WorldWideScience

Sample records for cancer cells exposed

  1. Improved immunogenicity of fusions between ethanol-treated cancer cells and dendritic cells exposed to dual TLR stimulation

    National Research Council Canada - National Science Library

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Namiki, Yoshihisa; Kan, Shin; Takakura, Kazuki; Kajihara, Mikio; Uchiyama, Kan; Hara, Eiich; Ohkusa, Toshifumi; Gong, Jianlin; Tajiri, Hisao

    2013-01-01

    ...) fused to whole cancer cells. We have recently revealed that ethanol-treated neoplastic cells fused to DCs exposed to 2 Toll-like receptor agonists efficiently induce cytotoxic T lymphocytes via TGF...

  2. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    Directory of Open Access Journals (Sweden)

    Held Kathryn D

    2008-06-01

    Full Text Available Abstract Background Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER. This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. Methods The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. Results A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2 increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM. E2 also increased the level of intracellular reactive oxygen species (ROS in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. Conclusion The observation of bystander responses in breast

  3. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  4. A nitroimidazole derivative, PR-350, enhances the killing of pancreatic cancer cells exposed to high-dose irradiation under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Kazuhiro; Qian, Li-Wu; Zhang, Li.; Nagai, Eishi; Kura, Shinobu; Tanaka, Masao [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2002-03-01

    The radiosensitizing effects of PR-350, a nitroimidazole derivative, were examined concerning the cell killing of human pancreatic cancer cell lines exposed to high doses of gamma-ray irradiation in vitro. The percentages of dead cells were analyzed with a multiwell plate reader to measure the fluorescence intensity of propidium iodide before and after a digitonin treatment. The sensitizing effect of PR-350 on cell killing by high-dose irradiation was confirmed by time-course, dose-dependency, and microscopic observations. In five of seven pancreatic cancer cell lines in which the number of dead cells was determined 5 days after 30 Gy irradiation in the presence of PR-350, the number was significantly increased under hypoxic conditions, but not under aerobic conditions. The selective radiosensitive effect of PR-350 on hypoxic cells was also confirmed by flow cytometry. The results indicate that PR-350 can enhance the killing of pancreatic cancer cells by high-dose irradiation under hypoxia, which supports its clinical radiosensitizing effects when administered during intraoperative irradiation to pancreatic cancer. (author)

  5. Proteomic Analysis of MCF-7 Breast Cancer Cell Line Exposed To Leptin

    Directory of Open Access Journals (Sweden)

    A. Valle

    2011-01-01

    Full Text Available Background: Obesity is a well-known factor risk for breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play an important role in mammary tumor formation and progression. To contribute to the understanding of the molecular mechanisms underlying leptin action in breast cancer, our aim was to identify proteins regulated by leptin in MCF-7 human breast cancer cells. Methods: We used two-dimensional gel electrophoresis (2-DE and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS to identify proteins affected by leptin. Results: Thirty proteins were found differentially expressed in MCF-7 cells after 48 h leptin exposure. Proteins regulated by leptin included proteins previously implicated in breast cancer such as catechol-o-methyltransferase, cathepsin D, hsp27, serine/threonine-protein phosphatase and regulatory proteins of the Ras signaling pathway. Proteins involved in other cellular functions such as stress response, cytosqueleton remodeling and proteins belonging to ubiquitin-proteasome system, were also identified. Furthermore, leptin-treated cells showed a substantial uptake of the serum carrier proteins albumin and alpha-2-HS-glycoprotein. Conclusions: This screening reveals that leptin influences the levels of key proteins involved in breast cancer which opens new avenues for the study of the molecular mechanisms linking obesity to breast cancer.

  6. Sulindac enhances the killing of cancer cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Maria Marchetti

    2009-06-01

    Full Text Available Sulindac is an FDA-approved non-steroidal anti-inflammatory drug (NSAID that affects prostaglandin production by inhibiting cyclooxygenases (COX 1 and 2. Sulindac has also been of interest for more than decade as a chemopreventive for adenomatous colorectal polyps and colon cancer.Pretreatment of human colon and lung cancer cells with sulindac enhances killing by an oxidizing agent such as tert-butyl hydroperoxide (TBHP or hydrogen peroxide. This effect does not involve cyclooxygenase (COX inhibition. However, under the conditions used, there is a significant increase in reactive oxygen species (ROS within the cancer cells and a loss of mitochondrial membrane potential, suggesting that cell death is due to apoptosis, which was confirmed by Tunel assay. In contrast, this enhanced killing was not observed with normal lung or colon cells.These results indicate that normal and cancer cells handle oxidative stress in different ways and sulindac can enhance this difference. The combination of sulindac and an oxidizing agent could have therapeutic value.

  7. RelA-Mediated BECN1 Expression Is Required for Reactive Oxygen Species-Induced Autophagy in Oral Cancer Cells Exposed to Low-Power Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Chih-Wen Shu

    Full Text Available Low-power laser irradiation (LPLI is a non-invasive and safe method for cancer treatment that alters a variety of physiological processes in the cells. Autophagy can play either a cytoprotective role or a detrimental role in cancer cells exposed to stress. The detailed mechanisms of autophagy and its role on cytotoxicity in oral cancer cells exposed to LPLI remain unclear. In this study, we showed that LPLI at 810 nm with energy density 60 J/cm2 increased the number of microtubule associated protein 1 light chain 3 (MAP1LC3 puncta and increased autophagic flux in oral cancer cells. Moreover, reactive oxygen species (ROS production was induced, which increased RelA transcriptional activity and beclin 1 (BECN1 expression in oral cancer cells irradiated with LPLI. Furthermore, ROS scavenger or knockdown of RelA diminished LPLI-induced BECN1 expression and MAP1LC3-II conversion. In addition, pharmacological and genetic ablation of autophagy significantly enhanced the effects of LPLI-induced apoptosis in oral cancer cells. These results suggest that autophagy may be a resistant mechanism for LPLI-induced apoptosis in oral cancer cells.

  8. Gene Expression Changes in Human Lung Cells Exposed to Arsenic, Chromium, Nickel or Vanadium Indicate the First Steps in Cancer

    OpenAIRE

    Clancy, Hailey A.; Sun, Hong; Passantino, Lisa; Kluz, Thomas; Muñoz, Alexandra; Zavadil, Jiri; Costa, Max

    2012-01-01

    The complex process of carcinogenesis begins with transformation of a single cell to favor aberrant traits such as loss of contact inhibition and unregulated proliferation – features found in every cancer. Despite cancer’s widespread prevalence, the early events that initiate cancer remain elusive, and without knowledge of these events cancer prevention is difficult. Here we show that exposure to As, Cr, Ni, or Vanadium (V) promotes changes in gene expression that occur in conjunction with ab...

  9. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin and celeco...

  10. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

    KAUST Repository

    Pouchol, Camille

    2017-10-27

    We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.

  11. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    Directory of Open Access Journals (Sweden)

    Daniel Morvan

    2013-10-01

    Full Text Available Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects.

  12. Radiosensitizing effects of arsenic trioxide on MCF-7 human breast cancer cells exposed to 89 strontium chloride.

    Science.gov (United States)

    Liu, Hengchao; Tao, Xinquan; Ma, Fang; Qiu, Jun; Wu, Cuiping; Wang, Mingming

    2012-11-01

    The aim of this study was to investigate the radiosensitizing effects of arsenic trioxide (As2O3) on MCF-7 human breast cancer cells irradiated with 89 strontium chloride (89SrCl2). The 50% inhibitory concentration (IC50) was calculated from results of an MTT assay. The concentration of As2O3 less than 20% IC50 was selected for subsequent experiments. Cells were treated with As2O3 and 89SrCl2. Morphological changes of cells were observed under an inverted microscope. The radiosensitivity enhancing ratio (SER) was computed based on a clone formation assay. Cell cycle distribution and apoptosis were measured by flow cytometry (FCM). Expression of Bcl-2 and Bax at both the mRNA and protein levels was assessed by RT-PCR and western blotting. The IC50 of As2O3 at 24 h was 11.7 µM. Doses of As2O3 (1 and 2 µM) were used in combination treatments and SER values were 1.25 and 1.79, respectively. As2O3 significantly suppressed cell growth, caused G2/M arrest, enhanced cell death and apoptosis induced by 89SrCl2 and decreased expression of the Bcl-2 gene. Since expression of Bax was unchanged following treatment, As2O3 effectively reduced the Bcl-2/Bax ratio. As2O3 (1-2 µM) enhances the cytotoxic effects of 89SrCl2 on the MCF-7 human breast cancer cell line by inducing G2 phase delay and promoting apoptosis through the reduction of the Bcl-2/Bax ratio.

  13. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt

    2013-01-01

    vaccinations. Seven patients remained in stable disease (SD) three months after the first vac- cination. After ten vaccinations (six months), four patients still showed SD and continued vaccinations on a monthly basis. These four patients received a total of 12, 16, 26 and 35 vaccinations, respectively. Five......Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin...... and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFN EliSpot. Secondary objec- tives were overall survival, response and quality of life (QoL). Results: Twenty-two patients initiated the vaccination program consisting of ten...

  14. DIFFERENTIAL MODULATION OF CANCER-RELATED MOLECULAR NETWORKS IN HUMAN AND RAT URINARY BLADDER CELLS EXPOSED TO TRIVALENT ARSENICALS

    Science.gov (United States)

    Arsenic (As) is classified as a known human carcinogen with primary targets of urinary bladder (UB), skin and lung. The most prevalent source of As exposure in humans is drinking water contaminated with inorganic As (iAs), and millions of people worldwide are exposed to drinking ...

  15. Cancer mortality among atomic bomb survivors exposed as children.

    Science.gov (United States)

    Goto, Hitomi; Watanabe, Tomoyuki; Miyao, Masaru; Fukuda, Hiromi; Sato, Yuzo; Oshida, Yoshiharu

    2012-05-01

    To compare cancer mortality among A-bomb survivors exposed as children with cancer mortality among an unexposed control group (the entire population of Japan, JPCG). The subjects were the Hiroshima and Nagasaki A-bomb survivor groups (0-14 years of age in 1945) reported in life span study report 12 (follow-up years were from 1950 to 1990), and a control group consisting of the JPCG. We estimated the expected number of deaths due to all causes and cancers of various causes among the exposed survivors who died in the follow-up interval, if they had died with the same mortality as the JPCG (0-14 years of age in 1945). We calculated the standardized mortality ratio (SMR) of A-bomb survivors in comparison with the JPCG. SMRs were significantly higher in exposed boys overall for all deaths, all cancers, leukemia, and liver cancer, and for exposed girls overall for all cancers, solid cancers, liver cancer, and breast cancer. In boys, SMRs were significantly higher for all deaths and liver cancer even in those exposed to very low doses, and for all cancers, solid cancers, and liver cancer in those exposed to low doses. In girls, SMRs were significantly higher for liver cancer and uterine cancer in those exposed to low doses, and for leukemia, solid cancers, stomach cancer, and breast cancer in those exposed to high doses. We calculated the SMRs for the A-bomb survivors versus JPCG in childhood and compared them with a true non-exposed group. A notable result was that SMRs in boys exposed to low doses were significantly higher for solid cancer.

  16. Role of Reactive Oxygen Species and Nitric Oxide in Mediating Chemotherapeutic Drug Induced Bystander Response in Human Cancer Cells Exposed In-Vitro

    OpenAIRE

    Chinnadurai, Mani; Rao, Bhavna S; Deepika, Ramasamy; Paul, Solomon F.D.; Venkatachalam, Perumal

    2012-01-01

    Background The intention of cancer chemotherapy is to control the growth of cancer cells using chemical agents. However, the occurrence of second malignancies has raised concerns, leading to re-evaluation of the current strategy in use for chemotherapeutic agents. Although the mechanisms involved in second malignancy remain ambiguous, therapeutic-agent-induced non-DNA targeted effects like bystander response and genomic instability cannot be eliminated completely. Hence, Bleomycin (BLM) and N...

  17. Association of Ozone with 5-Fluorouracil and Cisplatin in Regulation of Human Colon Cancer Cell Viability: In Vitro Anti-Inflammatory Properties of Ozone in Colon Cancer Cells Exposed to Lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    V. Simonetti

    2017-01-01

    Full Text Available Introduction. Ozone therapy is an effective medical treatment for different diseases like mucositis, psoriasis, acute pain, neurovascular diseases, and cancer. The aim of this study is based on the association of different ozone concentration with 5-fluorouracil and cisplatin in human colon cancer cell (HT29 cell line in order to investigate possible anticancer synergistic effects. Methods. HT29 cells were incubated with ozone at different concentration ranging from 10 up to 50 μg/ml at different incubation time alone or in combination with cisplatin and 5-fluorouracil. Cell viability was performed by using a modified MTT method. Anti-inflammatory studies were conducted incubating HT29 with or without 20, 30, or 50 μg/ml of ozone before exposure to lipopolysaccharides. Results. Ozone alone has a time and concentration dependent cytotoxicity against HT29 cells (IC50 at 24 h: 30 μg/ml. Association of ozone with drugs increases cytotoxicity by 15–20%. Preincubation of ozone at 50 μg/ml decreases IL-8, IL-6, and IL-1β production by 50, 56, and 70%, respectively, compared to untreated cells. Conclusion. These results indicated that ozone could be useful in colon cancer management in combination with 5-fluorouracil and cisplatin with significant inhibition of cytokines having a central role in colon cancer cell survival and chemoresistance.

  18. Cell diameter measurements obtained with a handheld cell counter could be used as a surrogate marker of G2/M arrest and apoptosis in colon cancer cell lines exposed to SN-38

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Makiko [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan); Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi (Japan); Inoue, Takeshi [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan); Miyakura, Yasuyuki; Horie, Hisanaga; Yasuda, Yoshikazu [Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Tochigi (Japan); Fujii, Hirofumi [Division of Clinical Oncology, Jichi Medical University, Shimotsuke, Tochigi (Japan); Kotake, Kenjiro [Department of Surgery, Tochigi Cancer Center, Utsunomiya, Tochigi (Japan); Sugano, Kokichi, E-mail: ksugano@tcc.pref.tochigi.lg.jp [Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Tochigi (Japan)

    2013-05-17

    Highlights: •Chemo-sensitivity to SN-38 was assayed by the automated cell counter. •Colon cancer cell line, HCT116 cells were more sensitive to SN-38 than HT29 cells. •Increase of cell size reflects G2/M arrest. •Appearance of small particles indicates cell apoptosis. -- Abstract: In vitro assessment of chemosensitivity are important for experiments evaluating cancer therapies. The Scepter 2.0 cell counter, an automated handheld device based on the Coulter principle of impedance-based particle detection, enables the accurate discrimination of cell populations according to cell size and volume. In this study, the effects of SN-38, the active metabolite of irinotecan, on the colon cancer cell lines HCT116 and HT29 were evaluated using this device. The cell count data obtained with the Scepter counter were compared with those obtained with the {sup 3}H-thymidine uptake assay, which has been used to measure cell proliferation in many previous studies. In addition, we examined whether the changes in the size distributions of these cells reflected alterations in the frequency of cell cycle arrest and/or apoptosis induced by SN-38 treatment. In our experiments using the Scepter 2.0 cell counter, the cell counts were demonstrated to be accurate and reproducible measure and alterations of cell diameter reflected G2/M cell cycle arrest and apoptosis. Our data show that easy-to-use cell counting tools can be utilized to evaluate the cell-killing effects of novel treatments on cancer cells in vitro.

  19. Inflammatory Alteration of Human T Cells Exposed Continuously to Asbestos.

    Science.gov (United States)

    Kumagai-Takei, Naoko; Yamamoto, Shoko; Lee, Suni; Maeda, Megumi; Masuzzaki, Hidenori; Sada, Nagisa; Yu, Min; Yoshitome, Kei; Nishimura, Yasumitsu; Otsuki, Takemi

    2018-02-08

    Asbestos is a known carcinogen and exposure can lead to lung cancer and malignant mesothelioma. To examine the effects of asbestos fibers on human immune cells, the human T cell leukemia/lymphoma virus (HTLV)-1 immortalized human T cell line MT-2 was employed. Following continuous exposure to asbestos fibers for more than eight months, MT-2 sublines showed acquisition of resistance to asbestos-induced apoptosis with decreased death signals and increased surviving signals. These sublines showed various characteristics that suggested a reduction in anti-tumor immunity. On the other hand, inflammatory changes such as expression of MMP7, CXCR5, CXCL13 and CD44 was found to be markedly higher in sublines continuously exposed to asbestos compared with original MT-2 cells. All of these molecules contribute to lung inflammation, T and B cell interactions and connections between mesothelial cells and T cells. Thus, further investigation focusing on these molecules may shed light on the role of chronic inflammation caused by asbestos exposure and the occurrence of malignant mesothelioma. Finally, regarding peripheral T cells from healthy donors (HD) and asbestos-exposed patients with pleural plaque (PP) or malignant pleural mesothelioma (MPM), following stimulation of CD4+ T cells, T cells from MPM patients showed reduced potential of interferon (IFN)-γ expression. Moreover, levels of interleukin (IL)-6, one of the most important cytokines in chronic inflammation, in cultured supernatants were higher in PP and MPM patients compared with HD. Overall, asbestos-induced chronic inflammation in the lung as well as the pleural cavity may facilitate the onset of asbestos-induced cancers due to alterations in the interactions among fibers, immune cells such as T and B cells and macrophages, and mesothelial and lung epithelial cells. Further investigations regarding chronic inflammation caused by asbestos fibers may assist in identifying molecular targets for preventive and

  20. [Expression of protein p53 in workers occupationally exposed to benzidine and bladder cancer patients.].

    Science.gov (United States)

    Shen, Chun-lin; Xiang, Cui-qin; Zhang, Yun-ying; Qin, Yi-qiu; Liu, Cha-qin; Chen, Ji-gang; Zhang, Sheng-nian

    2005-02-01

    To study expression of mutant p53 protein in workers occupationally exposed to benzidine and bladder cancer patients. Mutant p53 protein in serum from the workers occupationally exposed to benzidine and bladder cancer patients were determined with Immuno-PCR, while exfoliated urothelial cells in the urine samples were classified with Papanicolau grading. Positive rate of mutant p53 protein increased with the exposed intensity index in workers occupationally exposed to benzidine. The positive rate of mutant p53 protein in bladder cancer patients (83.3%) was significantly higher than that in the group 1 of exposed intensity index. The average scanning integrals of PCR amplified band in the group of bladder cancer patients and group 2 of exposed intensity index were both higher than that in the group 1 significantly. Workers in the groups of different exposed intensity indices were further stratified according to Papanicolau grades. In the group 2 of exposed intensity index, the average scanning integrals of PCR amplified band in the stratum of Papanicolau grade II and III were significantly higher than that in the strata of Papanicolau grade I. And in the group 3 of exposed intensity index, the positive rate of mutant p53 protein in the strata of Papanicolau grade III was higher than that in the strata of Papanicolau grade I significantly. The increase of exposed intensity may not only result in the positive rate of mutant p53 protein, but also the quantity of mutant p53 protein in serum within the low range of benzidine exposure. Once the exposed intensity was beyond that spectrum, the positive rate of mutant p53 protein in serum and the average scanning integrals of PCR amplified band were no longer enhanced with the increase of exposed intensity. There was tight correlation between Papanicolau grade of exfoliated urothelial cells and the positive rate or the quantity of mutant p53 protein for the higher benzidine exposure intensity.

  1. Cancer incidence and mortality in workers exposed to fluoride

    DEFF Research Database (Denmark)

    Grandjean, P; Olsen, J H; Jensen, O M

    1992-01-01

    Although a recent bioassay showed increased frequency of bone cancer in rats with high oral intake of fluoride, the data are reported as equivocal evidence of carcinogenicity. In humans, occupational fluoride exposure may cause skeletal fluorosis, and our earlier follow-up of fluoride-exposed wor......-exposed workers showed increased incidence of respiratory cancers.......Although a recent bioassay showed increased frequency of bone cancer in rats with high oral intake of fluoride, the data are reported as equivocal evidence of carcinogenicity. In humans, occupational fluoride exposure may cause skeletal fluorosis, and our earlier follow-up of fluoride...

  2. Life-Time Dosimetric Assessment for Mice and Rats Exposed in Reverberation Chambers of the 2-Year NTP Cancer Bioassay Study on Cell Phone Radiation.

    Science.gov (United States)

    Gong, Yijian; Capstick, Myles; Kuehn, Sven; Wilson, Perry; Ladbury, John; Koepke, Galen; McCormick, David L; Melnick, Ronald L; Kuster, Niels

    2017-12-01

    In this paper, we present the detailed life-time dosimetry analysis for rodents exposed in the reverberation exposure system designed for the two-year cancer bioassay study conducted by the National Toxicology Program of the National Institute of Environmental Health Sciences. The study required the well-controlled and characterized exposure of individually housed, unrestrained mice at 1900 MHz and rats at 900 MHz, frequencies chosen to give best uniformity exposure of organs and tissues. The wbSAR, the peak spatial SAR and the organ specific SAR as well as the uncertainty and variation due to the exposure environment, differences in the growth rates, and animal posture were assessed. Compared to the wbSAR, the average exposure of the high-water-content tissues (blood, heart, lung) were higher by ~4 dB, while the low-loss tissues (bone and fat) were less by ~9 dB. The maximum uncertainty over the exposure period for the SAR was estimated to be <49% (k=2) for the rodents whereas the relative uncertainty between the group was <14% (k=1). The instantaneous variation (averaged over 1 min) was <13% (k=1), which is small compared to other long term exposure research projects. These detailed dosimetric results empowers comparison with other studies and provides a reference for studies of long-term biological effects of exposure of rodents to RF energy.

  3. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  4. The BOSS Experiment of the EXPOSE-R2 Mission: Biofilms versus planktonic cells

    OpenAIRE

    Panitz, C.; Frösler, J.; Wingender, J.; Flemming, H.-C.; Rösch, P; Rettberg, P.

    2017-01-01

    In the BOSS experiment (biofilm organisms surfing space), which was performed in the context of the successfully finalized EXPOSE-R2 mission, an international consortium of scientists investigated the ability of a variety of organisms to survive in space and on Mars as a function of their life style. The question in focus is whether there are different strategies for individually living microorganisms (planktonic state) compared to a microbial consortium of the same cells (biofilm state) to c...

  5. Lung cancer - small cell

    Science.gov (United States)

    ... carcinoma Small cell carcinoma Squamous cell carcinoma Secondhand smoke and lung cancer Normal lungs and alveoli Respiratory system Smoking hazards Bronchoscope References Horn L, Eisenberg R, ...

  6. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of exposure ...

  7. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections

    Science.gov (United States)

    Peter, Beatrix; Nador, Judit; Juhasz, Krisztina; Dobos, Agnes; Körösi, Laszlo; Székács, Inna; Patko, Daniel; Horvath, Robert

    2015-06-01

    The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy.

  8. Incubator proof miniaturized Holomonitor to in situ monitor cancer cells exposed to green tea polyphenol and preosteoblast cells adhering on nanostructured titanate surfaces: validity of the measured parameters and their corrections.

    Science.gov (United States)

    Peter, Beatrix; Nador, Judit; Juhasz, Krisztina; Dobos, Agnes; Körösi, Laszlo; Székács, Inna; Patko, Daniel; Horvath, Robert

    2015-06-01

    The in situ observation of cell movements and morphological parameters over longer periods of time under physiological conditions is critical in basic cell research and biomedical applications. The quantitative phase-contrast microscope applied in this study has a remarkably small size, therefore it can be placed directly into a humidified incubator. Here, we report on the successful application of this M4 Holomonitor to observe cancer cell motility, motility speed, and migration in the presence of the green tea polyphenol, epigallocatechin gallate, as well as to monitor the adhesion of preosteoblast cells on nanostructured titanate coatings, relevant for biomedical applications. A special mechanical stage was developed to position the sample into that range of the optical arrangement where digital autofocusing works with high reproducibility and precision. By in-depth analyzing the obtained single cell morphological parameters, we show that the limited vertical resolution of the optical setup results in underestimated single cell contact area and volume and overestimated single cell averaged thickness. We propose a simple model to correct the recorded data to obtain more precise single cell parameters. We compare the results with the kinetic data recorded by a surface sensitive optical biosensor, optical waveguide lightmode spectroscopy.

  9. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  10. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  11. Computational analysis of the number, area and density of gamma-H2AX foci in breast cancer cells exposed to (111)In-DTPA-hEGF or gamma-rays using Image-J software.

    Science.gov (United States)

    Cai, Zhongli; Vallis, Katherine A; Reilly, Raymond M

    2009-03-01

    To develop a simple method for the quantification of gamma-H2AX focus number, density and size. MDA-MB-468 human breast cancer cells were treated overnight with (111)In-diethylenetriaminepentaacetic acid human epidermal growth factor ((111)In-DTPA-hEGF, 0-142 kBq/pmol) or exposed to gamma-radiation to induce DNA double strand breaks (DSB). DNA DSB formation was evaluated by detection of phosphorylated histone H2AX on serine 139 (gamma-H2AX) using immunofluorescence. Confocal microscopy was used to capture images of gamma-H2AX foci and cell nuclei. Image-J software with customized macros was used to quantify gamma-H2AX foci. The number of gamma-H2AX foci per nucleus scored using Image-J correlated strongly with the number scored using direct visual confirmation (coefficient of determination, R(2) = 0.950; 60 nuclei scored). The mean density (grayscale values per pixel), area and integrated density (IntDen) of individual foci increased linearly as the specific radioactivity (SR) increased up to 67 kBq/pmol (R(2) values of 0.826, 0.964, 0.978, respectively). The mean number of foci per nucleus, the combined area of gamma-H2AX foci per nucleus and the IntDen per nucleus also increased linearly with SR, giving R(2) values of 0.926, 0.974 and 0.983, respectively. Similar linear relationships were observed with the gamma-ray absorbed dose up to 3.0 Gy. The density, area and IntDen of individual foci, as well as the number of gamma-H2AX foci, total focus area and IntDen per nucleus were successfully quantified using Image-J with customized macros.

  12. In vitro metabolism study of normal and tumor cells when exposed to red LED light

    Science.gov (United States)

    Stolbovskaya, Olga V.; Khairullin, Radik M.; Saenko, Yuri V.; Krasnikova, Ekaterina S.; Krasnikov, Aleksandr V.; Fomin, Aleksandr A.; Skaptsov, Aleksandr A.

    2016-04-01

    This work presents the results of studying the mitochondrial membrane potential, intracellular ROS, peculiarities of the cell cycle of cancer cells HCT-116 and the normal line of CHO cells when exposed to the red LED light with a wavelength range of 0.620-0.680 μm. A dose-dependent increase in mitochondrial membrane potential and intracellular ROS concentration in cancer cells HCT-116 was established. In normal CHO cell line a dose-dependent reduction of mitochondrial membrane potential and dose-dependent increase in intracellular ROS occur. It has been shown that the sensitivity of the studied cell lines to the red light depends on the stage of the cell cycle.

  13. Autosomal mutants of proton-exposed kidney cells display frequent loss of heterozygosity on nonselected chromosomes.

    Science.gov (United States)

    Grygoryev, Dmytro; Dan, Cristian; Gauny, Stacey; Eckelmann, Bradley; Ohlrich, Anna P; Connolly, Marissa; Lasarev, Michael; Grossi, Gianfranco; Kronenberg, Amy; Turker, Mitchell S

    2014-05-01

    High-energy protons found in the space environment can induce mutations and cancer, which are inextricably linked. We hypothesized that some mutants isolated from proton-exposed kidneys arose through a genome-wide incident that causes loss of heterozygosity (LOH)-generating mutations on multiple chromosomes (termed here genomic LOH). To test this hypothesis, we examined 11 pairs of nonselected chromosomes for LOH events in mutant cells isolated from the kidneys of mice exposed to 4 or 5 Gy of 1 GeV protons. The mutant kidney cells were selected for loss of expression of the chromosome 8-encoded Aprt gene. Genomic LOH events were also assessed in Aprt mutants isolated from isogenic cultured kidney epithelial cells exposed to 5 Gy of protons in vitro. Control groups were spontaneous Aprt mutants and clones isolated without selection from the proton-exposed kidneys or cultures. The in vivo results showed significant increases in genomic LOH events in the Aprt mutants from proton-exposed kidneys when compared with spontaneous Aprt mutants and when compared with nonmutant (i.e., nonselected) clones from the proton-exposed kidneys. A bias for LOH events affecting chromosome 14 was observed in the proton-induced Aprt mutants, though LOH for this chromosome did not confer increased radiation resistance. Genomic LOH events were observed in Aprt mutants isolated from proton-exposed cultured kidney cells; however the incidence was fivefold lower than in Aprt mutants isolated from exposed intact kidneys, suggesting a more permissive environment in the intact organ and/or the evolution of kidney clones prior to their isolation from the tissue. We conclude that proton exposure creates a subset of viable cells with LOH events on multiple chromosomes, that these cells form and persist in vivo, and that they can be isolated from an intact tissue by selection for a mutation on a single chromosome.

  14. Basal cell cancer (image)

    Science.gov (United States)

    ... biopsy is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure ... is required to watch for new sites of basal cell cancer.

  15. Prostate cancer stem cells.

    Science.gov (United States)

    Tu, Shi-Ming; Lin, Sue-Hwa

    2012-06-01

    Stem cells have long been implicated in prostate gland formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative androgen receptor-negative (AR(-)) status of prostate stem cells renders them inherently insensitive to androgen blockade therapy. The androgen-regulated gene fusion TMPRSS2-ERG could be used to clarify both the cells of origin and the evolution of prostate cancer cells. In this review, we show that the hypothesis that distinct subtypes of cancer result from abnormalities within specific cell types-the stem cell theory of cancer-may instigate a major paradigm shift in cancer research and therapy. Ultimately, the stem cell theory of cancers will affect how we practice clinical oncology: our diagnosis, monitoring, and therapy of prostate and other cancers. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  17. Mechanical properties of MDCK II cells exposed to gold nanorods

    Directory of Open Access Journals (Sweden)

    Anna Pietuch

    2015-01-01

    Full Text Available Background: The impact of gold nanoparticles on cell viability has been extensively studied in the past. Size, shape and surface functionalization including opsonization of gold particles ranging from a few nanometers to hundreds of nanometers are among the most crucial parameters that have been focussed on. Cytoxicity of nanomaterial has been assessed by common cytotoxicity assays targeting enzymatic activity such as LDH, MTT and ECIS. So far, however, less attention has been paid to the mechanical parameters of cells exposed to gold particles, which is an important reporter on the cellular response to external stimuli.Results: Mechanical properties of confluent MDCK II cells exposed to gold nanorods as a function of surface functionalization and concentration have been explored by atomic force microscopy and quartz crystal microbalance measurements in combination with fluorescence and dark-field microscopy.Conclusion: We found that cells exposed to CTAB coated gold nanorods display a concentration-dependent stiffening that cannot be explained by the presence of CTAB alone. The stiffening results presumably from endocytosis of particles removing excess membrane area from the cell’s surface. Another aspect could be the collapse of the plasma membrane on the actin cortex. Particles coated with PEG do not show a significant change in elastic properties. This observation is consistent with QCM measurements that show a considerable drop in frequency upon administration of CTAB coated rods suggesting an increase in acoustic load corresponding to a larger stiffness (storage modulus.

  18. Hurthle Cell Cancer

    Science.gov (United States)

    ... breath Hurthle cell cancer Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  19. Basal cell skin cancer

    Science.gov (United States)

    Basal cell skin cancer almost never spreads. If it is left untreated, it may spread into surrounding areas and nearby tissues and bone. In these cases, treatment can injure the appearance of the skin.

  20. Cellular origin and procoagulant activity of tissue factor-exposing microparticles in cancer patients

    NARCIS (Netherlands)

    Kleinjan, A.; Berckmans, R.J.; Böing, A.N.; Sturk, A.; Büller, H.R.; Kamphuisen, P.W.; Nieuwland, R.

    2012-01-01

    Background: In patients with cancer, tissue factor-exposing microparticles (TF-exposing MP) have been associated with disease progression and thrombosis. The cellular origin and coagulant activity of TF-exposing MP, however, remain disputed. Therefore, we investigated the cellular origin of the

  1. Endothelial cell contraction increases Candida adherence to exposed extracellular matrix.

    Science.gov (United States)

    Klotz, S A; Maca, R D

    1988-01-01

    Bovine vascular endothelial cells treated with EDTA, urea, or thrombin underwent a marked, reversible contraction resulting in exposure of the subendothelial extracellular matrix (ECM). Candida yeasts adhered more to contracted monolayers than to confluent monolayers (P less than 0.01) by preferentially adhering to the ECM. Two strains of Candida albicans and one strain of Candida tropicalis bound avidly to exposed ECM, but Pseudomonas aeruginosa did not. However, treatment of endothelium with forskolin, which induces cell shape changes without exposure of the ECM, did not cause an increase in adherence. Images PMID:3137171

  2. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  3. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  5. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  6. Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Kolachi, Nida F.; Kazi, Tasneem G., E-mail: tgkazi@yahoo.com; Wadhwa, Sham K.; Afridi, Hassan I.; Baig, Jameel A.; Khan, Sumaira; Shah, Faheem

    2011-08-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low Se status plays an important role in arsenism development. The objective of present study was to assess Se contents in biological samples of As exposed females have skin lesions and cancer with related to non-exposed skin cancer patients. The biological samples (blood and scalp hair) of As exposed group comprises, female skin cancer (ESC) patients admitted in cancer hospitals have skin lesions (ESL) and exposed referents have not both diseases (ER), belongs to As exposed area of Pakistan. For comparative purposes, age matched female skin cancerous patient (RP) and non-cancerous females (NER) belong to non-exposed areas were also selected. The As and Se in acid digests of biological samples were pre-concentrated by complexing with chelating agent (ammonium pyrrolidinedithiocarbamate), and resulted complexes were extracted into non-ionic extractant (Triton X-114), prior to analysis by electrothermal atomic absorption spectrometry. The enhancement factor of about 25 was obtained by pre-concentrating 10 mL of sample solutions. The accuracy of the optimized procedure was evaluated by using certified reference material (BCR 397) with certified values for Se and As and standard addition method at three concentration levels in real samples. No significant differences was observed (p > 0.05) when comparing the values obtained by the proposed method, added and certified values of both elements. The biological samples of ESC patients had 2-3 folds higher As and lower Se levels as compared to RP (p < 0.001). Understudied exposed referents have high level of As and lower Se contents as compared to referents subjects of non-exposed area (p < 0.01). The higher concentration of As and lower levels of Se in biological samples of cancerous patients are consisted with reported studies. - Research Highlights: {yields} Advance extraction method for the enrichment of arsenic and selenium in biological

  7. Coagulant activity and cellular origin of circulating tissue factor exposing microparticles in cancer patients - two forms of TF-exposing microparticles

    NARCIS (Netherlands)

    Kleinjan, A.; Boing, A. N.; Di Nisio, M.; Twint, D.; Kamphuisen, P. W.; Nanayakkara, P.; Buller, H. R.; Nieuwland, R.

    Background: Because plasma of cancer patients presenting with venous thrombosis contains high numbers of tissue factor (TF)-exposing microparticles (TF-MP1), TF-MP have been causally linked to the occurrence of venous thrombosis in cancer patients. The relationship between numbers of TF-exposing MP

  8. Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib.

    Science.gov (United States)

    Houessinon, Aline; François, Catherine; Sauzay, Chloé; Louandre, Christophe; Mongelard, Gaelle; Godin, Corinne; Bodeau, Sandra; Takahashi, Shinichiro; Saidak, Zuzana; Gutierrez, Laurent; Régimbeau, Jean-Marc; Barget, Nathalie; Barbare, Jean-Claude; Ganne, Nathalie; Chauffert, Bruno; Coriat, Romain; Galmiche, Antoine

    2016-05-16

    Sorafenib, a kinase inhibitor active against various solid tumours, induces oxidative stress and ferroptosis, a new form of oxidative necrosis, in some cancer cells. Clinically-applicable biomarkers that reflect the impact of sorafenib on the redox metabolism of cancer cells are lacking. We used gene expression microarrays, real-time PCR, immunoblot, protein-specific ELISA, and gene reporter constructs encoding the enzyme luciferase to study the response of a panel of cancer cells to sorafenib. Tumour explants prepared from surgical hepatocellular carcinoma (HCC) samples and serum samples obtained from HCC patients receiving sorafenib were also used. We observed that genes of the metallothionein-1 (MT1) family are induced in the HCC cell line Huh7 exposed to sorafenib. Sorafenib increased the expression of MT1G mRNA in a panel of human cancer cells, an effect that was not observed with eight other clinically-approved kinase inhibitors. We identified the minimal region of the MT1G promoter that confers inducibility by sorafenib to a 133 base pair region containing an Anti-oxidant Response Element (ARE) and showed the essential role of the transcription factor NRF2 (Nuclear factor erythroid 2-Related Factor 2). We examined the clinical relevance of our findings by analysing the regulation of MT1G in five tumour explants prepared from surgical HCC samples. Finally, we showed that the protein levels of MT1 increase in the serum of some HCC patients receiving sorafenib, and found an association with reduced overall survival. These findings indicate that MT1 constitute a biomarker adapted for exploring the impact of sorafenib on the redox metabolism of cancer cells.

  9. Modeling lung cancer risks in laboratory dogs exposed to inhaled plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E.S.; Park, J.F.; Buschbom, R.L.

    1990-06-01

    These analyses are based on data from a lifespan study of beagle dogs exposed to inhaled plutonium being conducted at Pacific Northwest Laboratory. An important goal of this study is to increase understanding of health risk resulting from this exposure, with particular attention to lung cancer risks. Data on humans exposed to plutonium are inadequate for achieving this goal.

  10. Squamous cell skin cancer

    Science.gov (United States)

    ... squamous cell cancer include: Having light-colored skin, blue or green eyes, or blond or red hair Long-term, daily sun exposure (such as in people who work outside) Many severe sunburns early in life Older age Having had many x-rays Chemical exposure A weakened immune system, especially in ...

  11. Alcohol and Cancer Stem Cells

    OpenAIRE

    Mei Xu; Jia Luo

    2017-01-01

    Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and ...

  12. Cell-derived vesicles exposing coagulant tissue factor in saliva.

    Science.gov (United States)

    Berckmans, René J; Sturk, Auguste; van Tienen, Laurens M; Schaap, Marianne C L; Nieuwland, Rienk

    2011-03-17

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is noncoagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism and physiologic relevance are unknown. Because saliva is known to contain TF, we hypothesized that this TF may also be associated with cell-derived vesicles to facilitate coagulation when saliva directly contacts blood. The saliva-induced shortening of the clotting time of autologous plasma and whole blood from healthy subjects (n = 10) proved TF-dependent. This TF was associated with various types of cell-derived vesicles, including microparticles and exosomes. The physiologic function was shown by adding saliva to human pericardial wound blood collected from patients undergoing cardiac surgery. Addition of saliva shortened the clotting time from 300 ± 96 to 186 ± 24 seconds (P = .03). Our results show that saliva triggers coagulation, thereby reducing blood loss and the risk of pathogens entering the blood. We postulate that our reflex to lick a wound may be a mechanism to enable TF-exposing vesicles, present in saliva, to aid in the coagulation process and thus protect the organism from entering pathogens. This unique compartmentalization may be highly conserved because also animals lick their wounds.

