WorldWideScience

Sample records for cancer cell proliferation

  1. Fatty acids and breast cancer cell proliferation.

    Science.gov (United States)

    Hardy, R W; Wickramasinghe, N S; Ke, S C; Wells, A

    1997-01-01

    We and others have shown that fatty acids are important regulators of breast cancer cell proliferation. In particular individual fatty acids specifically alter EGF-induced cell proliferation in very different ways. This regulation is mediated by an EGFR/G-protein signaling pathway. Understanding the molecular mechanisms of how this signaling pathway functions and how fatty acids regulate it will provide important information on the cellular and molecular basis for the association of dietary fat and cancer. Furthermore these in vitro studies may explain data previously obtained from in vivo animal studies and identify "good" as well as "bad" fatty acids with respect to the development of cancer.

  2. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  3. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Kavita S Subramaniam

    Full Text Available Endometrial cancer is the most commonly diagnosed gynecologic malignancy worldwide; yet the tumor microenvironment, especially the fibroblast cells surrounding the cancer cells, is poorly understood. We established four primary cultures of fibroblasts from human endometrial cancer tissues (cancer-associated fibroblasts, CAFs using antibody-conjugated magnetic bead isolation. These relatively homogenous fibroblast cultures expressed fibroblast markers (CD90, vimentin and alpha-smooth muscle actin and hormonal (estrogen and progesterone receptors. Conditioned media collected from CAFs induced a dose-dependent proliferation of both primary cultures and cell lines of endometrial cancer in vitro (175% when compared to non-treated cells, in contrast to those from normal endometrial fibroblast cell line (51% (P<0.0001. These effects were not observed in fibroblast culture derived from benign endometrial hyperplasia tissues, indicating the specificity of CAFs in affecting endometrial cancer cell proliferation. To determine the mechanism underlying the differential fibroblast effects, we compared the activation of PI3K/Akt and MAPK/Erk pathways in endometrial cancer cells following treatment with normal fibroblasts- and CAFs-conditioned media. Western blot analysis showed that the expression of both phosphorylated forms of Akt and Erk were significantly down-regulated in normal fibroblasts-treated cells, but were up-regulated/maintained in CAFs-treated cells. Treatment with specific inhibitors LY294002 and U0126 reversed the CAFs-mediated cell proliferation (P<0.0001, suggesting for a role of these pathways in modulating endometrial cancer cell proliferation. Rapamycin, which targets a downstream molecule in PI3K pathway (mTOR, also suppressed CAFs-induced cell proliferation by inducing apoptosis. Cytokine profiling analysis revealed that CAFs secrete higher levels of macrophage chemoattractant protein (MCP-1, interleukin (IL-6, IL-8, RANTES and vascular

  4. Cell proliferation and apoptosis in gastric cancer and intestinal metaplasia

    OpenAIRE

    Nora Manoukian Forones; Ana Paula Souza Carvalho; Oswaldo Giannotti-Filho; Laércio Gomes Lourenço; Celina Tizuko Fujiyama Oshima

    2005-01-01

    BACKGROUND: Higher proliferation is commonly observed in cancer cells. Apoptosis can be a useful measure of a tumor cell kinetic. Alteration of the balance between proliferation and apoptosis is associated with cancer. AIM: To study proliferation and apoptosis on gastric cancer and in intestinal metaplasia. METHODOLOGY: Twenty-two samples from gastric adenocarcinomas and 22 biopsies from intestinal metaplasia were studied. The apoptotic bodies in hematoxylin-eosin slides and the expression of...

  5. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  6. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vidhya R.; Perez-Neut, Mathew [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States); Kaja, Simon [Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108 (United States); Gentile, Saverio, E-mail: sagentile@luc.edu [Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1st Ave, Maywood, IL 60153 (United States)

    2015-05-22

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K{sup +}, Ca{sup ++}, Cl{sup −}, Na{sup +}. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation.

  7. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  8. GLUT1 regulates cell glycolysis and proliferation in prostate cancer.

    Science.gov (United States)

    Xiao, Hengjun; Wang, Jun; Yan, Weixin; Cui, Yubin; Chen, Zheng; Gao, Xin; Wen, Xingqiao; Chen, Jun

    2018-02-01

    Glucose transporter 1 (GLUT1) plays a critical role in tumorigenesis and tumor progression in multiple cancer types. However, the specific function and clinical significance of GLUT1 in prostate cancer (PCa) are still unclear. Therefore, in this study, we investigated the role of GLUT1 in PCa. GLUT1 protein levels in prostate cancer tissue and tumor-adjacent normal tissues were measured and compared. Furthermore, real-time PCR and Western blot analysis were both used to detect GLUT1 expression levels in different PCa cell lines. Flow cytometry and cell-based assays, such as a glucose uptake and lactate secretion assay, CCK-8 assay, and transwell migration and wound healing assay, were used to monitor cancer cell cycle distribution, glycolysis, proliferation, and motility, respectively. Moreover, a mouse tumor xenograft model was used to investigate the role of GLUT1 in tumor progression in vivo. GLUT1 expression levels are higher in PCa tissues than in tumor-adjacent normal tissues. The results from real-time PCR and Western blot analysis revealed a similar increase in the GLUT1 expression levels in PCa cell lines. Moreover, knockdown of GLUT1 inhibits cell glycolysis and proliferation and leads to cell cycle arrest at G2/M phase in the 22RV1 cell line but not in the PC3 cell line. In vivo experiments further confirmed that GLUT1 knockdown inhibits the growth of tumors derived from the 22RV1 cell line. In addition, we also showed that GLUT1 knockdown has no effect on cell migration in vitro. GLUT1 may play an important role in PCa progression via mediating glycolysis and proliferation. Our study also indicated a potential crosstalk between GLUT1-mediated glycolysis and androgen sensitivity in PCa. © 2017 Wiley Periodicals, Inc.

  9. Rnd3 regulates lung cancer cell proliferation through notch signaling.

    Directory of Open Access Journals (Sweden)

    Yongjun Tang

    Full Text Available Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase.

  10. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  11. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  12. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    OpenAIRE

    Wang, Lintao; Peng, Yanyan; Shi, Kaikai; Wang, Haixiao; Lu, Jianlei; Li, Yanli; Ma, Changyan

    2012-01-01

    Abstract Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation ...

  13. SUZ12 Depletion Suppresses the Proliferation of Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yingjun Cui

    2013-05-01

    Full Text Available Background/Aims: SUZ12 and EZH2 are two main components of polycomb repressive complex 2 (PRC2 that is known to be of great importance in tumorigenesis. EZH2 has been reported to play a vital role in pathogenesis of human cancer. However, whether SUZ12 has equivalent roles in tumorigenesis has not been demonstrated. Here, we investigated a possible role of SUZ12 for the proliferation of gastric cancer cells. Methods: Western-blot analysis was used to detected the levels of SUZ12, H3K27me3, EZH2 and p27 in ten gastric cell lines. SUZ12 was depleted by RNA interference. Cell cycle was detected by flow cytometry. Luciferase assays was to analyze whether miR-200b directly regulate SUZ12. Results: We found that SUZ12 depletion mediated by RNA interference (RNAi led to a reduction of gastric cell numbers and arrested the cell cycle at G1/S point. As an important G1/S phase inhibitory gene, p27 is re-induced to some extent by SUZ12 knockdown. Furthermore, we demonstrated that SUZ12 was directly downregulated by miR-200b. Conclusion: We provide evidence suggesting that SUZ12 may be a potential therapeutic target for gastric cancer.

  14. Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness.

    Science.gov (United States)

    Xue, Jianguo; Zhu, Yuan; Sun, Zixuan; Ji, Runbi; Zhang, Xu; Xu, Wenrong; Yuan, Xiao; Zhang, Bin; Yan, Yongmin; Yin, Lei; Xu, Huijuan; Zhang, Leilei; Zhu, Wei; Qian, Hui

    2015-10-24

    Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.

  15. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation

    Science.gov (United States)

    Brahmbhatt, Meera; Gundala, Sushma R.; Asif, Ghazia; Shamsi, Shahab A; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals offer non-toxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable due to individual phytochemicals rather may be ascribed to but to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination-index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03-0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GE’s antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management. PMID:23441614

  16. Human Nanog pseudogene8 promotes the proliferation of gastrointestinal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Keita, E-mail: uchino13@intmed1.med.kyushu-u.ac.jp [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirano, Gen [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Hirahashi, Minako [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Isobe, Taichi; Shirakawa, Tsuyoshi; Kusaba, Hitoshi; Baba, Eishi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tsuneyoshi, Masazumi [Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Akashi, Koichi [Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2012-09-10

    There is emerging evidence that human solid tumor cells originate from cancer stem cells (CSCs). In cancer cell lines, tumor-initiating CSCs are mainly found in the side population (SP) that has the capacity to extrude dyes such as Hoechst 33342. We found that Nanog is expressed specifically in SP cells of human gastrointestinal (GI) cancer cells. Nucleotide sequencing revealed that NanogP8 but not Nanog was expressed in GI cancer cells. Transfection of NanogP8 into GI cancer cell lines promoted cell proliferation, while its inhibition by anti-Nanog siRNA suppressed the proliferation. Immunohistochemical staining of primary GI cancer tissues revealed NanogP8 protein to be strongly expressed in 3 out of 60 cases. In these cases, NanogP8 was found especially in an infiltrative part of the tumor, in proliferating cells with Ki67 expression. These data suggest that NanogP8 is involved in GI cancer development in a fraction of patients, in whom it presumably acts by supporting CSC proliferation. -- Highlights: Black-Right-Pointing-Pointer Nanog maintains pluripotency by regulating embryonic stem cells differentiation. Black-Right-Pointing-Pointer Nanog is expressed in cancer stem cells of human gastrointestinal cancer cells. Black-Right-Pointing-Pointer Nucleotide sequencing revealed that Nanog pseudogene8 but not Nanog was expressed. Black-Right-Pointing-Pointer Nanog pseudogene8 promotes cancer stem cells proliferation. Black-Right-Pointing-Pointer Nanog pseudogene8 is involved in gastrointestinal cancer development.

  17. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  18. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  19. A metabolic link between the urea cycle and cancer cell proliferation

    OpenAIRE

    Nagamani, Sandesh C.S.; Erez, Ayelet

    2016-01-01

    Clinical observations in citrullinemia type I, an inborn error of metabolism, led us to explore the benefits of somatic ASS1 silencing in cancer. We found that downregulation of ASS1 results in preferential utilization of its substrate, aspartate, for pyrimidine synthesis to support cell proliferation. Reducing aspartate availability for pyrimidine synthesis restricted cancerous proliferation.

  20. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  1. New Castanospermine Glycoside Analogues Inhibit Breast Cancer Cell Proliferation and Induce Apoptosis without Affecting Normal Cells

    Science.gov (United States)

    Allan, Ghada; Ouadid-Ahidouch, Halima; Sanchez-Fernandez, Elena M.; Risquez-Cuadro, Rocío; Fernandez, José M. Garcia; Ortiz-Mellet, Carmen; Ahidouch, Ahmed

    2013-01-01

    sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer. PMID:24124558

  2. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  3. Dual Effects of Resveratrol on Cell Death and Proliferation of Colon Cancer Cells.

    Science.gov (United States)

    San Hipólito-Luengo, Álvaro; Alcaide, Antonio; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Talero, Elena; Sánchez-Ferrer, Carlos F; Motilva, Virginia; Peiró, Concepción

    2017-10-01

    Colorectal cancer remains a main cause of deaths worldwide, and novel agents are being searched to treat this disease. Polyphenols have emerged as promising therapeutic tools in cancer. Resveratrol (3,5,4'-trihydoxy-trans-stilbene) induces cell death in different tumor cell lines, and it also stimulates the proliferation of specific breast and prostate cancer cell lines. Here, we studied the impact of resveratrol over a 100-fold concentration range on cell death and proliferation of HT-29 colorectal adenocarcinoma cells. After 96 h of treatment, a biphasic pattern was observed. At lower concentrations (1 and 10 μmol/l), resveratrol increased the cell number, as did the polyphenol quercetin. At 50 or 100 μmol/l, resveratrol reduced the cell number and increased the percentage of apoptotic or necrotic cells, thus indicating cytotoxicity. On HCT116 colon cancer cells, however, no proliferative properties of resveratrol were observed. Resveratrol-induced cytotoxicity on HT-29 cells was associated with NADPH oxidase activation and increased levels of histone γH2AX, a marker of DNA damage, paralleled by enhanced sirtuin 6 levels, likely as a repair mechanism. Overall, resveratrol may be an effective tool in anti-tumor chemotherapy. However, since under some conditions it may favor tumor cell growth, appropriate local concentrations must be achieved to minimize unwanted effects of resveratrol.

  4. CDO, an Hh-coreceptor, mediates lung cancer cell proliferation and tumorigenicity through Hedgehog signaling.

    Science.gov (United States)

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.

  5. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation

    Science.gov (United States)

    Szalayova, Gabriela; Ogrodnik, Aleksandra; Spencer, Brianna; Wade, Jacqueline; Bunn, Janice; Ambaye, Abiy; James, Ted; Rincon, Mercedes

    2016-01-01

    Background Chronic inflammation is known to facilitate cancer progression and metastasis. Less is known about the effect of acute inflammation within the tumor microenvironment, resulting from standard invasive procedures. Recent studies in mouse models have shown that the acute inflammatory response triggered by a biopsy in mammary cancer increases the frequency of distal metastases. Although tumor biopsies are part of the standard clinical practice in breast cancer diagnosis, no studies have reported their effect on inflammatory response. The objective of this study is to 1) determine whether core needle biopsies in breast cancer patients trigger an inflammatory response, 2) characterize the type of inflammatory response present, and 3) evaluate the potential effect of any acute inflammatory response on residual tumor cells. Methods The biopsy wound site was identified in the primary tumor resection tissue samples from breast cancer patients. The inflammatory response in areas adjacent (i.e. immediately around previous biopsy site) and distant to the wound biopsy was investigated by histology and immunohistochemistry analysis. Proliferation of tumor cells was also assayed. Results We demonstrate that diagnostic core needle biopsies trigger a selective recruitment of inflammatory cells at the site of the biopsy and they persist for extended periods of time. While macrophages were part of the inflammatory response, an unexpected accumulation of eosinophils at the edge of the biopsy wound was also identified. Importantly, we show that biopsy causes an increase in the proliferation rate of tumor cells located in the area adjacent to the biopsy wound. Conclusions Diagnostic core needle biopsies in breast cancer patients do induce a unique acute inflammatory response within the tumor microenvironment and have an effect on the surrounding tumor cells. Therefore biopsy-induced inflammation could have an impact on residual tumor cell progression and/or metastasis in human

  6. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun [Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081 (China); Tan, Wenhua, E-mail: tanwenhua1962@163.com [Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086 (China)

    2015-10-23

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  7. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  8. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  9. Discrepancies between metabolic activity and DNA content as tool to assess cell proliferation in cancer research

    OpenAIRE

    Quent, Verena MC; Loessner, Daniela; Friis, Thor; Reichert, Johannes C.; Hutmacher, Dietmar W.

    2010-01-01

    Abstract Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, water-soluble tetrazolium salt and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, which were originally developed to determine cell toxicity, are used to assess cell numbers. Additionally, proliferative activity can be determined by...

  10. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  11. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells.

    Science.gov (United States)

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-09-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ryota Domura

    2017-06-01

    Full Text Available The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments and different stiffness of the polymeric substrates (poly(l-lactic acid and poly(ε-caprolactone, PLLA and PCL, respectively as well as collagen substrates (coat and gel to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7. The morphological spreading parameter (nucleus/cytoplasm area ratio induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC50 of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  13. KLF6: mutational analysis and effect on cancer cell proliferation.

    Science.gov (United States)

    Yin, Dong; Komatsu, Naoki; Miller, Carl W; Chumakov, Alexey M; Marschesky, Alberto; McKenna, Robert; Black, Keith L; Koeffler, H Phillip

    2007-01-01

    Kruppel-like factor 6 (KLF6/Zf9/CPBP), a member of the Kruppel-like family of zinc finger transcription factors, has recently been suggested to be a mutated tumor suppressor in selected human cancers. Initially, we investigated whether the KLF6 gene was altered in 36 paired non-small cell lung cancers (NSCLC), 89 brain tumors, 7 normal brains, 46 cancer cell lines from a large variety of tissues, and 144 peripheral blood cells from healthy individuals using single strand conformation polymorphism (PCR-SSCP) and DNA sequencing. Changes in the coding region of KLF6 were found in brain tumors (missense changes, 8%; silent polymorphisms, 2%), lung cancers (missense changes, 3%; silent polymorphisms, 6%) and cancer cell lines (missense changes, 2%; silent polymorphisms, 2%). All of the nucleotide changes in the lung tumor samples were present in their matched normal samples, suggesting that these changes were germline polymorphism. Many of the altered KLF6 genes found in the brain tumors were cloned into an expression vector and placed into a GBM cell line, and cell growth was monitored. Wild-type, deleted exon 3, or E30G missense KLF6 significantly reduced cell growth; in contrast, forced expression of KLF6 having either the S92R, P183L or A276G missense substitution did not alter the growth of transfected GBM cells (p > 0.05). Expression levels of KLF6 were higher in normal brain samples than in glioma samples as measured by real-time RT-PCR (p surprise, nucleotide changes were found at -4, -5, and -6 upstream of the start of translation in 45% of brain tumors, and 10% of normal blood samples. Focusing on the most frequent alteration (-4 C > A), the nucleotide change did not affect translation of KLF6. Taking together, KLF6 coding sequences are altered in 10% brain tumors, 8% NSLC, and 4% of cancer cell lines. All of those observed in lung cancer are germline polymorphisms. Several additional ones identified in GBM, have lost their ability to slow the growth of glioma

  14. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Science.gov (United States)

    Wang, Lintao; Peng, Yanyan; Shi, Kaikai; Wang, Haixiao; Lu, Jianlei; Li, Yanli; Ma, Changyan

    2015-01-01

    Abstract Recent studies have revealed that osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, a traditional Chinese medicine, possesses anticancer activity. However, its effect on breast cancer cells so far has not been elucidated clearly. In the present study, we evaluated the effects of osthole on the proliferation, cell cycle and apoptosis of human breast cancer cells MDA-MB 435. We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells, The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole, as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation. The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression. Were observed taken together, these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer. PMID:25859268

  15. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Aube, Michel, E-mail: 4aubem@videotron.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Laboratoire de Toxicologie, Institut national de sante publique du Quebec, 945 avenue Wolfe, Quebec, QC, Canada G1V 5B3 (Canada)

    2011-04-15

    Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cells and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x10{sup 3} and 50x10{sup 3} dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x10{sup 3} and 5x10{sup 3} dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50x10{sup 3} dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, {beta}-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The

  16. Casein kinase 2 inhibition attenuates androgen receptor function and cell proliferation in prostate cancer cells.

    Science.gov (United States)

    Yao, Kai; Youn, Hyewon; Gao, Xiaoyan; Huang, Bijun; Zhou, Fangjian; Li, Benyi; Han, Hui

    2012-09-15

    Casein kinase 2 (CK2) is constitutively active with dual specificity and exists as a hetero-tetrameric complex of α, α', and β subunits. Its aberrant expression and elevated activity have been linked to many human cancers, including prostate cancer. As an effort to develop new chemotherapy for prostate cancers, in this study, we tested the effects of tetra-bromo-cinnamic acid (TBCA), a newly synthetic CK2-selective CK2 inhibitor, on androgen receptor (AR) transactivation, cell proliferation, and viability in multiple prostate cancer cell lines. We utilized a comprehensive approach of a newly synthetic CK2-selective inhibitor TBCA, plus gene-specific siRNAs in multiple cell-based assays to further understand the role of CK2 in AR signaling. Alamar-blue-based cell growth assay, flow cytometry for cell cycle distribution, Luciferase report gene assay for AR transactivation, and immuno-fluorescent approach for AR nuclear localization as well as quantitative PCR assay for AR-mediated gene expression were utilized. The significance of the differences between treatment and control was analyzed using the SPSS software (SPSS, Chicago, IL). Our data revealed that TBCA reduced cell proliferation and caused G2/M cell cycle arrest in a dose-dependent manner. Further analysis demonstrated that TBCA blocked AR nuclear translocation and gene expression. To confirm the target specificity, we used gene-specific siRNAs for both CK2α and CK2α' subunits, and the results suggested that both CK2 catalytic subunits are involved in androgen-stimulated AR nuclear translocation and AR-mediated gene expression in prostate cancer cells. CK2 subunits α and α' are likely involved in AR signaling, and TBCA might be useful in the management of prostate cancers as a chemo-preventive agent in the future. Copyright © 2012 Wiley Periodicals, Inc.

  17. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.

    Science.gov (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao

    2016-10-01

    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  18. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  19. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  20. microRNA-21 Governs TORC1 Activation in Renal Cancer Cell Proliferation and Invasion

    Science.gov (United States)

    Dey, Nirmalya; Das, Falguni; Ghosh-Choudhury, Nandini; Mandal, Chandi Charan; Parekh, Dipen J.; Block, Karen; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2012-01-01

    Metastatic renal cancer manifests multiple signatures of gene expression. Deviation in expression of mature miRNAs has been linked to human cancers. Importance of miR-21 in renal cell carcinomas is proposed from profiling studies using tumor tissue samples. However, the role of miR-21 function in causing renal cancer cell proliferation and invasion has not yet been shown. Using cultured renal carcinoma cells, we demonstrate enhanced expression of mature miR-21 along with pre-and pri-miR-21 by increased transcription compared to normal proximal tubular epithelial cells. Overexpression of miR-21 Sponge to quench endogenous miR-21 levels inhibited proliferation, migration and invasion of renal cancer cells. In the absence of mutation in the PTEN tumor suppressor gene, PTEN protein levels are frequently downregulated in renal cancer. We show that miR-21 targets PTEN mRNA 3′untranslated region to decrease PTEN protein expression and augments Akt phosphorylation in renal cancer cells. Downregulation of PTEN as well as overexpression of constitutively active Akt kinase prevented miR-21 Sponge-induced inhibition of renal cancer cell proliferation and migration. Moreover, we show that miR-21 Sponge inhibited the inactivating phosphorylation of the tumor suppressor protein tuberin and attenuated TORC1 activation. Finally, we demonstrate that expression of constitutively active TORC1 attenuated miR-21 Sponge-mediated suppression of proliferation and migration of renal cancer cells. Our results uncover a layer of post-transcriptional regulation of PTEN by transcriptional activation of miR-21 to force the canonical oncogenic Akt/TORC1 signaling conduit to drive renal cancer cell proliferation and invasion. PMID:22685542

  1. RhoC regulates the proliferation of gastric cancer cells through interaction with IQGAP1.

    Directory of Open Access Journals (Sweden)

    Yan Wu

    Full Text Available Our previous research results showed that both Ras homolog family member C (RhoC and IQ-domain GTPase-activating protein 1 (IQGAP1 were over-expressed in gastric cancer tissues and cells, but their role in tumorigenensis has not been addressed clearly. Herein we reported the proliferation stimulating effect of RhoC and IQGAP1 on gastric cancer cells and the interaction between two proteins in regulating the proliferation of gastric cancer cells. Plasmids and viral constructs encoding target siRNA and DNA were used to alter the expression of RhoC and IQGAP1. MTT method and BrdU incorporation assay were used for analyzing the effect of RhoC and different structures of IQGAP1 on proliferation. Protein levels of IQGAP1 and RhoC in cell lines were detected by Western blotting. Immunofluorescence and Co-Immunoprecipitation assays were applied to investigate the localization and binding between RhoC and IQGAP1. The results showed that RhoC, IQGAP1 and the C-terminal fragment of IQGAP1 significantly stimulated the proliferation of gastric cancer cells, and enhanced the expression of cyclin E and cyclin D1. By contrast, reduction of endogenous IQGAP1 or RhoC by siRNA attenuated cell proliferation. The depletion of IQGAP1 expression by siRNA significantly blocked the proliferative activity of constitutively active RhoC, while RhoC silencing by siRNA had no effect on IQGAP1-induced proliferation in gastric cancer cells. Co-immunoprecipitation and Immunofluorescence assays showed that RhoC and IQGAP1 bound each other. In conclusion, our results suggest that RhoC stimulates the proliferation of gastric cancer cells through recruiting IQGAP1 as an effector.

