsible for tumor aggressiveness in PC. Emerging evidence suggests that CSLCs have the capacity for increased cell growth, cell migration/invasion, metastasis, and treatment resistance, which leads to poor clinical outcome. However, the molecular role of CSLCs in tumor development and progression is poorly understood. Therefore, mechanistic understanding, and targeted killing of CSLCs may provide a newer therapeutic strategy for the treatment of PC. It has been well accepted that microRNAs (miRNAs) play critical roles during tumor development and progression through deregulation of multiple genes. Moreover, deregulated expression of miRNAs may also play a key role in the regulation of CSLC characteristics and functions. Here we show that isolated CD44(+)/CD133(+)/EpCAM(+) cells (triple-marker-positive cells) from human PC cell lines, MiaPaCa-2 and L3.6pl cells, display aggressive characteristics, such as increased cell growth, clonogenicity, cell migration, and self-renewal capacity, which is consistent with overexpression of CSLC signatures/markers. We also found deregulated expression of over 400 miRNAs, including let-7, miR-30, miR-125b, and miR-335, in CSLCs. As a proof-of-concept, knockdown of miR-125b resulted in the inhibition of tumor cell aggressiveness of CSLCs (triple-marker-positive cells), consistent with the downregulation of CD44, EpCAM, EZH2, and snail. These results clearly suggest the importance of miRNAs in the regulation of CSLC characteristics, and may serve as novel targets for therapy.

  18. Low Programmed Cell Death 5 Expression is a Prognostic Factor in Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    Li Gao; Xue Ye; Rui-Qiong Ma; Hong-Yan Cheng; Hong-Jing Han; Heng Cui; Li-Hui Wei

    2015-01-01

    Background:Ovarian cancer is a leading gynecological malignancy.We investigated the prognostic value of programmed cell death 5 (PDCD5) in patients with ovarian cancer.Methods:Expression levels ofPDCD5 mRNA and protein were examined in six ovarian cancer cell lines (SKOV3,CAOV3,ES2,OV1,3AO,and HOC1A) and one normal ovarian epithelial cell line (T29) using reverse transcription polymerase chain reaction,Westem blotting,and flow cytometry.After inducing PDCD5 induction in SKOV3 cells or treating this cell line with taxol or doxorubicin (either alone or combined),apoptosis was measured by Annexin V-FITC/propidium iodide staining.Correlations between PDCD5 protein expression and pathological features,histological grade,FIGO stage,effective cytoreductive surgery,and serum cancer antigen-125 values were evaluated in patients with ovarian cancer.Results:PDCD5 mRNA and protein expression were downregulated in ovarian cancer cells.Recombinant human PDCD5 increased doxorubicin-induced apoptosis in SKOV3 cells (15.96 ± 2.07%,vs.3.17 ± 1.45% in controls).In patients with ovarian cancer,PDCD5 expression was inversely correlated with FIGO stage,pathological grade,and patient survival (P < 0.05,R =0.7139 for survival).Conclusions:PDCD5 expression is negatively correlated with disease progression and stage in ovarian cancer.Therefore,measuring PDCD5 expression may be a good method of determining the prognosis of ovarian cancer patients.

  19. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    Science.gov (United States)

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration.

  20. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  1. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    Directory of Open Access Journals (Sweden)

    Feix Sonja

    2010-10-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma. In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. Methods In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA, three cervical carcinomas (HeLa, Caski, SiHa, three chorioncarcinomas (JEG, JAR, BeWo, two ovarian cancers (BG-1, OAW-42 and one teratocarcinoma (PA-1 were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. Results We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10. Conclusions Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments.

  2. Effect of Cytokine on the Expression of Sodium Iodide Symporter Gene in Breast Cancer Cell

    Institute of Scientific and Technical Information of China (English)

    JIAYue; LIUChao; TANGWei; LIUCui-ping; QINYou-wen; YUANQing-xing; LIQian; MAOXiao-dong; DIFu-song

    2004-01-01

    To investigate the effect of cytokines (TNF-α, IFN-γ and IL-6) on the expression of sodi-um-iodide symporter(NIS) gene in breast cancer cell (MCF-7). Methods:The breast cancer cell was cultureds with negative control culture or cultures with different concentrations of cytokines for 72 h. NIS germ mRNA in breast cancer cells cultured was determined by reverse transcriptase-polymerase chain reaction(RT-PCR). Results:Expression of sodium-iodide symporter mRNA can be found decreasing along with increasing the concentration of cytokine dose-depen-dently. Conchzs/on ~ Cytokine may play a role in iodide-uptake modulating in breast cancer cells by their effect on NIS germ expression.

  3. Annexin 1: differential expression in tumor and mast cells in human larynx cancer

    OpenAIRE

    Silistino-Souza, Rosana [UNESP; RODRIGUES-LISONI, Flavia C.; CURY, Patricia M.; MANIGLIA, Jose V.; Raposo, Luis S.; Eloiza H. Tajara; Christian, Helen C.; Oliani, Sonia Maria

    2007-01-01

    Annexin 1 protein (ANXA1) expression was evaluated in tumor and mast cells in human larynx cancer and control epithelium. The effect of the exogenous ANXA1 (peptide Ac 2-26) was also examined during the cellular growth of the Hep-2 human larynx epidermoid carcinoma cell line. This peptide inhibited the proliferation of the Hep-2 cells within 144 hr. In surgical tissue specimens from 20 patients with larynx cancer, ultrastructural immunocytochemistry analysis showed in vivo down-regulation of ...

  4. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer

    DEFF Research Database (Denmark)

    Rask, Lene; Balslev, Eva; Jørgensen, Stine

    2011-01-01

    Low-risk and high-risk breast cancer patients are stratified primarily according to their lymph node (LN) status and grading. However, some low-risk patients relapse, and some high-risk patients have a favorable clinical outcome, implying a need for better prognostic and predictive tests. Micro...... RNAs are often aberrantly expressed in cancer and microRNA-21 is upregulated in a variety of cancers, including breast cancer. High miR-21 levels have been associated with poor prognosis. To determine the cellular localization of miR-21 and to compare its expression levels with histopathological...... features, we performed in situ hybridization and semi-quantitative assessment of the miR-21 signal on 12 LN negative grade I (assumed low risk), and 12 LN positive grade II (high risk) breast cancers. miR-21 was predominantly seen in cancer associated fibroblast-like cells, with no difference in expression...

  5. Low expression of SLOOP associated with paclitaxel resistance in ovarian cancer cell line

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-hua; HE Zhi-juan; WANG Qi; LI Xin; LI Yi-xuan; LIU Min; ZHENG Jian-hua; TANG Hua

    2008-01-01

    Background Recent studies indicate that Sl 00P expression may be a biomarker that can predict the success of cancer chemotherapy. Whether it is relevant to chemOtherapeutics in ovarian cancer is unknown.In this study,we investigated the association of S1OOP expression with paclitaxel sensitivity in ovarian cancer cell lines.Methods We measured S1 OOP expression and paclitaxel resistance profiles in parent SKOV3 and OVCAH3 cell lines.Then,the two cell lines were transiently transfected with SlOOP siRNA.We also constructed an OVCAR3 cell clone that stably overexpressed SIOOP The effect of S100P expression level on the survival of cells exposed to paclitaxel was measured using the MTT assav.S1OOP expression was evaluated by semi-quantitative RT.PCR and Western blotting.Significance of differences was calculated using independent samples t-test and one way analysis of variance(ANOVA).Results Lower S1 00P expression was associated with a survival advantage in OVCAR3 cells exposed to paclitaxel;the survival advantage in SKOV3 cells was smaller Pexpression was even greater for SKOV3 and OVCAR3 cells that had been transfected with S1 00P siRNA before being exposed to paciitaxel(P<0.05).Consistent with this,the OVCAR3 cell clone that was transfected to overexpress S1 00P was more sensitive to paclitaxelf P<0.05).Conclusions Low S1 00P expression contributes to drug resistance to paclitaxel in ovarian cancer cell lines.S100P expression thus might be a marker that can predict the effectiveness of paclitaxel based chemotherapy.Such a marker could be helpful in improving individual medication regimens for ovarian cancer patients.

  6. SSX2-4 expression in early-stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Greve, K B V; Pøhl, M; Olsen, K E

    2014-01-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies...... was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC....

  7. Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Angeliki Korpetinou

    2015-01-01

    Full Text Available In the present pilot study, we examined the presence of serglycin in lung, breast, prostate, and colon cancer and evaluated its expression in cell lines and tissues. We found that serglycin was expressed and constitutively secreted in culture medium in high levels in more aggressive cancer cells. It is worth noticing that aggressive cancer cells that harbor KRAS or EGFR mutations secreted serglycin constitutively in elevated levels. Furthermore, we detected the transcription of an alternative splice variant of serglycin lacking exon 2 in specific cell lines. In a limited number of tissue samples analyzed, serglycin was detected in normal epithelium but was also expressed in higher levels in advanced grade tumors as shown by immunohistochemistry. Serglycin staining was diffuse, granular, and mainly cytoplasmic. In some cancer cells serglycin also exhibited membrane and/or nuclear immunolocalization. Interestingly, the stromal cells of the reactive tumor stroma were positive for serglycin, suggesting an enhanced biosynthesis for this proteoglycan in activated tumor microenvironment. Our study investigated for first time the distribution of serglycin in normal epithelial and cancerous lesions in most common cancer types. The elevated levels of serglycin in aggressive cancer and stromal cells may suggest a key role for serglycin in disease progression.

  8. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    OpenAIRE

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy...

  9. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.

    Science.gov (United States)

    Patnala, Radhika; Lee, Sung-Hun; Dahlstrom, Jane E; Ohms, Stephen; Chen, Long; Dheen, S Thameem; Rangasamy, Danny

    2014-01-01

    Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and

  10. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  11. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Burns, Jorge S; Nielsen, Ole;

    2009-01-01

    Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can...... spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found...... that tumorigenic transformation of hMSC-TERT20 cells induced the expression of members of several cancer-germline antigen gene families (ie, GAGE, MAGE-A, and XAGE-1), with promoter hypomethylation and histone acetylation of the corresponding genes. Both in vitro cultures and tumor xenografts derived from...

  12. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng Wang

    2013-01-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer.The cancer informatics approach is a useful supplement to the traditional experimental approach.I reviewed several reports that used a bioinformatics approach to analyze the associations among aging,stem cells,and cancer by microarray gene expression profiling.The high expression of aging-or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging,stem cells,and cancer.These mechanisms are involved in cell cycle regulation,metabolic process,DNA damage response,apoptosis,p53 signaling pathway,immune/inflammatory response,and other processes,suggesting that cancer is a developmental and evolutional disease that is strongly related to aging.Moreover,these mechanisms demonstrate that the initiation,proliferation,and metastasis of cancer are associated with the deregulation of stem cells.These findings provide insights into the biology of cancer.Certainly,the findings that are obtained by the informatics approach should be justified by experimental validation.This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  13. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling.

    Science.gov (United States)

    Wang, Xiaosheng

    2013-04-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer. The cancer informatics approach is a useful supplement to the traditional experimental approach. I reviewed several reports that used a bioinformatics approach to analyze the associations among aging, stem cells, and cancer by microarray gene expression profiling. The high expression of aging- or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging, stem cells, and cancer. These mechanisms are involved in cell cycle regulation, metabolic process, DNA damage response, apoptosis, p53 signaling pathway, immune/inflammatory response, and other processes, suggesting that cancer is a developmental and evolutional disease that is strongly related to aging. Moreover, these mechanisms demonstrate that the initiation, proliferation, and metastasis of cancer are associated with the deregulation of stem cells. These findings provide insights into the biology of cancer. Certainly, the findings that are obtained by the informatics approach should be justified by experimental validation. This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  14. EXPRESSION OF P120ctn IN NON-SMALL-CELL LUNG CANCER: A CLINICOPATHOLOGICAL STUDY

    Institute of Scientific and Technical Information of China (English)

    张志坤; 林东; 王恩华; 关奕

    2002-01-01

    Objective: To investigate the expression of p120ctn in non-small-cell lungcancer (NSCLC) and its relationship with clinicopathological factors and prognosis. Methods: p120ctn expression was tested by immunohistochemistry for 80 tumors from patients with non-small-cell lung cancer. Correlations were investigated between p120ctn immunostaining in primary tumors and clinicopathological characteristics and survival. Results: Abnormal expression of p120ctn was found in 68/80(85%) tumors in which 43 cases had cytoplasmic staining. Abnormal staining of p120ctn was related with high TNM stage (P=0.003) and nodal metastasis (P=0.024).However, there was no correlation between altered expression with poor differentiation and histological type. According to Kaplan-Meier survival estimate, the expression of p120ctn was related to the poor survival (P=0.015) of patients. A Cox regression analysis revealed that p120ctn expression was a significant independent factor in the prediction of survival for patients with non-small-cell lung cancer (P=0.008). Conclusion: altered expression of p120ctn was found in non-small-cell lung cancers and was correlated with lymph node metastasis and prognosis. From a practical point of view, the expression of p120ctn can be of prognostic value for patients with non-small-cell lung cancer.

  15. RCP induces Slug expression and cancer cell invasion by stabilizing β1 integrin.

    Science.gov (United States)

    Hwang, M H; Cho, K H; Jeong, K J; Park, Y-Y; Kim, J M; Yu, S-L; Park, C G; Mills, G B; Lee, H Y

    2017-02-23

    Rab coupling protein (RCP)-induced tumor cell migration has been implicated in tumor pathophysiology and patient outcomes. In the present study, we demonstrate that RCP stabilizes β1 integrin leading to increased β1 integrin levels and activation of a signaling cascade culminating in Slug induction, epithelial-to-mesenchymal transition and increased invasion. Ectopic expression of RCP induced Slug expression. Silencing β1 integrin efficiently inhibited RCP-induced Slug expression and subsequent cancer cell invasion. Conversely, ectopic expression of β1 integrin was sufficient to induce Slug expression. Pharmacological inhibition of integrin linked kinase (ILK), EGFR and NF-κB, as well as transfection of a dominant-negative mutant of Ras (RasN17), significantly inhibited RCP-induced Slug expression and cancer cell invasion. Strikingly, ectopic expression of RCP was sufficient to enhance metastasis of ovarian cancer cells to the lung. Collectively, we demonstrate a mechanism by which RCP promotes cancer cell aggressiveness through sequential β1 integrin stabilization, activation of an ILK/EGFR/Ras/NF-κB signaling cascade and subsequent Slug expression.

  16. Reduction of Orc6 expression sensitizes human colon cancer cells to 5-fluorouracil and cisplatin.

    Directory of Open Access Journals (Sweden)

    Elaine J Gavin

    Full Text Available Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53 and HCT116 (null-p53 colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt treatment. Decreased Orc6 expression in HCT-116 (wt-p53 cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53 cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53 cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53 cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45beta and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.

  17. Expression of survivin and p53 modulates honokiol-induced apoptosis in colorectal cancer cells.

    Science.gov (United States)

    Lai, Ying-Jiun; Lin, Chien-I; Wang, Chia-Lin; Chao, Jui-I

    2014-11-01

    Honokiol is a small biphenolic compound, which exerts antitumor activities; however, the precise mechanism of honokiol-induced apoptosis in the human colorectal cancer cells remains unclear. Here, we show that survivin and p53 display the opposite role on the regulation of honokiol-induced apoptosis in the human colorectal cancer cells. Honokiol induced the cell death and apoptosis in various colorectal cancer cell lines. Moreover, honokiol elicited the extrinsic death receptor pathway of DR5 and caspase 8 and the intrinsic pathway of caspase 9. The common intrinsic and extrinsic downstream targets of activated caspase 3 and PARP protein cleavage were induced by honokiol. Interestingly, honokiol reduced anti-apoptotic survivin protein and gene expression. Transfection with a green fluorescent protein (GFP)-survivin-expressed vector increased the colorectal cancer cell viability and resisted the honokiol-induced apoptosis. Meantime, honokiol increased total p53 and the phosphorylated p53 proteins at Ser15 and Ser46. The p53-wild type colorectal cancer cells were exhibited greater cytotoxicity, apoptosis and survivin reduction than the p53-null cancer cells after treatment with honokiol. Together, these findings demonstrate that the existence of survivin and p53 can modulate the honokiol-induced apoptosis in the human colorectal cancer cells.

  18. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells

    OpenAIRE

    Ives Kirk; Chao Celia; Wen Xiaodong; Hellmich Mark R

    2011-01-01

    Abstract Background Cyclooxygenase-2 (COX-2) and the bombesin (BBS)-like peptide, gastrin-releasing peptide (GRP), have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR)-positive, androgen-insensitive prostate cancer ce...

  19. Expression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks

    OpenAIRE

    Nadya Lifantseva; Anna Koltsova; Tatyana Krylova; Tatyana Yakovleva; Galina Poljanskaya; Olga Gordeeva

    2011-01-01

    Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES ce...

  20. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells.

    Science.gov (United States)

    Shirure, Venktesh S; Reynolds, Nathan M; Burdick, Monica M

    2012-01-01

    Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by

  1. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Keya De Mukhopadhyay

    Full Text Available In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  2. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    Science.gov (United States)

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells.

  3. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  4. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  5. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M. [Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States); Liu, Jinsong [Department of Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Chadee, Deborah N., E-mail: deborah.chadee@utoledo.edu [Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft, Toledo, OH 43606 (United States)

    2012-08-15

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  6. EXPRESSION OF MATRIX METALLOPROTEINASE-7 AND FAS LIGAND: THEIR APOPTOSIS-INDUCING EFFECT ON GASTRIC CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    郑华川; 杨雪飞; 孙晋民; 李晓晗; 姜卫国; 张荫昌; 辛彦

    2003-01-01

    Objective: To investigate the expression of matrix metalloproteinase-7 (MMP-7) and Fas ligand (FasL) in gastric cancer and explore their role in progression of gastric cancer. Methods: Formalin-fixed paraffin and embedded tissues of primary gastric cancer and adjacent non-tumor mucosa from 113 cases were evaluated for MMP-7, FasL and Capase-3 expression by streptavidin-peroxidase (S-P) immunohistochemistry. The expression of the first two proteins in cancer cells of primary foci was compared with clinicopathological parameters of tumors. We also observed the correlation of MMP-7 and FasL expression with Caspase-3 expression in cancer cells of primary foci. Results: MMP-7 positive immunostaining was less frequently detected in adjacent epithelial cells than in cancer cells of primary foci of gastric cancer (P0.05). FasL expression was correlated with tumor size, invasive depth, metastasis, Lauren's classification, histological classification (P0.05). Cancer cells of primary foci expressed less Caspase-3 than their adjacent epithelial cells (P<0.05, 32.7% vs 50.4%). There was an obvious correlation between FasL, MMP-7 and Caspase-3 expression in cancer cells of primary foci (P<0.05). Co-expression of MMP-7 and FasL paralleled with Caspase-3 expression in cancer cells of primary foci (P<0.05). Conclusion: MMP-7 and FasL expression was up-regulated in gastric carcinogenesis and was principally involved in progression of gastric cancer. FasL expression could reflect the differentiation of gastric cancer cells and underlie the molecular mechanisms of different pathways of gastric tumorigenesis. Co-expression of MMP-7 and FasL could have apoptosis-inducing effect on gastric cancer cells.

  7. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Vinod Vathipadiekal

    Full Text Available Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP and main population (MP, and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5% genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors.

  8. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  9. Expression of Some Genes Involved in Epigenetic in Breast Cancer Cell Lines: The Effect of Quercetin

    Directory of Open Access Journals (Sweden)

    fahime mohamadian

    2015-11-01

    Full Text Available Background & Objectives: Breast cancer is one of the most common cancers among women. Incorrect pattern of gene expression involved in epigenetic including APOBEC3B, DNMT-1, and TET-1 can develop breast cancer. Quercetin is a natural flavonoid with antioxidant and anti-cancer properties that have been reported in other studies. To investigate the effect mechanism of quercetin, this study examined the effect of quercetin on the expression of genes which were referred to in two classes of breast cancer cell lines. Materials & Methods: Cell lines including MCF-7 and MDA-MB-453 in separate boxes in the control group and the treated groups with two dosages of 50 and 100 mm of quercetin were cultured for 24 and 48 hours, respectively. RNA was extracted from the cells and then was converted to cDNA. Real-time PCR was used for APOBEC3B, DNMT_1, and TET-1 expression. Results: The results showed that quercetin had conflicting results after 24 hours in two cell lines as there was a decrease in the gene expression of APQBEC3B and an increase in that of DNMT-1 in MCF-7 cell line. In contrast, the cell line of MDA-MB-453, APOBEC3B, and DNMT-1 gene expression increased. While the 48-hour results showed that quercetin reduced the gene expression of APOBEC3B and DNMT-1 and increased that of the TET-1 in both cell lines. Conclusion: Due to the satisfactory effects of quercetin on breast cancer cells after 48 hours, these effects can be probably applied through epigenetic mechanisms. However, the final decision needs further investigation.

  10. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression.

    Science.gov (United States)

    Kim, Sangmin; Han, Jeonghun; Jeon, Myeongjin; You, Daeun; Lee, Jeongmin; Kim, Hee Jung; Bae, Sarang; Nam, Seok Jin; Lee, Jeong Eon

    2016-08-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine that regulates many biological events including cell motility and angiogenesis. Here, we investigated the role of elevated TGF-β2 level in triple negative breast cancer (TNBC) cells and the inhibitory effect of silibinin on TGF-β2 action in TNBC cells. Breast cancer patients with high TGF-β2 expression have a poor prognosis. The levels of TGF-β2 expression increased significantly in TNBC cells compared with those in non-TNBC cells. In addition, cell motility-related genes such as fibronectin (FN) and matrix metalloproteinase-2 (MMP-2) expression also increased in TNBC cells. Basal FN, MMP-2, and MMP-9 expression levels decreased in response to LY2109761, a dual TGF-β receptor I/II inhibitor, in TNBC cells. TNBC cell migration also decreased in response to LY2109761. Furthermore, we observed that TGF-β2 augmented the FN, MMP-2, and MMP-9 expression levels in a time- and dose-dependent manner. In contrast, TGF-β2-induced FN, MMP-2, and MMP-9 expression levels decreased significantly in response to LY2109761. Interestingly, we found that silibinin decreased TGF-β2 mRNA expression level but not that of TGF-β1 in TNBC cells. Cell migration as well as basal FN and MMP-2 expression levels decreased in response to silibinin. Furthermore, silibinin significantly decreased TGF-β2-induced FN, MMP-2, and MMP-9 expression levels and suppressed the lung metastasis of TNBC cells. Taken together, these results suggest that silibinin suppresses metastatic potential of TNBC cells by inhibiting TGF-β2 expression in TNBC cells. Thus, silibinin may be a promising therapeutic drug to treat TNBC.

  11. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Salih Gencer; Anil Cebeci; Meliha Burcu Irmak-Yazicioglu

    2013-01-01

    Objective:Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer.We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1,MMP-3,MMP-7,MMP-9,MMP-10,MMP-11,MMP-12,MMP-14,MMP-15,MMP-17,MMP-23,MMP-28,and β-catenin genes.Methods:The mRNA transcripts in the cells were determined by RT-PCR.Following H2O2 exposure,oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA).Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR.Results:The expressions of MMP-1,MMP-7,MMP-14,MMP-15,MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased.Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure.β-catenin,a transcription factor for many genes including MMPs,also displayed decreased levels of expression in both of the cell lines following CAPE treatment.Conclusions:Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress.

  12. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  13. Alterations of expression and regulation of transforming growth factor beta in human cancer prostate cell lines.

    Science.gov (United States)

    Blanchère, M; Saunier, E; Mestayer, C; Broshuis, M; Mowszowicz, I

    2002-11-01

    TGF beta can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGF beta function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGF beta 1 and TGF beta 2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGF beta 1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGF beta secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGF beta which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGF beta secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGF beta, and to regulate this secretion through stromal-epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.

  14. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  15. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  16. Longitudinal assessment of TUBB3 expression in non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    Class-III-beta-tubulin (TUBB3) expression may be a potential predictive factor for treatment with microtubule interfering cytotoxic drugs in non-small cell lung cancer (NSCLC). Potential changes in TUBB3 expression during chemotherapy may be of interest if future choice of chemotherapy...... is to be based on TUBB3 expression. If the biomarker expression changes during chemotherapy, biopsies before initiation of chemotherapy beyond first line may be needed if treatment decision is to be based on TUBB3 expression. Thus, the aim was to explore TUBB3 expression heterogeneity and changes during...

  17. Thymosin beta 10 Prompted the VEGF-C Expression in Lung Cancer Cell

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-05-01

    Full Text Available Background and objective Our previous study found that thymosin β10 overexpressed in lung cancer and positively correlated with differentiation, lymph node metastasis and stage of lung cancer. In this reasearch we aim to study the effects and mechanism of exogenous human recombinant Tβ10 on the expression of VEGF-C on non-small cell lung cancer. Methods After SPC, A549 and LK2 cells were treated with 100 ng/mL recombinant human Tβ10, the mRNA level of VEGF-C were detected by RT-PCR. The mean while the protein expression of VEGF-C, P-AKT and AKT were determined by Western blot assay. Results Exogenous recombinant human Tβ10 were significantly promote the expression levels of VEGF-C mRNA and protein while promoting the phosphorylation of AKT. Exogenous Tβ10 can promote the expression of VEGF-C mRNA and protein in lung cancer cell lines A549 and LK2 (P<0.05, and this effect can be inhibited by use AKT inhibitor LY294002 (P<0.05. Conclusion Tβ10 human recombinant proteins can promote the expression of VEGF-C by activating AKT phosphorylation in lung cancer cell lines.

  18. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent

    2012-11-01

    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  19. 5{alpha}-reductase expression by prostate cancer cell lines and benign prostatic hyperplasia in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.; Masters, J.R.W. [Univ. College of London (United Kingdom)]|[Pfizer Central Research, Kent (United Kingdom); Ballard, S.A.; Worman, N. [Pfizer Central Research, Sandwich (United Kingdom)

    1996-04-01

    5{alpha}-Reductase (5{alpha}R) activity in two human prostate cancer cell lines was compared to that in benign prostatic hyperplasia (BPH) tissue and COS cells transfected with and expressing the human genes for 5{alpha}-reductase type 1 (5{alpha}R1) and type 2 (5{alpha}R2). Comparisons were based on pH profiles and sensitivities to selective inhibitors of 5{alpha}-reductase. In the cancer lines, activity was greatest over the pH range 7-8, compared to a sharp peak of activity between pH 5-5.5 in BPH tissue and COS cells expressing 5{alpha}R2. Finasteride and SKF105,657 were potent inhibitors of 5{alpha}-reductase activity in BPH tissue and COS cells expressing 5{alpha}R2, but weak inhibitors in the cancer lines and in COS cells expressing 5{alpha}R1. In contrast, LTK1 17,026 was a more potent inhibitor of 5{alpha}-reductase activity in the prostate cancer cell lines and in COS cells expressing 5{alpha}R1. These data indicate that human prostate cancer cell lines express 5{alpha}-reductase activity similar to that in COS cells transfected with 5{alpha}R1, but different from that in BPH tissue. This may be a consequence of in vitro culture. Alternatively, it may reflect a change occurring as a result of neoplastic transformation, in which case it will be important to select appropriate inhibitors in the clinic. 29 refs., 3 figs., 2 tabs.

  20. Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer.

    Science.gov (United States)

    Li, Huihui; Ma, Fei; Wang, Haijuan; Lin, Chen; Fan, Ying; Zhang, Xueyan; Qian, Haili; Xu, Binghe

    2013-12-17

    The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6% ± 2.45% vs 5.5% ± 2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.

  1. Down-regulation of Yes Associated Protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Caroline H Diep

    Full Text Available BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1 is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells.

  2. High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells.

    Science.gov (United States)

    Enriquez, Vanessa A; Cleys, Ellane R; Da Silveira, Juliano C; Spillman, Monique A; Winger, Quinton A; Bouma, Gerrit J

    2015-01-01

    Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

  3. Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seungho [Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Ku, Ja-Lok, E-mail: kujalok@snu.ac.kr [Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2011-08-26

    Highlights: {yields} MELK expression significantly increased when the cells are exposed to radiation or 5-FU. {yields} Suppression of MELK caused cell cycle changes and decrease in proliferation. {yields} Radiation or 5-FU treatment after MELK suppression by siRNA induced growth inhibition. -- Abstract: It was reported that the local recurrence would be caused by cancer stem cells acquiring chemo- and radio-resistance. Recently, one of the potential therapeutic targets for colorectal and other cancers has been identified, which is maternal embryonic leucine zipper kinase (MELK). MELK is known as an embryonic and neural stem cell marker, and associated with the cell survival, cell proliferation, and apoptosis. In this study, SNU-503, which is a rectal cancer cell line, was treated with radiation or 5-fluorouracil (5-FU), and elevation of the MELK expression level was observed. Furthermore, the cell line was pre-treated with small interfering RNA (siRNA) against MELK mRNA before treatment of radiation or 5-FU and its effects on cell cycle and proliferation were observed. We demonstrated that knockdown of MELK reduced the proliferation of cells with radiation or 5-FU treatment. In addition, MELK suppression caused changes in cell cycle. In conclusion, MELK could be associated with increased resistance of colorectal cancer cells against radiation and 5-FU.

  4. An Efficient Light-Inducible P53 Expression System for Inhibiting Proliferation of Bladder Cancer Cell

    Science.gov (United States)

    Lin, Fan; Dong, Liang; Wang, Weiming; Liu, Yuchen; Huang, Weiren; Cai, Zhiming

    2016-01-01

    Optogenetic gene expression systems enable spatial-temporal modulation of gene transcription and cell behavior. Although applications in biomedicine are emerging, the utility of optogenetic gene switches remains elusive in cancer research due to the relative low gene activation efficiency. Here, we present an optimized CRISPR-Cas9-based light-inducible gene expression device that controls gene transcription in a dose-dependent manner. To prove the potential utility of this device, P53 was tested as a functional target in the bladder cancer cell models. It was illustrated that the light-induced P53 inhibited proliferation of 5637 and UMUC-3 cell effectively. The “light-on” gene expression system may demonstrate a novel therapeutic strategy for bladder cancer intervention. PMID:27766041

  5. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    Science.gov (United States)

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  6. Dihydroavenanthramide D inhibits human breast cancer cell invasion through suppression of MMP-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju; Hur, Hyun; Kim, Jeong-Mi; Han, Ji-Hey; Hwang, Jin-Ki; Park, Byung-Hyun; Park, Jin-Woo [Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University, Medical School, Jeonju, Jeonbuk 560-182 (Korea, Republic of); Youn, Hyun Jo; Jung, Sung Hoo [Department of Surgery, Chonbuk National University, Medical School, Jeonju, Jeonbuk 560-182 (Korea, Republic of); Kim, Byeong-Soo; Jung, Ji-Youn; Lee, Sung-Ho [Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 340-702 (Korea, Republic of); Park, Chang-Sik [Division of Animal Science and Resources Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jong-Suk, E-mail: jsukim@jbnu.ac.kr [Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University, Medical School, Jeonju, Jeonbuk 560-182 (Korea, Republic of)

    2011-02-25

    Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whether DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.

  7. Correlation of microRNA-124 expression in cervical cancer tissue with cancer cell growth and invasion

    Institute of Scientific and Technical Information of China (English)

    Yi Zhu

    2016-01-01

    Objective:To study the correlation of microRNA-124 expression in cervical cancer tissue with cancer cell growth and invasion.Methods: A total of 56 cases of cervical cancer tissue samples and 60 cases of normal cervical tissue samples were selected for study, and microRNA-124 expression levels as well as protein content of proliferation, apoptosis and invasion genes in cervical tissue samples were determined.Results: The relative expression level of miR-124 in cervical cancer tissue was significantly lower than that in normal cervical tissue and the higher the FIGO staging, the lower the relative expression level of miR-124; cervical cancer tissue with different miR-124 expression was divided into group A-D according to quartile, there were differences in the protein content of cyclinD1, CDK4, CDK6, Prdx4, TNFAIP8, Piwil2, p16, p27, Caspase-3, Ezrin, CD44v6, E-cadherin andβ-catenin in cervical cancer tissue of group A, B, C and D, and the lower the relative expression level of miR-124, the higher the protein content of cyclinD1, CDK4, CDK6, Prdx4, TNFAIP8, Piwil2 as well as Ezrin and CD44v6, and the lower the protein content of p16, p27, Caspase-3 as well as E-cadherin andβ-catenin.Conclusions: microRNA-124 shows a trend of lower expression in cervical cancer tissue and is closely related to the excessive proliferation, insufficient apoptosis and invasive growth of cancer cells.

  8. Sox2 expression in breast tumours and activation in breast cancer stem cells.

    Science.gov (United States)

    Leis, O; Eguiara, A; Lopez-Arribillaga, E; Alberdi, M J; Hernandez-Garcia, S; Elorriaga, K; Pandiella, A; Rezola, R; Martin, A G

    2012-03-15

    The cancer stem cell (CSC) model does not imply that tumours are generated from transformed tissue stem cells. The target of transformation could be a tissue stem cell, a progenitor cell, or a differentiated cell that acquires self-renewal ability. The observation that induced pluripotency reprogramming and cancer are related has lead to the speculation that CSCs may arise through a reprogramming-like mechanism. Expression of pluripotency genes (Oct4, Nanog and Sox2) was tested in breast tumours by immunohistochemistry and it was found that Sox2 is expressed in early stage breast tumours. However, expression of Oct4 or Nanog was not found. Mammosphere formation in culture was used to reveal stem cell properties, where expression of Sox2, but not Oct4 or Nanog, was induced. Over-expression of Sox2 increased mammosphere formation, effect dependent on continuous Sox2 expression; furthermore, Sox2 knockdown prevented mammosphere formation and delayed tumour formation in xenograft tumour initiation models. Induction of Sox2 expression was achieved through activation of the distal enhancer of Sox2 promoter upon sphere formation, the same element that controls Sox2 transcription in pluripotent stem cells. These findings suggest that reactivation of Sox2 represents an early step in breast tumour initiation, explaining tumour heterogeneity by placing the tumour-initiating event in any cell along the axis of mammary differentiation.

  9. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion.

    Science.gov (United States)

    Li, Kuangfa; Wei, Lan; Huang, Yunxiu; Wu, Yang; Su, Min; Pang, Xueli; Wang, Nian; Ji, Feihu; Zhong, Changli; Chen, Tingmei

    2016-06-01

    In recent years, crosstalk between tumor microenvironment and cancer cells have received increasing attention. Accumulating research data suggests that leptin, a key adipokine secreted from adipocytes, plays important roles in breast cancer development. In our study, the effects of leptin on polarization of tumor-associated macrophages (TAMs) and promotion of the invasiveness of tumor cells were investigated. THP1 cells were used to differentiate M2 polarization macrophages. After stimulated by leptin, we established a co-culture system of tumor cells and macrophages to evaluate the function of leptin-induced macrophages in the migration and invasion of breast cancer cells. The gene and protein expressions were analyzed and the underlying mechanisms were evaluated. Moreover, pathological human specimens, and xenografts in nude mice, were detected to strengthen the in vitro results. Leptin elevated the expression of an array of cytokines in TAMs, IL-18 was the most increased, with an activation of the NF-κB/NF-κB1 signalling pathway. Additionally, after treated with leptin, TAMs significantly promoted the migration and invasion of breast cancer cells. However, these effects of leptin were abolished by the co-incubation of Bay11‑7082, a pharmacological NF-κB inhibitor. Leptin also directly stimulated IL-18 expression in breast cancer cells, which, differently, was via the PI3K/AKT-ATF-2 signaling pathway. In vivo studies showed that malignant breast carcinoma exhibited strong higher expression of Leptin, IL-8, and TAMs markers. Xenograft tumor-bearing mouse models showed that leptin significantly increased tumor volume, enhanced lung metastases, and increased expression of IL-8 and TAM markers, which were abolished by depletion of macrophages by clophosome-clodronate liposomes (CCL). Leptin could induce IL-18 expression both in TAMs and breast cancer cells. Leptin-induced IL-18 expression was regulated via NF-κB/NF-κB1 signaling in TAMs, while via PI3K

  10. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    van Erk Marjan J

    2004-05-01

    Full Text Available Abstract Background Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. Methods Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours. Gene expression changes after short-term exposure (3 or 6 hours to curcumin were also studied in a second cell type, Caco-2 cells. Results Gene expression changes (>1.5-fold were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. Conclusions This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase

  11. Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells.