  13. Cancer Stem Cells and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Sheetal Dyall

    2010-01-01

    Full Text Available The cancer stem cell hypothesis is becoming more widely accepted as a model for carcinogenesis. Tumours are heterogeneous both at the molecular and cellular level, containing a small population of cells that possess highly tumourigenic “stem-cell” properties. Cancer stem cells (CSCs, or tumour-initiating cells, have the ability to self-renew, generate xenografts reminiscent of the primary tumour that they were derived from, and are chemoresistant. The characterisation of the CSC population within a tumour that drives its growth could provide novel target therapeutics against these cells specifically, eradicating the cancer completely. There have been several reports describing the isolation of putative cancer stem cell populations in several cancers; however, no defined set of markers has been identified that conclusively characterises “stem-like” cancer cells. This paper highlights the current experimental approaches that have been used in the field and discusses their limitations, with specific emphasis on the identification and characterisation of the CSC population in epithelial ovarian cancer.

  14. Sirolimus Increases T-Cell Abundance in the Sun Exposed Skin of Kidney Transplant Recipients.

    Science.gov (United States)

    Burke, Michael Thomas; Sambira Nahum, Lauren C; Isbel, Nicole M; Carroll, Robert P; Soyer, Hans Peter; Francis, Ross; Bridge, Jennifer Anne; Hawley, Carmel; Oliver, Kimberly; Staatz, Christine E; Wells, James William

    2017-07-01

    Kidney transplant recipients (KTRs) receiving the mammalian target of rapamycin inhibitor sirolimus may display a reduced risk of skin cancer development compared to KTRs receiving calcineurin inhibitors. Despite studies investigating the effects of these 2 drug classes on T cells in patient blood, the effect these drugs may have in patient skin is not yet known. Fifteen patients with chronic kidney disease (not recipients of immunosuppressive drugs), and 30 KTRs (15 receiving a calcineurin inhibitor, and 15 receiving sirolimus) provided matched samples of blood, sun exposed (SE) and non-SE skin. The abundance of total CD8+ and CD4+ T cells, memory CD8+ and CD4+ T cells, and regulatory T (Treg) cells in each sample was then assessed by flow cytometry. Sirolimus treatment significantly increased absolute numbers of CD4+ T cells, memory CD8+- and CD4+ T cells, and Treg cells in SE skin versus paired samples of non-SE skin. No differences were found in the absolute number of any T cell subset in the blood. Correlation analysis revealed that the percentage of T cell subsets in the blood does not always accurately reflect the percentage of T-cell subsets in the skin of KTRs. Furthermore, sirolimus significantly disrupts the balance of memory CD4+ T cells in the skin after chronic sun exposure. This study demonstrated that immunosuppressive drug class and sun exposure modify the abundance of multiple T-cell subsets in the skin of KTRs. Correlation analysis revealed that the prevalence of Treg cells in KTR blood does not accurately reflect the prevalence of Treg cells in KTR skin.

  15. Cancer treatments transform residual cancer cell phenotype

    Directory of Open Access Journals (Sweden)

    Harless William W

    2011-01-01

    Full Text Available Abstract Background Physiologic wound repair and tissue regeneration are associated with distinct cellular behaviors triggered by tissue damage. Normally quiescent stem cells proliferate to regenerate damaged tissue, while relatively immobile epithelial cells can transform into a motile, tissue invasive phenotype through a partial epithelial-mesenchymal transition. These distinct cellular behaviors may have particular relevance to how cancer cells can be predicted to behave after treatments damaging a tumor. Presentation of the hypothesis Surgery, chemotherapy, and radiation therapy trigger highly conserved wound healing pathways that: (1 facilitate the phenotypic transformation of surviving cancer cells into a highly mobile, metastatic phenotype through an EMT or epithelial-mesenchymal transition and (2 induce residual cancer stem cell proliferation. Testing the hypothesis Tissue damage caused by cancer treatments will trigger the release of distinct cytokines with established roles in physiologic wound healing, EMT induction, and stem cell activation. They will be released rapidly after treatment and detectable in the patient's blood. Careful histologic evaluation of cancerous tissue before and after treatment will reveal cellular changes suggestive of EMT induction (down regulation of cytokeratin expression and cancer stem cell enrichment (stem cell markers upregulated. Implications of the hypothesis Cancer cells surviving treatment will be more capable of metastasis and resistant to conventional therapies than the pre-treatment population of cancer cells. These changes will develop rapidly after treatment and, in distinct contrast to selection pressures fostering such changes, be triggered by highly conserved wound repair signals released after tissue damage. This pattern of tissue (tumor repair may be amenable to treatment intervention at the time it is upregulated.

  16. Stem cells and solid cancers.

    Science.gov (United States)

    McDonald, Stuart A C; Graham, Trevor A; Schier, Stefanie; Wright, Nicholas A; Alison, Malcolm R

    2009-07-01

    Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

  17. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  18. [Pathways for maintenance of mitochondrial DNA integrity and mitochondrial functions in cells exposed to ionizing radiation].

    Science.gov (United States)

    Gaziev, A I

    2013-01-01

    The analytical review deals with the results of studies devoted to mitochondrial DNA (mtDNA) disorders, the development of oxidative stress and possible pathways for the maintenance of mitochondrial functions in cells exposed to ionizing radiation (IR). Mitochondrial functions, which are closely related to the integrity of mtDNA, play a key role in many cellular processes. A wide range of degenerative diseases, carcinogenesis, and aging is associated with disturbances in mtDNA. MtDNA and the mitochondrion as a whole are increasingly considered as sensitive targets for cancer radio-chemotherapy. Knowledge of post-radiation processes in the mitochondria also facilitates creation of possible additional ways to reduce the radiation reaction of the organism. Injuries and mutations in mtDNA occur with a greater frequency than in the nuclear DNA (nDNA) in cells exposed to IR and other genotoxicants. On the other hand, functionally active copies of mtDNA can persist and survive in the cells exposed to clinically relevant doses of radiation. This safety is ensured by numerous copies of mtDNA in the cell, and due to their shielding from the effects of reactive oxygen (and nitrogen) species (ROS) by nucleoid proteins and by the operation of base excision repair in mitochondria. However, the generation of ROS increases in the mitochondria of cells exposed to IR. The increased generation of ROS in mitochondria can sometimes persist up to several days after the exposure of cells. The prolonged increased generation of ROS may be due to the involvement in the electron transport chain of the complexes of aberrant proteins expressed by the genes of mutated mtDNA copies. This may lead to the additional DNA damage, mitochondrial dysfunction, and instability of the nuclear genome. However, the development of oxidative stress can be restrained by antioxidant systems in the mitochondria. The key role here is played by activation of Mn-SOD2 and the protein p53. In addition, activation of

  19. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were tre...

  20. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  2. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-01-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research. PMID:22507219

  3. Proportionate cancer mortality in methyl methacrylate-exposed orthopedic surgeons compared to general surgeons.

    Science.gov (United States)

    Diaz, James Henry

    2011-06-01

    Methyl methacrylate (MMA), a volatile liquid used to make dentures, hearing aids, joint prostheses, and medical adhesives, has been associated with colorectal carcinomas in acrylic sheet manufacturing workers. A case-control proportionate cancer mortality investigation was conducted to determine cancer death differences in orthopedic surgeons performing total joint replacements (TJRs) (MMA-exposed cases) and general surgeons not performing TJRs (unexposed controls). The American Colleges of Orthopedic Surgeons and General Surgeons provided complete demographic information on 468 male orthopedic surgeons and 1,890 male general surgeons who died during 1991-2001. Decedent data was submitted to the National Death Index for matching with underlying causes of death on state death certificates. Proportionate differences in ages at death, deaths from cancer, and deaths from site-specific cancers were analyzed for statistically significant differences by unpaired, two-tailed t tests for continuous variables and by both proportionate cancer mortality ratios and Yates-corrected chi squares for categorical variables. Orthopedic surgeons died of cancer more often (χ (2) = 7.699, P = 0.006) and at younger (t = 5.53, P MMA and are proportionately more likely to die from cancer, especially esophageal and myeloproliferative cancers, than general surgeons. MMA-exposed healthcare workers may be at increased risks of untimely deaths from site-specific malignancies.

  4. Epigenetics in cancer stem cells.

    Science.gov (United States)

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  5. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  6. Anticlastogenic effect of β-glucan, extracted from Saccharomyces cerevisiae, on cultured cells exposed to ultraviolet radiation

    OpenAIRE

    da Silva, Ariane Fernanda; Oliveira, Rodrigo Juliano; Niwa, Andressa Megumi; D’Epiro, Gláucia Fernanda Rocha; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2012-01-01

    β-glucan is an important polysaccharide due to its medicinal properties of stimulating the immune system and preventing chronic diseases such as cancer. The aim of the present study was to determine the anticlastogenic effect of β-glucan in cells exposed to ultraviolet radiation (UV). Chromosome aberration assay was performed in drug-metabolizing cells (HTC) and non drug-metabolizing cells (CHO-K1 and repair-deficient CHO-xrs5), using different treatment protocols. Continuous treatment (UV + ...

  7. A DRD1 polymorphism predisposes to lung cancer among those exposed to secondhand smoke during childhood

    National Research Council Canada - National Science Library

    Robles, Ana I; Yang, Ping; Jen, Jin; McClary, Andrew C; Calhoun, Kara; Bowman, Elise D; Vähäkangas, Kirsi; Greathouse, K Leigh; Wang, Yi; Olivo-Marston, Susan; Wenzlaff, Angela S; Deng, Bo; Schwartz, Ann G; Ryan, Bríd M

    2014-01-01

    ... for associations with risk in a three-stage validation approach. A 3'UTR (untranslated region) SNP in DRD1 was associated with a lower risk of lung cancer among individuals exposed to secondhand smoke during childhood [OR, 0.69; 95...

  8. Authors' response: 'Lung cancer risk in subjects exposed to organic dust'

    NARCIS (Netherlands)

    Peters, S.; Kromhout, H.; Olsson, A.; Straif, K.; Vermeulen, R.

    2012-01-01

    Response to: Mastrangelo, G., Rylander, R., Cegolon, L. & Lange, J.H. (2012). Lung cancer risk in subjects exposed to organic dust: an unexpected and surprising story. Thorax 67(12), 1112–1112. Original article: Peters, S., Kromhout, H., Olsson, A.C., Wichmann, H.-E., Brüske, I., Consonni, D.,

  9. Aberrant Gene Expression in Human Non Small Cell Lung Carcinoma Cells Exposed to Demethylating Agent 5-Aza-2'-Deoxycytidine

    Directory of Open Access Journals (Sweden)

    Bao-Zhu Yuan

    2004-07-01

    Full Text Available The identification of genes undergoing genetic or epigenetic alterations and contributing to the development of cancer is critical to our understanding of the molecular mechanisms of carcinogenesis. A new approach in identifying alterations of genes that might be relevant to the process of tumor development was used in this study by examining the gene expression profile in human lung cancer cells exposed to 5-aza-2'deoxycytidine (5-aza-dC. A cDNA array analysis was carried out on 5-aza-dC-treated and untreated non small cell lung cancer (NSCLC cell line NCI-H522. Sixteen and 14 genes were upregulated and downregulated, respectively, by 5-aza-dC treatment. Among them, downregulation of tyrosine protein kinase ABL2 (ABL2 gene and upregulation of hint/protein kinase C inhibitor 1 (Hint/PKCI-1, DVL1, TIMP-1, and TRP-1 genes were found in expanded observations in two or three of five 5-aza-dC-treated NSCLC cell lines. Among these genes, we found that cDNA transfer of Hint/PKCI-1 resulted in a significant in vitro growth inhibition in two cell lines exhibiting 5-aza-dC-induced upregulation of Hint/PKCI-1 and significantly reduced in vivo tumorigenicity of one NSCLC cell line. Hint/PKCI-1, which is the only other characterized human histidine triad (HIT nucleotide-binding protein in addition to tumor-suppressor gene FHIT, might be involved in lung carcinogenesis.

  10. Evaluation of cell types for assessment of cytogenetic damage in arsenic exposed population

    Directory of Open Access Journals (Sweden)

    Singh Keshav K

    2008-05-01

    Full Text Available Abstract Background Cytogenetic biomarkers are essential for assessing environmental exposure, and reflect adverse human health effects such as cellular damage. Arsenic is a potential clastogen and aneugen. In general, the majority of the studies on clastogenic effects of arsenic are based on frequency of micronuclei (MN study in peripheral lymphocytes, urothelial and oral epithelial cells. To find out the most suitable cell type, here, we compared cytogenetic damage through MN assay in (a various populations exposed to arsenic through drinking water retrieved from literature review, as also (b arsenic-induced Bowen's patients from our own survey. Results For literature review, we have searched the Pubmed database for English language journal articles using the following keywords: "arsenic", "micronuclei", "drinking water", and "human" in various combinations. We have selected 13 studies consistent with our inclusion criteria that measured micronuclei in either one or more of the above-mentioned three cell types, in human samples. Compared to urothelial and buccal mucosa cells, the median effect sizes measured by the difference between people with exposed and unexposed, lymphocyte based MN counts were found to be stronger. This general pattern pooled from 10 studies was consistent with our own set of three earlier studies. MN counts were also found to be stronger for lymphocytes even in arsenic-induced Bowen's patients (cases compared to control individuals having arsenic-induced non-cancerous skin lesions. Conclusion Overall, it can be concluded that MN in lymphocytes may be superior to other epithelial cells for studying arsenic-induced cytogenetic damage.

  11. Mechanotransduction in cancer stem cells.

    Science.gov (United States)

    Hao, Jin; Zhang, Yueling; Ye, Rui; Zheng, Yingcheng; Zhao, Zhihe; Li, Juan

    2013-09-01

    The cancer stem cell (CSC) concept, which arose about a decade ago, proposes that tumor growth is sustained by a subpopulation of highly malignant cells. These cells, termed CSCs, are capable of extensive self-renewal that contributes to metastasis and treatment resistance. Therefore, therapeutic strategies that target CSCs should be developed for improving outcomes of cancer patients. Recent progress has highlighted the importance of physical properties of the extracellular matrix and mechanotransduction pathway in cancer cells during cancer development. On the other hand, the significance of CXCR1, an upstream signal of FAK/PI3K/Akt has been revealed in CSCs. FAK/PI3K/Akt is a key signal mediator in mechanotransduction pathway. Therefore, mechanotransduction could be a new target for CSCs, and would be an innovative way to treat cancer by inhibiting FAK/PI3K/Akt. © 2013 International Federation for Cell Biology.

  12. [Clinico-morphological peculiarities of thyroid cancer among children exposed to the Chernobyl disaster radiation].

    Science.gov (United States)

    Iakovleva, I N; Shishkov, R V; Poliakov, V G; Pankova, P A

    2008-01-01

    The paper deals with a comparison of clinico-morphological patterns of sporadic thyroid cancer and that in pediatric patients exposed to radiation during the Chernobyl disaster. The latter are highly prone to both local and regional metastatic spread to the lymph nodes (intrathyroid distribution--61%; extension through capsule--42%, and metastases to the neck lymph nodes--66%). However, these data do not differ significantly from those for intact areas. Yet, cancer occurs in exposed cohorts at an earlier stage: its incidence at age 4-6 is 2-3.5 higher and that of relapse such as presentation of latent metastases to the lymph nodes and tumor foci development in residual tumor tissue is 1.6 times the average. Also, morphological patterns have changed: typical papillary cancer incidence has dropped by half while the diffuse follicular variety has grown 1.8-fold.

  13. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  14. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  15. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Directory of Open Access Journals (Sweden)

    Simona Catalani

    Full Text Available Essential oils from the aerial parts (leaves, twigs and berries of Pistacia lentiscus (PLEO have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity.Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS, the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line.A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells.Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  16. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Science.gov (United States)

    Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2017-01-01

    Essential oils from the aerial parts (leaves, twigs and berries) of Pistacia lentiscus (PLEO) have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity. Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml) were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS), the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line. A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells. Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  17. Multifaceted Interpretation of Colon Cancer Stem Cells

    OpenAIRE

    Hatano, Yuichiro; Fukuda, Shinya; Hisamatsu, Kenji; Hirata, Akihiro; Hara, Akira; Tomita, Hiroyuki

    2017-01-01

    Colon cancer is one of the leading causes of cancer-related deaths worldwide, despite recent advances in clinical oncology. Accumulating evidence sheds light on the existence of cancer stem cells and their role in conferring therapeutic resistance. Cancer stem cells are a minor fraction of cancer cells, which enable tumor heterogeneity and initiate tumor formation. In addition, these cells are resistant to various cytotoxic factors. Therefore, elimination of cancer stem cells is difficult but...

  18. Characterising Castrate Tolerant Prostate Cancer Cells

    OpenAIRE

    ASHLEE KATE CLARK

    2017-01-01

    Prostate cancer is a prevalent disease in aging males. This thesis explores prostate cancer cells that escape current therapy and give rise to end-stage disease. Using sophisticated experimental approaches, this important cancer cell population was identified and characterised in human prostate cancer tissues.  Our discoveries will eventually lead to improved cancer treatments for men with prostate cancer.

  19. Single cancer cell analysis on a chip

    NARCIS (Netherlands)

    Yang, Yoon Sun

    2016-01-01

    Cancer cells in blood may represent “a real time liquid biopsy” through the interrogation of single cancer cells thereby determining the outspread of their heterogeneity and guiding therapy. In this thesis, we focused on single cancer cell analysis downstream of the isolation of cancer cells from

  20. CNT Nanobombs for Specific Eradication of Cancer Cells: A New Concept in Cancer Theranostics.

    Science.gov (United States)

    Omidi, Yadollah

    2011-01-01

    Whole extermination of cancerous cells/tissue seems no longer to be a dream. Exploiting advanced photoactive nanomaterials such as functionalized fullerenes and carbon nano-tubes (CNTs) can act as CNT nanobombs (CNT-NBs) when exposed to the near infrared (NIR) radiation. PEGylated CNTs tagged with an antibody/aptamer can target cancer cells. Once attached to cancer cells, the NIR emission (700-1100 nm), in which body tissues are mostly transparent, can be applied to CNT-NBs which can absorb the light and get heated up. The resultant enhanced temperature can abolish the cancer. Once stealth CNT-NBs are tagged with imaging moieties, it would be a matter of computer gaming for physician who can inject it for real time visualization and destruction of cancer by activation of the NIR laser. While, many nanosystems (NSs) are still in waiting list for clinical translation, our dreams may come true by applying stealth CNT-NBs against cancer.

  1. CNT Nanobombs for Specific Eradication of Cancer Cells: A New Concept in Cancer Theranosticss

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2011-11-01

    Full Text Available Whole extermination of cancerous cells/tissue seems no longer to be a dream. Exploiting advanced photoactive nanomaterials such as functionalized fullerenes and carbon nanotubes (CNTs can act as CNT nanobombs (CNT-NBs when exposed to the near infrared (NIR radiation. PEGylated CNTs tagged with an antibody/aptamer can target cancer cells. Once attached to cancer cells, the NIR emission (700-1100 nm, in which body tissues are mostly transparent, can be applied to CNT-NBs which can absorb the light and get heated up. The resultant enhanced temperature can abolish the cancer. Once stealth CNT-NBs are tagged with imaging moieties, it would be a matter of computer gaming for physician who can inject it for real time visualization and destruction of cancer by activation of the NIR laser. While, many nanosystems (NSs are still in waiting list for clinical translation, our dreams may come true by applying stealth CNT-NBs against cancer.

  2. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny

    2012-01-01

    ). RESULTS: We demonstrate that splenic B cells exposed to ebx produce large amounts of IL-10 in vitro and express CD1d and CD5 previously known to be associated with regulatory B cells. In SCID mice transplanted with colitogenic CD4(+) CD25(-) T cells, co-transfer of ebx-B cells significantly suppressed...... development of colitis. Suppression was dependent on B cell-derived IL-10, as co-transfer of IL-10 knockout ebx-B cells failed to suppress colitis. Ebx-B cell-mediated suppression of colitis was associated with a decrease in interferon gamma (IFN-¿)-producing T(H) 1 cells and increased frequencies of Foxp3......-expressing T cells. CONCLUSIONS: These data demonstrate that splenic B cells exposed to enterobacterial components acquire immunosuppressive functions by which they can suppress development of experimental T cell-mediated colitis in an IL-10-dependent way. (Inflamm Bowel Dis 2011;)....

  3. Mitochondrial hyperpolarization and cytochrome-c release in microwave-exposed MCF-7 cells.

    Science.gov (United States)

    Esmekaya, Meric A; Canseven, Ayşe G; Kayhan, Handan; Tuysuz, Mehmet Z; Sirav, Bahriye; Seyhan, Nesrin

    2017-04-01

    This study examines the effects of a 2.1-GHz WCDMA-modulated microwave (MW) radiation on apoptotic activity and mitochondrial membrane potential (ΔΨm) in MCF-7 cells. The cells were exposed to the MW at a specific absorption rate (SAR) of 0.528 W/kg for 4 or 24 h. The antiproliferative effect of MW exposure was determined by the MTT test. Cytochrome-c and p53 levels were determined by an ELISA method. The relative ΔΨm was analysed by JC-1 staining using flow cytometer. Apoptotic rate of the cells was measured by Annexin-V-FITC staining. All assays were performed after certain time of incubations (15 min-4 h) following MW exposure. MW-exposed cells showed a significant decrease in viability when compared to unexposed cells. A significantly larger decrease was observed after longer exposure. The percentage of apoptotic cells, amount of cytochrome-c, and relative ΔΨm were significantly higher in MW-exposed cells. The percent of apoptotic cells and relative ΔΨm in 24 h MW-exposed group was significantly higher than those in 4 h MW-exposed group. However, no significant change was observed in p53 levels. These results demonstrated that exposure to 2.1-GHz WCDMA-modulated MW radiation caused hyperpolarization of mitochondria that in turn induced apoptosis in MCF-7 cells.

  4. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, Milind; Meijer, Coby; de Bock, Geertruida H.; Boersma-van Ek, Wytske; Terstappen, Leon W. M. M.; Groen, Harry J. M.; Timens, Wim; Kruyt, Frank A. E.; Hiltermann, T. Jeroen N.

    2016-01-01

    The prognostic value of markers of cancer stem cells and epithelial to mesenchymal transition in small cell lung cancer is not known. We retrospectively studied these markers in the biopsy tissue of patients with small cell lung cancer and correlated them with overall survival and the strongest

  5. Cell-derived vesicles exposing coagulant tissue factor in saliva

    NARCIS (Netherlands)

    Berckmans, René J.; Sturk, Auguste; van Tienen, Laurens M.; Schaap, Marianne C. L.; Nieuwland, Rienk

    2011-01-01

    On vascular damage, coagulation is initiated by extravascular tissue factor (TF). Intravascular TF, which is present on circulating cell-derived vesicles, is non-coagulant under physiologic conditions but prothrombotic under pathologic conditions. Human saliva triggers coagulation, but the mechanism

  6. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    Science.gov (United States)

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  7. Reprogramming to developmental plasticity in cancer stem cells.

    Science.gov (United States)

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Upper aerodigestive cancer in battery manufacturers and steel workers exposed to mineral acid mists.

    Science.gov (United States)

    Coggon, D; Pannett, B; Wield, G

    1996-07-01

    To assess the risk of cancer from inhalation of mineral acid mists. A cohort study and nested case-control study of upper aerodigestive tumours were carried out in men employed since 1950 at two battery plants and two steel works in Britain. The cohort was identified from personnel records and included 2678 men with definite exposure to acid mists (mainly sulphuric acid), 367 with possible exposure, and 1356 who were unexposed. Mortality was compared with that in the national population by the person-years method. Cases of upper aerodigestive cancer were identified from death certificates and cancer registrations, and their exposure to acids was compared with that of age matched controls (five per case) from the same plant by conditional logistic regression. In follow up to 31 December 1993, 93% of men were traced, including 1277 who had died. Among the men definitely exposed to acid mists, overall mortality was less than in the national population (standardised mortality ratio (SMR) 0.92, 95% confidence interval (95% CI) 0.85-0.98) as was mortality from all cancers (SMR 0.92, 95% CI 0.79-1.05) and specifically from cancer of the larynx (SMR 0.48, 95% CI 0.01-2.70) and lung (SMR 0.98, 95% CI 0.78-1.22). A total of 15 incident or fatal cases of upper aerodigestive cancer were identified during follow up. When these men were compared with controls, risk was moderately increased in those who had worked for at least five years in jobs entailing exposures to sulphuric or hydrochloric acid in excess of 1 mg/m3 (OR 2.0, 95% CI 0.4-10). These findings are consistent with those from other studies which have indicated a hazard of upper aerodigestive cancer from acid mists. However, they indicate that any risk from exposures to sulphuric and hydrochloric acid below 1 mg/m3 is small.

  9. DNA Fragmentation in mammalian cells exposed to various light ions

    Science.gov (United States)

    Belli, M.; Cherubini, R.; Dalla Vecchia, M.; Dini, V.; Esposito, G.; Moschini, G.; Sapora, O.; Signoretti, C.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    Elucidation of how effects of densely ionizing radiation at cellular level are linked to DNA damage is fundamental for a better understanding of the mechanisms leading to genomic damage (especially chromosome aberrations) and developing biophysical models to predict space radiation effects. We have investigated the DNA fragmentation patterns induced in Chinese hamster V79 cells by 31 keV/μm protons, 123 keV/μm helium-4 ions and γ-rays in the size range 0.023-5.7 Mbp, using calibrated Pulsed Field Gel Electrophoresis (PFGE). The frequency distributions of fragments induced by the charged particles were shifted towards smaller sizes with respct to that induced by comparable doses of γ-rays. The DSB yields, evaluated from the fragments induced in the size range studied, were higher for protons and helium ions than for γ-rays by a factor of about 1.9 and 1.2, respectively. However, these ratios do not adequately reflect the RBE observed on the same cells for inactivation and mutation induced by these beams. This is a further indication for the lack of correlation between the effects exerted at cellular level and the initial yield of DSB. The dependence on radiation quality of the fragmentation pattern suggests that it may have a role in damage reparability. We have analyzed these patterns with a "random breakage" model generalized in order to consider the initial non-random distribution of the DNA molecules. Our results suggest that a random breakage mechanism can describe with a reasonable approximation the DNA fragmentation induced by γ-rays, while the approximation is not so good for light ions, likely due to the interplay between ion tracks and chromatin organization at the loop level.

  10. Radiation risk and cancer mortality in exposed populations living near the Techa River in Southern Urals

    Energy Technology Data Exchange (ETDEWEB)

    Kossenko, M.M.; Degteva, M.O.

    1992-06-01

    The appropriateness of applying risk coefficients calculated from short-term exposures at high doses for the assessment of radiation effects at low doses is currently much debated. The problem can be resolved on the basis of the data obtained from a long-term follow-up of the population exposed in the early 1950s when discharges of radioactive wastes from a radiochemical plant into the Techa River (southern Urals) occurred. This paper discusses the results of an analysis of cancer mortality during the period 1950-82. 10 refs., 5 figs., 8 tabs.

  11. Detection of apoptosis in cancer cell lines using Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanović, I.; van Hal, Y.; van der Velden, T.J.G.; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2016-01-01

    Induction of apoptosis in cancer cells by therapeutic agents is an important event to detect the potential effectiveness of therapies. Here we explore the potential of Surface Plasmon Resonance imaging (SPRi) to assess apoptosis in cancer cells exposed to therapeutic agents by measuring the

  12. Endothelial dysfunction in rectal cancer patients chronically exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rakhypbekov, Tolebay; Pak, Laura; Chaizhunusova, Nailya; Manambayeva, Zukhra; Tokanova, Sholpan; Madiyeva, Madina [Semey State Medical University, Semey (Kazakhstan); Inoue, Ken [Kochi University, Health Service Center, Kochi (Japan); Kawano, Noriyuki; Hoshi, Masaharu [Hiroshima University, Hiroshima (Japan); Takeichi, Nobuo [Takeichi Clinic, Hiroshima (Japan); Noso, Yoshihiro [Shimane University, Department of General Surgery, Faculty of Medicine, Shimane (Japan); Khozhayev, Arman; Molgazhdarov, Maulen [The Kazakh National Medical University of S.D.Asfendiyarov, Department of Oncology, Almaty (Kazakhstan); Olzhaev, Sayakhat [Almaty Regional Oncologic Hospital, Department of Oncology, Almaty (Kazakhstan)

    2017-08-15

    We sought to identify the features of endothelial function in rectal cancer patients who were exposed to chronic ionizing radiation from a nuclear test site in Kazakhstan. We examined 146 individuals, 76 of whom were rectal cancer patients. The existence of a complex of disturbances of the endothelium and hemostasis systems in patients vs non-patients was revealed. Endothelial dysfunction was expressed as an increase of nitric oxide (NO) production along with decreases in vasodilatation function, and increased levels of von Willebrand factor in blood, along with an increase in the number of circulating endotheliocytes. Significant correlations between indicators of endothelial function and vascular-platelet hemostasis were observed. These changes and their interrelations were expressed more strongly in the patients who lived in the contaminated area around the nuclear test site. Such patients could have an increased risk of thrombosis and other complications after the treatment of a malignant neoplasm. (orig.)

  13. Do Cell Phones Cause Cancer?

    CERN Document Server

    Leikind, Bernard

    2010-01-01

    Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

  14. Investigating longitudinal changes in the mechanical properties of MCF-7 cells exposed to paclitaxol using particle tracking microrheology

    Science.gov (United States)

    El Kaffas, Ahmed; Bekah, Devesh; Rui, Min; Kumaradas, J. Carl; Kolios, Michael C.

    2013-02-01

    Evidence suggests that compression and shear wave elastography are sensitive to the mechanical property changes occuring in dying cells following chemotherapy, and can hence be used to monitor cancer treatment response. A qualitative and quantitative understanding of the mechanical changes at the cellular level would allow to better infer how these changes affect macroscopic tissue mechanical properties and therefore allow the optimization of elastographic techniques (such as shear wave elastography) for the monitoring of cancer therapy. We used intracellular particle tracking microrheology (PTM) to investigate the mechanical property changes of cells exposed to paclitaxol, a mitotic inhibitor used in cancer chemotherapy. The average elastic and viscous moduli of the cytoplasm of treated MCF-7 breast cancer cells were calculated for frequency ranges between 0.2 and 100 rad s-1 (corresponding to 0.03 and 15.92 Hz, respectively). A significant increase in the complex shear modulus of the cell cytoplasm was detected at 12 h post treatment. At 24 h after drug exposure, the elastic and viscous moduli increased by a total of 191.3 Pa (>8000×) and 9 Pa (˜9×), respectively for low frequency shear modulus measurements (at 1 rad s-1). At higher frequencies (10 rad s-1), the elastic and viscous moduli increased by 188.5 Pa (˜60×) and 1.7 Pa (˜1.1×), respectively. Our work demonstrates that PTM can be used to measure changes in the mechanical properties of treated cells and that cell elasticity significantly increases by 24 h after chemotherapy exposure.

  15. Losartan sensitizes selectively prostate cancer cell to ionizing radiation.

    Science.gov (United States)

    Yazdannejat, H; Hosseinimehr, S J; Ghasemi, A; Pourfallah, T A; Rafiei, A

    2016-01-11

    Losartan is an angiotensin II receptor (AT-II-R) blocker that is widely used by human for blood pressure regulation. Also, it has antitumor property. In this study, we investigated the radiosensitizing effect of losartan on cellular toxicity induced by ionizing radiation on prostate cancer and non-malignant fibroblast cells. Human prostate cancer (DU-145) and human non-malignant fibroblast cells (HFFF2) were treated with losartan at different concentrations (0.5, 1, 10, 50 and 100 µM) and then these cells were exposed to ionizing radiation. The cell proliferation was determined using MTT assay. Our results showed that losartan exhibited antitumor effect on prostate cancer cells; it was reduced cell survival to 66% at concentration 1 µM. Losartan showed an additive killing effect in combination with ionizing radiation on prostate cancer cell. The cell proliferation was reduced to 54% in the prostate cancer cells treated with losartan at concentration 1 µM in combination with ionizing radiation. Losartan did not exhibit any toxicity on HFFF2 cell. This result shows a promising effect of losartan on enhancement of therapeutic effect of ionizing radiation in patients during therapy.

  16. Genomic Determinants of Protein Abundance Variation in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theodoros I. Roumeliotis

    2017-08-01

    Full Text Available Assessing the impact of genomic alterations on protein networks is fundamental in identifying the mechanisms that shape cancer heterogeneity. We have used isobaric labeling to characterize the proteomic landscapes of 50 colorectal cancer cell lines and to decipher the functional consequences of somatic genomic variants. The robust quantification of over 9,000 proteins and 11,000 phosphopeptides on average enabled the de novo construction of a functional protein correlation network, which ultimately exposed the collateral effects of mutations on protein complexes. CRISPR-cas9 deletion of key chromatin modifiers confirmed that the consequences of genomic alterations can propagate through protein interactions in a transcript-independent manner. Lastly, we leveraged the quantified proteome to perform unsupervised classification of the cell lines and to build predictive models of drug response in colorectal cancer. Overall, we provide a deep integrative view of the functional network and the molecular structure underlying the heterogeneity of colorectal cancer cells.

  17. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The physics of cancer is a relatively new emerging field of cancer research. In the last decade it has become a focus of biophysical research as well as becoming a novel focus for classical cancer research. This special section of Physical Biology focusing on invasive cancer cells and metastasis (physical oncology) will give greater insight into the different subfields where physical approaches are being applied to cancer research. This focus on the physical aspects of cancer is necessary because novel approaches in the field of genomics and proteomics have not altered the field of cancer research dramatically, due to the fact that few breakthroughs have been made. It is still not understood why some primary tumors metastasize and thus have a worse outcome compared to others that do not metastasize. As biophysicists, we and others suggest that the mechanical properties of the cancer cells, which possess the ability to transmigrate, are quite different compared to non-metastatic and non-invasive cancer cells. Furthermore, we hypothesize that these cancer cells undergo a selection process within the primary tumor that enables them to weaken their cell-cell adhesions and to alter their cell-matrix adhesions in order to be able to cross the outermost boundary of the primary tumor, as well as the surrounding basement membrane, and to invade the connective tissue. This prerequisite may also help the cancer cells to enter blood or lymph vessels, get transported with the vessel flow and form secondary tumors either within the vessel, directly on the endothelium, or in a different organ after crossing the endothelial lining a second time. This special section begins with a paper by Mark F Coughlin and Jeffrey J Fredberg on the changes in cytoskeletal dynamics and nonlinear rheology due to the metastatic capability of cancer cells from different cancer tissue types such as skin, bladder, prostate and kidney [1]. The hypothesis was that the metastatic outcome is impacted by

  18. Breast cancer circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Maria Joao Carvalho

    2011-12-01

    Full Text Available Metastasization of breast cancer involves various mechanisms responsible for progression from invasive lesion to dissemination in distant organs. Regional lymph node metastasization was considered an initial step in this process, but it is now recognized that hematogenous dissemination is a deviation from lymphatic circulation. The detection of circulating tumor cells (CTC is an aim in several oncology areas. For this purpose, several techniques have been used to detect CTC, including the use of antibodies and techniques with nucleic acids. This study reviews the published studies considering the detection of breast cancer CTC. There are focused the difficulties in identifying a CTC in a heterogeneous population, the handling of the sample, criteria of positivity, analytical techniques, and specific markers. There are systematized various specific markers of breast cancer cells also the problems with false positive results. Finally, we hypothesize clinical applications either as a prognostic marker or as a therapeutic response monitor.

  19. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  20. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  1. Stem cells in prostate cancer.

    Science.gov (United States)

    Mateo, Francesca; Fernandez, Pedro L; Thomson, Timothy M

    2013-06-01

    Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.

  2. Cancer Incidence among Pesticide Applicators Exposed to Permethrin in the Agricultural Health Study

    Science.gov (United States)

    Rusiecki, Jennifer A.; Patel, Rahulkumar; Koutros, Stella; Beane-Freeman, Laura; Landgren, Ola; Bonner, Matthew R.; Coble, Joseph; Lubin, Jay; Blair, Aaron; Hoppin, Jane A.; Alavanja, Michael C.R.

    2009-01-01

    Background Permethrin is a synthetic pyrethroid insecticide widely used in agriculture, in public health, and in many U.S. homes and gardens. Objective In this study we evaluated the incidence of cancer among pesticide applicators exposed to permethrin in the Agricultural Health Study (AHS). Methods A total of 49,093 pesticide applicators were included in this analysis of the AHS, a prospective cohort study of licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide exposure and lifestyle factors was obtained from self-administered questionnaires completed in 1993–1997. Average length of follow-up since applicator enrollment in the cohort was 9.14 years. We used two permethrin exposure metrics: a) lifetime days applicators personally mixed or applied permethrin and b) intensity-weighted lifetime days (lifetime days weighted by estimated intensity of exposure). We used Poisson regression analysis to estimate relative risks (RRs) and 95% confidence intervals (CIs) for malignancies by tertiles of exposure. Results We found no associations between permethrin and all malignant neoplasms combined, or between permethrin and melanoma, non-Hodgkin lymphoma, leukemia, or cancers of the colon, rectum, lung, or prostate. We found elevated and statistically significant risks for multiple myeloma in the highest tertiles of both lifetime exposure-days (RR = 5.72; 95% CI, 2.76–11.87) and intensity-weighted lifetime exposure-days (RR = 5.01; 95% CI, 2.41–10.42), compared with applicators reporting they never used permethrin; these results are based on only 15 exposed cases. These findings were similar across a variety of alternative exposure metrics, exposure categories, and reference groups. Conclusions This study found no association with most cancers analyzed. Although the suggested association with multiple myeloma was based on a small number of cases, it warrants further evaluation. PMID:19440497

  3. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer

    NARCIS (Netherlands)

    Pore, M.M.; Meijer, C.; de Bock, G.H.; Boersma-van Ek, W.; Terstappen, Leonardus Wendelinus Mathias Marie; Groen, H.J.M.; Timens, W.; Kruyt, F.A.E.; Hiltermann, T.N.J.

    2016-01-01

    Background Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and

  4. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  5. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities.

  6. Proteasome expression and activity in cancer and cancer stem cells.

    Science.gov (United States)

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  7. Cancer mortality in workers exposed to dieldrin and aldrin: over 50 years of follow up.

    Science.gov (United States)

    van Amelsvoort, Ludovic G P M; Slangen, Jos J M; Tsai, Shan P; de Jong, Geert; Kant, Ijmert

    2009-01-01

    Dieldrin and aldrin, pesticides widely used until the 1970s, have been under suspicion of being carcinogenic. In this study, overall and cause-specific mortality was assessed in a cohort of 570 employees occupationally exposed to the pesticides dieldrin and aldrin to investigate the long-term health effects, in particular carcinogenic effects. All of the employees worked in the production plants between January 1954 and January 1970 and were followed for cause-specific mortality until 30 April 2006. Based on dieldrin levels in blood samples taken from 343 workers during the exposure period, the total intake of dieldrin was estimated for each individual subjects in the cohort. The estimated total intake ranged from 11 to 7,755 mg of dieldrin, with an average of 737 mg. Two hundred and twenty-six workers had died before 30 April 2006 compared with an expected number of 327.3, giving a standardized mortality ratio (SMR) of 69.0 (95% confidence interval (CI): 60.3-78.7). Overall cancer mortality was also significantly lower than expected (SMR: 76.4, 95% CI: 60.8-94.9). Also, none of the specific cancer sites showed a significant excess mortality and no association between exposure level and cancer mortality was found. The results from this study support findings from other epidemiological and recent animal studies concluding that dieldrin and aldrin are not likely human carcinogens.