  2. LncROR Promotes Bladder Cancer Cell Proliferation, Migration, and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yi Chen

    2017-05-01

    Full Text Available Background: LncRNA ROR, a tumor oncogene associated with various human cancers, has been reported to be involved in regulating various cellular processes, such as proliferation, apoptosis and invasion through targeting multiple genes. However, the molecular biological function in bladder cancer has not been clearly elucidated. The aim of this study is to explore ROR expression levels and evaluated its function in bladder cancer. Methods: LncRNA ROR expression levels in the 36 pairs of bladder cancer tissues (and corresponding non-tumor tissues and bladder cancer cells were assessed by qRT-PCR. MTT assay, colony formation assay, flow cytometric analysis, wound healing assay, cell transwell assays, attachment/detachment and western blotting were performed to assess the effects of ROR on proliferation, apoptosis, migration/invasion and epithelial-to-mesenchymal (EMT phenotypes in BC cells in vitro. ZEB1 is target of ROR. Rescue assays were performed to further confirm that ROR contributes to the progression of BC cells through targeting ZEB1. Results: LncRNA ROR was up-regulated in bladder cancer tissues (compared to adjacent non-tumor tissues and was almost overexpression in bladder cancer cells (compared with normal urothelial cell line SVHUC-1 cells. Increased lncRNA ROR expression significantly promoted tumor cells proliferation, inhibited cells apoptosis, facilitated cells metastasis and contributed to the formation of EMT phenotype. While down-regulated ROR could obviously inhibit cells proliferation, promote cells apoptosis, inhibit metastasis and reverse EMT to MET. ZEB1 was a target gene of ROR and was positive correlation with the level of ROR in cancer tissues. Conclusion: These results indicated that lncRNA ROR was associated with tumor progression in bladder cancer cells.

  3. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  4. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  5. UCA1 involved in the metformin-regulated bladder cancer cell proliferation and glycolysis.

    Science.gov (United States)

    Li, Tian; Sun, Xiangzhou; Jiang, Xianhan

    2017-06-01

    Despite great scientific advances have been achieved in cancer treatment in recent years, the death rate of bladder cancer has been staying at a high level. Metformin, a widely-used and low-cost diabetes medicine, might have the potential of anticancer. The aim of this study was to evaluate the effects of metformin on bladder cancer cells and to identify potential molecular targets and signaling pathways. Bladder cancer 5637 cells transfected with either pcDNA/UCA1 vector or pcDNA3.1 empty vector were treated with various doses of metformin for different periods of time, and then cell proliferation and glycolysis were assessed. Reverse transcription polymerase chain reaction and Western blotting were applied to examine the expression of long non-coding RNA UCA1 and mammalian target of rapamycin-signal transducer and activator of transcription pathway molecules. We found metformin inhibited bladder cancer cell proliferation in a dose- and time-dependent manner. UCA1-overexpressed 5637 cells showed increased proliferation and glycolysis compared with control cells. Metformin downregulated both endogenous and exogenous UCA1 expression, leading to the inhibition of mammalian target of rapamycin-signal transducer and activator of transcription 3-hexokinase 2 signaling pathway. Our study provided the first evidence that metformin inhibited proliferation and glycolysis in cancer cells through regulation of long non-coding RNA UCA1. The discovery also suggested the important roles of long non-coding RNA in chemoprevention, which is a property of metformin.

  6. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells

    Science.gov (United States)

    XIE, LIQUN; DUAN, ZEXING; LIU, CAIJU; ZHENG, YANMIN; ZHOU, JING

    2015-01-01

    The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

  7. tRNA modification profiles of the fast-proliferating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chao; Niu, Leilei; Song, Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Xiong, Xin; Zhang, Xianhua [Departmentof Pharmacy, Peking University Third Hospital, Peking University, Beijing 100191 (China); Zhang, Zhenxi; Yang, Yi; Yi, Fan [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Zhan, Jun; Zhang, Hongquan [Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, Peking University, Beijing 100191 (China); Yang, Zhenjun; Zhang, Li-He [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Zhai, Suodi [Departmentof Pharmacy, Peking University Third Hospital, Peking University, Beijing 100191 (China); Li, Hua, E-mail: huali88@sina.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Ye, Min, E-mail: yemin@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Du, Quan, E-mail: quan.du@pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China)

    2016-08-05

    Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In addition to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.

  8. Fabrication of mediator-free hybrid nano-interfaced electrochemical biosensor for monitoring cancer cell proliferation.

    Science.gov (United States)

    Madhurantakam, Sasya; Jayanth Babu, K; Balaguru Rayappan, John Bosco; Krishnan, Uma Maheswari

    2017-01-15

    Glucose, a chief energy source in cellular metabolism, has a significant role in cell proliferation. Cancer cells utilize more glucose than normal cells to meet the energy demand arising due to their uncontrolled proliferation. The present work reports the development of a nano-interfaced amperometric biosensor for rapid and accurate monitoring of glucose utilization by cancer cells. A hybrid nano-interface comprising a blend of carbon nanotubes (CNTs) and graphene (GR) was employed to enhance the surface area of the working electrode and favour direct electron transfer. Glucose oxidase (GOx) immobilized on the interface serves as the sensing element due to its high selectivity and sensitivity towards glucose. Utilization of glucose was monitored at pre-determined time intervals in MiaPaCa-2 cancer cells. The results obtained from the amperometric technique were compared with the values obtained from a commercial glucometer. Alamar blue assay was performed to check the proliferation rate of the cells. A good correlation was obtained between the proliferation rate and glucose utilization. The designed biosensor was found to be unaffected by the presence of potential interferents and hence may serve as a novel in vitro tool to rapidly quantify the proliferation rates of cancer cells in response to different treatment strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-lei [Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Lu, Fan-zhen [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Shen, Xiao-Yong, E-mail: shengxiaoyong_sh@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Wu, Yun, E-mail: WuYun_hd@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Zhao, Li-ting [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China)

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  10. PO-50 - The effect of tissue factor expression on colorectal cancer cell proliferation.

    Science.gov (United States)

    Clouston, H W; Lamb, R; Duff, S; Kirwan, C C

    2016-04-01

    Tissue factor (TF) is abnormally expressed in many cancers including colorectal and is associated with a poor cancer prognosis. Colorectal cancer cell lines expressing TF produce faster growing tumours. In lung cancer, TF inhibition has been shown to reduce proliferation We aimed to determine if TF expression and activity increases cellular proliferation in colorectal cancer cell lines. DLD-1 and SW620 colorectal cell lines were transduced with cDNA to over express TF (TF+ve). Proliferation was determined by Alamar blue assay where level of absorption indicates the number of living cells, expressed as an arbitrary unit of absorption (u). Factor VIIa (TF ligand) at increasing concentrations was used to determine the effect of TF activity on proliferation. Downstream marker of TF activity (MAPK phosphorylation) was assessed by Western blot and correlated with proliferation. There was a significant increase in proliferation in both DLD-1 TF+ve and SW620 TF+ve compared to their negative controls at 42 hours (DLD1 TF+ve: 5,455u (SD 2,485u) vs 2,246u (SD 1,107u) pproliferation up to physiological levels (0.1nM) which was further increased in the TF+ve cell lines. Fold change from baseline 0 vs 0.1nM FVIIa (DLD-1: 3.22u (SD 0.61u) vs 6.17u (SD 2.21u) pproliferation was reflected in the phosphorylation of MAPK which was increased by TF overexpression alone and further increased by FVIIa in a dose-dependent fashion. Increased TF expression and activation is associated with increased cellular proliferation. This effect appears to be exerted via MAPK pathways. Tissue factor may provide a therapeutic target in colorectal cancer. © 2016 Elsevier Ltd. All rights reserved.

  11. Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2

    Directory of Open Access Journals (Sweden)

    Zhang Lingmin

    2012-08-01

    Full Text Available Abstract Background Propofol is one of the most commonly used intravenous anaesthetic agents during cancer resection surgery, but the effect of propofol on gallbladder cancer is not clear. NF-E2-related factor 2 (Nrf2 is abundantly expressed in cancer cells and relates to proliferation, invasion, and chemoresistance. The aims of the current study were to evaluate effects of propofol on the behavior of human GC cells and role of Nrf2 in these effects. Method The effects of propofol on cell proliferation, apoptosis, and invasion were detected by MTT assays, flow cytometry, and transwell assay. Also, activation of Nrf2 was determined by western blot, RT-PCR, and immunofluorescence assays. Nrf2 was knocked-down in GBC-SD cells by shRNA before evaluating the role of Nrf2 in the influence of propofol on biological behaviors. Results Propofol promoted the proliferation of GBC-SD cells in a dose- and time- dependent manner. After exposure to propofol for 48 h, GBC-SD cells showed decreased apoptosis and increased invasion. Also, propofol over-expressed Nrf2 at both the protein and mRNA levels and induced translocation of Nrf2 into the nucleus. Finally, loss of Nrf2 by shRNA reversed the effect of propofol on cell proliferation, apoptosis, and invasion. Conclusion Propofol induces proliferation and promotes invasion of GC cells through activation of Nrf2.

  12. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis.

    Science.gov (United States)

    Li, Yi; Wen, Jia-Ming; Du, Chuan-Jun; Hu, Su-Min; Chen, Jia-Xi; Zhang, Shi-Geng; Zhang, Nan; Gao, Feng; Li, Shao-Jiang; Mao, Xia-Wa; Miyamoto, Hiroshi; Ding, Ke-Feng

    2017-09-16

    Thymol is a phenolic compound with various pharmacological activities such as anti-inflammatory, anti-bacterial and anti-tumor effects. However, the effect of thymol on bladder cancer cell growth is still elusive. The purpose of this study is to investigate the efficacy of thymol in bladder cancer cells and its underlying mechanism. Thymol inhibited bladder cancer cell proliferation in a dose and time-dependent manner. We also observed cell cycle arrest at the G2/M phase after the treatment of thymol. Moreover, thymol could induce apoptosis in bladder cancer cells via the intrinsic pathway along with caspase-3/9 activation, release of cytochrome c and down-regulation of anti-apoptotic Bcl-2 family proteins. The activation of JNK and p38 was also critical for thymol-induced apoptosis since it was abrogated by the treatment of JNK inhibitor (SP600125), and p38 inhibitor (SB203580) but not ERK inhibitor (SCH772984). Furthermore, the generation of ROS (reactive oxygen species) was detected after the treatment of thymol. ROS scavenger NAC (N-acetyl cysteine) could block the thymol-triggered apoptosis and activation of MAPKs. These findings offer a novel therapeutic approach for bladder cancer. Copyright © 2017. Published by Elsevier Inc.

  13. Cell migration or cytokinesis and proliferation?--revisiting the "go or grow" hypothesis in cancer cells in vitro.

    Science.gov (United States)

    Garay, Tamás; Juhász, Éva; Molnár, Eszter; Eisenbauer, Maria; Czirók, András; Dekan, Barbara; László, Viktória; Hoda, Mir Alireza; Döme, Balázs; Tímár, József; Klepetko, Walter; Berger, Walter; Hegedűs, Balázs

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The "go or grow" hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Tramadol inhibits proliferation, migration and invasion via α2-adrenoceptor signaling in breast cancer cells.

    Science.gov (United States)

    Xia, M; Tong, J-H; Zhou, Z-Q; Duan, M-L; Xu, J-G; Zeng, H-J; Wang, S-H

    2016-01-01

    The aim of this study was to examine the function of tramadol on cell proliferation, migration and invasion in breast cancer cells in vitro, and to evaluate the effect of tramadol in vivo. Further, we explore the mechanism accounting for the role of tramadol on breast cancer cells. Cell proliferation was detected by the methyl thiazolyl tetrazolium (MTT) assay. Wound healing assay and transwell assay was applied to quantify the migration and invasion ability of MDA-MB-231 cells. The expression of endogenous α2-adrenoceptor and ERK was measured by Western blotting. Tramadol at a clinical dose of up to 2 μM significantly inhibited the proliferation, migration and invasion in a time-dependent manner from day 0 to 28 in vitro. Moreover, tramadol suppressed the growth of xenotransplant tumor in vivo markedly. Furthermore, the protein levels of α2-adrenoceptor and phosphorylated ERK were decreased by tramadol, whereas the expression of total ERK remained unchanged. In addition, downregulation of α2-adrenoceptor by yohimbine could mimic the effect of tramadol treatment. Collectively, we demonstrated that tramadol could inhibit proliferation, migration and invasion of breast cancers via inactivating α2-adrenoceptor signaling pathway. Our data provide the experimental fundamental for further investigation of the anti-cancer effect of tramadol in breast cancer cells.

  15. Cell migration or cytokinesis and proliferation? – Revisiting the “go or grow” hypothesis in cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Tamás; Juhász, Éva; Molnár, Eszter [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); Eisenbauer, Maria [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Czirók, András [Department of Biological Physics, Eötvös University, Budapest (Hungary); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS (United States); Dekan, Barbara; László, Viktória; Hoda, Mir Alireza [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Döme, Balázs [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); National Korányi Institute of TB and Pulmonology, Budapest (Hungary); Tímár, József [2nd Department of Pathology, Semmelweis University, Budapest (Hungary); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary); Klepetko, Walter [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); Berger, Walter [Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Hegedűs, Balázs, E-mail: balazs.hegedus@meduniwien.ac.at [Department of Thoracic Surgery, Medical University of Vienna, Vienna (Austria); MTA-SE Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-12-10

    The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found in melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells.

  16. Knockdown of hTERT and Treatment with BIBR1532 Inhibit Cell Proliferation and Invasion in Endometrial Cancer Cells

    OpenAIRE

    Kong, Weimin; Lv, Nenan; Wysham, Weiya Z.; Roque, Dario R.; Zhang, Tongqing; Jiao, Simeng; Song, Dan; Chen, Jiao; Bae-Jump, Victoria L.; Zhou, Chunxiao

    2015-01-01

    Telomerase activity and expression of the catalytic protein hTERT are associated with cell proliferation and advanced stage in endometrial cancer. Our objective was to evaluate the effect of inhibition of hTERT by siRNA and BIBR1532 on cell growth, apoptosis and invasion in endometrial cancer cells. Knockdown of hTERT or treatment of the cells with BIBR1532 decreased telomerase activity, inhibited cell proliferation, induced apoptosis, and reduced cell invasion in Ishikawa and ECC-1 cells. Ei...

  17. Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice.

    Science.gov (United States)

    Lin, Xueping; Luo, Kai; Lv, Zhongwei; Huang, Jian

    2012-01-01

    There is growing evidence that some cancer progression is closely associated with beta- adrenoreceptors (β-ARs). However, the underlying mechanisms for β-ARs mediated proliferation of pancreatic cancer cell are poorly understood. In the current study, we evaluated the possible function of β-ARs on the proliferation of human pancreatic ductal adenocarcinomas (PDAC) cell line Panc-1 and explored β-ARsmediated downstream signal pathway. Series of experiments, such as expression of β1- and β2-ARs on pancreatic cancer cell line Panc-1, β-ARsmediated downstream signal pathway activation as well as cell proliferation assay in vitro and in vivo were performed with immunofluorescence, Western blot analysis, BrdU incorporation assays and xenograft tumor growth respectively. Non-selective β-ARs agonist Isoproterenol (ISO) significantly increased cell proliferation via β-ARs in a dose-dependent manner, with concomitant activation of ERK/MAPK signal pathway in Panc-1 cells. ISO increased expression level of phosphorylated ERK in Panc-1 cells. Furthermore, in vivo study showed that ISO enhanced xenograft tumor growth and this effect was suppressed by non-selective β-ARs antagonist (β-blocker), propranolol (PRO) treatment. These findings suggest that the development and progression of PDAC is subject to significant modulation by ISO and PRO and the treatment with PRO may be useful for marker-guided cancer intervention of PDAC. Therefore, PRO may be developed a novel drug for the treatment and intervention of PDAC for its high specificity.

  18. Interaction of proliferation cell nuclear antigen (PCNA with c-Abl in cell proliferation and response to DNA damages in breast cancer.

    Directory of Open Access Journals (Sweden)

    Huajun Zhao

    Full Text Available Cell proliferation in primary and metastatic tumors is a fundamental characteristic of advanced breast cancer. Further understanding of the mechanism underlying enhanced cell growth will be important in identifying novel prognostic markers and therapeutic targets. Here we demonstrated that tyrosine phosphorylation of the proliferating cell nuclear antigen (PCNA is a critical event in growth regulation of breast cancer cells. We found that phosphorylation of PCNA at tyrosine 211 (Y211 enhanced its association with the non-receptor tyrosine kinase c-Abl. We further demonstrated that c-Abl facilitates chromatin association of PCNA and is required for nuclear foci formation of PCNA in cells stressed by DNA damage as well as in unperturbed cells. Targeting Y211 phosphorylation of PCNA with a cell-permeable peptide inhibited the phosphorylation and reduced the PCNA-Abl interaction. These results show that PCNA signal transduction has an important impact on the growth regulation of breast cancer cells.

  19. Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression.

    Science.gov (United States)

    Kalamida, Dimitra; Karagounis, Ilias V; Mitrakas, Achilleas; Kalamida, Sofia; Giatromanolaki, Alexandra; Koukourakis, Michael I

    2015-01-01

    The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression. A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index), apoptosis (Caspase 9) and HSP90 expression was studied by confocal microscopy. Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines. The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.

  20. Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression.

    Directory of Open Access Journals (Sweden)

    Dimitra Kalamida

    Full Text Available The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression.A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index, apoptosis (Caspase 9 and HSP90 expression was studied by confocal microscopy.Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines.The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.

  1. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation.

    Science.gov (United States)

    Lu, Yi; Hu, Xiao-Bo

    2014-12-01

    Complement system activation contributes to various immune and inflammatory diseases, as well as cancers.However, the role of complement activation in the proliferation of cancer cells is not clear. In the present study, we investigated the consequences of complement activation on the proliferation of breast cancer cells and its possible mechanisms. We focused our study on the potential roles of the anaphylatoxins C3a and C5a in the proliferation of human breast cancer, as two important immune mediators generated after complement activation. Our study revealed that C5a stimulation, but not C3a, enhanced the proliferation of human breast cancer cells in vitro. Moreover, the expression of response gene to complement 32 (RGC-32) was pronounced in breast cancer cells in response to C5a stimulation. Notably, blockade of the C5a receptor markedly reduced the expression of RGC-32 and the proliferation of breast cancer cells stimulated by C5a. Meanwhile, silencing of RGC-32 expression reduced the proliferation of breast cancer cells induced by C5a treatment. Further investigation revealed that Akt activation was involved in C5a-induced RGC-32 expression and breast cancer cell proliferation. In conclusion, the present study indicates that C5a may promote the proliferation of breast cancer cells through Akt1 activation of the RGC-32 gene.

  2. Actein inhibits cell proliferation and migration and promotes cell apoptosis in human non-small cell lung cancer cells.

    Science.gov (United States)

    Zhang, Yuanyuan; Lian, Jianchun; Wang, Xiaowei

    2018-03-01

    Non-small cell lung cancer (NSCLC) is the leading cause of death in smokers and the most common cause for cancer mortality in both males and females in the United States. Predisposition of this malignancy to distant metastasis leads to poor prognosis; therefore, it is urgent to discover novel therapeutic agents for metastatic NSCLC. The present study aimed to investigate the effects of actein treatment on NSCLC cell growth and migration. Cell viability assays demonstrated that administration of actein markedly inhibited NSCLC cell proliferation in a dose- and time-dependent manner. Transwell assays demonstrated that actein treatment suppressed cell migration and invasion in two NSCLC cell lines, A549 and 95D. Furthermore, treatment with actein remarkably increased the activities of caspase-3 and -9 in NSCLC cells. The protein expression levels of cytoplasmic BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X (Bax) were markedly decreased, while the protein expression levels of mitochondrial Bax, caspase-3, -9 and cytochrome c were upregulated following actein treatment, as evidenced by western blot analysis. The present results demonstrated that actein inhibited cell proliferation and metastasis and promoted cell apoptosis in NSCLC cells, which indicated that actein administration might serve as a potential therapeutic strategy for the treatment of NSCLC in the clinic.

  3. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei [Medical College of Xi' an Jiao Tong University, Xi' an 710061 (China); Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Li, Chan [Department of Ophthalmology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng [Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Xing, Junping, E-mail: junpingxing@163.com [Department of Urology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-01-15

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  4. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    Science.gov (United States)

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance.

    Science.gov (United States)

    Nowicka, Aleksandra; Marini, Frank C; Solley, Travis N; Elizondo, Paula B; Zhang, Yan; Sharp, Hadley J; Broaddus, Russell; Kolonin, Mikhail; Mok, Samuel C; Thompson, Melissa S; Woodward, Wendy A; Lu, Karen; Salimian, Bahar; Nagrath, Deepak; Klopp, Ann H

    2013-01-01

    Adipose tissue contains a population of multipotent adipose stem cells (ASCs) that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination. We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5) and without (O-ASC1) omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment. O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries. ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

  6. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance.

    Directory of Open Access Journals (Sweden)

    Aleksandra Nowicka

    Full Text Available Adipose tissue contains a population of multipotent adipose stem cells (ASCs that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5 and without (O-ASC1 omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.

  7. SR140333 counteracts NK-1 mediated cell proliferation in human breast cancer cell line T47D

    Directory of Open Access Journals (Sweden)

    Wei Hong-Jun

    2010-05-01

    Full Text Available Abstract Background It has been demonstrated that certain NK-1 antagonists could reduce proliferation of several cancer cell lines, however, it is unknown whether SR140333 exerts proliferation inhibition in breast cancer cell line. Methods Immunohistochemical staining was carried out to investigate the immunolocation of NK-1 in breast cancer tissues and T47D cell line, thereafter, various concentrations of [Sar9, Met(O211]substance P and SR140333 were applied alone or combined. MTT assay was applied to detect cytoactivation and coulter counter was to detect growth curve. The Hoechst33258 staining was performed to detect apoptosis. Results We found that breast cancer and T47D cells bear positive expression of NK-1. SR140333 inhibited cell growth in a dose dependent manner. Furthermore, SR140333 could counteract [Sar9, Met(O211]substance P induced proliferation. Hoechst33258 staining revealed the presence of apoptosis after SR140333 treatment. Conclusions Our study demonstrated SR140333 exert proliferation inhibition in breast cancer cell line T47D and indicates NK-1 play a central role in the substance P related cell proliferation in breast cancer.

  8. CacyBP/SIP promotes the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Huihong Zhai

    Full Text Available CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  9. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity.

    Science.gov (United States)

    Gao, Zhao-Wei; Wang, Hui-Ping; Lin, Fang; Wang, Xi; Long, Min; Zhang, Hui-Zhong; Dong, Ke

    2017-02-15

    CD73 has both enzymatic and non-enzymatic functions in cells. As a nucleotidase, CD73 plays its enzymatic function by catalyzing the hydrolysis of AMP into adenosine and phosphate. In addition to this, accumulating data have shown that CD73 is a key regulatory molecule involved in cancer growth and metastasis, but this non-enzymatic function of CD73 in cervical cancer cells has not been well studied. CD73 was overexpressed by pcDNA-NT5E expression vector transfection in Hela and SiHa cells. Cell's proliferation and migration were evaluated by MTT and scratch healing assay. The CD73 specific antagonist -APCP was used to inhibit CD73 enzymatic activity. And the effect of APCP on CD73 activity was determined by high performance liquid chromatography (HPLC). Expression level was assessed by qRT-PCR and western blotting. In the present study, we used Hela and SiHa cell lines to evaluate the effects of CD73 on cervical cancer cells proliferation and migration, and further explore the potential regulating mechanisms. Our data showed that CD73 overexpression significantly promoted cervical cancer cells proliferation and migration, and this promotive effect was not reverted by blocking CD73 enzymatic activity, both in Hela and SiHa cells. On the other hand, our data also showed that high concentration of adenosine inhibited Hela and SiHa cells proliferation and migration. These results demonstrated that the promotive effect of CD73 on cervical cancer cells proliferation and migration in vitro was independent from its enzymatic activity (i.e. production of adenosine). Furthermore, the expressions of EGFR, VEGF and Akt were significantly increased in CD73 overexpression Hela and SiHa cells. Our data suggested that CD73 might promote proliferation and migration via potentiating EGFR/Akt and VEGF/Akt pathway, which was independent of CD73 enzyme activity. These data provide a novel insight into the regulating function of CD73 in cancer cells and suggest that CD73 may be

  10. The Antidiabetic Drug Metformin Inhibits the Proliferation of Bladder Cancer Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-12-01

    Full Text Available Recent studies suggest that metformin, a widely used antidiabetic agent, may reduce cancer risk and improve prognosis of certain malignancies. However, the mechanisms for the anti-cancer effects of metformin remain uncertain. In this study, we investigated the effects of metformin on human bladder cancer cells and the underlying mechanisms. Metformin significantly inhibited the proliferation and colony formation of 5637 and T24 cells in vitro; specifically, metformin induced an apparent cell cycle arrest in G0/G1 phases, accompanied by a strong decrease of cyclin D1, cyclin-dependent kinase 4 (CDK4, E2F1 and an increase of p21waf-1. Further experiments revealed that metformin activated AMP-activated protein kinase (AMPK and suppressed mammalian target of rapamycin (mTOR, the central regulator of protein synthesis and cell growth. Moreover, daily treatment of metformin led to a substantial inhibition of tumor growth in a xenograft model with concomitant decrease in the expression of proliferating cell nuclear antigen (PCNA, cyclin D1 and p-mTOR. The in vitro and in vivo results demonstrate that metformin efficiently suppresses the proliferation of bladder cancer cells and suggest that metformin may be a potential therapeutic agent for the treatment of bladder cancer.