    Science.gov (United States)

    Li, Hailong; Xie, Shoupin; Liu, Xiaojun; Wu, Hongyan; Lin, Xingyao; Gu, Jing; Wang, Huping; Duan, Yongqiang

    2014-11-01

    Matrine, a major alkaloid extracted from Sophora flavescens, has been reported to possess antitumor properties in several types of cancers, including gastric cancer. However, its mechanisms of action on gastric cancer remain poorly understood. Dysregulation of microRNAs, a class of small, non-coding, regulatory RNA molecules involved in gene expression, is strongly correlated with cancer. The aim of the present study was to demonstrate that matrine treatment altered miRNA expression in SGC7901 cells. Using miRCURY™ microarray analysis, we identified 128 miRNAs substantially exhibiting >2-fold expression changes in matrine-treated cells relative to their expression levels in untreated cells. RT-qPCR was used to show that the levels of 8 miRNAs whose target genes were clustered in the cell cycle pathway increased, while levels of 14 miRNAs whose target genes were clustered in the MAPK signaling pathway decreased. These results were consistent with those from the miRNA microarray experiment. Bioinformatical analysis revealed that the majority of 57 identified enrichment pathways were highly involved in tumorigenesis. In conclusion, the results demonstrated that matrine induces considerable changes in the miRNA expression profiles of SGC7901 cells, suggesting miRNA microarray combined with RT-qPCR validation and bioinformatical analysis provide a novel and promising approach to identify anticancer targets and the mechanisms of matrine involved.

  12. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel.

    Science.gov (United States)

    Pavlíková, Nela; Bartoňová, Irena; Balušíková, Kamila; Kopperova, Dana; Halada, Petr; Kovář, Jan

    2015-04-10

    Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.

  13. Identification of drugs that restore primary cilium expression in cancer cells.

    Science.gov (United States)

    Khan, Niamat Ali; Willemarck, Nicolas; Talebi, Ali; Marchand, Arnaud; Binda, Maria Mercedes; Dehairs, Jonas; Rueda-Rincon, Natalia; Daniels, Veerle W; Bagadi, Muralidhararao; Thimiri Govinda Raj, Deepak Balaji; Vanderhoydonc, Frank; Munck, Sebastian; Chaltin, Patrick; Swinnen, Johannes V

    2016-03-01

    The development of cancer is often accompanied by a loss of the primary cilium, a microtubule-based cellular protrusion that functions as a cellular antenna and that puts a break on cell proliferation. Hence, restoration of the primary cilium in cancer cells may represent a novel promising approach to attenuate tumor growth. Using a high content analysis-based approach we screened a library of clinically evaluated compounds and marketed drugs for their ability to restore primary cilium expression in pancreatic ductal cancer cells. A diverse set of 118 compounds stimulating cilium expression was identified. These included glucocorticoids, fibrates and other nuclear receptor modulators, neurotransmitter regulators, ion channel modulators, tyrosine kinase inhibitors, DNA gyrase/topoisomerase inhibitors, antibacterial compounds, protein inhibitors, microtubule modulators, and COX inhibitors. Certain compounds also dramatically affected the length of the cilium. For a selection of compounds (Clofibrate, Gefitinib, Sirolimus, Imexon and Dexamethasone) their ability to restore ciliogenesis was confirmed in a panel of human cancer cell line models representing different cancer types (pancreas, lung, kidney, breast). Most compounds attenuated cell proliferation, at least in part through induction of the primary cilium, as demonstrated by cilium removal using chloral hydrate. These findings reveal that several commonly used drugs restore ciliogenesis in cancer cells, and warrant further investigation of their antineoplastic properties.

  14. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    Directory of Open Access Journals (Sweden)

    Aaraby Yoheswaran Nielsen

    2016-06-01

    Full Text Available Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.

  15. ADHESION INDUCES MATRIX METALLOPROTEINASE-9 GENE EXPRESSION IN OVARIAN CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    田方; 颜春洪; 薛红; 肖凤君

    2002-01-01

    Objective: To investigate the expression of matrix metalloproteinase-9 (MMP-9) gene in cancer cells induced by adhesion with fibronectin and the underlying mechanism of cell invasion. Methods: Following adhesion of ovarian cancer cells A2780 to fibronectin, MMP mRNA expression was assayed by using reverse transcription-polymerase chain reaction (RT-PCR). MMP-9 promoter was cloned from genomic DNA of HT1080 cells with PCR. The MMP-9-pGL2 reporter gene vector was constructed and then transiently transfected into A2780 cells. Results: Adhesion could induce the expression of MMP-9 gene in A2780 cells, but did not affect longer theexpression of MMP-2 or TIMP-1 gene. The induction was enhanced with longer adhesion time. When the transfected cells were allowed to adhere and spread on FN-coated surface, the promoter activity of MMP-9 gene was also enhanced dramatically. Conclusion: adhesion of cells with ECM may stimulate the expression of MMP-9 gene through stimulating the promoter activity, thereby enhancing cancer cell invasion and metastasis.

  16. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    OpenAIRE

    Yoshizaki Yumiko; Kumei Shima; Tanno Sachie; Motomura Wataru; Yoshizaki Takayuki; Tanno Satoshi; Okumura Toshikatsu

    2010-01-01

    Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and...

  17. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT......Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate......-qPCR. Total expression of HER2/neu was confirmed by Western blot (WB). HER2/neu protein on the surface of living LNCaP cells was visualized by confocal microscopy using a HER2/neu-specific fluorescent probe. Exposure of LNCaP cells to 50 µM sarcosine for 24 h resulted in a 58% increase of the HER2/neu m...

  18. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells

    DEFF Research Database (Denmark)

    Dahl, Malin; Bouchelouche, Pierre; Kramer-Marek, Gabriela

    2011-01-01

    epithelial cells. The aim of this work was to investigate the effect of sarcosine on HER2/neu expression in prostate cancer cell lines LNCaP (androgen dependent), PC-3 and DU145 (both androgen independent). Relative amounts of HER2/neu and androgen receptor (AR) transcripts were determined using RT......Increasing evidence suggests that Human epidermal growth factor receptor 2 (HER2/neu) is involved in progression of prostate cancer. Recently, sarcosine was reported to be highly increased during prostate cancer progression, and exogenous sarcosine induces an invasive phenotype in benign prostate......-qPCR. Total expression of HER2/neu was confirmed by Western blot (WB). HER2/neu protein on the surface of living LNCaP cells was visualized by confocal microscopy using a HER2/neu-specific fluorescent probe. Exposure of LNCaP cells to 50 μM sarcosine for 24 h resulted in a 58% increase of the HER2/neu m...

  19. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  20. Expression of transcription factor Klf8 in lung cancer tissue and the biological effect of downregulation of Klf8 expression in lung cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Xuan-Hong Yi; Jing Wang

    2016-01-01

    Objective:To study the expression of transcription factor Klf8 in lung cancer tissue and the biological effect of downregulation of Klf8 expression in lung cancer cell lines.Methods:Cancer tissue and adjacent normal lung tissue were collected and mRNA contents of Klf8 were detected; lung cancer A549 cell lines were cultured, and after transfection of Klf8 siRNA, cell cycle, cell invasion and epithelial-mesenchymal transition were detected.Results:mRNA contents of Klf8 in lung cancer tissue were higher than those in adjacent normal lung tissue; after transfection of Klf8 siRNA, Klf8 mRNA inhibition rate was 74.31%; G0/G1 phase ratio of Klf8 siRNA group was higher than that of negative control siRNA group; ratios of S-phase and G2/M phase cells, mRNA contents of Cyclin D1 and number of cells invading to the outer side of the transwell microporous membrane were lower than those of negative control siRNA group; mRNA contents of CDH1 and CK18 as well as Snail and Slug of Klf8 siRNA group were higher than those of negative control siRNA group; mRNA contents of VIM and N-cadherin were lower than those of negative control siRNA group.Conclusion:The expression of Klf8 in lung cancer tissue abnormally elevates; downregulation of Klf8 expression in lung cancer cell lines can inhibit malignant biological effect of cells, manifested as cell cycle arrest as well as the inhibition of cell invasion and epithelial-mesenchymal transition processes.

  1. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  2. Parkin Enhances the Expression of Cyclin-dependent Kinase 6 and Negatively Regulates the Proliferation of Breast Cancer Cells*

    OpenAIRE

    2010-01-01

    Although mutations in the parkin gene are frequently associated with familial Parkinsonism, emerging evidence suggests that parkin also plays a role in cancers as a putative tumor suppressor. Supporting this, we show here that parkin expression is dramatically reduced in several breast cancer-derived cell lines as well as in primary breast cancer tissues. Importantly, we found that ectopic parkin expression in parkin-deficient breast cancer cells mitigates their proliferation rate both in vit...

  3. Stable knockdown of heparanase expression in gastric cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-Duan Zheng; Guo-Song Jiang; Jia-Rui Pu; Hong Mei; Ji-Hua Dong; Xiao-Hua Hou; Qiang-Song Tong

    2009-01-01

    AIM: To develop short hairpin RNA (shRNA) against heparanase, and to determine its effects on heparanase expression and the malignant characteristics of gastric cancer cells.METHODS: Heparanase-specific shRNA was constructed and transferred into cultured the gastric cancer cell line SGC-7901.Stable subclonal cells were screened by G418 selection.Heparanase expression was measured by reverse transcriptase-polymerase chain reaction (RT-PCR), real-time quantitative PCR and Western blotting.Cell proliferation was detected by 2-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetry and colony formation assay.The in vitro invasiveness and metastasis of cancer cells were measured by cell adhesion assay, wound healing assay and matrigel invasion assay.The angiogenesis capabilities of cancer cells were measured by tube formation of endothelial cells.RESULTS: Stable transfection of heparanase-specific shRNA, but not of scrambled shRNA and mock vector, resulted in reduced mRNA and protein levels of heparanase.The shRNA-mediated knockdown of heparanase did not affect the cellular proliferation of SGC-7901 cells.However, the in vitro invasiveness and metastasis of cancer cells were decreased after knockdown of heparanase.Moreover, transfection of heparanase-specific shRNA decreased the in vitro angiogenesis capabilities of SGC-7901 cells.CONCLUSION: Stable knockdown of heparanase can efficiently decrease the invasiveness, metastasis and angiogenesis of human gastric cancer cells.In contrast, stable knockdown of heparanase does not affect the cell proliferation.

  4. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    Science.gov (United States)

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (Pdeath. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian cancer potential biomarkers while overexpressed AR and 72 gene set represented moderately aggressive ovarian cancer potential biomarkers. Based on our knowledge, the current study is first time to report the potential biomarkers relevant to different aggressive ovarian cancer. These potential biomarkers provide important information for investigating human ovarian cancer prognosis. PMID:26935058

  5. Regulation of COX-2 expression by miR-146a in lung cancer cells.

    Science.gov (United States)

    Cornett, Ashley L; Lutz, Carol S

    2014-09-01

    Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3' UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition.

  6. Protein Sialylation Regulates a Gene Expression Signature that Promotes Breast Cancer Cell Pathogenicity.

    Science.gov (United States)

    Kohnz, Rebecca A; Roberts, Lindsay S; DeTomaso, David; Bideyan, Lara; Yan, Peter; Bandyopadhyay, Sourav; Goga, Andrei; Yosef, Nir; Nomura, Daniel K

    2016-08-19

    Many mechanisms have been proposed for how heightened aerobic glycolytic metabolism fuels cancer pathogenicity, but there are still many unexplored pathways. Here, we have performed metabolomic profiling to map glucose incorporation into metabolic pathways upon transformation of mammary epithelial cells by 11 commonly mutated human oncogenes. We show that transformation of mammary epithelial cells by oncogenic stimuli commonly shunts glucose-derived carbons into synthesis of sialic acid, a hexosamine pathway metabolite that is converted to CMP-sialic acid by cytidine monophosphate N-acetylneuraminic acid synthase (CMAS) as a precursor to glycoprotein and glycolipid sialylation. We show that CMAS knockdown leads to elevations in intracellular sialic acid levels, a depletion of cellular sialylation, and alterations in the expression of many cancer-relevant genes to impair breast cancer pathogenicity. Our study reveals the heretofore unrecognized role of sialic acid metabolism and protein sialylation in regulating the expression of genes that maintain breast cancer pathogenicity.

  7. Expression and silencing of microtubule-associated protein Tau in breast cancer cells

    Science.gov (United States)

    Spicakova, Tatiana; O’Brien, Maureen M.; Duran, George E.; Sweet-Cordero, Alejandro; Sikic, Branimir I.

    2010-01-01

    Microtubule-associated protein (MAP) Tau has been reported to be a predictive factor for clinical response to taxanes in metastatic breast cancer. We generated a panel of eight taxane resistant variants from four human breast cancer cell lines (MCF-7, T-47D, MDA-MB-231 and BT-549). Four variants had higher levels of Tau compared to their T47D and MDA-MB-231 parental cells. Using isoform-specific primers, we found that Tau 0N, 1N, 2N, 3R and 4R isoforms are overexpressed in the resistant variants, as is Tau exon 6 but not exons 4A or 8. To determine whether Tau overexpression produces resistance to taxanes, we derived three independent T-47D clones stably over-expressing Tau-3R and Tau-4R isoforms. Tau overexpression did not result in taxane resistance compared to parental cells transfected with vector alone. We then knocked down Tau expression in three cell lines that expressed Tau constitutively (MCF-7 and ZR-75-1 breast cancer cells, and OVCAR-3 ovarian cancer cells). Lentivirus-mediated silencing of Tau expression in MCF-7 and OVCAR-3 cells did not result in increased taxane sensitivity compared with luciferase shRNA-infected cells and uninfected parental cells. Transient silencing using Tau-specific siRNAs also did not alter taxane sensitivity relative to non-targeting controls in both MCF-7 and and ZR-75-1 cells. These results show that neither overexpression nor depletion of Tau modulate cellular sensitivity to taxanes. Although Tau overexpression has been reported to be a predictive marker of taxane resistance, it is not likely to be a direct mechanism of taxane resistance in breast cancer. PMID:21062914

  8. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yoshizaki Yumiko

    2010-03-01

    Full Text Available Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF gene via peroxisome proliferator-activated receptor γ (PPARγ; VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC. Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.

  9. A distinct gene expression signature characterizes human neuroblastoma cancer stem cells.

    Science.gov (United States)

    Ross, Robert A; Walton, Jeanette D; Han, Dan; Guo, Hong-Fen; Cheung, Nai-Kong V

    2015-09-01

    Neuroblastoma, a malignancy of multipotent embryonic neural crest cells, is the most common extracranial solid cancer in childhood and most common cancer in infancy. Cellular phenotype has been shown to be an important determinant of the malignant potential in human neuroblastoma cells and tumors. Whereas neuroblastic (N-type) are moderately malignant and nonneuronal (S-type) cells are nonmalignant, I-type stem cells are highly tumorigenic, irrespective of N-myc amplification status. In the present study, we sought to determine which genes were overexpressed in the I-type cells which might characterize and maintain the stem cell state and/or malignancy of human neuroblastoma cancer stem cells. We used a microarray platform to compare the steady-state expression levels of mRNAs from 13 human neuroblastoma cell lines representing the three cellular phenotypes. Using qRT-PCR and Western blot analyses, we identified seven genes whose expression is consistently elevated exclusively in neuroblastoma cancer stem cells: CD133, KIT, NOTCH1, GPRC5C, PIGF2, TRKB, and LNGFR. Moreover, we show that the genes are phenotype specific, as differentiation of I-type BE(2)-C cells to either an N- or S-type morphology results in significantly reduced mRNA expression. Finally, we show that NOTCH1 plays an important role in maintaining the stem cell phenotype. The identification and characterization of these genes, elevated in highly malignant neuroblastoma stem cells, could provide the basis for developing novel therapies for treatment of this lethal childhood cancer.

  10. Caveolin-1-Mediated Expression and Secretion of Kallikrein 6 in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rebecca S. Henkhaus

    2008-02-01

    Full Text Available Kallikreins are secreted proteases that may play a functional role and/or serve as a serum biomarker for the presence or progression of certain types of cancers. Kallikrein 6 (KLK6 has been shown to be upregulated in several types of cancers, including colon. The aims of this study were to elucidate pathways that influence KLK6 gene expression and KLK6 protein secretion in the HCT116 human colon cancer cells. Our data indicate a central role for caveolin-1 (CAV-1, the main structural protein of caveolae, in both KLK6 gene expression and protein secretion. Sucrose gradient subcellular fractionation reveals that CAV-1 and KLK6 colocalize to lipid raft domains in the plasma membrane of HCT116 cells. Furthermore, we show that CAV-1, although it does not directly interact with the KLK6 molecule, enhances KLK6 secretion from the cells. Deactivation of CAV-1, through SRC-mediated phosphorylation, decreased KLK6 secretion. We also demonstrate that, in colon cancer cells, CAV-1 increased the amount of phosphorylated AKT in cells by inhibiting the activity of the AKT-negative regulators PP1 and PP2A. This study demonstrates that proteins such as CAV-1 and AKT, which are known to be altered in colon cancer, affect KLK6 expression and KLK6 secretion.

  11. Quantum dots-based multiplexed immunohistochemistry of protein expression in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    C Shi

    2008-06-01

    Full Text Available Semiconductor quantum dots (QDs are bright fluorescent nanoparticles that have been successfully used for the detection of biomarker expression in cells. The objective of the present study is to use this technology in a multiplexing manner to determine at a single cell level the expression of a cell-specific bio-marker, prostate-specific antigen (PSA expressed by human prostate cancer LNCaP and ARCaP cell lines. Here we compared the sensitivity of immunohistochemistry (IHC and QD-based detection of AR and PSA expression in these cell lines. Further, we conducted multiplexing QD-based detection of PSA and androgen receptor (AR expression in LNCaP cells subjecting to androgen (R1881 stimulation. The involvement of AR in PSA regulation in LNCaP cells, at a single cell level, was confirmed by the co-incubation of LNCaP cells in the presence of both R1881 and its receptor antagonist, bicalutamide (Casodex. We showed here the superior quality of QDs, in comparison to IHC, for the detection of AR and PSA in cultured LNCaP and ARCaP cells. Multiplexing QDs technique can be used to detect simultaneously AR and PSA expression induced by R1881 which promoted AR translocation from its cytosolic to the nuclear compartment.We observed AR antagonist, bicalutamide, inhibited AR nuclear translocation and PSA, but not AR expression in LNCaP cells.

  12. KLF5 expression in prostate cancer tissue and effect of KLF5 knockdown on prostate cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Chong-Jun Shi; Wei-Zhong Yang; Yuan-Rong Kong; Wen-Guang Zhou

    2016-01-01

    Objective:To study the KLF5 expression in prostate cancer tissue and the effect of KLF5 knockdown on prostate cancer cell growth.Methods:Prostate cancer and benign prostatic hyperplasia tissue were collected to extract RNA and determine the mRNA levels ofKLF5as well as proliferation and epithelial-mesenchymal transition-related genes; DU145 cells were cultured and transfected with KLF5 siRNA and negative control siRNA, and then RNA was extracted to determine the mRNA levels of proliferation and epithelial-mesenchymal transition-related genes.Results:KLF5, SRSF1, Survivin, MACC1, c-Met, N-cadherinand Vimentin mRNA levels in prostate cancer tissue were significantly higher than those in benign prostatic hyperplasia tissue whileTGF-β,E-cadherinandβ-catenin mRNA levels were significantly lower than those in benign prostatic hyperplasia tissue;SRSF1, Survivin, MACC1, c-Met, TGF-β,N-cadherin andVimentinmRNA levels in si-KLF5 group were significantly lower than those in si-NC group while E-cadherin andβ-cateninmRNA levels were significantly higher than those in si-NC group.Conclusions: KLF5 expression levels are unusually high in prostate cancer tissue, and targeted knockdown of KLF5 expression can inhibit the prostate cancer cell proliferation and epithelial-mesenchymal transition.

  13. Role of AXL expression in non-small cell lung cancer.

    Science.gov (United States)

    Qu, Xiaohan; Liu, Jinlu; Zhong, Xinwen; Li, Xi; Zhang, Qigang

    2016-12-01

    The present study aimed to investigate the expression profile of AXL in non-small cell lung cancer (NSCLC) and its clinical significance. The current study included 257 NSCLC patients, tyrosine-protein kinase receptor UFO (AXL) expression in paired lung cancer and adjacent normal lung tissues of NSCLC patients were compared by immunohistochemistry, western blot analysis and quantitative polymerase chain reaction (qPCR). These methods were used to detect the expression of the AXL gene and protein in fresh tissues from 35 patients. Small interfering RNA (siRNA) was transfected into the H1299 lung cancer cell line to knock down AXL expression; the effects of AXL-siRNA on cell proliferation and migration were examined by MTT and Transwell migration assay, respectively. It was found that AXL staining density in lung cancer tissues was significantly increased compared with adjacent normal lung tissues (55.25 vs. 26.85%; P<0.01); and the expression level of AXL in NSCLC patients was significantly associated with the degree of tumor differentiation (P<0.01) and the clinical stage of disease (P<0.01). Western blotting and qPCR showed that AXL expression was significantly higher in cancer tissues compared with that in adjacent lung tissue (P<0.05). Additionally, the current study also showed that AXL-siRNA inhibited H1299 cell proliferation and migration in vitro. The present study demonstrates the association between increased expression of AXL in NSCLC and the low differentiation phenotype, and its effects on cell proliferation and migration, suggesting its potential clinical values for the prognosis of NSCLC.

  14. DHA alters expression of target proteins of cancer therapy in chemotherapy resistant SW620 colon cancer cells.

    Science.gov (United States)

    Slagsvold, Jens E; Pettersen, Caroline H H; Størvold, Gro L; Follestad, Turid; Krokan, Hans E; Schønberg, Svanhild A

    2010-01-01

    Diets rich in n-3 polyunsaturated fatty acids (PUFAs) have been associated with a reduced risk of several types of cancer. Recent reports have suggested that these PUFAs enhance the cytotoxic effect of cancer chemoradiotherapy. The effect of docosahexaenoic acid (DHA) on key cell cycle regulators and target proteins of cancer therapy was investigated in the human malign colon cancer cell line SW620. Cell cycle check point proteins such as p21 and stratifin (14-3-3 sigma) increased at mRNA and protein level, whereas cell cycle progression proteins such as cell division cycle 25 homolog and cyclin-dependent kinase 1 decreased after DHA treatment. Protein levels of inhibitors of apoptosis family members associated with chemotherapy resistance and cancer malignancy, survivin and livin, decreased after the same treatment: likewise the expression of NF-kappaB. Levels of the proapoptotic proteins phosphorylated p38 MAPK and growth arrest-inducible and DNA damage-inducible gene 153/C/EBP-homologous protein (CHOP) increased. The results indicate that DHA treatment causes simultaneous cell cycle arrest in both the G1 and G2 phase. In conclusion, DHA affects several target proteins of chemotherapy in a favorable way. This may explain the observed enhanced chemosensitivity in cancer cells supplemented with n-3 PUFAs and encourage further studies investigating the role of n-3 PUFAs as adjuvant to chemotherapy and radiotherapy in vivo.

  15. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  16. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression.

    Science.gov (United States)

    Long, Jianting; Ou, Caiwen; Xia, Haoming; Zhu, Yifan; Liu, Dayue

    2015-11-01

    Breast cancer is one of the most common malignancies and a major cause of cancer-related mortality all over the world. A growing body of reports revealed that microRNAs play essential roles in the progression of cancers. Aberrant expression of miR-503 has been reported in several kinds of cancer. The aim of the current study was to elucidate the role of miR-503 in the pathogenesis of breast cancer. In the present study, our results suggested that miR-503 expression was markedly downregulated in breast cancer tissues and cells. Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1. Together, our findings provide new knowledge regarding the role of miR-503 in the progression of breast cancer and indicate the role of miR-503 as a tumor suppressor microRNA (miRNA) in breast cancer.

  17. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis.

    Science.gov (United States)

    Fortenberry, Yolanda M; Brandal, Stephanie M; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.

  18. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis

    Science.gov (United States)

    Fortenberry, Yolanda M.; Brandal, Stephanie M.; Carpentier, Gilles; Hemani, Malvi; Pathak, Arvind P.

    2016-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential. PMID:27755560

  19. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  20. Microarray-based analysis of microRNA expression in breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Wang Zhi-xin

    2010-12-01

    Full Text Available Abstract Background This study aimed to determine the miRNA profile in breast cancer stem cells (BCSCs and to explore the functions of characteristic BCSC miRNAs. Methods We isolated ESA+CD44+CD24-/low BCSCs from MCF-7 cells using fluorescence-activated cell sorting (FACS. A human breast cancer xenograft assay was performed to validate the stem cell properties of the isolated cells, and microarray analysis was performed to screen for BCSC-related miRNAs. These BCSC-related miRNAs were selected for bioinformatic analysis and target prediction using online software programs. Results The ESA+CD44+CD24-/low cells had up to 100- to 1000-fold greater tumor-initiating capability than the MCF-7 cells. Tumors initiated from the ESA+CD44+CD24-/low cells were included of luminal epithelial and myoepithelial cells, indicating stem cell properties. We also obtained miRNA profiles of ESA+CD44+CD24-/low BCSCs. Most of the possible targets of potential tumorigenesis-related miRNAs were oncogenes, anti-oncogenes or regulatory genes. Conclusions We identified a subset of miRNAs that were differentially expressed in BCSCs, providing a starting point to explore the functions of these miRNAs. Evaluating characteristic BCSC miRNAs represents a new method for studying breast cancer-initiating cells and developing therapeutic strategies aimed at eradicating the tumorigenic subpopulation of cells in breast cancer.

  1. Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway.

    Directory of Open Access Journals (Sweden)

    Laura W Bowers

    Full Text Available Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB: ≥30 kg/m2; normal weight (N: 18.5-24.9 kg/m2. Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231 and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease.

  2. Analysis of the expression of coxsackievirus and adenovirus receptor in five colon cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the expression of coxsackievirus and adenovirus receptor (CAR) and adenovirus-mediated reporter gene transfer in five human colon cancer cell lines.METHODS: Expression of CAR-specific mRNA and protein was analyzed by reverse transcriptase polymerase chain reaction and Western blotting, respectively. Adenovirusbased gene delivery was evaluated by infection of cells with adenoviral vector carrying the green fluorescent protein (GFP) gene.RESULTS: All the colon cancer cell lines examined (HT29,LS180, SW480, SW948 and SW1116) expressed CAR full-length mRNA and an alternatively-spliced variant that lacks the transmembrane coding exon. All cell lines were detected as CAR-positive by Western blot analysis.Further, all cells we examined were efficiently infected with adenoviral vector-GFP.CONCLUSION: The data indicated that the five colon cancer cell lines tested expressed adenovirus primary receptor and could be efficiently infected by adenoviral vectors. Therefore, these cell lines will be useful for adenovirus-based gene transfer and research.

  3. Systematic variation in gene expression patterns in human cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Douglas T.; Scherf, Uwe; Eisen, Michael B.; Perou, Charles M.; Rees, Christian; Spellman, Paul; Iyer, Vishwanath; Jeffrey, Stefanie S.; Van de Rijn, Matt; Waltham, Mark; Pergamenschikov, Alexander; Lee, Jeffrey C.F.; Lashkari, Deval; Shalon, Dari; Myers, Timothy G.; Weinstein, John N.; Botstein, David; Brown, Patrick O.

    2000-01-01

    We used cDNA micro arrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute s screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumors from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumor specimens revealed features of the expression patterns in the tumors that had recognizable counterparts in specific cell lines, reflecting the tumor, stromal and inflammatory components of the tumor tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumors in vivo.

  4. MEK activity controls IL-8 expression in tamoxifen-resistant MCF-7 breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Jeon, Myeongjin; Lee, Jeong Eon; Nam, Seok Jin

    2016-04-01

    Although tamoxifen reduces disease progression, tamoxifen resistance occurs during the course of estrogen receptor-positive [ER+] breast cancer treatment. In the present study, we investigated the possibility that interleukin-8 (IL-8) is a prognostic marker for tamoxifen resistance and aimed to clarify the regulation of IL-8 expression in tamoxifen-resistant cells. Clinically, IL-8 expression is positively correlated with survival in luminal A type breast cancer patients, but not in luminal B type breast cancer patients. In addition, the levels of IL-8 mRNA and protein expression were significantly increased in tamoxifen-resistant (TamR) cells compared to tamoxifen-sensitive (TamS) cells. To determine the regulatory mechanism of IL-8 expression in TamR cells, we analyzed the activities of signaling molecules. Our results showed that the phosphorylation levels of MEK and Akt were markedly increased in TamR cells, but there was no change in the phosphorylation level of p38 MAPK. On the contrary, we observed that elevated IL-8 mRNA expression was suppressed by a specific MEK1/2 inhibitor, UO126, but not by the specific PI-3K inhibitor LY294002, in TamR cells, whereas, we found that overexpression of constitutively active-MEK (CA-MEK) significantly increased the levels of IL-8 mRNA expression in TamS cells. Finally, we investigated the effect of the specific CXCR1/2 inhibitor SB225002 on anchorage-independent growth of TamR cells, and found that the growth was completely suppressed by SB225002. Taken together, our results demonstrate that IL-8 expression is regulated through a MEK/ERK-dependent pathway in TamR cells, suggesting that IL-8 and its receptors may be promising therapeutic targets for overcoming tamoxifen resistance.

  5. Correlation of Aquaporin 3 Expression with the Clinicopathologic Characteristics of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Bailing LI

    2012-07-01

    Full Text Available Background and objective Lung cancer is a major health problem worldwide. The aim of this study is to investigate aquaporin 3 (AQP3 expression and its relationship with the clinicopathologic characteristics of non-small cell lung cancer (NSCLC. Methods AQP3 expression and the microvascular density (MVD of tissue samples from 180 cases with NSCLC were detected by immunohistochemistry. Results AQP3 expression was negative in 25 (13.9%, positive in 67 (37.2%, and strongly positive in 88 (48.9% of the 180 cases, which was significantly higher than that in the normal tissue (P<0.01. A significant correlation was found between AQP3 expression and MVD (P<0.01, whereas a high MVD was found among patients with strongly positive AQP3 expression. Male patients with positive or strongly positive AQP3 expression had significantly higher expression than female patients did (P=0.003. AQP3 expression was more significantly enhanced in adenocarcinoma than that in squamous cell carcinoma (P<0.001. Statistical analysis indicated that the positive rate of AQP3 expression in well-differentiated carcinoma was significantly higher than that in poorly differentiated tumors (P<0.001. Lymph node metastasis was positively correlated with high AQP3 expression (P=0.026. Conclusion AQP3 expression was closely correlated with MVD in NSCLC, whereas high MVD was frequently found in tumors with high AQP3 expression. AQP3, as a therapeutic target for inhibiting high AQP3 expression in NSCLC tissues, may weaken cancer cell proliferation, invasion, and metastasis.

  6. Gene expression profiling of liver cancer stem cells by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    David W Y Ho

    Full Text Available BACKGROUND: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90(+ liver cancer stem cells (CSCs in hepatocellular carcinoma (HCC. Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq to compare the gene expression profiling of CD90(+ cells sorted from tumor (CD90(+CSCs with parallel non-tumorous liver tissues (CD90(+NTSCs and elucidate the roles of putative target genes in hepatocarcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: CD90(+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90(+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90(+CSCs and CD90(+NTSCs, and validated by quantitative real-time PCR (qRT-PCR on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes between CD90(+CSCs and CD90(+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90(+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3, a member of glypican family, was markedly elevated in CD90(+CSCs compared to CD90(+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90(+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90(+CSCs in liver tumor tissues. CONCLUSIONS

  7. Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Nazanin S Ruppender

    Full Text Available Nearly 70% of breast cancer patients with advanced disease will develop bone metastases. Once established in bone, tumor cells produce factors that cause changes in normal bone remodeling, such as parathyroid hormone-related protein (PTHrP. While enhanced expression of PTHrP is known to stimulate osteoclasts to resorb bone, the environmental factors driving tumor cells to express PTHrP in the early stages of development of metastatic bone disease are unknown. In this study, we have shown that tumor cells known to metastasize to bone respond to 2D substrates with rigidities comparable to that of the bone microenvironment by increasing expression and production of PTHrP. The cellular response is regulated by Rho-dependent actomyosin contractility mediated by TGF-ß signaling. Inhibition of Rho-associated kinase (ROCK using both pharmacological and genetic approaches decreased PTHrP expression. Furthermore, cells expressing a dominant negative form of the TGF-ß receptor did not respond to substrate rigidity, and inhibition of ROCK decreased PTHrP expression induced by exogenous TGF-ß. These observations suggest a role for the differential rigidity of the mineralized bone microenvironment in early stages of tumor-induced osteolysis, which is especially important in metastatic cancer since many cancers (such as those of the breast and lung preferentially metastasize to bone.

  8. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiajia [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China); Zhu, Xi [Department of Urology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing (China); Zhang, Jie, E-mail: zhangjiebjmu@163.com [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China)

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  9. Determining the effect of DNA methylation on gene expression in cancer cells.

    Science.gov (United States)

    Lee, Chai-Jin; Evans, Jared; Kim, Kwangsoo; Chae, Heejoon; Kim, Sun

    2014-01-01

    DNA methylation, a DNA modification by adding methyl group to cytosine, has an important role in the regulation of gene expression. DNA methylation is known to be associated with gene transcription by interfering with DNA-binding proteins, such as transcription factors. DNA methylation is closely related to tumorigenesis, and the methylation state of some genes can be used as a biomarker for tumorigenesis. Aberrant DNA methylation of genomic regions, including CpG islands, CpG shores, and first exons, is related to the altered gene expression pattern characteristics of all human cancers. Subheading 1 surveys recent developments on DNA methylation and gene expressions in cancer. Then we provide analysis of DNA methylation and gene expression in 30 breast cancer cell lines representing different tumor phenotypes. This study conducted an integrated analysis to identify the relationship between DNA methylation in various genomic regions and expression levels of downstream genes, using MethylCapseq data (affinity purification followed by next-generation sequencing of eluted DNA) and Affymetrix gene expression microarray data. The goal of this study was to assess genome-wide methylation profiles associated with different molecular subtypes of human breast cancer (luminal, basal A, and basal B) and to comprehensively investigate the effect of DNA methylation on gene expression in breast cancer phenotypes. This showed that methylation of genomic regions near transcription start sites, CpG island, CpG shore, and first exon was strongly associated with gene repression, and the effects of the regions on gene expression patterns were different for different molecular subtypes of breast cancer. The results further indicated that aberrant methylation of specific genomic regions was significantly associated with different breast cancer subtypes.

  10. Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance.

    Directory of Open Access Journals (Sweden)

    Hai-long Wang

    Full Text Available Prostate-specific membrane antigen (PSMA has been found in tumor neovasculature endothelial cells (NECs of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC and small cell lung cancer (SCLC tissues and its relationship with clinicopathology were investigated in the current study.Immunohistochemistry was used to detect PSMA expression in a total of 150 lung specimens of patients with lung cancer. The data were analyzed using univariate and multivariate statistical analyses.The percentages of NSCLC patients who had PSMA (+ tumor cells and PSMA (+ NECs were 54.02% and 85.06%, respectively. The percentage of patients younger than 60 years old who had PSMA (+ tumor cells was 69.05%, which was significantly greater than the percentage of patients aged 60 years or older (40.00%, p<0.05. A significant difference was observed in the percentage of NSCLC patients with PMSA (+ NECs and stage I or II cancer (92.98% and those patients with stage III or IV cancer (76.77%. In the SCLC tissues, NEC PSMA expression (70.00% did not differ significantly from NSCLC. SCLC tumor cells and normal lung tissues cells were all negative. There was no significant correlation between the presence of PSMA (+ NECs in SCLC patients and the observed clinicopathological parameters.PSMA is expressed not only in NECs of NSCLC and SCLC but also in tumor cells of most NSCLC patients. The presence of PSMA (+ tumor cells and PSMA (+ NECs in NSCLC was negatively correlated with age and the clinicopathological stage of the patients, respectively.

  11. Zinc at Sub-Cytotoxic Concentrations Induces Heme Oxygenase-1 Expression in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jing Xue

    2013-07-01

    Full Text Available Background/Aims: This study investigated the effects of zinc on heme oxygenase-1 (HO-1 expression in human cancer cells. Methods/Results: Zinc at sub-cytotoxic concentrations (50-100 μM induces HO-1 expression in the MDA-MB-231 (human breast cancer and A2780 (human ovarian cancer cell lines in a concentration- and time-dependent manner. The induction of HO-1 by zinc was detected after 4-6 hours of treatment, reached maximal level at 8 hours, and declined thereafter. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs that mediated the zinc-induced increase in HO-1 gene transcription, indicating that the nuclear factor (erythroid-derived 2-like 2 (Nrf2 signaling pathway is involved in this event. This assumption was supported by the observations that knockdown of Nrf2 expression compromised the zinc-induced increase in HO-1 gene transcription, and that zinc increased Nrf2 protein expression and the Nrf2 binding to the AREs. Additionally, we found that the zinc-induced HO-1 gene transcription can be enhanced by clioquinol, a zinc ionophore, and reversed by pretreatment with TPEN, a known zinc chelator, indicating that an increase in intracellular zinc levels is responsible for this induction. Conclusion: These findings demonstrate that zinc at sub-cytotoxic concentrations induces HO-1 expression in human cancer cells. The biological significance of this induction merits further investigation.