  8. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  9. Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation.

    Science.gov (United States)

    Peppicelli, Silvia; Toti, Alessandra; Giannoni, Elisa; Bianchini, Francesca; Margheri, Francesca; Del Rosso, Mario; Calorini, Lido

    2016-07-17

    Low extracellular pH promotes in melanoma cells a malignant phenotype characterized by an epithelial-to-mesenchymal transition (EMT) program, endowed with mesenchymal markers, high invasiveness and pro-metastatic property. Here, we demonstrate that melanoma cells exposed to an acidic extracellular microenvironment, 6.7±0.1, shift to an oxidative phosphorylation (Oxphos) metabolism. Metformin, a biguanide commonly used for type 2 diabetes, inhibited the most relevant features of acid-induced phenotype, including EMT and Oxphos. When we tested effects of lactic acidosis, to verify whether sodium lactate might have additional effects on acidic melanoma cells, we found that EMT and Oxphos also characterized lactic acid-treated cells. An increased level of motility was the only gained property of lactic acidic-exposed melanoma cells. Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis. Thus, our study provides the first evidence that metformin may target either proton or lactic acidosis-exposed melanoma cells inhibiting EMT and Oxphox metabolism. These findings disclose a new potential rationale of metformin addition to advanced melanoma therapy, e.g. targeting acidic cell subpopulation.

  10. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  11. Cancer Stem Cells and the Ontogeny of Lung Cancer

    OpenAIRE

    Peacock, Craig D.; Watkins, D. Neil

    2008-01-01

    Lung cancer is the leading cause of cancer death in the world today and is poised to claim approximately 1 billion lives during the 21st century. A major challenge in treating this and other cancers is the intrinsic resistance to conventional therapies demonstrated by the stem/progenitor cell that is responsible for the sustained growth, survival, and invasion of the tumor. Identifying these stem cells in lung cancer and defining the biologic processes necessary for their existence is paramou...

  12. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  13. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    Science.gov (United States)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  14. A DRD1 polymorphism predisposes to lung cancer among those exposed to secondhand smoke during childhood.

    Science.gov (United States)

    Robles, Ana I; Yang, Ping; Jen, Jin; McClary, Andrew C; Calhoun, Kara; Bowman, Elise D; Vähäkangas, Kirsi; Greathouse, K Leigh; Wang, Yi; Olivo-Marston, Susan; Wenzlaff, Angela S; Deng, Bo; Schwartz, Ann G; Ryan, Bríd M

    2014-12-01

    Lung cancer has a familial component which suggests a genetic contribution to its etiology. Given the strong evidence linking smoking with lung cancer, we studied miRNA-related loci in genes associated with smoking behavior. CHRNA, CHRNB gene families, CYP2A6, and DRD1 (dopamine receptor D1) were mined for SNPs that fell within the seed region of miRNA binding sites and then tested for associations with risk in a three-stage validation approach. A 3'UTR (untranslated region) SNP in DRD1 was associated with a lower risk of lung cancer among individuals exposed to secondhand smoke during childhood [OR, 0.69; 95% confidence interval (CI), 0.60-0.79; P < 0.0001]. This relationship was evident in both ever (OR, 0.74; 95% CI, 0.62-0.88; P = 0.001) and never smokers (OR, 0.61; 95% CI, 0.47-0.79; P < 0.0001), European American (OR, 0.65; 95% CI, 0.53-0.80; P < 0.0001), and African American (OR, 0.73; 95% CI, 0.62-0.88; P = 0.001) populations. Although much remains undefined about the long-term risks associated with exposure to secondhand smoke and heterogeneity between individuals in regard to their susceptibility to the effects of secondhand smoke, our data show an interaction between an SNP in the 3'UTR of DRD1 and exposure to secondhand smoke during childhood. Further work is needed to explore the mechanistic underpinnings of this SNP and the nature of the interaction between DRD1 and exposure to secondhand smoke during childhood. ©2014 American Association for Cancer Research.

  15. BCG vaccination induces HIV target cell activation in HIV-exposed infants in a randomized trial.

    Science.gov (United States)

    Gasper, Melanie A; Hesseling, Anneke C; Mohar, Isaac; Myer, Landon; Azenkot, Tali; Passmore, Jo-Ann S; Hanekom, Willem; Cotton, Mark F; Crispe, I Nicholas; Sodora, Donald L; Jaspan, Heather B

    2017-04-06

    BACKGROUND. Bacillus Calmette-Guérin (BCG) vaccine is administered at birth to protect infants against tuberculosis throughout Africa, where most perinatal HIV-1 transmission occurs. We examined whether BCG vaccination alters the levels of activated HIV target T cells in HIV-exposed South African infants. METHODS. HIV-exposed infants were randomized to receive routine (at birth) or delayed (at 8 weeks) BCG vaccination. Activated and CCR5-expressing peripheral blood CD4+ T cell, monocyte, and NK cell frequencies were evaluated by flow cytometry and immune gene expression via PCR using Biomark (Fluidigm). RESULTS. Of 149 infants randomized, 92% (n = 137) were retained at 6 weeks: 71 in the routine BCG arm and 66 in the delayed arm. Routine BCG vaccination led to a 3-fold increase in systemic activation of HIV target CD4+CCR5+ T cells (HLA-DR+CD38+) at 6 weeks (0.25% at birth versus 0.08% in delayed vaccination groups; P = 0.029), which persisted until 8 weeks of age when the delayed arm was vaccinated. Vaccination of the infants in the delayed arm at 8 weeks resulted in a similar increase in activated CD4+CCR5+ T cells. The increase in activated T cells was associated with increased levels of MHC class II transactivator (CIITA), IL12RB1, and IFN-α1 transcripts within peripheral blood mononuclear cells but minimal changes in innate cells. CONCLUSION. BCG vaccination induces immune changes in HIV-exposed infants, including an increase in the proportion of activated CCR5+CD4+ HIV target cells. These findings provide insight into optimal BCG vaccine timing to minimize the risks of HIV transmissions to exposed infants while preserving potential benefits conferred by BCG vaccination. TRIAL REGISTRATION. ClinicalTrials.gov NCT02062580. FUNDING. This trial was sponsored by the Elizabeth Glaser Pediatric AIDS Foundation (MV-00-9-900-01871-0-00) and the Thrasher Foundation (NR-0095); for details, see Acknowledgments.

  16. Comprehensive analysis of 5-aminolevulinic acid dehydrogenase (ALAD variants and renal cell carcinoma risk among individuals exposed to lead.

    Directory of Open Access Journals (Sweden)

    Dana M van Bemmel

    Full Text Available BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC. Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR and 95% confidence intervals (CI were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02 when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GGOR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GAOR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int = 0.06. No significant modification in RCC risk was observed for the functional variant rs1800435(K68N. Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure.

  17. Cancer stem cells: the theory and perspectives in cancer therapy.

    Science.gov (United States)

    Gil, Justyna; Stembalska, Agnieszka; Pesz, Karolina A; Sasiadek, Maria M

    2008-01-01

    The cancer stem cell theory elucidates not only the issue of tumour initiation and development, tumour's ability to metastasise and reoccur, but also the ineffectiveness of conventional cancer therapy. This review examines stem cell properties, such as self-renewal, heterogeneity, and resistance to apoptosis. The 'niche' hypothesis is presented, and mechanisms of division, differentiation, self-renewal and signalling pathway regulation are explained. Epigenetic alterations and mutations of genes responsible for signal transmission may promote the formation of cancer stem cells. We also present the history of development of the cancer stem cell theory and discuss the experiments that led to the discovery and confirmation of the existence of cancer stem cells. Potential clinical applications are also considered, including therapeutic models aimed at selective elimination of cancer stem cells or induction of their proper differentiation.

  18. Prostate cancer control and survival in Vietnam veterans exposed to Agent Orange.

    Science.gov (United States)

    Everly, Lydia; Merrick, Gregory S; Allen, Zachariah A; Butler, Wayne M; Wallner, Kent; Lief, Jonathan H; Galbreath, Robert W; Adamovich, Edward

    2009-01-01

    In this study, we evaluated the impact of Agent Orange exposure on survival in Vietnam Veterans undergoing prostate brachytherapy. From May 1995 to January 2005, 81 Vietnam veterans (29 with Agent Orange exposure and 52 without) and 433 nonveterans of comparable age (mean age, 58 years) underwent prostate brachytherapy. The mean follow-up was 5.0 years. Biochemical progression-free survival (bPFS) was defined as a prostate-specific antigen (PSA)Agent Orange-exposed men were least likely to remain biochemically controlled (89.5%, 100%, and 97.2% in Agent Orange-exposed, nonexposed veterans, and nonveterans, respectively, p=0.012). No significant differences in cause-specific (CSS) (p=0.832) or overall survival (OS) (p=0.363) were discerned. In multivariate analysis, CSS was best predicted by Gleason Score and day 0 D(90), whereas Gleason Score, % positive biopsies, and D(90) predicted for bPFS. None of the evaluated parameters predicted for OS, however, a trend was identified for better OS in younger patients and those with a higher D(90). In addition, Agent Orange exposure did not predict for any of the survival parameters. To date, 22 patients have died (metastatic prostate cancer two, second malignancies nine, cardiovascular disease eight, trauma two, and pulmonary one). In this cohort of prostate brachytherapy patients, Agent Orange exposure did not statistically impact survival in multivariate analysis.

  19. A POX on Renal Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  20. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Science.gov (United States)

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E; Shay, Jerry W

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  1. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi

    Science.gov (United States)

    Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause

    1990-01-01

    Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....

  2. Detection of apoptosis in cancer cell lines using Surface Plasmon Resonance imaging

    Directory of Open Access Journals (Sweden)

    Ivan Stojanović

    2016-03-01

    Full Text Available Induction of apoptosis in cancer cells by therapeutic agents is an important event to detect the potential effectiveness of therapies. Here we explore the potential of Surface Plasmon Resonance imaging (SPRi to assess apoptosis in cancer cells exposed to therapeutic agents by measuring the cytochrome C release of apoptotic cells. Spots on the SPR sensor were coated with anti-cytochrome C, anti-EpCAM, anti-CD49e monoclonal antibodies and combinations thereof. Cells from the breast cancer cell line MCF7 were introduced into a flow cell, captured on a sensor surface and exposed to culture medium with and without paclitaxel. The cells were followed for 72 h. Clear SPRi responses were observed on the anti-EpCAM coated spots, indicating binding of the MCF7 cells with strong time and drug presence dependent increases in SPRi responses on the spots coated with both anti-EpCAM as well as anti-cytochrome C. This suggests a release of cytochrome C by the MCF7 cells in these specific locations. In addition offline experiments were performed where cultured MCF7 cells were exposed to complete culture medium with paclitaxel, Trastuzumab antibody and Trastuzumab T-DM1 (an antibody drug conjugate. The supernatant of these cells was analyzed and also their drug concentration dependent cytochrome C presence was detected. These preliminary results suggest SPRi to be a unique tool to measure real time response of cancer cells exposed to drugs or drug combinations.

  3. Occupational characteristics of respiratory cancer patients exposed to asbestos in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Petrauskaite Everatt, R; Smolianskien, G; Jankauskas, R [Institute of Hygiene, Etmonu 3/6, LT-01129 Vilnius (Lithuania); Tossavainen, A [Finnish Institute of Occupational Health, Topeliuksenkatu 41a A, FI-00250 Helsinki (Finland); Cicens, S, E-mail: grazina.smolianskiene@dmc.l [Institute of Oncology, Vilnius University, Santaritkiu 1, LT-08660 Vilnius (Lithuania)

    2009-02-01

    Objective: To assess characteristics of asbestos exposure in respiratory cancer patients in Lithuania. Methods. Information on occupational exposure to asbestos was collected by personal interviews and occupational characteristics were evaluated among 183 lung cancer and mesothelioma patients with cumulative asbestos exposure >=0.01 fibre years hospitalized at the Institute of Oncology, Vilnius. Additionally, some results of workplace air measurements were reviewed. Results. Cases with estimated cumulative exposure >=5 fibre years had worked mainly in the construction industry (49%), installation and maintenance (13%), foundry and metal products manufacturing (6%), heating trades and boilerhouses (6%) as fitters/maintenance technicians, construction workers, welders, electricians or foremen. Typical asbestos materials used by the patients were asbestos powder, asbestos cement sheets and pipes, asbestos cord, brake and clutch linings. Patients were exposed to asbestos when insulating boilers, furnaces, pipes in power stations, industrial facilities, ships, locomotives, buildings, while covering and repairing roofs, at the asbestos cement plant or unloading asbestos products. Most patients with estimated cumulative exposure of >=0.01-4.9 fibre years worked as lorry, bus or tractor drivers and motor vehicle mechanics. In 2002-2007 workplace air asbestos concentrations exceeded the limit value of 0.1 f/cm{sup 3} in 11 samples out of 208 measurements. Conclusion. The results of this study indicate that since the 1960s occupational exposure to chrysotile asbestos was extensive in Lithuania.

  4. Colon Cancer Cell Separation by Dielectrophoresis

    Science.gov (United States)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  5. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Science.gov (United States)

    Saeed-Zidane, Mohammed; Linden, Lea; Salilew-Wondim, Dessie; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Tesfaye, Dawit

    2017-01-01

    Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells exposed to oxidative

  6. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  7. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria.

    Science.gov (United States)

    Yoder, Alyson C; Guo, Kejun; Dillon, Stephanie M; Phang, Tzu; Lee, Eric J; Harper, Michael S; Helm, Karen; Kappes, John C; Ochsenbauer, Christina; McCarter, Martin D; Wilson, Cara C; Santiago, Mario L

    2017-02-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  8. The transcriptome of HIV-1 infected intestinal CD4+ T cells exposed to enteric bacteria

    Science.gov (United States)

    Dillon, Stephanie M.; Phang, Tzu; Lee, Eric J.; Helm, Karen; Kappes, John C.; McCarter, Martin D.

    2017-01-01

    Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint

  9. Cancer Cell Fusion: Mechanisms Slowly Unravel

    Directory of Open Access Journals (Sweden)

    Felicite K. Noubissi

    2016-09-01

    Full Text Available Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.

  10. Antiproliferative action of metformin in human lung cancer cell lines.

    Science.gov (United States)

    Ashinuma, Hironori; Takiguchi, Yuichi; Kitazono, Satoru; Kitazono-Saitoh, Miyako; Kitamura, Atsushi; Chiba, Tetsuhiro; Tada, Yuji; Kurosu, Katsushi; Sakaida, Emiko; Sekine, Ikuo; Tanabe, Nobuhiro; Iwama, Atsushi; Yokosuka, Osamu; Tatsumi, Koichiro

    2012-07-01

    The oral antidiabetic agent metformin has anticancer properties, probably via adenosine monophosphate-activated protein kinase activation. In the present study, growth inhibition was assessed by a clonogenic and by a cell survival assay, apoptosis induction was assessed by Hoechst staining and caspase activities and cell cycle alteration after exposure to metformin, and the interaction of metformin with cisplatin in vitro were elucidated in four human lung cancer cell lines representing squamous, adeno-, large cell and small cell carcinoma. Clonogenicity and cell proliferation were inhibited by metformin in all the cell lines examined. This inhibitory effect was not specific to cancer cells because it was also observed in a non-transformed human mesothelial cell line and in mouse fibroblast cell lines. Inhibition of clonogenicity was observed only when the cells were exposed to metformin for a long period, (10 days) and the surviving fraction, obtained after inhibiting proliferation by increasing the dose, reached a plateau at approximately 0.1-0.3, indicating the cytostatic characteristics of metformin. Metformin induced significant apoptosis only in the small cell carcinoma cell line. A tendency of cell cycle accumulation at the G0/G1 phase was observed in all four cell lines. Cisplatin, in a dose-dependent manner, severely antagonized the growth inhibitory effect of metformin, and even reversed the effect in three cell lines but not in the adenocarcinoma cell line. The present data obtained using various histological types of human lung cancer cell lines in vitro illustrate the cytostatic nature of metformin and its cytoprotective properties against cisplatin.

  11. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke.

    Science.gov (United States)

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air-liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10(4) 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

  12. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Berman R

    2016-06-01

    Full Text Available Reena Berman, Di Jiang, Qun Wu, Hong Wei Chu Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: Human rhinovirus (HRV infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. Keywords: α1-antitrypsin, rhinovirus, COPD, cigarette smoke, ICAM-1

  13. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    OpenAIRE

    Yuan, Zhi-xiang; Mo, Jingxin; Zhao, Guixian; Shu, Gang; Fu, Hua-Lin; Wei ZHAO

    2016-01-01

    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rati...

  14. Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jingxian Ding

    Full Text Available Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs that acquire an alternatively activated macrophage (M2 phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p0.05. Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+CD24(-/low phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.

  15. Static electric fields interfere in the viability of cells exposed to ionising radiation.

    Science.gov (United States)

    Arruda-Neto, João D T; Friedberg, Errol C; Bittencourt-Oliveira, Maria C; Cavalcante-Silva, Erika; Schenberg, Ana C G; Rodrigues, Tulio E; Garcia, Fermin; Louvison, Monica; Paula, Claudete R; Mesa, Joel; Moron, Michelle M; Maria, Durvanei A; Genofre, Godofredo C

    2009-04-01

    The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5 kGy, using a (60)Co gamma source facility. Samples irradiated with 3 kGy were exposed for 2 h to a 20 V . cm(-1) static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36 degrees C for 20 h, gamma-irradiated with doses from 1-4 kGy, and submitted to an electric field of 180 V . cm(-1). Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with gamma-H2AX foci. In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with gamma-H2AX foci increased 40%, approximately. Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation + EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with gamma

  16. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  17. Functional activation of T cells by dendritic cells and macrophages exposed to the intracellular parasite Neospora caninum.

    Science.gov (United States)

    Dion, Sarah; Germon, Stéphanie; Guiton, Rachel; Ducournau, Céline; Dimier-Poisson, Isabelle

    2011-05-01

    Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion

  18. Frequency patterns of T-cell exposed motifs in immunoglobulin heavy chain peptides presented by MHCs

    Directory of Open Access Journals (Sweden)

    Robert D. Bremel

    2014-10-01

    Full Text Available Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV to assess the diversity of T-cell exposed motifs (TCEM. TCEM comprise those amino acids in a MHC-bound peptide which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM. Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of T-cell exposed motif re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by clonal expansion that develop along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  19. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

    Science.gov (United States)

    Vallabhapurapu, Subrahmanya D; Blanco, Víctor M; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S; Qi, Xiaoyang

    2015-10-27

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

  20. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    Science.gov (United States)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  1. Assembly and Reorientation of Stress Fibers Drives Morphological Changes to Endothelial Cells Exposed to Shear Stress

    Science.gov (United States)

    Noria, Sabrena; Xu, Feng; McCue, Shannon; Jones, Mara; Gotlieb, Avrum I.; Langille, B. Lowell

    2004-01-01

    Fluid shear stress greatly influences the biology of vascular endothelial cells and the pathogenesis of atherosclerosis. Endothelial cells undergo profound shape change and reorientation in response to physiological levels of fluid shear stress. These morphological changes influence cell function; however, the processes that produce them are poorly understood. We have examined how actin assembly is related to shear-induced endothelial cell shape change. To do so, we imposed physiological levels of shear stress on cultured endothelium for up to 96 hours and then permeabilized the cells and exposed them briefly to fluorescently labeled monomeric actin at various time points to assess actin assembly. Alternatively, monomeric actin was microinjected into cells to allow continuous monitoring of actin distribution. Actin assembly occurred primarily at the ends of stress fibers, which simultaneously reoriented to the shear axis, frequently fused with neighboring stress fibers, and ultimately drove the poles of the cells in the upstream and/or downstream directions. Actin polymerization occurred where stress fibers inserted into focal adhesion complexes, but usually only at one end of the stress fiber. Neither the upstream nor downstream focal adhesion complex was preferred. Changes in actin organization were accompanied by translocation and remodeling of cell-substrate adhesion complexes and transient formation of punctate cell-cell adherens junctions. These findings indicate that stress fiber assembly and realignment provide a novel mode by which cell morphology is altered by mechanical signals. PMID:15039210

  2. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of (111)In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin).

    Science.gov (United States)

    Cornelissen, Bart; McLarty, Kristin; Kersemans, Veerle; Reilly, Raymond M

    2008-08-01

    Our objective was to define the relationships between tumor uptake of [(111)In]-IGF-1 and [(111)In]-IGF-1(E3R), an analogue which does not bind insulin growth factor-1 (IGF-1) binding proteins (i.e., IGFBP-3), and the level of IGF-1 receptor (IGF-1R) expression on human breast cancer (BC) xenografts in athymic mice, as well as the feasibility for tumor imaging. A second objective was to correlate IGF-1R (and HER2 density) with the cytotoxicity of trastuzumab in the absence/presence of IGFBP-3 or the IGF-1R tyrosine kinase inhibitor, AG1024. The tumor and normal tissue uptake of [(111)In]-IGF-1 and [(111)In]-IGF-1(E3R) were determined at 4 h postinjection in mice implanted subcutaneously with MDA-MB-231, H2N, HR2 or MCF-7/HER2-18 human BC xenografts (8.5x10(4), 1.4x10(4), 4.0x10(4) and 1.0x10(5) IGF-1R/cell, respectively). The effect of co-injection of IGF-1 (50 microg) or IGFBP-3 (2 or 25 microg) was studied. The relationship between tumor uptake of [(111)In]-IGF-1(E3R) and IGF-1R density was examined. MicroSPECT/CT imaging was performed on mice with MCF-7/HER2-18 tumors injected with [(111)In]-IGF-1(E3R). The surviving fraction of BC cells exposed to trastuzumab (67.5 mug/ml) in the absence/presence of IGFBP-3 (1 microg/ml) or the IGF-1R kinase inhibitor, AG1024 (1 or 5 microg/ml), was determined. [(111)In]-IGF-1 was specifically taken up by MCF-7/HER2-18 xenografts; tumor uptake was decreased twofold when co-injected with IGF-1 (1.9+/-0.1 vs. 1.0+/-0.1 %ID/g). Co-injection of IGBP-3 decreased kidney uptake of [(111)In]-IGF-1 up to twofold and increased circulating radioactivity threefold. There was a strong linear correlation (r(2)=0.99) between the tumor uptake of (111)In-IGF-1(E3R) and IGF-1R density. Tumor uptake ranged from 0.4+/-0.05 %ID/g for H2N to 2.5+/-0.5 %ID/g for MCF-7/HER2-18 xenografts. MCF-7/HER2-18 tumors were visualized by microSPECT/CT. Resistance of BC cells to trastuzumab was directly associated with IGF-1R expression, despite co-expression of

  3. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of {sup 111}In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin)

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, Bart; McLarty, Kristin; Kersemans, Veerle [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, ON, M5S 3M2 (Canada); Toronto General Research Institute, University Health Network Toronto, Toronto, ON, M5S 3M2 (Canada)], E-mail: raymond.reilly@utoronto.ca

    2008-08-15

    Introduction: Our objective was to define the relationships between tumor uptake of [{sup 111}In]-IGF-1 and [{sup 111}In]-IGF-1(E3R), an analogue which does not bind insulin growth factor-1 (IGF-1) binding proteins (i.e., IGFBP-3), and the level of IGF-1 receptor (IGF-1R) expression on human breast cancer (BC) xenografts in athymic mice, as well as the feasibility for tumor imaging. A second objective was to correlate IGF-1R (and HER2 density) with the cytotoxicity of trastuzumab in the absence/presence of IGFBP-3 or the IGF-1R tyrosine kinase inhibitor, AG1024. Methods: The tumor and normal tissue uptake of [{sup 111}In]-IGF-1 and [{sup 111}In]-IGF-1(E3R) were determined at 4 h postinjection in mice implanted subcutaneously with MDA-MB-231, H2N, HR2 or MCF-7/HER2-18 human BC xenografts (8.5x10{sup 4}, 1.4x10{sup 4}, 4.0x10{sup 4} and 1.0x10{sup 5} IGF-1R/cell, respectively). The effect of co-injection of IGF-1 (50 {mu}g) or IGFBP-3 (2 or 25 {mu}g) was studied. The relationship between tumor uptake of [{sup 111}In]-IGF-1(E3R) and IGF-1R density was examined. MicroSPECT/CT imaging was performed on mice with MCF-7/HER2-18 tumors injected with [{sup 111}In]-IGF-1(E3R). The surviving fraction of BC cells exposed to trastuzumab (67.5 {mu}g/ml) in the absence/presence of IGFBP-3 (1 {mu}g/ml) or the IGF-1R kinase inhibitor, AG1024 (1 or 5 {mu}g/ml), was determined. Results: [{sup 111}In]-IGF-1 was specifically taken up by MCF-7/HER2-18 xenografts; tumor uptake was decreased twofold when co-injected with IGF-1 (1.9{+-}0.1 vs. 1.0{+-}0.1 %ID/g). Co-injection of IGBP-3 decreased kidney uptake of [{sup 111}In]-IGF-1 up to twofold and increased circulating radioactivity threefold. There was a strong linear correlation (r{sup 2}=0.99) between the tumor uptake of {sup 111}In-IGF-1(E3R) and IGF-1R density. Tumor uptake ranged from 0.4{+-}0.05 %ID/g for H2N to 2.5{+-}0.5 %ID/g for MCF-7/HER2-18 xenografts. MCF-7/HER2-18 tumors were visualized by microSPECT/CT. Resistance of BC

  4. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  5. Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals.

    Science.gov (United States)

    Banerjee, Nilanjana; Bandyopadhyay, Apurba K; Dutta, Suman; Das, Jayanta K; Roy Chowdhury, Tarit; Bandyopadhyay, Arun; Giri, Ashok K

    2017-03-01

    More than 26 million people in West Bengal, India, are exposed to arsenic through drinking water, leading to several deleterious endpoints including precancerous and cancerous skin lesions and other non-dermatological health effects. Here, our aim was to identify whether miR21 is associated with such dermatological and non-dermatological health outcomes in chronically exposed humans. A total of 123 subjects from West Bengal were recruited for this study (45 exposed individuals with skin lesions, 38 exposed individuals without skin lesions and 40 unexposed individuals). The miR21 expression patterns in the lymphocytes were studied by quantitative realtime PCR and the effects on downstream targets were validated by Western blotting. Associations between the miR21 expression patterns and non-dermatological health effects were determined from epidemiological survey data. In vitro studies were done with low dose (0.05ppm) of chronic arsenic exposure to HaCaT cells for 15 passages. Interestingly, within the exposed group, the skin lesion individuals showed almost 4.5 fold up-regulation of miR21 compared to the no skin lesion group. The expression of the downstream targets of miR21 (PTEN and PDCD4) varied inversely, while the expression of pAKT and PI3K varied proportionately with its expression levels. Results of in vitro studies showed similar trends. Again miR21 was 2.03 fold up-regulated in the exposed individuals with respiratory diseases compared to the individuals without the same. This study for the first time shows that miR21 plays an important role in contributing to arsenic induced dermatological and non-dermatological health outcomes in an exposed population. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ovarian Cancer Stem Cells: A New Target for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Qinglei Zhan

    2013-01-01

    Full Text Available Ovarian cancer is a highly lethal disease among all gynecologic malignancies and is the fifth leading cause of cancer-related death in women. Although the standard combination of surgery and chemotherapy was initially effective in patients with ovarian cancer, disease relapse commonly occurred due to the generation of chemoresistance. It has been reported that cancer stem cells (CSCs are involved in drug resistance and cancer recurrence. Over the past decades, increasing studies have been done to identify CSCs from human ovarian cancer cells. The present paper will summarize different investigations on ovarian CSCs, including isolation, mechanisms of chemoresistance, and therapeutic approaches. Although there are still numerous challenges to translate basic research to clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent ovarian cancer and its recurrence.

  7. Cancer stem cell targeted therapy: progress amid controversies

    Science.gov (United States)

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  8. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  9. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  10. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... inside of the lungs. Enlarge Anatomy of the respiratory system, showing the trachea and both lungs and their ... Cell Lung Cancer Tobacco (includes help with quitting) Cigarette Smoking: Health Risks and How to Quit Secondhand Smoke and Cancer For general cancer information and other ...

  11. Cancer stem cells of the digestive system.

    Science.gov (United States)

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Molecular Biology of Liver Cancer Stem Cells

    National Research Council Canada - National Science Library

    Oishi, Naoki; Yamashita, Taro; Kaneko, Shuichi

    2014-01-01

    .... The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased...

  13. Cancer Stem Cells: Repair Gone Awry?

    Directory of Open Access Journals (Sweden)

    Fatima Rangwala

    2011-01-01

    Full Text Available Because cell turnover occurs in all adult organs, stem/progenitor cells within the stem-cell niche of each tissue must be appropriately mobilized and differentiated to maintain normal organ structure and function. Tissue injury increases the demands on this process, and thus may unmask defective regulation of pathways, such as Hedgehog (Hh, that modulate progenitor cell fate. Hh pathway dysregulation has been demonstrated in many types of cancer, including pancreatic and liver cancers, in which defective Hh signaling has been linked to outgrowth of Hh-responsive cancer stem-initiating cells and stromal elements. Hence, the Hh pathway might be a therapeutic target in such tumors.

  14. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  15. Identification of gene-based responses in human blood cells exposed to alpha particle radiation.

    Science.gov (United States)

    Chauhan, Vinita; Howland, Matthew; Wilkins, Ruth

    2014-07-12

    The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry.

  16. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke.

    Science.gov (United States)

    Bruno, A; Cipollina, C; Di Vincenzo, S; Siena, L; Dino, P; Di Gaudio, F; Gjomarkaj, M; Pace, E

    2017-09-05

    Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neutrophil capture by selectins on endothelial cells exposed to cigarette smoke.

    Science.gov (United States)

    Stone, P C W; Fisher, A C; Rainger, G E; Nash, G B

    2002-08-02

    We used a novel perfusion system to expose cultured human umbilical vein endothelial cells (HUVEC) to water-soluble components of cigarette smoke and study subsequent adhesion of flowing neutrophils. Neutrophils did not bind to HUVEC immediately after it had been exposed to cigarette smoke, but many adhered 90-150 min after exposure. The effect was reduced if the exposed medium was made serum-free, but this reduction was partially reversed if low density lipoprotein was added. Treatment of smoke-exposed HUVEC with antibodies against E-selectin or P-selectin reduced adhesion by approximately 50% or 75%, respectively; a combination of both antibodies essentially abolished adhesion. Enzyme-linked immunosorbent assay confirmed that exposure to smoke caused HUVEC to upregulate surface expression of E- and P-selectin. Thus, water-soluble constituent(s) of cigarette smoke cause efficient selectin-mediated capture of flowing neutrophils. This pro-inflammatory response may contribute to pathology associated with smoking, especially in tissues remote from the lung.

  18. NK Cells and Virus-Related Cancers

    OpenAIRE

    Mishra, Rabinarayan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2014-01-01

    Natural killer (NK) cells become activated during viral infections and can play roles in such infections by attacking virus-infected cells or by regulating adaptive immune responses. Experimental models suggest that NK cells may also have the capacity to restrain virus-induced cancers. Here, we discuss the seven viruses linked to human cancers and the evidence of NK cell involvement in these systems.

  19. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics ......, help us both in the identification and characterization of cancer stem cells and in the further development of therapeutic strategies including tissue engineering...

  20. Protective Effects of Hydroalcoholic Extract of Nasturtium officinale on Rat Blood Cells Exposed to Arsenic

    Directory of Open Access Journals (Sweden)

    Felor Zargari

    2015-06-01

    Full Text Available Background: Arsenic is one of the most toxic metalloids. Anemia and leukopenia are common results of poisoning with arsenic, which may happen due to a direct hemolytic or cytotoxic effect on blood cells. The aim of this study was to examine the effects of hydroalcoholic extract of Nasturtium officinale on blood cells and antioxidant enzymes in rats exposed to sodium (metaarsenite. Methods: 32 Male Sprague Dawley rats were randomly divided into four groups; Group I (normal healthy rats, Group II (treated with 5.5mg/kg of body weight of NaAsO2, Group III (treated with 500mg/kg of body weight of hydro-alcoholic extract of N. officinale, and Group IV (treated with group II and III supplementations. Blood samples were collected and red blood cell, white blood cell, hematocrit, hemoglobin, platelet, total protein and albumin levels and total antioxidant capacity were measured. Data was analyzed with Mann-Whitney U test. Results: WBC, RBC and Hct were decreased in the rats exposed to NaAsO2 (p<0.05. A significant increase was seen in RBC and Hct after treatment with the plant extract (p<0.05. There was no significant decrease in serum albumin and total protein in the groups exposed to NaAsO2 compared to the group I, but NaAsO2 decreased the total antioxidant capacity, significantly. Conclusion: The Nasturtium officinale extract have protective effect on arsenic-induced damage of blood cells.

  1. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  2. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  3. Phenotypic modifications in Staphylococcus aureus cells exposed to high concentrations of vancomycin and teicoplanin

    Directory of Open Access Journals (Sweden)

    Fábio D.A. Gonçalves

    2016-01-01

    Full Text Available Bacterial cells are known to change the fatty acid composition of the phospholipids as a phenotypic response to environmental conditions and to the presence of toxic compounds such as antibiotics. In the present study, Staphylococcus aureus cells collected during the exponential growth phase were challenged with 50 and 100 mg/L of vancomycin and teicoplanin, which are concentrations high enough to kill the large majority of the cell population. Colony-forming unit counts showed biphasic killing kinetics, typical for persister cell enrichment, in both antibiotics and concentrations tested. However, fluorescence microscopy showed the existence of viable but non-culturable (VBNC cells in a larger number than that of possible persister cells.The analysis of the fatty acid composition of the cells showed that, following antibiotic exposure up to 6 h, the survivor cells have an increased percentage of saturated fatty acids, a significant reduced percentage of branched fatty acids and an increased iso/anteiso branched fatty acid ratio when compared to cells exhibiting a regular phenotype. This should result in lower membrane fluidity. However, cells exposed for 8-24 h presented an increased branched/saturated and lower iso/anteiso branched fatty acid ratios, and thus increased membrane fluidity. Furthermore, the phenotypic changes were transmitted to daughter cells grown in drug-free media. The fact that VBNC cells presented nearly the same fatty acid composition as those obtained after cell growth in drug-free media, which could only be the result of growth of persister cells, suggest that VBNC and persister phenotypes share the same type of response to antibiotics at the lipid level.

  4. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  5. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  6. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  7. Betulinic Acid Kills Colon Cancer Stem Cells

    NARCIS (Netherlands)

    Potze, Lisette; Di Franco, Simone; Kessler, Jan H.; Stassi, Giorgio; Medema, Jan Paul

    2016-01-01

    Cancer stem cells (CSCs) are considered to be the origin of cancer and it is suggested that they are resistant to chemotherapy. Current therapies fail to eradicate CSCs and therefore selecting a resistant cell subset that is able to facilitate tumor recurrences. Betulinic acid (BetA) is a broad

  8. Assessment of DNA integrity (COMET assay) in sperm cells of boron-exposed workers.

    Science.gov (United States)

    Duydu, Yalçin; Başaran, Nurşen; Ustündağ, Aylin; Aydin, Sevtap; Undeğer, Ulkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçin; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2012-01-01

    An extension of a male reproductive study conducted in a boric acid/borate production zone at Bandırma, Turkey, is presented. The relation between DNA-strand breaks (COMET assay, neutral and alkaline version) in sperm cells and previously described sperm quality parameters was investigated in boron-exposed males. A correlation between blood boron levels and mean DNA-strand breaks in sperm was weak, and DNA-strand breaks in sperm were statistically not different between control and exposed groups. Therefore, increasing boron exposures had no additional contribution in addition to already pre-existing DNA-strand breaks in the sperm cells. Weak but statistically significant correlations between DNA-strand breaks and motility/morphology parameters of sperm samples were observed in the neutral version of the COMET assay, while correlations between the same variables were statistically not significant in the alkaline version. A likely reason for these negative results, even in highly exposed humans, is that experimental exposures that had led to reproductive toxicity in animals were significantly higher than any boron exposures, which may be reached under realistic human conditions.

  9. A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells

    Science.gov (United States)

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying

    2017-07-01

    Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.

  10. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  11. Of germ cells, trophoblasts, and cancer stem cells.

    Science.gov (United States)

    Burleigh, Angela R

    2008-12-01

    The trophoblastic theory of cancer, proposed in the early 1900s by Dr John Beard, may not initially seem relevant to current cancer models and treatments. However, the underpinnings of this theory are remarkably similar to those of the cancer stem cell (CSC) theory. Beard noticed that a significant fraction of germ cells never reach their final destination as they migrate during embryonic development from the hindgut to the germinal ridge. In certain situations, upon aberrant stimulation, these vagrant germ cells are able to generate tumors. Simplistically, the CSC theory surmises that a small population of tumorigenic cells exists, which initiate and maintain tumors, and these cells have a likely origin in normal stem cells. Both these theories are based on the potential of a single primitive cell to form a tumor. This has a major implication for cancer therapy, in that only a small percentage of cells need to be targeted to ablate a tumor.

  12. Bladder cancer incidence among workers exposed to o-toluidine, aniline and nitrobenzene at a rubber chemical manufacturing plant

    Science.gov (United States)

    Carreón, Tania; Hein, Misty J; Hanley, Kevin W; Viet, Susan M; Ruder, Avima M

    2015-01-01

    Background An earlier investigation found increased bladder cancer incidence among workers at a rubber chemical manufacturing plant that used o-toluidine, aniline and nitrobenzene. The cohort was expanded to include additional workers (n=1875) and updated through 2007 to assess bladder cancer with improved exposure characterisation. Methods Work histories were updated and exposure categories and ranks were developed for o-toluidine, aniline and nitrobenzene combined. Incident cancers were identified by linkage to six state cancer registries. Residency in time-dependent cancer registry catchment areas was determined. SIR and standardised rate ratios for bladder cancer were calculated by exposure category and cumulative rank quartiles for different lag periods. Cox regression was used to model bladder cancer incidence with estimated cumulative rank, adjusting for confounders. Indirect methods were used to control for smoking. Results Excess bladder cancer was observed compared to the New York State population (SIR=2.87, 95% CI 2.02 to 3.96), with higher elevations among workers definitely exposed (moderate/high) (SIR=3.90, 95% CI 2.57 to 5.68), and in the highest cumulative rank quartile (SIR=6.13, 95% CI 2.80 to 11.6, 10-year lag). Bladder cancer rates increased significantly with estimated cumulative rank (10-year lag). Smoking only accounted for an estimated 8% elevation in bladder cancer incidence. Conclusions Bladder cancer incidence remains elevated in this cohort and significantly associated with estimated cumulative exposure. Results are consistent with earlier findings in this and other cohorts. Despite other concurrent chemical exposures, we consider o-toluidine most likely responsible for the bladder cancer incidence elevation and recommend a re-examination of occupational exposure limits. PMID:24368697

  13. Single Cell Characterization of Prostate Cancer Circulating Tumor Cells

    Science.gov (United States)

    2011-08-01

    CTCs from patient blood, a single T24 bladder and LNCaP prostate cancer cells, a pool of 8 prostate CTCs, and one leukocyte isolated from the blood...amplify 66% of mRNA pool from a single cell. Clustering analysis does differentiate CTCs from LNCaP and T24 bladder cell lines (Figure 4). At present we...profiles could distinguish a CTC from prostate cancer cell line LNCaP and T24 bladder cancer cell line.  There was intra and inter patient heterogeneity

  14. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  15. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2011-01-01

    Full Text Available Abstract Herein we are the first to report that single-walled carbon nanotubes (SWCNTs exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  16. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined.