  11. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  12. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  13. CSE1L/CAS, the cellular apoptosis susceptibility protein, enhances invasion and metastasis but not proliferation of cancer cells

    Directory of Open Access Journals (Sweden)

    Chen Ying-Chun

    2008-07-01

    Full Text Available Abstract Background The cellular apoptosis susceptibility (CAS protein is regarded as a proliferation-associated protein that associates with tumour proliferation as it associates with microtubule and functions in the mitotic spindle checkpoint. However, there is no any actual experimental study showing CAS (or CSE1 and CSE1L can increase the proliferation of cancer cells. Previous pathological study has reported that CAS was strongly positive stained in all of the metastasis melanoma that be examined. Thus, CAS may regulate the invasion and metastasis of cancers. CAS is highly expressed in cancers; if CAS is associated with cancer proliferation, then increased CAS expression should be able to increase the proliferation of cancer cells. We studied whether increased CAS expression can increase cancer cell proliferation and whether CAS regulates the invasion of cancer cells. Methods We enhanced or reduced CAS expression by transfecting CAS or anti-CAS expression vectors into human MCF-7 breast cancer cells. The proliferations of cells were determined by trypan blue exclusion assay and flow cytometry analysis. Invasion of cancer cells were determined by matrigel-based invasion assay. Results Our studies showed that increased CAS expression was unable to enhance cancer cell proliferation. Immunofluorescence showed CAS was distributed in cytoplasm areas near cell membrane and cell protrusions. CAS was localized in cytoplasmic vesicle and immunogold electronmicroscopy showed CAS was located in vesicle membrane. CAS overexpression enhanced matrix metalloproteinase-2 (MMP-2 secretion and cancer cell invasion. Animal experiments showed CAS reduction inhibited the metastasis of B16-F10 melanoma cells by 56% in C57BL/6 mice. Conclusion Our results indicate that CAS increases the invasion but not the proliferation of cancer cells. Thus, CAS plus ECM-degradation proteinases may be used as the markers for predicting the advance of tumour metastasis.

  14. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression.

    Science.gov (United States)

    Chen, Xiaowan; Li, Chenli; He, Tiantian; Mao, Jiating; Li, Chunmei; Lyu, Jianxin; Meng, Qing H

    2016-05-03

    Metformin has been reported to inhibit the growth of various types of cancers, including prostate cancer. Yet the mode of anti-cancer action of metformin and the underlying mechanisms remain not fully elucidated. We hypothesized that the antitumorigenic effects of metformin are mediated through upregulation of pigment epithelium-derived factor (PEDF) expression in prostate cancer cells. In this report, metformin treatment significantly inhibited the proliferation and colony formation of prostate cancer cells, in a dose- and time-dependent manner. Meanwhile, Metformin markedly suppressed migration and invasion and induced apoptosis of both LNCaP and PC3 cancer cells. Metformin also reduced PC3 tumor growth in BALB/c nude mice in vivo. Furthermore, metformin treatment was associated with higher PEDF expression in both prostate cancer cells and tumor tissue. Taken together, metformin inhibits prostate cancer cell proliferation, migration, invasion and tumor growth, and these activities are mediated by upregulation of PEDF expression. These findings provide a novel insight into the molecular functions of metformin as an anticancer agent.

  15. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis

    Science.gov (United States)

    Griss, Takla; Vincent, Emma E.; Egnatchik, Robert; Chen, Jocelyn; Ma, Eric H.; Faubert, Brandon; Viollet, Benoit; DeBerardinis, Ralph J.; Jones, Russell G.

    2015-01-01

    Metformin is a biguanide widely prescribed to treat Type II diabetes that has gained interest as an antineoplastic agent. Recent work suggests that metformin directly antagonizes cancer cell growth through its actions on complex I of the mitochondrial electron transport chain (ETC). However, the mechanisms by which metformin arrests cancer cell proliferation remain poorly defined. Here we demonstrate that the metabolic checkpoint kinases AMP-activated protein kinase (AMPK) and LKB1 are not required for the antiproliferative effects of metformin. Rather, metformin inhibits cancer cell proliferation by suppressing mitochondrial-dependent biosynthetic activity. We show that in vitro metformin decreases the flow of glucose- and glutamine-derived metabolic intermediates into the Tricarboxylic Acid (TCA) cycle, leading to reduced citrate production and de novo lipid biosynthesis. Tumor cells lacking functional mitochondria maintain lipid biosynthesis in the presence of metformin via glutamine-dependent reductive carboxylation, and display reduced sensitivity to metformin-induced proliferative arrest. Our data indicate that metformin inhibits cancer cell proliferation by suppressing the production of mitochondrial-dependent metabolic intermediates required for cell growth, and that metabolic adaptations that bypass mitochondrial-dependent biosynthesis may provide a mechanism of tumor cell resistance to biguanide activity. PMID:26625127

  16. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, Hironori; Horyozaki, Akiko; Maeda, Masatomo, E-mail: mmaeda@nupals.ac.jp

    2016-09-09

    Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis under growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown. - Highlights: • Anisomycin induces proteolysis of GATA-6 in DLD-1 cells. • Anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest. • Anisomycin suppresses the growth of spheroids of DLD-1, and enhances the effect of 5-FU.

  17. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Takla Griss

    2015-12-01

    Full Text Available Metformin is a biguanide widely prescribed to treat Type II diabetes that has gained interest as an antineoplastic agent. Recent work suggests that metformin directly antagonizes cancer cell growth through its actions on complex I of the mitochondrial electron transport chain (ETC. However, the mechanisms by which metformin arrests cancer cell proliferation remain poorly defined. Here we demonstrate that the metabolic checkpoint kinases AMP-activated protein kinase (AMPK and LKB1 are not required for the antiproliferative effects of metformin. Rather, metformin inhibits cancer cell proliferation by suppressing mitochondrial-dependent biosynthetic activity. We show that in vitro metformin decreases the flow of glucose- and glutamine-derived metabolic intermediates into the Tricarboxylic Acid (TCA cycle, leading to reduced citrate production and de novo lipid biosynthesis. Tumor cells lacking functional mitochondria maintain lipid biosynthesis in the presence of metformin via glutamine-dependent reductive carboxylation, and display reduced sensitivity to metformin-induced proliferative arrest. Our data indicate that metformin inhibits cancer cell proliferation by suppressing the production of mitochondrial-dependent metabolic intermediates required for cell growth, and that metabolic adaptations that bypass mitochondrial-dependent biosynthesis may provide a mechanism of tumor cell resistance to biguanide activity.

  18. Down-regulation of GPR137 expression inhibits proliferation of colon cancer cells.

    Science.gov (United States)

    Zhang, Kai; Shen, Zhen; Liang, Xianjun; Liu, Tongjun; Wang, Tiejun; Jiang, Yang

    2014-11-01

    G protein-coupled receptors (GPRs) are highly related to oncogenesis and cancer metastasis. G protein-coupled receptor 137 (GPR137) was initially reported as a novel orphan GPR about 10 years ago. Some orphan GPRs have been implicated in human cancers. The aim of this study is to investigate the role of GPR137 in human colon cancer. Expression levels of GRP137 were analyzed in different colon cancer cell lines by quantitative polymerase chain reaction and western blot analysis. Lentivirus-mediated short hairpin RNA was specifically designed to knock down GPR137 expression in colon cancer cells. Cell viability was measured by methylthiazoletetrazolium and colony formation assays. In addition, cell cycle characteristic was investigated by flow cytometry. GRP137 expression was observed in all seven colon cancer cell lines at different levels. The mRNA and protein levels of GPR137 were down-regulated in both HCT116 and RKO cells after lentivirus infection. Lentivirus-mediated silencing of GPR137 reduced the proliferation rate and colonies numbers. Knockdown of GPR137 in both cell lines led to cell cycle arrest in the G0/G1 phase. These results indicated that GPR137 plays an important role in colon cancer cell proliferation. A better understanding of GPR137's effects on signal transduction pathways in colon cancer cells may provide insights into the novel gene therapy of colon cancer. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  19. Role of the stem cell-associated intermediate filament nestin in malignant proliferation of non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Zhenguang Chen

    Full Text Available BACKGROUND: Nestin is associated with neoplastic transformation, but the mechanisms by which nestin contributes to invasion and malignancy of lung cancer remain unknown. Considering that proliferation is necessary for malignant behavior, we investigated the mechanism of nestin action in association with the proliferative properties of non-small cell lung cancer (NSCLC. METHODS: Nestin expression was examined in NSCLC specimens and cell lines. Associations with clinicopathological features, including prognosis and proliferative markers, were evaluated. Effects of nestin knockdown on proliferation and the signaling pathways involved were further investigated. RESULTS: Nestin was expressed in most cancer specimens and all the tumor cell lines analyzed. High nestin expression in malignant tissue was associated with high Ki-67 or PCNA levels and poor patient outcomes. Conversely, knockdown of nestin expression led to significant inhibition of tumor cell proliferation, decreased colony forming ability, and cell cycle G1 arrest. Furthermore, nestin knockdown resulted in inhibition of Akt and GSK3β activation. CONCLUSIONS: Our data demonstrate that nestin expression in NSCLC cells is associated with poor prognosis of patients and tumor cell proliferation pathway. Downregulation of nestin efficiently inhibited lung cancer cell proliferation, which might be through affecting cell cycle arrest and Akt-GSK3β-Rb signaling pathway.

  20. Dynasore suppresses proliferation and induces apoptosis of the non-small-cell lung cancer cell line A549.

    Science.gov (United States)

    Shen, Feifei; Gai, Junda; Xing, Jilin; Guan, Jingqian; Fu, Lin; Li, Qingchang

    2018-01-01

    Lung cancer is the leading cause of cancer death worldwide, and most of all cases are non-small-cell lung cancer. Lung cancer is associated with dysregulation of mitochondrial fusion and fission, and inhibition of the fission regulator Dynamin-related protein 1 (Drp1) reduces proliferation and increases apoptosis of lung cancer cells. Dynasore is a small molecule non-selective inhibitor of the GTPase activity of dynamin 1, dynamin 2, and Drp1 in vivo and in vitro. Here, we investigated the effects of dynasore on the proliferation and apoptosis of A549 lung cancer cells, alone and in combination with the chemotherapeutic drug cisplatin. We found that cisplatin increased mitochondrial fission and dynamin 2 expression, whereas dynasore had the opposite effects. However, both cisplatin and dynasore independently induced mitochondrial oxidative stress, leading to mitochondrial dysfunction, reduced cell proliferation, and enhanced apoptosis. Importantly, dynasore significantly augmented the anti-cancer effects of cisplatin. To the best of our knowledge, this is the first report that dynasore inhibits proliferation and induces apoptosis of lung cancer cells, and enhances the inhibitory effects of cisplatin. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Apoptosis-inducing effects of lentinan on the proliferation of human bladder cancer T24 cells.

    Science.gov (United States)

    Bao, Lidao; Wang, Yi; Ma, Ruilian; Ren, Xianhua; Cheng, Rui; B, Agula

    2015-09-01

    The aim of this study was to explore the effects of lentinan on the proliferation of human bladder cancer T24 cells and the mechanism regarding the inhibition of cell growth. When gene regulation technique was used to build pcDNA3-TRPM8 expression plasmid, TRPM8 channel activator-lentinan was used for intervention to observe the proliferation of T24 cells. Flow cytometry cell screening method was used to observe the cell ratio of each cell cycle of T24 cells and the ratio of apoptotic and dying cells under the intervention of different concentrations of lentinan using PI single-staining and Annexin V-FITC/PI double-staining. JC-1 and DCFH-DA fluorescence probes were used to observe the influence of different concentrations of lentinan on the mitochondrial membrane potential of T24 cells and intracellular reactive oxygen species (ROS) by confocal microscope. pcDNA-TRPM8 plasmid was successfully constructed, and lentinan could inhibit the growth of T24 cells in a dose-dependent pattern. Lentinan played its biological effect through TRPM8 channel to further inhibit the growth of T24 cells, reduced the mitochondrial membrane potential of bladder cancer T24 cell line, and increased the generation of ROS in human bladder cancer T24 cell line. Lentinan led to mitochondrial depolarization or activation of non-mitochondrial pathway to induce intracellular ROS generation, thus eventually inducing T24 cell death and growth inhibition.

  2. Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ERα Inhibition

    Science.gov (United States)

    Huang, Pao-Hsuan; Huang, Chih-Yang; Chen, Mei-Chih; Lee, Yueh-Tsung; Yue, Chia-Herng; Wang, Hsin-Yi

    2013-01-01

    The anthraquinones emodin and aloe-emodin are abundant in rhubarb. Several lines of evidence indicate that emodin and aloe-emodin have estrogenic activity as phytoestrogens. However, their effects on estrogen receptor α (ERα) activation and breast cancer cell growth remain controversial. The goal of this study is to investigate the effects and molecular mechanisms of emodin and aloe-emodin on breast cancer cell proliferation. Our results indicate that both emodin and aloe-emodin are capable of inhibiting breast cancer cell proliferation by downregulating ERα protein levels, thereby suppressing ERα transcriptional activation. Furthermore, aloe-emodin treatment led to the dissociation of heat shock protein 90 (HSP90) and ERα and increased ERα ubiquitination. Although emodin had similar effects to aloe-emodin, it was not capable of promoting HSP90/ERα dissociation and ERα ubiquitination. Protein fractionation results suggest that aloe-emodin tended to induce cytosolic ERα degradation. Although emodin might induce cytosolic ERα degradation, it primarily affected nuclear ERα distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ERα protein stability through distinct mechanisms. These findings suggest a possible application of anthraquinones in preventing or treating breast cancer in the future. PMID:23864887

  3. Ubiquitin-Conjugating Enzyme 9 Promotes Epithelial Ovarian Cancer Cell Proliferation in Vitro

    Directory of Open Access Journals (Sweden)

    Mei Dong

    2013-05-01

    Full Text Available Epithelial ovarian cancer (EOC is one of the leading causes of cancer deaths in women worldwide. Ubiquitin-conjugating enzyme 9 (Ubc9, the sole conjugating enzyme for sumoylation, regulates protein function and plays an important role in sumoylation-mediated cellular pathways. Although sumoylation plays a key role in DNA repair and tumorgenesis, whether Ubc9 is involved in EOC progression remains unknown. In the present study, we constructed Ubc-9 expressed recombined plasmid pEGFP-N1-Ubc9. The mRNA levels of Ubc9 were confirmed in human ovarian cell lines before and after transfection with pEGFP-N1-Ubc9 or small interfering RNA (siRNA targeted Ubc9 by real-time polymerase chain reaction (PCR. The MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was used to observe the effect of Ubc9 on cell proliferation. The protein levels of Ubc9, and proliferation-related signals Akt and physphorylated Akt were determined by Western blot. Our results showed that proliferation of EOC cells increased significantly in Ubc9 overexpressing cells, but decreased in Ubc9 knockdown cells. The physphorylation of Akt showed similar trends. In addition, the inhibitor of PI3K/Akt signaling pathway, LY294002, dramatically inhibited the growth of Ubc9 overexpressing cells. Therefore, Ubc9 gene plays an important role in cell proliferation in EOC through PI3K/Akt signaling pathway.

  4. The TGFβ pathway stimulates ovarian cancer cell proliferation by increasing IGF1R levels.

    Science.gov (United States)

    Alsina-Sanchis, Elisenda; Figueras, Agnès; Lahiguera, Álvaro; Vidal, August; Casanovas, Oriol; Graupera, Mariona; Villanueva, Alberto; Viñals, Francesc

    2016-10-15

    In a search for new therapeutic targets for treating epithelial ovarian cancer, we analyzed the Transforming Growth Factor Beta (TGFβ) signaling pathway in these tumors. Using a TMA with patient samples we found high Smad2 phosphorylation in ovarian cancer tumoral cells, independently of tumor subtype (high-grade serous or endometrioid). To evaluate the impact of TGFβ receptor inhibition on tumoral growth, we used different models of human ovarian cancer orthotopically grown in nude mice (OVAs). Treatment with a TGFβRI&II dual inhibitor, LY2109761, caused a significant reduction in tumor size in all these models, affecting cell proliferation rate. We identified Insulin Growth Factor (IGF)1 receptor as the signal positively regulated by TGFβ implicated in ovarian tumor cell proliferation. Inhibition of IGF1R activity by treatment with a blocker antibody (IMC-A12) or with a tyrosine kinase inhibitor (linsitinib) inhibited ovarian tumoral growth in vivo. When IGF1R levels were decreased by shRNA treatment, LY2109761 lost its capacity to block tumoral ovarian cell proliferation. At the molecular level TGFβ induced mRNA IGF1R levels. Overall, our results suggest an important role for the TGFβ signaling pathway in ovarian tumor cell growth through the control of IGF1R signaling pathway. Moreover, it identifies anti-TGFβ inhibitors as being of potential use in new therapies for ovarian cancer patients as an alternative to IGF1R inhibition. © 2016 UICC.

  5. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jun [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Bai, Danna [Department of Cardiology, 323 Hospital of PLA, Xi' an 710054 (China); Yang, Xia [Department of Teaching and Medical Administration, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Lu, Xiaozhao [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Xu, Lijuan, E-mail: 13609296272@163.com [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Lu, Jianguo, E-mail: lujianguo029@yahoo.com.cn [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. Black-Right-Pointing-Pointer Adrenaline activates NF{kappa}B in a dose dependent manner. Black-Right-Pointing-Pointer NF{kappa}B-miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NF{kappa}B dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline-NF{kappa}B-miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  6. Cell proliferation in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.M.; Ellwein, L.B. (Univ. of Nebraska Medical Center, Omaha (USA))

    1990-08-31

    Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.

  7. K:D-Rib: cancer cell proliferation inibitor and DNAzyme folding promoter

    Directory of Open Access Journals (Sweden)

    Luca Bruni

    2014-01-01

    Full Text Available We report the effects of K:D-Rib, a D-ribose and KHCO3 water solution on HTB-126 human cancer cell line proliferation and the preliminary ultraviolet-visible (UV-VIS measures of DNAzyme as biosensor of extracellular K+ concentration. On the one hand, we demonstrate that the synergic action of KHCO3 and D-ribose from one side has a cytostatic effect on human breast cancer cell line increasing by 30% the doubling population time of treated cells with respect to the control; and on the other hand we demonstrate how it seems to permit the K+ uptake.

  8. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tomomi; Shimada, Keiji [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Tatsumi, Yoshihiro [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan); Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Fujimoto, Kiyohide [Department of Urology, Nara Medical University School of Medicine, Nara (Japan); Konishi, Noboru, E-mail: nkonishi@naramed-u.ac.jp [Department of Pathology, Nara Medical University School of Medicine, Nara (Japan)

    2015-01-02

    Highlights: • Syndecan-1 is highly expressed in androgen independent prostate cancer cells, PC3. • Syndecan-1 regulates the expression of miR-126 and -149 in prostate cancer cells. • MiR-126 and 149 control cell growth via p21 induction and senescence mechanism. • MiR-126 and 149 promote cell proliferation by suppressing SOX2, NANOG, and Oct4. - Abstract: MicroRNAs (miRNAs) are short (19–24 nt), low molecular weight RNAs that play important roles in the regulation of target genes associated with cell proliferation, differentiation, and development, by binding to the 3′-untranslated region of the target mRNAs. In this study, we examined the expression of miRNA-126 (miR-126) and miR-149 in prostate cancer, and investigated the molecular mechanisms by which they affect syndecan-1 in prostate cancer. Functional analysis of miR-126 and miR-149 was conducted in the prostate cancer cell lines, PC3, Du145, and LNCaP. The expression levels of SOX2, NANOG, Oct4, miR-126 and miR-149 were evaluated by quantitative RT-PCR. After silencing syndecan-1, miR-126, and/or miR-149 in the PC3 cells, cell proliferation, senescence, and p21 induction were assessed using the MTS assay, senescence-associated β-galactosidase (SA-β-Gal) assay, and immunocytochemistry, respectively. Compared to the Du145 and LNCaP cells, PC3 cells exhibited higher expression of syndecan-1. When syndecan-1 was silenced, the PC3 cells showed reduced expression of miR-126 and miR-149 most effectively. Suppression of miR-126 and/or miR-149 significantly inhibited cell growth via p21 induction and subsequently, induced senescence. The mRNA expression levels of SOX2, NANOG, and Oct4 were significantly increased in response to the silencing of miR-126 and/or miR-149. Our results suggest that miR-126 and miR-149 are associated with the expression of syndecan-1 in prostate cancer cells. These miRNAs promote cell proliferation by suppressing SOX2, NANOG, and Oct4. The regulation of these factors by mi

  9. [Effect of Sijunzi decoction on the proliferation of side population cells of human gastric cancer cell line].

    Science.gov (United States)

    Li, Jing; Qian, Jun; Jia, Jian-guang; Jin, Xin; Yu, Da-jun; Xie, Bo; Qian, Li-yu; Zhang, Li-gong; Guo, Chen-xu

    2014-06-01

    To observe the proliferation changes of the side population of gastric cancer cell line SGC-7901 cells (SP), the non-side population (NSP) cells, and unsorted cells (Total) after intervened by Sijunzi Decoction (SD) containing serum. Sixteen pure bred New Zealand rabbits were equally divided into the normal control group, the low dose SD group (at the daily dose of 7 mL/kg), the middle dose SD group (at the daily dose of 14 mL/kg), and the high dose SD group (at the daily dose of 28 mL/kg) according to the random digit table. Rabbits' serum was extracted after equal volume of corresponding medication was given by gastrogavage twice daily for 2 consecutive weeks. The drug serum was identified using high performance liquid chromatography. SP cells of SGC-7901 were detected using flow cytometry, SP and NSP cells were screened. The proliferation curve of SP, NSP, and Total cells were detected with CCK-8 assay. Changes of their proliferation were also observed. Ginsenoside Rg1, an effective ingredient in SD was detected in prepared drug serum. The proliferation of SGC-7901 SP cells was significantly higher than that of NSP cells and Total cells (P line SGC-7901 SP, NSP, and Total cells could inhibit their proliferation, but its inhibition on SP cells' proliferation was significantly lower than on NSP and Total cells (P line SGC-7901 SP, NSP, and Total cells. But there exist obvious difference in the inhibition among the three groups.

  10. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  11. si-RNA-mediated knockdown of PDLIM5 suppresses gastric cancer cell proliferation in vitro.

    Science.gov (United States)

    Li, Yanliang; Gao, Yongsheng; Xu, Yue; Sun, Xianjun; Song, Xilin; Ma, Heng; Yang, Mingshan

    2015-04-01

    Gastric cancer is the second most prominent cause of cancer mortality in the world. This study was designed to identify the possible use of si-RNA-mediated PDLIM5 gene silencing as a therapeutic tool for gastric cancer. Expression levels of PDLIM5 were detected in several gastric cancer cell lines using Western blot and qRT-PCR. We found PDLIM5 is highly expressed in all cultured gastric cancer cell lines. Small interfering RNA (si-RNA) was then employed to knock down PDLIM5 expression in MGC80-3 gastric cancer cells. Knockdown of PDLIM5 significantly inhibited cell proliferation and colony formation. Moreover, the absence of PDLIM5 in MGC80-3 cells led to S phase cell cycle arrest and apoptosis. This study highlights the critical role of PDLIM5 in gastric cancer cell growth and suggests that si-RNA-mediated silencing of PDLIM5 might serve as a potential therapeutic approach for the treatment of gastric cancer. © 2014 John Wiley & Sons A/S.

  12. Myeloid ecotropic viral integration site 1 inhibits cell proliferation, invasion or migration in human gastric cancer.

    Science.gov (United States)

    Song, Fei; Wang, Hong; Wang, Yingying

    2017-10-27

    Myeloid ecotropic viral integration site 1 (MEIS1) has been identified to be a potential tumor suppressor in some cancers. However, the mechanisms underlying MEIS1-induced cancer development and progression were not clear. Here, we investigated the expression and role of MEIS1 in gastric cancer. In vivo , we analyzed tumor growth using nude mice model. In the present study, MEIS1 expression was obviously decreased in GC cell lines compared with that in normal gastric cell lines (all pmigration assay revealed that MEIS1 affects cell invasion and migration, and inhibited epithelial-mesenchymal transition (EMT). Finally, MEIS1 inhibits MKN28 cell growth in nude mice model. In conclusion, our study suggested that MEIS1 plays an important role in regulating cell survival, proliferation, anchorage-independent growth, cell cycle, apoptosis and metastasis. Thus, MEIS1 might be recommended as an effective target for GC patients.