  12. Distribution and mRNA Expression of BAMBI in Non-small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shen MIAO

    2009-03-01

    Full Text Available Background and objective BAMBI structure is similar with that of the receptor Ⅰof TGF-β, it broadly participates in the control of TGF-β signaling. The aim of this study is to investigate the expression and its significance of BAMBI in non-small cell lung cancer (NSCLC and explore the relation between BAMBI and clinical and pathological factors of NSCLC. Methods Sixty-three cases with NSCLC and adjacent normal tissue specimens were used for immunohistochemical assay. Thirty-one fresh lung cancer tissue specimens and surrounding normal lung tissue specimens was preserved for RT-PCR in -70 ℃ after quick-frozen in liquid nitrogen immediately. Results The level of BAMBI mRNA in cancer tissues was higher than that in the corresponding adjacent tissues (0.358±0.135 vs 0.249±0.129, with the difference being statistically significant (P =0.003. BAMBI protein expressed mainly in the membrane and the cytoplasm close to the membrane, its expression in the cancer tissue was higher than that in the adjacent tissues, the difference was significant (P <0.01. Expression of BAMBI in the cancer tissue was higher than that in the adjacent tissues, and the expression of BAMBI in adenocarcinoma of lung is higher than that in squamous carcinoma. Conclusion The expressions of BAMBI significantly increase in NSCLC. It might be a common affair in carcinogenesis of NSCLC.

  13. Silencing of ghrelin receptor expression inhibits endometrial cancer cell growth in vitro and in vivo.

    Science.gov (United States)

    Fung, Jenny N T; Jeffery, Penny L; Lee, John D; Seim, Inge; Roche, Deborah; Obermair, Andreas; Chopin, Lisa K; Chen, Chen

    2013-07-15

    Ghrelin is a 28-amino acid peptide hormone produced predominantly in the stomach but also in a range of normal cell types and tumors, where it has endocrine, paracrine, and autocrine roles. Previously, we have demonstrated that ghrelin has proliferative and antiapoptotic effects in endometrial cancer cell lines, suggesting a potential role in promoting tumor growth. In the present study, we investigated the effect of ghrelin receptor, GHSR, and gene silencing in vitro and in vivo and characterized ghrelin and GHSR1a protein expression in human endometrial tumors. GHSR gene silencing was achieved in the Ishikawa and KLE endometrial cancer cell lines, using a lentiviral short-hairpin RNA targeting GHSR. The effects of GHSR1a knockdown were further analyzed in vivo using the Ishikawa cell line in a NOD/SCID xenograft model. Cell proliferation was reduced in cultured GHSR1a knockdown Ishikawa and KLE cells compared with scrambled controls in the absence of exogenously applied ghrelin and in response to exogenous ghrelin (1,000 nM). The tumor volumes were reduced significantly in GHSR1a knockdown Ishikawa mouse xenograft tumors compared with scrambled control tumours. Using immunohistochemistry, we demonstrated that ghrelin and GHSR1a are expressed in benign and cancerous glands in human endometrial tissue specimens, although there was no correlation between the intensity of staining and cancer grade. These data indicate that downregulation of GHSR expression significantly inhibits endometrial cancer cell line and mouse xenograft tumour growth. This is the first preclinical evidence that downregulation of GHSR may be therapeutic in endometrial cancer.

  14. Gene expression profile of colon cancer cell lines treated with SN-38

    DEFF Research Database (Denmark)

    Wallin, A; Francis, P; Nilbert, M;

    2010-01-01

    the incidence in fact has increased. To improve chemotherapy and enable personalised treatment, the need of biomarkers is of great significance. In this study, we evaluated the gene expression profiles of the colon cancer cell lines treated with SN-38, the active metabolite of topoisomerase-1 inhibitor......Colorectal cancer is the third most common form of cancer in the industrial countries. Due to advances regarding the treatments, primarily development of improved surgical methods and the ability to make the earlier diagnosis, the mortality has remained constant during the past decades even though...

  15. HAP1 gene expression is associated with radiosensitivity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jing [The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Zhang, Jun-ying [Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Yin, Li [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Wu, Jian-zhong [Research Center of Clinical Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Guo, Wen-jie; Wu, Jian-feng [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Chen, Meng; Xia, You-you [The Fourth Clinical School of Nanjing Medical University, Nanjing, Jiangsu (China); Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Tang, Jin-hai [Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China); Ma, Yong-chao [Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu (China); He, Xia, E-mail: hexiadoctor@163.com [Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu (China)

    2015-01-02

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosis were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.

  16. Effect of Helicobacter pylori VacA on gene expression of gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Wang; Zhen-Hong Li; Jian-Ping Yuan; Wei Zhao; Xiao-Dong Shi; Shan-Qing Tong; Xiao-Kui Guo

    2005-01-01

    AIM: To determine the effect of Helicobacter pylori VacA on gene expression of gastric cancer cells.METHODS: Gene expression profile of a gastric cancer cell line, SGC7901, after challenged by VacA+ and VacA- Hpylori broth culture supernatants (BCS), was detected by the cDNA microarray technique. Cytoskeleton changes of SGC7901 and HeLa cells were observed through high-resolution laser scanning confocal microscopy.RESULTS: A total of 16 000 cDNA clones were detected.The percentage of genes with heterogeneous expression in SGC7901 cells challenged by VacA+ BCS reached 5%,compared with that challenged by Vac A- BCS. There were 865 genes/EST with 2-fold differential expression levels and 198 genes/EST with 3-fold differential expression levels.Host of these genes were involved in vital cell events including signal transduction, regulation of gene expression, cytoskeleton,apoptosis, stress response and inflammation, cell cycle and tumor development. Cells co-cultured with VacA+ BCS showed collapsed and disrupted microtubular cytoarchitecture.CONCLUSION: VacA+ BCS can disrupt cytoskeletal architecture,likely through affecting the expression of cytoskeleton-associated genes, directly induce the expression of tumor promoter-related genes and inhibit the expression of tumor suppressor genes, thus favoring the development of tumors.VacA+ BCS can also alter the expression of inflammation and stress response genes. This suggests that VacA may play an important role in the pathogenicity of H pylori.

  17. Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2013-01-01

    Full Text Available Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG, a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers.

  18. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ives Kirk

    2011-07-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 and the bombesin (BBS-like peptide, gastrin-releasing peptide (GRP, have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR-positive, androgen-insensitive prostate cancer cell line, PC-3. BBS-stimulated COX-2 expression is mediated, in part, by p38MAPK and PI3 kinase (PI3K/Akt pathways, and blocked by a GRPR antagonist. The PI3K/Akt pathway couples GRPR to the transcription factor, activator protein-1 (AP-1, and enhanced COX-2 promoter activity. Although BBS stimulates nuclear factor-kappaB (NF-κB in PC-3, NF-κB does not regulate GRPR-mediated COX-2 expression. The p38MAPK pathway increases BBS-stimulated COX-2 expression by slowing the degradation of COX-2 mRNA. Expression of recombinant GRPR in the androgen-sensitive cell line LNCaP is sufficient to confer BBS-stimulated COX-2 expression via the p38MAPK and PI3K/Akt pathways. Conclusions Our study establishes a mechanistic link between GRPR activation and enhanced COX-2 expression in prostate cancer cell lines, and suggests that inhibiting GRPR may, in the future, provide an effective therapeutic alternative to non-steroidal anti-inflammatory drugs for inhibiting COX-2 in patients with recurrent prostate cancer.

  19. Aberrant expression of nuclear matrix proteins during HMBA-induced differentiation of gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigate the aberrant expression of nuclear matrix proteins in human gastric cancer cells before and after hexamethylene bisacetamide (HMBA) treatment.METHODS: Proteomics analysis of differential nuclear matrix proteins was performed by two dimensional electrophoresis polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.The expression levels of three nuclear matrix proteins were further confirmed by Western blotting and their location...

  20. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Syed M Meeran

    Full Text Available BACKGROUND: Sulforaphane (SFN, an isothiocyanate found in cruciferous vegetables, is a common dietary component that has histone deacetylase inhibition activity and exciting potential in cancer prevention. The mechanisms by which SFN imparts its chemopreventive properties are of considerable interest and little is known of its preventive potential for breast cancer. PRINCIPAL FINDINGS: We found that SFN significantly inhibits the viability and proliferation of breast cancer cells in vitro while it has negligible effects on normal breast cells. Inhibition of telomerase has received considerable attention because of its high expression in cancer cells and extremely low level of expression in normal cells. SFN treatment dose- and time-dependently inhibited human telomerase reverse transcriptase (hTERT, the catalytic regulatory subunit of telomerase, in both MCF-7 and MDA-MB-231 human breast cancer cells. DNA methyltransferases (DNMTs, especially DNMT1 and DNMT3a, were also decreased in SFN-treated breast cancer cells suggesting that SFN may repress hTERT by impacting epigenetic pathways. Down-regulation of DNMTs in response to SFN induced site-specific CpG demethylation occurring primarily in the first exon of the hTERT gene thereby facilitating CTCF binding associated with hTERT repression. Chromatin immunoprecipitation (ChIP analysis of the hTERT promoter revealed that SFN increased the level of active chromatin markers acetyl-H3, acetyl-H3K9 and acetyl-H4, whereas the trimethyl-H3K9 and trimethyl-H3K27 inactive chromatin markers were decreased in a dose-dependent manner. SFN-induced hyperacetylation facilitated the binding of many hTERT repressor proteins such as MAD1 and CTCF to the hTERT regulatory region. Depletion of CTCF using siRNA reduced the SFN-induced down-regulation of hTERT mRNA transcription in these breast cancer cells. In addition, down-regulation of hTERT expression facilitated the induction of cellular apoptosis in human breast

  1. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.

  2. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression.

    Science.gov (United States)

    Liu, Feng; Liu, Yang; Shen, Jingling; Zhang, Guoqiang; Han, Jiguang

    2016-08-02

    The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24- cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of Frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to Frizzled 5 and inhibited proliferation and migration of breast cancer cells.

  3. Selenium is critical for cancer-signaling gene expression but not cell proliferation in human colon Caco-2 cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H

    2007-01-01

    Selenium (Se) is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. To understand the molecular basis of Se-anticancer effects at nutritional doses (nmol/L) for cultured cells, we generated Se-deficient colon Caco-2 cells by gradually reducing serum in media because serum contains a trace amount of Se. The glutathione peroxidase (GPx) activity of Se-deficient Caco-2 cells was 10.8 mU/mg protein compared to 133.6 approximately 146.3 mU/mg protein in Caco-2 cells supplemented with 500 nmol/L selenite, SeMSC or SeMet (three tested Se-chemical forms) after 7-d culture in serum free media. Interestingly, there were no detectable differences in cell growth, cell cycle progression between Se-deficient cells and cells supplemented with 500 nmol/L Se. To examine differential cancer signaling-gene expression between Se-deficient and Se-supplemented cells, we employed a cancer signal pathway-specific array assay coupled with the real time PCR analysis. Our data demonstrate that although Caco-2 cells are resistant to Se deprivation, Se may exert its anticancer property through increasing the expression of humoral defense gene (A2M) and tumor suppressor-related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (CXC L9, HSPB2) expression.

  4. Regulation of CXCL8/IL-8 expression by zonula occludens-1 in human breast cancer cells.

    Science.gov (United States)

    Brysse, Anne; Mestdagt, Mélanie; Polette, Myriam; Luczka, Emilie; Hunziker, Walter; Noël, Agnès; Birembaut, Philippe; Foidart, Jean-Michel; Gilles, Christine

    2012-01-01

    Accumulating data now suggest that ZO-1, once delocalized from tight junctions, could be implicated in the regulation of tumor-promoting genes. Because of their major implication in different steps of tumor progression, we investigated here the influence of ZO-1 on chemokines expression in breast cancer cells. Using GeneArray analysis to compare chemokine mRNA expression in breast tumor cells transfected with a siRNA against ZO-1, we identified CXCL-8IL-8 as a major potential target of ZO-1 signaling, being strongly downregulated following ZO-1 siRNA transfection. Examining further the relationship between ZO-1 and interleukin-8 (CXCL8/IL-8), we first showed that CXCL8/IL-8 expression correlates with a relocalization of ZO-1 in several breast cancer cell lines. Moreover, CXCL8/IL-8 is downregulated in invasive BT549 cells transfected with three different ZO-1 siRNA and overexpressed in noninvasive BT20 and SKBR3 cells transfected with vectors expressing ZO-1. We also provide evidence for an activation of the CXCL8/IL-8 promoter by ZO-1. Finally, we show that the regulation of CXCL8/IL-8 by ZO-1 is independent of the β-catenin pathway. Our results thus clearly show an implication of ZO-1 in CXCL8/IL-8 regulation. Because of the major implications of CXCL8/IL-8 in tumor invasion, such a regulation could play an important role in breast cancer progression.

  5. Expression of a model gene in prostate cancer cells lentivirally transduced in vitro and in vivo.

    Science.gov (United States)

    Bastide, C; Maroc, N; Bladou, F; Hassoun, J; Maitland, N; Mannoni, P; Bagnis, C

    2003-01-01

    In a preclinical model for prostate cancer gene therapy, we have tested lentiviral vectors as a practical possibility for the transfer and long-term expression of the EGFP gene both in vitro and in vivo. The human prostate cancer cell lines DU145 and PC3 were transduced using experimental conditions which permitted analysis of the expression from a single proviral vector per cell. The transduced cells stably expressed the EGFP transgene for 4 months. After injection of the transduced cell populations into Nod-SCID mice a decrease in EGFP was only observed in a minority of cases, while the majority of tumors maintained transgene expression at in vitro levels. In vivo injection of viral vector preparations directly into pre-established subcutaneous or orthotopic tumor masses, obtained by implantation of untransduced PC3 and DU145 cells led to a high transduction efficiency. While the efficiency of direct intratumoral transduction was proportional to the dose of virus injected, the results indicated some technical limitations inherent in these approaches to prostate cancer gene therapy.

  6. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method.

    Directory of Open Access Journals (Sweden)

    Ganglong Yang

    Full Text Available The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia, KK47 (low grade nonmuscle invasive bladder cancer, NMIBC, and YTS1 (metastatic bladder cancer have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer.

  7. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells.

    LENUS (Irish Health Repository)

    O'Callaghan, G

    2012-02-03

    Fas ligand (FasL\\/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E(2) (PGE(2)), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE(2) increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E(2)-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE(2) positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE(2).

  8. Differentially expressed proteins in human breast cancer cells sensitive and resistant to paclitaxel.

    Science.gov (United States)

    Pavlikova, Nela; Bartonova, Irena; Dincakova, Lucia; Halada, Petr; Kovar, Jan

    2014-08-01

    The resistance of cancer cells to chemotherapeutic drugs represents a major problem in cancer treatment. Despite all efforts, mechanisms of resistance have not yet been elucidated. To reveal proteins that could be involved in resistance to taxanes, we compared protein expression in whole cell lysates of SK-BR-3 breast cancer cells sensitive to paclitaxel and in lysates of the same line with acquired resistance to paclitaxel. The resistant SK-BR-3 cell line was established in our lab. Protein separation was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectro-metry. With these techniques we identified four proteins with different expression in resistant SK-BR-3 cells, i.e., serpin B3, serpin B4, heat shock protein 27 (all three upregulated) and cytokeratin 18 (downregulated). Observed changes were confirmed using western blot analysis. This study suggests new directions worthy of further study in the effort to reveal the mechanism of resistance to paclitaxel in breast cancer cells.

  9. MicroRNA expression and clinical outcome of small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Jih-Hsiang Lee

    Full Text Available The role of microRNAs in small-cell lung carcinoma (SCLC is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target.

  10. 5-Fluorocytosine combined with Fcy-hEGF fusion protein targets EGFR-expressing cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Keng-Hsueh [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan (China); Shih, Yi-Sheng [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Chang, Cheng Allen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan (China); Yen, Sang-Hue [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Lan, Keng-Li, E-mail: kllan@vghtpe.gov.tw [Cancer Center, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer EGFR-expressing epithelial cancers account for significant portion of cancer deaths. Black-Right-Pointing-Pointer EGF-EGFR signaling pathway is validated as an important anticancer drug target. Black-Right-Pointing-Pointer EGF and Fcy fusion protein (Fcy-hEGF) can bind to EGFR and convert 5-FC to 5-FU. Black-Right-Pointing-Pointer Fcy-hEGF combined with 5-FC preferentially inhibits EGFR-expressing cells viability. -- Abstract: Human epithelial cancers account for approximately 50% of all cancer deaths. This type of cancer is characterized by excessive activation and expression of the epidermal growth factor receptor (EGFR). The EGFR pathway is critical for cancer cell proliferation, survival, metastasis and angiogenesis. The EGF-EGFR signaling pathway has been validated as an important anticancer drug target. Increasing numbers of targeted therapies against this pathway have been either approved or are currently under development. Here, we adopted a prodrug system that uses 5-fluorocytosine (5-FC) and human EGF (hEGF) fused with yeast cytosine deaminase (Fcy) to target EGFR-overexpressing cancer cells and to convert 5-FC to a significantly more toxic chemotherapeutic, 5-fluorouracil (5-FU). We cloned and purified the Fcy-hEGF fusion protein from Pichia pastoris yeast. This fusion protein specifically binds to EGFR with a similar affinity as hEGF, approximately 10 nM. Fcy-hEGF binds tightly to A431 and MDA-MB-468 cells, which overexpress EGFR, but it binds with a lower affinity to MDA-MB-231 and MCF-7, which express lower levels of EGFR. Similarly, the viability of EGFR-expressing cells was suppressed by Fcy-hEGF in the presence of increasing concentrations of 5-FC, and the IC{sub 50} values for A431 and MDA-MB-468 were approximately 10-fold lower than those of MDA-MB-231 and MCF-7. This novel prodrug system, Fcy-hEGF/5-FC, might represent a promising addition to the available class of inhibitors that specifically target EGFR-expressing

  11. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  12. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Science.gov (United States)

    La Rocca, Rosanna; Tallerico, Rossana; Talib Hassan, Almosawy; Das, Gobind; Lakshmikanth, Tadepally; Tadepally, Lakshmikanth; Matteucci, Marco; Liberale, Carlo; Mesuraca, Maria; Scumaci, Domenica; Gentile, Francesco; Cojoc, Gheorghe; Perozziello, Gerardo; Ammendolia, Antonio; Gallo, Adriana; Kärre, Klas; Cuda, Giovanni; Candeloro, Patrizio; Di Fabrizio, Enzo; Carbone, Ennio

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1), indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  13. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  14. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma

    Directory of Open Access Journals (Sweden)

    Lu Lizhi

    2006-12-01

    Full Text Available Abstract Background Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. Results In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol and etoposide (VP16 compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Conclusion Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in

  15. MicroRNA-181b expression in prostate cancer tissues and its influence on the biological behavior of the prostate cancer cell line PC-3.

    Science.gov (United States)

    He, L; Yao, H; Fan, L H; Liu, L; Qiu, S; Li, X; Gao, J P; Hao, C Q

    2013-04-02

    We examined microRNA-181b (miRNA) expression in prostate cancer tissues and its effect on the prostate cancer cell line PC-3. Tissues from 27 cases of prostate cancer and 30 samples of normal human prostate were collected by surgical removal. Total miRNA was extracted, and the relative expression of miR-181b was quantified using RT-PCR. miR-181b ASO was transfected into prostate cancer PC-3 cells. miR-181b expression in transfected and non-transfected cells was measured using RT-PCR. Changes in cell apoptosis were measured using flow cytometry. MTT and cell growth curve methods were used to assess the influence of miR-181b expression on cell proliferation. The changes in cell invasive ability in vitro were detected using the Transwell chamber method. miR-181b was up-regulated in the prostate cancer tissues compared with the normal prostate samples. It was down-regulated after miR-181b ASO transfection into the prostate cancer PC-3 cells. Down-regulation of miR-181b in the PC-3 cell induced apoptosis, inhibited proliferation, and depressed invasion of PC-3 cells in vitro. As miR-181b is over-expressed in prostate cancer, its down-regulation could have potential as gene therapy for prostate cancer by inducing apoptosis, inhibiting proliferation and depressing invasion by cancer cells.

  16. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Yang Kui

    2008-09-01

    Full Text Available Abstract Background Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC specifically, the standard isoform (CD44s has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. Methods In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. Results MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. Conclusion The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing.

  17. NF-κB Mediates the Expression of TBX15 in Cancer Cells

    Science.gov (United States)

    Arribas, Jéssica; Cajuso, Tatiana; Rodio, Angela; Marcos, Ricard; Leonardi, Antonio; Velázquez, Antonia

    2016-01-01

    TBX15 is a T-box transcription factor essential for development, also proposed as a marker in prostate cancer; and, recently, its antiapoptotic function indicates a role in carcinogenesis. Regulation of TBX15 is uncovered. In this study, we investigated the regulation of TBX15 expression in human cancer cells, by analyzing the regulatory function of a 5’-distal conserved region of TBX15. Bisulfite sequencing showed high methylation of the CpG island contained in this region that was not correlated with TBX15 mRNA levels, in the cancer cell lines analyzed; however, after 5-aza-dC treatment of TPC-1 cells an increase of TBX15 expression was observed. We also found a significant response of TBX15 to TNF-α activation of the NF-κB pathway using five cancer cell lines, and similar results were obtained when NF-κB was activated with PMA/ionomycin. Next, by luciferase reporter assays, we identified the TBX15 regulatory region containing two functional NF-κB binding sites with response to NF-κBp65, mapping on the -3302 and -3059 positions of the TBX15 gene. Moreover, a direct interaction of NF-κBp65 with one of the two NF-κB binding sites was indicated by ChIP assays. In summary, we provide novel data showing that NF-κB signaling up-regulates TBX15 expression in cancer cells. Furthermore, the link between TBX15 and NF-κB found in this study may be important to understand cancer and development processes. PMID:27327083

  18. Silencing Bcl-2 Expression in Epithelial Cancer Cells Using “Smart” Particles

    Directory of Open Access Journals (Sweden)

    Yen-Ling Lin

    2014-09-01

    Full Text Available Short interfering RNA (siRNA targeted against anti-apoptotic Bcl-2 protein proved to knockdown its expression and trigger cancer cell death. We used degradable, pH-sensitive, comb-like [P(EAA-co-BMA-b-PNASI-g-P(HMA-co-TMAEMA] polymer to condense anti-Bcl-2 siRNA into “smart” particles, which proved to shuttle their cargo past the endosomal membrane and into the cytoplasm of HeLa and UM-SCC-17B cancer cells. HeLa and UM-SCC-17B cancer cells were treated with anti-Bcl-2 particles followed by quantifying Bcl-2 mRNA and protein levels using qRT-PCR and western blotting, respectively. “Smart” anti-Bcl-2 particles selectively suppress Bcl-2 mRNA and protein levels in HeLa cells by 50%–60% and 79%–81%, respectively. Similarly, “smart” anti-Bcl-2 particles inhibited Bcl-2 mRNA levels by 30%, 40%, and 20% upon incubation with UM-SCC-17B cancer cells for 48, 72, and 96 h, respectively. Bcl-2 protein expression in UM-SCC-17B cancer cells was inhibited by 30% after treatment for 72 h. Results show that pH-sensitive comb-like polymer complex anti-Bcl-2 siRNA forming “smart” nanoparticles that deliver their cargo into the cytoplasm of HeLa and UM-SCC-17B cancer cells causing Bcl-2 knockdown at the mRNA and protein levels.

  19. VEGF EXPRESSION IS INHIBITED BY APIGENIN IN HUMAN BREAST CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    JIN Xue-ying; REN Chang-shan

    2006-01-01

    Objective: To study the effects of apigenin on vascular endothelial growth factor (VEGF) in human breast cancer cells(MDA-MB-231. Methods: MTT assay was used to detect the cell proliferation inhibitory effect of apigenin on MDA-MB-231 cell. ELISA was used to determine the protein level of VEGF secreted by MDA-MB-231 cells. RT-PCR was used to detect mRNA levels of VEGF in MDA-MB-231 cells. The protein levels of HIF-1α,p-AKT,p-ERK1/2,and p53 were detected by Western Blotting. Results: Apigenin did not inhibit the cell viability of MDA-MB-231 cell. Apigenin reduced the secretion and mRNA levels of VEGF in MDA-MB-231 cells. Additionally, apigenin decreased the expressions of HIF-1α,p-AKT and p-ERK1/2, but induced the expression of p53. Conclusion: Apigenin can inhibit VEGF expression in human breast cancer cells, and this may be achieved through decreasing HIF-1α.

  20. Epigenetic silencing of the sulfate transporter gene DTDST induces sialyl Lewisx expression and accelerates proliferation of colon cancer cells.

    Science.gov (United States)

    Yusa, Akiko; Miyazaki, Keiko; Kimura, Naoko; Izawa, Mineko; Kannagi, Reiji

    2010-05-15

    Colon cancer cells express the carbohydrate determinant sialyl Lewis(x), while they exhibit markedly decreased the expression of its sulfated derivative, sialyl 6-sulfo Lewis(x). In contrast, normal colonic epithelial cells strongly express sialyl 6-sulfo Lewis(x), but they virtually do not express sialyl Lewis(x). Impaired sulfation was therefore suggested to occur during the course of malignant transformation of colonic epithelial cells and was assumed to be responsible for the increased sialyl Lewis(x) expression in cancers. To elucidate the molecular biological background of the impaired sulfation in cancers, we studied the expression levels of mRNA for 6-O-sulfotransferase isoenzymes, PAPS synthases and transporters, and a cell membrane sulfate transporter, DTDST, in cancer tissues. The most striking decrease in cancer cells compared with nonmalignant epithelial cells was noted in the transcription of the DTDST gene (P = 0.0000014; n = 20). Most cultured colon cancer cells had a diminished DTDST transcription, which was restored when cultured with histone deacetylase inhibitors. Suppression of DTDST transcription under the control of a tet-off inducible promoter resulted in increased sialyl Lewis(x) expression and reduced sialyl 6-sulfo Lewis(x) expression. Unexpectedly, the growth rate of the cancer cells was markedly enhanced when transcription of DTDST was suppressed. These results show that the decrease in the transcription of the sulfate transporter gene is the major cause of decreased expression of sialyl 6-sulfo Lewis(x) and increased expression of sialyl Lewis(x) in colon cancers. The results also suggest that the diminished DTDST expression is closely related to enhanced proliferation of cancer cells.

  1. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer.

    Science.gov (United States)

    Heegaard, Niels H H; Schetter, Aaron J; Welsh, Judith A; Yoneda, Mitsuhiro; Bowman, Elise D; Harris, Curtis C

    2012-03-15

    Circulating micro-RNA (miR) profiles have been proposed as promising diagnostic and prognostic biomarkers for cancer, including lung cancer. We have developed methods to accurately and reproducibly measure micro-RNA levels in serum and plasma. Here, we study paired serum and plasma samples from 220 patients with early stage nonsmall cell lung cancer (NSCLC) and 220 matched controls. We use qRT-PCR to measure the circulating levels of 30 different miRs that have previously been reported to be differently expressed in lung cancer tissue. Duplicate RNA extractions were performed for 10% of all samples, and micro-RNA measurements were highly correlated among those duplicates. This demonstrates high reproducibility of our assay. The expressions of miR-146b, miR-221, let-7a, miR-155, miR-17-5p, miR-27a and miR-106a were significantly reduced in the serum of NSCLC cases, while miR-29c was significantly increased. No significant differences were observed in plasma of patients compared with controls. Overall, expression levels in serum did not correlate well with levels in plasma. In secondary analyses, reduced plasma expression of let-7b was modestly associated with worse cancer-specific mortality in all patients, and reduced serum expression of miR-223 was modestly associated with cancer-specific mortality in stage IA/B patients. MiR profiles also showed considerable differences comparing African American and European Americans. In summary, we found significant differences in miR expression when comparing cases and controls and find evidence that expression of let-7b is associated with prognosis in NSCLC.

  2. Expressions of topoisomerase IIα and BCRP in metastatic cells are associated with overall survival in small cell lung cancer patients.

    Science.gov (United States)

    Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter

    2011-09-01

    The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.

  3. Loss of aquaporin-4 expression and putative function in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Schnabel Philipp A

    2011-05-01

    Full Text Available Abstract Background Aquaporins (AQPs have been recognized to promote tumor progression, invasion, and metastasis and are therefore recognized as promising targets for novel anti-cancer therapies. Potentially relevant AQPs in distinct cancer entities can be determined by a comprehensive expression analysis of the 13 human AQPs. Methods We analyzed the presence of all AQP transcripts in 576 different normal lung and non-small cell lung cancer (NSCLC samples using microarray data and validated our findings by qRT-PCR and immunohistochemistry. Results Variable expression of several AQPs (AQP1, -3, -4, and -5 was found in NSCLC and normal lung tissues. Furthermore, we identified remarkable differences between NSCLC subtypes in regard to AQP1, -3 and -4 expression. Higher transcript and protein levels of AQP4 in well-differentiated lung adenocarcinomas suggested an association with a more favourable prognosis. Beyond water transport, data mining of co-expressed genes indicated an involvement of AQP4 in cell-cell signalling, cellular movement and lipid metabolism, and underlined the association of AQP4 to important physiological functions in benign lung tissue. Conclusions Our findings accentuate the need to identify functional differences and redundancies of active AQPs in normal and tumor cells in order to assess their value as promising drug targets.

  4. Abnormal expression of calcyphosine is associated with poor prognosis and cell biology function in colorectal cancer

    Science.gov (United States)

    Shao, Weiwei; Wang, Quhui; Wang, Feiran; Jiang, Yasu; Xu, Meirong; Xu, Junfei

    2016-01-01

    The aim of this study was to investigate the calcyphosine (CAPS) expression in human colorectal cancer (CRC) and to explore its clinical and prognostic significances. CAPS expression was measured by Western blot, real-time polymerase chain reaction analysis, and immunohistochemistry. The relationships between the CAPS expression levels and the clinicopathological factors were investigated. The Kaplan–Meier method and log-rank test were used to investigate the overall survival of the patients. Moreover, the effects of CAPS on biological roles of CRC cells were also evaluated by MTT assay, colony formation assay, and transwell assay. CAPS was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent nontumor tissue and a normal human intestinal epithelial cell line. Overexpression of CAPS was significantly associated with histological grade (P=0.004), invasive depth (P<0.001), lymph node metastasis (P=0.003), tumor node metastasis stage (P=0.017), and distant metastasis (P=0.042). Furthermore, silencing of CAPS expression in CRC cells inhibited their proliferation, colony formation, migration, and invasion. Kaplan–Meier survival analysis showed that high CAPS expression might demonstrate poor prognosis in CRC patients. Cox regression analysis revealed that CAPS expression was an independent prognostic factor of CRC. Our data suggested that the upregulation of CAPS might play a role in the carcinogenesis and progression of CRC. CAPS could be used as a potential diagnostic factor and be an independent good prognostic indicator for CRC patients. PMID:26889086

  5. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer.

    Science.gov (United States)

    Marquez-Garban, Diana C; Mah, Vei; Alavi, Mohammad; Maresh, Erin L; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J

    2011-08-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC.

  6. NDRG1 expression is related to the progression and prognosis of gastric cancer patients through modulating proliferation, invasion and cell cycle of gastric cancer cells.

    Science.gov (United States)

    Chang, Xiaojing; Xu, Xiaoyang; Ma, Jinguo; Xue, Xiaoying; Li, Zhenhua; Deng, Peng; Zhang, Shuanglong; Zhi, Yu; Chen, Jing; Dai, Dongqiu

    2014-09-01

    N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1-NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.

  7. Expression of cyclooxygenase-2 mRNA in drug-sensitive cell and drug-resistant strains of ovarian cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Li; Zehua Wang

    2006-01-01

    Objective: To investigate the expression of cyclooxygenase-2 (COX-2) mRNA in drug-sensitive cell and drugresistant clones of ovarian cancer cell lines. Methods: RT-PCR and immunocytochemistry were used to investigate the expression of cyclooxygenase-2 in 3 clones drug-sensitive and 5 clones drug-resistant ovarian cancer cell. Results: Strong COX-2 mRNA expressions were detected in 3 clones of drug-sensitive cell and weak expressions were detected in 5 clones of drug-resistant cell. The protein expression of COX-2 in drug-sensitive cell was strongly positive reaction in immunocytochemistry stain and there was a weak positive reaction in 5clones of drug-resistant cell. Conclusion: The expression of COX-2 mRNA in drug-sensitive cell strains is much higher than that in drugresistant strains of ovarian cancer cell lines, providing a basis of the chemoprevention for ovarian cancer.

  8. MATE2 Expression Is Associated with Cancer Cell Response to Metformin

    Science.gov (United States)

    Pintilie, Melania; Muaddi, Hala; Chaib, Selim; Yeung, ManTek; Fusciello, Manlio; Sykes, Jenna; Pitcher, Bethany; Hagenkort, Anna; McKee, Trevor; Vellanki, Ravi; Chen, Eric; Bristow, Robert G.; Wouters, Bradly G.; Koritzinsky, Marianne

    2016-01-01

    Background There is great interest in repurposing the commonly prescribed anti-diabetic drug metformin for cancer therapy. Intracellular uptake and retention of metformin is affected by the expression of organic cation transporters (OCT) 1–3 and by multidrug and toxic compound extrusion (MATE) 1–2. Inside cells, metformin inhibits mitochondrial function, which leads to reduced oxygen consumption and inhibition of proliferation. Reduced oxygen consumption can lead to improved tumor oxygenation and radiation response. Purpose Here we sought to determine if there is an association between the effects of metformin on inhibiting oxygen consumption, proliferation and expression of OCTs and MATEs in a panel of 19 cancer cell lines. Results There was relatively large variability in the anti-proliferative response of different cell lines to metformin, with a subset of cell lines being very resistant. In contrast, all cell lines demonstrated sensitivity to the inhibition of oxygen consumption by metformin, with relatively small variation. The expression of OCT1 correlated with expression of both OCT2 and OCT3. OCT1 and OCT2 were relatively uniformly expressed, whereas expression of OCT3, MATE1 and MATE2 showed substantial variation across lines. There were statistically significant associations between resistance to inhibition of proliferation and MATE2 expression, as well as between sensitivity to inhibition of oxygen consumption and OCT3 expression. One cell line (LNCaP) with high OCT3 and low MATE2 expression in concert, had substantially higher intracellular metformin concentration than other cell lines, and was exquisitely sensitive to both anti-proliferative and anti-respiratory effects. In all other cell lines, the concentration of metformin required to inhibit oxygen consumption acutely in vitro was substantially higher than that achieved in the plasma of diabetic patients. However, administering anti-diabetic doses of metformin to tumor-bearing mice resulted in

  9. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer.

    Science.gov (United States)

    Carpentino, Joseph E; Hynes, Mark J; Appelman, Henry D; Zheng, Tong; Steindler, Dennis A; Scott, Edward W; Huang, Emina H

    2009-10-15

    Patients with chronic ulcerative colitis are at increased risk of developing colorectal cancer. Although current hypotheses suggest that sporadic colorectal cancer is due to inability to control cancer stem cells, the cancer stem cell hypothesis has not yet been validated in colitis-associated cancer. Furthermore, the identification of the colitis to cancer transition is challenging. We recently showed that epithelial cells with the increased expression of aldehyde dehydrogenase in sporadic colon cancer correlate closely with tumor-initiating ability. We sought to determine whether ALDH can be used as a marker to isolate tumor-initiating populations from patients with chronic ulcerative colitis. We used fluorescence-activated cell sorting to identify precursor colon cancer stem cells from colitis patients and report both their transition to cancerous stem cells in xenografting studies as well as their ability to generate spheres in vitro. Similar to sporadic colon cancer, these colitis-derived tumors were capable of propagation as sphere cultures. However, unlike the origins of sporadic colon cancer, the primary colitic tissues did not express any histologic evidence of dysplasia. To elucidate a potential mechanism for our findings, we compared the stroma of these different environments and determined that at least one paracrine factor is up-regulated in the inflammatory and malignant stroma compared with resting, normal stroma. These data link colitis and cancer identifying potential tumor-initiating cells from colitic patients, suggesting that sphere and/or xenograft formation will be useful to survey colitic patients at risk of developing cancer.

  10. Expression of Bim, Noxa, and Puma in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Sakakibara-Konishi Jun

    2012-07-01

    Full Text Available Abstract Background The BH3-only members of the Bcl-2 protein family have been proposed to play a key role in the control of apoptosis and in the initiation of the apoptotic pathways. In this study, we evaluated the expression of Bim, Noxa, and Puma in non-small cell lung cancer (NSCLC. Methods A total of 135 surgically resected NSCLCs were immunohistochemically assessed for Bim, Noxa, and Puma expression. The immunoscores were determined, and then its correlation with either the clinicopathological variables or the survival outcomes were analyzed. Results Immunohistochemical reactivity for Bim, Noxa, and Puma was detected in the cytoplasm of the tumor cells. Bim expression was associated with several clinicopathological factors, including sex (p  Conclusions The current analyses demonstrated that Bim expression in the NSCLCs was associated with both squamous cell carcinoma histology and tumor proliferation.