    Directory of Open Access Journals (Sweden)

    Hyemi Lee

    Full Text Available Metformin, the most widely prescribed drug for treatment of type 2 diabetes, has been shown to exert significant anticancer effects. Hyperthermia has been known to kill cancer cells and enhance the efficacy of various anti-cancer drugs and radiotherapy. We investigated the combined effects of metformin and hyperthermia against MCF-7 and MDA-MB-231 human breast cancer cell, and MIA PaCa-2 human pancreatic cancer cells. Incubation of breast cancer cells with 0.5-10 mM metformin for 48 h caused significant clonogenic cell death. Culturing breast cancer cells with 30 µM metformin, clinically relevant plasma concentration of metformin, significantly reduced the survival of cancer cells. Importantly, metformin was preferentially cytotoxic to CD44(high/CD24(low cells of MCF-7 cells and, CD44(high/CD24(high cells of MIA PaCa-2 cells, which are known to be cancer stem cells (CSCs of MCF-7 cells and MIA PaCa-2 cells, respectively. Heating at 42°C for 1 h was slightly toxic to both cancer cells and CSCs, and it markedly enhanced the efficacy of metformin to kill cancer cells and CSCs. Metformin has been reported to activate AMPK, thereby suppressing mTOR, which plays an important role for protein synthesis, cell cycle progression, and cell survival. For the first time, we show that hyperthermia activates AMPK and inactivates mTOR and its downstream effector S6K. Furthermore, hyperthermia potentiated the effect of metformin to activate AMPK and inactivate mTOR and S6K. Cell proliferation was markedly suppressed by metformin or combination of metformin and hyperthermia, which could be attributed to activation of AMPK leading to inactivation of mTOR. It is conclude that the effects of metformin against cancer cells including CSCs can be markedly enhanced by hyperthermia.

  17. Cancer stem cells in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Trapasso S

    2012-11-01

    Full Text Available Eugenia Allegra, Serena TrapassoOtolaryngology – Head and Neck Surgery, University Magna Graecia of Catanzaro, Catanzaro, ItalyAbstract: Cancer stem cells (CSCs, also called "cells that start the tumor," represent in themselves one of the most topical and controversial issues in the field of cancer research. Tumor stem cells are able to self-propagate in vitro (self-renewal, giving rise both to other tumor stem cells and most advanced cells in the line of differentiation (asymmetric division. A final characteristic is tumorigenicity, a fundamental property, which outlines the tumor stem cell as the only cell able to initiate the formation of a tumor when implanted in immune-deficient mice. The hypothesis of a hierarchical organization of tumor cells dates back more than 40 years, but only in 1997, thanks to the work of John Dick and Dominique Bonnet, was there the formal proof of such an organization in acute myeloid leukemia. Following this, many other research groups were able to isolate CSCs, by appropriate selection markers, in various malignancies, such as breast, brain, colon, pancreas, and liver cancers and in melanoma. To date, however, it is not possible to isolate stem cells from all types of neoplasia, particularly in solid tumors. From a therapeutic point of view, the concept of tumor stem cells implies a complete revision of conventional antineoplastic treatment. Conventional cytotoxic agents are designed to target actively proliferating cells. In the majority of cases, this is not sufficient to eliminate the CSCs, which thanks to their reduced proliferative activity and/or the presence of proteins capable of extruding chemotherapeutics from the cell are not targeted. Therefore, the theory of cancer stem cells can pose new paradigms in terms of cancer treatment. Potential approaches, even in the very early experimental stages, relate to the selective inhibition of pathways connected with self-renewal, or more specifically based on

  18. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Directory of Open Access Journals (Sweden)

    Thomas W.J. Lennard

    2011-04-01

    Full Text Available In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP, have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC, combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  19. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  20. MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL.

    Science.gov (United States)

    Lu, Qiang; Lu, Chao; Zhou, Guo-Ping; Zhang, Wei; Xiao, Hang; Wang, Xin-Ru

    2010-01-01

    Bladder cancer is the most common type of urologic cancer in Chinese males. The 5-year survival rate of advanced bladder cancer is approximately 20%-40%. There is an obvious urgent need for novel and effective therapies against bladder cancer. MicroRNAs (miRNAs) are a recently discovered class of noncoding RNAs; suppressing miRNA-221 might prove beneficial in several cancers. To explore novel and effective therapies against bladder cancer, we explored the effects of miRNA-221 silencing on the survival of bladder cancer cells. Northern blot analysis was used to determine miRNA-221 expression levels in bladder cancer T24 cells, RT4 cells and human normal urothelial cells. miRNA-221 was silenced with antisense oligonucleotides in T24 cells and pro-apoptotic effect of necrosis factor related apoptosis-inducing ligand (TRAIL) on miRNA-221-silenced cells was assessed with flow cytometry. The p27(kip1) protein expression in miRNA-221-silenced cells exposed to TRAIL was detected by Western blotting. The role of miRNA-221 silencing on T24 cell cycle phase distribution was investigated through flow cytometric analysis. Human miRNA-221 was significantly up-regulated in bladder cancer T24 cells and RT4 cells compared to human normal urothelial cells. T24 cell was TRAIL-resistant cell line. MiRNA-221 silencing predisposed T24 cells to undergo apoptosis induced by TRAIL and resulted in an up-modulation of cyclin-dependent kinase inhibitor p27Kip1. MiRNA-221 suppression promoted the activation of caspase 3 induced by TRAIL in T24 cells. MiRNA-221 silencing rendered human bladder cancer T24 cells to undergo apoptosis induced by TRAIL. Our findings suggest a potential role of suppressing miRNA-221 in human bladder cancer therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic☆

    Science.gov (United States)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Víctor H.; Contreras-Ruiz, José; García-Vargas, Gonzalo G.; Del Razo, Luz M.

    2009-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAsIII, MAsV, DMAsIII, DMAsV). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas. PMID:17267001

  2. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells

    NARCIS (Netherlands)

    Michaelis, M.; Rothweiler, F.; Barth, S.; Cinatl, J.; van Rikxoort, M.; Loeschmann, N.; Voges, Y.; Breitling, R.; von Deimling, A.; Roedel, F.; Weber, K.; Fehse, B.; Mack, E.; Stiewe, T.; Doerr, H. W.; Speidel, D.; Cinatl, J.; Cinatl jr., J.; Stephanou, A.

    2011-01-01

    Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines

  3. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration.

    Science.gov (United States)

    van der Stijl, Rogier; Withoff, Sebo; Verbeek, Dineke S

    2017-12-01

    Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cisplatin induces differentiation of breast cancer cells.

    Science.gov (United States)

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36-51% and proliferation capacity by 36-67%. Treatment with cisplatin resulted in 12-67% down-regulation of stem cell markers (CD49f, SSEA4) and 10-130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor.

  5. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  6. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    2011-07-01

    Full Text Available Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.

  7. Microtubule Formation and Activities of Antioxidative Enzymes in PC12 Cells Exposed to Phosphatidylcholine Hydroperoxides

    Directory of Open Access Journals (Sweden)

    Yukako Yamanaka

    2012-11-01

    Full Text Available Aging increases free radical generation and lipid oxidation and, thereby, mediates neurodegenerative diseases. As the brain is rich in lipids (polyunsaturated fatty acids, the antioxidative system plays an important role in protecting brain tissues from oxidative injury. The changes in microtubule formation and antioxidative enzyme activities have been investigated in rat pheochromocytoma PC12 cells exposed to various concentrations of phosphatidylcholine hydroperoxides (PCOOH. We measured three typical antioxidative enzymes, superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase (CAT. The microtubule assembly system was dependent on the antioxidative enzyme system in cells exposed to oxidative stress. The activities of the three enzymes increased in a PCOOH exposure-dependent manner. In particular, the changes in the activity as a result of PCOOH exposure were similar in the three antioxidative enzymes. This is the first report indicating the compatibility between the tubulin-microtubule and antioxidative enzyme systems in cells that deteriorate as a result of phospholipid hydroperoxide administration from an exterior source. The descending order of sensitivity of the three enzymes to PCOOH is also discussed.

  8. Syncytin is involved in breast cancer-endothelial cell fusions

    DEFF Research Database (Denmark)

    Bjerregaard, B; Holck, Susanne; Christensen, Ib Jarle

    2006-01-01

    Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer...... and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions....

  9. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... transfer (ACT) using expanded tumor infiltrating lymphocytes (TIL) or genetically modified cytotoxic T cells. However, despite clear clinical responses, only a fraction of patients respond to treatment and there is an urgent call for characterization of predictive biomarkers. CD8 positive T cells can...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However...

  10. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  11. Development of children born to mothers with cancer during pregnancy: comparing in utero chemotherapy-exposed children with nonexposed controls.

    Science.gov (United States)

    Cardonick, Elyce H; Gringlas, Marcy B; Hunter, Krystal; Greenspan, Jay

    2015-05-01

    Cancer is diagnosed in approximately 1 per 1000 pregnant women. Lifesaving cancer therapy given to the mother during pregnancy appears in conflict with the interest of the developing fetus. Often, termination of pregnancy is suggested but has not been proven in any type of cancer to improve maternal prognosis, while very few studies have documented the long-term effects of in utero chemotherapy exposure on child outcome. To counsel patients about the risk of continuing a pregnancy while undergoing cancer treatment, we performed developmental testing to provide more detailed follow-up on children exposed in utero to chemotherapy. Mother-infant pairs, enrolled in the Cancer and Pregnancy Registry, were offered developmental testing for children who were ≥18 months of age. Based on age, the Bayley Scales of Infant Development-Third Edition, the Wechsler Preschool and Primary Scale of Intelligence-Revised, the Wechsler Intelligence Scale for Children, Third Edition, or the Wechsler Individual Achievement Test was administered. All parents or primary caregivers completed the Child Behavior Checklist, a parent questionnaire to assess behavior and emotional issues. Results of children exposed to chemotherapy before delivery were compared with children whose mothers were also diagnosed with cancer during pregnancy but did not receive chemotherapy before delivery. No significant differences were noted in cognitive skills, academic achievement, or behavioral competence between the chemotherapy-exposed group and the unexposed children. Of children, 95% scored within normal limits on cognitive assessments; 71% and 79% of children demonstrated at or above age equivalency in mathematics and reading scores, respectively; and 79% of children scored within normal limits on measures of behavior. Older children had significantly higher rates of internalizing behavior problems. We could not demonstrate a significant difference in cognitive ability, school performance, or behavioral

  12. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance.

    Science.gov (United States)

    Li, Xiao-Feng; Chen, Cheng; Xiang, Dai-Min; Qu, Le; Sun, Wen; Lu, Xin-Yuan; Zhou, Teng-Fei; Chen, Shu-Zhen; Ning, Bei-Fang; Cheng, Zhuo; Xia, Ming-Yang; Shen, Wei-Feng; Yang, Wen; Wen, Wen; Lee, Terence Kin Wah; Cong, Wen-Ming; Wang, Hong-Yang; Ding, Jin

    2017-12-01

    The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951). © 2017 by the American Association for the Study of Liver Diseases.

  13. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy.

    Science.gov (United States)

    Luna, Jesus I; Grossenbacher, Steven K; Murphy, William J; Canter, Robert J

    2017-03-01

    Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.

  14. Lipid degradation promotes prostate cancer cell survival

    Science.gov (United States)

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Lau, Chung Ho; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J.; Takhar, Mandeep; Heemers, Hannelore V.; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L.; Clarke, Noel; Swinnen, Johan V.; Keun, Hector C.; Rekvig, Ole P.; Mills, Ian G.

    2017-01-01

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential. PMID:28415728

  15. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45.

    Science.gov (United States)

    Zhang, Hai-hong; Cai, Ai-zhen; Wei, Xue-ming; Ding, Li; Li, Feng-zhi; Zheng, Ai-ming; Dai, Da-jiang; Huang, Rong-rong; Cao, Hou-jun; Zhou, Hai-yang; Wang, Jian-mei; Wang, Xue-jing; Shi, Wei; Zhu, Heng; Yuan, Xiao-ying; Chen, Lin

    2013-03-01

    Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer. Many kinds of cell lines and tissues have demonstrated the presence of SP cells, including several gastric cancer cell lines. This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45. We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells. This study found that the SP cells had higher clone formation efficiency than major population (MP) cells. Five stemness-related gene expression profiles, including OCT-4, SOX-2, NANOG, CD44, and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2, were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Western blot was used to show the difference of protein expression between SP and MP cells. Both results show that there was significantly higher protein expression in SP cells than in MP cells. When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, SP cells show higher tumorigenesis tendency than MP cells. These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  16. Characterization of side population cells isolated from the gastric cancer cell line SGC-7901.

    Science.gov (United States)

    Li, Rong; Wu, Xiaoling; Wei, Huang; Tian, Shangkun

    2013-03-01

    Side population (SP) cells are a subset of stem cells that have been isolated from several different gastrointestinal cancer cell lines. Using flow cytometry and the DNA-binding dye Hoechst 33342, we isolated SP cells from SGC-7901 human gastric tumor cell lines and found that they comprise 2.3±0.78% of the tumor cells. Using the Cell Counting Kit-8 (CCK-8) assay, we demonstrated that SP cells have a stronger proliferative activity than non-SP cells. Additionally, we observed tumor mass formation following the cultivation of SP cells in serum-free medium, indicating the capability of these cells for self-renewal. SP cells were observed to undergo non-symmetrical division, which is characteristic of stem cells. A drug resistance assay revealed that SP cells have a high survival rate when exposed to the chemotherapy drug 5-fluorouracil; the results of western blot analysis suggest that this stems from the abundant expression of the chemoresistance-associated proteins ABCG2 and Bcl-2. We also used fluorescence quantitative PCR to reveal that SP cells have relatively high expression levels of the stem cell-related genes Musashi-1 and CD44. In vivo experiments in mice revealed that the subcutaneous injection of 2×10(3) SP cells resulted in the formation of tumors, while the injection of 2×10(4) non-SP cells did not. Cumulatively, our results suggest that gastric tumorigenesis associated with SGC-7901 may partly be driven by the activity of SP cells, which exhibit certain biological characteristics of stem cells. Our results also show that the SP cell sorting method is an effective means for isolating and identifying gastric cancer stem cells during early screening.

  17. [The intervention of nicotinamide on skin melanocyte's cell proliferation after UVA (365 nm) exposed.].

    Science.gov (United States)

    Patam, Muhammad; Jin, Xi-peng; Pan, Jian-ying; Shen, Guang-zu; Jin, Tai-Yi

    2005-02-01

    To investigate the interference effect of nicotinamide on UVA-induced cell proliferation in human skin melanocyte. To apply the optimum UVA dose expected to cause cell proliferation: 0.2 cm2, nicotinamide was added after the 0.2 cm2 UVA exposure immediately or 48 h later, then the rate of cell proliferation, calcium concentration and the activities of Na+-K+, Ca2+-ATP enzymes of melanocytes were measured respectively. After treatment with 1.000 mg/ml nicotinamide following UVA exposure, the rate of cell proliferation was decreased significantly 24 hours later. Treatment with 0.125 mg/ml nicotinamide 48 hours after UVA exposure also significantly inhibited the cell proliferation; 1.25 mg/ml nicotinamide increased calcium concentration in cells; 0.250 mg/ml nicotinamide increased the activities of Na+-K+, Ca2+-ATP enzymes in melanocytes (P Nicotinamide has more obvious effect on inhibiting melanocyte's proliferation if added immediately following UVA exposure. Our discovery indicated that nicotinamide may affect the melanocyte through modulating the calcium concentration. It is possible to consider nicotinamide as an efficient and safe sun screen to provide a certain level of protection for UVA exposed skin.

  18. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    2016-01-01

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver.

  19. Computational and Experimental Models of Cancer Cell Response to Fluid Shear Stress

    Directory of Open Access Journals (Sweden)

    Michael J. Mitchell

    2013-03-01

    Full Text Available It has become evident that mechanical forces play a key role in cancer metastasis, a complex series of steps that is responsible for the majority of cancer-related deaths. One such force is fluid shear stress, exerted on circulating tumor cells (CTCs by blood flow in the vascular microenvironment, and also on tumor cells exposed to slow interstitial flows in the tumor microenvironment. Computational and experimental models have the potential to elucidate metastatic cell behavior exposed to such forces. Here, we review the fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvironments, and discuss recent computational and experimental models that have revealed mechanotransduction phenomena that may play a role in the metastatic process.

  20. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  1. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Germana Castelli

    2017-09-01

    Full Text Available Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (iCCA. Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV infection (frequent in Asia and Africa, hepatitis C virus (HCV, chronic alcohol abuse, or metabolic syndrome (frequent in Western countries. In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47; the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.

  2. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure

    Directory of Open Access Journals (Sweden)

    Lianna Frances Wood

    2017-12-01

    Full Text Available The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.

  3. T Cell Activation in South African HIV-Exposed Infants Correlates with Ochratoxin A Exposure.

    Science.gov (United States)

    Wood, Lianna Frances; Wood, Matthew P; Fisher, Bridget S; Jaspan, Heather B; Sodora, Donald L

    2017-01-01

    The introduction of non-breastmilk foods to HIV-infected infants is associated with increased levels of immune activation, which can impact the rate of HIV disease progression. This is particularly relevant in countries where mother-to-child transmission of HIV still occurs at unacceptable levels. The goal of this study was to evaluate the levels of the toxic food contaminant ochratoxin A (OTA) in HIV-exposed South African infants that are either breastfed or consuming non-breast milk foods. OTA is a common mycotoxin, found in grains and soil, which is toxic at high doses but has immunomodulatory properties at lower doses. Samples from HIV-exposed and HIV-unexposed infants enrolled in prospective observational cohort studies were collected and analyzed at birth through 14 weeks of age. We observed that infants consuming non-breast milk foods had significantly higher plasma levels of OTA at 6 weeks of age compared to breastfed infants, increasing until 8 weeks of age. The blood levels of OTA detected were comparable to levels observed in OTA-endemic communities. OTA plasma levels correlated with HIV target cell activation (CCR5 and HLADR expression on CD4+ T cells) and plasma levels of the inflammatory cytokine CXCL10. These findings provide evidence that elevated OTA levels in South African infants are associated with the consumption of non-breastmilk foods and activation of the immune system. Reducing infant OTA exposure has the potential to reduce immune activation and provide health benefits, particularly in those infants who are HIV-exposed or HIV-infected.

  4. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  5. The ultrastructural surface morphology of oral cancer cells and keratinocytes after exposure to chitosan

    Science.gov (United States)

    Fatimah; Sarsito, A. S.; Wimardhani, Y. S.

    2017-08-01

    Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.

  6. Regulation of T Helper Cell Responses During Antigen Presentation by Norepinephrine-exposed Endothelial Cells.

    Science.gov (United States)

    Xu, Linghui; Ding, Wanhong; Stohl, Lori L; Zhou, Xi K; Azizi, Shayan; Chuang, Ethan; Lam, Jimmy; Wagner, John A; Granstein, Richard D

    2017-11-21

    Dermal blood vessels and regional lymph nodes are innervated by sympathetic nerves and, under stress, sympathetic nerves release norepinephrine (NE). Exposure of primary murine dermal microvascular endothelial cells (pDMECs) to NE followed by co-culture with Langerhans cells (LCs), responsive CD4+ T cells and antigen resulted in modulation of CD4+ T cell responses. NE-treatment of pDMECs induced increased production of interleukin (IL)-6 and IL-17A while downregulating interferon (IFN)-γ and IL-22 release. This effect did not require contact between pDMECs and LCs or T cells and depended on pDMEC production of IL-6. The presence of NE-treated pDMECs increased the proportion of CD4+ T cells expressing intracellular IL-17A and increased IL-17A mRNA while decreasing the proportion of IFN-γ- or IL-22-expressing CD4+ T cells and mRNA levels for those cytokines. Retinoic acid receptor-related orphan receptor gamma (RORγt) mRNA was significantly increased in CD4+ T cells while T-box transcription factor (T-bet) mRNA was decreased. Intradermal administration of NE prior to hapten immunization at the injection site produced a similar bias in draining lymph node CD4+ T cells toward IL-17A and away from IFN-γ and IL-22 production. Under stress, release of NE may have significant regulatory effects on the outcome of antigen presentation through actions on ECs as well as enhancement of inflammatory skin disorders involving IL-17/Th17 cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Mortality and incidence of cancer among oil exposed workers in a Norwegian cable manufacturing company. Part 2. Mortality and cancer incidence 1953-84.

    Science.gov (United States)

    Rønneberg, A; Andersen, A; Skyberg, K

    1988-09-01

    Mortality and incidence of cancer 1953-84 was studied in a cohort of 529 men exposed to mineral oils in a Norwegian cable manufacturing company. Expected numbers of deaths were calculated from national death rates and cases of cancer from regional incidence rates. Among the 195 men who had worked for less than one year, there were statistically significant excesses of deaths from all causes (O/E = 75/39.3) and from malignant neoplasms, ischaemic heart disease, non-malignant respiratory disease, and violence. In a subcohort of all 248 men with known work category and at least one year's employment in oil exposed work statistically significant excesses of deaths from ischaemic heart disease (O/E = 26/16.1) and cases of lung cancer (O/E = 10/3.9) were observed. Nine of the cases of lung cancer had occurred 20 years or more after first employment (2.7 expected; p less than 0.01). In smokers of this subcohort there were 7.06 cases of lung cancer per 1000 person-years compared with 1.30 in smokers of a general population sample. It is concluded that exposure to mineral oils has probably been an important contributing factor in the development of lung cancer among these workers.

  9. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields

    Science.gov (United States)

    Belyavskaya, N. A.

    2001-01-01

    Investigations of low magnetic field (LMF) effects on biological systems have attracted attention of biologists due to planned space flights to other planets where the field intensity does not exceed 10 -5 Oe. Pea ( Pisum sativum L.) seeds were grown in an environment of LMF 3 days. In meristem cells of roots exposed to LMF, one could observe such ultrastructural peculiarities as a noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids. Mitochondria were the most sensitive organelle to LMF application. Their size and relative volume in cells increased, matrix was electron-transparent, and cristae reduced. Because of the significant role of calcium signalling in plant responses to different environmental factors, calcium participation in LMF effects was investigated using a pyroantimonate method to identify the localization of free calcium ions. The intensity of cytochemical reaction in root cells after LMF application was strong. The Ca 2+ pyroantimonate deposits were observed both in all organelles and in a hyaloplasm of the cells. Data obtained suggest that the observed LMF effects on ultrastructure of root cells were due to disruptions in different metabolic systems including effects on Ca 2+ homeostasis.

  10. Reduced cytotoxicity in PCB-exposed Chinese Hamster Ovary (CHO) cells pretreated with vitamin E.

    Science.gov (United States)

    Murati, Teuta; Šimić, Branimir; Pleadin, Jelka; Vukmirović, Maja; Miletić, Marina; Durgo, Ksenija; Kniewald, Jasna; Kmetič, Ivana

    2017-01-01

    The aim of this study was to evaluate protective effects of vitamin E (50 -150 μM) in ovary cells upon cytotoxic effects induced by two structurally distinct PCB congeners - planar "dioxin-like" PCB 77 and non-planar di-ortho-substituted PCB 153 with an emphasis on identifying differences in the mechanism of vitamin E action depending on the structure of congeners. Application of three bioassays confirmed that PCBs decrease ovarian cell proliferation with slightly profound effects of PCB 77. PCB - induced ROS production and lipid peroxidation were significant for both congeners with also more noticeable effect for PCB 77. Vitamin E pre-incubation has improved viability of cells, reduced ROS formation and lipid peroxidation induced by PCBs' treatment. Preincubation with vitamin E was more effective when cells where treated with non-planar PCB 153. Altogether, vitamin E action was protective, congener specific and more effective when ovary cells were exposed to ortho-substituted PCB congener. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin

    Science.gov (United States)

    Kutwin, Marta; Sawosz, Ewa; Jaworski, Sławomir; Kurantowicz, Natalia; Strojny, Barbara; Chwalibog, André

    2014-05-01

    Side effects and resistance of cancer cells to cisplatin are major drawbacks to its application, and recently, the possibility of replacing cisplatin with nanocompounds has been considered. Most chemotherapeutic agents are administered intravenously, and comparisons between the interactions of platinum nanoparticles (NP-Pt) and cisplatin with blood compartments are important for future applications. This study investigated structural damage, cell membrane deformation and haemolysis of chicken embryo red blood cells (RBC) after treatment with cisplatin and NP-Pt. Cisplatin (4 μg/ml) and NP-Pt (2,6 μg/ml), when incubated with chicken embryo RBC, were detrimental to cell structure and induced haemolysis. The level of haemolytic injury was increased after cisplatin and NP-Pt treatments compared to the control group. Treatment with cisplatin caused structural damage to cell membranes and the appearance of keratocytes, while NP-Pt caused cell membrane deformations (discoid shape of cells was lost) and the formation of knizocytes and echinocytes. This work demonstrated that NP-Pt have potential applications in anticancer therapy, but potential toxic side effects must be explored in future preclinical research.

  12. Gene sensitizes cancer cells to chemotherapy drugs

    Science.gov (United States)

    NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell respons

  13. Risk of upper aerodigestive tract cancers in a case-cohort study of autoworkers exposed to metalworking fluids.

    Science.gov (United States)

    Zeka, A; Eisen, E A; Kriebel, D; Gore, R; Wegman, D H

    2004-05-01

    To re-examine aerodigestive cancer risk in a cohort of autoworkers exposed to metal working fluids (MWF), using improved case definition and more recently diagnosed cases. The autoworker cohort included 31 100 hourly workers alive on 1 January 1985 who worked at three automobile plants in Michigan. A case-cohort design was carried out that included incident cases of cancers of the larynx, oesophagus, and stomach, and a 10% sample of the cohort. A Cox proportional hazards model was used to estimate MWF exposure effects. The smoothing method of penalised splines was used to explore the shape of the underlying exposure-response curves. The most important finding was the association between larynx cancer incidence and cumulative straight MWF exposure. The results for oesophageal cancer were less consistent. For stomach cancer there was no evidence of excess risk. This association between larynx cancer and straight MWF exposures was consistent with a previous finding in this cohort, providing further support for a causal relation.

  14. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  15. Oral epithelial stem cells - implications in normal development and cancer metastasis.

    Science.gov (United States)

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P T; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E; Papagerakis, Petros

    2014-07-15

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. Copyright © 2014. Published by Elsevier Inc.

  16. Oral epithelial stem cells – implications in normal development and cancer metastasis

    Science.gov (United States)

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  17. Stem Cells and Cancer; Celulas madre y cancer

    Energy Technology Data Exchange (ETDEWEB)

    Segrelles, C.; Paraminio, J. M.; Lorz, C.

    2014-04-01

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  18. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect.

    Directory of Open Access Journals (Sweden)

    Michelle Le

    Full Text Available The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal.The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase.Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes.This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors.

  19. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect.

    Science.gov (United States)

    Le, Michelle; Fernandez-Palomo, Cristian; McNeill, Fiona E; Seymour, Colin B; Rainbow, Andrew J; Mothersill, Carmel E

    2017-01-01

    The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase. Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes. This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors.

  20. Measurement of Lung Cancer Tumor Markers in a Glass Wool Company Workers Exposed to Respirable Synthetic Vitreous Fiber and Dust.

    Science.gov (United States)

    Abtahi, Shabnam; Malekzadeh, Mahyar; Nikravan, Ghafour; Ghaderi, Abbas

    2018-01-01

    Occupational exposures to respirable synthetic vitreous fiber (SVF) and dust are associated with many lung diseases including lung cancer. Low-dose computed tomography is used for screening patients who are highly suspicious of having lung carcinoma. However, it seems not to be cost-effective. Serum biomarkers could be a useful tool for the surveillance of occupational exposure, by providing the possibility of diagnosing lung cancer in its early stages. To determine if serum carcinoembryonic antigen (CEA) and cytokeratin fragment (CYFRA) 21-1 levels in workers exposed more than normal population to respirable SVF and dust may be used as indicators of progression towards lung cancer. An analytic cross-sectional study, including 145 personnel of a glass wool company, along with 25 age-matched healthy individuals, was conducted to investigate the relationship between occupational exposure to respirable SVFs and dust and serum levels of two lung/pleura serum tumor markers, CEA and CYFRA 21-1, measured by ELISA. Individuals exposed to higher than the recommended levels of respirable SVF had higher serum concentrations of CEA and CYFRA 21-1, compared to controls (p=0.008 and 0.040, respectively), as well as in comparison to those exposed to lower than recommended OSHA levels (p=0.046 and 0.033, respectively). Workers with >9 years work experience, had significantly (p=0.045) higher levels of serum CYFRA 21-1 than those with ≤9 years of experience. It seems that working for >9 years in sites with detectable levels of respirable SVF and dust would increase the levels of known lung cancer serum tumor markers. Transferring these workers to sites with respirable SVF concentrations lower than the limit of detection in the air is recommended.

  1. Measurement of Lung Cancer Tumor Markers in a Glass Wool Company Workers Exposed to Respirable Synthetic Vitreous Fiber and Dust

    Directory of Open Access Journals (Sweden)

    Shabnam Abtahi

    2018-01-01

    Full Text Available Background: Occupational exposures to respirable synthetic vitreous fiber (SVF and dust are associated with many lung diseases including lung cancer. Low-dose computed tomography is used for screening patients who are highly suspicious of having lung carcinoma. However, it seems not to be cost-effective. Serum biomarkers could be a useful tool for the surveillance of occupational exposure, by providing the possibility of diagnosing lung cancer in its early stages. Objective: To determine if serum carcinoembryonic antigen (CEA and cytokeratin fragment (CYFRA 21-1 levels in workers exposed more than normal population to respirable SVF and dust may be used as indicators of progression towards lung cancer. Methods: An analytic cross-sectional study, including 145 personnel of a glass wool company, along with 25 age-matched healthy individuals, was conducted to investigate the relationship between occupational exposure to respirable SVFs and dust and serum levels of two lung/pleura serum tumor markers, CEA and CYFRA 21-1, measured by ELISA. Results: Individuals exposed to higher than the recommended levels of respirable SVF had higher serum concentrations of CEA and CYFRA 21-1, compared to controls (p=0.008 and 0.040, respectively, as well as in comparison to those exposed to lower than recommended OSHA levels (p=0.046 and 0.033, respectively. Workers with >9 years work experience, had significantly (p=0.045 higher levels of serum CYFRA 21-1 than those with ≤9 years of experience. Conclusion: It seems that working for >9 years in sites with detectable levels of respirable SVF and dust would increase the levels of known lung cancer serum tumor markers. Transferring these workers to sites with respirable SVF concentrations lower than the limit of detection in the air is recommended.

  2. Alterations of calcium homeostasis in cancer cells.

    Science.gov (United States)

    Marchi, Saverio; Pinton, Paolo

    2016-08-01

    Typical hallmarks of cancer include programmed cell death evasion, uncontrolled cell growth, invasion, and metastasis. Changes in intracellular Ca(2+) levels can modulate signaling pathways that control a broad range of cellular events, including those important to tumorigenesis and cancer progression. Here we discuss how known molecular mediators of cellular Ca(2+) homeostasis impact tumor dynamics and how deregulation of major oncogenes and tumor suppressors is tightly associated with Ca(2+) signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lgr5-Positive Cells are Cancer-Stem-Cell-Like Cells in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Zhongli Wang

    2015-07-01

    Full Text Available Background/Aims: Effective treatment of gastric cancer (GC requires better understanding of the molecular regulation of its carcinogenesis. Identification of cancer stem cells (CSCs in GC appears to be a critical question. Methods: We analyzed Lgr5 expression in GC specimen. We used an adeno-associated virus (AAV that carries diphtheria toxin fragment A (DTA under the control of Lgr5 promoter (AAV-pLgr5-DTA to transduce human GC cells. The growth of GC cells with/without depletion of Lgr5-positive cells was studied in vitro in an MTT assay, and in vivo by analyzing bioluminescence levels. Results: A portion of GC cells in the resected specimen expressed Lgr5. GC cells that formed tumor spheres expressed high Lgr5. Selective depletion of Lgr5-positive GC cells resulted in significant growth inhibition of GC cells in vitro and in vivo. Conclusion: Lgr5-positive cells may be CSCs-like cells in GC and may play a pivotal role in the tumorigenesis of GC. Treating Lgr5-positive GC cells may substantially improve the therapeutic outcome.

  4. Study characterizes how DNA-damaging anti-cancer drugs kill cancer cells | Center for Cancer Research

    Science.gov (United States)

    Patients whose cancer cells express the SLFN11 protein are more likely to respond to DNA-damaging anti-cancer drugs than those whose cancer cells don’t express SLFN11. In a new study, Center for Cancer Research investigators show how these drugs recruit SLFN11 to block replication and kill cancer cells. Read more…

  5. Global gene expression profiling in human lung cells exposed to cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Berenguer, F.; Prat, O.; Ruat, S.; Steinmetz, G.; Quemeneur, E. [CEA VALRHO, Serv Biochim and Toxicol Nucl, DSV, iBEB, F-30207 Bagnols Sur Ceze (France)

    2007-06-06

    It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to {sup 59}Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxico-genomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and bio-marker research. Results: A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5), tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL) and genes linked to the stress response (UBC, HSPCB, BN1P3L). We also identified nine genes coding for secreted proteins as candidates for bio-marker research. Of those, T1MP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion: Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative bio-marker of cobalt toxicity was identified. (authors)

  6. Aneuploidy studies in human cells exposed in vitro to GSM-900 MHz radiofrequency radiation using FISH.

    Science.gov (United States)

    Bourthoumieu, Sylvie; Terro, Faraj; Leveque, Philippe; Collin, Alice; Joubert, Vanessa; Yardin, Catherine

    2011-04-01

    Since previous research found an increase in the rate of aneuploidies in human lymphocytes exposed to radiofrequencies, it seems important to perform further studies. The objective of this study was then to investigate whether the exposure to RF (radiofrequency) radiation similar to that emitted by mobile phones of a second generation standard, i.e., Global System for Mobile communication (GSM) may induce aneuploidy in cultured human cells. The potential induction of genomic instability by GSM-900 MHz radiofrequency (GSM-900) was investigated after in vitro exposure of human amniotic cells for 24 h to average-specific absorption rates (SAR) of 0.25, 1, 2 and 4 W/kg in the temperature range of 36.3-39.7°C. The exposures were carried out in a wire-patch cell (WPC). The rate of aneuploidy of chromosomes 11 and 17 was determined by interphase FISH (Fluorescence In Situ Hybridisation) immediately after independent exposure of three different donors for 24 h. At least 100 interphase cells were analysed per assay. No significant change in the rate of aneuploidy of chromosomes 11 and 17 was found following exposure to GSM-900 for 24 h at average SAR up to 4 W/kg. Our study did not show any in vitro aneuploidogenic effect of GSM using FISH and is not in agreement with the results of previous research.

  7. Occupational groups potentially exposed to silica dust: a comparative analysis of cancer mortality and incidence based on the Nordic occupational mortality and cancer incidence registers.

    Science.gov (United States)

    Lynge, E; Kurppa, K; Kristofersen, L; Malker, H; Sauli, H

    1990-01-01

    We have analysed mortality and cancer incidence data available in census-based record-linkage studies from the Nordic countries for males in occupational groups with potential exposure to silica dust. The study showed an excess lung cancer risk for foundry workers in all the Nordic countries, and also for miners in Sweden. These results are consistent with the findings of previous in-depth epidemiological studies. The lung cancer risk did not differ significantly from that of the respective national populations for males working in glass, porcelain, ceramics and tile manufacture, in excavation, and in stone quarries, sand and gravel pits. Stone cutters, who are probably not exposed to known lung carcinogens at the workplace but in some places to high concentrations of silica dust, showed a significant excess lung cancer risk in both Finland and Denmark.

  8. Epigenetics of solid cancer stem cells.

    Science.gov (United States)

    Mishra, Alok; Verma, Mukesh

    2012-01-01

    Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.

  9. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    Directory of Open Access Journals (Sweden)

    Halliday A Idikio

    2011-01-01

    Full Text Available Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  10. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    Science.gov (United States)

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  11. PPARγ affects nitric oxide in human umbilical vein endothelial cells exposed to Porphyromonas gingivalis.

    Science.gov (United States)

    Li, Peng; Zhang, Dakun; Wan, Meng; Liu, Jianru

    2016-08-01

    Porphyromonas gingivalis induces nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs). Peroxisome proliferator-activated receptor (PPARγ) has an anti-inflammation function, and its involvement in this NO induction process requires elucidation. Here, we focused on PPARγ expression in HUVECs exposed to P. gingivalis, and investigated its effects on NO synthesis. HUVECs were time-dependently stimulated by P. gingivalis W83 for 0-24h. PPARγ expression was assessed at the mRNA and protein levels, and PPARγ activation was measured using dual-luciferase reporter assays. NO synthesis and NO synthase (NOS) expression in response to P. gingivalis were examined in HUVECs pretreated with representative PPARγ agonist (15-deoxy-Δ12,14-prostaglandin J2 10μM) or antagonist (GW9662 10μM). In addition, NO synthesis and NOS expression in the P. gingivalis infected and control groups were detected. The PPARγ mRNA level in HUVECs increased after exposure to P. gingivalis for 1h and its protein level increased at 2h. Luciferase-induced PPARγ increased in P. gingivalis-exposed HUVECs. NO synthesis in the infected group at 4h, and in the PPARγ-activated group at 8h, was higher than that in controls. Inducible NOS increased in the infected and PPARγ-activated groups at 4 and 8h. The total endothelial NOS (eNOS) and phospho-eNOS levels were lower in the infected group than controls, but did not change in the PPARγ-activated group. Activated PPARγ induces NO generation through the NOS pathway in HUVECs exposed to P. gingivalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV protons in vitro or in vivo.