  13. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiajia [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China); Zhu, Xi [Department of Urology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing (China); Zhang, Jie, E-mail: zhangjiebjmu@163.com [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China)

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  14. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    Science.gov (United States)

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shuang, E-mail: luoshuangsch@163.com [Department of Obstetrics and Gynecology, Suining Central Hospital, Suining (China); Wang, Jidong [Department of Gynecology and Obsterics, Jinan Central Hospital, Jinan (China); Ma, Ying [Department of Otorhinolaryngolgy, Suining Central Hospital, Suining (China); Yao, Zhenwei [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Pan, Hongjuan [Department of Gynecology and Obsterics, Zhongshan Hospital, Wuhan (China)

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  16. The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells.

    Science.gov (United States)

    Teng, Ji-Ping; Yang, Zhi-Ying; Zhu, Yu-Ming; Ni, Da; Zhu, Zhi-Jun; Li, Xiao-Qiang

    2017-10-01

    Lung cancer is a leading cause of cancer-related mortalities worldwide. In the present study, a comparison of To determine the roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells expression levels between normal lung tissues and lung cancer tissues were compared using immunoblotting, and CCK-8 and Transwell assays. Lung cancer tissues had a decreased ARHGAP10 mRNA expression level compared to the adjacent normal tissues. The ectopic expression of ARHGAP10 significantly suppressed the migration, invasion and proliferation of lung cancer cells. Gene set enrichment analysis revealed that metastasis and Wnt signaling pathways were negatively correlated with ARHGAP10 expression. Immunoblotting analysis revealed that ARHGAP10 overexpression inhibited metastasis [matrix metalloproteinase (MMP)-2, MMP-9 and VEGF] and the expression of Wnt pathway-related proteins (β-catenin and c-Myc). Moreover, the stimulation effects of lithium chloride, a GSK3β inhibitor, on the accumulation of β-catenin were notably suppressed by ARHGAP10 overexpression. Collectively, ARHGAP10 acts to suppress tumor within lung cancer by affecting metastasis and Wnt signaling pathways. The results therefore suggest that ARHGAP10 is a potentially attractive target for the treatment of lung cancer.

  17. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation.

    Science.gov (United States)

    Liu, Hailong; Sun, Qianwen; Sun, Youliang; Zhang, Junping; Yuan, Hongyu; Pang, Shuhuan; Qi, Xueling; Wang, Haoran; Zhang, Mingshan; Zhang, Hongwei; Yu, Chunjiang; Gu, Chunyu

    2017-09-01

    Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients.Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR. ©2017 American Association for Cancer Research.

  18. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line.

    Science.gov (United States)

    Tang, Yunhua; Zhang, Xiangyang; Qi, Fan; Chen, Mingfeng; Li, Yuan; Liu, Longfei; He, Wei; Li, Zhuo; Zu, Xiongbing

    2015-05-01

    Afatinib is a highly selective, irreversible inhibitor of the epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2). Although preclinical and clinical studies have indicated that afatinib has antitumor activity and clinical efficacy in non-small cell lung carcinoma, head and neck squamous cell carcinoma and breast cancer, there are few studies investigating its inhibitory effect on human bladder carcinoma cells. In this study, the antitumor effect of afatinib was investigated on the T24 bladder cancer cell line. The T24 bladder cancer cell line was treated with afatinib at various concentrations (0, 1, 5, 10 and 20 µmol/l). MTT assay was used to estimate the proliferation of the T24 cells; flow cytometric analysis was used to estimate the effect of afatinib on T24 cell apoptosis; cell invasion ability was assessed by a Transwell invasion assay; and western blot analysis was used to detect the expression of Bcl-2, Bax, Akt, extracellular-signal-regulated kinase (ERK)1/2, matrix metalloproteinase (MMP)-2 and MMP-9. The MTT assay demonstrated that afatinib inhibited the proliferation of T24 cells in a dose- and time-dependent manner. Flow cytometric analysis revealed that the cell apoptosis rate increased as the concentration of afatinib increased. The cell invasion assay indicated that afatinib treatment significantly inhibited the invasive behavior of T24 cells in a dose-dependent manner. Western blot analysis showed that with increasing afatinib concentrations, Bcl-2, phosphorylated (p)-ERK1/2, p-Akt, MMP-2 and MMP-9 expression levels were significantly decreased, whereas total (t)-ERK1/2 and t-Akt expression levels remained basically unchanged, and Bax expression levels were greatly increased. The results indicate that afatinib inhibits the proliferation and invasion of T24 cells in vitro and induces the apoptosis of these cells by inhibiting the EGFR signaling network.

  19. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  20. miR-30a suppresses breast cancer cell proliferation and migration by targeting Eya2

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jing [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China); Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Xu, Xiaojie [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Kang, Lei [Department of Nuclear Medicine, Peking University First Hospital, Beijing (China); Zhou, Liying [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Wang, Shibin [Department of General Surgery, 307 Hospital of PLA, Beijing (China); Lu, Juming [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China); Cheng, Long; Fan, Zhongyi; Yuan, Bin [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Tian, Peirong [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China); Zheng, Xiaofei [Beijing Institute of Radiation Medicine, Beijing (China); Yu, Chengze, E-mail: yuchengze@sina.com [Department of General Surgery, 307 Hospital of PLA, Beijing (China); Ye, Qinong, E-mail: yeqn66@yahoo.com [Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing (China); Lv, Zhaohui, E-mail: metabolism301@126.com [Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing (China)

    2014-03-07

    Highlights: • miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. • The miR-30a/EYA2 axis regulates breast cancer cell proliferation and migration. • The miR-30a/EYA2 axis modulates G1/S cell cycle progression. • The miR-30a/EYA2 axis is dysregulated in breast cancer patients. - Abstract: Eye absent (Eya) proteins are involved in cell fate determination in a broad spectrum of cells and tissues. Aberrant expression of Eya2 has been documented in a variety of cancers and correlates with clinical outcome. However, whether microRNAs (miRNAs) can regulate Eya2 expression remains unknown. Here, we show that miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. Overexpression of Eya2 in miR-30a-transfected breast cancer cells effectively rescued the inhibition of cell proliferation and migration caused by miR-30a. Knockdown of Eya2 by small-interfering RNA (siRNA) in breast cancer cells mimicked the effect induced by miR-30a and abolished the ability of miR-30a to regulate breast cancer cell proliferation and migration. The miR-30a/Eya2 axis could regulate G1/S cell cycle progression, accompanied by the modulation of expression of cell cycle-related proteins, including cyclin A, cyclin D1, cyclin E, and c-Myc. Moreover, miR-30a expression was downregulated in breast cancer patients, and negatively correlated with Eya2, which was upregulated in breast cancer patients. These data suggest that the miR-30a/Eya2 axis may play an important role in breast cancer development and progression and that miR-30a activation or Eya2 inhibition may be a useful strategy for cancer treatment.

  1. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression.

    Science.gov (United States)

    Byler, Timothy K; Leocadio, Dean; Shapiro, Oleg; Bratslavsky, Gennady; Stodgell, Christopher J; Wood, Ronald W; Messing, Edward M; Reeder, Jay E

    2012-08-16

    Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate) has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  2. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression

    Directory of Open Access Journals (Sweden)

    Byler Timothy K

    2012-08-01

    Full Text Available Abstract Background Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Methods Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Results Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Conclusions Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  3. Increased HAGLR expression promotes non-small cell lung cancer proliferation and invasion via enhanced de novo lipogenesis.

    Science.gov (United States)

    Lu, Chunwei; Ma, Jun; Cai, Dingfang

    2017-04-01

    Lung cancers are broadly classified into small cell lung cancer and non-small cell lung cancer, with non-small cell lung cancer one of the leading causes of cancer-associated deaths worldwide. Presently, the mechanisms underlying lung tumorigenesis remain incompletely understood. Accumulating evidence indicates that abnormal expression of long non-coding RNAs is associated with tumorigenesis in multiple cancers, including lung cancer. HAGLR messenger RNA of non-small cell lung cancer tissues was significantly higher. Moreover, high levels of HAGLR expression were associated with non-small cell lung cancer tumor lymph node metastasis status, stage, and poor overall survival. Inhibition of HAGLR in non-small cell lung cancer cells suppressed cell proliferation and invasion. RNA interference-mediated downregulation of HAGLR also decreased levels of fatty acid synthase, with fatty acid synthase levels positively correlated with HAGLR expression in non-small cell lung cancer specimens. In addition, the cellular free fatty acid content of cancer cells was decreased following HAGLR knockdown. HAGLR depletion significantly inhibited the growth of non-small cell lung cancer cells in vivo. Furthermore, the expression levels of p21 and matrix metallopeptidase-9 (MMP-9) were dysregulated when HAGLR expression was suppressed. Our results suggest that HAGLR is an important regulator of non-small cell lung cancer cell proliferation and invasion, perhaps by regulating fatty acid synthase. Therefore, targeting HAGLR may be a possible therapeutic strategy for non-small cell lung cancer.

  4. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    Science.gov (United States)

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  5. MiR-32 contributed to cell proliferation of human breast cancer cells by suppressing of PHLPP2 expression.

    Science.gov (United States)

    Xia, Haoming; Long, Jianting; Zhang, Ruifen; Yang, Xiaosong; Ma, Zhefu

    2015-10-01

    MicroRNAs (miRNAs) have been identified as important regulators that potentially play critical roles in various biological and pathological processes of cancer cells. The aim of the present study was to investigate the expression of miR-32 in breast cancer and its biological role in tumor progression. MiR-32 expression was markedly upregulated in breast cancer tissues and breast cancer cells. Ectopic expression of miR-32 promoted cell proliferation of breast cancer, whereas miR-32-in suppressed this function. Mechanically, data from luciferase reporter assays revealed that miR-32 directly targeted to the 3'-untranslated region (3'-UTR) of PHLPP2. Overexpression of miR-32 led to downregulation of PHLPP2 protein, which resulted in the downregulation of p21 and upregulation of cyclin D1 and p-Rb. In functional assays, PHLPP2-silenced in miR-32-in-transfected ZR-75-30 cells have positive effect to promote cell proliferation, suggesting that direct PHLPP2 downregulation is required for miR-32-induced cell proliferation of breast cancer. Our findings highlighted the importance of miR-32 in promoting tumor progression, and implicate miR-32 as a potential therapeutic target in breast cancer. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation.

    Science.gov (United States)

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-10-14

    Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel

  7. MiR-361 targets Yes-associated protein (YAP) mRNA to suppress cell proliferation in lung cancer.

    Science.gov (United States)

    Zhang, Suning; Liu, Zongang; Wu, Lin; Wang, Yudong

    2017-10-21

    Yes-associated protein (YAP) contributes to the development of multiple tumors, but the post-transcription modulation of YAP remains unexplored. Here, we present a new regulatory microRNA of YAP, miR-361, which directly targets YAP to inhibit cell proliferation in lung cancer. We used bioinformatics to predict that miR-361 could target 3'-untranslated region (3'UTR) of YAP mRNA. Luciferase reporter gene assays demonstrated that miR-361 could decrease the luciferase activities of 3'UTR vector of YAP. Furthermore, YAP expression was obviously abated by miR-361 using RT-PCR and immunoblotting in lung cancer A549 cells. In terms of function, MTT and colony formation analysis showed that ectopic miR-361 expression significantly suppressed cell proliferation in lung cancer. Notably, overexpressed YAP accelerated miR-361-bated proliferation of lung cancer cells. MiR-361 inhibitor promoted cell proliferation in lung cancer, but YAP RNA interference reversed miR-361 inhibitor-driven cell proliferation. Interestingly, miR-361 was capable of affecting the cell cycle in lung cancer progression. Finally, the negative correlation of miR-361 with YAP was found in clinical human lung cancer tissues. In conclusion, miR-361 targets 3'UTR of YAP mRNA to depress the proliferation of lung cancer cells. Copyright © 2017. Published by Elsevier Inc.

  8. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  9. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fu, Chao [Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Cao, Zhang, E-mail: zzzhangcao@126.com [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China)

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser{sup 461}, along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2.

  10. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation

    Science.gov (United States)

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-01-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy. PMID:27602169

  11. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7.

    Science.gov (United States)

    Xia, Wei; Zhou, JueYu; Luo, HaiBo; Liu, YunZhou; Peng, CanCan; Zheng, WenLing; Ma, WenLi

    2017-01-01

    MicroRNAs are a class of small non-coding RNAs that are involved in many important physiological and pathological processes by regulating gene expression negatively. The purpose of this study was to investigate the effect of miR-32 on cell proliferation, migration and apoptosis and to determine the functional connection between miR-32 and FBXW7 in breast cancer. In this study, quantitative RT-PCR was used to evaluate the expression levels of miR-32 in 27 breast cancer tissues, adjacent normal breast tissues and human breast cancer cell lines. The biological functions of miR-32 in MCF-7 breast cancer cells were determined by cell proliferation, apoptosis assays and wound-healing assays. In addition, the regulation of FBXW7 by miR-32 was assessed by qRT-PCR, Western blot and luciferase reporter assays. MiR-32 was frequently overexpressed in breast cancer tissue samples and cell lines as was demonstrated by qRT-PCR. Moreover, the up-regulation of miR-32 suppressed apoptosis and promoted proliferation and migration, whereas down-regulation of miR-32 showed an opposite effect. Dual-luciferase reporter assays showed that miR-32 binds to the 3'-untranslated region of FBXW7, suggesting that FBXW7 is a direct target of miR-32. Western blot analysis showed that over-expression of miR-32 reduced FBXW7 protein level. Furthermore, an inverse correlation was found between the expressions of miR-32 and FBXW7 mRNA levels in breast cancer tissues. Knockdown of FBXW7 promoted proliferation and motility and suppressed apoptosis in MCF-7 cells. Taken together, the present study suggests that miR-32 promotes proliferation and motility and suppresses apoptosis of breast cancer cells through targeting FBXW7.

  12. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    Science.gov (United States)

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  13. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation.

    Science.gov (United States)

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng; Fu, Chao; Cao, Zhang

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser(461), along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Paraguayan Rhinella toad venom: Implications in the traditional medicine and proliferation of breast cancer cells.

    Science.gov (United States)

    Schmeda-Hirschmann, Guillermo; Gomez, Celeste Vega; Rojas de Arias, Antonieta; Burgos-Edwards, Alberto; Alfonso, Jorge; Rolon, Miriam; Brusquetti, Francisco; Netto, Flavia; Urra, Félix A; Cárdenas, César

    2017-03-06

    Toads belonging to genus Rhinella are used in Paraguayan traditional medicine to treat cancer and skin infections. The objective of the study was to determine the composition of venoms obtained from three different Paraguayan Rhinella species, to establish the constituents of a preparation sold in the capital city of Paraguay to treat cancer as containing the toad as ingredient, to establish the effect of the most active Rhinella schneideri venom on the cell cycle using human breast cancer cells and to assess the antiprotozoal activity of the venoms. The venom obtained from the toads parotid glands was analyzed by HPLC-MS-MS. The preparation sold in the capital city of Paraguay to treat cancer that is advertised as made using the toad was analyzed by HPLC-MS-MS. The effect of the R. schneideri venom and the preparation was investigated on human breast cancer cells. The antiprotozoal activity was evaluated on Leishmania braziliensis, L. infantum and murine macrophages. From the venoms of R. ornata, R. schneideri and R. scitula, some 40 compounds were identified by spectroscopic and spectrometric means. Several minor constituents are reported for the first time. The preparation sold as made from the toad did not contained bufadienolides or compounds that can be associated with the toad but plant compounds, mainly phenolics and flavonoids. The venom showed activity on human breast cancer cells and modified the cell cycle proliferation. The antiprotozoal effect was higher for the R. schneideri venom and can be related to the composition and relative ratio of constituents compared with R. ornata and R. scitula. The preparation sold in the capital city of Paraguay as containing the toad venom, used popularly to treat cancer did not contain the toad venom constituents. Consistent with this, this preparation was inactive on proliferation of human breast cancer cells. In contrast, the toad venoms of Rhinella species altered the cell cycle progression, affecting the

  15. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  16. Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Miriam Fernandez-Gallardo

    Full Text Available Emerging evidence suggests that the adenosine (Ado receptors may play crucial roles in tumor progression. Here, we show that Ado increases proliferation and migration in a triple negative breast cancer model, the MDA-MB 231 cell line. The use of specific agonists and antagonists evidenced that these effects depend on the activation of the A2B receptor, which then triggers an intracellular response mediated by the adenylate cyclase/PKA/cAMP signaling pathway. Ado also increases the expression of NaV1.5 channels, a potential biomarker in breast cancer. Together, these data suggest important roles of the A2B receptors and NaV1.5 channels in the Ado-induced increase in proliferation and migration of the MDA-MB 231 cells.

  17. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Dong, Guoying [Institute of Pathogen Biology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012 (China); Wang, Bo [Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan 250012 (China); Gao, Wei [Department of Pathology, Jinan Central Hospital, Jinan 250013 (China); Yang, Qing, E-mail: yangqing07@sdu.edu.cn [Institute of Pathogen Biology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan 250012 (China)

    2016-01-01

    SIRT1, a class III histone deacetylase, exerts inhibitory effects on tumorigenesis and is downregulated in gastric cancer. However, the role of microRNAs in the regulation of SIRT1 in gastric cancer is still largely unknown. Here, we identified miR-543 as a predicted upstream regulator of SIRT1 using 3 different bioinformatics databases. Mimics of miR-543 significantly inhibited the expression of SIRT1, whereas an inhibitor of miR-543 increased SIRT1 expression. MiR-543 directly targeted the 3′-UTR of SIRT1, and both of the two binding sites contributed to the inhibitory effects. In gastric epithelium-derived cell lines, miR-543 promoted cell proliferation and cell cycle progression, and overexpression of SIRT1 rescued the above effects of miR-543. The inhibitory effects of miR-543 on SIRT1 were also validated using clinical gastric cancer samples. Moreover, we found that miR-543 expression was positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis in gastric cancer patients. Our results identify a new regulatory mechanism of miR-543 on SIRT1 expression in gastric cancer, and raise the possibility that the miR-543/SIRT1 pathway may serve as a potential target for the treatment of gastric cancer. - Highlights: • SIRT1 is a novel target of miR-543. • miR-543 promotes gastric cancer cell proliferation and cell cycle progression by targeting SIRT1. • miR-543 is upregulated in GC and positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis. • miR-543 is negatively correlated with SIRT1 expression in gastric cancer tissues.

  18. A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines.

    Science.gov (United States)

    Shi, Yi; Sun, Lin; Chen, Ge; Zheng, Dongyan; Li, Li; Wei, Wanguo

    2015-12-01

    Breast cancer is one of the most significant causes of female cancer death worldwide. Paclitaxel, an extensively used breast cancer chemotherapeutic has limited success due to drug resistance. 2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid (BIBR1532), a small molecule pharmacological inhibitor of telomerase activity, can inhibit human cancer cell proliferation as well. Thus, to enhance breast cancer treatment efficacy, we studied the combination of BIBR1532 and paclitaxel in breast cancer cell lines. Cell viability assays revealed that BIBR1532 or paclitaxel alone inhibited proliferation in a dose-dependent manner, and combining the drugs synergistically induced growth inhibition in all breast cell lines tested independent of their p53, ER, and HER2 status. The drug combination also synergistically inhibited colony formation of MCF-7 cells in a dose-dependent manner. Annexin V-PI staining and Western blot assays on PARP cleavage and caspase-8 and caspase-3 revealed that BIBR1532 in combination with paclitaxel was more potent than either agent alone in promoting MCF-7 cell apoptosis. Cell cycle analysis indicated that BIBR1532 induced a G1 phase arrest and paclitaxel arrested cells at the G2/M phase. The drug combination dramatically blocked S cells from entering the G2/M phase. Our results suggest the potential of telomerase inhibition as an effective breast cancer treatment and that used in conjunction with paclitaxel; it may potentiate tumor cytotoxicity.

  19. MUS81 is associated with cell proliferation and cisplatin sensitivity in serous ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Suhong; Zheng, Hui [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wen, Xuemei [Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Sun, Jiajun; Wang, Yanchun; Gao, Xiang; Guo, Lin [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Lu, Renquan, E-mail: lurenquan@126.com [Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-08-05

    The dysfunction of DNA damage repair (DDR) pathway contributes to tumorigenesis and drug-resistance in cancer. MUS81 is a member of the conserved xeroderma pigmentosum group F (XPF) family protein of endonucleases, which is important to the DDR pathway. However, the role of MUS81 in the development of ovarian cancer remains uncertain. To explore the expression of MUS81 and its association to serous ovarian cancer (SOC), 43 biopsies of SOC patients were detected by qRT-PCR, and 29 specimens were further performed by immunohistochemistry analysis. Here, we observed that MUS81 was over-expressed in SOC tissues at both transcript and protein levels, and the expression level of MUS81 protein in ovarian cancer cell lines was also higher than that in human normal ovarian surface epithelial cell line (HOSEpiC). We also found that down-regulation of MUS81 expression in ovarian cancer cells inhibited cell proliferation and colony formation ability, and influenced cell cycle progression. Moreover, inhibition of MUS81 expression induced cellular senescence and enhanced the antitumor effect of cisplatin. Down-regulation of MUS81 expression could suppress the growth and development of SOC. These results indicate that MUS81 might play important roles in the progression of SOC and influence the antitumor effect of cisplatin. - Highlights: • MUS81 was overexpression in serous ovarian cancer (SOC). • Meanwhile down-regulation of inhibited cell proliferation and influenced cell cycle progression. • Inhibition of MUS81 induced cell cellular senescence and enhanced the antitumor effect of cisplatin. • Down-regulation of MUS81 expression could suppress the growth and development of SOC.

  20. [Effects of simvastatin on the proliferation, invasion and radiosensitivity in Lewis lung cancer cell line].

    Science.gov (United States)

    Yu, S F; Cheng, J; Geng, S; Gao, S

    2017-04-23

    Objective: To investigate the effects of simvastatin on proliferation, invasion and radiosensitivity of mouse Lewis lung cancer cell line in vitro. Methods: The inhibitory effects of simvastatin on proliferation of Lewis lung cancer cells were detected by MTT assay. Matrigel invasion and migration assay was used to determine the invasion and motility ability of the Lewis cells. P38 activity was measured by p38 activity detection kit, and the expressions of p-p38, MKP-1, RhoA and MMP-2 were analyzed by Western blot. Lung cancer xenograft model was established in C57BL/6 mice. The mice were randomly divided into control group, simvastatin group, radiotherapy alone group and combined treatment group. The mice were killed 27 days after inoculation. The tumor mass, volume and lung metastatic nodules in the mice were compared. Results: The cell proliferation rates of 0 μmol/L, 10 μmol/L, 20 μmol/L and 30 μmol/L simvastatin groups were 100%, (87.0±9.0)%, (76.5±8.1)% and (67.0±7.3)%, respectively (Psimvastatin, radiotherapy group and combined treatment groups were 6.24±1.09, 3.07±0.71 g, 5.09±1.16, 2.43±0.53 g, 3.12±0.68, 1.96±0.62 g and 2.65±0.38, 1.12±0.43 g, respectively (all Psimvastatin groups (all PSimvastatin inhibits the proliferation of Lewis cell line by inhibiting the activity of p38 and expression of p-p38. Meanwhile, simvastatin reduces the invasion and motility of Lewis cell line through down-regulating the expression of RhoA and MMP-2. When combined with radiotherapy, simvastatin can inhibit tumor growth and metastasis, and improve the treatment efficacy of radiotherapy synergistically.

  1. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Directory of Open Access Journals (Sweden)

    María Ll Valero

    Full Text Available Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  2. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Science.gov (United States)

    Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  3. Physiological normal levels of androgen inhibit proliferation of prostate cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Weitao Song

    2014-12-01

    Full Text Available For more than 70 years, it has been believed that a severe reduction of serum androgen levels caused regression of prostate cancer (PCa and that increasing androgen levels enhanced growth of PCa. However, numerous recent studies have questioned this traditional belief. In our study, LNCaP and MDA PCa 2b PCa cells were treated with various levels of androgens for 10 or 20 days, and the cell growth was measured with crystal violet mitogenic assay. The results indicated that the effect of androgens on the proliferation of PCa cells occurs in a biphasic pattern, with the androgen levels promoting optimal cell growth at approximately 0.23 ng ml−1 for LNCaP cells and between 1 and 2 ng ml−1 for MDA PCa 2b cells. Both of the optimal androgen levels are within the adult men's physiological low range (<2.4 ng ml−1 . At lower concentrations than the optimal androgen level, increasing androgen concentration promoted the proliferation of PCa cells. However, at the higher concentrations, increasing androgen concentration resulted in a dose-dependent proliferative inhibition. We conclude that physiologically normal levels of androgen inhibit the proliferation of PCa cells in vitro. However, at very low levels androgens are essential for initial growth of PCa cells.