  11. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib;

    2014-01-01

    treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  12. Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer

    Science.gov (United States)

    Li, Yun; Rong, Jian; Qin, Jie; He, Jin-Yuan; Chen, Hui-Guo; Huang, Shao-Hong

    2016-09-01

    Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body.

  13. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    Science.gov (United States)

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  14. Expression of Tra2β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis

    Directory of Open Access Journals (Sweden)

    Andrew Best

    2013-01-01

    Full Text Available The splicing regulator proteins SRSF1 (also known as ASF/SF2 and SRSF3 (also known as SRP20 belong to the SR family of proteins and can be upregulated in cancer. The SRSF1 gene itself is amplified in some cancer cells, and cancer-associated changes in the expression of MYC also increase SRSF1 gene expression. Increased concentrations of SRSF1 protein promote prooncogenic splicing patterns of a number of key regulators of cell growth. Here, we review the evidence that upregulation of the SR-related Tra2β protein might have a similar role in cancer cells. The TRA2B gene encoding Tra2β is amplified in particular tumours including those of the lung, ovary, cervix, stomach, head, and neck. Both TRA2B RNA and Tra2β protein levels are upregulated in breast, cervical, ovarian, and colon cancer, and Tra2β expression is associated with cancer cell survival. The TRA2B gene is a transcriptional target of the protooncogene ETS-1 which might cause higher levels of expression in some cancer cells which express this transcription factor. Known Tra2β splicing targets have important roles in cancer cells, where they affect metastasis, proliferation, and cell survival. Tra2β protein is also known to interact directly with the RBMY protein which is implicated in liver cancer.

  15. Astrocytes derived from trisomic human embryonic stem cells express markers of astrocytic cancer cells and premalignant stem-like progenitors

    Directory of Open Access Journals (Sweden)

    Iverson Linda E

    2010-04-01

    Full Text Available Abstract Background Trisomic variants of human embryonic stem cells (hESCs arise spontaneously in culture. Although trisomic hESCs share many properties with diploid hESCs, they also exhibit features of cancer stem cells. Since most hESC-based therapies will utilize differentiated derivatives, it is imperative to investigate the potential of trisomic hESCs to undergo malignant transformation during differentiation prior to their use in the clinical setting. Methods Diploid and trisomic hESCs were differentiated into astrocytic progenitors cells (APCs, RNA extracted and hybridized to human exon-specific microarrays. Global gene expression profiles of diploid and trisomic APCs were compared to that of an astrocytoma cell line and glioblastoma samples, analyzed by others, using the same microarray platform. Results Bioinformatic analysis of microarray data indicates that differentiated trisomic APCs exhibit global expression profiles with similarities to the malignant astrocytoma cell line. An analogous trend is observed in comparison to glioblastoma samples indicating that trisomic APCs express markers of astrocytic cancer cells. The analysis also allowed identification of transcripts predicted to be differentially expressed in brain tumor stem cells. These data indicate that in vitro differentiation of trisomic hESCs along astrocytic pathways give rise to cells exhibiting properties of premalignant astrocytic stem/progenitor cells. Conclusions Given their occult nature, opportunities to study premalignant stem/progenitor cells in human have been few. The ability to propagate and direct the differentiation of aneuploid hESCs provides a powerful in vitro system for investigating biological properties of human cells exhibiting features of premalignant stem cells. This in vitro culture system can be used to elucidate changes in gene expression occurring enroute to malignant transformation and to identify molecular markers of cancer stem

  16. Expression and significance of B7-H1 in peripheral blood dendritic cells from patients with bladder cancer

    Institute of Scientific and Technical Information of China (English)

    Chuanbiao Ji; Yonghua Wang; Qinchao Yu; Jing Liu; Yanan Liu; Jie Cui

    2013-01-01

    Objective: The aim of this study was to study the expression and the clinical significance of B7-H1 on dendritic cells (DCs) in peripheral blood from patients with bladder cancer. Methods: Peripheral blood mononuclear cell were disparted from 30 bladder cancer patients and 7 healthy controls by density gradient centrifugation and then co-cultured. The expression of B7-H1 on DCs were analyzed by flow cytometry. Results: Expression of B7-H1 on DCs in bladder cancer was higher than healthy controls (P < 0.01). And the expression were strongly associated with the pathological grade and clinical stage of bladder cancer (P < 0.05). Conclusion: The up-regulation of B7-H1 on DCs was strongly associated with neoplastic progression of bladder cancer. B7-H1/programmed death (PD)-1 signal pathway may also play an important role in immune escape of bladder cancer during initial phase of T cell immune response.

  17. GENISTEIN INHIBITS EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN HER-2/NEU TRANSFECTED HUMAN BREAST CANCER MCF-7 CELLS

    Institute of Scientific and Technical Information of China (English)

    ZHU Jun-dong; YU Xiao-ping; MI Man-tian

    2006-01-01

    Objective: our previous studies have demonstrated that HER-2/neu gene expression in human breast cancer MCF-7 cells promotes angiogenesis in MCF-7 cells xenograft tumors, and genistein inhibits angiogenesis in MCF-7 cells with HER-2/neu expression xenograft tumors. Here, the effects of genistein on the expression of vascular endothelial growth factor (VEGF) inMCR-7 cells with HER-2/neu expression were further studied for exploring the molecular mechanism of anti-angiogenesis in HER-2/neu-overexpressing breast cancer by genistein. Methods: HER-2/neu-overexpressing MCF-7 cells (MCF-7/HER-2)were established by transfecting HER-2/neu gene into HER-2/neu negative expression breast cancer MCF-7 cells.Immunocytochemical staining, western blot and reverse transcription-polymerase chain reaction (RT-PCR) were adopted to measure the expression of VEGF in MCF-7/HER-2 cells treated by genistein for 24, 48 and 72h. Results: HER-2/neu expression up-regulated VEGF mRNA and protein in MCF-7 cells, genistein decreased VEGF mRNA and protein level in MCF-7/HER-2 cells in a time-dependent manner. Conclusion: These results suggest that VEGF plays an important role in HER-2/neu gene expression promoted antiogenesis in breast cancer and genistein induced down-regulation of the expression of VEGF may be one of the molecular mechanisms of its anti-angiogenesis in HER-2/neu-overexpressing breast cancer.

  18. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    Directory of Open Access Journals (Sweden)

    Takayuki Ueno

    2015-01-01

    Full Text Available The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment.

  19. TWIST Represses Estrogen Receptor-alpha Expression by Recruiting the NuRD Protein Complex in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Junjiang Fu, Lianmei Zhang, Tao He, Xiuli Xiao, Xiaoyan Liu, Li Wang, Luquan Yang, Manman Yang, Tiandan Zhang, Rui Chen, Jianming Xu

    2012-01-01

    Full Text Available Loss of estrogen receptor α (ERα expression and gain of TWIST (TWIST1 expression in breast tumors correlate with increased disease recurrence and metastasis and poor disease-free survival. However, the molecular and functional regulatory relationship between TWIST and ERα are unclear. In this study, we found TWIST was associated with a chromatin region in intron 7 of the human ESR1 gene coding for ERα. This association of TWIST efficiently recruited the nucleosome remodeling and deacetylase (NuRD repressor complex to this region, which subsequently decreased histone H3K9 acetylation, increased histone H3K9 methylation and repressed ESR1 expression in breast cancer cells. In agreement with these molecular events, TWIST expression was inversely correlated with ERα expression in both breast cancer cell lines and human breast ductal carcinomas. Forced expression of TWIST in TWIST-negative and ERα-positive breast cancer cells such as T47D and MCF-7 cells reduced ERα expression, while knockdown of TWIST in TWIST-positive and ERα-negative breast cancer cells such as MDA-MB-435 and 4T1 cells increased ERα expression. Furthermore, inhibition of histone deacetylase (HDAC activity including the one in NuRD complex significantly increased ERα expression in MDA-MB-435 and 4T1 cells. HDAC inhibition together with TWIST knockdown did not further increase ERα expression in 4T1 and MDA-MB-435 cells. These results demonstrate that TWIST/NuRD represses ERα expression in breast cancer cells. Therefore, TWIST may serve as a potential molecular target for converting ERα-negative breast cancers to ERα-positive breast cancers, allowing these cancers to restore their sensitivity to endocrine therapy with selective ERα antagonists such as tamoxifen and raloxifene.

  20. Expression of γ-synuclein in colorectal cancer tissues and its role on colorectal cancer cell line HCT116

    Institute of Scientific and Technical Information of China (English)

    Qing Ye; Bo Feng; Yuan-Fei Peng; Xue-Hua Chen; Qu Cai; Bei-Qin Yu; Liang-Hui Li; Ming-Yuan Qiu; Bing-Ya Liu; Min-Hua Zheng

    2009-01-01

    AIM: To investigate the expression pattern of γ-synuclein in colorectal cancer (CRC) tissues, and to study the effects of γ-synuclein on CRC cell line HCT116 biological features in vitro.METHODS: The expression pattern of γ-synuclein was determined in 54 CRC tissues and 30 tumormatched nonneoplastic adjacent tissues (NNAT) 5 cm away from the tumor via real-time quantitative reverse transcription PCR (RT-PCR) and immunohistochemistry.The relationship between γ-synuclein protein expression and clinicopathological factors of CRC tissues was analyzed. Three small interfering RNA (siRNA) targeting γ-synuclein mRNA plasmids were constructed and transfected into the CRC cell line HCT116. The stable cell lines were selected with G-418 for 28 d, and the biological features of these cells were examined by cell growth curve, soft agar assay, and cell migration and invasion assays in vitro.RESULTS: The expression of γ-synuclein mRNA and protein was much higher in CRC tissue samples than in NNAT samples ( P = 0.02, P = 0.036). There was a significant correlation between the γ-synuclein protein expression and clinical stage and lymph node involvement of CRC ( P = 0.02, P = 0.033). In functional analysis we found that down-regulation of γ-synuclein expression in HCT116 cells could inhibit the growth, colony formation rate, and migration and invasion ability of HCT116 cells.CONCLUSION: Increased expression of γ-synuclein in CRC tissues and the biological effects of reduced γ-synuclein expression on HCT116 cells suggest that γ-synuclein may play a positive role in the progression of CRC.

  1. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    Science.gov (United States)

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  2. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Shikotra Aarti

    2010-04-01

    Full Text Available Abstract Background We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC. Methods We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression. Results There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS patients (p = 0.007, 0.01, and 0.002, respectively. There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and s = 0.520, p = 0.02 and between mast cell density and CXCR3 expression (rs = 0.499, p = 0.03 in the tumour islets. Conclusion Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets.

  3. TMPRSS4 induces cancer stem cell-like properties in lung cancer cells and correlates with ALDH expression in NSCLC patients.

    Science.gov (United States)

    de Aberasturi, Arrate L; Redrado, Miriam; Villalba, Maria; Larzabal, Leyre; Pajares, Maria J; Garcia, Javier; Evans, Stephanie R; Garcia-Ros, David; Bodegas, Maria Elena; Lopez, Lissett; Montuenga, Luis; Calvo, Alfonso

    2016-01-28

    Metastasis involves a series of changes in cancer cells that promote their escape from the primary tumor and colonization to a new organ. This process is related to the transition from an epithelial to a mesenchymal phenotype (EMT). Recently, some authors have shown that migratory cells with an EMT phenotype share properties of cancer stem cells (CSCs), which allow them to form a new tumor mass. The type II transmembrane serine protease TMPRSS4 is highly expressed in some solid tumors, promotes metastasis and confers EMT features to cancer cells. We hypothesized that TMPRSS4 could also provide CSC properties. Overexpression of TMPRSS4 reduces E-cadherin and induces N-cadherin and vimentin in A549 lung cancer cells, supporting an EMT phenotype. These changes are accompanied by enhanced migration, invasion and tumorigenicity in vivo. TMPRSS4 expression was highly increased in a panel of lung cancer cells cultured as tumorspheres (a typical assay to enrich for CSCs). H358 and H441 cells with knocked-down TMPRSS4 levels were significantly less able to form primary and secondary tumorspheres than control cells. Moreover, they showed a lower proportion of ALDH+ cells (examined by FACS analysis) and lower expression of some CSC markers than controls. A549 cells overexpressing TMPRSS4 conferred the opposite phenotype and were also more sensitive to the CSC-targeted drug salinomycin than control cells, but were more resistant to regular chemotherapeutic drugs (cisplatin, gemcitabine and 5-fluorouracil). Analysis of 70 NSCLC samples from patients revealed a very significant correlation between TMPRSS4 expression and CSC markers ALDH (p = 0.0018) and OCT4 (p = 0.0004), suggesting that TMPRSS4 is associated with a CSC phenotype in patients' tumors. These results show that TMPRSS4, in addition to inducing EMT, can also promote CSC features in lung cancer; therefore, CSC-targeting drugs could be an appropriate treatment for TMPRSS4+ tumors.

  4. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells.

    Science.gov (United States)

    Guzey, Meral; Luo, Jianhua; Getzenberg, Robert H

    2004-10-01

    The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors and has potential tumor-suppressive functions in prostate and other cancer types. Vitamin D3 (VD3) exerts its biological actions by binding within cells to VDR. The VDR then interacts with specific regions of the DNA in cells, and triggers changes in the activity of genes involved in cell division, cell survival, and cellular function. Using human primary cultures and the prostate cancer (PCa) cell line, ALVA-31, we examined the effects of VD3 under different culture conditions. Complete G0/G1 arrest of ALVA-31 cells and approximately 50% inhibition of tumor stromal cell growth was observed. To determine changes in gene expression patterns related to VD3 activity, microarray analysis was performed. More than approximately 20,000 genes were evaluated for twofold relative increases and decreases in expression levels. A number of the gene targets that were up- and down-regulated are related to potential mechanisms of prostatic growth regulation. These include estrogen receptor (ER), heat shock proteins: 70 and 90, Apaf1, Her-2/neu, and paxillin. Utilizing antibodies generated against these targets, we were able to confirm the changes at the protein level. These newly reported gene expression patterns provide novel information not only potential markers, but also on the genes involved in VD3 induced apoptosis in PCa.

  5. Expression of Syk in non-small cell lung cancer and its relationship with clinicopathological parameters

    Institute of Scientific and Technical Information of China (English)

    Fen LAN; Shengdao XIONG; Weining XIONG; Guopeng XU; Xiaoxia LU

    2009-01-01

    This study aims to research the expression of spleen tyrosine kinase (Syk) in non-small cell lung cancer (NSCLC) and the relationship between Syk and clinico-pathologic factors and p53. Immunohistochemistry was applied to detect the expression of Syk and p53 protein in 39 cases of NSCLC (23 cases of lung squamous cell can-cer, 16 cases of lung adenocarcinoma) and tumor-sur-rounding normal lung tissues. The positive rate of Syk was 46.15% (18/39) and 100% (39/39) in NSCLC and tumor-surrounding normal lung tissues, respectively. The expres-sion level of Syk in NSCLC was significantly lower than that in tumor-surrounding normal lung tissues (P = 0.000). The Syk expression was positively correlated with the p53 expression in NSCLC specimens (P = 0.025). There was no significant association between Syk expression and lymph node metastasis, differentiation degree, tumor size and tumor node metastasis (TNM). The present study demonstrated that Syk was aberrantly expressed in the NSCLC and might have a significant impact on tumor growth and progression.

  6. Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Luis Steven Servín-González

    2015-06-01

    Full Text Available Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate or repress a particular cell axis. It is well known that aberrant miRNA expression is well recognized as an important step in the development of cancer. Individual miRNA expression is reported without considering that miRNAs are grouped in clusters and may have similar functions, such as the case of clusters with anti-oncomiRs (23b~27b~24-1, miR-29a~29b-1, miR-29b-2~29c, miR-99a~125b-2, miR-99b~125a, miR-100~125b-1, miR-199a-2~214, and miR-302s or oncomiRs activity (miR-1-1~133a-2, miR-1-2~133a-1, miR-133b~206, miR-17~92, miR-106a~363, miR183~96~182, miR-181a-1~181b-1, and miR-181a-2~181b-2, which regulated mitogen-activated protein kinases (MAPK, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K, NOTCH, proteasome-culling rings, and apoptosis cell signaling. In this work we point out the pathways regulated by families of miRNAs grouped in 20 clusters involved in cervical cancer. Reviewing how miRNA families expressed in cluster-regulated cell path signaling will increase the knowledge of cervical cancer progression, providing important information for therapeutic, diagnostic, and prognostic methodology design.

  7. High level of MT-MMP expression is associated with invasiveness of cervical cancer cells.

    Science.gov (United States)

    Gilles, C; Polette, M; Piette, J; Munaut, C; Thompson, E W; Birembaut, P; Foidart, J M

    1996-01-17

    MMP-2 (gelatinase A) has been associated with the invasive potential of many cancer cells both in vitro and in vivo. It is now becoming clear that the activation of this enzyme might be a key step in tumor invasion. This activation process has been shown to be a membrane-associated pathway inducible by various agents such as collagen type I, concanavalin A or TGF-beta, but its physiological regulation is still largely unresolved. MT-MMP was recently discovered and described as a potential gelatinase-A activator. In the present study, we investigated the expression of MT-MMP (membrane-type metalloproteinase) in cervical cancer cells both in vitro and in vivo. Comparing several in vitro-transformed cervical cell lines, previously shown to display different invasive potentials, our results showed that the ability of cells to overexpress MT-MMP mRNA following ConA induction correlated with their ability to activate gelatinase A and with a highly invasive behavior. Moreover, using immunohistochemistry and in situ hybridization, we found a higher level of MT-MMP expression in invasive cervical carcinoma and lymph node metastases compared to its expression in non-invasive CIN III lesions. Our in vivo observations also clearly demonstrated a cooperation between stromal and tumor cells for the production of MT-MMP. Taken together, our results clearly correlated high level MT-MMP expression with invasiveness, and thus suggested that MT-MMP might play a crucial role in cervical tumor invasion.

  8. Histone acetylation regulates p21WAF1 expression in human colon cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Ying-Xuan Chen; Jing-Yuan Fang; Hong-Yin Zhu; Rong Lu; Zhong-Hua Cheng; De-Kai Qiu

    2004-01-01

    AIM: To investigate the effect of histone acetylation on regulation of p21WAF1 gene expression in human colon cancer cell lines.METHODS: Two cell lines, Colo-320 and SW1116 were treated with either trichostatin or sodium butyrate. Expressions of p21WAF1 mRNA and protein were detected by real-time RT-PCR and Western blotting, respectively. Acetylation of two regions of p21WAF1 gene-associated histones and total cellular histones were examined by chromatin immunoprecipitation assay and Western blotting. RESULTS: Trichostatin or sodium butyrate re-activated p21WAF1 transcription resulted in up-regulated p21WF1 protein level in colon cancer cell lines. Those effects were accompanied by an accumulation of acetylated histones in total cellular chromatin and p21WAF1 gene-associated region of chromatin.CONCLUSION: Histone acetylation regulates p21WAF1 expression in human colon cancer cell lines, Colo-320 and SW1116.

  9. Paeonol reverses paclitaxel resistance in human breast cancer cells by regulating the expression of transgelin 2.

    Science.gov (United States)

    Cai, Jiangxia; Chen, Siying; Zhang, Weipeng; Hu, Sasa; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2014-06-15

    Paclitaxel (PTX) is a first-line antineoplastic drug that is commonly used in clinical chemotherapy for breast cancer treatment. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. There is thus an urgent need to find ways of reversing paclitaxel chemotherapy resistance in breast cancer. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of mainstream antitumor drugs. Paeonol, a main compound derived from the root bark of Paeonia suffruticosa, has various biological activities, and is reported to have reversal drug resistance effects. This study established a paclitaxel-resistant human breast cancer cell line (MCF-7/PTX) and applied the dual-luciferase reporter gene assay, MTT assay, flow cytometry, transfection assay, Western blotting and the quantitative real-time polymerase chain reaction (qRT-PCR) to investigate the reversing effects of paeonol and its underlying mechanisms. It was found that transgelin 2 may mediate the resistance of MCF-7/PTX cells to paclitaxel by up-regulating the expressions of the adenosine-triphosphate binding cassette transporter proteins, including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP). Furthermore, the ability of paeonol to reverse paclitaxel resistance in breast cancer was confirmed, with a superior 8.2-fold reversal index. In addition, this study found that paeonol down-regulated the transgelin 2-mediated paclitaxel resistance by reducing the expressions of P-gp, MRP1, and BCRP in MCF-7/PTX cells. These results not only provide insight into the potential application of paeonol to the reversal of paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.

  10. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    Science.gov (United States)

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  11. Abnormal expression of calcyphosine is associated with poor prognosis and cell biology function in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shao W

    2016-01-01

    Full Text Available Weiwei Shao,* Quhui Wang,* Feiran Wang, Yasu Jiang, Meirong Xu, Junfei XuDepartment of General Surgery, Affiliated Hospital of Nantong University, Nantong, People’s Republic of China*These authors contributed equally to this workAbstract: The aim of this study was to investigate the calcyphosine (CAPS expression in human colorectal cancer (CRC and to explore its clinical and prognostic significances. CAPS expression was measured by Western blot, real-time polymerase chain reaction analysis, and immunohistochemistry. The relationships between the CAPS expression levels and the clinicopathological factors were investigated. The Kaplan–Meier method and log-rank test were used to investigate the overall survival of the patients. Moreover, the effects of CAPS on biological roles of CRC cells were also evaluated by MTT assay, colony formation assay, and transwell assay. CAPS was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent nontumor tissue and a normal human intestinal epithelial cell line. Overexpression of CAPS was significantly associated with histological grade (P=0.004, invasive depth (P<0.001, lymph node metastasis (P=0.003, tumor node metastasis stage (P=0.017, and distant metastasis (P=0.042. Furthermore, silencing of CAPS expression in CRC cells inhibited their proliferation, colony formation, migration, and invasion. Kaplan–Meier survival analysis showed that high CAPS expression might demonstrate poor prognosis in CRC patients. Cox regression analysis revealed that CAPS expression was an independent prognostic factor of CRC. Our data suggested that the upregulation of CAPS might play a role in the carcinogenesis and progression of CRC. CAPS could be used as a potential diagnostic factor and be an independent good prognostic indicator for CRC patients.Keywords: calcyphosine, colorectal cancer, prognosis

  12. Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer.

    Science.gov (United States)

    Ma, Jie; Lin, Yanli; Zhan, Min; Mann, Dean L; Stass, Sanford A; Jiang, Feng

    2015-10-01

    Tremendous efforts have been made to develop cancer biomarkers by detecting circulating extracellular miRNAs directly released from tumors. Yet, none of the cell-free biomarkers has been accepted to be used for early detection of non-small cell lung cancer (NSCLC). Peripheral blood mononucleated cells (PBMCs) act as the first line of defense against malignancy in immune system, their dysfunction may occur as an early event in cancer immunogenicity or immune evasion. We proposed to investigate whether analysis of miRNA expressions of PBMCs has diagnostic value for NSCLC. We first used a microarray to analyze PBMCs of 16 stage I NSCLC patients and 16 cancer-free smokers, and identified seven PBMC miRNAs with a significantly altered expression level in NSCLC patients. In a training set of 84 NSCLC patients and 69 cancer-free smokers, a panel of two miRNAs (miRs-19b-3p and -29b-3p) were developed from the seven PBMC miRNAs, producing 72.62% sensitivity and 82.61% specificity in identifying NSCLC. Furthermore, the miRNAs could identify squamous cell lung carcinoma (SCC), a major type of NSCLC, with 80.00% sensitivity and 89.86% specificity. The expression levels of the miRNAs were independent of disease stage. In a testing set of 56 NSCLC patients and 46 controls, the performance of the biomarkers was reproducibly confirmed. The study presents the first in-depth analysis of PBMC miRNA profile of NSCLC patients. The assessment of PBMC miRNAs may provide a new diagnostic approach for the early detection of NSCLC.

  13. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    Science.gov (United States)

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho

    2016-09-01

    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  14. microRNA Expression Profiling of Side Population Cells in Human Lung Cancer and Preliminary Analysis

    OpenAIRE

    XU, XIAOTAO; Xiao LU; Sun, Jing; Shu, Yongqian

    2010-01-01

    Background and objective Recent studies indicate that the side population (SP) which is an enriched source of cancer stem cells (CSCs) is the root cause of tumor growth and development. SP appears to be highly resistant to chemo- and radio-therapy which becomes an important factor in tumor recurrence and metastasis. The aim of this study is to determine the difference of microRNA expression profiles between SP cells and non-SP cells so as to lay necessary basis for research on the function of...

  15. Focal Adhesion Kinase Regulates Expression of Thioredoxin-interacting Protein (TXNIP) in Cancer Cells

    OpenAIRE

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter ac...

  16. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  17. Profile of differentially expressed genes mediated by the type III epidermal growth factor receptor mutation expressed in a small-cell lung cancer cell line

    DEFF Research Database (Denmark)

    Pedersen, M.W.; Andersen, Thomas Thykjær; Ørntoft, Torben Falck;

    2001-01-01

    understanding of how the EGFRvIII contributes to the malignant phenotype is of major importance for future therapy. The GeneChip Hu6800Set developed by Affymetrix was used to identify changes in gene expression caused by the expression of EGFRvIII. The cell line selected for the study was an EGF receptor......Previous studies have shown a correlation between expression of the EGF receptor type III mutation (EGFRvIII) and a more malignant phenotype of various cancers including: non-small-cell lung cancer, glioblastoma multiforme, prostate cancer and breast cancer. Thus, a detailed molecular genetic...... negative small-cell-lung cancer cell line, GLC3, stably transfected with the EGFRvIII gene in a Tet-On system. By comparison of mRNA levels in EGFRvIII-GLC3 with those of Tet-On-GLC3, it was found that the levels of mRNAs encoding several transcription factors (ATF-3, JunD, and c-Myb), cell adhesion...

  18. Influences of combination of chemotherapy and autophagy inhibitor on the calreticulin expression in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Rui-qing PENG

    2016-04-01

    Full Text Available Objective  To investigate the influence of chemotherapy combined with autophagy inhibitor on apoptosis and calreticulin (CRT expression on colonic cancer cells. Methods  The colon cancer cells HCT116 were taken as the target in the present study. The inhibition rates (IC50 of chemotherapeutics oxaliplatin, 5-Fu and SN-38 were assessed by MTT assay. The changes in CRT expression on the membrane of HCT116 and apoptosis were determined with flow cytometry before and after treatment with chemotherapeutics. CRT location in HCT116 was detected by fluorescent immunoassay before and after treatment with chemotherapeutic agents. The influence on HCT116 autophagy was determined by Western blotting after treatment with these chemotherapeutic agents. The changes in CRT expression on HCT116 membrane and apoptosis were determined with flow cytometry before and after treatment with the chemotherapeutics combined with autophagy inhibitor chloroquine (CQ. Results  The ratio of apoptosis and membrane expression of CRT were elevated 12 hours after treatment with Oxaliplatin, 5-Fu and SN38, but without statistical significance. Fluorescent immunoassay showed a transposition of CRT from cytoplasm to the membrane after oxaliplatin treatment. Western blotting revealed that oxaliplatin, 5Fu and SN38 induced autophagy of HCT116 cells, and the autophagy was inhibited by the addition of CQ. Flow cytometric analysis indicated that the percentages of annexin V+ cells and membrane expression of CRT were higher after treatment with the chemotherapy agents combined with CQ. The upregulation of CRT expression on membrane was obviously higher after treatment with oxaliplatin combined with CQ than that before the treatment with these agents (P=0.027. Conclusion  Oxaliplatin combined with CQ may increase the apoptosis rate of HCT116 cells and upregulate CRT expression in the membrane. DOI: 10.11855/j.issn.0577-7402.2016.04.03

  19. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  20. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy

    DEFF Research Database (Denmark)

    Gjerstorff, M F; Johansen, L E; Nielsen, O

    2006-01-01

    The GAGE cancer testis antigen gene family encodes products that can be recognized by autologous T cells, and GAGE proteins have been suggested as potential targets for cancer immunotherapy. Analysis of GAGE expression in tumours has primarily been performed at the level of gene transcription......, whereas little is known about GAGE expression at the protein level. To evaluate the potential of GAGE proteins as targets for cancer-specific immunotherapy, we studied the expression of these proteins in normal and malignant cells/tissues using a novel panel of monoclonal antibodies. Immunohistochemical...... analysis of more than 250 cancer specimens demonstrated that GAGE proteins were frequently expressed in numerous cancer types and correlated with the expression of the cancer testis antigens MAGE-A1 and NY-ESO-1. Significant intercellular and subcellular differences in GAGE protein levels were observed...

  1. A Highly Efficient Gene Expression Programming (GEP Model for Auxiliary Diagnosis of Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Zhuang Yu

    Full Text Available Lung cancer is an important and common cancer that constitutes a major public health problem, but early detection of small cell lung cancer can significantly improve the survival rate of cancer patients. A number of serum biomarkers have been used in the diagnosis of lung cancers; however, they exhibit low sensitivity and specificity.We used biochemical methods to measure blood levels of lactate dehydrogenase (LDH, C-reactive protein (CRP, Na+, Cl-, carcino-embryonic antigen (CEA, and neuron specific enolase (NSE in 145 small cell lung cancer (SCLC patients and 155 non-small cell lung cancer and 155 normal controls. A gene expression programming (GEP model and Receiver Operating Characteristic (ROC curves incorporating these biomarkers was developed for the auxiliary diagnosis of SCLC.After appropriate modification of the parameters, the GEP model was initially set up based on a training set of 115 SCLC patients and 125 normal controls for GEP model generation. Then the GEP was applied to the remaining 60 subjects (the test set for model validation. GEP successfully discriminated 281 out of 300 cases, showing a correct classification rate for lung cancer patients of 93.75% (225/240 and 93.33% (56/60 for the training and test sets, respectively. Another GEP model incorporating four biomarkers, including CEA, NSE, LDH, and CRP, exhibited slightly lower detection sensitivity than the GEP model, including six biomarkers. We repeat the models on artificial neural network (ANN, and our results showed that the accuracy of GEP models were higher than that in ANN. GEP model incorporating six serum biomarkers performed by NSCLC patients and normal controls showed low accuracy than SCLC patients and was enough to prove that the GEP model is suitable for the SCLC patients.We have developed a GEP model with high sensitivity and specificity for the auxiliary diagnosis of SCLC. This GEP model has the potential for the wide use for detection of SCLC in less

  2. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype.

    Directory of Open Access Journals (Sweden)

    Kurt W Kohn

    Full Text Available Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1; interactions at adherens junctions (CDH1, ADAP1, CAMSAP3; interactions at desmosomes (PPL, PKP3, JUP; transcription regulation of cell-cell junction complexes (GRHL1 and 2; epithelial RNA splicing regulators (ESRP1 and 2; epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B; epithelial Ca(+2 signaling (ATP2C2, S100A14, BSPRY; terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2; maintenance of apico-basal polarity (RAB25, LLGL2, EPN3. The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.

  3. Cadmium modulates H-ras expression and caspase-3 apoptotic cell death in breast cancer epithelial MCF-7 cells.

    Science.gov (United States)

    Petanidis, Savvas; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-04-01

    Cadmium (Cd) is a well-known metal carcinogen associated with tumor formation and carcinogenesis. It has been shown to induce cancer through various cellular mechanisms involving inhibition of DNA repair, abnormal gene expression, induction of oxidative stress, and triggering apoptosis. It is well-established that the H-ras oncogene is involved in the process of carcinogenesis with direct effects on cellular proliferation and tumorigenesis. Given the biotoxicity of cadmium and its association with carcinogenesis, the effect of that metal ion (Cd(II)) was investigated, in a concentration-dependent fashion, on cell viability, cell proliferation, caspase-3 mediated apoptosis and H-ras gene expression in human breast cancer epithelial MCF-7 cells transfected with the H-ras oncogene (wild type and G12V mutation). The findings show a significant modulation effect of cadmium on H-ras gene expression accompanied by up-regulation of caspase-3-related apoptosis in the concentration range of 100-1000 nΜ cadmium. Concurrently, there is a decrease in MCF-7 proliferation. Collectively, the results a) indicate an interplay of cadmium with H-ras(wt and G12V), with cadmium exhibiting a significant concentration-dependent effect on the modulation of H-ras expression, cell viability and proliferation, and b) project distinctly interwoven roles for both cadmium and H-ras in aberrant physiologies in cancer cells.

  4. Mincle, an Innate Immune Receptor, Is Expressed in Urothelial Cancer Cells of Papillomavirus-Associated Urothelial Tumors of Cattle.

    Directory of Open Access Journals (Sweden)

    Sante Roperto

    Full Text Available Mincle, macrophage-inducible C-type lectin, is a member of C-type lectin receptors. It plays an important role in anti-mycobacterial and anti-fungal immunity. Furthermore it senses dead cells through its primary ligand SAP130.We examined ten urothelial tumors of the urinary bladder of cattle. Eight of them expressed E5 cDNA of bovine papillomaviruses type 2 (BPV-2 and type 13 (BPV-13 that belong to Deltapapillomavirus genus. Two of them were not examined for detection of E5 cDNA. Mincle expression appeared to occur in urothelial neoplastic cells only. No mincle expression was detected in urothelial cells from healthy cattle. Mincle expression was characterized by a membranous pattern in papillary urothelial cancers; isolated and/or clustered urothelial cells showing a strong cytoplasmic immunoreactivity were primarily seen in invasive urothelial cancers.This is the first study about the expression of mincle in veterinary oncology and the first report which describes the expression of functional mincle receptor in neoplastic cells in medical literature. As it has been shown that urothelial cancer cells have the ability to function as antigen-presenting cells (APCs, it is conceivable that mincle expression is involved in the presentation of cancer cell antigens to cells of the immune system. Furthermore, since expression of mincle contributes to the control of Mycobacterium bovis BCG infection, this study has exciting clinical implications in comparative medicine keeping in mind that Bacillus Calmette-Guérin (BCG immunotherapy is currently the most effective treatment of non-muscle invasive bladder cancer in man. Mincle expression in urothelial tumor cells warrants further study to better understand the role, if any, of this receptor in bladder cancer. Future studies will provide insights in the role of mincle receptor of urothelial cancer cells in antitumor immunotherapy.

  5. The CCAAT/enhancer-binding protein beta-2 isoform (CEBPβ-2 upregulates galectin-7 expression in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Carole G Campion

    Full Text Available Galectin-7 is considered a gene under the control of p53. However, elevated expression of galectin-7 has been reported in several forms of cancer harboring an inactive p53 pathway. This is especially true for breast cancer where galectin-7 expression is readily expressed in a high proportion in basal-like breast cancer tissues, conferring cancer cells with increased resistance to cell death and metastatic properties. These observations suggest that other transcription factors are capable of inducing galectin-7 expression. In the present work, we have examined the role of CCAAT/enhancer-binding protein beta (C/EBPβ in inducing expression of galectin-7. C/EBP proteins have been shown to contribute to breast cancer by upregulating pro-metastatic genes. We paid particular attention to C/EBPβ-2 (also known as LAP2, the most transcriptionally active of the C/EBPβ isoforms. Our results showed that ectopic expression of C/EBPβ-2 in human breast cancer cells was sufficient to induce expression of galectin-7 at both the mRNA and protein levels. In silico analysis further revealed the presence of an established CEBP element in the galectin-7 promoter. Mutation of this binding site abolished the transcriptional activity of the galectin-7 promoter. Chromatin immunoprecipitation analysis confirmed that C/EBPβ-2 binds to the endogenous galectin-7 promoter. Analysis of galectin-7 protein expression in normal epithelia and in breast carcinoma by immunohistochemistry further showed the expression pattern of C/EBPβ closely micmicked that of galectin-7, most notably in mammary myoepithelial cells and basal-like breast cancer where galectin-7 is preferentially expressed. Taken together, our findings suggest that C/EBPβ is an important mediator of galectin-7 gene activation in breast cancer cells and highlight the different transcriptional mechanisms controlling galectin-7 in cancer cells.

  6. Variation of Protein's Expression Correlated to the Drug Resistance after Sequential Anti-cancer Treatment in Human Lung Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    Zhi-hong Chi; Ji-ren Zhang; Peng Li; Duan-qi Liu

    2005-01-01

    @@ Multi-drug resistance is one of the leading causes for fai lure to treat patients with cancer. This study is to explore the expression of the proteins correlated with chemoresistance in a human lung cancer cell line (LPET-a-1) repeatedly treated by anti-cancer drugs.