    Science.gov (United States)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Grossi, Gianfranco; Dan, Cristian; Grygoryev, Dmytro; Lasarev, Michael; Turker, Mitchell S

    2013-05-01

    Human exposure to high-energy protons occurs in space flight scenarios or, where necessary, during radiotherapy for cancer or benign conditions. However, few studies have assessed the mutagenic effectiveness of high-energy protons, which may contribute to cancer risk. Mutations cause cancer and most cancer-associated mutations occur at autosomal loci. This study addresses the cytotoxic and mutagenic effects of 1 GeV protons in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events. Results for kidneys irradiated in vivo are compared with the results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in vivo. Incubation in vivo for longer periods (8-9 months) further attenuates proton-induced cell killing. Protons are mutagenic to cells in vitro and for in vivo irradiated kidneys. The dose-response for Aprt mutation is curvilinear after in vitro or in vivo exposure, bending upward at the higher doses. While the absolute mutant fractions are higher in vivo, the fold-increase over background is similar for both in vitro and in situ exposures. Results are also presented for a limited study on the effect of dose fractionation on the induction of Aprt mutations in kidney epithelial cells. Dose-fractionation reduces the fraction of proton-induced Aprt mutants in vitro and in vivo and also results in less cell killing. Taken together, the mutation burden in the epithelium is slightly reduced by dose-fractionation. Autosomal mutations accumulated during clinical exposure to high-energy protons may contribute to the risk of treatment-associated neoplasms, thereby highlighting the need for rigorous treatment planning to reduce the dose to normal tissues. For low dose exposures that occur during most space flight scenarios, the mutagenic effects of protons appear to be modest.

  13. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Directory of Open Access Journals (Sweden)

    The Hong Phong Nguyen

    Full Text Available The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMFwere studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure, independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM and confocal laser scanning microscopy (CLSM. Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid may affect the extent of uptake of the large nanospheres (46 nm. Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  14. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Science.gov (United States)

    Nguyen, The Hong Phong; Pham, Vy T H; Nguyen, Song Ha; Baulin, Vladimir; Croft, Rodney J; Phillips, Brian; Crawford, Russell J; Ivanova, Elena P

    2016-01-01

    The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMF)were studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure), independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm) nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR) of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid) may affect the extent of uptake of the large nanospheres (46 nm). Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  15. Fatty acids and breast cancer cell proliferation.

    Science.gov (United States)

    Hardy, R W; Wickramasinghe, N S; Ke, S C; Wells, A

    1997-01-01

    We and others have shown that fatty acids are important regulators of breast cancer cell proliferation. In particular individual fatty acids specifically alter EGF-induced cell proliferation in very different ways. This regulation is mediated by an EGFR/G-protein signaling pathway. Understanding the molecular mechanisms of how this signaling pathway functions and how fatty acids regulate it will provide important information on the cellular and molecular basis for the association of dietary fat and cancer. Furthermore these in vitro studies may explain data previously obtained from in vivo animal studies and identify "good" as well as "bad" fatty acids with respect to the development of cancer.

  16. Expression of periostin in breast cancer cells.

    Science.gov (United States)

    Ratajczak-Wielgomas, Katarzyna; Grzegrzolka, Jedrzej; Piotrowska, Aleksandra; Matkowski, Rafal; Wojnar, Andrzej; Rys, Janusz; Ugorski, Maciej; Dziegiel, Piotr

    2017-10-01

    Periostin (POSTN) is a protein involved in multiple processes important for cancer development, both at the stage of cancer initiation and progression, as well as metastasis. The aim of this study was to determine the expression of POSTN in the cells of non-invasive ductal breast carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to correlate it with clinicopathological data. Immunohistochemical studies (IHC) were conducted on 21 cases of fibrocystic breast change (FC), 44 cases of DCIS and 92 cases of IDC. POSTN expression at mRNA (real-time PCR) and protein level (western blot analysis) was also confirmed in selected breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231 and BO2). Statistically significant higher level of POSTN expression in IDC and DCIS cancer cells compared to FC was noted. Also, the level of POSTN expression in the cytoplasm of IDC cells was shown to increase with the increasing degree of tumour malignancy (G) and significantly higher expression of POSTN was observed in each degree of tumour malignancy (G) relative to FC. Statistically significant higher POSTN expression was observed in tumours with estrogen receptor-negative (ER-) and progesterone receptor-negative (PR-) phenotypes in comparison to estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) cases, as well as significant negative correlation between POSTN expression in cancer cells and expression of ER and PR (p<0.05). Additionally, statistically significant differences in POSTN expression were shown between particular breast cancer cell lines, both at mRNA and protein level. Observed POSTN expression was the lowest in the case of MCF-7, and the highest in MDA-MB-231 and BO2 of the most aggressive potential clinically corresponding to G3 tumours. POSTN expression in the cytoplasm of IDC cancer cells may play an important role in cancer transformation mechanism.

  17. Transcriptional and secretomic profiling of epidermal cells exposed to alpha particle radiation.

    Science.gov (United States)

    Chauhan, Vinita; Howland, Matthew; Greene, Hillary Boulay; Wilkins, Ruth C

    2012-01-01

    Alpha (α)-particle emitters are probable isotopes to be used in a terrorist attack. The development of biological assessment tools to identify those who have handled these difficult to detect materials would be an asset to our current forensic capacity. In this study, for the purposes of biomarker discovery, human keratinocytes were exposed to α-particle and X-radiation (0.98 Gy/h at 0, 0.5, 1.0, 1.5 Gy) and assessed for differential gene and protein expression using microarray and Bio-Plex technology, respectively. Secretomic analysis of supernatants showed expression of two pro-inflammatory cytokines (IL-13 and PDGF-bb) to be exclusively affected in α-particle exposed cells. The highest dose of α-particle radiation modulated a total of 67 transcripts (fold change>|1.5|, (False discovery rate) FDR2 fold) included KIF20A, NEFM, C7orf10, HIST1H2BD, BMP6, and HIST1H2AC. Among the high expressing genes, five (CCNB2, BUB1, NEK2, CDC20, AURKA) were also differentially expressed at the medium (1.0 Gy) dose however, these genes were unmodulated following exposure to X-irradiation. Networks of these genes clustered around tumor protein-53 and transforming growth factor-beta signaling. This study has identified some potential gene /protein responses and networks that may be validated further to confirm their specificity and potential to be signature biomarkers of α-particle exposure.

  18. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3.

    Science.gov (United States)

    Singh, Snahlata; Chouhan, Surbhi; Mohammad, Naoshad; Bhat, Manoj Kumar

    2017-05-01

    Resistin, a proinflammatory cytokine, is elevated in a number of pathological disorders, including cancer. The serum resistin level in colon cancer patients is elevated and correlates with tumor grade. However, the implications of increased resistin on colon cancer cells remain unclear. In the present study, we find that resistin binds to TLR4 on colon cancer cell membrane and initiates TLR4-MyD88-dependent activation of ERK. In addition, the upregulation of SOCS3 by ERK downregulates the JAK2/TAT3 pathway and causes the arrest of cells in G1 phase. Interestingly, we observe that resistin-exposed cells survive 5-fluorouracil treatment because of a decrease in drug uptake due to the arrest of cells in G1 phase. © 2017 Federation of European Biochemical Societies.

  19. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  20. Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5.

    Science.gov (United States)

    Leclercq, B; Platel, A; Antherieu, S; Alleman, L Y; Hardy, E M; Perdrix, E; Grova, N; Riffault, V; Appenzeller, B M; Happillon, M; Nesslany, F; Coddeville, P; Lo-Guidice, J-M; Garçon, G

    2017-11-01

    Even though clinical, epidemiological and toxicological studies have progressively provided a better knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects, further in vitro studies on relevant cell systems are still needed. Hence, aiming of getting closer to the human in vivo conditions, primary human bronchial epithelial cells derived from normal subjects (NHBE) or sensitive chronic obstructive pulmonary disease (COPD)-diseased patients (DHBE) were differentiated at the air-liquid interface. Thereafter, they were repeatedly exposed to air pollution-derived PM2.5 to study the occurrence of some relevant genetic and/or epigenetic endpoints. Concentration-, exposure- and season-dependent increases of OH-B[a]P metabolites in NHBE, and to a lesser extent, COPD-DHBE cells were reported; however, there were more tetra-OH-B[a]P and 8-OHdG DNA adducts in COPD-DHBE cells. No increase in primary DNA strand break nor chromosomal aberration was observed in repeatedly exposed cells. Telomere length and telomerase activity were modified in a concentration- and exposure-dependent manner in NHBE and particularly COPD-DHBE cells. There were a global DNA hypomethylation, a P16 gene promoter hypermethylation, and a decreasing DNA methyltransferase activity in NHBE and notably COPD-DHBE cells repeatedly exposed. Changes in site-specific methylation, acetylation, and phosphorylation of histone H3 (i.e., H3K4me3, H3K9ac, H3K27ac, and H3S10ph) and related enzyme activities occurred in a concentration- and exposure-dependent manner in all the repeatedly exposed cells. Collectively, these results highlighted the key role played by genetic and even epigenetic events in NHBE and particularly sensitive COPD-DHBE cells repeatedly exposed to air pollution-derived PM2.5 and their different responsiveness. While these specific epigenetic changes have been already described in COPD and even lung cancer phenotypes, our

  1. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our under...

  2. Cancer stem cells, the ultimate targets in cancer therapy

    OpenAIRE

    Shabbir A; Esfandyari T; Farassati F

    2018-01-01

    Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs) is currently of significant interest due to its important implications in our understanding of ...

  3. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  4. Evaluation of cancer mortality in a cohort of workers exposed to low-level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lea, C.S.

    1995-12-01

    The purpose of this dissertation was to re-analyze existing data to explore methodologic approaches that may determine whether excess cancer mortality in the ORNL cohort can be explained by time-related factors not previously considered; grouping of cancer outcomes; selection bias due to choice of method selected to incorporate an empirical induction period; or the type of statistical model chosen.

  5. Surface-enhanced Raman scattering from living cells: from differentiating healthy and cancerous cell to cytotoxicity assessment

    Science.gov (United States)

    Kuku, Gamze; Sarıçam, Melike; Mert, Sevda; ćulha, Mustafa

    2015-05-01

    There is an ongoing effort to obtain molecular level information from living cells using surface-enhanced Raman scattering (SERS) not only to understand changes of cellular processes upon exposure to external stimuli but also to decide the status of cells; whether they are healthy or abnormal. In our research effort, we investigate how much information can be obtained from living cells to use for decision making about the cellular processes using SERS. The undertaken studies include cytotoxicity assessment of the nanomaterials and differentiation of the healthy and cancer cells. In the first case, A549 (lung cancer) and HDF (human dermal fibroblast) cells were incubated with 50 nm gold nanoparticles (AuNP) and exposed to three different nanoparticles (Zinc oxide nanoparticles (ZnO NPs), titanium dioxide nanoparticles (TiO2) and single walled carbon nanotubes (SWCNTs)) to perform SERS analysis and track the cellular response to these nanomaterials (NMs). After the principal component analysis on the spectral data, it was shown that the NPs exposed samples could be differentiated through SERS. In the second case, SERS spectra obtained from human kidney adenocarcinoma (ACHN), human kidney carcinoma (A-498) and non-cancerous human kidney embryonic cells (HEK 293) were used to diagnose metastatic, primary and non-cancerous cell lines. Linear discriminant analysis (LDA) based on principal component analysis (PCA) was applied to collected multidimensional SERS spectral data set to differentiate three different cell lines.

  6. Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Gao, Quanli; Geng, Li; Kvalheim, Gunnar; Gaudernack, Gustav; Suo, Zhenhe

    2009-01-01

    Side population (SP) cells may enrich stem-like cells in many normal and malignant tissues. However, SP method application has drawn special attention to the field of stem cell research, and the existence of SP cells in cell culture is being debated, most probably because different cell lines require different technical modifications, especially when cell staining is considered. In this study, the authors aimed to disclose whether the hoechst33342 staining required extensive optimization for identifying SP cells in the human ovarian cancer cell line OVCAR-3. After systematic evaluations, it was found that only 2.5 microg/mL hoechst33342 staining of the cells for 60 min could get an ideal SP population, which accounted for 0.9% of the whole cell population. The sorted SP cells showed significantly higher colony formation efficiency than the non-side population (NSP) cells, and only the SP cells could form holoclones. Real-time PCR disclosed that SP cells expressed higher levels of "stemness" gene Oct3/4 than the NSP cells did, indicating that the SP cells might harbor cancer stem cells in this cell line. The results highlight the necessity of SP method optimization in cell studies, and the SP cells in this cell line merit further studies when cancer stem cell identification and isolation are considered.

  7. Cancer stem cells and their implication in breast cancer.

    Science.gov (United States)

    Carrasco, E; Alvarez, Pablo J; Prados, José; Melguizo, Consolación; Rama, Ana R; Aránega, Antonia; Rodríguez-Serrano, Fernando

    2014-07-01

    The cancer stem cell (CSC) hypothesis on the origin of cancer has recently gained considerable support. CSCs are tumour cells with the capacity for self-renewal and differentiation that direct the origin and progression of the disease and may be responsible for relapse, metastasis and treatment failures. This article reviews breast CSCs (BCSCs) phenotyping, clinical implications and clinical trials focused on BCSCs in breast cancer. Relevant studies were found through PubMed and Clinicaltrials.gov databases. Cancer stem cells are identified and isolated using membrane and cell activity markers; in the case of BCSCs, these are CD44(+) /CD24(low/-) and show aldehyde dehydrogenase activity, alongside their capacity to grow and form mammospheres. The presence of stem cell properties is associated with a worse outcome. Hence, these cells have important clinical implications, and elucidation of the mechanisms underlying their activity will allow the development of novel effective therapies and diagnostic instruments, improving the prognosis of these patients. Standard treatments are directed against the tumour mass and do not eliminate CSCs. There is therefore a need for specific anti-CSC therapies, and numerous authors are investigating new targets to this end, as reported in this review. It is also necessary for clinical trials to be undertaken to allow this new knowledge to be applied in the clinical setting. However, there have been few trials on anti-BCSCs therapies to date. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Human Cancer Classification: A Systems Biology- Based Model Integrating Morphology, Cancer Stem Cells, Proteomics, and Genomics

    OpenAIRE

    Halliday A Idikio

    2011-01-01

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture...

  9. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Jara-Ettinger

    Full Text Available An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders.We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls. Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age.Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor.Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  10. Common Effects on Follicular Thyroid Cancer Cells Exerted by Simulated Microgravity

    DEFF Research Database (Denmark)

    Svejgaard, Benjamin; Grimm, Daniela; Corydon, Thomas Juhl

    2015-01-01

    This study focuses on gravity-sensitive proteins of two human follicular cancer cell lines (ML-1; RO82-W-1), which were exposed to simulated microgravity (s-μg) on two different machines. Changes in protein cytoskeletal structure, growth patterns and protein expression in response to s-μg were...

  11. Cell Phones and Cancer Risk

    Science.gov (United States)

    ... Español 1-800-4-CANCER Live Chat Publications Dictionary Menu Contact Dictionary Search About Cancer Causes and Prevention Risk Factors ... interagency program headquartered at the National Institute of Environmental Health Sciences (NIEHS), which is part of the ...

  12. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    Directory of Open Access Journals (Sweden)

    Linnea Ahlinder

    2016-04-01

    Full Text Available The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  13. Hemorheological characteristics of red blood cells exposed to surface functionalized graphene quantum dots.

    Science.gov (United States)

    Kim, Jeongho; Nafiujjaman, Md; Nurunnabi, Md; Lee, Yong-Kyu; Park, Hun-Kuk

    2016-11-01

    Graphene quantum dots (GQDs) are potential candidates for various biomedical applications such as drug delivery, bioimaging, cell labeling, and biosensors. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain unexplored. To the best of our knowledge, our study is the first to investigate the toxicity effects of three GQDs with different surface functionalizations on the hemorheological characteristics of human RBCs, including hemolysis, deformability, aggregation, and morphological changes. RBCs were exposed to three different forms of GQDs (non-functionalized, hydroxylated, and carboxylated GQDs) at various concentrations (0, 500, 750, and 1000 μg/mL) and incubation times (0, 1, 2, 3, or 4 h). The rheological characteristics of the RBCs were measured using microfluidic-laser diffractometry and aggregometry. Overall, the hemolysis rate and rheological alterations of the RBCs were insignificant at a concentration less than 500 μg/mL. Carboxylated GQDs were observed to have more substantial hemolytic activity and caused abrupt changes in the deformability and aggregation of the RBCs than the non-functionalized or hydroxylated GQDs at concentrations >750 μg/mL. Our findings indicate that hemorheological assessments could be utilized to estimate the degree of toxicity to cells and to obtain useful information on safety sheets for nanomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  15. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    Science.gov (United States)

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  16. Proteomic profiling of the surface-exposed cell envelope proteins of Caulobacter crescentus.

    Science.gov (United States)

    Cao, Yuan; Bazemore-Walker, Carthene R

    2014-01-31

    Biotinylation of intact cells, avidin enrichment of derivatized peptides, and shotgun proteomics were employed to reveal the composition of the surface-exposed proteome of the aquatic bacterium, Caulobacter crescentus. Ninety-one unique proteins were identified with the majority originating from the outer membrane, periplasm, and inner membrane, subcellular regions that comprise the Gram-negative bacterium cell envelope. Many of these proteins were described as 'conserved hypothetical protein' or 'hypothetical protein'; and so, the actual expression of these gene products was confirmed. Others did not have any known function or lacked annotation. However, this investigation of the Caulobacter surfaceome did reveal the unanticipated presence of a number of enzymes involved in protein degradation. The results presented here can provide a starting point for hypothesis-driven research projects focused on this bacterium in particular and centered on understanding Gram-negative cell architecture and outer membrane biogenesis broadly. The detected protein degradation enzymes anchored on or located within the outer membrane suggest that Caulobacter has nutrient sources larger than small molecules and/or further processes surface proteins once secreted to this location. Additionally, confirmation of outer membrane residency of those proteins predicted to be periplasmic or whose location prediction was not definitive could potentially elucidate the identities of Gram-negative specific anchorless surface proteins. This article is part of a Special Issue entitled: Trends in Microbial Proteomics. © 2013.

  17. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  18. Induction of cancer stem cell properties in colon cancer cells by defined factors.

    Directory of Open Access Journals (Sweden)

    Nobu Oshima

    Full Text Available Cancer stem cells (CSCs are considered to be responsible for the dismal prognosis of cancer patients. However, little is known about the molecular mechanisms underlying the acquisition and maintenance of CSC properties in cancer cells because of their rarity in clinical samples. We herein induced CSC properties in cancer cells using defined factors. We retrovirally introduced a set of defined factors (OCT3/4, SOX2 and KLF4 into human colon cancer cells, followed by culture with conventional serum-containing medium, not human embryonic stem cell medium. We then evaluated the CSC properties in the cells. The colon cancer cells transduced with the three factors showed significantly enhanced CSC properties in terms of the marker gene expression, sphere formation, chemoresistance and tumorigenicity. We designated the cells with CSC properties induced by the factors, a subset of the transduced cells, as induced CSCs (iCSCs. Moreover, we established a novel technology to isolate and collect the iCSCs based on the differences in the degree of the dye-effluxing activity enhancement. The xenografts derived from our iCSCs were not teratomas. Notably, in contrast to the tumors from the parental cancer cells, the iCSC-based tumors mimicked actual human colon cancer tissues in terms of their immunohistological findings, which showed colonic lineage differentiation. In addition, we confirmed that the phenotypes of our iCSCs were reproducible in serial transplantation experiments. By introducing defined factors, we generated iCSCs with lineage specificity directly from cancer cells, not via an induced pluripotent stem cell state. The novel method enables us to obtain abundant materials of CSCs that not only have enhanced tumorigenicity, but also the ability to differentiate to recapitulate a specific type of cancer tissues. Our method can be of great value to fully understand CSCs and develop new therapies targeting CSCs.

  19. The therapeutic promise of the cancer stem cell concept

    National Research Council Canada - National Science Library

    Frank, Natasha Y; Schatton, Tobias; Frank, Markus H

    2010-01-01

    Cancer stem cells (CSCs) are a subpopulation of tumor cells that selectively possess tumor initiation and self-renewal capacity and the ability to give rise to bulk populations of nontumorigenic cancer cell progeny through differentiation...

  20. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011).

    Science.gov (United States)

    Vijayalaxmi; Prihoda, Thomas J

    2012-12-12

    Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More

  1. Risk of cancer in workers exposed to styrene at eight British companies making glass-reinforced plastics.

    Science.gov (United States)

    Coggon, David; Ntani, Georgia; Harris, E Clare; Palmer, Keith T

    2015-03-01

    To provide further information on the risks of lymphohaematopoietic (LH) and other cancers associated with styrene. We extended follow-up to December 2012 for 7970 workers at eight companies in England which used styrene in the manufacture of glass-reinforced plastics. Mortality was compared with that for England and Wales by the person-years method, and summarised by SMRs with 95% CIs. A supplementary nested case-control analysis compared styrene exposures, lagged by 5 years, in 122 incident or fatal cases of LH cancer and 1138 matched controls. A total of 3121 cohort members had died (2022 since the last follow-up). No elevation of mortality was observed for LH cancer, either in the full cohort (62 deaths, SMR 0.90, 95% CI 0.69 to 1.15), or in those with more than background exposure to styrene (38 deaths, SMR 0.82, 95% CI 0.58 to 1.14). Nor did the case-control analysis suggest any association with LH cancer. In comparison with background exposure, the OR for non-Hodgkin's lymphoma/chronic lymphocytic leukaemia in workers with high exposure (estimated 8-h time-weighted average of 40-100 ppm) for ≥1 year was 0.54 (95% CI 0.23 to 1.27). Mortality from lung cancer was significantly elevated, and risk increased progressively across exposure categories, with an SMR of 1.44 (95% CI 1.10 to 1.86) in workers highly exposed for ≥1 year. We found no evidence that styrene causes LH cancer. An association with lung cancer is not consistently supported by other studies. It may have been confounded by smoking, but would be worth checking further. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest
.

    Science.gov (United States)

    Zhuo, Yumin; Chen, Qibiao; Chen, Bo; Zhan, Xiongyu; Qin, Xiaoping; Huang, Jun; Lv, Xiuxiu

    2017-01-01

    The present study was aimed to observe the effect of berberine (Ber) on epirubicin (EPI)-induced growth inhibition, apoptosis, and cell cycle arrest in T24 bladder cancer cells. The cancer cells were exposed to EPI, with or without different concentrations of Ber. The viability of the cancer cells was measured by cell counting Kit-8, the apoptosis was determined by Hoechst 33258 staining and the expression of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and P53 proteins were detected by Western blot assay. In addition, cell cycle arrest and the production of reactive oxygen species (ROS) were also measured. We found that Ber enhanced the inhibitory effect of EPI on the viability of T24 cells and promoted EPI-induced cell cycle arrest at G0/G1 and apoptosis in T24 cells. EPI increased the expression of cleaved caspase-3, cleaved caspase-9, Bax, P53, and P21 proteins, all of which were enhanced by treatment with Ber. In contrast, Ber exposure further decreased the expression of Bcl-2 in EPI-treated T24 cells. Furthermore, we also demonstrated that Ber significantly increased ROS production in EPI-treated T24 cells. These data indicate that Ber enhances the antiproliferative effects of EPI in bladder cancer cells by promoting apoptosis and cell cycle arrest.
.

  3. The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.

    Science.gov (United States)

    Joseph, Immanual; Tressler, Robert; Bassett, Ekaterina; Harley, Calvin; Buseman, Christen M; Pattamatta, Preeti; Wright, Woodring E; Shay, Jerry W; Go, Ning F

    2010-11-15

    Cancer stem cells (CSC) are rare drug-resistant cancer cell subsets proposed to be responsible for the maintenance and recurrence of cancer and metastasis. Telomerase is constitutively active in both bulk tumor cell and CSC populations but has only limited expression in normal tissues. Thus, inhibition of telomerase has been shown to be a viable approach in controlling cancer growth in nonclinical studies and is currently in phase II clinical trials. In this study, we investigated the effects of imetelstat (GRN163L), a potent telomerase inhibitor, on both the bulk cancer cells and putative CSCs. When breast and pancreatic cancer cell lines were treated with imetelstat in vitro, telomerase activity in the bulk tumor cells and CSC subpopulations were inhibited. Additionally, imetelstat treatment reduced the CSC fractions present in the breast and pancreatic cell lines. In vitro treatment with imetelstat, but not control oligonucleotides, also reduced the proliferation and self-renewal potential of MCF7 mammospheres and resulted in cell death after telomerase activity expression levels or telomere length of CSCs and bulk tumor cells in these cell lines did not correlate with the increased sensitivity of CSCs to imetelstat, suggesting a mechanism of action independent of telomere shortening for the effects of imetelstat on the CSC subpopulations. Our results suggest that imetelstat-mediated depletion of CSCs may offer an alternative mechanism by which telomerase inhibition may be exploited for cancer therapy. Copyright © 2010 AACR.

  4. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract

    NARCIS (Netherlands)

    Arranz, E.; Mes, J.J.; Wichers, H.J.; Jaime, L.; Reglero, G.; Santoyo, S.

    2015-01-01

    The anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract was examined. Uptake of rosemary extract fractions was tested on Caco-2 cell monolayers (2–12 h incubation times) and the quantification of carnosic acid and carnosol was performed

  5. Liver cancer stem cells as an important target in liver cancer therapies.

    Science.gov (United States)

    Zou, Gang-Ming

    2010-02-01

    Hepatic cancer is one of most common cause of cancer-related death. Hepato-epithelial cancers are believed to originate from the malignant transformation of liver-resident stem/progenitor cells. Liver cancer stem cells have been characterized recently and the phenotype of liver cancer stem cells has been defined as CD133+ CD44+ cancer cells. Recently, it has been also demonstrated about the relevance of targeting liver cancer stem cells, due to cancer stem cells are related to cancer metastasis. These advances no doubt to bring the new strategy in liver cancer treatment and control in this disease. This review describes the current status and progress about cancer stem cell research in liver and discuss of the implications of these studies in new liver cancer treatment strategies.

  6. Cells as delivery vehicles for cancer therapeutics.

    Science.gov (United States)

    Basel, Matthew T; Shrestha, Tej B; Bossmann, Stefan H; Troyer, Deryl L

    2014-05-01

    Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.

  7. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  8. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  9. IL-4-mediated drug resistance in colon cancer stem cells

    NARCIS (Netherlands)

    Todaro, Matilde; Perez Alea, Mileidys; Scopelliti, Alessandro; Medema, Jan Paul; Stassi, Giorgio

    2008-01-01

    Cancer stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Cancer stem cells are thus likely to be responsible for maintaining or spreading a cancer, and may be the most relevant targets for cancer therapy. The CD133 glycoprotein was recently

  10. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  11. Harnessing the apoptotic programs in cancer stem-like cells.

    Science.gov (United States)

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  12. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  13. Alterations in body weight and blood glucose level of female hamsters exposed to electromagnetic fields of cell phones

    Directory of Open Access Journals (Sweden)

    A.R Lotfi

    2010-02-01

    Group 2 was exposed to electromagnetic field emitted by cell phones for 10 days (short term and group 3 for 50 day (long term. In the latter groups, the exposure was 1 hour per day. At the end of the experimental period, the animals were weighed and blood glucose concentrations were determined by obtaining blood samples from 8 randomly selected hamsters in each group.  The blood glucose level was significantly higher in long-term exposed group in comparison with the control and short-term exposed groups (175, 11.6 and 107 mg/dl, respectively (p

  14. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... immunology approach is applied. Via in silico screening of the protein sequences, 415 peptides were predicted as HLA-A*0201 and HLA-B*0702 binders. Subsequent in vitro binding analysis in a MHC ELISA platform confirmed binding for 147 of the 415 predicted binders. The 147 peptides were evaluated for T cell...

  15. Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen.

    Science.gov (United States)

    Abos Gracia, Beatriz; López Relaño, Juan; Revilla, Ana; Castro, Lourdes; Villalba, Mayte; Martín Adrados, Beatriz; Regueiro, Jose Ramon; Fernández-Malavé, Edgar; Martínez Naves, Eduardo; Gómez Del Moral, Manuel

    2017-01-01

    Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses. © 2017 S. Karger AG, Basel.

  16. Cancer incidence in the population exposed to dioxin after the "Seveso accident": twenty years of follow-up

    Directory of Open Access Journals (Sweden)

    Rubagotti Maurizia

    2009-09-01

    Full Text Available Abstract Background The Seveso, Italy accident in 1976 caused the contamination of a large population by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Possible long-term effects have been examined through mortality and cancer incidence studies. We have updated the cancer incidence study which now covers the period 1977-96. Methods The study population includes subjects resident at the time of the accident in three contaminated zones with decreasing TCDD soil levels (zone A, very high; zone B, high; zone R, low and in a surrounding non-contaminated reference territory. Gender-, age-, and period-adjusted rate ratios (RR and 95% confidence intervals (95% CI were calculated by using Poisson regression for subjects aged 0-74 years. Results All cancer incidence did not differ from expectations in any of the contaminated zones. An excess of lymphatic and hematopoietic tissue neoplasms was observed in zones A (four cases; RR, 1.39; 95% CI, 0.52-3.71 and B (29 cases; RR, 1.56; 95% CI, 1.07-2.27 consistent with the findings of the concurrent mortality study. An increased risk of breast cancer was detected in zone A females after 15 years since the accident (five cases, RR, 2.57; 95% CI, 1.07-6.20. No cases of soft tissue sarcomas occurred in the most exposed zones (A and B, 1.17 expected. No cancer cases were observed among subjects diagnosed with chloracne early after the accident. Conclusion The extension of the Seveso cancer incidence study confirmed an excess risk of lymphatic and hematopoietic tissue neoplasms in the most exposed zones. No clear pattern by time since the accident and zones was evident partly because of the low number of cases. The elevated risk of breast cancer in zone A females after 15 years since the accident deserves further and thorough investigation. The follow-up is continuing in order to cover the long time period (even decades usually elapsing from exposure to carcinogenic chemicals and disease occurrence.

  17. [Sodium valproate enhances doxorubicin cytotoxicity in breast cancer cells in vitro].

    Science.gov (United States)

    Tong, Xu-Hui; Zheng, Chao; Jiang, Guo-Jun; Dong, Shu-Ying

    2015-01-01

    To investigate the effect of sodium valproate, a histone deacetylase inhibitor, on the cytotoxicity of doxorubicin in breast cancer cells. Western blotting was used to assess Cx43 protein expression in breast cancer Hs578T cells exposed to doxorubicin and sodium valproate. MTT assay was used to determine the cytotoxicity of doxorubicin; annexin V/PI double staining and Hochest 33258 fluorescence staining were employed to detect doxorubicin-induced early and late apoptosis, respectively. Western blotting showed that sodium valproate significantly increased Cx43 protein expression in Hs578T cells (P/0.01). The cells exposed to both sodium valproate and doxorubicin showed significantly lowered cell viability compared with the cells exposed to doxorubicin alone (P/0.01). Exposure to both sodium valproate and doxorubicin resulted in significantly increased early and late cell apoptosis rate compared with doxorubicin treatment alone (P/0.01). sodium valproate can significantly enhance the cytotoxicity of doxorubicin and increase doxorubicin-induced apoptosis in breast cancer cells in vitro possibly by enhancing the gap junction function.

  18. Cytogenomics of hexavalent chromium (Cr6+ exposed cells: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Akanksha Nigam

    2014-01-01

    Full Text Available The altered cellular gene expression profile is being hypothesized as the possible molecular basis navigating the onset or progress of various morbidities. This hypothesis has been evaluated here in respect of Cr 6+ induced toxicity. Several studies using gene microarray show selective and strategic dysregulations of cellular genes and pathways induced by Cr 6+ . Relevant literature has been reviewed to unravel these changes in different test systems after exposure to Cr 6+ and also to elucidate association if any, of the altered cytogenomics with Cr 6+ induced toxicity or carcinogenicity. The aim was to verify the hypothesis for critical role of altered cytogenomics in onset of Cr 6+ induced biological / clinical effects by identifying genes modulated commonly by the toxicant irrespective of test system or test concentrations / doses, and by scrutinizing their importance in regulation of the flow of mechanistically linked events crucial for resultant morbidities. Their probability as biomarkers to monitor the toxicant induced biological changes is speculative. The modulated genes have been found to cluster under the pathways that manage onset of oxidative stress, DNA damage, apoptosis, cell-cycle regulation, cytoskeleton, morphological changes, energy metabolism, biosynthesis, oncogenes, bioenergetics, and immune system critical for toxicity. In these studies, the identity of genes has been found to differ remarkably; albeit the trend of pathways′ dysregulation has been found to remain similar. We conclude that the intensity of dysregulation of genes or pathways involved in mechanistic events forms a sub-threshold or threshold level depending upon the dose and type (including speciation of the toxicant, duration of exposure, type of target cells, and niche microenvironment of cells, and the intensity of sub-threshold or threshold level of the altered cytogenomics paves way in toxicant exposed cells eventually either to opt for reversal to

  19. Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

    Directory of Open Access Journals (Sweden)

    P. Mehnati

    2007-06-01

    Full Text Available Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health risks to astronauts during long mission should be considered.  Materials and Methods: The induction of interphase death was tested on Chinese hamster ovary cells by exposing them to accelerated heavy ions (carbon, neon, argon and iron of 10-2000 linear energy transfers (LETs. The fraction of cells that underwent interphase death was determined by observing individual cells with time-lapse photography (direct method as well as by the indirect method of counting cells undergoing interphase death made visible by the addition of caffeine (indirect method. Results: The interphase death due to the exposure to X- rays is increased linearly as the dose exceeds the threshold dose of 10 Gy. Whereas the interphase death increases at a higher rate due to the exposure to high LET heavy ions and no threshold dose was observed. The range of LET values corresponding to the maximum RBE for the interphase death is 120-230 keV/µm. The probability of inducing the interphase death by a single heavy ion traversing through the nucleus is about 0.04-0.08. Discussion and Conclusion: The relative biological effectiveness (RBE of heavy ions as compared to X- rays as determined at the 50% level of induction is increased with LET. It reached a maximum value at a LET of approximately 230 keV/µm and then decreased with further increase in LET. The range of LET values corresponding to the maximum RBE appears to be narrower for interphase death than for reproductive death.

  20. Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field.

    Science.gov (United States)

    Lu, Wei; Wu, Ke; Hu, Xiangjun; Xie, Xiangdong; Ning, Jing; Wang, Changzhen; Zhou, Hongmei; Yang, Guoshan

    2017-02-01

    Intracellular electroporation occurs when the cells are exposed to nanosecond pulsed electric field (nsPEF). It is believed the electroporation (formation and extension of pores on the membrane induced by external electric field) is affected significantly by the transmembrane potential. This paper analyzed transmembrane potential induced by nsPEF in the term of pulse frequency spectrum, aiming to provide a theoretical explanation to intracellular bio-effects. Based on the double-shelled spherical cell model, the frequency dependence of transmembrane potential was obtained by solving Laplace's equation, while the time course of transmembrane potential was obtained by a method combined with discrete Fourier transform and Laplace transform. First-order Debye equation was used to describe the dielectric relaxation of the cell medium. Frequency-domain analysis showed that when the electric field frequency was higher than 10 5 Hz, the transmembrane potential on the organelle membrane (ΔΦ o ) was increasing to exceed the transmembrane potential on the cellular membrane (ΔΦ c ). In the time-domain analysis, transmembrane potentials induced by four nsPEF (short trapezoid, long trapezoid, bipolar and sine shapes) with the same field strength were compared with each other. It showed that ΔΦ o is obviously larger than ΔΦ c if the curve of the normalized frequency spectrum of the pulse is more similar with the curve of normalized ΔΦ o in frequency domain. Pulses with major frequency components higher than 10 8 Hz lead to both small ΔΦ o and ΔΦ c . This may explain why high power pulsed microwave lead to unobvious bio-effects of cells than nsPEF with trapezoid form. Through the pulse frequency spectrum it is clearer to understand the relationship between nsPEF and the transmembrane potential.

  1. The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia.

    Science.gov (United States)

    Bonfanti, Roberta; Musumeci, Teresa; Russo, Cristina; Pellitteri, Rosalia

    2017-02-05

    Curcumin, a phytochemical component derived from the rhizomes of Curcuma longa, has shown a great variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-depression and anti-oxidant activity. Therefore, in the last years it has been used as a therapeutic agent since it confers protection in different neurodegenerative diseases, cerebral ischemia and excitotoxicity. Olfactory Ensheathing Cells (OECs) are glial cells of the olfactory system. They are able to secrete several neurotrophic growth factors, promote axonal growth and support the remyelination of damaged axons. OEC transplantation has emerged as a possible experimental therapy to induce repair of spinal cord injury, even if the functional recovery is still limited. Since hypoxia is a secondary effect in spinal cord injury, this in vitro study investigates the protective effect of curcumin in OECs exposed to hypoxia. Primary OECs were obtained from neonatal rat olfactory bulbs and placed both in normal and hypoxic conditions. Furthermore, some cells were grown with basic Fibroblast Growth Factor (bFGF) and/or curcumin at different concentration and times. The results obtained through immunocytochemical procedures and MTT test show that curcumin stimulates cell viability in OECs grown in normal and hypoxic conditions. Furthermore, the synergistic effect of curcumin and bFGF is the most effective exerting protection on OECs. Since spinal cord injury is often accompanied by secondary insults, such as ischemia or hypoxia, our results suggest that curcumin in combination with bFGF might be considered a possible approach for restoration in injuries. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phenotypic Heterogeneity of Breast Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Aurelio Lorico

    2011-01-01

    Full Text Available Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs capable of sustaining tumor formation and growth, giving rise to differentiated cells, which form the bulk of the tumor. Proof of the existence of CSC comes from clinical experience with germ-cell cancers, where the elimination of a subset of undifferentiated cells can cure patients (Horwich et al., 2006, and from the study of leukemic cells (Bonnet and Dick, 1997; Lapidot et al., 1994; and Yilmaz et al., 2006. The discovery of CSC in leukemias as well as in many solid malignancies, including breast carcinoma (Al-Hajj et al. 2003; Fang et al., 2005; Hemmati et al., 2003; Kim et al., 2005; Lawson et al., 2007; Li et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2003; and Xin et al., 2005, has suggested a unifying CSC theory of cancer development. The reported general insensitivity of CSC to chemotherapy and radiation treatment (Bao et al., 2006 has suggested that current anticancer drugs, which inhibit bulk replicating cancer cells, may not effectively inhibit CSC. The clinical relevance of targeting CSC-associated genes is supported by several recent studies, including CD44 targeting for treatment of acute myeloid leukemia (Jin et al., 2006, CD24 targeting for treatment of colon and pancreatic cancer (Sagiv et al., 2008, and CD133 targeting for hepatocellular and gastric cancer (Smith et al., 2008. One promising approach is to target CSC survival signaling pathways, where leukemia stem cell research has already made some progress (Mikkola et al., 2010.

  3. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  4. Macroporous hydrogel micropillars for quantifying Met kinase activity in cancer cell lysates

    Science.gov (United States)

    Powers, Alicia D.; Liu, Bi; Lee, Andrew G.; Palecek, Sean P.