  4. PKI-587 and sorafenib alone and in combination on inhibition of liver cancer stem cell proliferation.

    Science.gov (United States)

    Gedaly, Roberto; Galuppo, Roberto; Musgrave, Yolanda; Angulo, Paul; Hundley, Jonathan; Shah, Malay; Daily, Michael F; Chen, Changguo; Cohen, Donald A; Spear, Brett T; Evers, B Mark

    2013-11-01

    Deregulated Ras/Raf/mitogen-activated protein kinase and PI3 K/AKT/mTOR signaling pathways are significant in hepatocellular carcinoma proliferation (HCC). In this study we evaluated differences in the antiproliferative effect of dual PI3 K/Akt/mTOR and Ras/Raf/mitogen-activated protein kinase inhibition of non liver cancer stem cell lines (PLC and HuH7) and liver cancer stem cell (LCSC) lines (CD133, CD44, CD24, and aldehyde dehydrogenase 1-positive cells). Flow cytometry was performed on the resulting tumors to identify the LCSC markers CD133, CD44, CD24, and aldehyde dehydrogenase 1. Methylthiazol tetrazolium assay was used to assess cellular proliferation. Finally, a Western blot assay was used to evaluate for inhibition of specific enzymes in these two signaling pathways. Using flow cytometry, we found that LCSC contain 64.4% CD133 + cells, 83.2% CD44 + cells, and 96.4% CD24 + cells. PKI-587 and sorafenib caused inhibiton of LCSC and HCC cell proliferation. PLC cells were more sensitive to PKI-587 than LCSC or Huh7 (P PKI-587 and sorafenib caused significantly more inhibition than monotherapy in HuH7, PLC, and LCSC. Using the methylthiazol tetrazolium assay, we found that the LCSC proliferation was inhibited with sorafenib monotherapy 39% at 5 μM (P PKI-587 at 0.1 μM (P = 0.002, n = 12) compared with control. The combination of PKI-587 and sorafenib, however, synergistically inhibited LCSC proliferation by 86% (P = 0.002; n = 12). LCSC (CD133+, CD44+, CD24+) were able to develop very aggressive tumors with low cell concentrations at 4 to 6 wk. Cells CD133+, CD44+, CD24+, which demonstrated at least moderate resistance to therapy in vitro. The combination of PKI-587 and sorafenib was better than either drug alone at inhibiting of LCSC and on HCC cell proliferation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription.

    Science.gov (United States)

    Kaukonen, Riina; Mai, Anja; Georgiadou, Maria; Saari, Markku; De Franceschi, Nicola; Betz, Timo; Sihto, Harri; Ventelä, Sami; Elo, Laura; Jokitalo, Eija; Westermarck, Jukka; Kellokumpu-Lehtinen, Pirkko-Liisa; Joensuu, Heikki; Grenman, Reidar; Ivaska, Johanna

    2016-08-04

    Tissue homeostasis is dependent on the controlled localization of specific cell types and the correct composition of the extracellular stroma. While the role of the cancer stroma in tumour progression has been well characterized, the specific contribution of the matrix itself is unknown. Furthermore, the mechanisms enabling normal-not cancer-stroma to provide tumour-suppressive signals and act as an antitumorigenic barrier are poorly understood. Here we show that extracellular matrix (ECM) generated by normal fibroblasts (NFs) is softer than the CAF matrix, and its physical and structural features regulate cancer cell proliferation. We find that normal ECM triggers downregulation and nuclear exit of the histone demethylase JMJD1a resulting in the epigenetic growth restriction of carcinoma cells. Interestingly, JMJD1a positively regulates transcription of many target genes, including YAP/TAZ (WWTR1), and therefore gene expression in a stiffness-dependent manner. Thus, normal stromal restricts cancer cell proliferation through JMJD1a-dependent modulation of gene expression.

  6. Catechol-O-methyltransferase inhibits colorectal cancer cell proliferation and invasion.

    Science.gov (United States)

    Wu, Wenming; Wu, Qiao; Hong, Xiafei; Xiong, Guangbing; Xiao, Yi; Zhou, Jiaolin; Wang, Wenze; Wu, Huanwen; Zhou, Li; Song, Wei; Dai, Hongmei; Qiu, Huizhong; Zhao, Yupei

    2015-01-01

    Catechol-O-methyltransferase (COMT) has been reported as an important molecule in various types of cancers. The biological function of COMT in colorectal cancer (CRC) has not yet been fully investigated. We constructed a transient transfection of a CRC cell lines to up- and downregulate COMT expression level and tested the proliferative, invasion ability in vitro. We also constructed a stable transduced CRC cell line and conducted tumor-forming capacity experiment in mouse xenograft model in vivo. In vitro experiment showed that COMT inhibited the cell proliferation by regulating p-Akt, PTEN and inhibited G1 to S phase transition by regulating p53, p27, and cyclinD1. COMT inhibited invasion by regulating E-cadherin. In vivo experiment showed decreased tumor growth in COMT overexpressing cell line. COMT has tumor-suppressive functions for CRC cell lines in vitro and in vivo experiments. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  7. Phytochemical-induced nucleolar stress results in the inhibition of breast cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Anna Lewinska

    2017-08-01

    Full Text Available The nucleolus is a stress sensor and compromised nucleolar activity may be considered as an attractive anticancer strategy. In the present study, the effects of three plant-derived natural compounds, i.e., sulforaphane (SFN, ursolic acid (UA and betulinic acid (BA on nucleolar state were investigated in breast cancer cell lines of different receptor status, namely MCF-7, MDA-MB-231 and SK-BR-3 cells. Cytostatic action of phytochemicals against breast cancer cells was observed at low micromolar concentration window (5–20 µM and mediated by elevated p21 levels, and cell proliferation of SFN-, UA- and BA-treated normal human mammary epithelial cells (HMEC was unaffected. Phytochemical-mediated inhibition of cell proliferation was accompanied by increased levels of superoxide and protein carbonylation that lead to disorganization of A- and B-type lamin networks and alterations in the nuclear architecture. Phytochemicals promoted nucleolar stress as judged by the nucleoplasmic translocation of RNA polymerase I-specific transcription initiation factor RRN3/TIF-IA, inhibition of new rRNA synthesis and decrease in number of nucleoli. Phytochemicals also decreased the levels of NOP2, proliferation-associated nucleolar protein p120, and WDR12 required for maturation of 28S and 5.8S ribosomal RNAs and formation of the 60S ribosome, and phosphorylation of S6 ribosomal protein that may result in diminished translation and inhibition of cell proliferation. In summary, three novel ribotoxic stress stimuli were revealed with a potential to be used in nucleolus-focused anticancer therapy.

  8. GSE1 negative regulation by miR-489-5p promotes breast cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Peng, E-mail: chaiyisheng0508@sina.com [Department of General Surgery, The People' s Hospital of Bozhou, Bozhou 236800 (China); Tian, Jingzhong [Department of General Surgery, The People' s Hospital of Bozhou, Bozhou 236800 (China); Zhao, Deyin [Dept of General Surgery, The Hospital of Suzhou, Suzhou 234000 (China); Zhang, Hongyan; Cui, Jian [Department of General Surgery, The People' s Hospital of Bozhou, Bozhou 236800 (China); Ding, Keshuo [Department of Pathology, Anhui Medical University, Hefei 230022 (China); Liu, Bin, E-mail: 13399519008@163.com [Dept of Vascular Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China)

    2016-02-26

    Gse1 coiled-coil protein (GSE1), also known as KIAA0182, is a proline rich protein. However, the function of GSE1 is largely unknown. In this study, we reported that GSE1 is overexpression in breast cancer and silencing of GSE1 significantly suppressed breast cancer cells proliferation, migration and invasion. Furthermore, GSE1 was identified as a direct target of miR-489-5p, which is significantly reduced in breast cancer tissues. In addition, forced expression of miR-489-5p suppressed breast cancer cells proliferation, migration and invasion. Moreover, depletion of GSE1 by siRNAs significantly abrogated the enhanced proliferation, migration and invasion of breast cancer cells consequent to miR-489-5p depletion. Taken together, these findings suggest that GSE1 may function as a novel oncogene in breast cancer and it can be regulated by miR-489-5p. - Highlights: • GSE1 is overexpressed in breast cancer and increased GSE1 expression predicts poor prognosis in breast cancer patients. • Knockdown of GSE1 inhibits breast cancer cell proliferation, migration and invasion. • GSE1 is a direct target of miR-489-5p. • Forced expression of miR-489-5p inhibits breast cancer cell proliferation, migration and invasion.

  9. Inhibition of Breast Cancer Cell Proliferation and In Vitro Tumorigenesis by a New Red Apple Cultivar.

    Science.gov (United States)

    Schiavano, Giuditta Fiorella; De Santi, Mauro; Brandi, Giorgio; Fanelli, Mirco; Bucchini, Anahi; Giamperi, Laura; Giomaro, Giovanna

    2015-01-01

    The aim of this study was to evaluate the antiproliferative activity in breast cancer cells and the inhibition of tumorigenesis in pre-neoplastic cells of a new apple cultivar with reddish pulp, called the Pelingo apple. The antiproliferative activity was evaluated in MCF-7 and MDA-MB-231 human breast cancer cells. The inhibition of tumorigenesis was performed in JB6 promotion-sensitive (P+) cells. Results showed that Pelingo apple juice is characterized by a very high polyphenol content and strongly inhibited breast cancer cell proliferation. Its antiproliferative activity was found to be higher than the other five apple juices tested. Pelingo juice induced cell accumulation in the G2/M phase of the cell cycle and autophagy through overexpression of p21, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) activity and an increase in lipidated microtubule-associated protein-1 light chain-3 beta (LC3B). Remarkably, Pelingo juice inhibited the 12-o-tetra-decanoyl-phorbol-13-acetate (TPA)-induced tumorigenesis of JB6 P+ cells, suppressing colony formation in semi-solid medium and TPA-induced ERK1/2 phosphorylation. Our data indicate that the Pelingo apple is rich in food components that can markedly inhibit in vitro tumorigenesis and growth of human breast cancer cells and could provide natural bioactive non-nutrient compounds, with potential chemopreventive activity.

  10. miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongfang; Xu, Lianhong; Jiang, Lixin, E-mail: jianglx66766@163.com

    2015-03-13

    MicroRNAs (miRNAs) are short, non-coding RNAs (∼22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271 in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention. - Highlights: • Overexpression of miR-1271 promoted proliferation and invasion of NSCLC cells. • miR-1271 inhibitor inhibited the proliferation and invasion of NSCLC cells. • miR-1271 targets 3′ UTR of HOXA5 in NSCLC cells. • miR-1271 negatively regulates HOXA5 in NSCLC cells.

  11. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  12. Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer.

    Science.gov (United States)

    Hanse, E A; Ruan, C; Kachman, M; Wang, D; Lowman, X H; Kelekar, A

    2017-07-06

    Increased glucose consumption is a hallmark of cancer cells. The increased consumption and subsequent metabolism of glucose during proliferation creates the need for a constant supply of NAD, a co-factor in glycolysis. Regeneration of the NAD required to support enhanced glycolysis has been attributed to the terminal glycolytic enzyme, lactate dehydrogenase (LDH). However, loss of glucose carbons to biosynthetic pathways early in glycolysis reduces the carbon supply to LDH. Thus, alternative routes for NAD regeneration must exist to support the increased glycolytic rate while allowing for the diversion of glucose to generate biomass and support proliferation. Here we demonstrate, using a variety of cancer cell lines as well as activated primary T cells, that cytosolic malate dehydrogenase 1 (MDH1) is an alternative to LDH as a supplier of NAD. Moreover, our results indicate that MDH1 generates malate with carbons derived from glutamine, thus enabling utilization of glucose carbons for glycolysis and for biomass. Amplification of MDH1 occurs at an impressive frequency in human tumors and correlates with poor prognosis. Together, our findings suggest that proliferating cells rely on both MDH1 and LDH to replenish cytosolic NAD, and that therapies designed at targeting glycolysis must consider both dehydrogenases.

  13. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  14. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Al-Menhali, Afnan; Al-Rumaihi, Aisha; Al-Mohammed, Hana; Al-Mazrooey, Hana; Al-Shamlan, Maryam; AlJassim, Meaad; Al-Korbi, Noof; Eid, Ali Hussein

    2015-01-01

    Colorectal cancer (CRC) remains one of the most common malignancies and a leading cause of cancer-related deaths. Its prognosis remains poor for patients with several grades of this disease. This underscores the need for alternative modalities, such as herbal medicines, to treat this disease. A commonly used plant that appears to be of high medicinal value is Thymus vulgaris L. However, the effects of this plant on the malignant behavior of human CRC cells remains poorly investigated. This study was undertaken to determine the anticancer efficacy of T. vulgaris extract (TVE) in CRC cells. Our results show that TVE inhibits proliferation in a concentration- and time-dependent fashion. This decreased proliferation was concomitant with increased apoptotic cell death as evidenced by increased caspase3/7 activity. Moreover, TVE also decreased adhesion to fibronectin in a concentration-dependent manner. The migratory and invasive capacities of HCT116 cells were significantly inhibited by TVE. Taken together, these data suggest that the TVE inhibits malignant phenotype of colon cancer cells. Therefore, T. vulgaris could have an anticancer effect and that some of its bioactive compounds may prove to be effective treatment modalities for human CRC.

  15. New steroidal aromatase inhibitors: Suppression of estrogen-dependent breast cancer cell proliferation and induction of cell death

    Directory of Open Access Journals (Sweden)

    Roleira Fernanda MF

    2008-07-01

    Full Text Available Abstract Background Aromatase, the cytochrome P-450 enzyme (CYP19 responsible for estrogen biosynthesis, is an important target for the treatment of estrogen-dependent breast cancer. In fact, the use of synthetic aromatase inhibitors (AI, which induce suppression of estrogen synthesis, has shown to be an effective alternative to the classical tamoxifen for the treatment of postmenopausal patients with ER-positive breast cancer. New AIs obtained, in our laboratory, by modification of the A and D-rings of the natural substrate of aromatase, compounds 3a and 4a, showed previously to efficiently suppress aromatase activity in placental microsomes. In the present study we have investigated the effects of these compounds on cell proliferation, cell cycle progression and induction of cell death using the estrogen-dependent human breast cancer cell line stably transfected with the aromatase gene, MCF-7 aro cells. Results The new steroids inhibit hormone-dependent proliferation of MCF-7aro cells in a time and dose-dependent manner, causing cell cycle arrest in G0/G1 phase and inducing cell death with features of apoptosis and autophagic cell death. Conclusion Our in vitro studies showed that the two steroidal AIs, 3a and 4a, are potent inhibitors of breast cancer cell proliferation. Moreover, it was also shown that the antiproliferative effects of these two steroids on MCF-7aro cells are mediated by disrupting cell cycle progression, through cell cycle arrest in G0/G1 phase and induction of cell death, being the dominant mechanism autophagic cell death. Our results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer.

  16. Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines.

    Science.gov (United States)

    Destefanis, Michele; Viano, Marta; Leo, Christian; Gervino, Gianpiero; Ponzetto, Antonio; Silvagno, Francesca

    2015-01-01

    To date, the effects of electromagnetic fields on cell metabolism have been overlooked. The objective of the present study was to investigate the influence of extremely low frequency electromagnetic fields (ELF-EMF) over mitochondrial metabolism and the consequent impact on cancer cell growth. The effects of ELF-EMF on cancer growth were investigated in several human cancer cell lines by crystal violet assay. The modulation of mitochondrial activity was assessed by cytofluorimetric evaluation of membrane potential and by real-time quantification of mitochondrial transcription. Moreover the expression of several mitochondrial proteins and their levels in the organelle were evaluated. The long-term exposure to ELF-EMF reduced the proliferation of several cancer cell lines and the effect was associated to an increased mitochondrial activity without evident changes in ATP levels. The results of our experiments excluded a transcriptional modulation of mitochondrial respiratory complexes, rather suggesting that ELF-EMF increased the energy demand. The altered mitochondrial metabolism led to changes in mitochondrial protein profile. In fact we found a downregulated expression of mitochondrial phospho-ERK, p53 and cytochrome c. The results of the present study indicate that ELF-EMF can negatively modulate cancer cell growth increasing respiratory activity of cells and altering mitochondrial protein expression.

  17. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells.

    Science.gov (United States)

    Wang, Yanli; Kong, Hui; Zeng, Xiaoning; Liu, Wenrui; Wang, Zailiang; Yan, Xiaopei; Wang, Hong; Xie, Weiping

    2016-04-01

    Lung cancer is the leading cause of cancer death, and it is widely accepted that chronic inflammation is an important risk for the development of lung cancer. Now, it is recognized that the nucleotide-binding and oligomerization domain (NOD) like receptors (NLRs)-containing inflammasomes are involved in cancer-related inflammation. This study was designed to investigate the effects of NLR family pyrin domain containing protein 3 (NLRP3) inflammasome on the proliferation and migration of lung adenocarcinoma cell line A549. Using 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, scratch assay, and Transwell migration assay, we showed that activation of the NLRP3 inflammasome by LPS+ATP enhanced the proliferation and migration of A549 cells. Western blot analysis showed that activation of phosphorylation of Akt, ERK1/2, CREB and the expression of Snail increased, while the expression of E-cadherin decreased after the activation of NLRP3 inflammasome. Moreover, these effects were inhibited by the following treatments: i) downregulating the expression of NLRP3 by short hairpin RNA (shRNA) interference, ii) inhibiting the activation of NLRP3 inflammasome with a caspase-1 inhibitor, iii) blocking the interleukin-1β (IL-1β) and IL-18 signal transduction with IL-1 receptor antagonist (IL-1Ra) and IL-18 binding protein (IL-18BP). Collectively, these results indicate that NLRP3 inflammasome plays a vital role in regulating the proliferation and migration of A549 cells and it might be a potential target for the treatment of lung cancer.

  18. GEP oncogene promotes cell proliferation through YAP activation in ovarian cancer.

    Science.gov (United States)

    Yagi, H; Asanoma, K; Ohgami, T; Ichinoe, A; Sonoda, K; Kato, K

    2016-08-25

    G-protein-coupled receptors (GPCRs) and their ligands function in the progression of human malignancies. Gα12 and Gα13, encoded by GNA12 and GNA13, respectively, are referred to as the GEP oncogene and are implicated in tumor progression. However, the molecular mechanisms by which Gα12/13 activation promotes cancer progression are not fully elucidated. Here, we demonstrate elevated expression of Gα12/13 in human ovarian cancer tissues. Gα12/13 activation did not promote cellular migration in the ovarian cancer cell lines examined. Rather, Gα12/13 activation promoted cell growth. We used a synthetic biology approach using chimeric G proteins and GPCRs activated solely by artificial ligands to selectively trigger signaling pathways downstream of specific G proteins. We found that Gα12/13 promotes proliferation of ovarian cancer cells by activating the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway. Furthermore, we reveal that inhibition of YAP by short hairpin RNA or a specific inhibitor prevented the growth of ovarian cancer cells. Therefore, YAP may be a suitable therapeutic target in ovarian cancer.

  19. CacyBP/SIP nuclear translocation induced by gastrin promotes gastric cancer cell proliferation.

    Science.gov (United States)

    Zhai, Hui-Hong; Meng, Juan; Wang, Jing-Bo; Liu, Zhen-Xiong; Li, Yuan-Fei; Feng, Shan-Shan

    2014-08-07

    To investigate the role of nuclear translocation of calcyclin binding protein, also called Siah-1 interacting protein (CacyBP/SIP), in gastric carcinogenesis. The expression of CacyBP/SIP protein in gastric cancer cell lines was detected by Western blot. Immunofluorescence experiments were performed on gastric cancer cell lines that had been either unstimulated or stimulated with gastrin. To confirm the immunofluorescence findings, the relative abundance of CacyBP/SIP in nuclear and cytoplasmic compartments was assessed by Western blot. The effect of nuclear translocation of CacyBP/SIP on cell proliferation was examined using MTT assay. The colony formation assay was used to measure clonogenic cell survival. The effect of CacyBP/SIP nuclear translocation on cell cycle progression was investigated. Two CacyBP/SIP-specific siRNA vectors were designed and constructed to inhibit CacyBP/SIP expression in order to reduce the nuclear translocation of CacyBP/SIP, and the expression of CacyBP/SIP in stably transfected cells was determined by Western blot. The effect of inhibiting CacyBP/SIP nuclear translocation on cell proliferation was then assessed. CacyBP/SIP protein was present in most of gastric cancer cell lines. In unstimulated cells, CacyBP/SIP was distributed throughout the cytoplasm; while in stimulated cells, CacyBP/SIP was found mainly in the perinuclear region. CacyBP/SIP nuclear translocation generated a growth-stimulatory effect on cells. The number of colonies in the CacyBP/SIP nuclear translocation group was significantly higher than that in the control group. The percentage of stimulated cells in G1 phase was significantly lower than that of control cells (69.70% ± 0.46% and 65.80% ± 0.60%, control cells and gastrin-treated SGC7901 cells, P = 0.008; 72.99% ± 0.46% and 69.36% ± 0.51%, control cells and gastrin-treated MKN45 cells, P = 0.022). CacyBP/SIPsi1 effectively down-regulated the expression of CacyBP/SIP, and cells stably transfected by Cacy

  20. MALAT1 promotes cell proliferation in gastric cancer by recruiting SF2/ASF.

    Science.gov (United States)

    Wang, Junqing; Su, Liping; Chen, Xuehua; Li, Pu; Cai, Qu; Yu, Beiqin; Liu, Bingya; Wu, Weize; Zhu, Zhenggang

    2014-06-01

    The functions of long non-coding RNAs (lncRNAs) in gastric cancer (GC) remain largely unknown. MALAT1 is a kind of lncRNA that had been validated as a pivotal metastasis and prognosis mark in lung adenocarcinoma. In this study, we found that MALAT1 was aberrantly highly expressed in GC cell lines (SGC-7901, MKN-45 and SUN-16), and induced specific distribution and over-expression of SF2/ASF in nucleolus. Knock-down of MALAT1 or SF2/ASF in SGC-7901 cells respectively induced significant arrest of cell cycle in G0/G1 phase along with a remarkable suppression of cell proliferation, and the nuclear distribution and expression of SF2/ASF was significantly impaired when MALAT1 was depleted. However, over-expression of SF2/ASF exhibited no effect on rescuing the cell proliferation suppression by MALAT1 depletion. These results suggest that MALAT1 may function as a promoter of GC cell proliferation partly by regulating SF2/ASF, and our findings may provide us a likely biomarker and a potential target for GC diagnosis and therapeutic treatment. Copyright © 2014. Published by Elsevier Masson SAS.

  1. Angiomotin regulates prostate cancer cell proliferation by signaling through the Hippo-YAP pathway

    Science.gov (United States)

    Zeng, Hao; Cheng, Chien-Jui; Lee, Yu-Chen; Yu, Guoyu; Lin, Song-Chang; Creighton, Chad J.; Yu-Lee, Li-Yuan; Lin, Sue-Hwa

    2017-01-01

    Angiomotin (AMOT) is a family of proteins found to be a component of the apical junctional complex of vertebrate epithelial cells and is recently found to play important roles in neurofibromatosis type 2 (NF-2). Whether AMOT plays a role in prostate cancer (PCa) is unknown. AMOT is expressed as two isoforms, AMOTp80 and AMOTp130, which has a 409 aa N-terminal domain that is absent in AMOTp80. Both AMOTp80 and AMOTp130 are expressed in LNCaP and C4-2B4, but at a low to undetectable level in PC3, DU145, and BPH1 cells. Further study showed that AMOTp130 and AMOTp80 have distinct functions in PCa cells. We found that AMOTp80, but not AMOT p130, functioned as a tumor promoter by enhancing PCa cell proliferation. Mechanistic studies showed that AMOTp80 signaled through the Hippo pathway by promoting nuclear translocation of YAP, resulting in an increased expression of YAP target protein BMP4. Moreover, inhibition of BMP receptor activity by LDN-193189 abrogates AMOTp80-mediated cell proliferation. Together, this study reveals a novel mechanism whereby the AMOTp80-Merlin-MST1-LATS-YAP-BMP4 pathway leads to AMOTp80-induced tumor cell proliferation. PMID:28052036

  2. The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro

    Directory of Open Access Journals (Sweden)

    Chen Baoan

    2010-01-01

    Full Text Available Abstract Nanomaterials have widely been used in the field of biological and biomedicine, such as tissue imaging, diagnosis and cancer therapy. In this study, we explored the cytotoxicity and photodynamic effect of different-sized ZnO nanoparticles to target cells. Our observations demonstrated that ZnO nanoparticles exerted dose-dependent and time-dependent cytotoxicity for cancer cells like hepatocellular carcinoma SMMC-7721 cells in vitro. Meanwhile, it was observed that UV irradiation could enhance the suppression ability of ZnO nanoparticles on cancer cells proliferation, and these effects were in the size-dependent manner. Furthermore, when ZnO nanoparticles combined with daunorubicin, the related cytotoxicity of anticancer agents on cancer cells was evidently enhanced, suggesting that ZnO nanoparticles could play an important role in drug delivery. This may offer the possibility of the great potential and promising applications of the ZnO nanoparticles in clinical and biomedical areas like photodynamic cancer therapy and others.