  7. REAL-TIME DETECTION OF SURVIVIN mRNA EXPRESSION IN CERVICAL CANCER CELL LINES USING MOLECULAR BEACON IMAGING

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The initiated growth of human cancer cells of-ten mostly come fromthe abnor mal expression ofgenes.Survivinis anapotosis inhibitor of IAPfami-ly,cloned by Ambrosini in1997usingthe cDNAofeffector cell protease receptor-1(EPR-1),and is thekey gene for the development and advancement oftumor.Inthe present study,the feasibility of detec-ting the expression of survivin mRNA was exam-inedincervical cancer cell lines using molecular bea-coni maging technology.MATERIALS AND METHODS1Cervical cancer cell lines and ce...

  8. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins.

    Science.gov (United States)

    McKeown, Brendan T; McDougall, Luke; Catalli, Adriana; Hurta, Robert A R

    2014-01-01

    Prostate cancer, one of the most common cancers in the Western world, affects many men worldwide. This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on the behavior of 2 androgen insensitive human prostate cancer cell lines, DU145 and PC3, in vitro. Magnolol, in a 24-h exposure at 40 and 80 μM, was found to be cytotoxic to cells. Magnolol also affected cell cycle progression of DU145 and PC3 cells, resulting in alterations to the cell cycle and subsequently decreasing the proportion of cells entering the G2/M-phase of the cell cycle. Magnolol inhibited the expression of cell cycle regulatory proteins including cyclins A, B1, D1, and E, as well as CDK2 and CDK4. Protein expression levels of pRBp107 decreased and pRBp130 protein expression levels increased in response to magnolol exposure, whereas p16(INK4a), p21, and p27 protein expression levels were apparently unchanged post 24-h exposure. Magnolol exposure at 6 h did increase p27 protein expression levels. This study has demonstrated that magnolol can alter the behavior of androgen insensitive human prostate cancer cells in vitro and suggests that magnolol may have potential as a novel anti-prostate cancer agent.

  9. Regulatory mechanisms for abnormal expression of the human breast cancer specific gene 1 in breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    LU; Aiping; LI; Qing; LIU; Jingwen

    2006-01-01

    Breast cancer-specific gene 1 (BCSG1), also referred as synuclein γ, was originally isolated from a human breast cancer cDNA library and the protein is mainly localized to presynaptic terminals in the nervous system. BCSG1 is not expressed in normal or benign breast lesions, but expressed at an extremely high level in the vast majority of the advanced staged breast carcinomas and ovarian carcinomas. Overexpression of BCSG1 in cancer cells led to significant increase in cell proliferation, motility and invasiveness, and metastasis. To elucidate the molecular mechanism and regulation for abnormal transcription of BCSG1, a variety of BCSG1 promoter luciferase reporters were constructed including 3' end deleted sequences, Sp1 deleted, and activator protein-1 (AP1) domains mutated. Transient transfection assay was used to detect the transcriptional activation of BCSG1 promoters. Results showed that the Sp1 sequence in 5'-flanking region was involved in the basal transcriptional activities of BCSG1 without cell-type specificity. In comparison to pGL3-1249, the reporter activities of pGL3-1553 in BCSG1-negative MCF-7 cells and pGL3-1759 in HepG2 cells were notably decreased. Mutations at AP1 sites in BCSG1 intron 1 significantly reduced the promoter activity in all cell lines. Transcription factors, c-jun, c-fos and cyclin AMP-responsive element binding (CREB) protein, could markedly enhance the promoter activities. Thus, our results suggest that the abnormal expression of BCSG1 in breast cancer cells is likely regulated by multiple mechanisms. The 5' flanking region of BCSG1 provides the basal transcriptional activity without cell type specificity. A critical promoter element involved in abnormal expression of BCSG1 presents in the first exon. The cell type specificity of BCSG1 transcription is probably affected through intronic cis-regulatory sequences. AP1 domains in the first intron play an important role in control of BCSG1 transcription.

  10. Cervical cancer cell-derived interleukin-6 impairs CCR7-dependent migration of MMP-9-expressing dendritic cells.

    Science.gov (United States)

    Pahne-Zeppenfeld, Jennifer; Schröer, Nadine; Walch-Rückheim, Barbara; Oldak, Monika; Gorter, Arko; Hegde, Subramanya; Smola, Sigrun

    2014-05-01

    Cervical carcinogenesis is a consequence of persistent infection with high-risk human papillomaviruses (HPVs). Recent studies indicate that HPV-transformed cells actively instruct their microenvironment to promote carcinogenesis. Here, we demonstrate that cervical cancer cells activate monocytes to produce their own CCL2 for further monocyte recruitment and reprogram their function during differentiation and maturation to dendritic cells (DCs). Our data show that cervical cancer cells suppress the induction of the chemokine receptor CCR7 in phenotypically mature DCs and impair their migration toward a lymph node homing chemokine, required to initiate adaptive immune responses. We confirmed the presence of CD83(+)CCR7(low) DCs in cancer biopsies. The second factor essential for DC migration, matrix-metalloproteinase MMP-9, which also has vasculogenic and protumorigenic properties, is not suppressed but upregulated in immature as well as mature DCs. We identified interleukin-6 (IL-6) as a crucial cervical cancer cell-derived mediator and nuclear factor kappaB (NF-jB) as the central signaling pathway targeted in DCs. Anti-IL-6 antibodies reverted not only NF-jB inhibition and restored CCR7-dependent migration but also blocked MMP-9 induction. This is the first report demonstrating the dissociation of CCR7 and MMP-9 expression in phenotypically mature CD83(+) DCs by cancer cells. Our results show that cervical cancer cells actively shape the local microenvironment. They induce the accumulation of myeloid cells and skew their function from immune activation to local production of protumorigenic MMP-9. Neutralizing anti-IL-6 antibodies can counteract this functional dysbalance and should therefore be considered for adjuvant cervical cancer therapy.

  11. Comparison of hyaluronidase expression, invasiveness and tubule formation promotion in ER (-) and ER (+) breast cancer cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yi; TAN Jin-xiang; Marc Vasse; Bertrand Delpech; REN Guo-sheng

    2009-01-01

    Background Hyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only recently been underlined in the invasion of prostate cancer, colonic cancer, and breast cancer. Moreover, the findings were in agreement with some experimental results which showed that HA-derived oligosaccharides had angiogenesis-promoting activity. All these findings prompted us to investigate factors that had been characterized as putative invasive factors in different human breast cancer-derived cell lines.Methods We selected two series of human breast cancer-derived cell lines whose expression of estrogen receptors (ER) was previously published. Hyaluronidase secretion in culture medium and expression of matrix metallo-proteinase (MMP)-9, cathepsin-D (cath-D) and vascular endothelial growth factor (VEGF) by cells were determined. We also investigated cell invasiveness in the Matrigel invasion assay, and studied the capability of cancer cells to promote in vitro formation of tubules by endothelial cells.Results ER(-) cells secreted significantly more hyaluronidase (P <0.001) and expressed significantly more VEGF (P <0.01), MMP-9 (P <0.05) and cath-D (P <0.0001) than ER(+) cells. Invasion through Matdgel by ER(-) Hyase(+) cells was significantly higher than that by ER(+) Hyase(-) cells (P<0.05). In both cases, invasion was decreased by heparin (P <0.05). When ECV-304 endothelial cells were co-cultivated in millicell chambers with cancer cells, ECV-304 cells were induced to form tubules. Tubule formation was demonstrated to be more prominent with ER(-) Hyase(+) cells than with ER(+) Hyase(-) cells (P <0.05).Conclusion Invasive features of ER(-) breast cancer cells can be characterized in vitro by an invasive Matrigel assay,as the induction of tubule formation by ECV-304 endothelial cells, higher secretion of hyaluronidase, and higher expression of

  12. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-01-31

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  13. Screening of Differently Expressed Genes in Human Prostate Cancer Cell Lines with Different Metastasis Potentials

    Institute of Scientific and Technical Information of China (English)

    SONG Anping; LIAO Guoning; WU Mingfu; LU Yunping; MA Ding

    2007-01-01

    In order to screen the genes differentially expressed in two human prostate cancer cells with different metastasis potentials, suppression subtractive hybridization (SSH) was done twice on human prostate cancer cell line with high potential of metastasis PC3M-1E8 and its synogenetic cell line PC3M-2B4 with low metastasis potential. In the first subtraction PC3M-2B4 was used as tester and PC3M-1E8 as driver and the forward subtractive library was constructed. In the second one the tester and driver were interchanged and the reverse subtractive library was constructed. The screened clones of both libraries were sequenced and Gene Bank homology search was performed. Some clones were confirmed by quantitative real-time PCR. The results showed that two subtrac-tive libraries containing 238 positive clones were constructed. Analysis of 16 sequenced clones ran-domly picked from two libraries showed that 4 differentially expressed gene fragments were identi-fied as new EST with unknown functions. It was concluded that two subtractive libraries of human prostate cancer cell lines with different metastasis potentials were constructed successfully.

  14. The expression of GST isoenzymes and p53 in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    MĂźzeyyen Ozhavzali

    2010-06-01

    Full Text Available This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase alpha, pi, mu, theta and p53 in non-small cell lung carcinoma and normal lung tissue from 50 patients. The relationships between expressions of the Glutathione-S-transferase isoenzymes and some clinicopathological features were also examined. Expression of glutathione-S-transferase pi, mu, alpha, theta and p53 was assessed by immunohistochemistry for primary lung carcinomas of 50 patients from the Sanitarium Education and Research Hospital, Ankara lung cancer collection. The relationships between expression of the glutathione-S-transferase isoenzymes, p53 in normal and tumor tissue by Student T test and the clinicopathological data were also examined by Spearman Rank tests. When the normal and tumor tissue of these cases were compared according to their staining intensity and percentage of positive staining, glutathione-S-transferase alpha, pi, mu, theta expressions in tumor cells was significantly higher than normal cells (p<0.05. There was no significant difference in the expression of p53 between normal and tumor cells (p>0.05. When the immunohistochemical results of glutathione-S-transferase isoenzymes and p53 were correlated with the clinical parameters, there were no significant associations between glutathione-S-transferases and p53 expressions and tumor stage, tumor grade and smoking status (p>0.05.

  15. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR

    Directory of Open Access Journals (Sweden)

    Mavroudis Dimitris

    2011-10-01

    Full Text Available Abstract Background Circulating tumor cells (CTCs have been associated with prognosis especially in breast cancer and have been proposed as a liquid biopsy for repeated follow up examinations. Molecular characterization of CTCs is difficult to address since they are very rare and the amount of available sample is very limited. Methods We quantified by RT-qPCR CK-19, MAGE-A3, HER-2, TWIST1, hTERT α+β+, and mammaglobin gene transcripts in immunomagnetically positively selected CTCs from 92 breast cancer patients, and 28 healthy individuals. We also compared our results with the CellSearch system in 33 of these patients with early breast cancer. Results RT-qPCR is highly sensitive and specific and can detect the expression of each individual gene at the one cell level. None of the genes tested was detected in the group of healthy donors. In 66 operable breast cancer patients, CK-19 was detected in 42.4%, HER-2 in 13.6%, MAGE-A3 in 21.2%, hMAM in 13.6%, TWIST-1 in 42.4%, and hTERT α+β+ in 10.2%. In 26 patients with verified metastasis, CK-19 was detected in 53.8%, HER-2 in 19.2%, MAGE-A3 in 15.4%, hMAM in 30.8%, TWIST-1 in 38.5% and hTERT α+β+in 19.2%. Our preliminary data on the comparison between RT-qPCR and CellSearch in 33 early breast cancer patients showed that RT-qPCR gives more positive results in respect to CellSearch. Conclusions Molecular characterization of CTCs has revealed a remarkable heterogeneity of gene expression between breast cancer patients. In a small percentage of patients, CTCs were positive for all six genes tested, while in some patients only one of these genes was expressed. The clinical significance of these findings in early breast cancer remains to be elucidated when the clinical outcome for these patients is known.

  16. Variation in cell signaling protein expression may introduce sampling bias in primary epithelial ovarian cancer.

    Science.gov (United States)

    Mittermeyer, Gabriele; Malinowsky, Katharina; Beese, Christian; Höfler, Heinz; Schmalfeldt, Barbara; Becker, Karl-Friedrich; Avril, Stefanie

    2013-01-01

    Although the expression of cell signaling proteins is used as prognostic and predictive biomarker, variability of protein levels within tumors is not well studied. We assessed intratumoral heterogeneity of protein expression within primary ovarian cancer. Full-length proteins were extracted from 88 formalin-fixed and paraffin-embedded tissue samples of 13 primary high-grade serous ovarian carcinomas with 5-9 samples each. In addition, 14 samples of normal fallopian tube epithelium served as reference. Quantitative reverse phase protein arrays were used to analyze the expression of 36 cell signaling proteins including HER2, EGFR, PI3K/Akt, and angiogenic pathways as well as 15 activated (phosphorylated) proteins. We found considerable intratumoral heterogeneity in the expression of proteins with a mean coefficient of variation of 25% (range 17-53%). The extent of intratumoral heterogeneity differed between proteins (p<0.005). Interestingly, there were no significant differences in the extent of heterogeneity between phosphorylated and non-phosphorylated proteins. In comparison, we assessed the variation of protein levels amongst tumors from different patients, which revealed a similar mean coefficient of variation of 21% (range 12-48%). Based on hierarchical clustering, samples from the same patient clustered more closely together compared to samples from different patients. However, a clear separation of tumor versus normal tissue by clustering was only achieved when mean expression values of all individual samples per tumor were analyzed. While differential expression of some proteins was detected independently of the sampling method used, the majority of proteins only demonstrated differential expression when mean expression values of multiple samples per tumor were analyzed. Our data indicate that assessment of established and novel cell signaling proteins as diagnostic or prognostic markers may require sampling of serous ovarian cancers at several distinct

  17. Variation in cell signaling protein expression may introduce sampling bias in primary epithelial ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Gabriele Mittermeyer

    Full Text Available Although the expression of cell signaling proteins is used as prognostic and predictive biomarker, variability of protein levels within tumors is not well studied. We assessed intratumoral heterogeneity of protein expression within primary ovarian cancer. Full-length proteins were extracted from 88 formalin-fixed and paraffin-embedded tissue samples of 13 primary high-grade serous ovarian carcinomas with 5-9 samples each. In addition, 14 samples of normal fallopian tube epithelium served as reference. Quantitative reverse phase protein arrays were used to analyze the expression of 36 cell signaling proteins including HER2, EGFR, PI3K/Akt, and angiogenic pathways as well as 15 activated (phosphorylated proteins. We found considerable intratumoral heterogeneity in the expression of proteins with a mean coefficient of variation of 25% (range 17-53%. The extent of intratumoral heterogeneity differed between proteins (p<0.005. Interestingly, there were no significant differences in the extent of heterogeneity between phosphorylated and non-phosphorylated proteins. In comparison, we assessed the variation of protein levels amongst tumors from different patients, which revealed a similar mean coefficient of variation of 21% (range 12-48%. Based on hierarchical clustering, samples from the same patient clustered more closely together compared to samples from different patients. However, a clear separation of tumor versus normal tissue by clustering was only achieved when mean expression values of all individual samples per tumor were analyzed. While differential expression of some proteins was detected independently of the sampling method used, the majority of proteins only demonstrated differential expression when mean expression values of multiple samples per tumor were analyzed. Our data indicate that assessment of established and novel cell signaling proteins as diagnostic or prognostic markers may require sampling of serous ovarian cancers at

  18. Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression.

    Directory of Open Access Journals (Sweden)

    Ilka Oerlecke

    Full Text Available Cellular functions are regulated by complex networks of many different signaling pathways. The TGFβ and cAMP pathways are of particular importance in tumor progression. We analyzed the cross-talk between these pathways in breast cancer cells in 2D and 3D cultures. We found that cAMP potentiated TGFβ-dependent gene expression by enhancing Smad3 phosphorylation. Higher levels of total Smad3, as observed in 3D-cultured cells, blocked this effect. Two Smad3 regulating proteins, YAP (Yes-associated protein and TβRI (TGFβ receptor 1, were responsive to cAMP. While YAP had little effect on TGFβ-dependent expression and Smad3 phosphorylation, a constitutively active form of TβRI mimicked the cAMP effect on TGFβ signaling. In 3D-cultured cells, which show much higher levels of TβRI and cAMP, TβRI was unresponsive to cAMP. Upregulation of TβRI expression by cAMP was dependent on transcription. A proximal TβRI promoter fragment was moderately, but significantly activated by cAMP suggesting that cAMP increases TβRI expression at least partially by activating TβRI transcription. Neither the cAMP-responsive element binding protein (CREB nor the TβRI-regulating transcription factor Six1 was required for the cAMP effect. An inhibitor of histone deacetylases alone or together with cAMP increased TβRI expression by a similar extent as cAMP alone suggesting that cAMP may exert its effect by interfering with histone acetylation. Along with an additive stimulatory effect of cAMP and TGFβ on p21 expression an additive inhibitory effect of these agents on proliferation was observed. Finally, we show that mesenchymal stem cells that interact with breast cancer cells can simultaneously activate the cAMP and TGFβ pathways. In summary, these data suggest that combined effects of cAMP and TGFβ, as e.g. induced by mesenchymal stem cells, involve the upregulation of TβRI expression on the transcriptional level, likely due to changes in histone acetylation

  19. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  20. EXPRESSION OF FRAGILE HISTIDINE TRIAD AND P53 IN NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    HOU Xing-hua; ZHANG Dao-rong

    2006-01-01

    Objective: To investigate the expression of fragile histidine triad (FHIT) and p53 protein in non-small cell lung cancer (NSCLC) and explore the relationship between their expressions and the clinicopathological features. Methods: FHIT protein and p53 protein were detected by immunohistochemistry in 76 cases of NSCLCs and matched normal lung tissues. Results:Fifty-one cases (67.1%) showed negative expression of FHIT (apparent reduction or loss) and thirty-seven cases (48.7%)showed p53 positive expression (overexpression). The difference was significant (P=0.04). However, there was no significant difference in FHIT expression between the p53-positive group and the p53-negative group (64.9% versus 69.2%, P=0.686).The negative rate of FHIT protein expression was higher in squamous cell carcinoma than in adenocarcinoma, in moderately and poorly differentiated carcinoma than in well-differentiated carcinoma, and in cases with smoking history than in cases without smoking history (P<0.05). There was no relationship between FHIT expression and clinical stage or lymph node metastasis. The negative FHIT expression was not an independent predictor of overall survival (P=0.338). Conclusion: The frequency of negative expression of FHIT protein is higher than that of positive expression of p53 in NSCLCs. The negative expression of FHIT is independent of the expression of p53. The change of expression of FHIT may play a role in the smoking related lung tumorigenesis while it may have no relationship with the progress of NSCLC or prognosis of the patients.

  1. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression.

    Science.gov (United States)

    Jiang, Yanlin; Zhou, Shaoyu; Sandusky, George E; Kelley, Mark R; Fishel, Melissa L

    2010-11-01

    Pancreatic cancer is a deadly disease that is virtually never cured. Understanding the chemoresistance intrinsic to this cancer will aid in developing new regimens. High expression of APE1/Ref-1, a DNA repair and redox signaling protein, is associated with resistance, poor outcome, and angiogenesis; little is known in pancreatic cancer. Immunostaining of adenocarcinoma shows greater APE1/Ref-1 expression than in normal pancreas tissue. A decrease in APE1/Ref-1 protein levels results in pancreatic cancer cell growth inhibition, increased apoptosis, and altered cell cycle progression. Endogenous cell cycle inhibitors increase when APE1/ Ref-1 is reduced, demonstrating its importance to proliferation and growth of pancreatic cancer.

  2. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  3. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Science.gov (United States)

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  4. Aspirin Has Antitumor Effects via Expression of Calpain Gene in Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sang Koo Lee

    2008-01-01

    Full Text Available Aspirin and other nonsteroidal anti-inflammatory drugs show efficacy in the prevention of cancers. It is known that they can inhibit cyclooxygenases, and some studies have shown that they can induce apoptosis. Our objective in this study was to investigate the mechanism by which aspirin exerts its apoptosis effects in human cervical cancer HeLa cells. The effect of aspirin on the gene expression was studied by differential mRNA display RT-PCR. Among the isolated genes, mu-type calpain gene was upregulated by aspirin treatment. To examine whether calpain mediates the antitumor effects, HeLa cells were stably transfected with the mammalian expression vector pCR3.1 containing mu-type calpain cDNA (pCRCAL/HeLa, and tumor formations were measured in nude mice. When tumor burden was measured by day 49, HeLa cells and pCR/HeLa cells (vector control produced tumors of 2126 mm3 and 1638 mm3, respectively, while pCRCAL/HeLa cells produced markedly smaller tumor of 434 mm3 in volume. The caspase-3 activity was markedly elevated in pCRCAL/HeLa cells. The increased activity levels of caspase-3 in pCRCAL/HeLa cells, in parallel with the decreased tumor formation, suggest a correlation between caspase-3 activity and calpain protein. Therefore, we conclude that aspirin-induced calpain mediates an antitumor effect via caspase-3 in cervical cancer cells.

  5. Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Norio Sawabu; Toshinari Minamoto

    2006-01-01

    AIM: To investigate the expression of genes involved in the gemcitabine-induced cytotoxicity in human pancreatic cancer cells.METHODS: A human pancreatic cancer cell line,PANC-1, was cultured. 1×104 PANC-1 cells were plated in 96-well microtiter plates. After being incubated for 24 h,gemcitabine was added to the medium at concentrations ranging 2.5 -1 000 mg/L. The AlamarBlue dye method was used for cell growth analysis. DNA fragmentation was quantitatively assayed using a DNA fragmentation enzyme-linked immunosorbent assay (ELISA) kit. PAP and TP53INP1 mRNA expression was determined using the reverse transcription-polymerase chain reaction with semi-quantitative analysis. The expression of GSK-3β and phospho-GSK-3β proteins was examined with Western blot analysis.RESULTS: The IC50 for the drug after a 48-h exposure to gemcitabine was 16 mg/L. The growth of PANC-1 cells was inhibited by gemcitabine in a concentrationdependent manner (P< 0.0001) and the cell growth was also inhibited throughout the time course (P<0.0001).The DNA fragmentation rate in the gemcitabine-treated group at 48 h was 44.7 %, whereas it was 25.3 % in the untreated group. The PAP mRNA expression was decreased after being treated with gemcitabine, whereas the TP53INP1 mRNA was increased by the gemcitabine treatment. Western blot analysis showed that phosphoGSK-3βser9 was induced by the gemcitabine treatment.CONCLUSION: Gemcitabine suppresses PANC-1cell proliferation and induces apoptosis. Apoptosis is considered to be associated with the inhibition of PAP and GSK-3β, and the activation of TP53INP1 and posphoGSK-33ser9 .

  6. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  7. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway.

    Science.gov (United States)

    Yu, Yuecheng; Li, Hongmei; Xue, Baoyao; Jiang, Xia; Huang, Kan; Ge, Junli; Zhang, Hongju; Chen, Biliang

    2014-08-01

    Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.

  8. Role of cytokines in promoting immune escape of FasL-expressing human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Tong Xu; Bao-Cun Sun; Qiang Li; Xi-Shan Hao

    2005-01-01

    AIM: To investigate the potential role of cytokines in promoting Fas ligand (FasL)-expressing colon cancer cells.METHODS: Immunohistochemical SABC method was used to observe the expression of Fas receptor and ligand in SW620 colon cancer cell line and Jurkat T cells in order to provide the morphological evidence for the functions of Fas receptor and ligand. To examine the cytotoxicity of effector cells, CytoTox96(R) non-radioactive cytotoxicity assay was adopted to measure the lactate dehydrogenase-releasing value after SW620 cells were co-cultured with Jurkat T lymphocytes.RESULTS: The FasL of colon cancer SW620 cells was positive. The positive substances were distributed in the cell membrane and cytoplasm. The Fas receptor of colon cancer SW620 cells was negative. The Fas receptor and ligand of Jurkat T lymphocytes tumed out to be positive. The positive substances were distributed in the cell membrane.After phytohemagglutinin (PHA)-stimulated Jurkat T lymphocytes were co-cultured with phorbol 12-myristate 13-acetate (PMA)-plus-ionomycin-stimulated (for 48 h) SW620ceils or tumor necrosis factor-alpha (TNF-α)-stimulated (for 48 h) SW620 cells or unstimulated SW620 cells for 4 h,the cytotoxicity of SW620 cells to PHA-stimulated Jurkat cells at effector-to-target ratios of 10:1, 5:1, 2.5:1, and 1.25:1was 74.6%, 40.8%, 32.4%, and 10.9% (F= 8.19, P<0.05);or 54.9%, 35.3%, 22.0%, and 10.3% (F= 11.12, P<0.05);or 14.9%, 10.5%, 6.9%, and 5.8% (F= 3.45, P<0.05).After PHA-stimulated Jurkat T lymphocytes were co-cultured with unstimulated SW620 cells for 8 h, the cytotoxicity of SW620 cells to PHA-stimulated Jurkat cells at effector-totarget ratios of 5:1, 2.5:1, and 1.25:1 from the experiment was 83.9%, 74.1%, and 28.5% (F= 137.04, P<0.05)respectively. Non-radioactive cytotoxicity assay showed that the apoptotic rate of Jurkat cells remarkably increased with the increase of planting concentration of SW620 cells and co-culture time after the SW620 cells were co

  9. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could...... that propionate, produced either by bacteria or during cellular metabolism, has significant immunoregulatory function and may be cancer prophylactic....

  10. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells.

    Science.gov (United States)

    Nimri, Lili; Barak, Hossei; Graeve, Lutz; Schwartz, Betty

    2013-11-01

    Caveolin-1 (cav-1) and flotillin-1 are two major structural proteins associated with lipid rafts in mammalian cells. The membrane-type matrix metalloproteinases (MT-MMPs) are expressed at the cell surface, hydrolyze extracellular matrix, and play an important role in cancer cell migration and metastasis. Expression of cav-1, flotillin-1, and MT4-MMP in lysates and lipid rafts of LS174T and HM-7 colon cancer cells was determined. The impact of restoration of cav-1 expression on proliferation, adhesion, motility in vitro, and growth of implanted tumors in vivo was characterized. Cav-1 is not expressed in lipid rafts of the highly metastatic colon cancer cell line (HM-7), but expressed in cytosolic fractions of the parental lower metastatic cell line (LS174T). In contrast, MT4-MMP was expressed in lipid rafts of HM-7 cells but not in LS174T cells. Overexpression of cav-1 in HM-7 cells down-regulate proliferation, viability, wound closure, adhesion to laminin, invasion, and development of filopodial and lamellipodial structures in a dose-dependent manner. Cav-1 positive HM-7 clones ceased to express MT4-MMP in their lipid rafts. Comparative proteomic analyses of lipid rafts from cav-1 positive and cav-1 negative cells demonstrated de novo expression of flotillin-1 only on the cells expressing cav-1. Xenografting control cells devoid of cav-1 in nude mice induced development of bigger tumors expressing higher levels of proliferating cell nuclear antigen as compared to mice injected with cells expressing the highest cav-1 levels. We conclude that cav-1 orchestrates and reorganize several proteins in lipid rafts, activities directly associated with reduced tumorigenic and metastatic ability of colon cancer cells.

  11. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; Maase, Hans von der; Sørensen, Flemming B.

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors. METHODS: The tissue material consisted of bladder tumors from three groups......(kip1) ( P=0.03), Rb ( P=0.00002), and L-myc ( P=0.00000007) in muscle invasive tumors compared to noninvasive tumors. Tumors presenting as muscle invasive at first diagnosis had significantly lower levels of p16/CDKN2A ( P=0.01) when compared to muscle invasive tumors that followed Ta or T1 precursor...

  12. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Suzuki Sayo

    2011-12-01

    Full Text Available Abstract Background Individual responses to oxaliplatin (L-OHP-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC cell lines. We performed expression difference mapping (EDM analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF. Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations (P R2 = 0.80. We identified this protein as Protein S100-A10 (S100A10 by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.

  13. Vascular endothelial growth factor 165b expression in stromal cells and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Makoto Tayama; Tomohisa Furuhata; Yoshiko Inafuku; Kenji Okita; Toshihiko Nishidate; Toru Mizuguchi; Yasutoshi Kimura; Koichi Hirata

    2011-01-01

    AIM: To characterize the implications of vascular endothelial growth factor (VEGF)-A in stromal cells and colorectal cancer and the expression of VEGF-A splice variants.METHODS: VEGF-A expression in tumor and stromal cells from 165 consecutive patients with colorectal cancer was examined by immunohistochemistry. The association between VEGF-A expression status and clinicopathological factors was investigated. Twenty fresh-frozen samples were obtained for laser capture microdissection to analyze the splice variants of VEGF-A.RESULTS: VEGF-A was expressed in 53.9% and 42.4% of tumor and stromal cells, respectively. VEGF-A expression in tumor cells (t-VEGF-A) was associated with advanced clinical stage (stage 0, 1/9; stage 1, 2/16; stage 2, 32/55; stage 3, 38/66; stage 4, 16/19, P < 0.0001). VEGF-A expression in stromal cells (s-VEGF-A) increased in the earlier clinical stage (stage 0, 7/9; stage 1, 6/16; stage 2, 33/55; stage 3, 22/66; stage 4, 5/19; P = 0.004). Multivariate analyses for risk factors of recurrence showed that only s-VEGF-A expression was an independent risk factor for recurrence (relative risk 0.309, 95% confidence interval 0.141-0.676, P = 0.0033). The five-year disease-free survival (DFS) rates of t-VEGF-A-positive and -negative cases were 51.4% and 62.9%, respectively. There was no significant difference in t-VEGF-A expression status. The five-year DFS rates of s-VEGF-A-positive and -negative cases were 73.8% and 39.9%, respectively. s-VEGF-A-positive cases had significantly better survival than s-VEGF-A-negative cases (P = 0.0005). Splice variant analysis revealed that t-VEGF-A was mainly composed of VEGF165 and that s-VEGF-A included both VEGF165 and VEGF165b. In cases with no venous invasion (v0), the level of VEGF165b mRNA was significantly higher (v0 204.5 ± 122.7, v1 32.5 ± 36.7, v2 2.1 ± 1.7, P = 0.03). The microvessel density tended to be lower in cases with higher VEGF165b mRNA levels.CONCLUSION: s-VEGF-A appears be a good prognostic

  14. Cellular Expression of Cyclooxygenase, Aromatase, Adipokines, Inflammation and Cell Proliferation Markers in Breast Cancer Specimen.

    Directory of Open Access Journals (Sweden)

    Samar Basu

    Full Text Available Current evidences suggest that expression of Ki67, cyclooxygenase (COX, aromatase, adipokines, prostaglandins, free radicals, β-catenin and α-SMA might be involved in breast cancer pathogenesis. The main objective of this study was to compare expression/localization of these potential compounds in breast cancer tissues with tissues collected adjacent to the tumor using immunohistochemistry and correlated with clinical pathology. The breast cancer specimens were collected from 30 women aged between 49 and 89 years who underwent breast surgery following cancer diagnosis. Expression levels of molecules by different stainings were graded as a score on a scale based upon staining intensity and proportion of positive cells/area or individually. AdipoR1, adiponectin, Ob-R, leptin, COX-1, COX-2, aromatase, PGF2α, F2-isoprostanes and α-SMA were localised on higher levels in the breast tissues adjacent to the tumor compared to tumor specimens when considering either score or staining area whereas COX-2 and AdipoR2 were found to be higher considering staining intensity and Ki67 on score level in the tumor tissue. There was no significant difference observed on β-catenin either on score nor on staining area and intensity between tissues adjacent to the tumor and tumor tissues. A positive correlation was found between COX-1 and COX-2 in the tumor tissues. In conclusion, these suggest that Ki67, COXs, aromatase, prostaglandin, free radicals, adipokines, β-catenin and α-SMA are involved in breast cancer. These further focus the need of examination of tissues adjacent to tumor, tumor itself and compare them with normal or benign breast tissues for a better understanding of breast cancer pathology and future evaluation of therapeutic benefit.

  15. ERβ regulates miR-21 expression and inhibits invasion and metastasis in cancer cells

    Science.gov (United States)

    Tian, Junmei; Tu, Zhenzhen; Chen, Wei R.; Gu, Yueqing

    2012-03-01

    In human, estrogens play important roles in many physiological processes, and is also found to be connected with numerous cancers. In these diseases, estrogen mediates its effects through the estrogen receptor (ER), which serves as the basis for many current clinical diagnosis. Two forms of the estrogen receptor have been identified, ERα and ERβ, and show different and specific functions. The two estrogen receptors belong to a family of ligand-regulated transcription factors. Estrogen via ERα stimulates proliferation in the breast, uterus, and developing prostate, while estrogen via ERβ inhibits proliferation and promotes differentiation in the prostate, mammary gland, colon, lung, and bone marrow stem cells. MicroRNAs (miRs) are small non-coding RNA molecules that occur naturally and downregulate protein expression by translational blockade of the target mRNA or by promoting mRNA decay. MiR-21 is one of the most studied miRNAs in cancers. MiR-21 is overexpressed in the most solid tumors, promoting progression and metastasis. The miR-21 gene is located on the chromosome 17, in the 10th intron of a protein-coding gene, TMEM49. While, the function of TMEM49 is currently unknown. Our experiment is designed to identity the relationship between miR-21 and ERβ in cancer progression. The human cancer cells were transfected with ERβ. Real-time PCR analysis showed that the expression level of miR-21 was significantly inhibited down by ERβ treatment. As MTT assay showed the tumor cell survival rate was also inhibited significantly. Go/Gl phase cell cycle arrest was founded and tumor cell apoptosis was induced in ERβ group.

  16. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures

    Science.gov (United States)

    Juric, Dejan; Sale, Sanja; Hromas, Robert A.; Yu, Ron; Wang, Yan; Duran, George E.; Tibshirani, Robert; Einhorn, Lawrence H.; Sikic, Branimir I.

    2005-01-01

    Germ cell tumors (GCTs) of the testis are the predominant cancer among young men. We analyzed gene expression profiles of 50 GCTs of various subtypes, and we compared them with 443 other common malignant tumors of epithelial, mesenchymal, and lymphoid origins. Significant differences in gene expression were found among major histological subtypes of GCTs, and between them and other malignancies. We identified 511 genes, belonging to several critical functional groups such as cell cycle progression, cell proliferation, and apoptosis, to be significantly differentially expressed in GCTs compared with other tumor types. Sixty-five genes were sufficient for the construction of a GCT class predictor of high predictive accuracy (100% training set, 96% test set), which might be useful in the diagnosis of tumors of unknown primary origin. Previously described diagnostic and prognostic markers were found to be expressed by the appropriate GCT subtype (AFP, POU5F1, POV1, CCND2, and KIT). Several additional differentially expressed genes were identified in teratomas (EGR1 and MMP7), yolk sac tumors (PTPN13 and FN1), and seminomas (NR6A1, DPPA4, and IRX1). Dynamic computation of interaction networks and mapping to existing pathways knowledge databases revealed a potential role of EGR1 in p21-induced cell cycle arrest and intrinsic chemotherapy resistance of mature teratomas. PMID:16306258

  17. Gene Expression Profile of Proton Beam Irradiated Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Myung Hwan; Park, Jeong Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Cancer stem cells (CSCs) possess characteristics associated with normal stem cells. The mechanisms regulating CSC radio-resistance, including to proton beam, remain unclear. They showed that a subset of cells expressing CD44 with weak or no CD24 expression could establish new tumors in xenograft mice. Recently, BCSC-targeting therapies have been evaluated by numerous groups. Strategies include targeting BCSC self-renewal, indirectly targeting the microenvironment, and directly killing BCSCs by chemical agents that induce differentiation, immunotherapy, and oncolytic viruses. However, the mechanisms regulating CSC radio-resistance, particularly proton beam resistance, remain unclear. The identification of CSC-related gene expression patterns would make up offer data for better understanding CSCs properties. In this study we investigated the gene expression profile of BCSCs isolation from MCF-7 cell line. Reducing BCSC resistance to pulsed proton beams is essential to improve therapeutic efficacy and decrease the 5-year recurrence rate. In this respect, the information of the level of gene expression patterns in BCSCs is attractive for understanding molecular mechanisms of radio-resistance of BCSCs.

  18. Expression of the MT1 Melatonin Receptor in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karolina Jablonska

    2014-12-01

    Full Text Available Ovarian cancer (OC is the leading cause of death among women with genital tract disorders. Melatonin exhibits oncostatic properties which it may effect through binding to its membrane receptor, MT1. The aim of this study was to determine the expression of MT1 in OC cells and to correlate this with clinical and pathological data. Immunohistochemistry was performed on 84 cases of OC. Normal ovarian epithelial (IOSE 364 and OC (SK-OV-3, OVCAR-3 cell lines were used to examine the MT1 expression at protein level using the western blot and immunofluorescence technique. The expression of MT1 was observed as cytoplasmic-membrane (MT1CM and membrane (MT1M reactions. A positive correlation between MT1CM and MT1M was found in all the studied cases. There were no significant differences between the expression of MT1CM, MT1M, and histological type, staging, grading, presence of residual disease, or overall survival time. Immunofluorescence showed both MT1M and MT1CM expression in all the tested cell lines. Western blot illustrated the highest protein level of MT1 in IOSE 364 and the lowest in the OVCAR-3. The results indicate the limited prognostic significance of MT1 in OC cells.