    2012-01-01

    Overactive and overexpressed kinases have been implicated in the cause and progression of many cancers. Kinase inhibitors offer a targeted approach for treating cancers associated with increased or deregulated kinase activity. Often, however, cancer cells exhibit initial resistance to these inhibitors or evolve to develop resistance during treatment. Additionally, cancers of any one tissue type are typically heterogeneous in their oncogenesis mechanisms, and thus diagnosis of a particular type of cancer does not necessarily provide insight into what kinase therapies may be effective. For example, while some lung cancer cells that overexpress the epidermal growth factor receptor (EFGR) respond to treatment with EGFR kinase inhibitors, overexpression or hyperactivity of Met kinase correlates with resistance to EGFR kinase inhibitors. Here we describe a microfluidic-based assay for quantifying Met kinase activity in cancer cell lysates with the eventual goals of predicting cancer cell responsiveness to kinase inhibitors and monitoring development of resistance to these inhibitors. In this assay, we immobilized a phosphorylation substrate for Met kinase into macroporous hydrogel micropillars. We then exposed the micropillars to a cancer cell lysate and detected substrate phosphorylation using a fluorescently-conjugated antibody. This assay is able to quantify Met kinase activity in whole cell lysate from as few as 150 cancer cells. It can also detect cells expressing overactive Met kinase in a background of up to 75% non-cancerous cells. Additionally, the assay can quantify kinase inhibition by the Met-specific kinase inhibitors SU11274 and PHA665752, suggesting predictive capability for cellular response to kinase inhibitors. PMID:22814332

  5. Cancer stem cells in the development of liver cancer

    Science.gov (United States)

    Yamashita, Taro; Wang, Xin Wei

    2013-01-01

    Liver cancer is an aggressive disease with a poor outcome. Several hepatic stem/progenitor markers are useful for isolating a subset of liver cells with stem cell features, known as cancer stem cells (CSCs). These cells are responsible for tumor relapse, metastasis, and chemoresistance. Liver CSCs dictate a hierarchical organization that is shared in both organogenesis and tumorigenesis. An increased understanding of the molecular signaling events that regulate cellular hierarchy and stemness, and success in defining key CSC-specific genes, have opened up new avenues to accelerate the development of novel diagnostic and treatment strategies. This Review highlights recent advances in understanding the pathogenesis of liver CSCs and discusses unanswered questions about the concept of liver CSCs. PMID:23635789

  6. DNA damage in blood cells exposed to low-level lasers.

    Science.gov (United States)

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  7. Influence of dietary vitamin E on the red cells of ozone-exposed rats

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. (Univ. of Kentucky, Lexington); Kaneko, J.J.

    1979-06-01

    The effect of dietary vitamin E on the susceptibility of red blood cells to ozone exposure was studied in rats. One- and two-month-old male Sprague-Dawley rats were fed a basal vitamin E-deficient diet with or without 45 ppM vitamin E for 4 and 3 months, respectively, and were exposed to 0 or 0.8 ppM ozone continuously for 7 days. Ozone exposure resulted in a significant increase in the activities of glutathione (GSH) peroxidase, pyruvate kinase, and lactate dehydrogenase, and a decrease in GSH level in the red cells of vitamin E-deficient rats, but not in those of the supplemented group. The activities of glucose-6-phosphate dehydrogenase, catalase, and superoxide dismutase and levels of thiobarbituric acid reactants, methemoglobin, hemoglobin, and reticulocytes were not significantly altered by ozone exposure or by the nutritional status of vitamin E. The results suggest that depletion of dietary vitamin E renders animals more susceptible to ozone exposure.

  8. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity.

    Science.gov (United States)

    Martínez-Ballesta, M Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-06-08

    Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.

  9. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells.

    Science.gov (United States)

    Lo Re, Oriana; Panebianco, Concetta; Porto, Stefania; Cervi, Carlo; Rappa, Francesca; Di Biase, Stefano; Caraglia, Michele; Pazienza, Valerio; Vinciguerra, Manlio

    2018-02-01

    Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use. © 2017 Wiley Periodicals, Inc.

  10. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  11. Increased micronucleus frequencies in surrogate and target cells from workers exposed to crystalline silica-containing dust.

    Science.gov (United States)

    Demircigil, Gonca Cakmak; Coskun, Erdem; Vidinli, Nuri; Erbay, Yildiray; Yilmaz, Metin; Cimrin, Arif; Schins, Roel P; Borm, Paul J; Burgaz, Sema

    2010-03-01

    Mining, crushing, grinding, sandblasting and construction are high-risk activities with regard to crystalline silica exposure, especially in developing countries. Respirable crystalline silica (quartz and cristobalite) inhaled from occupational sources has been reclassified as a human carcinogen in 1997 by the International Agency for Research on Cancer. However, the biological activity of crystalline silica has been found to be variable among different industries, and this has formed the basis for further in vivo/in vitro mechanistic research and epidemiologic studies. This study was conducted for genotoxicity evaluation in a population of workers (e.g. glass industry workers, sandblasters, and stone grinders) mainly exposed to crystalline silica in four different workplaces in Turkey. The micronucleus (MN) assay was applied both in peripheral blood lymphocytes (PBL) as a surrogate tissue and in nasal epithelial cells (NEC) as a target tissue of the respiratory tract. Our study revealed significantly higher MN frequencies in the workers (n = 50) versus the control group (n = 29) (P crystalline silica levels exceeding limit values and mineralogical/elemental dust composition of the dust of at least 70% SiO(2) were used as markers of crystalline silica exposure in each of the workplaces. Moreover, 24% of the current workers were found to have early radiographical changes (profusion category of 1). In conclusion, although the PBL are not primary target cells for respiratory particulate toxicants, an evident increase in MN frequencies in this surrogate tissue was observed, alongside with a significant increase in NEC and may be an indicator of the accumulated genetic damage associated with crystalline silica exposure.

  12. Sunitinib for advanced renal cell cancer

    Directory of Open Access Journals (Sweden)

    Chris Coppin

    2008-03-01

    Full Text Available Chris CoppinBC Cancer Agency and University of British Columbia, Vancouver, CanadaAbstract: Renal cell cancer has been refractory to drug therapy in the large majority of patients. Targeted agents including sunitinib have been intensively evaluated in renal cell cancer over the past 5 years. Sunitinib is an oral small molecule inhibitor of several targets including multiple tyrosine kinase receptors of the angiogenesis pathway. This review surveys the rationale, development, validation, and clinical use of sunitinib that received conditional approval for use in North America and Europe in 2006. In patients with the clear-cell subtype of renal cell cancer and metastatic disease with good or moderate prognostic factors for survival, sunitinib 50 mg for 4 weeks of a 6-week cycle provides superior surrogate and patient-reported outcomes when compared with interferon-alfa, the previous commonly used first-line drug. Overall survival has not yet shown improvement over interferon and is problematic because of patient crossover from the control arm to sunitinib at disease progression. Toxicity is significant but manageable with experienced monitoring. Sunitinib therapy is an important step forward for this condition. High cost and limited efficacy support the ongoing search for further improved therapy.Keywords: renal cell cancer, targeted therapy, sunitinib

  13. with esophageal squamous cell cancer

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-02-01

    Full Text Available Purpose: The aim of this study was to retrospectively observe and analyze the long-term treatment outcomes of 191 elderly patients with esophageal squamous cell cancer (ESCC who were treated with californium-252 (252Cf neutron brachytherapy (NBT in combination with external beam radiotherapy (EBRT. Material and methods : From January 2002 to November 2012, 191 patients with ESCC underwent NBT in combination with EBRT. The total radiation dose to the reference point via NBT was 8-25 Gy-eq in two to five fractions with one fraction per week. The total dose via EBRT was 50-60 Gy, which was delivered over a period of 5 to 6 weeks with normal fractionation. Results : The median survival time for the 191 patients was 23.6 months, and the 5-year rates for overall survival (OS and local-regional control (LRC were 28.7% and 54.2%, respectively. The patients’ age was a factor that was significantly associated with OS (p = 0.010, according to univariate analysis. The 5-year OS (LRC was 37.3% (58.6% for patients aged 70-74 years and 14.5% (47.9% for patients aged > 74 years (p = 0.010 and p = 0.038. In multivariate analysis, age and clinical N stage were associated with OS and LRC (p = 0.011 [0.041] and p = 0.005 [0.005]. From the time of treatment completion to the development of local-regional recurrence or death, 5 (2.6% patients experienced fistula and 15 (7.9% experienced massive bleeding. The incidence of severe late complications was related to older age (p = 0.027, higher NBT dose/fraction (20-25 Gy/5 fractions, and higher total dose (> 66 Gy. Conclusions : The clinical data indicated that NBT in combination with EBRT produced favorable local control and long-term survival rates for elderly patients with ESCC, and that the side effects were tolerable. Patient’s age, clinical stage N status, and radiation dose could be used to select the appropriate treatment for elderly patients.

  14. Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis

    Science.gov (United States)

    Jaiswal, Devina; Rad, Armin Tahmasbi; Nieh, Mu-Ping; Claffey, Kevin P.; Hoshino, Kazunori

    2017-04-01

    Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 μg/ml and 0.08 μg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.

  15. Micromagnetic Cancer Cell Immobilization and Release for Real-Time Single Cell Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Devina; Rad, Armin Tahmasbi [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Nieh, Mu-Ping [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Claffey, Kevin P. [Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 (United States); Hoshino, Kazunori, E-mail: hoshino@engr.uconn.edu [Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269 (United States)

    2017-04-01

    Understanding the interaction of live cells with macromolecules is crucial for designing efficient therapies. Considering the functional heterogeneity found in cancer cells, real-time single cell analysis is necessary to characterize responses. In this study, we have designed and fabricated a microfluidic channel with patterned micromagnets which can temporarily immobilize the cells during analysis and release them after measurements. The microchannel is composed of plain coverslip top and bottom panels to facilitate easy microscopic observation and undisturbed application of analytes to the cells. Cells labeled with functionalized magnetic beads were immobilized in the device with an efficiency of 90.8±3.6%. Since the micromagnets are made of soft magnetic material (Ni), they released cells when external magnetic field was turned off from the channel. This allows the reuse of the channel for a new sample. As a model drug analysis, the immobilized breast cancer cells (MCF7) were exposed to fluorescent lipid nanoparticles and association and dissociation were measured through fluorescence analysis. Two concentrations of nanoparticles, 0.06 µg/ml and 0.08 µg/ml were tested and time lapse images were recorded and analyzed. The microfluidic device was able to provide a microenvironment for sample analysis, making it an efficient platform for real-time analysis.

  16. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  17. Altered calcium signaling in cancer cells.

    Science.gov (United States)

    Stewart, Teneale A; Yapa, Kunsala T D S; Monteith, Gregory R

    2015-10-01

    It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Blockade of chloride ion transport enhances the cytocidal effect of hypotonic solution in gastric cancer cells.

    Science.gov (United States)

    Iitaka, Daisuke; Shiozaki, Atsushi; Ichikawa, Daisuke; Kosuga, Toshiyuki; Komatsu, Shuhei; Okamoto, Kazuma; Fujiwara, Hitoshi; Ishii, Hiromichi; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2012-08-01

    Cancer cells that are exfoliated into the peritoneal cavity during surgery are viable and have the potential to produce peritoneal recurrence. Although peritoneal lavage with distilled water is applied in some cancer surgeries to kill tumor cells, there is no consensus regarding the optimal methodology and its effects. Three human gastric cancer cell lines, MKN28, MKN45, and Kato-III, were exposed to distilled water, and the resultant morphologic changes were observed using a microscope. Analysis of cell volume changes was performed using a flow cytometer. To investigate the cytocidal effects of the water, re-incubation of the cells was performed after exposing them to hypotonic solution. Additionally, the effects of 5-nitro-2-3-phenylpropylamino)-benzoic acid (NPPB), a Cl(-) channel blocker, and R(+)-[(dihydroindenyl)oxy] alkanoic acid (DIOA), a blocker of the K(+)/Cl(-) co-transporter, on the cells during their exposure to hypotonic solution were analyzed. After the cells had been exposed to the distilled water, a rapid increase in cell volume occurred followed by cell rupture. In the MKN45 and Kato-III cells, treatment with NPPB increased cell volume by inhibiting regulatory volume decrease and enhanced the cytocidal effects of the hypotonic solution, whereas no such effects were observed in the MKN28 cells. On the other hand, treatment of the MKN28 cells with DIOA inhibited RVD and enhanced the cytocidal effects of hypotonic shock. These findings support the efficacy of peritoneal lavage with distilled water during surgery for gastric cancer and suggest that the regulation of Cl(-) transport enhances the cytocidal effects of hypotonic shock. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Near infrared photoimmunotherapy rapidly elicits specific host immunity against cancer cells (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (mAb) targeting cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/immunogenic cell death (ICD) only in target-positive, mAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent target-negative cells are unharmed. Dynamic 3D-microscopy of live tumor cells undergoing NIR-PIT showed rapid swelling in treated cells immediately after light exposure, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles within several minutes. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. Alternatively, NIR-PIT can also target negative regulatory immune cells such as Treg only in the tumor bed. Treg targeting NIR-PIT against CD25 can deplete >80% of Treg in tumor bed within 20 min that induces activation of tumor cell-specific CD8+-T and NK cells within 1.5 hour, and then these activated cells killed cancer cells in local tumor within 1 day and also in distant tumors of the same cell origin within 2 days. In summary, cancer cell-targeting and immuno-suppressor cell-targeting NIR-PITs effectively induce innate and acquired immunity specifically against cancer cells growing in patients, respectively.

  20. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  1. Dendritic cell immunotherapy in uterine cancer.

    Science.gov (United States)

    Coosemans, An; Tuyaerts, Sandra; Vanderstraeten, Anke; Vergote, Ignace; Amant, Frédéric; Van Gool, Stefaan W

    2014-01-01

    Uterine cancer is the most common pelvic gynecological malignancy. Uterine sarcomas and relapsed uterine carcinomas have limited treatment options. The search for new therapies is urgent. Dendritic cell (DC) immunotherapy holds much promise, though has been poorly explored in uterine cancer. This commentary gives an insight in existing DC immunotherapy studies in uterine cancer and summarizes the possibilities and the importance of the loading of tumor antigens onto DC and their subsequent maturation. However, the sole application of DC immunotherapy to target uterine cancer will be insufficient because of tumor-induced immunosuppression, which will hamper the establishment of an effective anti-tumor immune response. The authors give an overview on the limited existing immunosuppressive data and propose a novel approach on DC immunotherapy in uterine cancer.

  2. Dormancy activation mechanism of oral cavity cancer stem cells.

    Science.gov (United States)

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  3. Development of cholesterol granuloma in a temporal bone petrous apex previously containing marrow exposed to air cells.

    Science.gov (United States)

    Selman, Yamil; Wood, John W; Telischi, Fred F; Casiano, Roy R; Angeli, Simon I

    2013-07-01

    There is ongoing debate on the pathogenic mechanisms of cholesterol granuloma formation in the temporal bone. The purpose of this report is to provide evidence in support of the exposed marrow hypothesis in explaining the pathogenesis of petrous apex cholesterol granuloma. Retrospective single case study. The primary outcome evaluated was the diagnosis of a new cholesterol granuloma in a petrous apex that previously demonstrated radiologic evidence of bone marrow exposed to petrous apex air cells. A patient with a unilateral petrous apex cholesterol granuloma develops a new, contralateral cholesterol granuloma in a hyperpneumatized temporal bone petrous apex shown previously to have medullary bone exposed to air cells. This report implicates the medullary-air cell interface in a hyperaerated temporal bone petrous apex in the development and growth of a petrous apex cholesterol granuloma.

  4. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only...experience in ovary research (ovarian physiology , oogonial stem cells) to work on this project. We also ! 5! obtained approval of our animal

  5. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  6. The evolving cancer stem cell paradigm: implications in veterinary oncology.

    Science.gov (United States)

    Pang, Lisa Y; Argyle, David J

    2015-08-01

    The existence of subpopulations of cells in cancer with increased tumour-initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics formed the basis of the cancer stem cell model. Some tumours have since been viewed as aberrant tissues with a unidirectional hierarchical structure consisting of cancer stem cells at the apex, driving tumour growth, metastasis and relapse after therapy. Here, recent developments in cancer stem cell research are reviewed with a focus on tumour heterogeneity, cellular plasticity and cancer stem cell reprogramming. The impact of these findings on the cancer stem cell model is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The influence of medium conductivity on cells exposed to nsPEF

    Science.gov (United States)

    Moen, Erick K.; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Beier, Hope T.; Armani, Andrea M.

    2017-02-01

    Nanosecond pulsed electric fields (nsPEF) have proven useful for transporting cargo across cell membranes and selectively activating cellular pathways. The chemistry and biophysics governing this cellular response, however, are complex and not well understood. Recent studies have shown that the conductivity of the solution cells are exposed in could play a significant role in plasma membrane permeabilization and, thus, the overall cellular response. Unfortunately, the means of detecting this membrane perturbation has traditionally been limited to analyzing one possible consequence of the exposure - diffusion of molecules across the membrane. This method has led to contradictory results with respect to the relationship between permeabilization and conductivity. Diffusion experiments also suffer from "saturation conditions" making multi-pulse experiments difficult. As a result, this method has been identified as a key stumbling block to understanding the effects of nsPEF exposure. To overcome these limitations, we recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) that allows us to identify nanoporation in live cells during the pulse in a wide array of conditions. As a result, we are able to explore and fully test whether lower conductivity extracellular solutions could induce more efficient nanoporation. This hypothesis is based on membrane charging and the relative difference between the extracellular solution and the cytoplasm. The experiments also allow us to test the noise floor of our methodology against the effects of ion leakage. The results emphasize that the electric field, not ionic phenomenon, are the driving force behind nsPEF-induced membrane nanoporation.

  8. Side population cells isolated from KATO III human gastric cancer cell line have cancer stem cell-like characteristics.

    Science.gov (United States)

    She, Jun-Jun; Zhang, Peng-Ge; Wang, Xuan; Che, Xiang-Ming; Wang, Zi-Ming

    2012-09-07

    To investigate whether the side population (SP) cells possess cancer stem cell-like characteristics in vitro and the role of SP cells in tumorigenic process in gastric cancer. We analyzed the presence of SP cells in different human gastric carcinoma cell lines, and then isolated and identified the SP cells from the KATO III human gastric cancer cell line by flow cytometry. The clonogenic ability and self-renewal were evaluated by clone and sphere formation assays. The related genes were determined by reverse transcription polymerase chain reaction. To compare tumorigenic ability, SP and non-side population (NSP) cells from the KATO III human gastric cancer cell line were subcutaneously injected into nude mice. SP cells from the total population accounted for 0.57% in KATO III, 1.04% in Hs-746T, and 0.02% in AGS (CRL-1739). SP cells could grow clonally and have self-renewal capability in conditioned media. The expression of ABCG2, MDRI, Bmi-1 and Oct-4 was different between SP and NSP cells. However, there was no apparent difference between SP and NSP cells when they were injected into nude mice. SP cells have some cancer stem cell-like characteristics in vitro and can be used for studying the tumorigenic process in gastric cancer.

  9. Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation

    OpenAIRE

    Xu, Yuanyuan; Tokar, Erik J.; Waalkes, Michael P.

    2013-01-01

    Accumulating data suggest arsenic may be an endocrine disruptor, and tentatively linked to breast cancer by some studies. Therefore, we tested the effects of chronic inorganic arsenic exposure on the normal, estrogen receptor (ER)-negative breast epithelial cell line, MCF-10A. Cells were chronically exposed to a low-level arsenite (500 nM) for up to 24 weeks. Markers of cancer cell phenotype and expression of critical genes relevant to breast cancer or stem cells (SCs) were examined. After 24...

  10. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells.

    Science.gov (United States)

    Debeb, Bisrat G; Zhang, Xiaomei; Krishnamurthy, Savitri; Gao, Hui; Cohen, Evan; Li, Li; Rodriguez, Angel A; Landis, Melissa D; Lucci, Anthony; Ueno, Naoto T; Robertson, Fredika; Xu, Wei; Lacerda, Lara; Buchholz, Thomas A; Cristofanilli, Massimo; Reuben, James M; Lewis, Michael T; Woodward, Wendy A

    2010-07-08

    Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced by serial xenograft passages through transplantation. Herein we fully characterize cancer stem cell-like features in 293T human embryonic kidney cells. 293T cells can be readily cultured and passaged as spheres in serum-free stem cell promoting culture conditions. Cells cultured in vitro as three-dimensional spheres (3D) were shown to contain higher ALDH1 and CD44+/CD24- population compared to monolayer cells. These cells were also resistant to radiation and upregulate stem cell survival signaling including beta-catenin, Notch1 and Survivin in response to radiation. Moreover, 3D spheres generated from the 293T cells have increased expression of mesenchymal genes including vimentin, n-cadherin, zeb1, snail and slug as well as pro-metastatic genes RhoC, Tenascin C and MTA1. In addition, microRNAs implicated in self-renewal and metastases were markedly reduced in 3D spheres. 293T cells exhibit a cancer stem cell-like phenotype when cultured as 3D spheres and represent an important research tool for studying the molecular and biological mechanisms of cancer stem cells and for testing and developing novel targets for cancer therapy.

  11. Stemness is Derived from Thyroid Cancer Cells

    Science.gov (United States)

    Ma, Risheng; Bonnefond, Simon; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.

    2014-01-01

    Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs). Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT) from malignant cells since EMT is known to confer stem-like characteristics. Furthermore, EMT is a critical process for epithelial tumor progression, local invasion, and metastasis formation. In addition, stemness provides cells with therapeutic resistance and is the likely cause of tumor recurrence. However, the relevance of EMT and stemness in thyroid cancer progression has not been extensively studied. Methods: To examine the status of stemness in thyroid papillary cancer, we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre). This construct is only activated at the time of thyroid peroxidase (TPO) expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells, which do not express TPO. Results: There was decreased expression of thyroid-specific genes such as Tg and NIS and increased expression of stemness markers, such as Oct4, Rex1, CD15, and Sox2 in the thyroid carcinoma tissue from 6-week-old BRAFV600E mice indicating the dedifferentiated status of the cells and the fact that stemness was derived in this model from differentiated thyroid cells. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a cancer thyroid cell line (named Marca cells) derived from one of the murine tumors. In this cell line, we also found that overexpression of Snail caused up-regulation of

  12. Getting to the heart of the matter in cancer: Novel approaches to targeting cancer stem cells.

    Science.gov (United States)

    Colvin, Hugh; Mori, Masaki

    2017-01-01

    Cancer is one of the leading causes of deaths worldwide. While cancers may initially show good response to chemotherapy or radiotherapy, it is not uncommon for them to recur at a later date. This phenomenon may be explained by the existence of a small population of cancer stem cells, which are inherently resistant to anti-cancer treatment as well as being capable of self-renewal. Therefore, while most of the tumour bulk consisting of cells that are not cancer stem cells respond to treatment, the cancer stem cells remain, leading to disease recurrence. Following this logic, the effective targeting of cancer stem cells holds promise for providing long-term cure in individuals with cancer. Cancer stem cells, like normal stem cells are endowed with mechanisms to protect themselves against a wide range of insults including anti-cancer treatments, such as the enhancement of the DNA damage response and the ability to extrude drugs. It is therefore important to develop new strategies if cancer stem cells are to be eradicated. In this review, we describe the strategies that we have developed to target cancer stem cells. These strategies include the targeting of the histone demethylase jumonji, AT rich interactive domain 1B (JARID1B), which we found to be functionally significant in the maintenance of cancer stem cells. Other strategies being pursued include reprogramming of cancer stem cells and the targeting of a functional cell surface marker of liver cancer stem cells, the aminopeptidase CD13.

  13. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  14. Risk assessment of silicosis and lung cancer among construction workers exposed to respirable quartz

    NARCIS (Netherlands)

    Tjoe Nij, E.; Heederik, D.

    2005-01-01

    Objectives: The aim of this study was to assess the magnitude of the silicosis and cancer risk among construction workers. Methods: In 1998, 1335 of 4173 invited construction workers with expected high cumulative exposure to quartz were studied for early signs of silicosis. In 2002 the study was

  15. Frequency of Acentric Fragments Are Associated with Cancer Risk in Subjects Exposed to Ionizing Radiation.

    Czech Academy of Sciences Publication Activity Database

    Fucic, A.; Bonassi, S.; Gundy, S.; Šrám, Radim; Ceppi, M.; Lucas, J.N.

    2016-01-01

    Roč. 36, č. 5 (2016), s. 2451-2457 ISSN 0250-7005 Institutional support: RVO:68378041 Keywords : ionizing radiation * cancer risk * acentric fragments * chromosomal aberrations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 1.937, year: 2016

  16. Cancer stem cells and field cancerization of oral squamous cell carcinoma.

    Science.gov (United States)

    Simple, M; Suresh, Amritha; Das, Debashish; Kuriakose, Moni A

    2015-07-01

    Oral squamous cell carcinoma (OSCC) has a high propensity for local failure, which is attributed to recurrence at the primary site or the development of second primary tumors (SPT). Field cancerization that refers to the existence of transformed cells in areas adjacent to the primary tumor, has been attributed to be one of the probable reasons underlying disease relapse. The carcinogenic process necessitates multiple molecular events for the transformation of a normal cell into a cancer cell. This implies that only the long-time residents of the epithelium, such as the stem cells, might be the candidates capable of accumulating these genetic hits. These transformed stem cells- the 'Cancer stem cells' (CSCs), are further known to be equipped with the properties of tumor initiation and migration, both of which are essential for orchestrating field cancerization. The concept that the CSCs might be responsible for field cancerization in OSCC has not been explored extensively. If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors. In this review, we examine the available evidence in literature exploring the possibilities of CSCs driving the process of field cancerization and thereby being the underlying mechanism for disease recurrence and development of SPT. Published by Elsevier Ltd.

  17. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts

    Directory of Open Access Journals (Sweden)

    Norashikin Zakaria

    2017-05-01

    Full Text Available Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC, which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.

  18. Cancer Cell Colonisation in the Bone Microenvironment

    Directory of Open Access Journals (Sweden)

    Casina Kan

    2016-10-01

    Full Text Available Bone metastases are a common complication of epithelial cancers, of which breast, prostate and lung carcinomas are the most common. The establishment of cancer cells to distant sites such as the bone microenvironment requires multiple steps. Tumour cells can acquire properties to allow epithelial-to-mesenchymal transition, extravasation and migration. Within the bone metastatic niche, disseminated tumour cells may enter a dormancy stage or proliferate to adapt and survive, interacting with bone cells such as hematopoietic stem cells, osteoblasts and osteoclasts. Cross-talk with the bone may alter tumour cell properties and, conversely, tumour cells may also acquire characteristics of the surrounding microenvironment, in a process known as osteomimicry. Alternatively, these cells may also express osteomimetic genes that allow cell survival or favour seeding to the bone marrow. The seeding of tumour cells in the bone disrupts bone-forming and bone-resorbing activities, which can lead to macrometastasis in bone. At present, bone macrometastases are incurable with only palliative treatment available. A better understanding of how these processes influence the early onset of bone metastasis may give insight into potential therapies. This review will focus on the early steps of bone colonisation, once disseminated tumour cells enter the bone marrow.

  19. Risk of bile duct cancer among printing workers exposed to 1,2-dichloropropane and/or dichloromethane.

    Science.gov (United States)

    Sobue, Tomotaka; Utada, Mai; Makiuchi, Takeshi; Ohno, Yuko; Uehara, Shinichiro; Hayashi, Tomoshige; Sato, Kyoko Kogawa; Endo, Ginji

    2015-01-01

    We conducted a retrospective cohort study to examine the risk of bile duct cancer among current and former workers in the offset color proof printing department at a printing company in Osaka, Japan. Standardized incidence ratios (SIRs) between January 1, 1985, and December 31, 2012, were estimated for the cumulative years of exposure to two chemicals, dichloromethane (DCM) and 1,2-dichloropropane (1,2-DCP), using the national incidence level as a reference. In addition, we examined risk patterns by the calendar year in which observation started. Among 106 workers with a total of 1,452.4 person-years of exposure, 17 bile duct cancer cases were observed, resulting in an estimated overall SIR of 1,132.5 (95% confidence interval (CI): 659.7-1,813.2). The SIR was 1,319.9 (95% CI: 658.9-2,361.7) for those who were exposed to both DCM and 1,2-DCP, and it was 1,002.8 (95% CI: 368.0-2,182.8) for those exposed to 1,2-DCP only. SIRs tended to increase according to years of exposure to 1,2-DCP but not DCM when a 5-year lag time was assumed. The SIRs were higher for the cohorts in which observation started in 1993-2000, particularly in cohorts in which it started in 1996-1999, compared with those in which it started before or after 1993-2000. We observed an extraordinarily high risk of bile duct cancer among the offset color proof printing workers. Elevated risk may be related to cumulative exposure to 1,2-DCP, but there remains some possibility that a portion of the risk is due to other unidentified substances.

  20. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    Science.gov (United States)

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Innate immune cells in inflammation and cancer.

    Science.gov (United States)

    Nowarski, Roni; Gagliani, Nicola; Huber, Samuel; Flavell, Richard A

    2013-08-01

    The innate immune system has evolved in multicellular organisms to detect and respond to situations that compromise tissue homeostasis. It comprises a set of tissue-resident and circulating leukocytes primarily designed to sense pathogens and tissue damage through hardwired receptors and eliminate noxious sources by mediating inflammatory processes. While indispensable to immunity, the inflammatory mediators produced in situ by activated innate cells during injury or infection are also associated with increased cancer risk and tumorigenesis. Here, we outline basic principles of innate immune cell functions in inflammation and discuss how these functions converge upon cancer development. ©2013 AACR.

  2. Signal transduction of the melatonin receptor MT1 is disrupted in breast cancer cells by electromagnetic fields.

    Science.gov (United States)

    Girgert, Rainer; Hanf, Volker; Emons, Günter; Gründker, Carsten

    2010-04-01

    The growth of estrogen-receptor positive breast cancer cells is inhibited by the pineal gland hormone, melatonin. Concern has been raised that power-line frequency and microwave electromagnetic fields (EMFs) could reduce the efficiency of melatonin on breast cancer cells. In this study we investigated the impact of EMFs on the signal transduction of the high-affinity receptor MT1 in parental MCF-7 cells and MCF-7 cells transfected with the MT1 gene. The binding of the cAMP-responsive element binding (CREB) protein to a promoter sequence of BRCA-1 after stimulation with melatonin was analyzed by a gel-shift assay and the expression of four estrogen-responsive genes was measured in sham-exposed breast cancer cells and cells exposed to a sinusoidal 50 Hz EMF of 1.2 microT for 48 h. In sham-exposed cells, binding of CREB to the promoter of BRCA-1 was increased by estradiol and subsequently diminished by treatment with melatonin. In cells exposed to 1.2 microT, 50 Hz EMF, binding of CREB was almost completely omitted. Expression of BRCA-1, p53, p21(WAF), and c-myc was increased by estradiol stimulation and subsequently decreased by melatonin treatment in both cell lines, except for p53 expression in the transfected cell line, thereby proving the antiestrogenic effect of melatonin at molecular level. In contrast, in breast cancer cells transfected with MT1 exposed to 1.2 microT of the 50 Hz EMF, the expression of p53 and c-myc increased significantly after melatonin treatment but for p21(WAF) the increase was not significant. These results convincingly prove the negative effect of EMF on the antiestrogenic effect of melatonin in breast cancer cells. (c) 2009 Wiley-Liss, Inc.

  3. Cancer stem cells: a minor cancer subpopulation that redefines global cancer features

    Directory of Open Access Journals (Sweden)

    Heiko eEnderling

    2013-04-01

    Full Text Available In recent years cancer stem cells (CSCs have been hypothesized to comprise only a minor subpopulation in solid tumors that drives tumor initiation, development and metastasis; the so-called cancer stem cell hypothesis. While a seemingly trivial statement about numbers, much is put at stake. If true, the conclusions of many studies of cancer cell populations could be challenged, as the bulk assay methods upon which they depend have, by and large, taken for granted the notion that a ‘typical’ cell of the population possesses the attributes of a cell capable of perpetuating the cancer, i.e., a CSC. In support of the CSC hypothesis, populations enriched for so-called ‘tumor-initiating’ cells have demonstrated a corresponding increase in tumorigenicity as measured by dilution assay, although estimates have varied widely as to what the fractional contribution of tumor-initiating cells is in any given population. Some have taken this variability to suggest the CSC fraction may be nearly 100% after all, countering the CSC hypothesis, and that there are simply assay-dependent error rates in our ability to ‘reconfirm’ CSC status at the cell level. To explore this controversy more quantitatively, we developed a simple theoretical model of cancer stem cell-driven tumor growth dynamics. Assuming CSC and non-stem cancer cell subpopulations coexist to some degree, we evaluated the impact of an environmentally-dependent cancer stem cell symmetric division probability and a non-stem cancer cell proliferation capacity on tumor progression and morphology. Our model predicts, as expected, that the frequency of CSC divisions that are symmetric highly influences the frequency of CSCs in the population, but goes on to predict the two frequencies can be widely divergent, and that spatial constraints will tend to increase the CSC fraction over time.

  4. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  5. Sphingosine 1-Phosphate and Cancer: Lessons from Thyroid Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kid Törnquist

    2013-05-01

    Full Text Available Sphingomyelin is found in the cell membrane of all eukaryotic cells, and was for a long time considered merely as a structural component. However, during the last two decades, metabolites of sphingomyelin, especially sphingosine 1-phosphate (S1P, have proven to be physiologically significant regulators of cell function. Through its five different G protein-coupled receptors, S1P regulates a wide array of cellular processes, ranging from stimulating cellular proliferation and migration, to the inhibition of apoptosis and induction of angiogenesis and modulation of cellular calcium homeostasis. Many of the processes regulated by S1P are important for normal cell physiology, but may also induce severe pathological conditions, especially in malignancies like cancer. Thus, understanding S1P signaling mechanisms has been the aim of a multitude of investigations. Great interest has also been shown in understanding the action of sphingosine kinase (SphK, i.e., the kinase phosphorylating sphingosine to S1P, and the interactions between S1P and growth factor signaling. In the present review, we will discuss recent findings regarding the possible importance of S1P and SphK in the etiology of thyroid cancer. Although clinical data is still scarce, our in vitro findings suggest that S1P may function as a “double-edged sword”, as the receptor profile of thyroid cancer cells largely determines whether S1P stimulates or blocks cellular migration. We will also discuss the interactions between S1P- and VEGF-evoked signaling, and the importance of a S1P1-VEGF receptor 2 complex in thyroid cancer cells.

  6. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  7. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  8. On-chip dynamic stress control for cancer cell evolution study

    Science.gov (United States)

    Liu, Liyu; Austin, Robert

    2010-03-01

    The growth and spreading of cancer in host organisms is an evolutionary process. Cells accumulate mutations that help them adapt to changing environments and to obtain survival fitness. However, all cancer--promoting mutations do not occur at once. Cancer cells face selective environmental pressures that drive their evolution in stages. In traditional cancer studies, environmental stress is usually homogenous in space and difficult to change in time. Here, we propose a microfluidic chip employing embedded dynamic traps to generate dynamic heterogeneous microenvironments for cancer cells in evolution studies. Based on polydimethylsiloxane (PDMS) flexible diaphragms, these traps are able to enclose and shield cancer cells or expose them to external environmental stress. Digital controls for each trap determine the nutrition, antibiotics, CO2/O2 conditions, and temperatures to which trapped cells are subjected. Thus, the stress applied to cells can be varied in intensity and duration in each trap independently. The chip can also output cells from specific traps for sequencing and other biological analysis. Hence our design simultaneously monitors and analyzes cell evolution behaviors under dynamic stresses.

  9. Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride.

    Science.gov (United States)

    Rocha-Amador, Diana O; Calderón, Jaqueline; Carrizales, Leticia; Costilla-Salazar, Rogelio; Pérez-Maldonado, Iván Nelinho

    2011-11-01

    In this study, we evaluated apoptosis induction in human immune cells in children exposed to arsenic (As) and fluoride (F). Children living in two areas in Mexico (Soledad de Graciano Sanchez (SGS) in San Luis Potosí and Colonia 5 de Febrero in Durango) were studied. Water, urine and blood samples were collected. Approximately 90% of the water samples in 5 de Febrero had As and F levels above the World Health Organization intervention guideline (10 μg/L and 1.5mg/L, respectively). In SGS, 0% of the water samples exceeded Mexican guidelines. Urinary As and F levels in children living in 5 de Febrero were significantly higher than the levels found in children living in SGS. In addition, the level of apoptosis was higher in children from the 5 de Febrero community when compared with the level of apoptosis in children living in SGS. Thus, in a worldwide context, our study demonstrates the health risks to children living in these regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A biosensor of SRC family kinase conformation by exposable tetracysteine useful for cell-based screening.

    Science.gov (United States)

    Irtegun, Sevgi; Wood, Rebecca; Lackovic, Kurt; Schweiggert, Jörg; Ramdzan, Yasmin M; Huang, David C S; Mulhern, Terrence D; Hatters, Danny M

    2014-07-18

    We developed a new approach to distinguish distinct protein conformations in live cells. The method, exposable tetracysteine (XTC), involved placing an engineered tetracysteine motif into a target protein that has conditional access to biarsenical dye binding by conformational state. XTC was used to distinguish open and closed regulatory conformations of Src family kinases. Substituting just four residues with cysteines in the conserved SH2 domain of three Src-family kinases (c-Src, Lck, Lyn) enabled open and closed conformations to be monitored on the basis of binding differences to biarsenical dyes FlAsH or ReAsH. Fusion of the kinases with a fluorescent protein tracked the kinase presence, and the XTC approach enabled simultaneous assessment of regulatory state. The c-Src XTC biosensor was applied in a boutique screen of kinase inhibitors, which revealed six compounds to induce conformational closure. The XTC approach demonstrates new potential for assays targeting conformational changes in key proteins in disease and biology.

  11. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  12. Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles

    Directory of Open Access Journals (Sweden)

    Janet E. Baulch

    2015-08-01

    Full Text Available Exposure to the space radiation environment poses risks for a range of deleterious health effects due to the unique types of radiation encountered. Galactic cosmic rays are comprised of a spectrum of highly energetic nuclei that deposit densely ionizing tracks of damage along the particle trajectory. These tracks are distinct from those generated by the more sparsely ionizing terrestrial radiations, and define the geometric distribution of the complex cellular damage that results when charged particles traverse the tissues of the body. The exquisite radiosensitivity of multipotent neural stem and progenitor cells found within the neurogenic regions of the brain predispose the central nervous system to elevated risks for radiation induced sequelae. Here we show that human neural stem cells (hNSC exposed to different charged particles at space relevant fluences exhibit significant and persistent oxidative stress. Radiation induced oxidative stress was found to be most dependent on total dose rather than on the linear energy transfer of the incident particle. The use of redox sensitive fluorogenic dyes possessing relative specificity for hydroxyl radicals, peroxynitrite, nitric oxide (NO and mitochondrial superoxide confirmed that most irradiation paradigms elevated reactive oxygen and nitrogen species (ROS and RNS, respectively in hNSC over a 1 week interval following exposure. Nitric oxide synthase (NOS was not the major source of elevated nitric oxides, as the use of NOS inhibitors had little effect on NO dependent fluorescence. Our data provide extensive evidence for the capability of low doses of charged particles to elicit marked changes in the metabolic profile of irradiated hNSC. Radiation induced changes in redox state may render the brain more susceptible to the development of neurocognitive deficits that could affect an astronaut’s ability to perform complex tasks during extended missions in deep space.