  3. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    Science.gov (United States)

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines.

    Science.gov (United States)

    Gastón, Repossi; María Eugenia, Pasqualini; Das, Undurti N; Eynard, Aldo R

    2017-01-01

    Evidence suggests that quantity and quality of dietary polyunsaturated fatty acids (PUFAs) play a role in the development of cancer. However, the mechanisms involved in this interaction(s) are not clear. Endocannabinoids are lipid metabolites known to have growth modulatory actions. We studied the effect of supplementation with PUFAs ω-6 and ω-3 (essential fatty acids, EFAs), saturated and monounsaturated fatty acids (non-EFAs) on the growth of tumor cells and modifications in their endocannabinoid content. Cell cultures of human glioblastoma (T98G) and breast cancer (MCF7) were supplemented with 50 or 100 mmol EFAs and non-EFAs for 72 h. Cell proliferation was then determined by MTT, anandamide (AEA) levels by HPLC, total fatty acids profiles by GLC, CB1 receptor expression by WB and FAAH activity by spectrophotometric method. Fatty acids profile reflected the incorporation of the lipids supplemented in each assay. Arachidonic acid (EFA ω-6) supplementation increased AEA levels and inhibited the growth of T98G, whereas palmitic acid (non-EFA) enhanced their proliferation. In breast cancer (MCF7) cells, eicosapentaenoic acid (EFA ω-3) reduced and oleic acid (non-EFA) enhanced their proliferation. CB1 expression was higher in T98G and no differences were observed in FAAH activity. The growth of tumor cells can be differentially modulated by fatty acids and, at least in part, can be attributed to their ability to act on the components of the endocannabinoid system. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  5. Correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2017-04-01

    Full Text Available Objective: To study the correlation of thyroid papillary carcinoma CEUS characteristics with cancer cell proliferation and invasion. Methods: A total of 128 patients with thyroid papillary carcinoma who received surgical treatment in the hospital between May 2013 and May 2016 were collected, CEUS was used to make clear the peak intensity (PI and area under the curve (AUC of tumor tissue and surrounding normal tissue, and the median of PI and AUC was referred to further divide the patients into high PI group and low PI group as well as high AUC group and low AUC group, 64 cases in each group. Fluorescent quantitative PCR was used to determine proliferation and invasion gene mRNA expression in tumor tissues. Results: PI and AUC levels in tumor tissue were lower than those in surrounding normal tissue; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low PI group were higher than those of high PI group, and invasion gene Ki-67 mRNA expression was higher than that of high PI group while P53 and MRP-1 mRNA expression were lower than those of high PI group; proliferation genes EZH2, Livin, hTERT, HMGA1 and Wip1 mRNA expression of low AUC group were higher than those of high AUC group, and invasion gene Ki-67 mRNA expression was higher than that of high AUC group while P53 and MRP-1 mRNA expression were lower than those of high AUC group. Conclusion: Thyroid papillary carcinoma CEUS parameters PI and AUC levels can quantifiably reflect the cancer cell proliferation and invasion activity.

  6. Long Noncoding RNA ROR Regulates Proliferation, Invasion, and Stemness of Gastric Cancer Stem Cell.

    Science.gov (United States)

    Wang, Shuai; Liu, Feng; Deng, Junji; Cai, Xinsheng; Han, Junqing; Liu, Qi

    2016-10-01

    Gastric cancer remains an incurable malignance and the second leading cause of cancer death globally. Recent progress in gastric cancer research has demonstrated the crucial roles of cancer stem cells (CSCs) in the development, metastasis, and drug resistance of this disease. Various studies have highlighted the role of long noncoding RNAs (lncRNAs) in the pathogenesis of gastric cancer. In this study, through fluorescence-activated cell sorting, we isolated gastric CSCs (GCSCs) from MKN-45 cells and demonstrated for the first time that lncRNA ROR was highly expressed in CD133+ GCSCs. Overexpression of lncRNA ROR significantly increased, but knockdown of lncRNA ROR inhibited the proliferation and invasion of GCSCs. Most importantly, lncRNA ROR led to upregulation of several key stemness transcriptional factors, such as OCT4, SOX2, and NANOG, as well as CD133 GCSC. Our data demonstrated that lncRNA ROR was associated with core stemness transcriptional factors and the pluripotent state of GCSCs. These results further improved our understanding of the functional cross talking network during development of GCSCs and may provide novel target for the diagnostics and therapeutics of gastric cancer.

  7. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China); Zheng, Fangxia [Department of Radiotherapy, Liaocheng People’s Hospital, Liaocheng 252000 (China); Yu, Gang [Department for Disease Control, Tumor Hospital of Liaocheng, Liaocheng 252000 (China); Yin, Yanhua, E-mail: yinyanhuablk@163.com [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China); Lu, Qingyang [Department of Pathology, Liaocheng People’s Hospital, Liaocheng 252000 (China)

    2013-11-01

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3′-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3′-untranslated region (3′-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the

  8. Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jing-Iong Yang

    2016-01-01

    Full Text Available Roe protein hydrolysates were reported to have antioxidant property but the anticancer effects were less addressed, especially for oral cancer. In this study, we firstly used the ultrafiltrated roe hydrolysates (URH derived from giant grouper (Epinephelus lanceolatus to evaluate the impact of URH on proliferation against oral cancer cells. We found that URH dose-responsively reduced cell viability of two oral cancer cells (Ca9-22 and CAL 27 in terms of ATP assay. Using flow cytometry, URH-induced apoptosis of Ca9-22 cells was validated by morphological features of apoptosis, sub-G1 accumulation, and annexin V staining in dose-responsive manners. URH also induced oxidative stress in Ca9-22 cells in terms of reactive oxygen species (ROS/superoxide generations and mitochondrial depolarization. Taken together, these data suggest that URH is a potential natural product for antioral cancer therapy.

  9. Oxymatrine inhibits proliferation of human bladder cancer T24 cells by inducing apoptosis and cell cycle arrest.

    Science.gov (United States)

    Li, Shun; Zhang, Yi; Liu, Qingyong; Zhao, Qingli; Xu, Liuyu; Huang, Shengliang; Huang, Shiming; Wei, Xuebin

    2017-06-01

    Oxymatrine has been shown to exert an antitumor effect on several types of cancer cells. However, the role of oxymatrine in bladder cancer has not yet been evaluated. The present study was designed to investigate the potential anti-proliferative effect of oxymatrine on bladder cancer T24 cells and the possible mechanisms involved. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine cell growth, and the cell morphology was examined using hematoxylin and eosin staining, wrights' staining and electron microscopy. The caspase-3 and survivin mRNA and protein levels were assessed using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The expression of tumor protein p53 (p53), Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2) were analyzed using immunohistochemistry. Oxymatrine inhibited the proliferation of the T24 cells in a dose- and time-dependent manner. Oxymatrine also induced apoptosis and cell cycle arrest in the cells, in association with the upregulation of caspase-3 and Bax, and the downregulation of survivin, Bcl-2 and p53 expression. Overall, oxymatrine inhibits the proliferation of human bladder cancer cells by inducing apoptosis and cell cycle arrest via mechanisms that involve p53-Bax signaling and the downregulation of survivin expression.

  10. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    Energy Technology Data Exchange (ETDEWEB)

    Sávio, André Luiz Ventura, E-mail: savio.alv@gmail.com [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil); Nicioli da Silva, Glenda [UFOP – Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG (Brazil); Salvadori, Daisy Maria Fávero [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil)

    2015-01-15

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  11. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines.

    Science.gov (United States)

    Hu, Xiaolan; Lin, Shuxin; Yu, Daihua; Qiu, Shuifeng; Zhang, Xianqi; Mei, Ruhuan

    2010-12-01

    Salidroside (p-hydroxyphenethyl-beta-d-glucoside), which is present in all species of the genus Rhodiola, has been reported to have a broad spectrum of pharmacological properties. The present study, for the first time, focused on evaluating the effects of the purified salidroside on the proliferation of various human cancer cell lines derived from different tissues, and further investigating its possible molecular mechanisms. Cell viability assay and [(3)H] thymidine incorporation were used to evaluate the cytotoxic effects of salidroside on cancer cell lines, and flow cytometry analyzed the change of cell cycle distribution induced by salidroside. Western immunoblotting further studied the expression changes of cyclins (cyclin D1 and cyclin B1), cyclin-dependent kinases (CDK4 and Cdc2), and cyclin-dependent kinase inhibitors (p21(Cip1) and p27(Kip1)). The results showed that salidroside inhibited the growth of various human cancer cell lines in concentration- and time-dependent manners, and the sensitivity to salidroside was different in those cancer cell lines. Salidroside could cause G1-phase or G2-phase arrest in different cancer cell lines, meanwhile, salidroside resulted in a decrease of CDK4, cyclin D1, cyclin B1 and Cdc2, and upregulated the levels of p27(Kip1) and p21(Cip1). Taken together, salidroside could inhibit the growth of cancer cells by modulating CDK4-cyclin D1 pathway for G1-phase arrest and/or modulating the Cdc2-cyclin B1 pathway for G2-phase arrest.

  12. Licochalcone A inhibiting proliferation of bladder cancer T24 cells by inducing reactive oxygen species production.

    Science.gov (United States)

    Jiang, Jiangtao; Yuan, Xuan; Zhao, Hong; Yan, Xinyan; Sun, Xiling; Zheng, Qiusheng

    2014-01-01

    The aim of this study was to determine the relationship between proliferation inhibition and the production of reactive oxygen species (ROS) induced by Licochalcone A (LCA). Cell viability was evaluated using sulforhodamine B (SRB) assay. Intracellular ROS level was assessed using the 2, 7-dichlorofluorescein diacetate (H2DCFDA) probe and dihydroethidium (DHE) probe assay. The results indicate that LCA inhibits human bladder cancer T24 proliferation in a concentration-dependent manner, with an IC50 value of approximately 55 μM. The LCA-induced ROS production is inhibited by the co-treatment of LCA and free radical scavenger N-acetyl-cysteine (NAC), on the contrary, the proliferation rate and ROS production increase when treated by the combination of LCA and L-buthionine-(S,R)-sulfoximine (BSO). The ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) decreases in a concentration-dependent manner. The results suggest that LCA inhibits proliferation by increasing intracellular ROS levels resulted in an oxidative stress status in T24 cells.

  13. Triticuside A, a dietary flavonoid, inhibits proliferation of human breast cancer cells via inducing apoptosis.

    Science.gov (United States)

    Shan, Yu; Cheng, Yan; Zhang, Yi; Guan, Fu-Qin; Sun, Hao; Ren, Xing-cong; Chen, Yu; Feng, Xu; Yang, Jin-Ming

    2013-01-01

    In this study we demonstrated that Triticuside A, one of the flavonoid compounds isolated from wheat bran, induced apoptosis and inhibited proliferation of human breast cancer cells. Triticuside A inhibited the proliferation of human breast cancer cells (MCF-7 and MDA-MB-231) in a dose-dependent manner but barely showed cytotoxicity to the normal human fibroblasts. Triticuside A-induced apoptosis was accompanied by a significant decrease of Mcl-1 and Bcl-2 proteins and by an increase of cleavage of caspases-3, -7, -9, and PARP. Triticuside A also suppressed the level of phospho-Akt and its downstream targets, mTOR and P70 S6 kinase. LY294002, a specific inhibitor of PI3K, significantly enhanced the Triticuside A-induced apoptosis. Moreover LY294002 not only downregulated the level of phospho-Akt but also enhanced the inhibition of Mcl-1 expression when combined with Triticuside A. Our results demonstrate for the first time the specific apoptogenic activity of Triticuside A in tumor cells and involvement of the mitochondrial apoptosis pathway and Akt/mTOR signaling pathway. Thus, Triticuside A may be a potentially useful wheat bran component that can be used for prevention or treatment of breast cancer.

  14. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells1

    Science.gov (United States)

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-01-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080

  15. beta-Adrenoreceptor antagonists reduce cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Işeri, Ozlem Darcansoy; Sahin, Feride Iffet; Terzi, Yunus Kasım; Yurtcu, Erkan; Erdem, S Remzi; Sarialioglu, Faik

    2014-11-01

    Propranolol, atenolol, and ICI118,551 are non-selective β-adrenergic receptor (AR), β1-AR, and β2-AR antagonists, respectively. We investigated the efficacy of propranolol, atenolol, and ICI118,551 on proliferation, migration, and invasion of non-stimulated breast (MCF7), colon (HT-29), and hepatocellular (HepG2) cancer cells. β-AR expression profiling of cells was performed by real time PCR. Cell proliferation was determined by MTT. Boyden chamber and scratch assays were performed to evaluate invasion and migration. All cell lines expressed β-ARs. ICI118,551 was the most cytotoxic, whereas atenolol was the least effective β-AR antagonist for 24, 48, and 72 h. Cell invasion was inhibited by ICI118,551 (45, 46, and 50% for MCF7, HT29, and HepG2, respectively) and propranolol (72, 65, and 90% for MCF7, HT29, and HepG2, respectively). Propranolol, atenolol, and ICI118,551 reduced migration of MCF7, HT-29, and HepG2 cells to varying extents depending on the application concentration and duration. Propranolol and atenolol reduced migration of MCF7 and HT-29 in a concentration-dependent manner, whereas migration of these cells decreased after 48 and 72 h of ICI118,551 applications. Beta2-AR antagonist seemed to be the most cytotoxic β-blocker on non-stimulated cancer cells. Propranolol and ICI118,551 were more effective than atenolol in inhibiting invasion and migration of non-stimulated MCF7 and HT-29 cells; ICI118,551 being the most potent. Concordantly, β2-selective blockage seemed to be more effective for non-stimulated cells. Effect of the selective β-AR antagonists showed variation depending on the concentration, incubation time, and histological origin of cells.

  16. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration.

    Science.gov (United States)

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie

    2014-03-28

    CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. [Influence of three central venous catheter biomedical materials on proliferation, apoptosis, and cell cycle of xuanwei lung cancer-05 cells].

    Science.gov (United States)

    Lei, Yujie; Zhou, Lan; Huang, Yunchao; Jin, Qilin; Liu, Xin; Chen, Ying; Rao, Zhongming; Chen, Xiaobo; Yang, Kaiyun

    2012-09-01

    To explore the influence of three central venous catheter biomedical materials (polyurethane, silicone, and polyvinyl chloride) on the proliferation, apoptosis, and cell cycle of Xuanwei Lung Cancer-05 (XWLC-05) cells so as to provide the basis for clinical choice of central venous catheter. XWLC-05 cells were cultured and subcultured, and the cells at passage 3 were cultured with polyurethane, silicone, and polyvinyl chloride (1.0 cm x 1.0 cm in size), and only cells served as a control. At 24, 48, and 72 hours after cultured, MTT assay was used to detect the cellular proliferation and flow cytometry to detect the cell cycle and apoptosis. At 72 hours after cultured, inverted microscope was used to observe the cell growth. Inverted microscope showed the cells grew well in control group, polyurethane group, and silicone group. In polyvinyl chloride group, the cells decreased, necrosed, and dissolved; residual adherent cells had morphologic deformity and decreased transmittance. At 24 and 48 hours, no significant difference in proliferation, apoptosis, and cell cycle was found among 4 groups (P > 0.05). At 72 hours, the proliferations of XWLC-05 cells in three material groups were significantly inhibited when compared with control group (P 0.05). Compared with the control group, three material groups had significant impact on the rate of apoptosis and cell cycle: polyvinyl chloride group was the most remarkable, followed by silicone group, polyurethane group was minimum (P < 0.05). Polyvinyl chloride can significantly impact the proliferation, apoptosis, and cell cycle of XWLC-05 cells; polyurethane has better biocompatibility than polyvinyl chloride and silicone.

  18. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment.

    Science.gov (United States)

    Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A

    2017-11-23

    The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.

  19. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Duanmin [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Su, Cunjin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Jiang, Min [Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Yating [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shi, Aiming; Zhao, Fenglun [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Zhu [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Tang, Wen, E-mail: sztangwen@163.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China)

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  20. Effects and Mechanism of Imatinib in Inhibiting Colon Cancer Cell Proliferation

    Science.gov (United States)

    Samei, Lv; Yaling, Pang; Lihua, Yang; Yan, Zhang; Shuyan, Jiang

    2016-01-01

    Background This study investigated the effects and mechanism of imatinib in inhibiting colon cancer cell proliferation. Material/Methods The SW480 cells were divided into 4 imatinib-treated groups: 0 μM, 1.25 μM, 2.5 μM, and 5μM. We analyzed the apoptosis and cell cycle of the 4 groups. The gene and protein expressions of p21, p27, HGF, and GAPDH were measured by RT-PCR and Western blot. Results Compared with the 0-μM imatinib-treated group, the apoptosis of 1.25-μM, 2.5-μM, and 5.0-μM treated groups was significantly induced (P<0.05, all). The G1 phase was significantly up-regulated in the 1.25-μM, 2.5-μM, and 5.0-μM treated groups compared with the 0-μM imatinib-treated group (P<0.05, respectively), but the S and G2 phase of 3 imatinib-treated groups were significantly down-regulated (P<0.05, all). The gene and protein expressions of p27 and HGF were significantly different among the 4 groups (P<0.05, all). Conclusions Imatinib inhibits proliferation of colon cancer cells by reducing HGF and increasing p27 in a dose-dependent manner. PMID:27799652

  1. The proliferation, apoptosis, invasion of endothelial-like epithelial ovarian cancer cells induced by hypoxia

    Directory of Open Access Journals (Sweden)

    Zhu Pengfei

    2010-09-01

    Full Text Available Abstract Background Epithelial ovarian cancer is one of the most malignant cancers in women because metastasis occurs in the most of patients by the time of diagnosis. Cancer cells have strong capacity to form angiogenesis or vasculogenic mimicry, which plays the major role in its malignant phenotype. Vasculogenic mimicry might contribute to the failure of the angiogenesis-targeted therapy strategies. Under the microenvironment of the tumor, hypoxia is the most common phenomena because of the vast energy and oxygen consuming. In the present study, the endothelial-like cells induced by hypoxia from SKOV-3 and ES-2 ovarian cancer cells were harvested to investigate the changes in their biological behaviors. Methods The endothelial-like cells from SKOV-3 and ES-2 cells were harvested by laser capture microdissection. The biological behaviors of the endothelial-like cells, including proliferation, cell cycle, apoptosis, invasion and telomerase activity were determined by MTT, FCM, Transwell chamber and TRAP-ELISA methods. HIF-1α is the most important factor for the behavior changes under hypoxic condition. Some other genes relative to biological behaviors are also changes following the changes of HIF-1α. In order to elucidate the underlying mechanisms for these changes by hypoxia, the relative genes expressions including HIF-1α, CyclinD1, Flk-1, VEGF, p53 and V-src were determined by real-time PCR. Results SKOV-3 and ES-2 cells were resistant to hypoxia by adoption of proliferation, apoptosis, differentiation and invasion. Combined with other studies, the more poorly cancer cells differentiate, the more strongly cells are resistant to hypoxia, the more possible to form vasculogenic mimicry. The changes in the expression of HIF-1α, and HIF-1α-dependent VEGF, Flk-1, Cyclin D1, and HIF-1α-independent p53 have been involved in this process. Conclusions HIF-1α took an important role in the behavioral changes of SKOV-3 and ES-2 cells by hypoxia. At

  2. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xinyue Liang

    2016-01-01

    Full Text Available Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR. In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK/extracellular signal-regulated kinase (ERK and phosphatidylinositol 3′ -kinase(PI3K-Akt (PI3K/AKT phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy. In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  3. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  4. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  5. Rho‑associated kinase inhibitor, Y‑27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells.

    Science.gov (United States)

    Jiang, Lei; Wen, Jiaming; Luo, Wei

    2015-11-01

    The serine/threonine kinases, Rho‑associated protein kinase I and II (ROCK I and II), regulate the cytoskeleton by acting downstream of the small GTPase, Rho, and have been implicated in tumorigenesis and cancer metastasis. Inhibition of ROCK signaling has been shown to suppress the invasion and migration of several types of cancer cells. In this study, the effect of the ROCK inhibitor, Y‑27632, on the proliferation and invasion of T24 and 5637 bladder cancer cells was investigated. In the proliferation assays, the cells were exposed to 0, 10, 25, 50, 75, 100, 125 or 150 µmol/l Y‑27632 and proliferation was determined using Cell Counting kit‑8 after 24, 48 and 72 h. In the invasion assays, the cells were placed in the upper chamber of transwell plates and subjected to 0, 25, 50 or 75 µmol/l Y‑27632 for 24 h, after which invasion was measured. Y‑27632 significantly suppressed the cell proliferation of T24 and 5637 cells in a concentration- and time‑dependent manner. Y‑27632 also inhibited the invasion of T24 and 5637 cells in a concentration‑dependent manner (PT24 and 5637 cells, confirming that it is also a downstream effector of the Rho/ROCK pathway in T24 and 5637 bladder cancer cells. In conclusion, the Rho/ROCK/P‑MLCK pathway may be important in tumor cell metastasis in bladder cancer.

  6. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  7. A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation.

    Science.gov (United States)

    Chan, Leo L; Gosangari, Saujanya L; Watkin, Kenneth L; Cunningham, Brian T

    2007-06-01

    A label-free method for detecting the attachment of human cancer cells to a biosensor surface for rapid screening for biological activity is described, in which attachment of a cell results in highly localized increase of the resonant reflected wavelength of a photonic crystal narrowband reflectance filter incorporated into a standard 96-well microplate. An imaging detection instrument is used to determine the spatial distribution of attached cells by mapping the shift in reflected resonant wavelength as a function of position. The method enables monitoring of cancer cell attachment, cell proliferation, and cell detachment that is induced by exposure of the cells to drug compounds. We demonstrate the efficacy of this method as an early screening technique for the rapid quantification of the rate of cancer cell proliferation on the sensor surface, and subsequently as a means for quantifying cell detachment resulting from apoptosis that is induced by exposure of the cells to cytotoxic chemicals.

  8. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  9. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  10. Metabolic and protein interaction sub-networks controlling the proliferation rate of cancer cells and their impact on patient survival.

    Science.gov (United States)

    Feizi, Amir; Bordel, Sergio

    2013-10-24

    Cancer cells can have a broad scope of proliferation rates. Here we aim to identify the molecular mechanisms that allow some cancer cell lines to grow up to 4 times faster than other cell lines. The correlation of gene expression profiles with the growth rate in 60 different cell lines has been analyzed using several genome-scale biological networks and new algorithms. New possible regulatory feedback loops have been suggested and the known roles of several cell cycle related transcription factors have been confirmed. Over 100 growth-correlated metabolic sub-networks have been identified, suggesting a key role of simultaneous lipid synthesis and degradation in the energy supply of the cancer cells growth. Many metabolic sub-networks involved in cell line proliferation appeared also to correlate negatively with the survival expectancy of colon cancer patients.

  11. Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion.

    Science.gov (United States)

    Jiang, Yuanjun; Han, Yushuang; Sun, Chaonan; Han, Chuyang; Han, Ning; Zhi, Weiwei; Qiao, Qiao

    2016-06-01

    Rab23 overexpression has been implicated in several human cancers. However, its expression pattern and biological roles in human bladder cancer have not been elucidated. In this study, we examined Rab23 expression in 93 bladder cancer specimens and analyzed its correlation with clinicopathological parameters. We found that Rab23 was overexpressed in 45 of 93 (48.3 %) cancer specimens. Significant association was found between Rab23 overexpression and tumor invasion depth (p = 0.0027). Rab23 overexpression also negatively correlated with FGFR3 protein expression (p = 0.021). We found that Rab23 expression was lower in normal bladder transitional cell line SV-HUC-1 than in bladder cancer cell lines BIU-87, 5637, and T24. We knocked down Rab23 expression in T24 cancer cells and transfected a Rab23 plasmid in the BIU-87 cell line. Rab23 depletion inhibited cell growth rate and invasion, while its overexpression resulted in increased cell growth and invasion. In addition, we demonstrated that Rab23 depletion decreased and its transfection upregulated expression of cyclin E, c-myc, and MMP-9. Furthermore, we showed that Rab23 knockdown inhibited NF-κB signaling and its overexpression upregulated NF-κB signaling. BAY 11-7082 (NF-κB inhibitor) partly inhibited the effect of Rab23 on cyclin E and MMP-9 expression. In conclusion, the present study demonstrated that Rab23 overexpression facilitates malignant cell growth and invasion in bladder cancer through the NF-κB pathway.