  19. Tetracycline-inducible protein expression in pancreatic cancer cells: Effects of CapG overexpression

    Institute of Scientific and Technical Information of China (English)

    Sarah Tonack; Sabina Patel; Mehdi Jalali; Taoufik Nedjadi; Rosalind E Jenkins; Christopher Goldring; John Neoptolemos; Eithne Costello

    2011-01-01

    AIM: To establish stable tetracycline-inducible pancre-atic cancer cell lines.METHODS: Suit-2, MiaPaca-2, and Panc-1 cells were transfected with a second generation reverse tetra-cycline-controlled transactivator protein (rtTA2S-M2), under the control of either a cytomegalovirus (CMV) or a chicken β-actin promoter, and the resulting clones were characterised.RESULTS: Use of the chicken (β-actin) promoter proved superior for both the production and mainte-nance of doxycycline-inducible cell lines. The system proved versatile, enabling transient inducible expression of a variety of genes, including GST-P, CYP2E1, S100A6, and the actin capping protein, CapG. To determine the physiological utility of this system in pancreatic cancer cells, stable inducible CapG expressors were established. Overexpressed CapG was localised to the cytoplasm and the nuclear membrane, but was not observed in the nu-cleus. High CapG levels were associated with enhanced motility, but not with changes to the cell cycle, or cellu-lar proliferation. In CapG-overexpressing cells, the levels and phosphorylation status of other actin-moduating proteins (Cofilin and Ezrin/Radixin) were not altered. However, preliminary analyses suggest that the levels of other cellular proteins, such as ornithine aminotransfer-ase and enolase, are altered upon CapG induction. CONCLUSION: We have generated pancreatic-cancer derived cell lines in which gene expression is fully con-trollable.

  20. REAL-TIME DETECTION OF SURVIVIN mRNA EXPRESSION IN CERVICAL CANCER CELL LINES USING MOLECULAR BEACON IMAGING

    Institute of Scientific and Technical Information of China (English)

    An Ruifang; He Dalin; Xue Yan; Wang Shu; Xie Li; Zhao Jun; Wang Xinyang; Yang Lili

    2006-01-01

    Objective To detect the expression of survivin mRNA in cervical cancer cell lines using molecular beacon imaging technology. Methods Human cervical cancer cells (HeLa and SiHa) and human fetal lung fibroblast HFL-I were cultured in vitro. After adding 100 nmol/L survivin mRNA molecular beacon, the fluorescent signals were observed under fluorescent microscope. The expressions of survivin in cervical cancer cells and HFL-I cell were examined by immunocytochemical streptravidin-biothin peroxidase (SP) assay at the same time. Results Two kinds of survivin mRNA molecular beacon, with different color fluorescence, had strong fluorescent signal in cervical cancer cell lines, and the signal in SiHa cell line was stronger, but these signals were not found in HFL-I ; Immunocytochemical staining of positive survivin was located in the cytoplasm of cervical cancer cell lines HeLa and SiHa, whereas, no expression of survivin was detected in HFL-I cell line. Conclusion The technology of molecular beacon imaging can be used to detect the expression of survivin mRNA in viable cells successfully, and may provide a new approach to the diagnosis of early stage cervical cancer and the following-up in the clinic.

  1. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway

    OpenAIRE

    2016-01-01

    Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis ...

  2. Gene expression-based biomarkers for discriminating early and late stage of clear cell renal cancer

    Science.gov (United States)

    Bhalla, Sherry; Chaudhary, Kumardeep; Kumar, Ritesh; Sehgal, Manika; Kaur, Harpreet; Sharma, Suresh; Raghava, Gajendra P. S.

    2017-01-01

    In this study, an attempt has been made to identify expression-based gene biomarkers that can discriminate early and late stage of clear cell renal cell carcinoma (ccRCC) patients. We have analyzed the gene expression of 523 samples to identify genes that are differentially expressed in the early and late stage of ccRCC. First, a threshold-based method has been developed, which attained a maximum accuracy of 71.12% with ROC 0.67 using single gene NR3C2. To improve the performance of threshold-based method, we combined two or more genes and achieved maximum accuracy of 70.19% with ROC of 0.74 using eight genes on the validation dataset. These eight genes include four underexpressed (NR3C2, ENAM, DNASE1L3, FRMPD2) and four overexpressed (PLEKHA9, MAP6D1, SMPD4, C11orf73) genes in the late stage of ccRCC. Second, models were developed using state-of-art techniques and achieved maximum accuracy of 72.64% and 0.81 ROC using 64 genes on validation dataset. Similar accuracy was obtained on 38 genes selected from subset of genes, involved in cancer hallmark biological processes. Our analysis further implied a need to develop gender-specific models for stage classification. A web server, CancerCSP, has been developed to predict stage of ccRCC using gene expression data derived from RNAseq experiments. PMID:28349958

  3. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over......Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...

  4. Effects of emodin on gene expression profile in small cell lung cancer NCI-H446 cells

    Institute of Scientific and Technical Information of China (English)

    FU Zhong-yan; HAN Jin-xiang; HUANG Hai-yan

    2007-01-01

    Background The treatment of patients with small cell lung cancer (SCLC) is based on chemotherapy. However, the treatment is limited by the development of drug resistance. Emodin has been shown to exhibit an anti-cancer effect. But the molecular mechanism remains unclear. This study was conducted to investigate the effect of emodin on the gene expression profile changes in SCLC NCI-H446 cells.Methods NCI-H446 cells were treated with emodin and cell viability was determined by MTT assay. Cell apoptosis was determined by both flow cytometry and caspase-3 activity assay. The effect of emodin on the gene expression profile of NCI-H446 cells was analyzed using cDNA microarray. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to validate the microarray results.Results Emodin suppressed viability, induced apoptosis and changed cell cycle of NCI-H446 cells. Among the 1262 genes, 10 genes were up-regulated and 8 genes were down-regulated more than 2 folds in NCI-H446 cells when compared with the control cells after treatment with emodin for 12 hours, while 12 genes were up-regulated and 24 genes were down-regulated after treatment with emodin for 24 hours. These genes were involved in metabolism, signal transduction, transcription regulation, cytoskeleton organization, immune response, transport, protein synthesis, cell cycle control, cell adhesion and RNA processing. The RT-PCR results were consistent with those obtained by the microarray.Conclusions Emodin affects the expression of genes involved in various cellular functions and plays important roles in cell apoptosis, tumor metastasis and chemotherapy-resistance, which suggests emodin might become an effective chemopreventive or chemotherapeutic agent for SCLC.

  5. Prognostic significance of CD44s expression in resected non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Ko Yoon

    2011-08-01

    Full Text Available Abstract Background CD44s is a cell adhesion molecule known to mediate cellular adhesion to the extracellular matrix, a prerequisite for tumor cell migration. CD44s plays an important role in invasion and metastasis of various cancers. In the present study, we sought to determine whether CD44s is involved in clinical outcomes of patients with resected non-small cell lung cancer (NSCLC. Methods Using immunohistochemical staining, we investigated CD44s protein expression using tissue array specimens from 159 patients with resected NSCLC (adenocarcinoma (AC; n = 82 and squamous cell carcinoma (SCC; n = 77. Additionally, the immunoreactivity of cyclooxygenase (COX-2 was also studied. The clinicopathological implications of these molecules were analyzed statistically. Results High CD44s expression was detected more frequently in NSCLC patients with SCC (66/72; 91.7% than in those with AC histology (P 0.001. Additionally, high CD44s expression was significant correlated with more advanced regional lymph node metastasis (P = 0.021. In multivariate analysis of survival in NSCLC patients with AC histology, significant predictors were lymph node metastasis status (P P = 0.046, and high CD44s expression (P = 0.014. For NSCLC patients with SCC histology, the significant predictor was a more advanced tumor stage (P = 0.015. No significant association was found between CD44s and clinical outcome (P = 0.311. Conclusions High CD44s expression was a negative prognostic marker with significance in patients with resected NSCLC, particularly those with AC histology, and was independent of tumor stage.

  6. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating microRNA-486 expression

    Science.gov (United States)

    Yang, N.; Liang, Y.; Yang, P.; Yang, T.; Jiang, L.

    2017-01-01

    Propofol is a frequently used intravenous anesthetic agent. Recent studies show that propofol exerts a number of non-anesthetic effects. The present study aimed to investigate the effects of propofol on lung cancer cell lines H1299 and H1792 and functional role of microRNA (miR)-486 in these effects. H1299 and/or H1792 cells were treated with or without propofol and transfected or not with miR-486 inhibitor, and then cell viability and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry. The expression of miR-486 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) with or without propofol treatment. Western blot was performed to analyze the protein expression of Forkhead box, class O (FOXO) 1 and 3, Bcl-2 interacting mediator of cell death (Bim), and pro- and activated caspases-3. Results showed that propofol significantly increased the miR-486 levels in both H1299 and H1792 cells compared to untreated cells in a dose-dependent manner (PBim, and pro- and activated caspases-3; however, miR-486 inhibitor reversed the effects of propofol on cell viability, apoptosis, and protein expression (P<0.05 or P<0.01). In conclusion, propofol might be an ideal anesthetic for lung cancer surgery by effectively inhibiting lung cancer cell viability and inducing cell apoptosis. Modulation of miR-486 might contribute to the anti-tumor activity of propofol. PMID:28076456

  7. Expression of Rab25 in non-small cell lung cancer and its clinical significance

    Directory of Open Access Journals (Sweden)

    Pu ZHOU

    2014-03-01

    Full Text Available Objective To assess the expression of Rab25 protein in non-small cell lung cancer (NSCLC, and explore the correlation of its expression with tumor proliferation and metastasis. Methods Sixty-one cases of NSCLC specimens (31 cases of squamous cell carcinoma, 26 cases of adenocarcinoma, and 4 cases of adenosquamous carcinoma undergone surgical treatment, and 40 specimens of adjacent normal lung tissues were obtained from Jan. 2009 to Jun. 2010 at Xingqiao Hospital of Third Military Medical University. Immunochemistry method of MaxVision was used to detect the expression of Rab25 in the specimens, and then the correlation of the expression with the clinicopathological parameters (patients' sex, age, smoking history, tumor type, differentiation, volume, TNM stage, lymph metastasis, etc. was analyzed using statistical software SPSS 21.0. Results  Rab25 protein was mainly expressed in cytoplasm and cell membrane. The positive rate of Rab25 in NSCLC was 93.4%, which was significantly higher than that in adjacent normal tissues (27.5%, P<0.01. The expression of Rab25 protein was significantly associated with the TNM stage and tumor size (P<0.05. Conclusions The expression of Rab25 is obviously higher in NSCLC than in the adjacent normal tissues, and the expression is associated with TNM stage and tumor size. Moreover, the later of the NSCLC stage, the larger of tumor size, and the higher of Rab25 expression will be in the NSCLC tissue. DOI: 10.11855/j.issn.0577-7402.2014.02.16

  8. Clinicopathological Significance of E-cadherin and PCNA Expression in Hunman Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Jianwei Ma; Kai Fan; Yanli Zhang; Dawei Song; Jianmei Ma

    2008-01-01

    OBJECTIVE This study was designed to assess E-cadherin(E-cad) and proliferating cell nuclear antigen (PCNA) expression as well as their clinicopathological significance in hunman non-small cell lung cancers (NSCLCs). Possible molecular mechanisms of differentiation and metastasis of NSCLCs are discussed.METHODS Immunohistochemical and immunofluorescence double staining were performed to examine the expression of E-cad and PCNA in 68 primary NSCLCs cases.RESULTS The E-cad expression in squamous cell carcinomas and adenocarcinomas showed no significant difference. E-cad expression had a positive correlation with the histological-differentiated grade. A significant difference of Ecad expression was found between metastatic and non-metastatic groups. PCNA expression in squamous cell carcinomas and adenocarcinomas showed no significant difference. The PCNA expression had a reverse correlation with the histological-differentiated grade. A significant difference of PCNA expression was found between metastatic and non- metastatic groups. The E-cad and PCNA expression presented a reverse correlation.CONCLUSION E-cad expression is not associated with the histological type of NSCLC, but is associated with differentiation and metastasis of the cancer. Down-regulation of E-cad expression affects the proliferation of cancer cells. Conjoint analysis of E-cad and PCNA expression is a good way to evaluate tumor biological behavior.

  9. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  10. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  11. Loss of Bad expression confers poor prognosis in non-small cell lung cancer.

    Science.gov (United States)

    Huang, Yi; Liu, Dan; Chen, Bojiang; Zeng, Jing; Wang, Lei; Zhang, Shangfu; Mo, Xianming; Li, Weimin

    2012-09-01

    Proapoptotic BH-3-only protein Bad (Bcl-Xl/Bcl-2-associated death promoter homolog, Bad) initiates apoptosis in human cells, and contributes to tumorigenesis and chemotherapy resistant in malignancies. This study explored association between the Bad expression level and prognosis in patients with non-small cell lung cancer (NSCLC). In our study, a cohort of 88 resected primary NSCLC cases were collected and analyzed. Bad expression level was determined via immunohistochemical staining assay. The prognostic significances of Bad expression were evaluated with univariate and multivariate survival analysis. The results showed that compared with normal lung tissues, Bad expression level significantly decreased in NSCLC (P Bad expression was associated with adjuvant therapy status. Loss of Bad independently predicted poor prognosis in whole NSCLC cohort and early stage subjects (T1 + T2 and N0 + N1) (all P Bad negative phenotype in NSCLC patients with smoking history, especially lung squamous cell carcinoma (all P Bad is an independent and powerful predictor of adverse prognosis in NSCLC. Bad protein could be a new biomarker for selecting individual therapy strategies and predicting therapeutic response in subjects with NSCLC.

  12. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  13. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.

    Science.gov (United States)

    Kaneko, Kunihiko

    2011-06-01

    Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells.

  14. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells.

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan-Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  15. Effects of ELF magnetic fields on protein expression profile of human breast cancer cell MCF7

    Institute of Scientific and Technical Information of China (English)

    LI Han; ZENG Qunli; WENG Yu; LU Deqiang; JIANG Huai; XU Zhengping

    2005-01-01

    Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a "possible human carcinogen" by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unknown. In this study, a proteomics approach was employed to investigate the changes of protein expression profile induced by ELF MF in human breast cancer cell line MCF7, in order to determine ELF MF-responsive proteins. MCF7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h and the changes of protein profile were examined using two dimensional electrophoresis. Up to 6 spots have been statistically significantly altered (their expression levels were changed at least 5 fold up or down) compared with sham-exposed group. 19 ones were only detected in exposure group while 19 ones were missing. Three proteins were identified by LC-IT Tandem MS as RNA binding protein regulatory subunit、Proteasome subunit beta type 7 precursor and Translationally Controlled Tumor Protein. Our finding showed that 50 Hz, 0.4 mT ELF MF alternates the protein profile of MCF7 cell and may affect many physiological functions of normal cell and 2-DE coupled with MS is a promising approach to elucidating cellular effects of electromagnetic fields.

  16. Stromal cell expression of caveolin-1 predicts outcome in breast cancer.

    Science.gov (United States)

    Sloan, Erica K; Ciocca, Daniel R; Pouliot, Normand; Natoli, Anthony; Restall, Christina; Henderson, Michael A; Fanelli, Mariel A; Cuello-Carrión, Fernando D; Gago, Francisco E; Anderson, Robin L

    2009-06-01

    Caveolin-1 has been linked to tumor progression and clinical outcome in breast cancer, but a clear resolution of its role as a prognostic marker is lacking. We assessed caveolin-1 levels in normal breast tissue and two breast cancer cohorts for which outcome data were available. We found that caveolin-1 was not expressed in normal breast luminal epithelium but was present in the epithelial compartment of some tumors. We found no association between caveolin-1 expression in the epithelial compartment and clinical outcome. However, high levels of caveolin-1 in the stromal tissue surrounding the tumor, rather than within tumor cells, associated strongly with reduced metastasis and improved survival (P < 0.0001). The onset of mammary tumors driven by Her2/neu overexpression was accelerated in mice lacking caveolin-1, thereby supporting the observation that the presence of caveolin-1 in the tumor microenvironment modulates tumor development. These studies suggest that stromal caveolin-1 expression may be a potential therapeutic target and a valuable prognostic indicator of breast cancer progression.

  17. Global gene expression profiles of canine macrophages and canine mammary cancer cells grown as a co-culture in vitro

    Directory of Open Access Journals (Sweden)

    Król Magdalena

    2012-02-01

    Full Text Available Abstract Background Solid tumours comprise various cells, including cancer cells, resident stromal cells, migratory haemopoietic cells and other. These cells regulate tumour growth and metastasis. Macrophages constitute probably the most important element of all interactions within the tumour microenvironment. However, the molecular mechanism, that guides tumour environment, still remains unknown. Exploring the underlying molecular mechanisms that orchestrate these phenomena has been the aim of our study. A co-culture of canine mammary cancer cells and macrophages was established and maintained for 72 hrs. Having sorted the cells, gene expression in cancer cells and macrophages, using DNA microarrays, was examined. The results were confirmed using real-time qPCR and confocal microscopy. Moreover, their ability for migration and invasion has been assessed. Results Microarray analysis showed that the up-regulated genes in the cancer cell lines are involved in 15 highly over-manifested pathways. The pathways that drew our diligent attention included: the inflammation pathway mediated by chemokine and cytokine, the Toll receptor signalling pathway and the B cell activation. The up-regulated genes in the macrophages were involved in only 18 significantly over-manifested pathways: the angiogenesis, the p53 pathway feedback loops2 and the Wnt signalling pathway. The microarray analysis revealed that co-culturing of cancer cells with macrophages initiated the myeloid-specific antigen expression in cancer cells, as well as cytokine/chemokine genes expression. This finding was confirmed at mRNA and protein level. Moreover, we showed that macrophages increase cancer migration and invasion. Conclusions The presence of macrophages in the cancer environment induces acquisition of the macrophage phenotype (specific antigens and chemokines/cytokines expression in cancer cells. We presumed that cancer cells also acquire other myeloid features, such as

  18. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer

    OpenAIRE

    2011-01-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogeno...

  19. Heme oxygenase-1 (HO-1 expression in prostate cancer cells modulates the oxidative response in bone cells.

    Directory of Open Access Journals (Sweden)

    Mercedes Ferrando

    Full Text Available Prostate cancer (PCa is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1 counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs, we demonstrated that HO-1 pharmacological induction (hemin treatment abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1 cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis.

  20. Changes in expression of imprinted genes following treatment of human cancer cell lines with non-mutagenic or mutagenic carcinogens.

    Science.gov (United States)

    Shibui, Takeo; Higo, Yukari; Tsutsui, Takeo W; Uchida, Minoru; Oshimura, Mitsuo; Barrett, J Carl; Tsutsui, Takeki

    2008-08-01

    It remains possible that chemicals that act by mutagenic mechanisms as well as chemicals that do not induce gene mutations may affect epigenetic gene expression. To test the possibility, we investigated the ability of both types of chemicals to alter the expression of five imprinted genes, PEG3, SNRPN, NDN, ZAC and H19, using two human colon cancer cell lines and a human breast cancer cell line. The expression of imprinted genes was changed by some non-mutagenic and mutagenic carcinogens independent of their mutagenic activity. The genes most commonly exhibiting the changes in expression were SNRPN and PEG3. Alterations of the expression of NDN and ZAC were also observed in some conditions. Methylation-specific PCR and chromatin immunoprecipitation assays suggest the possibility that changes in the expression of SNRPN may be associated with DNA hypomethylation and histone acetylation of the promoters and euchromatinization of the heterochromatic domains of the promoters. Changes in expression of the imprinted genes, PEG3 and NDN, were also observed in cells immortalized by treatment of normal human fibroblasts with 4-nitroquinoline 1-oxide or aflatoxin B1. We previously demonstrated that expression of the cancer-related gene, INK4a, in these immortal cells was lost via epigenetic mechanisms. The results prove that, in cancer cells, some mutagenic or non-mutagenic carcinogens can epigenetically influence the transcription levels of imprinted genes and also suggest the possibility that some chemical carcinogens may have epigenetic carcinogenic effects in human cells.

  1. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-hong; WANG Sheng-fa; YU Liang; WANG Ju; CHANG Hao; YAN Wei-li; FU Kai; ZHANG Jian

    2008-01-01

    Background Transcription factor Pokemon,a central regulation gene of the important tumor suppressor ARF gene,exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes.Its expression in non-small cell lung cancer (NSCLC)and its clinical significance remains unclear.The aim of this study was to investigate the expression of Pokemon in NSCLC and to explore its correlation with the clinical pathological characteristics and its influence on patients'prognosis.Methods Fifty-five cases of NSCLC were involved in this study.The expression of Pokemon in the tumor tissue,the corresponding tumor adjacent tissue and the surrounding tissue was detected via reverse transcription-polymerase chain reaction(RT-PCR)and Western blotting,with the aim of investigating the correlation between the expression of Pokemon in tumor tissue of NSCLC and its clinicaI pathological characteristics.Moreover,a prognostic analysis was carried out based upon the immunohistochemical(IHC)detection of the expression of Pokemon gene in archival tumor specimens (5 years ago) of 62 cases of NSCLC.Results Statistical significance of the expression of Pokemon mRNA and protein was determined in the tumor tissue,the tumor adjacent tissue and the surrounding tissue (P<0.05).The expression of Pokemon was determined not to be associated with the patients'sex,age,smoking condition,tumor differentiation degree,histology and lymph node metastasis condition.However,its relationship with TNM staging was established(P<0.05).Furthermore,it was shown that the suwival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.004),therefore,the expression of Pokemon is believed to be an independent factor affectinq prognosis (P=0.034).Concluaion Pokemon was over-expressed in NSCLC tissue and the expression of Pokemon might be of clinical significance in non-small cell lung cancer prognostic evaluation.

  2. Clinicopathological significance of fascin-1 expression in patients with non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Ling XL

    2015-06-01

    Full Text Available Xiao-Ling Ling,* Tao Zhang,* Xiao-Ming Hou, Da Zhao Department of Oncology, The First Hospital of Lanzhou University (The Branch Hospital of Donggang, Lanzhou, Gansu Province, People’s Republic of China *These authors contributed equally to this work Purpose: Fascin-1 promotes the formation of filopodia, lamellipodia, and microspikes of cell membrane after its cross-linking with F-actin, thereby enhancing the cell movement and metastasis and invasion of tumor cells. This study explored the fascin-1 protein’s expression in non-small cell lung cancer (NSCLC tissues and its relationship with clinical pathology and prognostic indicators.Methods: Immunohistochemical analysis was used to determine the expression of fascin-1 in NSCLC tissues. We used quantitative real-time polymerase chain reaction and western blot analysis to further verify the results. The fascin-1 expression and statistical method for clinical pathological parameters are examined by χ2. Kaplan–Meier method is used for survival analysis. Cox’s Proportional Hazard Model was used to conduct a combined-effect analysis for each covariate.Results: In 73 of the 128 cases, NSCLC cancer tissues (57.0% were found with high expression of fascin-1, which was significantly higher than the adjacent tissues (35/128, 27.3%. The results suggested that the high expression of fascin-1 was significantly correlated with lymph node metastasis (P=0.022 and TNM stage (P=0.042. The high fascin-1 expression patients survived shorter than those NSCLC patients with low fascin-1 expression (P<0.05. Univariate analysis revealed that lymph node metastasis, TNM stage, and fascin-1 expression status were correlated with the overall survival. Similarly, lymph node metastasis, TNM stage, and fascin-1 expression status were significantly associated with the overall survival in multivariate analyses by using the Cox regression model.Conclusion: The fascin-1 protein may be a useful prognostic indicator and

  3. MiR-9 downregulates CDX2 expression in gastric cancer cells.

    Science.gov (United States)

    Rotkrua, Pichayanoot; Akiyama, Yoshimitsu; Hashimoto, Yutaka; Otsubo, Takeshi; Yuasa, Yasuhito

    2011-12-01

    Ectopic expression of CDX2, a caudal-related homeobox protein, is known to be associated with the development of intestinal metaplasia in the stomach and gastric carcinogenesis. Previously, we reported that DNA methylation was partly responsible for CDX2 silencing in gastric cancer (GC). However, the mechanism underlying the aberrant expression of CDX2 during malignant transformation remained unclear. MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators. To elucidate the role of miRNAs in CDX2 downregulation in GC cells, putative miRNAs, such as miR-9, were computationally predicted. After exogenous pre-miR-9 precursor transfection, the luciferase activity of a reporter vector containing a part of the 3'-UTR of CDX2 was downregulated in HEK-293T cells. The inverse correlation between the miR-9 and CDX2 protein levels was demonstrated in GC cell lines. By means of miR-9 overexpression and knockdown techniques, the expression levels of the CDX2 protein and downstream target genes (p21, MUC2 and TFF3) were responsively altered in MKN45 and NUGC-3 cells. Transfection of an anti-miR-9 molecule significantly inhibited cell growth by promoting G(1) cell cycle arrest in MKN45 cells similarly to the effect of CDX2 overexpression. Moreover, examination of the miR-9 levels in primary GC tissues revealed that the amounts of miR-9 in the CDX2-negative group were significantly higher than those in the CDX2-positive group (p = 0.004). Therefore, miR-9 might repress CDX2 expression via the binding site in the 3'-UTR, resulting in the promotion of cell proliferation in GCs.

  4. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  5. Altered expression of cell proliferation-related and interferon-stimulated genes in colon cancer cells resistant to SN38.

    Science.gov (United States)

    Gongora, Céline; Candeil, Laurent; Vezzio, Nadia; Copois, Virginie; Denis, Vincent; Breil, Corinne; Molina, Franck; Fraslon, Caroline; Conseiller, Emmanuel; Pau, Bernard; Martineau, Pierre; Del Rio, Maguy

    2008-06-01

    Irinotecan is a topoisomerase I inhibitor widely used as an anticancer agent in the treatment of metastatic colon cancer. However, its efficacy is often limited by the development of resistance. We have isolated a colon carcinoma cell line, HCT116-SN6, which displays a 6-fold higher resistance to SN38, the active metabolite of irinotecan. In this paper, we studied the molecular mechanisms that cause resistance to SN38 in the HCT116-SN6 cell line. First, we analyzed proliferation, cell cycle distribution, apoptosis, topoisomerase I expression and activity in SN38-resistant (HCT116-SN6) and sensitive (HCT116-s cells). We showed that the SN38-induced apoptosis and the SN38-activated cell cycle checkpoints leading to G(2)/M cell cycle arrest were similar in both cell lines. Topoisomerase I expression and catalytic activity were also unchanged. Then, we compared mRNA expression profiles in the two cell lines using the Affymetrix Human Genome GeneChip arrays U133A and B. Microarray analysis showed that among the genes, which were differentially expressed in HCT116-s and HCT116-SN6 cells, 27% were related to cell proliferation suggesting that proliferation might be the main target in the development of resistance to SN38. This result correlates with the phenotypic observation of a reduced growth rate in HCT116-SN6 resistant cells. Furthermore, 29% of the overexpressed genes were Interferon Stimulated Genes and we demonstrate that their overexpression is, at least partially, due to endogenous activation of the p38 MAP kinase pathway in SN38 resistant cells. In conclusion, a slower cell proliferation rate may be a major cause of acquired resistance to SN38 via a reduction of cell cycle progression through the S phase which is mandatory for the cytotoxic action of SN38. This lower growth rate could be due to the endogenous activation of p38.

  6. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Coskun, Mehmet; Bzorek, Michael;

    2013-01-01

    -related genes are regulated by CDX2. The aim was to investigate the role of decreased CDX2 level on the expression of APC, AXIN2 and GSK3β in migrating colon cancer cells at the invasive front. CDX2-bound promoter and enhancer regions from APC, AXIN2 and GSK3β were analyzed for gene regulatory activity...... was associated with endogenous downregulation of APC and AXIN2 expression in Caco-2 cells but did not affect GSK3β expression. Furthermore, elevated levels of nuclear β-catenin and reduced levels of cytoplasmic APC were correlated to a low CDX2 expression in migrating colon cancer cells in vivo. These results...... suggest that a low CDX2 level has influence on the Wnt signaling in invasive colon cancer cells possibly promoting cellular migration....

  7. Changes of Survivin mRNA and Protein Expression during Paclitaxel Treatment in Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    XIONG Huihua; YU Shiying; ZHUANG Liang; XIONG Hua

    2007-01-01

    In order to investigate the role of antiapoptosis gene, survivin in the resistance to palcitaxel, the expression of survivin mRNA and protein in the process of paclitaxel treatment in breast cancer cell line MCF-7 was detected. MCF-7 cells were incubated with paclitaxel at different concentrations. The growth inhibition rate of MCF-7 was investigated by tetrazolium bromide (MTT) colorimetry. The change of apoptosis was detected by Annexin-V/PI methods. The changes in the expression of survivin mRNA and protein were studied by reverse transcription polymerase chain reaction (RT-PCR) and Western-blot assay respectively. The growth inhibition rate of MCF-7 was increased in a concentration- and time-dependent manner. Paclitaxel of higher concentration could effectively induce apoptosis in MCF-7 cells after 48 h, while the expression of survivin was increased at early time (within 6 h) and decreased after 24 h regardless of treatment concentrations of paclitaxel. It suggested that tumor cells might evade the paclitaxel-induced cell cycle arrest and apoptosis by increasing the level of survivin at early treatment time.

  8. Expression of CCAAT/Enhancer Binding Protein Beta in Muscle Satellite Cells Inhibits Myogenesis in Cancer Cachexia.

    Science.gov (United States)

    Marchildon, François; Lamarche, Émilie; Lala-Tabbert, Neena; St-Louis, Catherine; Wiper-Bergeron, Nadine

    2015-01-01

    Cancer cachexia is a paraneoplastic syndrome that causes profound weight loss and muscle mass atrophy and is estimated to be the cause of up to 30% of cancer deaths. Though the exact cause is unknown, patients with cancer cachexia have increased muscle protein catabolism. In healthy muscle, injury activates skeletal muscle stem cells, called satellite cells, to differentiate and promote regeneration. Here, we provide evidence that this mechanism is inhibited in cancer cachexia due to persistent expression of CCAAT/Enhancer Binding Protein beta (C/EBPβ) in muscle myoblasts. C/EBPβ is a bzip transcription factor that is expressed in muscle satellite cells and is normally downregulated upon differentiation. However, in myoblasts exposed to a cachectic milieu, C/EBPβ expression remains elevated, despite activation to differentiate, resulting in the inhibition of myogenin expression and myogenesis. In vivo, cancer cachexia results in increased number of Pax7+ cells that also express C/EBPβ and the inhibition of normal repair mechanisms. Loss of C/EBPβ expression in primary myoblasts rescues differentiation under cachectic conditions without restoring myotube size, indicating that C/EBPβ is an important inhibitor of myogenesis in cancer cachexia.

  9. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  10. EFEMP1 Suppresses Growth and Invasion of Lung Cancer Cells 
by Downregulating Matrix Metalloproteinase-7 Expression

    Directory of Open Access Journals (Sweden)

    Yuanyuan LANG

    2015-02-01

    Full Text Available Background and objective EFEMP1, a member of fibulin family proteins, is a very important extracellular matrix protein which is involved in cell metabolism and its role in tumor occurrence and progression is still poorly understood. The aim of this study is to investigate the functional effect and mechanism of EFEMP1 in lung cancer cell growth and invasion. Methods EFEMP1 expression in lung cancer cells was determined by Western blot. The promoter methylation status of EFEMP1 was detected by methylation-specific PCR (MSP. After transfection of control or EFEMP1 vector in lung cancer cells, the ability of colony formation and invasion was detected by colony formation experiment and matrigel invasion method. Western blot and real-time PCR were used to detect matrix metalloproteinase-7 (MMP-7 expression. Luciferase assay was used to detect expression of MMP-7 reporter construct transfected with or without EFEMP1 in lung cancer cells. Results Western blot result showed EFEMP1 expression was downregulated in lung cancer cells. The promoter region of EFEMP1 was methylated in A549 and H1299 and after treatment with 5-aza-2’-deoxycytidine, the EFEMP1 expression was upregulated. The growth and invasion of A549 and H1299 were all significantly suppressed by transfecting with EFEMP1 and the MMP-7 expression was dowanregulated by EFEMP1 as well. Expression activity of MMP-7 reporter construct was decreased by cotransfecting with EFEMP1. Conclusion Collectively, these results suggest that EFEMP1 functions as a suppressor of lung cancer growth and invasion. Epigenetic silencing of EFEMP1 promotes lung cancer invasion and metastasis by activating MMP-7 expression.

  11. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    Science.gov (United States)

    2005-01-01

    sequencing or hybridization array capillary chromatography. After a 6-min-long preliminary technologies.30,31 separation, fractions from the first...characterize single cells. These tools include mass cating cells contain diploid, S-phase and tetraploid frac- spectrometry, electrochemistry and capillary...separation tions; and some advanced tumors contain tetraploid and methods. This review focuses on the use of capillary aneuploid cells [2

  12. Expression of Prostacyclin-Synthase in Human Breast Cancer: Negative Prognostic Factor and Protection against Cell Death In Vitro

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Endogenously formed prostacyclin (PGI2 and synthetic PGI2 analogues have recently been shown to regulate cell survival in various cell lines. To elucidate the significance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze expression of prostacyclin-synthase (PGIS in 248 human breast cancer specimens obtained from surgical pathology files. We examined patients’ 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the effects of PGI2 and its analogues on cell death were examined in a human breast cancer cell line (MCF-7 and a human T-cell leukemia cell line (CCRF-CEM. PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically significant reduction in 10-year survival (P=0.038; n=193. Transient transfection of PGIS into MCF-7 cells exposed to sulindac increased cell viability by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential therapeutic target in breast cancer.

  13. The cytotoxic effect of memantine and its effect on cytoskeletal proteins expression in metastatic breast cancer cell line

    Science.gov (United States)

    Seifabadi, Sima; Vaseghi, Golnaz; Javanmard, Shaghayegh Haghjooy; Omidi, Elham; Tajadini, Mohammadhasan; Zarrin, Bahareh

    2017-01-01

    Objective(s): Breast cancer is an important leading cause of death from cancer. Stathmin and tau proteins are regulators of cell motility, and their overexpression is associated with the progression and bad prognosis of breast cancer. Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is the potential inhibitor of tau protein in neurons. This study determines the effect of memantine on breast cancer cell migration and proliferation, tau and stathmin gene expression in cancer cells and its synergistic effect with paclitaxel. Materials and Methods: The cell proliferation was evaluated by MTT assay and for this purpose, MCF-7 breast cancer cells were treated with various concentration of memantine (2, 20 and 100 μg/ml). Tau and stathmin mRNA expression was evaluated through quantitative real time RT-PCR method. The migration of cancer cells treated with memantine for 24 hr was compared to non-treated cells using an in vitro transmembrane migration assay. Results: Incubation of breast cancer cells with memantine resulted in a dose dependent reduction in cell survival (P=0.0001). Paclitaxel (100 nM) showed synergistic effect with memantine (P=0.0001). Memantine significantly decreased tau and stathmin mRNA expression (by RT-PCR), so that 100 µmol/l of memantine decreased tau and stathmin expression by 46% (P=0.0341) and 33% (P=0.043), respectively. Migration of cells was also decreased by memantine (P=0.0001). Conclusion: The presented data shows that memantine reduced mRNA levels of tau and stathmin proteins and also reduced cellular migration. PMID:28133523

  14. The cytotoxic effect of memantine and its effect on cytoskeletal proteins expression in metastatic breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Sima Seifabadi

    2017-01-01

    Full Text Available Objective(s:Breast cancer is an important leading cause of death from cancer. Stathmin and tau proteins are regulators of cell motility, and their overexpression is associated with the progression and bad prognosis of breast cancer. Memantine, an N-methyl-D-aspartate (NMDA receptor antagonist, is the potential inhibitor of tau protein in neurons. This study determines the effect of memantine on breast cancer cell migration and proliferation, tau and stathmin gene expression in cancer cells and its synergistic effect with paclitaxel.   Materials and Methods: The cell proliferation was evaluated by MTT assay and for this purpose, MCF-7 breast cancer cells were treated with various concentration of memantine (2, 20 and 100 μg/ml. Tau and stathmin mRNA expression was evaluated through quantitative real time RT-PCR method. The migration of cancer cells treated with memantine for 24 hr was compared to non-treated cells using an in vitro transmembrane migration assay. Results: Incubation of breast cancer cells with memantine resulted in a dose dependent reduction in cell survival (P=0.0001. Paclitaxel (100 nM showed synergistic effect with memantine (P=0.0001. Memantine significantly decreased tau and stathmin mRNA expression (by RT-PCR, so that 100 µmol/l of memantine decreased tau and stathmin expression by 46% (P=0.0341 and 33% (P=0.043, respectively. Migration of cells was also decreased by memantine (P=0.0001. Conclusion: The presented data shows that memantine reduced mRNA levels of tau and stathmin proteins and also reduced cellular migration.