  13. Resveratrol Treatment Inhibits Proliferation of and Induces Apoptosis in Human Colon Cancer Cells.

    Science.gov (United States)

    Feng, Miao; Zhong, Lu-Xing; Zhan, Zheng-Yu; Huang, Zhi-Hao; Xiong, Jian-Ping

    2016-04-04

    Resveratrol, a natural isolate from plant sources, has a long and important history in traditional Chinese medicine. In the present study we investigated the effect of resveratrol on human colon cancer cell lines. We used the Cell Counting kit-8 (CCK-8) for determination of colon cancer cell viability. Apoptosis induction was analyzed using the DeadEnd™ Colorimetric TUNEL System (Promega, Madison, WI, USA). The siRNA Transfection Reagent kit (Santa Cruz Biotechnology, Inc.) was used for the administration of COX-2 silencer RNA (siRNA) into the colon cancer cells. Primer Express® software for Real-Time PCR ver. 3.0 (Applied Biosystems, Foster City, CA, USA) was used to prepare the primers for RT-PCR. The results revealed that exposure of colon cancer cells to resveratrol inhibited cell viability. Resveratrol exhibited a significant inhibitory effect on cell viability at 30 μM concentration after 48 h of exposure. We observed that 30-μM doses of resveratrol for 72 h led to 18, 29, and 34% reduction in the viability of HCA-17, SW480, and HT29 cells, respectively. It also significantly induced apoptosis in both of the tested carcinoma cell lines. The population of apoptotic cells in HCA-17 and SW480 cell lines after 48 h of resveratrol treatment was 59.8±4 and 67.2±4%, respectively, compared to 2.3±1% in the control cells. The colon cancer cells exposed to resveratrol showed significantly lower cyclooxygenase-2 and prostaglandin receptor expression. Treatment of colon cancer cells with the inhibitor of cyclooxygenase-2, indomethacin, and administration of silencer RNA for cyclooxygenase-2 also produced similar results. These findings suggest that resveratrol treatment can be a promising strategy for the treatment of colon cancer.

  14. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  15. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells

    DEFF Research Database (Denmark)

    Hansen, Stine Ninel; Ehlers, Natasja Spring; Zhu, Shida

    2016-01-01

    Background: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic...... alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. Results: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing...... concentrations of docetaxel. Whole exome sequencing performed at five successive stages during this process was used to identify single point mutational events, insertions/deletions and copy number alterations associated with the acquisition of docetaxel resistance. Acquired coding variation undergoing positive...

  16. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    OpenAIRE

    Kanada, Masamitsu; Zhang, Jinyan; Libo YAN; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility re...

  17. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro.

    Science.gov (United States)

    Makarević, Jasmina; Tsaur, Igor; Juengel, Eva; Borgmann, Hendrik; Nelson, Karen; Thomas, Christian; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2016-02-15

    Despite impressive survival benefits from new agents to treat metastasized prostate cancer (PCa), progressive drug resistance hinders long-term response and restricts the efficacy of subsequent therapy. Due to reported antitumor activity of amygdalin and growing popularity for complementary and alternative medicine the potential of this natural, widely used substance to exert antineoplastic effects on prostate cancer cells has been assessed. LNCaP (castration-sensitive), DU-145 and PC3 cells (castration-resistant) were exposed to different concentrations of amygdalin for 24h or 2weeks. Cell growth was measured by the MTT test, clonal formation by the clonogenic assay. Flow cytometry served to investigate apoptosis and cell cycle phases. Cell cycle regulating proteins and the mTOR-akt signaling axis were analyzed by western blotting. Amygdalin dose-dependently diminished tumor cell growth with maximum effects at 10mg/ml. Apoptosis of PC3 and LNCaP but not of DU-145 cells was reduced, whereas colony formation was suppressed in all cell lines. A decrease in the number of G2/M- and S-phase cells along with an elevated number of G0/G1-phase cells was recorded. The cell cycle proteins cdk 1, cdk 2 and cdk 4 as well as cyclin A, cyclin B and cyclin D3 were modulated by amygdalin after both 24h and 2weeks. Distinct effects on p19 and p27 expression and on Akt, Rictor and Raptor activation became evident only after 2weeks. Amygdalin exhibits significant antitumor activity in both castration-sensitive and castration-resistant PCa cell lines and merits further evaluation for therapeutic purposes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Glycophorin A somatic cell mutation frequencies in Finnish reinforced plastics workers exposed to styrene.

    Science.gov (United States)

    Bigbee, W L; Grant, S G; Langlois, R G; Jensen, R H; Anttila, A; Pfäffli, P; Pekari, K; Norppa, H

    1996-10-01

    We have used the glycophorin A (GPA) in vivo somatic cell mutation assay to assess the genotoxic potential of styrene exposure in 47 reinforced plastics workers occupationally exposed to styrene and 47 unexposed controls matched for age, gender, and active smoking status. GPA variant erythrocyte frequencies (Vf), reflecting GPA allele loss (phi/N) and allele loss and duplication (N/N) somatic mutations arising in vivo in the erythroid progenitor cells of individuals of GPA M/N heterozygous genotype, were flow cytometrically determined in peripheral blood samples from these subjects. Measurements of styrene exposure of the workers at the time of blood sampling showed a mean 8-h time-weighted average (TWA8-h) styrene concentration of 155 mg/m3 (37 ppm) in the breathing zone. Mean urinary concentrations of the styrene metabolites mandelic acid (MA) and mandelic acid plus phenyl glyoxylic acid (MA+PGA) were 4.4 mmol/liter (after workshift) and 2.1 mmol/liter (next morning), respectively. Multivariate analysis of covariance on log-transformed GPA Vf data with models allowing adjustment for age, gender, smoking status, and styrene exposure showed that N/N Vf were nearly significantly increased among all of the exposed workers (adjusted geometric mean, 6.3 per million versus 5.0 in the controls; P = 0.058) and were statistically significantly elevated (adjusted geometric mean, 6.8 versus 5.0 in the controls; P = 0.036) among workers classified into a high-exposure group according to personal TWA8-h concentration of styrene in the breathing zone of > or = 85 mg/m3 (20 ppm; Finnish threshold limit value). Women in this high exposure group showed especially elevated N/N Vf (adjusted geometric mean 8.5 versus 5.3 in control women; P = 0.020); this elevation was also significant if urinary MA+PGA of > or = 1.2 mmol/liter was used as the basis of classification (adjusted geometric mean, 8.3; P = 0.030). The occupational exposure could not be shown to influence phi/N Vf

  19. Diet, Stem Cells, and Breast Cancer Prevention

    Science.gov (United States)

    2011-01-01

    abrogated by small interfering RNA to PTEN, indicating PTEN-dependence. Using FACS analysis , we showed that GEN induced cell cycle arrest at G0-G1 phase...isolated from WT (PND 100) and Tg (PND75) mice. The percentage of mammary SCs was quantified by Fluorescence activated cell sorting analysis of...fruits and vegetables in breast cancer prevention due to their phytochemical components, yet mechanisms underlying their presumed anti-tumor activities

  20. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    Science.gov (United States)

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  1. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  2. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R.K.K. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Han, Wei [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong)

    2015-12-15

    Highlights: • Rescue effect was observed in both irradiated and HeLa and NIH/3T3 cells. • Novel setup and procedures to separate the rescue signals and the bystander signals. • Confirmed activation of NF-κB pathway in rescue effect using activation inhibitor. • Confirmed activation of NF-κB pathway in rescue effect using anti-NF-κB p65 antibody. - Abstract: We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased

  3. Circulating Tumor Cells in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Brian Hu

    2013-12-01

    Full Text Available Circulating tumor cells (CTCs can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management.

  4. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    Energy Technology Data Exchange (ETDEWEB)

    Orona, N.S. [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); Tasat, D.R., E-mail: deborah.tasat@unsam.edu.ar [School of Science and Technology, National University of General Martín, Avda Gral Paz 5445 (1650) San Martín, Buenos Aires (Argentina); School of Dentistry, University of Buenos Aires, M. T. de Alvear 2142 (1122), Buenos Aires (Argentina)

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup −}). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup −} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup −} may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through

  5. Exposed proliferation antigen 210 (XPA-210) in renal cell carcinoma (RCC) and oncocytoma: clinical utility and biological implications.

    Science.gov (United States)

    Kruck, Stephan; Hennenlotter, Joerg; Vogel, Ulrich; Schilling, David; Gakis, Georgios; Hevler, Joachim; Kuehs, Ursula; Stenzl, Arnulf; Schwentner, Christian

    2012-02-01

    •  To determine the clinical role of the exposed proliferation antigen 210 (XPA-210) of the proliferation marker thymidine kinase 1 (TK1) in a large cohort of different renal cell carcinoma (RCC) types, oncocytomas and normal renal tissues samples, as TK1 is reported to be of clinical significance in several cancer entities and is suggested as a prognostic serum biomarker for RCC. •  Expressions of XPA-210 were determined immunohistochemically in 40 clear cell RCCs (ccRCC), 25 papillary RCCs (papRCC), 17 chromophobe RCC (chRCC), 27 oncocytomas and 64 normal renal parenchyma paraffin-embedded specimens. •  Immunohistochemistry was performed with a monoclonal anti-XPA-210 antibody. Staining was measured by the percentage of positive cells. •  Expression was compared between subgroups and correlated with respective clinical data using one-way analysis of variance with post hoc Tukey-Kramer analyses. •  XPA-210 staining in the RCC subgroup was significantly different from the oncocytomas (mean [sem] 4.1 [0.4] vs 2.2 [0.4]; P = 0.004) and from normal renal tissue (1.0 [0.1]; P oncocytomas did not differ from normal renal parenchyma staining (P = 0.18). •  Subdivided into RCC groups, only ccRCC (mean [sem] 5.1 [0.6]; P renal parenchyma, whereas chRCC (1.4 [0.3]; P = 0.99) did not. •  RCC XPA-210 staining was significantly associated with higher tumour stage (T = 3, P = 0.002) and grade (G = 3, P = 0.001). •  The malignant character of RCC is reflected by higher XPA-210 expression as compared with oncocytomas and normal kidney. •  The ccRCC and papRCC subgroups had higher XPA-210 levels. •  XPA-210 could be considered a potential marker for the assessment of the proliferative activity in primary RCC. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  6. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and. L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquid-.

  7. Germ cell cancer and disorders of spermatogenesis

    DEFF Research Database (Denmark)

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N

    1998-01-01

    Why is there a small peak of germ cell tumours in the postnatal period and a major peak in young age, starting at puberty? And, paradoxically, small risk in old age, although spermatogenesis is a lifelong process? Why is this type of cancer more common in individuals with maldeveloped gonads...

  8. Cancer stem cells: the challenges ahead

    NARCIS (Netherlands)

    Medema, Jan Paul

    2013-01-01

    Cancer stem cells (CSCs) have been proposed as the driving force of tumorigenesis and the seeds of metastases. However, their existence and role remain a topic of intense debate. Recently, the identification of CSCs in endogenously developing mouse tumours has provided further support for this

  9. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  10. DNA repair of cancer stem cells

    National Research Council Canada - National Science Library

    Mathews, Lesley A; Cabarcas, Stephanie M; Hurt, Elaine M

    2013-01-01

    ... leukemia by John E. Dick from the University of Toronto. The heterogeneity of human leukemia and the presence of stem cells in cancer was further translated into solid tumors by Al-Hajj et al. when they published a provocative paper in Proceedings of the National Academy of Sciences discussing the ability to distinguish tumorigenic (tumor-initi...

  11. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  12. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.

    Science.gov (United States)

    Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia

    2018-03-01

    Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.

  14. Cancer mortality in workers exposed to dieldrin and aldrin: an update.

    Science.gov (United States)

    Swaen, Gerard M H; de Jong, Geert; Slangen, Jos J M; van Amelsvoort, Ludovic G P M

    2002-03-01

    This study was conducted to investigate the possible long-term health effects, in particular carcinogenic effects, of occupational exposure to the organochlorine insecticides dieldrin and aldrin. We updated an earlier cohort mortality study of 570 employees involved in the production of these insecticides. All of the employees had worked in the production plants between 1 January 1954 and 1 January 1970 and were followed for cause-specific mortality until 1 January 2001. Based on dieldrin levels in blood samples taken during the exposure period, available for 343 workers, individual estimates of the total intake of dieldrin were estimated for all individual subjects in the cohort. The estimated total intake ranged from 11 to 7755 mg of dieldrin, with an average of 737 mg. One hundred and seventy-one workers had died before 1 January 2001, compared with an expected number of 226.6, giving a standardized mortality ratio (SMR) of 75.6 [95% confidence interval (CI): 64.6-87.7]. This deficit in total mortality was mainly attributable to a deficit in cardiovascular disease mortality, but cancer mortality was also lower than expected. The observed number of deaths from rectal cancer was significantly higher than expected (SMR = 300.0; 95% CI: 109.5-649.3), but was most pronounced in the low-intake subgroup and appears to be unrelated to exposure to dieldrin and aldrin. This study reinforces the earlier findings that occupational exposure of workers to significant amounts of dieldrin and aldrin has not led to a higher cancer mortality than would be found in an unexposed population.

  15. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  16. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  17. The origin of stroma surrounding epithelial ovarian cancer cells.

    Science.gov (United States)

    Akahane, Tomoko; Hirasawa, Akira; Tsuda, Hiroshi; Kataoka, Fumio; Nishimura, Sadako; Tanaka, Hideo; Tominaga, Eiichiro; Nomura, Hiroyuki; Chiyoda, Tatsuyuki; Iguchi, Yoko; Yamagami, Wataru; Susumu, Nobuyuki; Aoki, Daisuke

    2013-01-01

    Cancer stroma is thought to play an important role in tumor behavior, including invasion or metastasis and response to therapy. Cancer stroma is generally thought either to be non-neoplastic cells, including tissue-marrow or bone-marrow-derived fibroblasts, or to originate in epithelial mesenchymal transition of cancer cells. In this study, we evaluated the status of the p53 gene in both the cancer cells and the cancer stroma in epithelial ovarian cancer (EOC) to elucidate the origin of the stroma. Samples from 16 EOC patients were included in this study. Tumor cells and adjacent nontumor stromal cells were microdissected and DNA was extracted separately. We analyzed p53 sequences (exons 5-8) of both cancer and stromal tissues in all cases. Furthermore, we examined p53 protein expression in all cases. Mutations in p53 were detected in 9 of the 16 EOCs: in 8 of these cases, the mutations were detected only in cancer cells. In 1 case, the same mutation (R248Q) was detected in both cancer and stromal tissues, and p53 protein expression was detected in both the cancer cells and the cancer stroma. Most cancer stroma in EOC is thought to originate from non-neoplastic cells, but some parts of the cancer stroma might originate from cancer cells.

  18. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Science.gov (United States)

    Choi, Yun-Jung; Park, Jung-Hyun; Han, Jae Woong; Kim, Eunsu; Jae-Wook, Oh; Lee, Seung Yoon; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-01-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. PMID:27973444

  19. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  20. Levobuipivacaine-Induced Dissemination of A549 Lung Cancer Cells.

    Science.gov (United States)

    Chan, Shun-Ming; Lin, Bo-Feng; Wong, Chih-Shung; Chuang, Wen-Ting; Chou, Yu-Ting; Wu, Zhi-Fu

    2017-08-17

    While anaesthetics are frequently used on cancer patients during surgical procedures, their consequence on cancer progression remains to be elucidated. In this study, we sought to investigate the influence of local anesthetics on lung cancer cell dissemination in vitro and in vivo. A549 human non-small lung cancer cells were treated with various local anaesthetics including ropivacaine, lidocaine, levobupivacaine and bupivacaine. Cell barrier property was assessed using an electric cell-substrate impedance sensing (ECIS) system. The epithelial-to-mesenchymal transition (EMT) of treated cells was studied by immunofluorescence staining. In vitro and in vivo cancer cell dissemination were investigated.Gene expression microarray and quantitative real-time PCR (qrt-PCR) assays were used to identify the genes responsible for levobupivacaine-mediated cancer cell dissemination.The results illustrated that only levobupivacaine induced EMT in the treated cells and also caused the dissemination of cancer cells in vitro. In addition, after intravenous injection, levobupivacaine encouraged cancer cell dissemination in vivo. Gene expression microarray, qrt-PCR and immunoblotting revealed that after levobupivacaine treatment, the hypoxia-inducible factor (HIF)- 2α gene was upregulated in cancer cells. Our findings suggest that levobupivacaine may induce A549 lung cancer cell dissemination both in vitro and in vivo. More specifically, HIF-2α signaling possibly contributes to levobupivacaine-mediated A549 lung cancer cell dissemination.

  1. Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Hereditary kidney cancer (renal cell cancer) syndromes include von Hippel-Lindau disease, hereditary leiomyomatosis and renal cell cancer, Birt-Hogg-Dubé syndrome, and hereditary papillary renal carcinoma. Learn about the genetics, clinical manifestations, and management of these hereditary cancer syndromes in this expert-reviewed summary.

  2. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  3. Evaluation of Trace Elements in Augmentation of Statin-Induced Cytotoxicity in Uremic Serum-Exposed Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2018-01-01

    Full Text Available Patients with end-stage kidney disease (ESKD are at higher risk for rhabdomyolysis induced by statin than patients with normal kidney function. Previously, we showed that this increase in the severity of statin-induced rhabdomyolysis was partly due to uremic toxins. However, changes in the quantity of various trace elements in ESKD patients likely contribute as well. The purpose of this study is to determine the effect of trace elements on statin-induced toxicity in rhabdomyosarcoma cells exposed to uremic serum (US cells for a long time. Cell viability, apoptosis, mRNA expression, and intracellular trace elements were assessed by viability assays, flow cytometry, real-time RT-PCR, and ICP-MS, respectively. US cells exhibited greater simvastatin-induced cytotoxicity than cells long-time exposed with normal serum (NS cells (non-overlapping 95% confidence intervals. Intracellular levels of Mg, Mn, Cu, and Zn were significantly less in US cells compared to that in NS cells (p < 0.05 or 0.01. Pre-treatment with TPEN increased simvastatin-induced cytotoxicity and eliminated the distinction between both cells of simvastatin-induced cytotoxicity. These results suggest that Zn deficiencies may be involved in the increased risk for muscle complaints in ESKD patients. In conclusion, the increased severity of statin-induced rhabdomyolysis in ESKD patients may be partly due to trace elements deficiencies.

  4. Exposed hydrophobic residues in human immunodeficiency virus type 1 Vpr helix-1 are important for cell cycle arrest and cell death.

    Directory of Open Access Journals (Sweden)

    R Anthony Barnitz

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 accessory protein viral protein R (Vpr is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr.

  5. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  6. Low CD4+ T-cell levels and B-cell apoptosis in vertically HIV-exposed noninfected children and adolescents.

    Science.gov (United States)

    Miyamoto, Maristela; Pessoa, Silvana D; Ono, Erika; Machado, Daisy M; Salomão, Reinaldo; Succi, Regina C de M; Pahwa, Savita; de Moraes-Pinto, Maria Isabel

    2010-12-01

    Lymphocyte subsets, activation markers and apoptosis were assessed in 20 HIV-exposed noninfected (ENI) children born to HIV-infected women who were or not exposed to antiretroviral (ARV) drugs during pregnancy and early infancy. ENI children and adolescents were aged 6-18 years and they were compared to 25 age-matched healthy non-HIV-exposed children and adolescents (Control). ENI individuals presented lower CD4(+) T cells/mm(3) than Control group (control: 1120.3 vs. ENI: 876.3; t-test, p = 0.030). ENI individuals had higher B-cell apoptosis than Control group (Control: 36.6%, ARV exposed: 82.3%, ARV nonexposed: 68.5%; Kruskal-Wallis, p ENI and in Control children and adolescents. Subtle long-term immune alterations might persist among ENI individuals, but the clinical consequences if any are unknown, and these children require continued monitoring.

  7. Are All Highly Malignant Cancer Cells Identical?

    Science.gov (United States)

    1979-01-01

    ADA3665 ARE AL HIGHL MAGNANTCANCER CELLS DENOIALU) PENNSYLVANIA HOSPITAL PHILADELPHIA DEPT OF MOLECULAR BIOLOGY G NIGET AL 199 N00014-ACA026 UNCLASFE...embryo cells or even the original fertilized ovum . If this speculation has validity, the carcinogenesis and differentiation have the same destinies but...F/G /5 N 1111 2Z111117 1 125iiI 1 1. 1111_L6. -11 O=M 1 MrCROCOP RErSOLUTICN TEST CHART N, APoP SN A’ ,- ARE ALL HIGHLY MALIGNANT CANCER CELLS

  8. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers.

    Science.gov (United States)

    Lamberti, Monica; Zappavigna, Silvia; Sannolo, Nicola; Porto, Stefania; Caraglia, Michele

    2014-07-01

    In recent years, different nanotechnology platforms for drug delivery in the area of medical biology have gained remarkable attention. Nanoparticles (NPs) used as drug delivery vehicles consist of different materials such as natural or synthetic polymers, lipids or metals. They have an ultra-small size, large surface area-to-mass ratio and high reactivity. Although there are many data on the advantages in terms of both higher efficacy and less adverse effects of nanodrugs, several recent findings have reported unexpected toxicities giving origin to nanotoxicology. Despite the great promise that NPs show, few studies have examined the human body's reaction due to NP exposure in both patients and workers. To perform this type of evaluation, it is necessary to define an adequate index of exposure, and the measure of this index is representative of what the worker is breathing. The properties of the nanomaterials used for designing NPs, such as in the case of poorly biocompatible materials (carbon nanotubes or heavy metals), and their chemical composition (as in the case of liposomes) largely contribute in determining potential side effects. Awareness of the levels of particles, which can cause health effects, is necessary for the workers and exposed patients.

  9. Proteomic signature of arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments

    NARCIS (Netherlands)

    Herranz, R.; Manzano, A.I.; van Loon, J.J.W.A.; Christianen, P.C.M.; Medina, F.J.

    2013-01-01

    Earth-based microgravity simulation techniques are required due to space research constraints. Using diamagnetic levitation, we exposed Arabidopsis thaliana in vitro callus cultures to environments with different levels of effective gravity and magnetic field strengths (B) simultaneously. The

  10. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets.

    Science.gov (United States)

    Zhou, Teng; Zhang, Bo; Wei, Peng; Du, Yipeng; Zhou, Hejiang; Yu, Meifang; Yan, Liang; Zhang, Wendi; Nie, Guangjun; Chen, Chunying; Tu, Yaping; Wei, Taotao

    2014-12-01

    Recent advances in nanomedicine provide promising alternatives for cancer treatment that may improve the survival of patients with metastatic disease. The goal of the present study was to evaluate graphene oxide (GO) as a potential anti-metastatic agent. For this purpose, GO was modified with polyethylene glycol (PEG) to form PEG-modified GO (PEG-GO), which improves its aqueous stability and biocompatibility. We show here that PEG-GO exhibited no apparent effects on the viability of breast cancer cells (MDA-MB-231, MDA-MB-436, and SK-BR-3) or non-cancerous cells (MCF-10A), but inhibited cancer cell migration in vitro and in vivo. Analysis of cellular energy metabolism revealed that PEG-GO significantly impaired mitochondrial oxidative phosphorylation (OXPHOS) in breast cancer cells; however, PEG-GO showed no effect on OXPHOS in non-cancerous cells. To explore the underlying mechanisms, a SILAC (Stable Isotope Labeling by Amino acids in Cell culture) labeling strategy was used to quantify protein expression in PEG-GO-exposed breast cancer versus non-cancerous cells. The results indicated that PEG-GO selectively down-regulated PGC-1α in breast cancer cells and thus modified the expression of diverse energy generation-related proteins, which accounts for the inhibition of OXPHOS. The inhibition of OXPHOS by PEG-GO significantly reduced ATP production and impaired assembly of the F-actin cytoskeleton in breast cancer cells, which is required for the migratory and invasive phenotype of cancer cells. Taken together, these effects of PEG-GO on cancer cell metastasis may allow the development of a new approach to treat metastatic breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation.

    Science.gov (United States)

    Xu, Yuanyuan; Tokar, Erik J; Waalkes, Michael P

    2014-02-01

    Accumulating data suggest arsenic may be an endocrine disruptor and tentatively linked to breast cancer by some studies. Therefore, we tested the effects of chronic inorganic arsenic exposure on the normal estrogen receptor (ER)-negative breast epithelial cell line, MCF-10A. Cells were chronically exposed to a low-level arsenite (500 nM) for up to 24 weeks. Markers of cancer cell phenotype and the expression of critical genes relevant to breast cancer or stem cells (SCs) were examined. After 24 weeks, chronic arsenic-exposed breast epithelial (CABE) cells showed increases in secreted MMP activity, colony formation, invasion, and proliferation rate, indicating an acquired cancer cell phenotype. These CABE cells presented with basal-like breast cancer characteristics, including ER-α, HER-2, and progesterone receptor negativity, and overexpression of K5 and p63. Putative CD44(+)/CD24(-/low) breast SCs were increased to 80 % over control in CABE cells. CABE cells also formed multilayer cell mounds, indicative of loss of contact inhibition. These mounds showed high levels of K5 and p63, indicating the potential presence of cancer stem cells (CSCs). Epithelial-to-mesenchymal transition occurred during arsenic exposure. Overexpression of aromatase, a key rate-limiting enzyme in estrogen synthesis, occurred with arsenic starting early on in exposure. Levels of 17β-estradiol increased in CABE cells and their conditioned medium. The aromatase inhibitor letrozole abolished arsenic-induced increases in 17β-estradiol production and reversed cancer cell phenotype. Thus, chronic arsenic exposure drives human breast epithelia into a cancer cell phenotype with an apparent overabundance of putative CSCs. Arsenic appears to transform breast epithelia through overexpression of aromatase, thereby activating oncogenic processes independent of ER.

  12. Analyzing gene expression profile in K562 cells exposed to sodium valproate using microarray combined with the connectivity map database.

    Science.gov (United States)

    Zhang, Xiang-Zhong; Yin, Ai-Hua; Lin, Dong-Jun; Zhu, Xiao-Yu; Ding, Qian; Wang, Chun-Huai; Chen, Yun-Xian

    2012-01-01

    To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action.

  13. Analyzing Gene Expression Profile in K562 Cells Exposed to Sodium Valproate Using Microarray Combined with the Connectivity Map Database

    Directory of Open Access Journals (Sweden)

    Xiang-Zhong Zhang

    2012-01-01

    Full Text Available To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action.

  14. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells...

  15. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  16. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    Science.gov (United States)

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  17. TRIB3 downregulation enhances doxorubicin-induced cytotoxicity in gastric cancer cells.

    Science.gov (United States)

    Wu, I-Jung; Lin, Rong-Jaan; Wang, Hsin-Chiao; Yuan, Tein-Ming; Chuang, Show-Mei

    2017-05-15

    TRIB3, which is a pseudokinase known to regulate multiple pro-survival pathways, appears to be a potential therapeutic target for the treatment of human tumors. However, its precise role in cancer is controversial, as TRIB3 protein levels have been associated with both good and poor prognosis in cancer patients. Here, we investigated the significance of TRIB3 expression in the survival of gastric cancer cells exposed to anticancer drugs. We found that the tested anticancer drug, doxorubicin, induced cytotoxicity by decreasing TRIB3 transcription, which was followed by apoptotic cell death. Moreover, TRIB3 siRNA knockdown appeared to enhance doxorubicin-induced apoptosis in gastric cancer cells, concurrently with altering the expression of downstream apoptotic factors. Conversely, overexpression of TRIB3 significantly protected cells against doxorubicin-induced apoptosis. Our results indicate that downregulation of TRIB3 appears to promote cell death and enhance doxorubicin-induced apoptosis, supporting the anti-apoptotic role of TRIB3. The inductions of three classes of MAPKs failed to affect doxorubicin-mediated TRIB3 downregulation, while TRIB3 overexpression did not affect doxorubicin-induced MAPK activation. In sum, our findings indicate that TRIB3 plays an anti-apoptotic role in doxorubicin-treated gastric cancer cell lines, perhaps indicating that the status of TRIB3 expression in response to anticancer drugs, such as doxorubicin, irinotecan or oxaliplatin, may reflect the efficiency for cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. β-Endorphin Neuronal Cell Transplant Reduces Corticotropin Releasing Hormone Hyperresponse to Lipopolysaccharide and Eliminates Natural Killer Cell Functional Deficiencies in Fetal Alcohol Exposed Rats

    Science.gov (United States)

    Boyadjieva, Nadka I.; Ortigüela, María; Arjona, Alvaro; Cheng, Xiaodong; Sarkar, Dipak K.

    2010-01-01

    Background Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of β-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-γ (IFN-γ) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-γ in control and fetal alcohol exposed rats. Conclusions These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyper-response and immune deficiency in fetal alcohol exposed subjects. PMID:19320628

  19. Effects of symptomatic and asymptomatic isolates of Blastocystis hominis on colorectal cancer cell line, HCT116.

    Science.gov (United States)

    Chan, Kok Hoe; Chandramathi, Samudi; Suresh, Kumar; Chua, Kek Heng; Kuppusamy, Umah Rani

    2012-06-01

    The pathogenesis of Blastocystis hominis in human hosts has always been a matter of debate as it is present in both symptomatic and asymptomatic individuals. A recent report showed that B. hominis isolated from an asymptomatic individual could facilitate the proliferation and growth of existing cancer cells while having the potential to downregulate the host immune response. The present study investigated the differences between the effects of symptomatic and asymptomatic derived solubilized antigen of B. hominis (Blasto-Ag) on the cell viability and proliferation of colorectal cancer cells. Besides that, the gene expression of cytokine and nuclear transcriptional factors in response to the symptomatic and asymptomatic B. hominis antigen in HCT116 was also compared. In the current study, an increase in cell proliferation was observed in HCT116 cells which led to the speculation that B. hominis infection could facilitate the growth of colorectal cancer cells. In addition, a more significant upregulation of Th2 cytokines observed in HCT116 may lead to the postulation that symptomatic Blasto-Ag may have the potential in weakening the cellular immune response, allowing the progression of existing tumor cells. The upregulation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) was observed in HCT116 exposed to symptomatic Blasto-Ag, while asymptomatic Blasto-Ag exhibited an insignificant effect on NF-κB gene expression in HCT116. HCT116 cells exposed to symptomatic and asymptomatic Blasto-Ag caused a significant upregulation of CTSB which lead to the postulation that the Blasto-Ag may enhance the invasive and metastasis properties of colorectal cancer. In conclusion, antigen isolated from a symptomatic individual is more pathogenic as compared to asymptomatic isolates as it caused a more extensive inflammatory reaction as well as more enhanced proliferation of cancer cells.

  20. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    Science.gov (United States)

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  1. Myc mediates cancer stem-like cells and EMT changes in triple negative breast cancers cells.

    Directory of Open Access Journals (Sweden)

    Shuping Yin

    Full Text Available Women with triple negative breast cancer (TNBC have poor prognosis compared to other breast cancer subtypes. There were several reports indicating racial disparity in breast cancer outcomes between African American (AA and European American (EA women. For example, the mortality rates of AA breast cancer patients were three times higher than of EA patients, even though, the incidence is lower in AA women. Our in vitro studies indicate that cancer stem-like cells (CSCs derived from AA TNBC cell lines have significantly higher self-renewal potential (mammosphere formation than CSCs derived from EA cell lines. TNBC tumors express high levels of Myc compared to luminal A or HER2 expressing breast cancers. We studied the effects of c-Myc overexpression on CSCs and chemotherapy in AA, and EA derived TNBC cell line(s. Overexpression of c-Myc in AA derived MDA-MB-468 (Myc/MDA-468 cells resulted in a significant increase in CSCs and with minimal changes in epithelial-to-mesenchymal transition (EMT compared to the control group. In contrast, overexpression of c-Myc in EA derived MDA-MB-231(Myc/MDA-231 cells led to increased epithelial-to-mesenchymal transition (EMT, with a minimal increase in CSCs compared to the control group. Myc/MDA-468 cells were resistant to standard chemotherapeutic treatments such as iniparib (PARP inhibitor plus cisplatin, / iniparib, cisplatin, paclitaxel and docetaxel. However, Myc/MDA-231 cells, which showed EMT changes responded to iniparib with cisplatin, but were resistant to other drugs, such as iniparib, cisplatin, paclitaxel and docetaxel. Collectively, our results indicate that intrinsic differences in the tumor biology may contribute to the breast cancer disparities.

  2. Increase in DNA damage in lymphocytes and micronucleus frequency in buccal cells in silica-exposed workers.

    Science.gov (United States)

    Halder, Ajanta; De, Madhusnata

    2012-01-01

    The alkaline single cell gel electrophoresis (comet assay) was applied to study the genotoxic properties of silica in human peripheral blood lymphocytes (PBL). The study was designed to evaluate the DNA damage of lymphocytes and the end points like micronuclei from buccal smears in a group of 45 workers, occupationally exposed to silica, from small mines and stone quarries. The results were compared to 20 sex and age matched normal individuals. There was a statistically significant difference in the damage levels between the exposed group and the control groups. The types of damages (type I -type 1V) were used to measure the DNA damage. The numbers of micronuclei were higher in the silica-exposed population. The present study suggests that the silica exposure can induce lymphocyte DNA damage and produces significant variation of micronuclei in buccal smear.

  3. Guidelines on renal cell cancer

    NARCIS (Netherlands)

    Mickisch, G; Carballido, J; Hellsten, S; Schuize, H; Mensink, H

    Objectives., On behalf of the European Association of Urology (EAU), Guidelines for Diagnosis, Therapy and. Follow Up of Renal. Cell Carcinoma Patients were established. Criteria for recommendations were evidence based and included aspects of cost-effectiveness and clinical feasibility. Method: A

  4. Decreased Iron in Cancer Cells and Their Microenvironment Improves Cytolysis of Breast Cancer Cells by Natural Killer Cells.

    Science.gov (United States)

    Jiang, Xian-Peng; Elliott, Robert L

    2017-05-01

    The association of iron with anticancer immunity is unclear. In order to determine the role of iron in anticancer immunity, we manipulated intracellular iron levels of the human MCF-7 and MDA-MB-231 breast cancer cell lines, and measured cytolysis of breast cancer cells by the natural killer cell line NK-92MI, nitric oxide (NO) production, tumor necrosis factor alpha (TNFα) production and gene expression of ferritin heavy chain (FTH1). We found that NK-92MI increased synthesis and release of NO and TNFα into the medium during co-culturing of NK-92MI cells with MCF-7 or MDA-MB-231 cells. Addition of iron inhibited the cytolysis of the breast cancer cell lines. The iron chelator deferoxamine (DFOM) increased NK-92MI cytolysis to MCF-7 or MDA-MB-231 cells. Iron reversed cytotoxicity to breast cancer cells induced by NO, released from S-nitroso-N-acetyl-penicillamine (NO donor). Real time quantitative polymerase chain reaction showed that iron up-regulated the expression of FTH1 and iron chelator DFOM reduced FTH1 expression of MCF-7 and MDA-MB-231 cells. In conclusion, increased iron in cancer cells and their microenvironment protects cancer cells from natural killer cell cytolysis by antagonizing NO- and TNFα-associated cytotoxicity and by up-regulation of ferritin expression in breast cancer cells. Conversely, a decrease in iron concentration caused by DFOM improves natural killer cytolysis of tumor cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Identification of a unique gene expression signature in mercury and 2,3,7,8-tetrachlorodibenzo-p-dioxin co-exposed cells.

    Science.gov (United States)

    Jagannathan, Lakshmanan; Jose, Cynthia C; Tanwar, Vinay Singh; Bhattacharya, Sudin; Cuddapah, Suresh

    2017-05-01

    Mercury (Hg) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are major environmental contaminants that commonly co-occur in the environment. Both Hg and TCDD are associated with a number of human diseases including cancers. While the individual toxicological effects of Hg and TCDD have been extensively investigated, studies on co-exposure are limited to a few genes and pathways. Therefore, a significant knowledge gap exists in the understanding of the deleterious effects of co-exposure to Hg and TCDD. Due to the prevalence of Hg and TCDD co-contamination in the environment and the major human health hazards they pose, it is important to obtain a fuller understanding of genome-wide effects of Hg and TCDD co-exposure. In this study, by performing a comprehensive transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) exposed to Hg and TCDD individually and in combination, we have uncovered a subset of genes with altered expression only in the co-exposed cells. We also identified the additive as well as antagonistic effects of Hg and TCDD on gene expression. Moreover, we found that co-exposure impacted several biological and disease processes not affected by Hg or TCDD individually. Our studies show that the consequences of Hg and TCDD co-exposure on the transcriptional program and biological processes could be substantially different from single exposures, thus providing new insights into the co-exposure-specific pathogenic processes.

  6. Recombinant Interleukin-15 in Treating Patients With Advanced Melanoma, Kidney Cancer, Non-small Cell Lung Cancer, or Squamous Cell Head and Neck Cancer

    Science.gov (United States)

    2017-09-14

    Head and Neck Squamous Cell Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Renal Cell Carcinoma; Recurrent Skin Carcinoma; Stage III Renal Cell Cancer; Stage IIIA Cutaneous Melanoma AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Cutaneous Melanoma AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIC Cutaneous Melanoma AJCC v7; Stage IV Cutaneous Melanoma AJCC v6 and v7; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer

  7. Frequency Patterns of T-Cell Exposed Amino Acid Motifs in Immunoglobulin Heavy Chain Peptides Presented by MHCs.

    Science.gov (United States)

    Bremel, Robert D; Homan, E Jane

    2014-01-01

    Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV) to assess the diversity of T-cell exposed motifs (TCEMs). TCEM comprise those amino acids in a MHC-bound peptide, which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM). Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of TCEM re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by T-cell clonal expansion that develops along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  8. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation. Copyright © 2013 Wiley Periodicals

  9. Anti-tumor effects of osthole on ovarian cancer cells in vitro.

    Science.gov (United States)

    Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling

    2016-12-04

    Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Human Monocyte-Derived Dendritic Cells Exposed to Microorganisms Involved in Hypersensitivity Pneumonitis Induce a Th1-Polarized Immune Response

    Science.gov (United States)

    Pallandre, Jean-René; Borg, Christophe; Loeffert, Sophie; Gbaguidi-Haore, Houssein; Millon, Laurence

    2013-01-01

    Hypersensitivity pneumonitis (HP) is an immunoallergic disease characterized by a prominent interstitial infiltrate composed predominantly of lymphocytes secreting inflammatory cytokines. Dendritic cells (DCs) are known to play a pivotal role in the lymphocytic response. However, their cross talk with microorganisms that cause HP has yet to be elucidated. This study aimed to investigate the initial interactions between human monocyte-derived DCs (MoDCs) and four microorganisms that are different in nature (Saccharopolyspora rectivirgula [actinomycetes], Mycobacterium immunogenum [mycobacteria], and Wallemia sebi and Eurotium amstelodami [filamentous fungi]) and are involved in HP. Our objectives were to determine the cross talk between MoDCs and HP-causative agents and to determine whether the resulting immune response varied according to the microbial extract tested. The phenotypic activation of MoDCs was measured by the increased expression of costimulatory molecules and levels of cytokines in supernatants. The functional activation of MoDCs was measured by the ability of MoDCs to induce lymphocytic proliferation and differentiation in a mixed lymphocytic reaction (MLR). E. amstelodami-exposed (EA) MoDCs expressed higher percentages of costimulatory molecules than did W. sebi-exposed (WS), S. rectivirgula-exposed (SR), or M. immunogenum-exposed (MI) MoDCs (P < 0.05, Wilcoxon signed-rank test). EA-MoDCs, WS-MoDCs, SR-MoDCs, and MI-MoDCs induced CD4+ T cell proliferation and a Th1-polarized immune response. The present study provides evidence that, although differences were initially observed between MoDCs exposed to filamentous fungi and MoDCs exposed to bacteria, a Th1 response was ultimately promoted by DCs regardless of the microbial extract tested. PMID:23720369

  11. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2016-09-01

    Full Text Available The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer.