  12. Jaceosidin inhibits proliferation of human bladder cancer T24 cells through induction of cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Yong Li

    2013-08-01

    Full Text Available Jaceosidin, isolated from Artemesia argyi, has been shown to possess promising anticancer potential against various cancer cells. However, its effect against bladder cancer cells remained unknown. In this study, for the first time, we investigated the effects of jaceosidin on cell proliferation, cell cycle, and apoptosis in bladder cancer T24 cells by using MTT assay and flow cytometric analysis. The results revealed that jaceosidin decreased the cell viability of bladder cancer T24 cells in a dose- and time-dependent manner. Flow cytometric analysis demonstrated that jaceosidin significantly triggered apoptosis in T24 cells and arrested cell cycle at G2/M phase in a time-dependent manner. Further characterization showed that jaceosidin-induced apoptosis is associated with dissipation in mitochondrial membrane potential (ΔΨm, up-regulation of Bax and down-regulation of Bcl-2 in jaceosidin-treated T24 cells. These in vitro results suggested that jaceosidin should be further examined for in vivo activity and molecular mechanism in human bladder cancer.

  13. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    Science.gov (United States)

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens. © 2015 by The American Society of Hematology.

  14. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexia [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Li, Xiaohui [Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003 (China); Liu, Gang; Sun, Rongqing; Wang, Lirui [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Jing, E-mail: jing_wang1980@163.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Hongmin, E-mail: hmwangzz@126.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  15. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Mohammed Azharuddin Savanur

    Full Text Available Sclerotium rolfsii lectin (SRL isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75, non-tumorigenic breast epithelial cells (MCF-10A and normal mammary epithelial cells (HMECs. SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.

  16. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis.

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind; Kalraiya, Rajiv D; Swamy, Bale M; Rhodes, Jonathan M; Yu, Lu-Gang; Inamdar, Shashikala R

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.

  17. Promotion of cell proliferation by the proto-oncogene DEK enhances oral squamous cell carcinogenesis through field cancerization.

    Science.gov (United States)

    Nakashima, Takayuki; Tomita, Hiroyuki; Hirata, Akihiro; Ishida, Kazuhisa; Hisamatsu, Kenji; Hatano, Yuichiro; Kanayama, Tomohiro; Niwa, Ayumi; Noguchi, Kei; Kato, Keizo; Miyazaki, Tatsuhiko; Tanaka, Takuji; Shibata, Toshiyuki; Hara, Akira

    2017-10-01

    Oral squamous cell carcinoma (OSCC) develops through a multistep carcinogenic process involving field cancerization. The DEK gene is a proto-oncogene with functions in genetic and epigenetic modifications, and has oncogenic functions, including cellular proliferation, differentiation, and senescence. DEK overexpression is associated with malignancies; however, the functional roles of DEK overexpression are unclear. We demonstrated that DEK-expressing cells were significantly increased in human dysplasia/carcinoma in situ and OSCC. Furthermore, we generated ubiquitous and squamous cell-specific doxycycline (DOX)-inducible Dek mice (iDek and iDek-e mice respectively). Both DOX+ iDek and iDek-e mice did not show differences in the oral mucosa compared with DOX- mice. In the environment exposed to carcinogen, DOX-treated (DOX+) iDek mice showed field cancerization and OSCC development. Microarray analysis revealed that DEK overexpression was mediated by the upregulation of DNA replication- and cell cycle-related genes, particularly those related to the G1 /S transition. Tongue tumors overexpressing DEK showed increased proliferating cell nuclear antigen and elongator complex protein 3 expression. Our data suggest that DEK overexpression enhanced carcinogenesis, including field cancerization, in OSCC by stimulating the G1 /S phase transition and promoting DNA replication, providing important insights into the potential applications of DEK as a target in the treatment and prevention of OSCC. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions.

    Science.gov (United States)

    Liao, Shan; Xiao, Songshu; Chen, Hongxiang; Zhang, Manying; Chen, Zhifang; Long, Yuehua; Gao, Lu; Zhu, Guangchao; He, Junyu; Peng, Shuping; Xiong, Wei; Zeng, Zhaoyang; Li, Zheng; Zhou, Ming; Li, Xiaoling; Ma, Jian; Wu, Minghua; Xiang, Juanjuan; Li, Guiyuan; Zhou, Yanhong

    2017-10-01

    Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca2+ levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions. © 2017 Wiley Periodicals, Inc.

  19. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  20. Suppression of RND3 activity by AES downregulation promotes cancer cell proliferation and invasion.

    Science.gov (United States)

    Xia, Hongwei; Li, Mingxing; Chen, Liang; Leng, Weibing; Yuan, Dandan; Pang, Xiaohui; Chen, Liu; Li, Ronghui; Tang, Qiulin; Bi, Feng

    2013-05-01

    Amino-terminal enhancer of split (AES) is a member of the Groucho/TLE family. Although it has no DNA-binding site, AES can regulate transcriptional activity by interacting with transcriptional factors. Emerging evidence indicates that AES may play an important role in tumor metastasis, but the molecular mechanism is still poorly understood. In this study, we found that knockdown of AES by RNA interference (RNAi) downregulated RND3 expression at the mRNA and protein levels in MDA-MB-231 and HepG2, two cancer cell lines. Furthermore, luciferase assays showed that overexpression of AES significantly enhanced RND3 promoter activity. Moreover, inhibition of AES both in MDA-MB-231 and HepG2 cells by RNAi significantly promoted cell proliferation, cell cycle progression and invasion, consistent with the effects of RNAi-mediated RND3 knockdown in these cells. For the first time, data are presented showing that alteration of the malignant behavior of cancer cells by AES is related to RND3 regulation, and these findings also provide new insights into the mechanism of AES action in regulating tumor malignancy.

  1. The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

    Directory of Open Access Journals (Sweden)

    Zhixiong Fang

    2017-02-01

    Full Text Available Objective(s: To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC. Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate production assay to explore the function of miR-383 in cell proliferation, invasion and glycolysis in HCC cell lines. Luciferase reporter assay was used to explore whether LDHA was a target gene of miR-383. Western blot and qRT-PCR were used to further confirm LDHA was targeted by miR-383. Then the above functional experiments were repeated to see whether the function of LDHA could be inhibited by miR-383. Results: The results of qRT-PCR showed that miR-383 was down-regulated in HCC tissues compared with their matched adjacent normal tissues. Functional experiments showed that overexpression of miR-383 significantly suppressed cell proliferation, invasion and glycolysis. Luciferase reporter assay showed LDHA was a target gene of miR-383 and expression of LDHA was inversely correlated with that of miR-383 in HCC. Besides, increased cell proliferation, invasion and glycolysis triggered by LDHA could be inhibited by overexpression of miR-383 in HCC cell lines. Conclusion: Our study proved that miR-383 is down-regulated in HCC and acts as a tumor suppressor through targeting LDHA. Targeting the miR-383-LDHA axis might be a promising strategy in HCC treatment.

  2. Inhibition of breast cancer cell proliferation in repeated and non-repeated treatment with zoledronic acid

    Directory of Open Access Journals (Sweden)

    Ibrahim Toni

    2012-11-01

    Full Text Available Abstract Background Zoledronic acid is used to treat bone metastases and has been shown to reduce skeletal-related events and exert antitumor activity. The present in vitro study investigates the mechanism of action of Zoledronic Acid on breast cancer cell lines with different hormonal and HER2 patterns. Furthermore, we investigated the efficacy of repeated versus non-repeated treatments. Methods The study was performed on 4 breast cancer cell lines (BRC-230, SkBr3, MCF-7 and MDA-MB-231. Non-repeated treatment (single exposure of 168 hrs’ duration with zoledronic acid was compared with repeated treatment (separate exposures, each of 48 hrs’ duration, for a total of 168 hrs at different dosages. A dose–response profile was generated using sulforhodamine B assay. Apoptosis was evaluated by TUNEL assay and biomolecular characteristics were analyzed by western blot. Results Zoledronic acid produced a dose-dependent inhibition of proliferation in all cell lines. Anti-proliferative activity was enhanced with the repeated treatment, proving to be statistically significant in the triple-negative lines. In these lines repeated treatment showed a cytocidal effect, with apoptotic cell death caused by caspase 3, 8 and 9 activation and decreased RAS and pMAPK expression. Apoptosis was not observed in estrogen receptor-positive line: p21 overexpression suggested a slowing down of cell cycle. A decrease in RAS and pMAPK expression was seen in HER2-overexpressing line after treatment. Conclusions The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Repeated treatment has a killing effect on triple-negative lines due to apoptosis activation. Further research is warranted especially in the treatment of triple-negative breast cancer.

  3. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.

    Science.gov (United States)

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2013-12-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. © 2013.

  4. Trolox induces inhibition of cell proliferation and apoptosis in human colon cancer cells

    OpenAIRE

    Li-Guang Yang; Xiang-An Tian; Xiao-Yan Li; Jian-Guo Huang; Nai-Qing Liu; Qin-Li Sun

    2015-01-01

    In the present study, the effect of trolox on human colon cancer cell lines was investigated. The results revealed that trolox treatment caused inhibition of cell growth in T84 and HCT-15 colon cancer cell lines in a dose-dependent manner. The inhibition was significant at 50 µM of trolox after 48 hours in both cell lines. Trolox treatment promoted expression of p38 and inhibited expression of survivin and Akt. It also induced cleavage of PARP and caspase-3 and ultimately induced apoptosis in...

  5. Downregulation of human Wnt3 in gastric cancer suppresses cell proliferation and induces apoptosis

    Directory of Open Access Journals (Sweden)

    Wang HS

    2016-06-01

    Full Text Available Hai-Sheng Wang,1,* Xiaobo Nie,2,* Rui-Bing Wu,1 Hong-Wei Yuan,1 Yue-Hong Ma,1 Xiu-Lan Liu,1 Jian-Yu Zhang,1 Xiu-Ling Deng,1 Qin Na,1 Hai-Yan Jin,1 Yan-Chao Bian,1 Yu-Min Gao,3 Yan-Dong Wang,4 Wei-Dong Chen,1,2 1Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 2Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, 3Epidemiology Section, Public Health School, Inner Mongolia Medical University, Hohhot, 4State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Aberrant activation of Wnt/β-catenin signaling pathways is closely involved in the occurrence and progression of several types of human malignancies. However, as a fundamental component in this cascade, Wnt3 has not been well understood for the expression level and pathogenic mechanism in gastric carcinogenesis. Here, this research was undertaken to elucidate the important role of Wnt3 in gastric cancer. Wnt3 expression in gastric carcinomas and their respective normal tissues was examined by immunoblotting and immunohistochemistry. In all cases, Wnt3 expression was significantly elevated in gastric carcinomas compared with normal tissues. Knocking down Wnt3 in MGC-803 gastric cancer cells by small interfering RNAs transfection led to an obvious decrease in both transcript and protein levels. Silence of Wnt3 expression in gastric cancer cells inhibited the expression of β-catenin and cyclin D1 genes in Wnt/β-catenin pathway, significantly blocked cellular proliferation, delayed cell cycle, suppressed cell invasion and metastasis, accompanied by a higher apoptosis rate. Together, we conclude that upregulation of Wnt3 plays a crucial role in gastric tumorigenesis by inducing proliferation

  6. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  7. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  8. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wei [Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Sa, Ke-Di; Zhang, Xiang; Jia, Lin-Tao; Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Yang, An-Gang [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Rui, E-mail: ruizhang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Fan, Jing, E-mail: jingfan@fmmu.edu.cn [Department of Vascular and Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Bian, Ka, E-mail: kakamax85@hotmail.com [State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Department of Otolaryngology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-08-07

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealed that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells.

  9. CI-988 Inhibits EGFR Transactivation and Proliferation Caused by Addition of CCK/Gastrin to Lung Cancer Cells.

    Science.gov (United States)

    Moody, Terry W; Nuche-Berenguer, Bernardo; Moreno, Paola; Jensen, Robert T

    2015-07-01

    Cholecystokinin (CCK) receptors are G-protein coupled receptors (GPCR) which are present on lung cancer cells. CCK-8 stimulates the proliferation of lung cancer cells, whereas the CCK2R receptor antagonist CI-988 inhibits proliferation. GPCR for some gastrointestinal hormones/neurotransmitters mediate lung cancer growth by causing epidermal growth factor receptor (EGFR) transactivation. Here, the role of CCK/gastrin and CI-988 on EGFR transactivation and lung cancer proliferation was investigated. Addition of CCK-8 or gastrin-17 (100 nM) to NCI-H727 human lung cancer cells increased EGFR Tyr(1068) phosphorylation after 2 min. The ability of CCK-8 to cause EGFR tyrosine phosphorylation was blocked by CI-988, gefitinib (EGFR tyrosine kinase inhibitor), PP2 (Src inhibitor), GM6001 (matrix metalloprotease inhibitor), and tiron (superoxide scavenger). CCK-8 nonsulfated and gastrin-17 caused EGFR transactivation and bound with high affinity to NCI-H727 cells, suggesting that the CCK2R is present. CI-988 inhibited the ability of CCK-8 to cause ERK phosphorylation and elevate cytosolic Ca(2+). CI-988 or gefitinib inhibited the basal growth of NCI-H727 cells or that stimulated by CCK-8. The results indicate that CCK/gastrin may increase lung cancer proliferation in an EGFR-dependent manner.

  10. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    Science.gov (United States)

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  11. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival.

    Directory of Open Access Journals (Sweden)

    De He

    Full Text Available microRNAs (miRNAs play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer.The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC and their adjacent normal pancreatic tissues (ANPT or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP. Protein expression was analyzed by Western blot.The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1 downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region.our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.

  12. Combinatorial PX-866 and Raloxifene Decrease Rb Phosphorylation, Cyclin E2 Transcription, and Proliferation of MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Peek, Gregory W; Tollefsbol, Trygve O

    2016-07-01

    As a potential means to reduce proliferation of breast cancer cells, a multiple-pathway approach with no effect on control cells was explored. The human interactome being constructed by the Center for Cancer Systems Biology will prove indispensable to understanding composite effects of multiple pathways, but its discovered protein-protein interactions require characterization. Accordingly, we explored the effects of regulators of one protein on downstream targets of the other protein. MCF-7 estrogen receptor-positive (ER+) breast cancer cells were treated with raloxifene to upregulate the TGF-β pathway and PX-866 to down-regulate the PI3K/Akt pathway. This resulted in highly significant downstream reduction of cell cycle proliferation in breast cancer cells with no significant proliferation reduction following similar treatment of noncancerous MCF10A breast epithelial cells. Reduced phosphorylation of p107 and substantial reduction of Rb phosphorylation were observed in response. The effects of reduced Rb and p107 phosphorylation were reflected in significant decline in E2F-1 transcriptional activity, which is dependent on pocket protein phosphorylation status. The reduced proliferation was related to decreased expression of cyclins, including E2F-1-regulated Cyclin E2, which was also in response to raloxifene and PX-866. All combinations of raloxifene and PX-866 produced significant or highly significant results for reduced MCF-7 cell proliferation, reduced Cyclin E2 transcription, and reduced Rb phosphorylation. These studies demonstrated that uncontrolled proliferation of ER+ breast cancer cells can be significantly reduced by combinational targeting of two relevant pathways. J. Cell. Biochem. 117: 1688-1696, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Ramelteon, a selective MT1/MT2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells.

    Science.gov (United States)

    Osanai, Kiyono; Kobayashi, Yoichi; Otsu, Masahiro; Izawa, Tomoko; Sakai, Keiji; Iwashita, Mitsutoshi

    2017-07-01

    The incidence of endometrial cancer is increasing, making it the fifth most common cancer worldwide. To date, however, there is no standard therapy for patients with recurrent endometrial cancer. Melatonin, a hormone secreted by the pineal gland, has been shown to have anti-tumor effects in various tumor types. Although melatonin is available as a supplement, it has not been approved for cancer treatment. Ramelteon, a selective melatonin receptor type 1 and 2 (MT1/MT2) receptor agonist, has been approved to treat sleep disorders, suggesting that ramelteon may be effective in the treatment of endometrial cancer. To determine whether this agent may be effective in the treatment of endometrial cancer, this study investigated the ability of ramelteon to suppress the proliferation and invasiveness of HHUA cells, an estrogen receptor-positive endometrial cancer cell line. Ramelteon at 10 -8 M maximally suppressed the proliferation of HHUA cells, reducing the percentage of Ki-67 positive proliferating cells. This effect was completely blocked by luzindole, a MT1/MT2 receptor antagonist. Furthermore, ramelteon inhibited HHUA cell invasion and reduced the expression of the MMP-2 and MMP-9 genes. These results suggested that ramelteon may be a candidate for the treatment of recurrent endometrial cancer, with activity similar to that of melatonin.

  14. MiR-33a suppresses breast cancer cell proliferation and metastasis by targeting ADAM9 and ROS1.

    Science.gov (United States)

    Zhang, Chuankai; Zhang, Yunda; Ding, Weiji; Lin, Yancheng; Huang, Zhengjie; Luo, Qi

    2015-12-01

    MicroRNAs (miRNAs) are small noncoding RNAs that have a pivotal role in the post-transcriptional regulation of gene expression by sequence-specifically targeting multiple mRNAs. Although miR-33a was recently reported to play an important role in lipid homeostasis, atherosclerosis, and hepatic fibrosis, the functions of miR-33a in tumor progression and metastasis are largely unknown. Here, we found that downregulated miR-33a in breast cancer tissues correlates with lymph node metastasis. MiR-33a expression is significantly lower in the highly metastatic breast cancer cell lines than the noncancerous breast epithelial cells and non-metastatic breast cancer cells. Moreover, the overexpression of miR-33a in metastatic breast cancer cells remarkably decreases cell proliferation and invasion in vitro and significantly inhibits tumor growth and lung metastasis in vivo, whereas its knockdown in non-metastatic breast cancer cells significantly enhances cell proliferation and invasion in vitro and promotes tumor growth and lung metastasis in vivo. Combining bioinformatics prediction and biochemical analyses, we showed that ADAM9 and ROS1 are direct downstream targets of miR-33a. These findings identified miR-33a as a negative regulator of breast cancer cell proliferation and metastasis.

  15. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Yu Xinfeng

    2012-01-01

    Full Text Available Abstract Background In estrogen responsive MCF-7 cells, estradiol (E2 binding to ERα leads to transcriptional regulation of genes involved in the control of cell proliferation and survival. MicroRNAs (miRNAs have emerged as key post-transcriptional regulators of gene expression. The aim of this study was to explore whether miRNAs were involved in hormonally regulated expression of estrogen responsive genes. Methods Western blot and QPCR were used to determine the expression of estrogen responsive genes and miRNAs respectively. Target gene expression regulated by miRNAs was validated by luciferase reporter assays and transfection of miRNA mimics or inhibitors. Cell proliferation was evaluated by MTS assay. Results E2 significantly induced bcl-2, cyclin D1 and survivin expression by suppressing the levels of a panel of miRNAs (miR-16, miR-143, miR-203 in MCF-7 cells. MiRNA transfection and luciferase assay confirmed that bcl-2 was regulated by miR-16 and miR-143, cyclinD1 was modulated by miR-16. Importantly, survivin was found to be targeted by miR-16, miR-143, miR-203. The regulatory effect of E2 can be either abrogated by anti-estrogen ICI 182, 780 and raloxifene pretreatment, or impaired by ERα siRNA, indicating the regulation is dependent on ERα. In order to investigate the functional significance of these miRNAs in estrogen responsive cells, miRNAs mimics were transfected into MCF-7 cells. It revealed that overexpression of these miRNAs significantly inhibited E2-induced cell proliferation. Further study of the expression of the miRNAs indicated that miR-16, miR-143 and miR-203 were highly expressed in triple positive breast cancer tissues, suggesting a potential tumor suppressing effect of these miRNAs in ER positive breast cancer. Conclusions These results demonstrate that E2 induces bcl-2, cyclin D1 and survivin by orchestrating the coordinate downregulation of a panel of miRNAs. In turn, the miRNAs manifest growth suppressive effects

  16. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities.

    Science.gov (United States)

    Direito, Rosa; Lima, Ana; Rocha, João; Ferreira, Ricardo Boavida; Mota, Joana; Rebelo, Patrícia; Fernandes, Adelaide; Pinto, Rui; Alves, Paula; Bronze, Rosário; Sepodes, Bruno; Figueira, Maria-Eduardo

    2017-08-01

    Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [Department of Gynaecology, Qilu Hospital, Shandong University, Jinan (China); Department of Gynaecology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai (China); Xia, Ying, E-mail: YingXia2006@qq.com [Department of Gynecology, Huadong Hospital, Fudan University, Shanghai, 200040 (China)

    2016-06-24

    microRNAs (miRNAs) play a vital role in tumor development and progression. In this study, we aimed to determine the expression and biological roles of miR-328 in cervical cancer and identify its direct target gene. Our data showed that miR-328 was significantly downregulated in human cervical cancer tissues and cells. Re-expression of miR-328 inhibited cervical cancer cell proliferation and colony formation in vitro and suppressed the growth of xenograft tumors in vivo. Bioinformatic analysis predicted TCF7L2 (an essential effector of canonical Wnt signaling) as a target gene of miR-328, which was confirmed by luciferase reporter assays. Enforced expression of miR-328 led to a decline in the expression of endogenous TCF7L2 in cervical cancer cells. In cervical cancer tissues, TCF7L2 protein levels were negatively correlated with miR-328 expression levels (r = −0.462, P = 0.017). Small interfering RNA-mediated knockdown of TCF7L2 significantly impaired the proliferation and colony formation of cervical cancer cells. Ectopic expression of a miRNA-resistant form of TCF7L2 significantly reversed the growth suppressive effects of miR-328 on cervical cancer cells, which was accompanied by induction of cyclin D1 expression. Taken together, our results provide first evidence for the growth suppressive activity of miR-328 in cervical cancer, which is largely ascribed to downregulation of TCF7L2. Restoration of miR-328 may have therapeutic potential in cervical cancer. -- Highlights: •miR-328 inhibits cervical cancer cell growth and tumorigenesis. •TCF7L2 is a direct target gene of miR-328 in cervical cancer. •Knockdown of TCF7L2 impairs the proliferation and colony formation of cervical cancer cells.

  18. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-α-dependent gene expression.

    Science.gov (United States)

    Zhang, Wei; Chen, Jo-Hsin; Aguilera-Barrantes, Irene; Shiau, Chung-Wai; Sheng, Xiugui; Wang, Li-Shu; Stoner, Gary D; Huang, Yi-Wen

    2016-11-01

    Obese and overweight women are at high risk of developing endometrial cancer; indeed, many of endometrial cancer patients are obese. The increased number and size of adipocytes due to obesity elevate levels of circulating estrogens that stimulate cell proliferation in the endometrium. However, black raspberries are a promising approach to preventing endometrial cancer. We examined 17 black raspberry constituents and metabolites (10 μM or 10 μg/mL, 48 h) for their ability to prevent endometrial cancer cells from proliferating. Urolithin A (UA) was most able to suppress proliferation in a time- and dose-dependent manner (p endometrial cancer cells. UA enhanced the expression of ERβ, PGR, pS2, GREB1 while inhibiting the expression of ERα and GRIP1. Coincubating UA-treated cells with the estrogen antagonist ICI182,780 abolished UA's estrogenic effects. Knocking down ERα suppressed PGR, pS2, and GREB gene expression but increased GRIP1 expression. Thus, UA's actions appear to be mediated through ERα. This study suggests that UA modulates ERα-dependent gene expression, thereby inhibiting endometrial cancer proliferation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer.

    Science.gov (United States)

    Cekaite, Lina; Rantala, Juha K; Bruun, Jarle; Guriby, Marianne; Agesen, Trude H; Danielsen, Stine A; Lind, Guro E; Nesbakken, Arild; Kallioniemi, Olli; Lothe, Ragnhild A; Skotheim, Rolf I

    2012-09-01

    Several microRNAs (miRNAs) are known to be deregulated in colon cancer, but the mechanisms behind their potential involvement on proliferation and tumor cell survival are unclear. The present study aimed to identify miRNAs with functional implications for development of colon cancer. The cell proliferation and apoptosis were examined following perturbations of miRNA levels by employing a comprehensive miRNA library screen. miRNAs nominated for relevance to colon cancer were validated on expression and functional levels. By integrating the effect of miRNA up-regulation with the endogenous miRNA expression levels within the HT29, HCT116, and SW480 colon cancer cell lines, we identified miRNAs controlling cell proliferation (n = 53) and apoptosis (n = 93). From these functionally nominated miRNAs, we narrowed the list to 10 oncogene- and 20 tumor suppressor-like miRNAs that were also differentially expressed between colon cancer (n = 80) and normal colonic mucosa (n = 20). The differential expressions of miR-9, miR-31, and miR-182 were successfully validated in a series of colon carcinomas (n = 30) and polyps (n = 10) versus normal colonic mucosa (n = 10), whereas the functional effect was confirmed in an in-depth validation using different cell viability and apoptotic markers. Several transcription factors and genes regulating cell proliferation were identified as putative target genes by integrative miRNA/mRNA expression analysis obtained from the same colon cancer patient samples. This study suggests that deregulated expression of miR-9, miR-31, and miR-182 during carcinogenesis plays a significant role in the development of colon cancer by promoting proliferation and tumor cell survival.