  15. Noninvasive Optical Tracking of Red Fluorescent Protein-Expressing Cancer Cells in a Model of Metastatic Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paul T. Winnard, Jr.

    2006-10-01

    Full Text Available We have evaluated the use of the Xenogen IVIS 200 imaging system for real-time fluorescence protein- based optical imaging of metastatic progression in live animals. We found that green fluorescent protein- expressing cells (100 × 106 were not detectable in a mouse cadaver phantom experiment. However, a 10-fold lower number of tdTomato-expressing cells were easily detected. Mammary fat pad xenografts of stable MDA-MB-231-tdTomato cells were generated for the imaging of metastatic progression. At 2 weeks postinjection, barely palpable tumor burdens were easily detected at the sites of injection. At 8 weeks, a small contralateral mammary fat pad metastasis was imaged and, by 13 weeks, metastases to lymph nodes were detectable. Metastases with nodular composition were detectable within the rib cage region at 15 weeks. 3-D image reconstructions indicated that the detection of fluorescence extended to approximately 1 cm below the surface. A combination of intense tdTomato fluorescence, imaging at ≥ 620 nm (where autofluorescence is minimized, the sensitivity of the Xenogen imager made this possible. This study demonstrates the utility of the noninvasive optical tracking of cancer cells during metastatic progression with endogenously expressed fluorescence protein reporters using detection wavelengths of ≥ 620 nm.

  16. Changes in tumor-antigen expression proifle as human small-cell lung cancers progress

    Institute of Scientific and Technical Information of China (English)

    Li-Sheng Ge; Neil T Hoa; Nils Lambrecht; Maria Dacosta-Iyer; Yi Ouyang; Amir Abolhoda; Martin R Jadus

    2015-01-01

    AbstrAct Objective:Our group has previously observed that in patients with small-cell lung cancers (SCLCs), the expression of a tumor antigen, glioma big potassium (gBK) ion channel, is higher at the time of death than when the cancer is ifrst treated by surgical resection. This study aimed to determine whether this dichotomy was common in other potential lung tumor antigens by examining the same patient samples using our more extensive proifle analysis of tumor-antigen precursor protein (TAPP). We then tested the hypothesis that therapeutic intervention may inadvertently cause this increased gBK production. Methods:SCLC samples (eight surgical resections and three autopsy samples) and three control lungs were examined by quantitative real-time polymerase chain reaction for 42 potential TAPPs that represent potential T-cell-mediated immunological targets. Results:Twenty-two TAPP mRNAs displayed the same profile as gBK, i.e., more mRNAs were expressed at autopsy than in their surgical counterparts. B-cyclin and mouse double minute 2, human homolog of P53-binding protein were elevated in both autopsy and surgical specimens above the normal-lung controls. When HTB119 cells were incubated with doxorubicin, gBK was strongly induced, as conifrmed by intracellular lfow cytometry with a gBK-speciifc antibody. Conclusion:Our findings suggested that more immunological targets became available as the tumor responded to chemotherapy and proceeded toward its terminal stages.

  17. Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells.

    Science.gov (United States)

    Ferrand, Nathalie; Stragier, Emilien; Redeuilh, Gérard; Sabbah, Michèle

    2012-10-01

    CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells. We now report that CCN5 is induced in ER-negative breast cancer cells such as MDA-MB-231 following glucocorticoid exposure, due to interaction of the endogenous glucocorticoid receptor with a functional glucocorticoid-response element in the CCN5 gene promoter. Glucocorticoid treatment of MDA-MB-231 cells is accompanied by morphological alterations, decreased invasiveness and attenuated expression of mesenchymal markers, including vimentin, cadherin 11 and ZEB1 (zinc finger E-box binding homeobox 1). Interestingly, glucocorticoid exposure did not increase CCN5 expression in ER-positive breast cancer cells, but rather down-regulated ER expression, thereby attenuating oestrogen pathway signalling. Taken together, our results indicate that glucocorticoid treatment of ER-negative breast cancer cells induces high levels of CCN5 expression and is accompanied by the appearance of a more differentiated and less invasive epithelial phenotype. These findings propose a novel therapeutic strategy for high-risk breast cancer patients.

  18. Dietary Phenethyl Isothiocyanate Alters Gene Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Young Jin Moon

    2011-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC, a component in cruciferous vegetables, can block chemical carcinogenesis in animal models. Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with either PEITC (3 μM or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA's representing the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific human GE Array Kits (Superarray Inc. that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor suppression, plus 2 housekeeping genes (β-actin and GAPDH, were utilized. Arrays from treated and control cells (n=4 per group were evaluated using a Student's t-test. Gene expression was significantly induced for tumor protein p53 (p53, cyclin-dependent kinase inhibitor 1C (p57 Kip2, breast cancer Type 2 early onset (BRCA2, cAMP responsive element binding protein 2 (ATF-2, interleukin 2 (IL-2, heat shock 27 KD protein (hsp27, and CYP19 (aromatase. Induction of p57 Kip2, p53, BRCA2, IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that may be important in explaining the chemopreventive effects of PEITC.

  19. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  20. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    Directory of Open Access Journals (Sweden)

    Davis Jeffrey S

    2010-12-01

    Full Text Available Abstract Background Aldo-keto reductase (AKR 1C family member 3 (AKR1C3, one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. Methods To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR, enzyme-linked immunosorbent assay (ELISA, and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Results Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R and Akt activation as well as vascular endothelial growth factor (VEGF expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024 or a non-selective phosphoinositide 3-kinases (PI3K inhibitor (LY294002 abolished ability of the cells

  1. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  2. The expression of translocator protein in human thyroid cancer and its role in the response of thyroid cancer cells to oxidative stress.

    Science.gov (United States)

    Klubo-Gwiezdzinska, Joanna; Jensen, Kirk; Bauer, Andrew; Patel, Aneeta; Costello, John; Burman, Kenneth D; Wartofsky, Leonard; Hardwick, Matthew J; Vasko, Vasyl V

    2012-08-01

    The translocator protein (TSPO), formerly known as a peripheral benzodiazepine receptor, exerts pro-apoptotic function via regulation of mitochondrial membrane potential. We examined TSPO expression in human thyroid tumors (25 follicular adenomas (FA), 15 follicular cancers (FC), and 70 papillary cancers (PC)). The role of TSPO in the regulation of cell growth, migration, and apoptosis was examined in thyroid cancer cell lines after TSPO knockdown with siRNA and after treatment with TSPO antagonist (PK11195). Compared with normal thyroid, the level of TSPO expression was increased in FA, FC, and PC in 24, 26.6, and 55.7% of cases respectively. Thyroid cancer cell lines demonstrated variable levels of TSPO expression, without specific association with thyroid oncogene mutations. Treatment with inhibitors of PI3K/AKT or MEK/ERK signaling was not associated with changes in TSPO expression. Treatment with histone deacetylase inhibitor (valproic acid) increased TSPO expression in TSPO-deficient cell lines (FTC236 cells). TSPO gene silencing or treatment with PK11195 did not affect thyroid cancer cell growth and migration but prevented depolarization of mitochondrial membranes induced by oxidative stress. Induction of TSPO expression by valproic acid was associated with increased sensitivity of FTC236 to oxidative stress-inducible apoptosis. Overall, we showed that TSPO expression is frequently increased in PC. In vitro data suggested the role of epigenetic mechanism(s) in the regulation of TSPO in thyroid cells. Implication of TSPO in the thyroid cancer cell response to oxidative stress suggested its potential role in the regulation of thyroid cancer cell response to treatment with radioiodine and warrants further investigation.

  3. Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2

    Directory of Open Access Journals (Sweden)

    Quadros Edward V

    2009-05-01

    Full Text Available Abstract Background Recent evidence suggests that several human cancers are capable of uncoupling of mitochondrial ATP generation in the presence of intact tricarboxylic acid (TCA enzymes. The goal of the current study was to test the hypothesis that ketone bodies can inhibit cell growth in aggressive cancers and that expression of uncoupling protein 2 is a contributing factor. The proposed mechanism involves inhibition of glycolytic ATP production via a Randle-like cycle while increased uncoupling renders cancers unable to produce compensatory ATP from respiration. Methods Seven aggressive human cancer cell lines, and three control fibroblast lines were grown in vitro in either 10 mM glucose medium (GM, or in glucose plus 10 mM acetoacetate [G+AcA]. The cells were assayed for cell growth, ATP production and expression of UCP2. Results There was a high correlation of cell growth with ATP concentration (r = 0.948 in a continuum across all cell lines. Controls demonstrated normal cell growth and ATP with the lowest density of mitochondrial UCP2 staining while all cancer lines demonstrated proportionally inhibited growth and ATP, and over-expression of UCP2 (p Conclusion Seven human cancer cell lines grown in glucose plus acetoacetate medium showed tightly coupled reduction of growth and ATP concentration. The findings were not observed in control fibroblasts. The observed over-expression of UCP2 in cancer lines, but not in controls, provides a plausible molecular mechanism by which acetoacetate spares normal cells but suppresses growth in cancer lines. The results bear on the hypothesized potential for ketogenic diets as therapeutic strategies.

  4. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  5. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    Science.gov (United States)

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-01

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells.

  6. Altered Expression of Natural Cytotoxicity Receptors and NKG2D on Peripheral Blood NK Cell Subsets in Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Nayeli Goreti Nieto-Velázquez

    2016-10-01

    Full Text Available Human natural killer (NK cells are considered professional cytotoxic cells that are integrated into the effector branch of innate immunity during antiviral and antitumoral responses. The purpose of this study was to examine the peripheral distribution and expression of NK cell activation receptors from the fresh peripheral blood mononuclear cells of 30 breast cancer patients prior to any form of treatment (including surgery, chemotherapy, and radiotherapy, 10 benign breast pathology patients, and 24 control individuals. CD3−CD56dimCD16bright NK cells (CD56dim NK and CD3−CD56brightCD16dim/− NK cells (CD56bright NK were identified using flow cytometry. The circulating counts of CD56dim and CD56bright NK cells were not significantly different between the groups evaluated, nor were the counts of other leukocyte subsets between the breast cancer patients and benign breast pathology patients. However, in CD56dim NK cells, NKp44 expression was higher in breast cancer patients (P = .0302, whereas NKp30 (P = .0005, NKp46 (P = .0298, and NKG2D (P = .0005 expression was lower with respect to healthy donors. In CD56bright NK cells, NKp30 (P = .0007, NKp46 (P = .0012, and NKG2D (P = .0069 expression was lower in breast cancer patients compared with control group. Only NKG2D in CD56bright NK cells (P = .0208 and CD56dim NK cells (P = .0439 showed difference between benign breast pathology and breast cancer patients. Collectively, the current study showed phenotypic alterations in activation receptors on CD56dim and CD56bright NK cells, suggesting that breast cancer patients have decreased NK cell cytotoxicity.

  7. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression.

    Science.gov (United States)

    Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L

    2016-01-06

    Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation.

  8. Prognostic relevance of proliferating cell nuclear antigen and p53 expression in non-small cell lung cancer.

    Science.gov (United States)

    Dworakowska, D; Gózdz, S; Jassem, E; Badzio, A; Kobierska, G; Urbaniak, A; Skokowski, J; Damps, I; Jassem, J

    2002-01-01

    Prognostic value of p53 and PCNA expression in non-small cell lung cancer (NSCLC) remains controversial. In this study we determined the relevance of these abnormalities in terms of overall survival and disease-free survival in 95 NSCLC patients who underwent curative pulmonary resection. Expression of p53 was found in 44 samples (45%), expression of PCNA-in 79 samples (83%), and expression of both markers-in 35 samples (36%). There was no relationship between expression of either protein and major clinicopathological characteristics. Median survival for patients with and without p53 expression was 36 and 33 months, respectively and 5-year survival probability-29 and 37%, respectively (P=0.73). Median survival for patients with and without PCNA expression was 36 and 27 months, respectively and 5-year survival probability-35 and 25%, respectively (P=0.60). There was no significant difference in overall survival between particular groups of patients with tumors carrying four possible p53/PCNA phenotypes. In multivariate analysis including patient age, sex, tumor stage, tumor type and differentiation, p53 and PCNA expression, the only variable important for survival was stage of disease. These results suggest the lack of prognostic relevance of p53 and PCNA expression in surgically treated NSCLC patients.

  9. Affibody-displaying bionanocapsules for specific drug delivery to HER2-expressing cancer cells.

    Science.gov (United States)

    Shishido, Takuya; Mieda, Hiroaki; Hwang, Sang Youn; Nishimura, Yuya; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-10-01

    A novel HER2-targeted carrier was developed using bionanocapsules (BNCs). Bionanocapsules (BNCs) are 100-nm hollow nanoparticles composed of the L-protein of hepatitis B virus surface antigen. An affibody of HER2 was genetically displayed on the BNC surface (Z(HER2)-BNC). For the investigation of binding affinity, Z(HER2)-BNC was incubated with the cancer cell lines SK-BR-3 (HER2 positive), and MDA-MB-231 (HER2 negative). For analysis of HER2 targeting specificity, Z(HER2)-BNC or Z(WT)-BNC (without affibody) was incubated with both SK-BR-3 and MDA-MB-231 cells by time lapse and concentration. For the delivery of encapsulated molecules (calcein), fluorescence of Z(HER2)-BNC mixed with liposomes was also compared with that of Z(WT)-BNC and nude liposomes by incubation with SK-BR-3 cells. As a result, Z(HER2)-BNC-liposome complex demonstrated the delivery to HER2-expressing cells (SK-BR-3) with a high degree of specificity. This indicates that genetically engineered BNCs are promising carrier for cancer treatment.

  10. ST6GALNAC5 Expression Decreases the Interactions between Breast Cancer Cells and the Human Blood-Brain Barrier

    Science.gov (United States)

    Drolez, Aurore; Vandenhaute, Elodie; Delannoy, Clément Philippe; Dewald, Justine Hélène; Gosselet, Fabien; Cecchelli, Romeo; Julien, Sylvain; Dehouck, Marie-Pierre; Delannoy, Philippe; Mysiorek, Caroline

    2016-01-01

    The ST6GALNAC5 gene that encodes an α2,6-sialyltransferase involved in the biosynthesis of α-series gangliosides, was previously identified as one of the genes that mediate breast cancer metastasis to the brain. We have shown that the expression of ST6GALNAC5 in MDA-MB-231 breast cancer cells resulted in the expression of GD1α ganglioside at the cell surface. By using a human blood-brain barrier in vitro model recently developed, consisting in CD34+ derived endothelial cells co-cultivated with pericytes, we show that ST6GALNAC5 expression decreased the interactions between the breast cancer cells and the human blood-brain barrier. PMID:27529215

  11. The inhibition of Typhonium flagelliforme Lodd. Blume leaf extract on COX-2 expression of Wi Dr colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Agustina Setiawati; Handika Immanuel; Mery Tri Utami

    2016-01-01

    Objective: To determine the inhibition activity of Typhonium flagelliforme Lodd. Blume(T. flagelliforme) leaf extract on cyclooxygenase 2(COX-2) expression of colon cancer cells.Methods: T. flagelliforme leaf extract was prepared to macerate in ethyl acetate. In vitro anticancer activity was assayed by MTT method on Wi Dr colon cancer cells. This study applied apoptosis induction assay to investigate the mechanism of cell death using double staining method. COX-2 expression was stained by immunocytochemistry.Results: T. flagelliforme showed anticancer activity and induced apoptosis on Wi Dr cells through inhibition of COX-2 expression with IC5070 mg/m L.Conclusions: This study showed that T. flagelliforme is a promising chemopreventive agent for colon cancer through COX-2 inhibition.

  12. Elevation of HLA-G-expressing DC-10 cells in patients with gastric cancer.

    Science.gov (United States)

    Xu, Dan-Ping; Shi, Wei-Wu; Zhang, Tong-Tong; Lv, Hai-Yan; Li, Jing-Bo; Lin, Aifen; Yan, Wei-Hua

    2016-09-01

    DC-10 is a distinct subset of human tolerogenic dendritic cells (DCs) which express high levels of human leukocyte antigen-G (HLA-G). DC-10 could induce adaptive type 1 regulatory T cells through the IL-10 dependent ILT4/HLA-G signaling pathway. However, the significance of DC-10 in malignancies remains unclear. In this study, the frequency and mean fluorescence intensity (MFI) of HLA-G+ DC-10 in the peripheral blood of 124 patients with gastric cancer (GC) and 130 normal controls was analyzed with flow cytometry. Plasma sHLA-G was analyzed with ELISA. Results showed both the percentages of peripheral HLA-G+ DC-10 (median: 0.13% vs 0.01%; pG on these cells (median: 310.0 vs 91.5; pG+ DC-10 in GC patients was strongly relative to the tumor grade (p=0.021). sHLA-G levels in GC patients were significantly higher than in healthy controls (median: 85.80U/ml vs 61.20U/ml; pG (p>0.05). However, the increased HLA-G+ DC-10, HLA-G MFI and plasma sHLA-G in patients with gastric cancer could be a diagnostic factor with the area under the ROC curve with 0.947 (p<0.01), 0.882 (p<0.01) and 0.700 (p<0.01) respectively. Given the immune tolerant function of DC-10 could play, the increased DC-10 might play an important role in immune suppression for patients with gastric cancer, while more studies are necessary to illustrate the clinical relevance of DC-10 in cancer patients.

  13. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells

    OpenAIRE

    Cyril Sobolewski; Sandhya Sanduja; Blanco, Fernando F.; Liangyan Hu; Dixon, Dan A.

    2015-01-01

    The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDA...

  14. Increased Midkine and Estrogen Receptor-β Expression in Human Non-Small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Shi-hua Zhang; Guang-feng Zhao; Ya-hong Huang; Kai-hua Lu; Ya-yi Hou

    2009-01-01

    Objective: Midkine (MK), a new member of the heparin-binding growth factor family, has been found recently to have a high expression level in many tumor specimens including lung carcinoma. Estrogens may be involved in lung carcinogenesis, and estrogen receptors, mainly estrogen receptor-β (ER-β), are present and functional in normal lung and tumor cell lines and tissues. In addition, estrogens and growth factors may promote the progression of human non-small cell lung cancer (NSCLC). Previously, we have immunohistochemically demonstrated that MK and ER-β proteins were overexpressed in NSCLC and their expression levels were both significantly negatively correlated with the pathological classification. The purpose of this study was to further verify their expression and its correlation with NSCLC.Methods: Taking NSCLC tissues and their corresponding paraneoplastic and normal lung as research objects, we further examined the expression of MK and ER-β by meas of RT-PCR, in situ hybridization and Western blot analyses at the levels of messenger RNA (mRNA) and protein, respectively.Results: The increased MK and ER-β mRNA expression was found in NSCLC by RT-PCR and in situ hybridization analyses. Furthermore, Western blot analysis also displayed increased expression of MK and ER-β proteins in NSCLC. Finally, their correlation analysis at the levels of mRNA and protein expression in NSCLC demonstrated that MK protein level was significantly correlated to estrogen receptor-β (P0.05, r_s=0.178).Conclusion: All these results in the present study confirmed that MK and ER-β were overexpressed in human NSCLC.

  15. Prognostic significance of osteopontin expression in non-small-cell lung cancer: A meta-analysis.

    Science.gov (United States)

    Zou, Xue-Lin; Wang, Chun; Liu, K E; Nie, Wen; Ding, Zhen-Yu

    2015-05-01

    Osteopontin (OPN) plays an important role in the progression and metastasis of cancer. However, the role of OPN as a prognostic factor in non-small-cell lung cancer (NSCLC) remains controversial. The aim of this study was to investigate the association between OPN expression and prognosis in patients with NSCLC using a meta-analysis. Based on PubMed, Ovid Medline, Embase, ISI, ScienceDirect and SpringerLink databases, related articles published prior to January, 2013 were collected. A meta-analysis was conducted to investigate the association of OPN expression with overall survival (OS) and progression-free survival (PFS) in patients with NSCLC. Hazard ratio (HR) with 95% confidence interval (CI) was used to assess the strength of this association. A total of 6 studies, including 776 patients, were found to be eligible for the meta-analysis. No heterogeneity was observed in OS or PFS, whereas low OPN expression was found to be correlated with better OS (HR=0.57, 95% CI: 0.46-0.70) and PFS (HR=0.62, 95% CI: 0.49-0.77). This meta-analysis demonstrated an association of OPN with poor prognosis in NSCLC patients. However, prospective studies are required to confirm these findings.

  16. Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    Full Text Available It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge simulating the hypergravity phases that occur during one (P1 and 31 parabolas (P31 of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1 and modulating (EZR, RDX, and MSN the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8 or protein kinases (PRKAA1 and PRKCA. The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.

  17. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer.

    Science.gov (United States)

    Nakano, Tetsuhiro; Shimizu, Kimihiro; Kawashima, Osamu; Kamiyoshihara, Mitsuhiro; Kakegawa, Seiichi; Sugano, Masayuki; Ibe, Takashi; Nagashima, Toshiteru; Kaira, Kyoichi; Sunaga, Noriaki; Ohtaki, Youichi; Atsumi, Jun; Takeyoshi, Izumi

    2012-11-01

    Convenient and reliable multiple organ metastasis model systems might contribute to understanding the mechanism(s) of metastasis of lung cancer, which may lead to overcoming metastasis and improvement in the treatment outcome of lung cancer. We isolated a highly metastatic subline, PC14HM, from the human pulmonary adenocarcinoma cell line, PC14, using an in vivo selection method. The expression of 34,580 genes was compared between PC14HM and parental PC14 by cDNA microarray analysis. Among the differentially expressed genes, expression of four genes in human lung cancer tissues and adjacent normal lung tissues were compared using real-time reverse transcription polymerase chain reaction. Although BALB/c nude mice inoculated with parental PC14 cells had few metastases, almost all mice inoculated with PC14HM cells developed metastases in multiple organs, including the lung, bone and adrenal gland, the same progression seen in human lung cancer. cDNA microarray analysis revealed that 981 genes were differentially (more than 3-fold) expressed between the two cell lines. Functional classification revealed that many of those genes were associated with cell growth, cell communication, development and transcription. Expression of three upregulated genes (HRB-2, HS3ST3A1 and RAB7) was higher in human cancer tissue compared to normal lung tissue, while expression of EDG1, which was downregulated, was lower in the cancer tissue compared to the normal lung. These results suggest that the newly established PC14HM cell line may provide a mouse model of widespread metastasis of lung cancer. This model system may provide insights into the key genetic determinants of widespread metastasis of lung cancer.

  18. Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination

    Science.gov (United States)

    Zheng, Yu; Miyamoto, David T.; Wittner, Ben S.; Sullivan, James P.; Aceto, Nicola; Jordan, Nicole Vincent; Yu, Min; Karabacak, Nezihi Murat; Comaills, Valentine; Morris, Robert; Desai, Rushil; Desai, Niyati; Emmons, Erin; Milner, John D.; Lee, Richard J.; Wu, Chin-Lee; Sequist, Lecia V.; Haas, Wilhelm; Ting, David T.; Toner, Mehmet; Ramaswamy, Sridhar; Maheswaran, Shyamala; Haber, Daniel A.

    2017-01-01

    Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of β-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that β-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis. PMID:28181495

  19. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion

    Directory of Open Access Journals (Sweden)

    Xie Xiaofang

    2010-07-01

    Full Text Available Abstract Background Tumor cell expression of Toll-like receptors (TLRs can promote inflammation and cell survival in the tumor microenvironment. Toll-like receptor 4 (TLR4 signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. The expression of TLR4 in human breast cancer cell line MDA-MB-231 and its biological function in the development and progression of breast cancer have not been investigated. We sought to characterize the expression of TLR1-TLR10 in the established human breast cancer cell line MDA-MB-231, and to investigate the biological roles of TLR4 in breast cancer cells growth, survival, and its potential as a target for breast cancer therapy. Methods TLRs mRNA and protein expressions were detected in human breast cancer cell line MDA-MB-231 by RT-PCR, real-time PCR and flow cytometry (FCM. RNA interference was used to knockdown the expression of TLR4 in MDA-MB-231. MDA-MB-231 transfected with the vector pGenesil-1 and the vector containing a scrambled siRNA were as controls. Recombinant plasmids named TLR4AsiRNA, TLR4BsiRNA and TLR4CsiRNA specific to TLR4 were transfected into human breast cancer cell line MDA-MB-231 with Lipfectamine™2000 reagent. TLR4 mRNA and protein expressions were investigated by RT-PCR, real-time PCR, FCM and immunofluorescence after silence. MTT analysis was performed to detect cell proliferation and FCM was used to detect the secretion of inflammatory cytokines in supernatant of transfected cells. Results The human breast cancer cell line MDA-MB-231 was found to express TLR1-TLR10 at both the mRNA and protein levels. TLR4 was found to be the highest expressed TLR in MDA-MB-231. TLR4AsiRNA, TLR4BsiRNA and TLR4CsiRNA were found to significantly inhibit TLR4 expression in MDA-MB-231 at both mRNA and protein levels as compared to vector control(vector transfected cells. TLR4Asi

  20. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression

    DEFF Research Database (Denmark)

    Kenny, Paraic A; Lee, Genee Y; Myers, Connie A;

    2007-01-01

    large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene...... expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even...

  1. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  2. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zelmina Lubovac-Pilav

    Full Text Available Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12, this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc. and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.. Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  3. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Science.gov (United States)

    Lubovac-Pilav, Zelmina; Borràs, Daniel M; Ponce, Esmeralda; Louie, Maggie C

    2013-01-01

    Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12), this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc.) and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.). Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  4. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  5. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  6. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; Bonnier, Dominique; Wewer, Ulla M

    2003-01-01

    "A disintegrin and metalloproteinases" (ADAMs) form a family of cell-surface glycoproteins with potential protease and cell-adhesion activities. We have investigated ADAM expression in human liver cancers and their regulation by several cytokines involved in liver injury. Using degenerative RT-PC...

  7. MicroRNA-125b Induces Cancer Cell Apoptosis Through Suppression of Bcl-2 Expression

    Institute of Scientific and Technical Information of China (English)

    Aihua Zhao; Quan Zeng; Xiaoyan Xie; unnian Zhou; Wen Yue; Yali Li; Xuetao Pei

    2012-01-01

    MicroRNAs (miRNAs) are small,noncoding RNAs which can often act as an oncogene or a tumor suppressor.Several miRNAs are associated with the development of hepatocellular carcinoma (HCC).We demonstrated that miR-125b significantly suppresses HCC cell proliferation and promotes apoptosis by inhibiting the gene expression of the anti-apoptotic protein,Bcl-2.Bioinformatic analysis indicated that the 3'UTR of Bcl-2 has binding sites for miR-125b.Luciferase reporter assay confirmed the ability of miR-125b to dramatically suppress Bcl-2 transcription,suggesting that Bcl-2 is a target gene for miR-125b.We concluded that miR-125b acts as a tumor suppressor in hepatic tumor development by targeting Bcl-2 and inducing cancer cell apoptosis.

  8. Is the Glut expression related to FDG uptake in PET/CT of non-small cell lung cancer patients?

    Science.gov (United States)

    Choi, Woo Hee; Yoo, Ie Ryung; O, Joo Hyun; Kim, Tae Jung; Lee, Kyo Young; Kim, Young Kyoon

    2015-01-01

    Though 18F-FDG PET/CT scans are widely used in non-small cell lung cancer (NSCLC), the mechanism of FDG uptake by lung cancer cells has not yet been fully elucidated. This study evaluated the relationship between FDG uptake and the expression of glucose transporters in NSCLC. Sixty-four NSCLC patients who underwent both preoperative 18F-FDG PET/CT scanning and thoracotomy were included. The maximum standardized uptake value (SUVmax) of the primary lung cancer was compared to the immunohistochemistry results for Glut expression and tumor size. In all the NSCLC cases, degree of FDG uptake significantly correlated with both Glut-1 and Glut-3 expression. When stratified by the histology, squamous cell carcinomas showed higher mean SUVmax, Glut-1 expression intensity, and percentage of area positive for Glut-1 expression than adenocarcinomas. Glut-1 and Glut-3 expressions correlated with SUVmax in adenocarcinomas, but there was no significant correlation in squamous cell carcinomas. No significant correlation was observed between tumor size and FDG uptake or Glut expression. These results show that Glut expression was significantly correlated with SUVmax in NSCLC, especially in adenocarcinomas, and that neither FDG uptake nor the expression of Glut was associated with tumor size.

  9. MRP1 expression in bronchoalveolar lavage cells in subjects with lung cancer who were chronically exposed to arsenic.

    Science.gov (United States)

    Recio-Vega, Rogelio; Dena-Cazares, Jose Angel; Ramirez-de la Peña, Jorge Luis; Jacobo-Ávila, Antonio; Portales-Castanedo, Arnulfo; Gallegos-Arreola, Martha Patricia; Ocampo-Gomez, Guadalupe; Michel-Ramirez, Gladis

    2015-12-01

    Alteration of multidrug resistance-associated protein-1 (MRP1) expression has been associated with certain lung diseases, and this protein may be pivotal in protecting the lungs against endogenous or exogenous toxic compounds. The aim of this study was to evaluate and compare the expression of MRP1 in bronchoalveolar cells from subjects with and without lung cancer who had been chronically exposed to arsenic through drinking water. MRP1 expression was assessed in bronchoalveolar cells in a total of 102 participants. MRP1 expression was significantly decreased in those with arsenic urinary levels >50 μg/L when compared with the controls. In conclusion, chronic arsenic exposure negatively correlates with the expression of MRP1 in BAL cells in patients with lung cancer.

  10. The drug-resistance to gefitinib in PTEN low expression cancer cells is reversed by irradiation in vitro

    Directory of Open Access Journals (Sweden)

    Zhao Lu-Jun

    2009-09-01

    Full Text Available Abstract Background Despite of the recent success of EGFR inhibitory agents, the primary drug-resistant becomes a major challenge for EGFR inhibitor therapies. PTEN gene is an important positive regulatory factor for response to EGFR inhibitor therapy. Low-expression of PTEN is clearly one of the important reasons why tumor cells resisted to tyrosine kinase inhibitors. Methods To investigate the drug-resistance reversal to gefitinb and the mechanism in PTEN low expression cells which radiated with X-rays in vitro, We demonstrated that H-157 lung cancer cells (low-expression of PTEN but phospho-EGFR overexpressed tumor cells exposed to X-rays. The PTEN expressions and radiosensitizing effects of tyrosine kinase inhibitor before and after irradiation were observed. The cell-survival rates were evaluated by colony-forming assays. The cell apoptosis was investigated using FCM. The expressions of phospho-EGFR and PTEN were determined by Western blot analysis. Results The results showed that the PTEN expressions were significantly enhanced by X-rays. Moreover, the cell growth curve and survival curve were down-regulated in the gefitinib-treated groups after irradiation. Meanwhile, the radiation-induced apoptosis of tumor cells was increased by inhibition of the EGFR through up-regulation of PTEN. Conclusion These results suggested that PTEN gene is an important regulator on TKI inhibition, and the resistance to tyrosine kinase inhibitors might be reversed by irradiation in PTEN low expression cancer cells.

  11. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Tatsuo; Lau, Yun-Fai Chris, E-mail: Chris.Lau@UCSF.edu

    2014-03-28

    Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. It is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.

  12. Effects of blocking androgen receptor expression with specific hammerhead ribozyme on in vitro growth of prostate cancer cell line

    Institute of Scientific and Technical Information of China (English)

    童强松; 赵军; 陈朝晖; 曾甫清; 鲁功成

    2003-01-01

    Objective To study the possibility of gene therapy for prostate cancer by blocking androgen receptor (AR) gene expression using a specific hammerhead ribozyme (RZ).Methods The hammerhead ribozyme expression vector pcDNA-hAR-RZ, specific to AR mRNA, was constructed and transfected into the prostate cancer cell line LNCaP by using lipofectamine. Androgen receptor expression was measured by RT-PCR and immunohistochemical methods. Cellular proliferation activities were assayed using the tetrazolium bromide colorimetry method; cell cycle changes were observed by flow cytometry; and cell apoptosis was detected by the TdT-mediated dUTP-biotin nick end labeling method. Results One to seven days after transfection with the ribozyme expression vector, AR mRNA expression at molecular and protein levels in LNCaP cells decreased by 32.6%-40.7% (P<0.05) and 21.0%-87.64% (P<0.05) respectively, and cell proliferation was inhibited by 18.28%-35.34% (P<0.05). Meanwhile, the cell cycle was arrested at the G2/M stage, and apoptotic morphological changes occurred with an apoptosis rate of 25.17% (P<0.01).Conclusion Ribozyme specific against AR mRNA is capable of inhibiting the expression AR and inducing the apoptosis in prostate cancer cells.

  13. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  14. Proteomic exploration of the impacts of pomegranate fruit juice on the global gene expression of prostate cancer cell.

    Science.gov (United States)

    Lee, Song-Tay; Wu, Yi-Ling; Chien, Lan-Hsiang; Chen, Szu-Ting; Tzeng, Yu-Kai; Wu, Ting-Feng

    2012-11-01

    Prostate cancer has been known to be the second highest cause of death in cancer among men. Pomegranate is rich in polyphenols with the potent antioxidant activity and inhibits cell proliferation, invasion, and promotes apoptosis in various cancer cells. This study demonstrated that pomegranate fruit juice could effectively hinder the proliferation of human prostate cancer DU145 cell. The results of apoptotic analyses implicated that fruit juice might trigger the apoptosis in DU145 cells via death receptor signaling and mitochondrial damage pathway. In this study, we exploited 2DE-based proteomics to compare nine pairs of the proteome maps collected from untreated and treated DU145 cells to identify the differentially expressed proteins. Comparative proteomics indicated that 11 proteins were deregulated in affected DU145 cells with three upregulated and eight downregulated proteins. These dys-regulated proteins participated in cytoskeletal functions, antiapoptosis, proteasome activity, NF-κB signaling, cancer cell proliferation, invasion, and angiogenesis. Western immunoblotting were implemented to confirm the deregulated proteins and the downstream signaling proteins. The analytical results of this study help to provide insight into the molecular mechanism of inducing prostate cancer cell apoptosis by pomegranate fruit juice and to develop a novel mechanism-based chemopreventive strategy for prostate cancer.

  15. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers.

    Science.gov (United States)

    Zhang, Ruowen; Wang, Liping; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R; Zhou, Xu Dong; Somji, Seema

    2016-10-01

    Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize.

  16. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation

    Science.gov (United States)

    Sneddon, Julie B.; Zhen, Hanson H.; Montgomery, Kelli; van de Rijn, Matt; Tward, Aaron D.; West, Robert; Gladstone, Hayes; Chang, Howard Y.; Morganroth, Greg S.; Oro, Anthony E.; Brown, Patrick O.

    2006-10-01

    Although tissue microenvironments play critical roles in epithelial development and tumorigenesis, the factors mediating these effects are poorly understood. In this work, we used a genomic approach to identify factors produced by cells in the microenvironment of basal cell carcinoma (BCC) of the skin, one of the most common human cancers. The global gene expression programs of stromal cell cultures derived from human BCCs showed consistent, systematic differences from those derived from nontumor skin. The gene most consistently expressed at a higher level in BCC tumor stromal cells compared with those from nontumor skin was GREMLIN 1, which encodes a secreted antagonist of the bone morphogenetic protein (BMP) pathway. BMPs and their antagonists are known to play a crucial role in stem and progenitor cell biology as regulators of the balance between expansion and differentiation. Consistent with the hypothesis that BMP antagonists might have a similar role in cancer, we found GREMLIN 1 expression in the stroma of human BCC tumors but not in normal skin in vivo. Furthermore, BMP 2 and 4 are expressed by BCC cells. Ex vivo, BMP inhibits, and Gremlin 1 promotes, proliferation of cultured BCC cells. We further found that GREMLIN 1 is expressed by stromal cells in many carcinomas but not in the corresponding normal tissue counterparts that we examined. Our data suggest that BMP antagonists may be important constituents of tumor stroma, providing a favorable microenvironment for cancer cell survival and expansion in many cancers. cancer biology | stem cell regulation | tissue microenvironment | tumor stroma

  17. Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines.