  12. Cardiovascular mortality in patients with prostate cancer exposed to androgen deprivation therapy.

    Science.gov (United States)

    Monzó-Gardiner, J I; Herranz-Amo, F

    2015-10-01

    A relationship between the administration of GnRH agonists and the risk of acute myocardial infarction (AMC) in patients with prostate cancer has been showed in the third observational study published in April 2014. The association AMC-orchiectomy was not found in any of these studies. Define risk factors for cardiovascular disease in patients treated with GnRH agonist. Their probable underlying pathogenic mechanism in the myocardium and peripheral vascular tree was also analyzed. English articles cited in PubMed were reviewed. No time period is specified. The last search date was 11/30/14. In patients with coronary history of AMC or congestive heart failure, hormonal neoadjuvant therapy increased cardiovascular mortality rates (HR: 1.96, IC 95%: 1.04-3.71; P=.04) as well as cardiovascular-specific mortality rates (AHR: 3.28; IC 95%: 1.01-10.64; P=.048). Two possible mechanisms can be involved: a) direct mechanism through myocardial receptor for GnRH/PKA along with atherogenic plaques; and b) indirect mechanism related with metabolic disturbances. Patients with AMC or congestive heart failure history could present a higher risk of death related to the use of GnRH agonists. In these cases, should carefully consider appropriateness of such treatment. These effects can explained by a direct mechanism on myocardium and peripheral vascular tree and indirect ones related with modified metabolic syndrome. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Calcium wave signaling in cancer cells

    Science.gov (United States)

    PARKASH, JAI; ASOTRA, KAMLESH

    2010-01-01

    Ca2+ functions as an important signaling messenger right from beginning of the life to final moment of the end of the life. Ca2+ is needed at several steps of the cell cycle such as early G1, at the G1/S, and G2/M transitions. The Ca2+ signals in the form of time-dependent changes in intracellular Ca2+ concentrations, [Ca2+]i, are presented as brief spikes organized into regenerative Ca2+ waves. Ca2+-mediated signaling pathways have also been shown to play important roles in carcinogenesis such as transformation of normal cells to cancerous cells, tumor formation and growth, invasion, angiogenesis and metastasis. Since the global Ca2+ oscillations arise from Ca2+ waves initiated locally, it results in stochastic oscillations because although each cell has many IP3Rs and Ca2+ ions, the law of large numbers does not apply to the initiating event which is restricted to very few IP3Rs due to steep Ca2+ concentration gradients. The specific Ca2+ signaling information is likely to be encoded in a calcium code as the amplitude, duration, frequency, waveform or timing of Ca2+ oscillations and decoded again at a later stage. Since Ca2+ channels or pumps involved in regulating Ca2+ signaling pathways show altered expression in cancer, one can target these Ca2+ channels and pumps as therapeutic options to decrease proliferation of cancer cells and to promote their apoptosis. These studies can provide novel insights into alterations in Ca2+ wave patterns in carcinogenesis and lead to development of newer technologies based on Ca2+ waves for the diagnosis and therapy of cancer. PMID:20875431

  14. In Vivo 5FU-Exposed Human Medullary Thyroid Carcinoma Cells Contain a Chemoresistant CD133+Tumor-Initiating Cell Subset

    Czech Academy of Sciences Publication Activity Database

    Kučerová, L.; Feketeová, L.; Kozovská, Z.; Poturnajová, M.; Matusková, M.; Nencka, Radim; Babál, P.

    2014-01-01

    Roč. 24, č. 3 (2014), s. 520-532 ISSN 1050-7256 Institutional support: RVO:61388963 Keywords : cancer stem cells * thymidylate synthase * colorectal cancer Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.493, year: 2014

  15. Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy

    Directory of Open Access Journals (Sweden)

    Lisa Y. Pang

    2016-01-01

    Full Text Available Cyclooxygenase-2 (COX-2 is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2, a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.

  16. Daily application of low magnitude mechanical stimulus inhibits the growth of MDA-MB-231 breast cancer cells in vitro.

    Science.gov (United States)

    Olcum, Melis; Ozcivici, Engin

    2014-01-01

    Mechanical loads can regulate cell proliferation and differentiation at various stages of development and homeostasis. However, the extension of this regulatory effect of mechanical loads on cancer cells is largely unknown. Increased physical compliance is one of the key features of cancer cells, which may hamper the transmission of mechanical loads to these cells within tumor microenvironment. Here we tested whether brief daily application of an external low magnitude mechanical stimulus (LMMS), would impede the growth of MDA-MB-231 aggressive type breast cancer cells in vitro for 3 wks of growth. The signal was applied in oscillatory form at 90 Hz and 0.15 g, a regimen that would induce mechanical loads on MDA-MB-231 cells via inertial properties of cells rather than matrix deformations. Experimental cells were exposed to LMMS 15 min/day, 5 days/week in ambient conditions while control cells were sham loaded. Cell proliferation, viability, cycle, apoptosis, morphology and migration were tested via Trypan Blue dye exclusion, MTT, PI, Annexin V, Calcein-AM and phalloidin stains and scratch wound assays. Compared to sham controls, daily application of LMMS reduced the number and viability of cancerous MDA-MB-231 cells significantly after first week in the culture, while non-cancerous MCF10A cells were found to be unaffected. Flow cytomety analyses suggested that the observed decrease for the cancer cells in the LMMS group was due to a cell cycle arrest rather than apoptosis. LMMS further reduced cancer cell circularity and increased cytoskeletal actin in MDA-MB-231 cells. Combined, results suggest that direct application of mechanical loads negatively regulate the proliferation of aggressive type cancer cells. If confirmed, this non-invasive approach may be integrated to the efforts for the prevention and/or treatment of cancer.

  17. Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells.

    Science.gov (United States)

    Puerto, Maria; Campos, Alexandre; Prieto, Ana; Cameán, Ana; de Almeida, André Martinho; Coelho, Ana Varela; Vasconcelos, Vitor

    2011-01-17

    The cyanobacteria Cylindrospermopsis raciborskii is considered a threat to aquatic organisms due to the production of the toxin cylindrospermopsin (CYN). Despite the numerous reports evidencing the toxic effects of C. raciborskii cells and CYN in different species, not much is known regarding the toxicity mechanisms associated with this toxin and the cyanobacteria. In this work, a proteomics approach based in the two-dimensional gel electrophoresis and mass spectrometry was used to study the effects of the exposure of two bivalve species, Mytilus galloprovincialis and Corbicula fluminea, to CYN producing (CYN+) and non-producing (CYN-) C. raciborskii cells. Additionally the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) were determined. Alterations in actin and tubulin isoforms were detected in gills of both bivalve species and digestive gland of M. galloprovincialis when exposed to CYN- and CYN+ cells. Moreover, GST and GPx activities changed in gills and digestive tract of bivalves exposed to both C. raciborskii freeze dried cells, in comparison to control animals exposed to the green alga Chlorella vulgaris. These results suggest the induction of physiological stress and tissue injury in bivalves by C. raciborskii. This condition is supported by the changes observed in GPx and GST activities which indicate alterations in the oxidative stress defense mechanisms. The results also evidence the capacity of CYN non-producing C. raciborskii to induce biochemical responses and therefore its toxicity potential to bivalves. The heat shock protein 60 (HSP60), extrapallial (EP) fluid protein and triosephosphate isomerase homologous proteins from gills of M. galloprovincialis were down-regulated specifically with the presence of CYN+ C. raciborskii cells. The presence of CYN may lead to additional toxic effects in M. galloprovincialis. This work demonstrates that proteomics is a powerful approach to characterize the biochemical effects of C

  18. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  19. On the need to assess cancer risk in populations environmentally and occupationally exposed to virus and chemical agents in developing countries

    Directory of Open Access Journals (Sweden)

    Franco Netto Guilherme

    1998-01-01

    Full Text Available Evidence exists that exposure to poultry oncogenic viruses may produce elevated cancer mortality in human populations, particularly excesses of cancer of lung and excesses of cancer of lymphopoietic tissues. To date, this potential risk is unknown in populations from the developing countries. This paper suggests the need to assess cancer risk in populations of developing countries with reported environmental exposure to chicken meat products and eggs; the need to assess risk of cancer in populations inoculated with vaccines from infected chicken embryos; and the need to assess risk of cancer in occupational populations highly exposed to poultry oncogenic viruses, and with potential concurrent exposure to chemical agents known or suspected to be carcinogens.

  20. On the need to assess cancer risk in populations environmentally and occupationally exposed to virus and chemical agents in developing countries

    Directory of Open Access Journals (Sweden)

    Guilherme Franco Netto

    Full Text Available Evidence exists that exposure to poultry oncogenic viruses may produce elevated cancer mortality in human populations, particularly excesses of cancer of lung and excesses of cancer of lymphopoietic tissues. To date, this potential risk is unknown in populations from the developing countries. This paper suggests the need to assess cancer risk in populations of developing countries with reported environmental exposure to chicken meat products and eggs; the need to assess risk of cancer in populations inoculated with vaccines from infected chicken embryos; and the need to assess risk of cancer in occupational populations highly exposed to poultry oncogenic viruses, and with potential concurrent exposure to chemical agents known or suspected to be carcinogens.

  1. Heat induces gene amplification in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  2. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors.

    Science.gov (United States)

    Harada, Koji; Ferdous, Tarannum; Cui, Dan; Kuramitsu, Yasuhiro; Matsumoto, Takuya; Ikeda, Eiji; Okano, Hideyuki; Ueyama, Yoshiya

    2016-07-27

    The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor

  3. Transcription profiles of non-immortalized breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Holland James F

    2006-04-01

    Full Text Available Abstract Background Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Methods Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs were used in addition to commercially-available normal breast epithelial cells (HMECs, established breast cancer cell lines (T-est and established normal breast cells (N-est. The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. Results According to Significance Analysis of Microarray (SAM and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p Conclusion The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research.

  4. Sangre de grado Croton palanostigma induces apoptosis in human gastrointestinal cancer cells.

    Science.gov (United States)

    Sandoval, Manuel; Okuhama, Nataly N; Clark, Melinda; Angeles, Fausto M; Lao, Juan; Bustamante, Sergio; Miller, Mark J S

    2002-05-01

    Sangre de grado is an ethnomedicinal red tree sap obtained from Croton spp. that is used to treat gastrointestinal ulcers, cancer and to promote wound healing. To evaluate the potential role of sangre de grado (SdG) in cancer we examined its effects on human cancer cells, AGS (stomach), HT29 and T84 (colon). Viability of cells treated with SdG (10-200 microg/ml) decreased (P100 microg/ml). When cells in suspension were treated with SdG (100 microg/ml) cell adherence was severely compromised (>85%). Cells treated with SdG (100 microg/ml) underwent apoptosis as detected by nucleus condensation and DNA fragmentation determined by ELISA, and flow cytometry. Morphological changes as assessed by acridine orange. These effects were similar to that observed with Taxol (30 microM). A significant alteration of microtubular architecture was equally observed in both stomach and colon cancer cells exposed to SdG (100 microg/ml). The induction of apoptosis and microtubule damage in AGS, HT29 and T84 cells suggest that sangre de grado should be evaluated further as a potential source of anti-cancer agents.

  5. Natural killer cells enhance the immune surveillance of cancer

    African Journals Online (AJOL)

    Faisal Nouroz

    2015-09-11

    Sep 11, 2015 ... All the cells of the immune sys- tem cooperatively work against infectious agents and cancerous cells but Natural killer (NK) cells ..... Cancer stem cells (CSCs) retain the growth of tumor and resist chemotherapy [25]. ... radiation therapy and mushroom beta glucans showed only 1 nodule. The experiments ...

  6. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  7. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  8. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  9. Hazard function for cancer patients and cancer cell dynamics.

    Science.gov (United States)

    Horová, Ivana; Pospísil, Zdenek; Zelinka, Jirí

    2009-06-07

    The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.

  10. A stochastic model for cancer stem cell origin in metastatic colon cancer.

    Science.gov (United States)

    Odoux, Christine; Fohrer, Helene; Hoppo, Toshitaka; Guzik, Lynda; Stolz, Donna Beer; Lewis, Dale W; Gollin, Susanne M; Gamblin, T Clark; Geller, David A; Lagasse, Eric

    2008-09-01

    Human cancers have been found to include transformed stem cells that may drive cancer progression to metastasis. Here, we report that metastatic colon cancer contains clonally derived tumor cells with all of the critical properties expected of stem cells, including self-renewal and the ability to differentiate into mature colon cells. Additionally, when injected into mice, these cells initiated tumors that closely resemble human cancer. Karyotype analyses of parental and clonally derived tumor cells expressed many consistent (clonal) along with unique chromosomal aberrations, suggesting the presence of chromosomal instability in the cancer stem cells. Thus, this new model for cancer origin and metastatic progression includes features of both the hierarchical model for cancerous stem cells and the stochastic model, driven by the observation of chromosomal instability.

  11. Surgery for nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Loïc Lang-Lazdunski

    2013-09-01

    Full Text Available Surgery remains the best curative option in patients with early stage lung cancer (stage I and II. Developments in minimally invasive techniques now allow surgeons to perform lung resections on elderly patients, patients with poor pulmonary function or significant cardiopulmonary comorbidities. New techniques, such as stereotactic radiotherapy and ablative procedures, are being evaluated in early-stage lung cancer and may represent an alternative to surgery in patients unfit for lung resection. Perioperative mortality rates have dropped significantly at most institutions in the past two decades and complications are managed more efficiently. Progress in imaging and staging techniques have helped cut futile thoracotomy rates and offer patients the most adequate treatment options. Large randomised trials have helped clarify the role of neoadjuvant, induction and adjuvant chemotherapy, as well as radiotherapy. Surgery remains an essential step in the multimodality therapy of selected patients with advanced-stage lung cancer (stage III and IV. Interventional and endoscopic techniques have reduced the role of surgery in the diagnosis and staging of nonsmall cell lung cancer, but surgery remains an important tool in the palliation of advanced-stage lung cancer. Large national/international surgical databases have been developed and predictive risk-models for surgical mortality/morbidity published by learned surgical societies. Nonetheless, lung cancer overall survival rates remain deceptively low and it is hoped that early detection/screening, better understanding of tumour biology and development of biomarkers, and development of efficient targeted therapies will help improve the prognosis of lung cancer patients in the next decade.

  12. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  13. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells.

    Science.gov (United States)

    Schwarz, Eva C; Qu, Bin; Hoth, Markus

    2013-07-01

    Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles.

    Science.gov (United States)

    Srikanth, Koigoora; Pereira, Eduarda; Duarte, Armando C; Rao, Janapala Venkateswara

    2016-05-01

    The current study is aimed to study cytotoxicity and oxidative stress mediated changes induced by copper oxide nanoparticles (CuO NPs) in Chinook salmon cells (CHSE-214). To this end, a number of biochemical responses are evaluated in CHSE-214 cells which are as follows [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] MTT, neutral red uptake (NRU), lactate dehydrogenase (LDH), protein carbonyl (PC), lipid peroxidation (LPO), oxidised glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione sulfo-transferase (GST), superoxide dismutase (SOD), catalase (CAT), 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS), respectively. The 50% inhibition concentration (IC50) of CuO NPs to CHSE-214 cells after 24 h exposure was found to be 19.026 μg ml(-1). Viability of cells was reduced by CuO NPs, and the decrease was dose dependent as revealed by the MTT and NRU assay. CHSE-214 cells exposed to CuO NPs induced morphological changes. Initially, cells started to detach from the surface (12 h), followed by polyhedric, fusiform appearance (19 h) and finally the cells started to shrink. Later, the cells started losing their cellular contents leading to their death only after 24 h. LDH, PC, LPO, GSH, GPx, GST, SOD, CAT, 8-OHdG and ROS responses were seen significantly increased with the increase in the concentration of CuO NPs when compared to their respective controls. However, significant decrease in GSSG was perceptible in CHSE-214 cells exposed to CuO NPs in a dose-dependent manner. Our data demonstrated that CuO NPs induced cytotoxicity in CHSE-214 cells through the mediation of oxidative stress. The current study provides a baseline for the CuO NPs-mediated cytotoxic assessment in CHSE-214 cells for the future studies.

  15. Reduced Ovarian Cancer Incidence in Women Exposed to Low Dose Ionizing Background Radiation or Radiation to the Ovaries after Treatment for Breast Cancer or Rectosigmoid Cancer.

    Science.gov (United States)

    Lehrer, Steven; Green, Sheryl; Rosenzweig, Kenneth E

    2016-01-01

    High dose ionizing radiation can induce ovarian cancer, but the effect of low dose radiation on the development of ovarian cancer has not been extensively studied. We evaluated the effect of low dose radiation and total background radiation, and the radiation delivered to the ovaries during the treatment of rectosigmoid cancer and breast cancer on ovarian cancer incidence. Background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States, 2011. Ovarian cancer incidence data are from the Centers for Disease Control and Prevention. Standardized incidence ratios (SIR) of ovarian cancer following breast cancer and rectosigmoid cancer are from Surveillance, Epidemiology, and End Results (SEER) data. Obesity data by US state are from the Centers for Disease Control and Prevention. Mean ages of US state populations are from the United States Census Bureau. We calculated standardized incidence ratios (SIR) from Surveillance, Epidemiology, and End Results (SEER) data, which reveal that in 194,042 cases of breast cancer treated with beam radiation, there were 796 cases of ovarian cancer by 120+ months of treatment (0.41%); in 283, 875 cases of breast cancer not treated with radiation, there were 1,531 cases of ovarian cancer by 120+ months (0.54%). The difference in ovarian cancer incidence in the two groups was significant (cancer by 24%. In 13,099 cases of rectal or rectosigmoid junction cancer treated with beam radiation in the SEER data, there were 20 cases of ovarian cancer by 120+ months of treatment (0.15%). In 33,305 cases of rectal or rectosigmoid junction cancer not treated with radiation, there were 91 cases of ovarian cancer by 120+ months (0.27%). The difference in ovarian cancer incidence in the two groups was significant (p = 0.017, two tailed Fisher exact test). In other words, the beam radiation to rectum and rectosigmoid that also reached the ovaries reduced the risk of ovarian cancer by 44%. In addition, there

  16. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  17. Optical imaging of cancer and cell death

    OpenAIRE

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic and macroscopic level. Because we believe optical imaging in particular represents a technology that has unique potential to exploit further our knowledge in preclinical research. First, we imaged...

  18. Sodium pyruvate modulates cell death pathways in HaCaT keratinocytes exposed to half-mustard gas.

    Science.gov (United States)

    Paromov, Victor; Brannon, Marianne; Kumari, Sudha; Samala, Mallikarjun; Qui, Min; Smith, Milton; Stone, William L

    2011-03-01

    2-Chloroethyl ethyl sulfide (CEES) or half-mustard gas, a sulfur mustard (HD) analog, is a genotoxic agent that causes oxidative stress and induces both apoptotic and necrotic cell death. Sodium pyruvate induced a necrosis-to-apoptosis shift in HaCaT cells exposed to CEES levels ≤ 1.5 mmol/L and lowered markers of DNA damage, oxidative stress, and inflammation. This study provides a rationale for the future development of multicomponent therapies for HD toxicity in the skin. We hypothesize that a combination of pyruvates with scavengers/antioxidants encapsulated in liposomes for optimal local delivery should be therapeutically beneficial against HD-induced skin injury. However, the latter suggestion should be verified in animal models exposed to HD.

  19. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    14 4 1. Introduction Prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer- related deaths in American men...internalization by MSCs (red (DiI) - MPs, green ( cholera toxin) - cell membrane, blue (Hoechst) - cell nucleus). (d) To assess drug release from G114 MP-loaded

  20. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells.

    Science.gov (United States)

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-06-30

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs.

  1. Novel regulators of prostate cancer stem cells and tumor aggressiveness

    NARCIS (Netherlands)

    Zoni, E.

    2016-01-01

    In the past decade it became increasingly clear that tumor heterogeneity represents one of the major problems for cancer treatment, also in prostate cancer. The identification of the molecular properties of highly aggressive cells (Cancer Stem Cells, CSCs) dispersed within the tumor represents a

  2. Differentiation of Prostate Cancer Cells by Using Flexible Fluorescent Polymers

    Science.gov (United States)

    Scott, Michael D.; Dutta, Rinku; Haldar, Manas K.; Guo, Bin; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Using water soluble, fluorescent, flexible polymers, we have devised a novel methodology for identification and differentiation of prostate cancer cells. By using a step-wise linear discriminant analysis we demonstrate that the differential modulations of the polymer emission intensities in the presence of conditioned cell culture media can be used to distinguish between prostate cancer subtypes and between cancerous and non-cancer cells. The differences in the compositions of the conditioned cell culture media are likely contributing to different fluorescence spectral patterns of the polymers. This in vitro approach may provide a novel platform for the development of an alternative prostate cancer diagnostic and subtyping technique. PMID:22148518

  3. Breast Cancer Stem Cells and Tumor Suppressor Genes

    Directory of Open Access Journals (Sweden)

    Wendy W. Hwang-Verslues

    2008-10-01

    Full Text Available Studies of breast cancer stem cells are in their infancy and many fundamental questions have yet to be fully addressed. The molecular distinction between normal and cancerous breast stem cells is not clear. While there have been recent breakthroughs in mouse mammary stem cells and lineage determination in mammary glands, little has been determined in human cells. Microarray analyses have provided molecular categorization of breast cancer. However, the cellular origin of different types of breast cancer is largely unknown. In addition, the relationship between breast cancer stem cells and mammary progenitor cells has yet to be clarified. One of the key questions is how a normal mammary stem cell becomes a breast cancer stem cell. Importantly, the existence of different types of human breast cancers with distinct pathologic and molecular signatures suggests the possibility that different types of breast cancer stem cells may exist. Here, we aim to review the current evidence for the existence of different subtypes of breast cancer stem cells and provide further insight into how tumor suppressors might be involved in the initiation of breast cancer stem cells.

  4. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  5. Virus-specific nucleic acids in SV40-exposed hamster embryo cell lines: correlation with S and T antigens.

    Science.gov (United States)

    Levin, M J; Oxman, M N; Diamandopoulos, G T; Levine, A S; Henry, P H; Enders, J F

    1969-02-01

    A number of homologous SV40-exposed hamster embryonic cell lines were examined for the presence of RNA complementary to SV40 DNA. Only those lines containing the SV40 T antigen were found to have such virus-specific RNA. In lines containing the SV40 S antigen, but not the SV40 T antigen, virus-specific RNA was not detected. These findings suggest that the S antigen is not coded for directly by the SV40 genome.

  6. VIRUS-SPECIFIC NUCLEIC ACIDS IN SV40-EXPOSED HAMSTER EMBRYO CELL LINES: CORRELATION WITH S AND T ANTIGENS*

    Science.gov (United States)

    Levin, Myron J.; Oxman, Michael N.; Diamandopoulos, George Th.; Levine, Arthur S.; Henry, Patrick H.; Enders, John F.

    1969-01-01

    A number of homologous SV40-exposed hamster embryonic cell lines were examined for the presence of RNA complementary to SV40 DNA. Only those lines containing the SV40 T antigen were found to have such virus-specific RNA. In lines containing the SV40 S antigen, but not the SV40 T antigen, virus-specific RNA was not detected. These findings suggest that the S antigen is not coded for directly by the SV40 genome. PMID:4307716

  7. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    OpenAIRE

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM10 and to identify genes and pathways that may contribute to PM related adverse heal...

  8. REV-ERBα inhibits the PTGS2 expression in bovine uterus endometrium stromal and epithelial cells exposed to ovarian steroids.

    Science.gov (United States)

    Isayama, Keishiro; Chen, Huatao; Yamauchi, Nobuhiko; Hattori, Masa-Aki

    2014-01-01

    The nuclear receptor REV-ERBα (encoded by NR1D1) has a critical role in metabolism and physiology as well as circadian rhythm. Here, we investigated the possible contribution of clock genes including NR1D1 to the secretion of prostaglandin F2α (PGF2α) from bovine uterine stromal (USCs) and epithelial cells (UECs) by modulating the expression of PTGS2. The circadian oscillation of clock genes in the cells was weak compared with that reported in rodents, but the expression of BMAL1, PER1, and NR1D1 was changed temporally by treatment with ovarian steroids. Significant expression of clock genes including NR1D1 was detected in USCs exposed to progesterone. NR1D1 was also significantly expressed in UECs exposed to estradiol. The expression of PTGS2 was suppressed in USCs exposed to progesterone, while the expression was initially suppressed in UECs exposed to estradiol and then increased after long-term exposure to estradiol. BMAL1 knockdown with specific siRNA caused a significant decrease in the transcript levels of NR1D1 and PTGS2 in USCs, but not in UECs. The production of PGF2α also decreased in USCs after BMAL1 knockdown, while its level did not significantly change in UECs. The transcript level of PTGS2 was increased by treatment with the antagonist of REV-ERBα in both cell types, but the agonist was ineffective. In these two cell types treated with the agonist or antagonist, the PGF2α production coincided well with the PTGS2 expression. Collectively, these results indicate that REV-ERBα plays an inhibitory role in the expression of PTGS2 in both bovine USCs and UECs treated with ovarian steroids.

  9. Cell-ECM Interactions During Cancer Invasion

    Science.gov (United States)

    Jiang, Yi

    The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.

  10. CGGBP1 regulates cell cycle in cancer cells

    Directory of Open Access Journals (Sweden)

    Uhrbom Lene

    2011-07-01

    Full Text Available Abstract Background CGGBP1 is a CGG-triplet repeat binding protein, which affects transcription from CGG-triplet-rich promoters such as the FMR1 gene and the ribosomal RNA gene clusters. Earlier, we reported some previously unknown functions of CGGBP1 in gene expression during heat shock stress response. Recently we had found CGGBP1 to be a cell cycle regulatory midbody protein required for normal cytokinetic abscission in normal human fibroblasts, which have all the cell cycle regulatory mechanisms intact. Results In this study we explored the role of CGGBP1 in the cell cycle in various cancer cell lines. CGGBP1 depletion by RNA interference in tumor-derived cells caused an increase in the cell population at G0/G1 phase and reduced the number of cells in the S phase. CGGBP1 depletion also increased the expression of cell cycle regulatory genes CDKN1A and GAS1, associated with reductions in histone H3 lysine 9 trimethylation in their promoters. By combining RNA interference and genetic mutations, we found that the role of CGGBP1 in cell cycle involves multiple mechanisms, as single deficiencies of CDKN1A, GAS1 as well as TP53, INK4A or ARF failed to rescue the G0/G1 arrest caused by CGGBP1 depletion. Conclusions Our results show that CGGBP1 expression is important for cell cycle progression through multiple parallel mechanisms including the regulation of CDKN1A and GAS1 levels.

  11. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia.

    Science.gov (United States)

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A; Khoder, Mamdouh I; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM(10) and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM(10) collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM(10) exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Breast cancer stem cells, cytokine networks, and the tumor microenvironment

    National Research Council Canada - National Science Library

    Korkaya, Hasan; Liu, Suling; Wicha, Max S

    2011-01-01

    .... These cancer stem cells (CSCs) are regulated by complex interactions with the components of the tumor microenvironment - including mesenchymal stem cells, adipocytes, tumor associated fibroblasts, endothelial cells, and immune...

  13. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment.

    Science.gov (United States)

    Aponte, Pedro M; Caicedo, Andrés

    2017-01-01

    Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs) behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs), which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  14. Signs of Müller cell gliotic response found in the retina of newts exposed to real and simulated microgravity

    Science.gov (United States)

    Grigoryan, E. N.; Anton, H. J.; Poplinskaya, V. A.; Aleinikova, K. S.; Domaratskaya, E. I.; Novikova, Y. P.; Almeida, E.

    2012-05-01

    The effects of real and simulated microgravity on the eye tissue regeneration of newts were investigated. For the first time changes in Müller glial cells in the retina of eyes regenerating after retinal detachment were detected in newts exposed to clinorotation. The cells divided, were hypertrophied, and their processes were thickened. Such changes suggested reactive gliosis and were more significant in animals exposed to rotation when compared with desk-top controls. Later experiments onboard the Russian biosatellite Bion-11 showed similar changes in the retinas that were regenerating in a two-week spaceflight. In the Bion-11 animals, GFAP, the major structural protein of retinal macroglial cells, was found to be upregulated. In a more recent experiment onboard Foton-M3 (2007), GFAP expression in retinas of space-flown, ground control (kept at 1 g), and basal control (sacrificed on launch day) newts was quantified, using microscopy, immunohistochemistry, and digital image analysis. A low level of immunoreactivity was observed in basal controls. In contrast, retinas of space-flown animals showed greater GFAP immunoreactivity associated with both an increased cell number and a higher thickness of intermediate filaments. This, in turn, was accompanied by up-regulation of stress protein (HSP90) and growth factor (FGF2) expressions. It can be postulated that such a response of Müller cells was to mitigate the retinal stress in newts exposed to microgravity. Taken together, the data suggest that the retinal population of macroglial cells could be sensitive to gravity changes and that in space it can react by enhancing its neuroprotective function.

  15. Colorectal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  16. Esophageal Cancer Screening

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  17. Stages of Gallbladder Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  18. NCI Designated Cancer Centers

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  19. Small Intestine Cancer Treatment

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  20. Esophageal Cancer Prevention

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  1. Stages of Vulvar Cancer

    Science.gov (United States)

    ... Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer Leukemia Liver Cancer Lung Cancer Lymphoma Pancreatic Cancer Prostate Cancer Skin Cancer Thyroid Cancer Uterine Cancer All ...

  2. Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Teodoro Anderson

    2012-08-01

    Full Text Available Abstract Background Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound’s action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. Methods Human cell lines were treated with lycopene (1–5 μM for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL and by DAPI. Results Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7 after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145 when cells were treated with lycopene. Conclusions Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent.

  3. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  4. Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties.

    Science.gov (United States)

    Liu, Jianming; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin; Zhou, Youlang

    2013-02-01

    The cancer stem cell theory hypothesizes that cancer stem cells (CSCs), which possess self-renewal and other stem cell properties, are regarded as the cause of tumor formation, recurrence and metastasis. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. In this study, we enriched gastric cancer stem cells through spheroid body formation by cultivating the human gastric cancer cell line MKN-45 in defined serum-free medium. The stemness characteristics of spheroid body-forming cells, including self-renewal, proliferation, chemoresistance, tumorigenicity of the MKN-45 spheroid body-forming cells were evaluated, and the expression levels of stemness genes and related proteins in the MKN-45 spheroid body-forming cells were assessed. Furthermore, immunofluorescence staining for the stem cell markers on spheroid body-forming cells was examined to evaluate the association between stemness factors (Oct4, Sox2, Nanog) and the proposed CSC marker CD44. Our data demonstrated that non-adherent spheroid body-forming cells from the gastric cancer cell line MKN-45 cultured in stem cell-conditioned medium possessed gastric CSC properties, such as persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and overexpression of CSC-related genes and proteins (Oct4, Sox2, Nanog and CD44), compared with the parental cells. More importantly, CD44-positive cells co-expressing the pluripotency genes Oct4, Sox2 and Nanog may represent gastric CSCs. Further experiments using more refined selection criteria such as a combination of two or multiple markers would be useful to specifically identify and purify CSCs.

  5. Endoplasmic Reticulum–Mitochondrial Ca2+ Fluxes Underlying Cancer Cell Survival

    Directory of Open Access Journals (Sweden)

    Hristina Ivanova

    2017-05-01

    Full Text Available Calcium ions (Ca2+ are crucial, ubiquitous, intracellular second messengers required for functional mitochondrial metabolism during uncontrolled proliferation of cancer cells. The mitochondria and the endoplasmic reticulum (ER are connected via “mitochondria-associated ER membranes” (MAMs where ER–mitochondria Ca2+ transfer occurs, impacting the mitochondrial biology related to several aspects of cellular survival, autophagy, metabolism, cell death sensitivity, and metastasis, all cancer hallmarks. Cancer cells appear addicted to these constitutive ER–mitochondrial Ca2+ fluxes for their survival, since they drive the tricarboxylic acid cycle and the production of mitochondrial substrates needed for nucleoside synthesis and proper cell cycle progression. In addition to this, the mitochondrial Ca2+ uniporter and mitochondrial Ca2+ have been linked to hypoxia-inducible factor 1α signaling, enabling metastasis and invasion processes, but they can also contribute to cellular senescence induced by oncogenes and replication. Finally, proper ER–mitochondrial Ca2+ transfer seems to be a key event in the cell death response of cancer cells exposed to chemotherapeutics. In this review, we discuss the emerging role of ER–mitochondrial Ca2+ fluxes underlying these cancer-related features.

  6. In vitro effects of extracts of extra virgin olive oil on human colon cancer cells.

    Science.gov (United States)

    Pampaloni, Barbara; Mavilia, Carmelo; Fabbri, Sergio; Romani, Annalisa; Ieri, Francesca; Tanini, Annalisa; Tonelli, Francesco; Brandi, Maria Luisa

    2014-01-01

    The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular diseases, and some types of cancer. Recent interest has been focused on the biological activity of phenolic compounds present in extra virgin olive oils (EVOOs). Both in vivo and in vitro studies have shown that EVOO components have positive effects on metabolic parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet function, and antimicrobial activity. We have investigated the possible interactions between 2 extracts of extra virgin olive oil and estrogen receptor β (ERβ) in an in vitro model of colon cancer. The qualification and quantification of the components of the 2 samples tested showed that phenolic compounds-hydroxytyrosol, secoiridoids, and lignans-are the major represented compounds. EVOO extracts were tested on a colon cancer cell line engineered to overexpress ERβ (HCT8-β8). By using custom made Oligo microarray, gene expression profiles of colon cancer cells challenged with EVOO-T extracts when compared with those of cells exposed to 17β-estradiol (17β-E2). This study demonstrated that the EVOO extracts tested showed an antiproliferative effect on colon cancer cells through the interaction with estrogen-dependent signals involved in tumor cell growth. Specifically, the ability of EVOO extracts to inhibit cell proliferation was superimposable to the activation of the ERβ receptor, similar to what was observed after 17β-E2 challenge.

  7. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.

    Science.gov (United States)

    Wu, Hao; Ying, Minfeng; Hu, Xun

    2016-06-28

    While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we quantitatively measured ATP generation from glycolysis and OXPHOS in 9 randomly selected cancer cell lines. Without lactic acidosis, glycolysis and OXPHOS generated 23.7% - 52.2 % and 47.8% - 76.3% of total ATP, respectively; with lactic acidosis (20 mM lactate with pH 6.7), glycolysis and OXPHOS provided 5.7% - 13.4% and 86.6% - 94.3% of total ATP. We concluded that cancer cells under lactic acidosis reverted from Warburg effect to OXPHOS phenotype.

  8. Microscopic Image Processing Of Automated Detection And Classification For Human Cancer Cell

    Directory of Open Access Journals (Sweden)

    Laith Muayyad Abdul-Hameed Al-Hayali

    2015-08-01

    Full Text Available Automated Detection for Human Cancer Cell is one of the most effective applications of image processing and has obtained great attention in latest years therefore. In this study we propose an automated detection system for human cancer cells based on breast cancer cells. This study was conducted on a set of Fine Needle Aspiration FNA biopsy microscopic images that have been obtained from the Pathology Center - Faculty of Medicine - Mansoura University Hospital - Egypt is made up of 72 microscope image samples of benign 72 microscope image samples of malignant. The purpose of this study is to detect and classify the benign and malignant cells in the breast biopsy. The images are exposed to a series of pre-processing steps which include resizing image such as 10241024 512512 enhance images by remove noise through Median Filter and contrast enhancement through Unsharp Masking Adjust Intensity. The system depends on breast cancer cells detection using clustering-based segmentation K-means clustering Fuzzy C-means clustering and region-based segmentation Watershed. Shape Texture and Color features are extracted for Detection. The results show high Detection Rate for breast cancer cells images either Benign or Malignant. Finally classification stage by using Support Vector Machine K-Nearest Neighbors and Back-Propagation Neural Networks. The final classification with the best accuracy in SVM is 97.22 in K-NN and BPNNs is 98.61.

  9. Effects of chemically modified nanostructured PLGA on functioning of lung and breast cancer cells.

    Science.gov (United States)

    Zhang, Lijuan; Webster, Thomas J

    2013-01-01

    The aim of this study was to investigate the effects of poly-lactic-co-glycolic acid (PLGA) nanotopographies with alginate or chitosan protein preadsorption on the functioning of healthy and cancerous lung and breast cells, including adhesion, proliferation, apoptosis, and release of vascular endothelial growth factor (VEGF), which promotes tumor angiogenesis and secretion. We used a well established cast-mold technique to create nanoscale surface features on PLGA. Some of the nanomodified PLGA films were then exposed to alginate and chitosan. Surface roughness and the presence of protein was confirmed by atomic force microscopy. Surface energy was quantified by contact angle measurement. Nanostructured PLGA surfaces with 23 nm features decreased synthesis of VEGF in both lung and breast cancer cells compared with conventional PLGA. Preadsorbing alginate further decreased cancer cell function, with nanostructured PLGA preadsorbed with alginate achieving the greatest decrease in synthesis of VEGF in both lung and breast cancer cells. In contrast, compared with nonmodified smooth PLGA, healthy cell functions were either not altered (ie, breast) or were enhanced (ie, lung) by use of nanostructured features and alginate or chitosan protein preadsorption. Using this technique, we developed surface nanometric roughness and modification of surface chemistry that could selectively decrease breast and lung cancer cell functioning without the need for chemotherapeutics. This technique requires further study in a wide range of anticancer and regenerative medicine applications.

  10. Cancer stem cell-like side population cells in clear cell renal cell carcinoma cell line 769P.

    Science.gov (United States)

    Huang, Bin; Huang, Yi Jun; Yao, Zhi Jun; Chen, Xu; Guo, Sheng Jie; Mao, Xiao Peng; Wang, Dao Hu; Chen, Jun Xing; Qiu, Shao Peng

    2013-01-01

    Although cancers are widely considered to be maintained by stem cells, the existence of stem cells in renal cell carcinoma (RCC) has seldom been reported, in part due to the lack of unique surface markers. We here identified cancer stem cell-like cells with side population (SP) phenotype in five human RCC cell lines. Flow cytometry analysis revealed that 769P, a human clear cell RCC cell line, contained the largest amount of SP cells as compared with other four cell lines. These 769P SP cells possessed characteristics of proliferation, self-renewal, and differentiation, as well as strong resistance to chemotherapy and radiotherapy that were possibly related to the ABCB1 transporter. In vivo experiments with serial tumor transplantation in mice also showed that 769P SP cells formed tumors in NOD/SCID mice. Taken together, these results indicate that 769P SP cells have the properties of cancer stem cells, which may play important roles in tumorigenesis and therapy-resistance of RCC.

  11. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  12. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  13. Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Tae Hun Kim

    2014-01-01

    Full Text Available Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.