    Science.gov (United States)

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Zabel, Maciej

    2014-11-01

    Ovarian cancer is the most lethal gynecological malignancy. Multiple drug resistance (MDR) development leads to resistance of cancer cells to chemotherapy. Microarray methods can provide information regarding new candidate genes that can play a role in resistance to cytostatic drugs. Extracellular matrix (ECM) can influence drug resistance by inhibiting the penetration of the drug into cancer tissue as well as increased apoptosis resistance. In the present study, we report changes in the ECM and related gene expression pattern in methotrexate-, cisplatin-, doxorubicin-, vincristine-, topotecan- and paclitaxel-resistant variants of the W1 ovarian cancer cell line. The resistant variants of the W1 cell line were generated by stepwise selection of cells with an increasing concentration of the indicated drugs. Affymetrix GeneChip® Human Genome U219 Array Strips were used for hybridizations. Independent t-tests were used to determinate the statistical significance of results. Genes whose expression levels were higher than the assumed threshold (upregulated, >5-fold and downregulated, 20-fold. These genes were: ITGB1BP3, COL3A1, COL5A2, COL15A1, TGFBI, DCN, LUM, MATN2, POSTN and EGFL6. The expression of seven genes decreased very significantly: ITGA1, COL1A2, LAMA2, GPC3, KRT23, VIT and HMCN1. The expression pattern of ECM and related genes provided the preliminary view into the role of ECM components in cytostatic drug resistance of cancer cells. The exact role of the investigated genes in drug resistance requires further investigation.

  18. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.

    Science.gov (United States)

    Luo, Haitao; Rankin, Gary O; Liu, Lingzhi; Daddysman, Matthew K; Jiang, Bing-Hua; Chen, Yi Charlie

    2009-01-01

    Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers.

  19. Potential role of nuclear PD-L1 expression in cell-surface vimentin positive circulating tumor cells as a prognostic marker in cancer patients.

    Science.gov (United States)

    Satelli, Arun; Batth, Izhar Singh; Brownlee, Zachary; Rojas, Christina; Meng, Qing H; Kopetz, Scott; Li, Shulin

    2016-07-01

    Although circulating tumor cells (CTCs) have potential as diagnostic biomarkers for cancer, determining their prognostic role in cancer patients undergoing treatment is a challenge. We evaluated the prognostic value of programmed death-ligand 1 (PD-L1) expression in CTCs in colorectal and prostate cancer patients undergoing treatment. Peripheral blood samples were collected from 62 metastatic colorectal cancer patients and 30 metastatic prostate cancer patients. CTCs were isolated from the samples using magnetic separation with the cell-surface vimentin(CSV)-specific 84-1 monoclonal antibody that detects epithelial-mesenchymal transitioned (EMT) CTCs. CTCs were enumerated and analyzed for PD-L1 expression using confocal microscopy. PD-L1 expression was detectable in CTCs and was localized in the membrane and/or cytoplasm and nucleus. CTC detection alone was not associated with poor progression-free or overall survival in colorectal cancer or prostate cancer patients, but nuclear PD-L1 (nPD-L1) expression in these patients was significantly associated with short survival durations. These results demonstrated that nPD-L1 has potential as a clinically relevant prognostic biomarker for colorectal and prostate cancer. Our data thus suggested that use of CTC-based models of cancer for risk assessment can improve the standard cancer staging criteria and supported the incorporation of nPD-L1 expression detection in CTCs detection in such models.

  20. THE AMPLIFICATION AND EXPRESSION OF MDR1 GENE IN ADRIAMYCINE RESISTANT CELL LINE OF COLON CANCER CELL HR8348

    Institute of Scientific and Technical Information of China (English)

    周中军; 罗贤懋; 林晨; 陈凤

    1996-01-01

    P-glycoprotein plays an important role in highly drug resistant cells. But its high expression cannot be acheived by chemotherapy. In order to study the effect of P-glycoprotein on clinical tumors, wo ostablished a low ADM resistant colon cancer ceil line HR/ADM and determined the amplification and expression of mdr-1 gene. The GLC/ADM showed a resistant pattern similar to classical MDR and the transcription of mdr-1 gene determined by RT-PCR increased. The immunocytcchemical analysis showed strong positive staining with monoelonal antibozly. The gene amplification of mdr-l was dearly demonstrated by southern blot. Our results suggested that moderate expression of P-glycoprotein might be enough for a high resistant pattern.

  1. Inhibitory Effect of Matrine on the Expression of PSA and AR in Prostate Cancer Cell line LNCaP

    Institute of Scientific and Technical Information of China (English)

    Ke CHEN; Zhiquan HU; Tao WANG; Hui GUO; Zhangqun YE

    2008-01-01

    In order to investigate the inhibitory effect of matrine on the expression of prostate specific antigen (PSA) and. Androgen receptor (AR) in prostate cancer cell line LNCaP in vitro, LNCaP cells were treated with matrine at different concentrations (0.5, 1.0, 1.5, 2.0 g/L) for 12-36 h. The growth activities of cancer cells were determined by MTI" colorimetric assay, The AR level was measured by Western blotting. The expression of PSA was detected by using AXSYM system-chemical luciferase methods. The results showed that matrine could effectively inhibit the growth of androgen-dependent prostate cancer cell line LNCaP in vitro in a time- and dose-dependent manner (P<0.05). It could obviously decrease the level of AR (P<0.01) and inhibit the expression of PSA in a dose-dependent manner (P<0.05) in LNCaP cells. It was concluded that matrine could significantly suppress the growth of LNCaP cells and inhibit the expression of PSA and AR of prostate cancer cells.

  2. Induction of CaSR expression circumvents the molecular features of malignant CaSR null colon cancer cells.

    Science.gov (United States)

    Singh, Navneet; Chakrabarty, Subhas

    2013-11-15

    We recently reported on the isolation and characterization of calcium sensing receptor (CaSR) null human colon cancer cells (Singh et al., Int J Cancer 2013; 132: 1996-2005). CaSR null cells possess a myriad of molecular features that are linked to a highly malignant and drug resistant phenotype of colon cancer. The CaSR null phenotype can be maintained in defined human embryonic stem cell culture medium. We now show that the CaSR null cells can be induced to differentiate in conventional culture medium, regained the expression of CaSR with a concurrent reversal of the cellular and molecular features associated with the null phenotype. These features include cellular morphology, expression of colon cancer stem cell markers, expression of survivin and thymidylate synthase and sensitivity to fluorouracil. Other features include the expression of epithelial mesenchymal transition linked molecules and transcription factors, oncogenic miRNAs and tumor suppressive molecule and miRNA. With the exception of cancer stem cell markers, the reversal of molecular features, upon the induction of CaSR expression, is directly linked to the expression and function of CaSR because blocking CaSR induction by shRNA circumvented such reversal. We further report that methylation and demethylation of the CaSR gene promoter underlie CaSR expression. Due to the malignant nature of the CaSR null cells, inclusion of the CaSR null phenotype in disease management may improve on the mortality of this disease. Because CaSR is a robust promoter of differentiation and mediates its action through diverse mechanisms and pathways, inactivation of CaSR may serve as a new paradigm in colon carcinogenesis.

  3. Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Directory of Open Access Journals (Sweden)

    Jimenez-Perez Miriam I

    2012-02-01

    Full Text Available Abstract Background Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity. Results We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT. Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells. Conclusions Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.

  4. Expression of TIMP-3 Gene by Construction of a Eukaryotic Cell Expression Vector and Its Role in Reduction of Metastasis in a Human Breast Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    Xichun Han; Hong Zhang; Mingku Jia; Gang Han; Weidong Jiang

    2004-01-01

    The present study is aimed at studying the gene for TIMP-3, a mammalian tissue inhibitor, by constructing a recombinant eukaryotic cell vector for gene therapy in human breast cancer. We obtained the TIMP-3 gene from the human placent by RT-PCR. TIMP-3 gene was subcloned into pcDNA3.1 vetor from pMD18T vector by means of gene cloning to construct pcDNA3.1 recombinant vector. Human breast cancer cell line MDA-MB-453 was transfected with pcDNA3.1-TIMP3 recombinant vector using lipofectamine reagent. Then the expression of TIMP-3 and the effect on the metastasis of MDA-MB-453 were examined. The correct construction of pcDNA-TIMP3 was identified by means of restriction enzyme analysis, PCR amplication and nucleotide sequencing. Western blotting showed that the transfected cells were able to express TIMP-3,indicating that our construction of the pcDNA-TIMP3 eukaryotic expression vector was constructed successfully. Our experiments further indicated that the potential of metastasis was significantly reduced for the transfected cell line MDA-MB-453.

  5. Expression of TIMP-3 Gene by Construction of a Eukaryotic Cell Expression Vector and Its Role in Reduction of Metastasis in a Human Breast Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    XichunHan; HongZhang; MingkuJia; GangHan; WeidongJiang

    2004-01-01

    The present study is aimed at studying the gene for TIMP-3, a mammalian tissue inhibitor, by constructing a recombinant eukaryotic cell vector for gene therapy in human breast cancer. We obtained the TIMP-3 gene from the human placent by RT-PCR. TIMP-3 gene was subcloned into pcDNA3.1 vetor from pMD18T vector by means of gene cloning to construct pcDNA3.1 recombinant vector. Human breast cancer cell lineMDA-MB-453 was transfected with pcDNA3.1-TIMP3 recombinant vector using lipofectamine reagent. Then the expression of TIMP-3 and the effect on the metastasis of MDA-MB-453 were examined. The correct construction of pcDNA-TIMP3 was identified by means of restriction enzyme analysis, PCR amplication and nucleotide sequencing. Western blotting showed that the transfected cells were able to express TIMP-3, indicating that our construction of the pcDNA-TIMP3 eukaryotic expression vector was constructed successfully. Our experiments further indicated that the potential of metastasis was significantly reduced for the transfected cell line MDA-MB-453. Cellular & Molecular Immunology.

  6. Clinical significance of co-expression of VEGF-C and VEGFR-3 in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    李庆昌; 董昕; 顾伟; 邱雪杉; 王恩华

    2003-01-01

    Objective To investigate the relationship between vascular endothelial growth factor C (VEGF-C) expression, VEGFR-3 expression, lymphangiogenesis and angiogenesis in human non-small cell lung cancer (NSCLC).Methods Seventy-six NSCLC samples were stained for VEGF-C, VEGFR-3 and CD34 with immunohistochemical methods. Assessment of lymphatic vessel density (LVD) and microvessel density (MVD) was performed. The expressions of VEGF-C in 24 fresh NSCLC samples were determined with Western blot assay.Results Of the 76 NSCLC cases, 55 were VEGF-C positive and 40 were VEGFR-3 positive in cancer cells. A significant positive correlation was found between VEGF-C expression and VEGFR-3 expression in cancer cells (P<0.05). VEGF-C expression was negatively associated with differentiation of tumor cells (P<0.05). VEGF-C expression and VEGFR-3 expression were positively associated with lymph node metastasis and lymphatic invasion (P<0.05). LVD was positively related to VEGF-C expression, lymph node metastasis, lymphatic invasion and clinical stage (P<0.05). There was a significant correlation between LVD and MVD (R=0.732, P<0.05). Patients with positive VEGF-C expression had worse outcomes than those with negative VEGF-C expression (P<0.001).Conclusions In NSCLC, VEGF-C and VEGFR-3 are related to the lymphangiogenesis, angiogenesis, and occurrence and development of lung cancers. VEGF-C expression could be a useful predictor of poor prognosis in NSCLC.

  7. Lestaurtinib inhibits histone phosphorylation and androgen-dependent gene expression in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jens Köhler

    Full Text Available BACKGROUND: Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1 phosphorylates histone H3 at threonine 11 and is involved in the regulation of androgen receptor signalling. Thus, it has been identified as a novel drug target but little is known about PRK1 inhibitors and consequences of its inhibition. METHODOLOGY/PRINCIPAL FINDING: Using a focused library screening approach, we identified the clinical candidate lestaurtinib (also known as CEP-701 as a new inhibitor of PRK1. Based on a generated 3D model of the PRK1 kinase using the homolog PKC-theta (protein kinase c theta protein as a template, the key interaction of lestaurtinib with PRK1 was analyzed by means of molecular docking studies. Furthermore, the effects on histone H3 threonine phosphorylation and androgen-dependent gene expression was evaluated in prostate cancer cells. CONCLUSIONS/SIGNIFICANCE: Lestaurtinib inhibits PRK1 very potently in vitro and in vivo. Applied to cell culture it inhibits histone H3 threonine phosphorylation and androgen-dependent gene expression, a feature that has not been known yet. Thus our findings have implication both for understanding of the clinical activity of lestaurtinib as well as for future PRK1 inhibitors.

  8. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Veronica L Martinez-Marignac

    Full Text Available Over-expression of DNA repair genes has been associated with resistance to radiation and DNA-damage induced by chemotherapeutic agents such as cisplatin. More recently, based on the analysis of genome expression profiling, it was proposed that over-expression of DNA repair genes enhances the invasive behaviour of tumour cells. In this study we present experimental evidence utilizing functional assays to test this hypothesis. We assessed the effect of the DNA repair proteins known as X-ray complementing protein 3 (XRCC3 and RAD51, to the invasive behavior of the MCF-7 luminal epithelial-like and BT20 basal-like triple negative human breast cancer cell lines. We report that stable or transient over-expression of XRCC3 but not RAD51 increased invasiveness in both cell lines in vitro. Moreover, XRCC3 over-expressing MCF-7 cells also showed a higher tumorigenesis in vivo and this phenotype was associated with increased activity of the metalloproteinase MMP-9 and the expression of known modulators of cell-cell adhesion and metastasis such as CD44, ID-1, DDR1 and TFF1. Our results suggest that in addition to its' role in facilitating repair of DNA damage, XRCC3 affects invasiveness of breast cancer cell lines and the expression of genes associated with cell adhesion and invasion.

  9. Regulation of Nur77 expression by β-catenin and its mitogenic effect in colon cancer cells.

    Science.gov (United States)

    Wu, Hua; Lin, Yayu; Li, Wengang; Sun, Zhe; Gao, Weiwei; Zhang, Haiping; Xie, Lei; Jiang, Fuquan; Qin, Bin; Yan, Tingdong; Chen, Liqun; Zhao, Yi; Cao, Xihua; Wu, Yin; Lin, Bingzhen; Zhou, Hu; Wong, Alice Sze-Tsai; Zhang, Xiao-Kun; Zeng, Jin-Zhang

    2011-01-01

    The orphan nuclear receptor Nur77 is an immediate-early response gene whose expression is rapidly induced by various extracellular stimuli. The aims of this study were to study the role of Nur77 expression in the growth and survival of colon cancer cells and the mechanism by which Nur77 expression was regulated. We showed that levels of Nur77 were elevated in a majority of human colon tumors (9/12) compared to their nontumorous tissues and that Nur77 expression could be strongly induced by different colonic carcinogens including deoxycholic acid (DCA). DCA-induced Nur77 expression resulted in up-regulation of antiapoptotic BRE and angiogenic VEGF, and it enhanced the growth, colony formation, and migration of colon cancer cells. In studying the mechanism by which Nur77 was regulated in colon cancer cells, we found that β-catenin was involved in induction of Nur77 expression through its activation of the transcriptional activity of AP-1 (c-Fos/c-Jun) that bound to and transactivated the Nur77 promoter. Together, our results demonstrate that Nur77 acts to promote the growth and survival of colon cancer cells and serves as an important mediator of the Wnt/β-catenin and AP-1 signaling pathways.

  10. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    Science.gov (United States)

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150.

  11. Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Malgorzata Kloc

    2012-10-01

    Full Text Available The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization and negatively regulates cell motility via regulation of RhoA
    expression. We studied the organization of actin and cytokeratin cytoskeleton and the expression of TCTP, p53,
    cyclin A, RhoA and actin in HIO180 non-transformed ovarian epithelial cells, and OVCAR3 and SKOV3 (expressing
    low level of inducible p53 ovarian epithelial cancer cells with different metastatic potential. Immunostaining
    and ultrastructural analyses illustrated a dramatic difference in the organization of the cytokeratin and actin
    filaments in non-transformed versus cancer cell lines. We also determined that there is an inverse relationship between
    the level of TCTP/RhoA and actin/p53/cyclin A expression in ovarian cancer cell lines. This previously unidentified
    negative relationship between TCTP/RhoA and actin/p53/cyclin A may suggest that this interaction is linked
    with the high aggressiveness of ovarian cancers.The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization

  12. Expression and clinical significance of dendritic cell and transforming growth factor-beta 1 in cervical cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao; Shan; Rong; Fengnian

    2006-01-01

    Objective:To explore the density and mature status of Dendritic cell(DC) in cervical cancer and correlation with the expression of transforming growth factor-beta 1(TGF-β1).Methods:Streptavidin-peroxidase(SP) immunohistochemistry methods were used to detect S-100 DC and the expression of TGF-β1 in 20 normal cervical tissues and 53 cervical cancer tissues without any sort of chemotherapy or radiation therapy prior to resection.Medical records were reviewed,clinicopathological variables were retrieved and used for analysis.Results:Two types of DC were observed under the microscope.The expression of DC in cervical cancer was significantly higher than that in normal tissues(23.34 cells/mm2 vs 29.91 cells/mm2,P<0.05),and significantly higher in early stage than that in advanced stage(P<0.05).The expression of TGF-β1 was significantly higher in cervical cancer than that in normal tissues (P<0.025).However,there was no correaction between TGF-β1 and lymph nodes metastasis.The index of DC in cervical cancer was negatively correlated to the expression of TGF-β1 in tumor cells (r=-0.8875,P=0.0001).Conclusion:Maturation of DC in cervical cancer is inhibited.The decreased number of DC and the higher expression of TGF-β1 are due to the failure of the immunity,these may play an important role in the development of the cervical cancer.

  13. THE CORRELATIONS OF RETINOIC ACID RECEPTOR-α AND ESTROGEN RECEPTOR EXPRESSION IN HUMAN BREAST CANCER CELL LINES AND TUMORS

    Institute of Scientific and Technical Information of China (English)

    余黎明; 邵志敏; 蔡三军; 韩企夏; 沈镇宙

    1998-01-01

    Retinoic acid receptor-α(RAR α) plays a major role in the growth inhibitory effect of retinoic acid on human breast cancer ceils, may be it could serve as an indicator to guide the treatment and prevent of breast cancer with retinoic acid in ciiinc. All previous researchs were based on observing the changes ofRAR a mRAN expression. In this study, the expression of RAR a in human breast cell lines was studied by Northern Blot, Western Blot and Immunohistochemistry in mRNA level and protein level. Results showed that RAR a protein expression was correlated with RAR a mRNA expression. RAR α mRNA expression was higher in estrogen receptor (ER)-positive human breast cancer cell lines than in ER-negative ones. So was RAR α protein expression. Both RAR α mRNA amd RAR α protein expression were associated with ER status. The expression of RAR α and the relationship between RAR α and ER status were also determined by immunohistochemistry in 58 human primary breast cancer tumors. 37 (63.8%) tumors were ER-positive and of these 28 (75. 7%) were also RAR α -positive. The coexpression of ER and RAR α was statistleally significant (P<0. 01, by X2 contingency analysis), It was reported that RAR α expression in cultured breast cancer ceils was regulated by estrogen acting via the ER. Our study demonstrated that RAR α expression may be modulated in breast cancer in vivo by estrogen via ER.

  14. Up-Regulated FASN Expression Promotes Transcoelomic Metastasis of Ovarian Cancer Cell through Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-06-01

    Full Text Available Fatty acid synthase (FASN, responsible for the de novo synthesis of fatty acids, has been shown to act as an oncogene in various human cancers. However, the mechanisms by which FASN favors the progression of ovarian carcinoma remain unknown. In this study, we evaluated FASN expression in ovarian cancer and investigated how FASN regulates the aggressiveness of ovarian cancer cells. Our results show that increased FASN is associated with the peritoneal metastasis of ovarian cancers. Over-expression of FASN results in a significant increase of tumor burden in peritoneal dissemination, accompanied by augment in cellular colony formation and metastatic ability. Correspondingly, FASN knockdown using RNA interference in ovarian cancer cells inhibits the migration in vitro and experimental peritoneal dissemination in vivo. Mechanistic studies reveal that FASN promotes Epithelial-mesenchymal Transition (EMT via a transcriptional regulation of E-cadherin and N-cadherin, which is also confirmed by luciferase promoter activity analysis. Taken together, our work demonstrates that FASN promotes the peritoneal dissemination of ovarian cancer cells, at least in part through the induction of EMT. These findings suggest that FASN plays a critical role in the peritoneal metastasis of ovarian cancer. Targeting de novo lipogenesis may have a therapeutic potential for advanced ovarian cancer.

  15. Association between expression of Carboxypeptidase 4 and stem cell markers and their clinical significance in liver cancer development

    Science.gov (United States)

    Sun, Lichao; Guo, Chunguang; Burnett, Joseph; Pan, Jian; Yang, Zhihua; Ran, Yuliang; Sun, Duxin

    2017-01-01

    The development of liver cancer would undergo a sequential progression from chronic inflammatory liver disease, cirrhosis to neoplasia. During these pathophysiological changes, abnormal liver microenvironment might induce the hepatocytes to die, abnormally proliferate and initiate cancer stem cells. Metallocarboxypeptidases (MCPs) involved in multiple biological functions including inflammation, fibrosis and stem cell niche formation. This study aimed to evaluate the expression of carboxypeptidase 4 (CPA4) in hepatitis, liver cirrhosis and liver cancer tissues, and revealed its clinical significance in liver cancer progression. We firstly found that the CPA4 levels in tissues were significantly higher in liver cancer patients than those in other three groups. Then, elevated levels of CPA4 was observed in 57/100 (57%) liver cancer samples, and significantly correlated with Grade and Stage. We also identified a significant positive correlation between aberrant elevation of CPA4 and overexpression of stem cell markers including CD90, AFP and CD34 with follow-up data (n=100). Further Kaplan-Meier analysis confirmed that high levels of CPA4 and CD90 were significant predictors of poor overall survival. Multivariate Cox regression model showed that CPA4 was an independent prognostic factor for patients with liver cancer. This study demonstrated for the first time that high CPA4 expression was closely correlated with hepatocarcinogenesis, and might be used as an independent poor prognostic factor in liver cancer.

  16. Inhibition of PKC-Induced COX-2 and IL-8 Expression in Human Breast Cancer Cells by Glucosamine.

    Science.gov (United States)

    Chou, Wan-Yu; Chuang, Kun-Han; Sun, David; Lee, Yu-Hsiu; Kao, Pu-Hong; Lin, Yen-Yu; Wang, Hsei-Wei; Wu, Yuh-Lin

    2015-09-01

    Breast cancer is a common cancer leading to many deaths among females. Cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) are two highly expressed inflammatory mediators to be induced by the protein kinase C (PKC) signaling via various inflammatory stimuli and both contribute significantly to cancer metastasis/progression. Glucosamine has been shown to act as an anti-inflammation molecule. The aim of this study was to clarify the role and acting mechanism of glucosamine during the PKC-regulation of COX-2/IL-8 expression and the associated impact on breast cancer. In MCF-7 breast cancer cells, glucosamine effectively suppresses the PKC induction of COX-2 and IL-8 promoter activity, mRNA and protein levels, as well as the production of prostaglandin E(2) (PGE(2)) and IL-8. Glucosamine is able to promote COX-2 protein degradation in a calpain-dependent manner and IL-8 protein degradation in calpain-dependent and proteasome-dependent manners. The MAPK and NF-κB pathways are involved in PKC-induced COX-2 expression, but only the NF-κB pathway is involved in PKC-induced IL-8 expression. Glucosamine attenuates PKC-mediated IκBα phosphorylation, nuclear NF-κB translocation, and NF-κB reporter activation. Both PGE(2) and IL-8 promote cell proliferation and IL-8 induces cell migration; thus, glucosamine appears to suppress PKC-induced cell proliferation and migration. Furthermore, glucosamine significantly inhibits the growth of breast cancer xenografts and this is accompanied by a reduction in COX-2 and IL-8 expression. In conclusion, glucosamine seems to attenuate the inflammatory response in vitro and in vivo and this occurs, at least in part by targeting to the NF-κB signaling pathway, resulting in an inhibition of breast cancer cell growth.

  17. Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    NARCIS (Netherlands)

    Erk, M.J. van; Teuling, E.; Staal, Y.C.M.; Huybers, S.; Bladeren, P.J. van; Aarts, J.M.M.J.G.; Ommen, B. van

    2004-01-01

    Background. Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an a

  18. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qizhi [Department of Immunology, Binzhou Medical University, Yantai (China); Fu, Aili [Department of Immunology, Binzhou Medical University, Yantai (China); The People' s Liberation Army 107 Hospital, Affiliated Hospital of Bin Zhou Medical University, Yantai (China); Yang, Shude [Institute of Fungi Science and Technology, Ludong University, Yantai (China); He, Xiaoli; Wang, Yue; Zhang, Xiaoshu; Zhou, Jiadi; Luan, Xiying [Department of Immunology, Binzhou Medical University, Yantai (China); Yu, Wenzheng, E-mail: bzywz2009@163.com [Department of Hemotology, The Hospital Affiliated Binzhou Medical University, Binzhou (China); Xue, Jiangnan, E-mail: xuejinagnan@263.net [Department of Immunology, Binzhou Medical University, Yantai (China)

    2015-03-06

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy.

  19. Aberrant expression of ether à go-go potassium channel in colorectal cancer patients and cell lines

    Institute of Scientific and Technical Information of China (English)

    Xiang-Wu Ding; Juan-Juan Yan; Ping An; Peng Lü; He-Sheng Luo

    2007-01-01

    AIM: To study the expression of ether à go-go (Eag1) potassium channel in colorectal cancer and the relation ship between their expression and clinico-pathological features.METHODS: The expression levels of Eag1 protein were determined in 76 cancer tissues with paired noncancerous matched tissues as well as 9 colorectal adenoma tissues by immunohistochemistry. Eag1 mRNA expression was detected in 13 colorectal cancer tissues with paired non-cancerous matched tissues and 4 colorectal adenoma tissues as well as two colorectal cancer cell lines (LoVo and HT-29) by reverse transcription PCR.RESULTS: The frequency of positive expression of Eag1 protein was 76.3% (58/76) and Eag1 mRNA was 76.9% (10/13) in colorectal cancer tissue. Expression level of Eag1 protein was dependent on the tumor size,lymphatic node metastasis, other organ metastases and Dukes' stage (P < 0.05), while not dependent on age,sex, site and degree of differentiation. Eag1 protein and mRNA were negative in normal colorectal tissue, and absolutely negative in colorectal adenomas except that one case was positively stained for Eag1 protein.CONCLUSION: Eag1 protein and mRNA are aberrantly expressed in colorectal cancer and occasionally expressed in colorectal adenoma. The high frequency of expression of Eag1 in tumors and the restriction of normal expression to the brain suggest the potential of this protein for diagnostic, prognostic and therapeutic purposes.

  20. Expression of Gli1 correlates with the transition of breast cancer cells to estrogen-independent growth.

    Science.gov (United States)

    Zhao, Jieying; Chen, Guangchun; Cao, Dongmei; Li, Yidong; Diao, Fei; Cai, Haoyu; Jin, Yiduo; Lu, Jian

    2010-01-01

    The failure of breast cancer treatment is largely due to the development of estrogen independence. Current data illustrate that Hedgehog (Hh) signaling may play an important role in breast cancer development. Here, we show that the expression of the Hh effector protein, Gli1 was significantly higher in estrogen-independent breast cancer cells than in estrogen-dependent cells. Our data showed for the first time that stable expression of Gli1 in ER positive breast cancer cell lines MCF-7 and T47D can induce estrogen-independent proliferation and promote G1/S phase transition, which associated with cyclin-Rb axi. Gli1 can also attenuate the response of proliferation to estrogenic stimulation, which was correlated with down-regulation of expression of ERalpha and PR, as well as down-regulation of transactivation of ERalpha. Our results suggest that up-regulation of Gli1 in breast cancer cells may be one of the mechanisms responsible for developing estrogen independence and this process may be regulated through down-regulation of expression and transactivation of ERalpha.

  1. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Therese Featherston

    2016-09-01

    Full Text Available Aim We have recently identified and characterized cancer stem cell (CSC subpopulations within moderately differentiated buccal mucosal squamous cell carcinoma (MDBMSCC. We hypothesized that these CSCs express components of the renin-angiotensin system (RAS.Methods 3,3-Diaminobenzidine (DAB immunohistochemical (IHC staining was performed on formalin-fixed paraffin-embedded MDBMSCC samples to investigate the expression of the components of the RAS: pro(renin receptor (PRR, angiotensin converting enzyme (ACE, angiotensin II receptor 1 (ATIIR1 and angiotensin II receptor 2 (ATIIR2. NanoString mRNA gene expression analysis and Western Blotting (WB were performed on snap-frozen MDBMSCC samples to confirm gene expression and translation of these transcripts, respectively. Double immunofluorescent (IF IHC staining of these components of the RAS with the embryonic stem cell markers OCT4 or SALL4 was performed to demonstrate their localization in relation to the CSC subpopulations within MDBMSCC.Results DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1 and ATIIR2 in MDBMSCC. IF IHC staining showed that PRR was expressed by the CSC subpopulations within the tumor nests, the peri-tumoral stroma and the endothelium of the microvessels within the peri-tumoral stroma. ATIIR1 and ATIIR2 were localized to the CSC subpopulations within the tumor nests and the peri-tumoral stroma, while ACE was localized to the endothelium of the microvessels within the peri-tumoral stroma. WB and NanoString analyses confirmed protein expression and transcription activation of PRR, ACE and ATIIR1 but not of ATIIR2, respectively.

  2. Expression of matrix metalloproteinases (MMPs in primary human breast cancer and breast cancer cell lines: New findings and review of the literature

    Directory of Open Access Journals (Sweden)

    Dietl Johannes

    2009-06-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are a family of structural and functional related endopeptidases. They play a crucial role in tumor invasion and building of metastatic formations because of their ability to degrade extracellular matrix proteins. Under physiological conditions their activity is precisely regulated in order to prevent tissue disruption. This physiological balance seems to be disrupted in cancer making tumor cells capable of invading the tissue. In breast cancer different expression levels of several MMPs have been found. Methods To fill the gap in our knowledge about MMP expression in breast cancer, we analyzed the expression of all known human MMPs in a panel of twenty-five tissue samples (five normal breast tissues, ten grade 2 (G2 and ten grade 3 (G3 breast cancer tissues. As we found different expression levels for several MMPs in normal breast and breast cancer tissue as well as depending on tumor grade, we additionally analyzed the expression of MMPs in four breast cancer cell lines (MCF-7, MDA-MB-468, BT 20, ZR 75/1 commonly used in research. The results could thus be used as model for further studies on human breast cancer. Expression analysis was performed on mRNA and protein level using semiquantitative RT-PCR, Western blot, immunohistochemistry and immunocytochemistry. Results In summary, we identified several MMPs (MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -24, -27 and -28 with a stronger expression in breast cancer tissue compared to normal breast tissue. Of those, expression of MMP-8, -10, -12 and -27 is related to tumor grade since it is higher in analyzed G3 compared to G2 tissue samples. In contrast, MMP-7 and MMP-27 mRNA showed a weaker expression in tumor samples compared to healthy tissue. In addition, we demonstrated that the four breast cancer cell lines examined, are constitutively expressing a wide variety of MMPs. Of those, MDA-MB-468 showed the strongest mRNA and protein

  3. Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Yu, Xia-Fei; Ni, Qi-Chao; Chen, Jin-Peng; Xu, Jun-Fei; Jiang, Ying; Yang, Shu-Yun; Ma, Jing; Gu, Xiao-Ling; Wang, Hua; Wang, Ying-Ying

    2014-04-01

    Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer. We verified its roles in breast cancer specimens and cell lines. In our results, 71 of 100 specimens of breast cancer showed high levels of CAP1 by immunohistochemistry. Associated with statistical analysis, we saw that CAP1 was related to the grade of breast cancer. In MDA-MB-231, the expression of CAP1 was the highest and by knocking down the expression of CAP1 in MDA-MB-231, its ability for proliferating and migrating apparently decreased and induced changes in morphology, which were related to the arrangement of F-actin. Therefore, CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.

  4. Simvastatin downregulated C35 expression and inhibited the proliferation of colon cancer cells Lovo and HT29 in vitro.

    Science.gov (United States)

    Li, Min; Huang, Yong; Dong, Xuan; Wei, Qingkuan; Li, Jin; Sun, Hui; Li, Chenchen; Qi, Conghu; Yang, Jingyu

    2016-07-19

    The aim of this study was to investigate the antitumor effect of simvastatin in human colon cancer and the possible underlying mechanism. We found that simvastatin dose-dependently inhibited the proliferation of human colon cancer cells Lovo and HT29 using a MTT assay. Real-time PCR and Western blotting assays showed that simvastatin significantly suppressed C35 expression at both mRNA and protein levels. Since C35 is known to have a significant oncogenic role in cancer development via promoting cell proliferation and migration, results obtained in the current study imply that downregulation of C35 expression might be involved in the antitumor effect of simvastatin on colon cancer.

  5. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Kawaguchi Makoto

    2010-01-01

    Full Text Available Abstract Background Lung cancers are the most common type of human malignancy and are intractable. Lung cancers are generally classified into four histopathological subtypes: adenocarcinoma (AD, squamous cell carcinoma (SQ, large cell carcinoma (LC, and small cell carcinoma (SC. Molecular biological characterization of these subtypes has been performed mainly using DNA microarrays. In this study, we compared the gene expression profiles of these four subtypes using twelve human lung cancer cell lines and the more reliable quantitative real-time PCR (qPCR. Results We selected 100 genes from public DNA microarray data and examined them by DNA microarray analysis in eight test cell lines (A549, ABC-1, EBC-1, LK-2, LU65, LU99, STC 1, RERF-LC-MA and a normal control lung cell line (MRC-9. From this, we extracted 19 candidate genes. We quantified the expression of the 19 genes and a housekeeping gene, GAPDH, with qPCR, using the same eight cell lines plus four additional validation lung cancer cell lines (RERF-LC-MS, LC-1/sq, 86-2, and MS-1-L. Finally, we characterized the four subtypes of lung cancer cell lines using principal component analysis (PCA of gene expression profiling for 12 of the 19 genes (AMY2A, CDH1, FOXG1, IGSF3, ISL1, MALL, PLAU, RAB25, S100P, SLCO4A1, STMN1, and TGM2. The combined PCA and gene pathway analyses suggested that these genes were related to cell adhesion, growth, and invasion. S100P in AD cells and CDH1 in AD and SQ cells were identified as candidate markers of these lung cancer subtypes based on their upregulation and the results of PCA analysis. Immunohistochemistry for S100P and RAB25 was closely correlated to gene expression. Conclusions These results show that the four subtypes, represented by 12 lung cancer cell lines, were well characterized using qPCR and PCA for the 12 genes examined. Certain genes, in particular S100P and CDH1, may be especially important for distinguishing the different subtypes. Our results

  6. Screening and identification of differentially expressed transcripts in circulating cells of prostate cancer patients using suppression subtractive hybridization

    Directory of Open Access Journals (Sweden)

    Manatt C Scott

    2005-08-01

    Full Text Available Abstract Background Tumor metastasis and changes in host immunosurveillance are important components in cancer development. Tumor cell invasion into the bloodstream is an essential step for systemic metastasis. Currently, the detection of tumor cells in the circulation is mainly dependent upon the utilization of known epithelial cell markers. However, expression of these molecules is not limited to cancer patients; healthy people also have a small number of epithelial cells in their circulation. Utilizing these markers to detect circulating tumor cells (CTCs cannot adequately explain the mechanisms of tumor cell survival or their development of metastatic potential in peripheral blood. The immune system can also evolve along with the cancer, actually promoting or selecting the outgrowth of tumor variants. Unfortunately, both metastasis and immunosurveillance remain mysterious and are debatable because we have yet to define the molecules that participate in these processes. We are interested in identifying the existence of expressed genes, or mRNA species, that are specifically associated with circulating cells of cancer-bearing patients using prostate cancer (PCa as a model. Results We established two comprehensive subtracted cDNA libraries using a molecular technique called suppression subtractive hybridization. This technique selectively amplifies transcripts that are specifically expressed in circulating cells of either PCa patients or healthy men. Following sequencing reaction, we showed that 17 out of 23 (73.9% sequenced clones did not match any mRNAs in the GenBank database. This result suggests that genes associated with alterations in circulating cells of cancer-bearing patients are largely unknown. Semi-quantitative RT-PCR confirmed that two genes are up-regulated in circulating cells of PCa patients, whereas another two genes are down-regulated in the same patients. Conclusion The comprehensive gene expression analysis is capable of

  7. Arctigenin enhances chemosensitivity to cisplatin in human nonsmall lung cancer H460 cells through downregulation of survivin expression.

    Science.gov (United States)

    Wang, Huan-qin; Jin, Jian-jun; Wang, Jing

    2014-01-01

    Arctigenin, a dibenzylbutyrolactone lignan, enhances cisplatin-mediated cell apoptosis in cancer cells. Here, we sought to investigate the effects of arctigenin on cisplatin-treate