  20. MiR-9, -31, and -182 Deregulation Promote Proliferation and Tumor Cell Survival in Colon Cancer12

    Science.gov (United States)

    Cekaite, Lina; Rantala, Juha K; Bruun, Jarle; Guriby, Marianne; Ågesen, Trude H; Danielsen, Stine A; Lind, Guro E; Nesbakken, Arild; Kallioniemi, Olli; Lothe, Ragnhild A; Skotheim, Rolf I

    2012-01-01

    Several microRNAs (miRNAs) are known to be deregulated in colon cancer, but the mechanisms behind their potential involvement on proliferation and tumor cell survival are unclear. The present study aimed to identify miRNAs with functional implications for development of colon cancer. The cell proliferation and apoptosis were examined following perturbations of miRNA levels by employing a comprehensive miRNA library screen. miRNAs nominated for relevance to colon cancer were validated on expression and functional levels. By integrating the effect of miRNA up-regulation with the endogenous miRNA expression levels within the HT29, HCT116, and SW480 colon cancer cell lines, we identified miRNAs controlling cell proliferation (n = 53) and apoptosis (n = 93). From these functionally nominated miRNAs, we narrowed the list to 10 oncogene- and 20 tumor suppressor-like miRNAs that were also differentially expressed between colon cancer (n = 80) and normal colonic mucosa (n = 20). The differential expressions of miR-9, miR-31, and miR-182 were successfully validated in a series of colon carcinomas (n = 30) and polyps (n = 10) versus normal colonic mucosa (n = 10), whereas the functional effect was confirmed in an in-depth validation using different cell viability and apoptotic markers. Several transcription factors and genes regulating cell proliferation were identified as putative target genes by integrative miRNA/mRNA expression analysis obtained from the same colon cancer patient samples. This study suggests that deregulated expression of miR-9, miR-31, and miR-182 during carcinogenesis plays a significant role in the development of colon cancer by promoting proliferation and tumor cell survival. PMID:23019418

  1. MiR-9, -31, and -182 Deregulation Promote Proliferation and Tumor Cell Survival in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Lina Cekaite

    2012-09-01

    Full Text Available Several microRNAs (miRNAs are known to be deregulated in colon cancer, but the mechanisms behind their potential involvement on proliferation and tumor cell survival are unclear. The present study aimed to identify miRNAs with functional implications for development of colon cancer. The cell proliferation and apoptosis were examined following perturbations of miRNA levels by employing a comprehensive miRNA library screen. miRNAs nominated for relevance to colon cancer were validated on expression and functional levels. By integrating the effect of miRNA up-regulation with the endogenous miRNA expression levels within the HT29, HCT116, and SW480 colon cancer cell lines, we identified miRNAs controlling cell proliferation (n = 53 and apoptosis (n = 93. From these functionally nominated miRNAs, we narrowed the list to 10 oncogene- and 20 tumor suppressor-like miRNAs that were also differentially expressed between colon cancer (n = 80 and normal colonic mucosa (n = 20. The differential expressions of miR-9, miR-31, and miR-182 were successfully validated in a series of colon carcinomas (n = 30 and polyps (n = 10 versus normal colonic mucosa (n = 10, whereas the functional effect was confirmed in an in-depth validation using different cell viability and apoptotic markers. Several transcription factors and genes regulating cell proliferation were identified as putative target genes by integrative miRNA/mRNA expression analysis obtained from the same colon cancer patient samples. This study suggests that deregulated expression of miR-9, miR-31, and miR-182 during carcinogenesis plays a significant role in the development of colon cancer by promoting proliferation and tumor cell survival.

  2. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest.

    Science.gov (United States)

    Wang, Jin-Sheng; Wang, Cui-Lian; Wen, Ji-Fang; Wang, Yong-Jin; Hu, Yong-Bin; Ren, Hong-Zheng

    2008-07-07

    To investigate the effect of lithium on proliferation of esophageal cancer (EC) cells and its preliminary mechanisms. Eca-109 cells were treated with lithium chloride, a highly selective inhibitor of glycogen synthase kinase 3beta (GSK-3beta), at different concentrations (2-30 mmol/L) and time points (0, 2, 4, 6 and 24 h). Cell proliferative ability was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distribution was examined by flow cytometry. Expressions of p-GSK-3beta, beta-catenin, cyclin B1, cdc2 and cyclin D1 protein were detected by Western blotting, and the subcellular localization of beta-catenin was determined by immunofluorescence. The mRNA level of cyclin B1 was detected by reverse transcription polymerase chain reaction (RT-PCR). Lithium could inhibit the proliferation of Eca-109 cells. Lithium at a concentration of 20 mmol/L lithium for 24 h produced obvious changes in the distribution of cell cycle, and increased the number of cells in G(2)/M phase (Pgroup). Western blotting showed that lithium inhibited GSK-3beta by Ser-9 phosphorylation and stabilized free beta-catenin in the cytoplasm. Immunofluorescence further confirmed that free beta-catenin actively translocated to the nucleus. Moreover, lithium slightly elevated cyclin D1 protein expression, whereas lowered the cyclin B1 expression after 24 h lithium exposure and no obvious change was observed for cdc2 protein. Lithium can inhibit the proliferation of human esophageal cancer cell line Eca-109 by inducing a G(2)/M cell cycle arrest, which is mainly mediated through the inhibition of lithium-sensitive molecule, GSK-3beta, and reduction of cyclin B1 expression.

  3. [Influence of the diet on cell proliferation in the large bowel and the rectum. Does a strict vegetarian diet reduct the risk of intestinal cancer?].

    Science.gov (United States)

    Almendingen, K; Trygg, K; Vatn, M

    1995-08-10

    Colorectal cancers are the most frequent cancer in Norway for men and women combined. Several theories have been suggested as etiological explanations. In this review the influence of dietary factors on the cell proliferation rate has been evaluated. A higher cell proliferation rate is statistically associated with increased risk of colorectal cancer. Foods associated with a lower cell proliferation rate match the staple foods in parts of the world were the incidence of colorectal cancer is low. Vegetarians show a low rate of cell proliferation, and low incidence of colorectal cancer. The low incidence of colorectal cancer among vegetarians may be due not only to the lack of animal foods, but also to several other healthy lifestyle habits. We conclude that a well planned lacto-vegetarian diet or a mixed diet with abundant amounts of vegetables and fruits is beneficial as regards the rate of cell proliferation, and most likely also reduces the risk of developing colorectal cancer.

  4. [Effect of androgen receptor on IgG expression, proliferation and migration of prostate cancer cells in vitro].

    Science.gov (United States)

    Deng, Yu-Lin; Guo, Kai; Zeng, Ying-Ke; Wu, Kai-Hui; Tang, Chen; Zheng, Shao-Bo

    2017-03-20

    To investigate the effect of androgen receptor (AR) on IgG protein expression and the proliferation and migration of prostate cancer cells. Western blotting was used to detect the expression of AR protein and IgG in androgen-dependent prostate cancer LNCap cells and castration-resistant prostate cancer PC-3 cells. In AR-overexpressing cells (PC-3-AR cells) established by transfecting PC-3 with AR gene (pCDNA3.1) and LNCap cells with small interfering RNA-mediated AR silencing (LNCap-siAR cells) were analyzed for expressions of AR protein and IgG with Western blotting; the expression of IgG mRNA was detected by Q-PCR, and the cell proliferation and migration were assessed with MTT assay and wound healing assay, respectively. Compared with PC-3 cells, LNCap cells expressed a higher level of AR protein and a lower level of IgG (PIgG (PIgG (PIgG and is associated with the proliferation and migration of prostate cancer cells in vitro.

  5. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Li, N.; Yu, J.K.; Tang, H.T.; Li, Y.L.; He, M.; Yu, Z.J.; Bai, X.F. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Zheng, Z.H.; Wang, E.H. [Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning (China); Wei, M.J. [Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning (China)

    2013-12-12

    Fanconi anemia complementation group F protein (FANCF) is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  6. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2014-01-01

    Full Text Available Fanconi anemia complementation group F protein (FANCF is a key factor, which maintains the function of FA/BRCA, a DNA damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. We performed a specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow cytometry. The expression levels of protein were determined by Western blot using specific antibodies. Based on these results, we used cell migration and invasion assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA effectively inhibited expression of FANCF. We found that proliferation of FANCF knockdown breast cancer cells (MCF-7 and MDA-MB-435S was significantly inhibited, with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation. Inhibition of FANCF also resulted in decreased cell migration and invasion. In addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells. These results suggest that FANCF may be a potential target for molecular, therapeutic intervention in breast cancer.

  7. [Inhibitory effects of Notch1 overexpression on proliferation and neuroendocrine marker expression in a small cell lung cancer cell line].

    Science.gov (United States)

    Wang, Jie-Xin; Zhang, Xiu-ming; Wang, Ling-ling; Cheng, Hui; Yao, Gen-you

    2009-05-01

    To investigate the effects of Notch1 signal activation on proliferation and neuroendocrine marker expression in small cell lung cancer cells. The active form of Notch1 (NIC) was over-expressed in NCI-H446 cells by constitutive transfection and a stable transfected cell line was established. Proliferation of NCI-H446 cells was analysed by MTT assay on 6 successive days. Expression of neuroendocrine markers (CgA, NSE) was observed by immunohistochemistry and Western blot analysis. Statistical analysis was conducted to compare the results in cells with NIC transfected and those in control groups. MTT assay showed that absorbance (A) of cells overexpressing Notch1 was significantly depressed compared with that of the control cells (PNIC transfected group, sham group and negative control group were 8.81 +/- 0.77, 38.10 +/- 1.55, 38.97 +/- 0.80, respectively, the former one was significantly smaller than that of the latter two (PNIC transfected group, sham group and negative control group were 7.21 +/- 0.59, 28.25 +/- 1.46, 30.57 +/- 1.31, respectively, the former one was significantly smaller than that in the latter two (PNIC transfected group and sham group were 0.54 +/- 0.03 and 0.99 +/- 0.05, respectively, (gray scale of the negative control set as 1.00), the former one was significantly smaller than that of the other two groups (PNIC transfected group and sham group were 0.43 +/- 0.02 and 1.07 +/- 0.09, respectively (gray scale of the negative control set as 1.00), the former one was significantly smaller than that of the other two groups (P<0.01). Notch1 may behave as a tumor suppressor in small cell lung cancer. Notch1 signal activation can inhibit the proliferation and neuroendocrine marker expression in small cell lung cancer cells, suggesting that Notch1 gene could be a new target for small cell lung cancer treatment and probable relief of paraneoplastic syndrome.

  8. Estrogen-Like Properties of Fluorotelomer Alcohols as Revealed by MCF-7 Breast Cancer Cell Proliferation

    Science.gov (United States)

    Maras, Marleen; Vanparys, Caroline; Muylle, Frederik; Robbens, Johan; Berger, Urs; Barber, Jonathan L.; Blust, Ronny; De Coen, Wim

    2006-01-01

    We investigated estrogen-like properties of five perfluorinated compounds using a combination of three in vitro assays. By means of an E-screen assay, we detected the proliferation-promoting capacity of the fluorotelomer alcohols 1H,1H,2H,2H-perfluorooctan-1-ol (6:2 FTOH) and 1H,1H,2H,2H-perfluoro-decan-1-ol (8:2 FTOH). The more widely environmentally distributed compounds perfluoro-1-octane sulfonate, perfluorooctanoic acid, and perfluorononanoic acid did not seem to possess this hormone-dependent proliferation capacity. We investigated cell cycle dynamics using flow cytometric analyses of the DNA content of the nuclei of MCF-7 breast cancer cells. Exposure to both fluorotelomer alcohols stimulated resting MCF-7 cells to reenter the synthesis phase (S-phase) of the cell cycle. After only 24 hr of treatment, we observed significant increases in the percentage of cells in the S-phase. In order to further investigate the resemblance of the newly detected xenoestrogens to the reference compound 17β-estradiol (E2), gene expression of a number of estrogen-responsive genes was analyzed by real-time polymerase chain reaction. With E2, as well as 4-nonylphenol and the fluorotelomer alcohols, we observed up-regulation of trefoil factor 1, progesterone receptor, and PDZK1 and down-regulation of ERBB2 gene expression. We observed small but relevant up-regulation of the estrogen receptor as a consequence of exposures to 6:2 FTOH or 8:2 FTOH. The latter finding suggests an alternative mode of action of the fluorotelomer alcohols compared with that of E2. This study clearly underlines the need for future in vivo testing for specific endocrine-related end points. PMID:16393665

  9. Crosstalk between EGFR and integrin affects invasion and proliferation of gastric cancer cell line, SGC7901

    Directory of Open Access Journals (Sweden)

    Dan L

    2012-10-01

    Full Text Available Li Dan,1,* Ding Jian,2,* Lin Na,1 Wang Xiaozhong,1 1Digestive Department, the Union Hospital of Fujian Medical University, Fujian, People’s Republic of China; 2Digestive Department, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China*These authors contributed equally to this workBackground/objective: To investigate the crosstalk between epidermal growth factor receptor (EGFR and integrin-mediated signal transduction pathways in human gastric adenocarcinoma cells.Methods: EGF was used as a ligand of EGFR to stimulate the gastric adenocarcinoma cell, SGC7901. Signal molecules downstream of the integrin, FAK(Y397 and p130cas(Y410 phosphorylation, were measured by immunoprecipitation and western blot. Fibronectin (Fn was used as a ligand of integrin to stimulate the same cell line. Signal molecules downstream of EGFR and extracellular signal-regulated kinase (ERK general phosphorylation were also measured. Focal adhesion kinase (FAK small-interfering RNA was designed and transfected into SGC7901 cells to decrease the expression of FAK. Modified Boyden chambers and MTT assay were used to examine the effect of FAK inhibition on the invasiveness and proliferation of SGC7901.Results: EGF activated FAK(Y397 and p130cas(Y410 phosphorylation, while Fn activated ERK general phosphorylation. Inhibition of FAK expression decreased p130cas(Y410 phosphorylation activated by EGF and ERK general phosphorylation activated by Fn, also decreased the invasiveness and proliferation of SGC7901 cells activated by EGF or Fn.Conclusion: There is crosstalk between EGFR and integrin signal transduction. FAK may be a key cross point of the two signal pathways and acts as a potential target for human gastric cancer therapy.Keywords: gastric adenocarcinoma, epidermal growth factor receptor, integrin, focal adhesion kinase, crosstalk

  10. Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21.

    Science.gov (United States)

    Li, Hailan; Jeong, Yun-Mi; Kim, Su Yeon; Kim, Myo-Kyoung; Kim, Dong-Seok

    2011-04-01

    Arbutin is a glycosylated hydroquinone extracted from the bearberry plant (Arctostaphylos species). In the present study, we determined the effects of arbutin on TCCSUP human bladder carcinoma cell proliferation. Arbutin did not exhibit any cytotoxic effects in TCCSUP cells at concentrations of arbutin on cell proliferation, TCCSUP cells were treated with arbutin at various concentrations, and the cell proliferation was measured using the MTT assay. Arbutin significantly decreased TCCSUP cell proliferation in a concentration- and time-dependent manner. Furthermore, cell cycle analysis revealed that arbutin strongly disrupted the cell cycle in a time-dependent manner. Western blot analysis demonstrated that arbutin led to the inactivation of extracellular signal-regulated kinase (ERK), which is known to critically regulate cell proliferation. In addition, arbutin markedly increased the expression of p21WAF1/CIP1 (p21), which is known to be highly involved in cell cycle regulation. Therefore, this study suggests that arbutin inhibits TCCSUP cell proliferation via ERK inactivation and p21 up-regulation.

  11. Extensive Proliferation of Human Cancer Cells with Ever-Shorter Telomeres

    Directory of Open Access Journals (Sweden)

    Rebecca A. Dagg

    2017-06-01

    Full Text Available Acquisition of replicative immortality is currently regarded as essential for malignant transformation. This is achieved by activating a telomere lengthening mechanism (TLM, either telomerase or alternative lengthening of telomeres, to counter normal telomere attrition. However, a substantial proportion of some cancer types, including glioblastomas, liposarcomas, retinoblastomas, and osteosarcomas, are reportedly TLM-negative. As serial samples of human tumors cannot usually be obtained to monitor telomere length changes, it has previously been impossible to determine whether tumors are truly TLM-deficient, there is a previously unrecognized TLM, or the assay results are false-negative. Here, we show that a subset of high-risk neuroblastomas (with ∼50% 5-year mortality lacked significant TLM activity. Cancer cells derived from these highly aggressive tumors initially had long telomeres and proliferated for >200 population doublings with ever-shorter telomeres. This indicates that prevention of telomere shortening is not always required for oncogenesis, which has implications for inhibiting TLMs for cancer therapy.

  12. Deregulated SLC2A1 Promotes Tumor Cell Proliferation and Metastasis in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Shiyan Yan

    2015-07-01

    Full Text Available Gastric cancer (GC is one of the common reasons of cancer-related death with few biomarkers for diagnosis and prognosis. Solute carrier family 2 (facilitated glucose transporter member 1 protein SLC2A1, also known as glucose transporter type 1 (GLUT1, has been associated with tumor progression, metastasis, and poor prognosis in many human solid tumors. However, little is reported about its clinical significance and biological functions in GC. Here we observed a strong up-regulation of SLC2A1 in patients with GC and found that SLC2A1 was significantly correlated with depth of invasion and clinical stage. Additionally, over-expression of SLC2A1 in GC cells promotes cellular proliferation and metastasis in vitro and enhances tumor growth in vivo as well as enhancement of glucose utilization. Meanwhile, elevated SLC2A1 also contributes to tumor metastasis in vitro. Our results indicate SLC2A1 exhibits a pivotal role in tumor growth, metastasis and glucose metabolism, and also suggest SLC2A1 as a promising target for gastric cancer therapy.

  13. [Effects of RAGE on Cell Proliferation and Tumor Growth in Pancreatic Cancer].

    Science.gov (United States)

    Chen, Wei-Wei; Guo, Qiang; Zhang, Zhao-da; Hu, Wei-Ming

    2017-01-01

    To investigate the effect of receptor for advanced glycation end products (RAGE) on cell proliferation and tumor growth in nude mice with pancreatic cancer. PANC-1 cells were transfected with shRNA RAGE -1, -2, -3 to down-regulate the expression of RAGE. Cholecystokinin octopeptide-8 (CCK-8), real-time PCR and Western blot were performed to test the impact of shRNA RAGE on the expressions of mRNAs and proteins of RAGE, matrix metalloproteinase-2 (MMP-2), MMP-9, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and vascular endothelial growth factor (VEGF). Tumor growth and microvessel density in the nude mice implanted with shRNA RAGE transfected PANC-1 cells were observed using immunohistochemistry. The shRNA RAGE -1, -2, -3 transfected cells had lower absorbance values than the controls 24 h after transfection, and the absorbance value reached the lowest at 48 h. The specific shRNA sequences significantly inhibited the expressions of mRNA and protein of RAGE. The mice implanted with shRNA RAGE -2 had lower tumor volume and microvessel density than shRNA RAGE -1, -3. The expressions of mRNAs and proteins of RAGE, MMP-2, NF-κB, MMP-9 and VEGF were lower in the cells transfected with shRNA RAGE -2 compared with shRNA RAGE -1, -3. RAGE is involved in the progression of pancreatic cancer in vitro and in vivo . The RAGE expression could influence the process of tumor angiogenesis.

  14. Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells.

    Science.gov (United States)

    Chow, Stephanie K Y; Chan, Judy Y W; Fung, K P

    2004-09-01

    Arsenic trioxide (As(2)O(3)) is one of the arsenic compounds found in nature. As(2)O(3) has recently been used to treat patients suffering from retinoic acid receptor (AML). It is of clinical interest to investigate whether As(2)O(3) is also effective in treating solid tumors. Here, we report that As(2)O(3) exhibited inhibitory effects on the proliferation of human breast cancer MCF-7 cells in a dose- and time-dependent manner. The 50% inhibitory concentration (IC(50)) of As(2)O(3) in inhibiting proliferation of MCF-7 cells were 8, 1.8, and 1.2 microM upon 1-, 2-, and 3-day treatment, respectively. In elucidating the underlying action mechanisms, the results of experiments concerning DNA fragmentation and externalization indicated that As(2)O(3) exerted its action on MCF-7 cells via apoptosis, whereas the result of flow cytometry also indicated that As(2)O(3) could induce mitochondrial mediated cell-cycle arrest at G(1) phase. Further studies by Western blot analysis indicated that As(2)O(3) regulated apoptosis and the expression of cell-cycle-related proteins as it upregulated p53 protein level and downregulated bcl-2 protein level. Results in present study indicated that As(2)O(3) might also be a good candidate for treating breast cancer.

  15. Yes-associated protein 1 promotes papillary thyroid cancer cell proliferation by activating the ERK/MAPK signaling pathway.

    Science.gov (United States)

    Liao, Tian; Wen, Duo; Ma, Ben; Hu, Jia-Qian; Qu, Ning; Shi, Rong-Liang; Liu, Liang; Guan, Qing; Li, Duan-Shu; Ji, Qing-Hai

    2017-02-14

    Yes-associated protein 1 (YAP1) stimulates cell proliferation, epithelial-to-mesenchymal transition, invasion and metastasis in several cancers. Here, we investigated the involvement of YAP1 in papillary thyroid carcinoma (PTC) by assessing YAP1 mRNA and protein levels in PTC tissues and matched normal thyroid epithelial tissues from 50 patients. YAP1 mRNA and protein levels were higher in PTC tumor tissues than in control tissues, and correlated positively with the levels of proliferation-related genes (KI67 and c-MYC). We also used lentiviral vectors to overexpress or silence YAP1 expression in the K1 PTC cell line so that we could investigate the effects of YAP1 on cancer cell proliferation. YAP1 overexpression enhanced PTC cell proliferation by activating ERK1/2 and AKT, and these effects were impaired by treating the cells with the MEK inhibitor U0126 or the AKT inhibitor GSK690693. Finally, YAP1 overexpression dramatically induced growth of tumors from PTC cells in a xenograft mouse model. These results suggest that YAP1 enhances cell proliferation in PTC, and thus may be a promising target in the treatment of PTC.

  16. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Directory of Open Access Journals (Sweden)

    Shanmiao Gou

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.

  17. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Science.gov (United States)

    Gou, Shanmiao; Cui, Pengfei; Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.

  18. Role of osteopontin in the regulation of human bladder cancer proliferation and migration in T24 cells.

    Science.gov (United States)

    Xu, Song-Tao; Guo, Chun; Ding, Xiang; Fan, Wen-Juan; Zhang, Fu-Hua; Xu, Wan-Ling; Ma, Yong-Chao

    2015-05-01

    Osteopontin (OPN), a secreted acid glycoprotein with a variety of functions, promotes tumor proliferation, differentiation, invasion and metastasis. The aim of the current study was to investigate whether OPN may serve as a potential therapeutic target for human bladder cancer. RNA interference (RNAi) was performed to downregulate the expression of the OPN gene in T24 human bladder cancer cells. The mRNA and protein expression levels of OPN following RNAi were determined using reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the cell cycle progression, apoptosis and proliferation were investigated using by flow cytometric analysis and MTT assay. The cell invasion ability was measured using a Matrigel transwell assay. The mRNA and protein expression levels of OPN were found to be significantly downregulated following RNAi. The proliferation and invasion of T24 cells were significantly inhibited in vitro. In conclusion, RNAi‑targeting OPN may inhibit the proliferation, invasion and tumorigenicity of human bladder cancer cells. Therefore, OPN may serve as a potential therapeutic target for human bladder cancer.

  19. ATX‑LPA axis facilitates estrogen‑induced endometrial cancer cell proliferation via MAPK/ERK signaling pathway.

    Science.gov (United States)

    Zhang, Guo; Cheng, Yuan; Zhang, Qi; Li, Xiaoping; Zhou, Jingwei; Wang, Jianliu; Wei, Lihui

    2018-03-01

    Autotaxin (ATX) is a key enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). ATX is a crucial factor that facilitates cancer progression; however, the effect of ATX on endometrial cancer has not been explored. The aim of the present study was to investigate the role of ATX in the progression of endometrial cancer. The immunohistochemical results revealed higher protein expression levels of ATX and LPA receptors (LPA 1, 2 and 3) in human endometrial cancer tissue than in non‑carcinoma tissue. In addition, reverse transcription‑quantitative polymerase chain reaction and western blotting analysis demonstrated that ATX and LPA receptor mRNA and protein expression was greater in Ishikawa cells, which are positive for estrogen receptor (ER), than in Hec‑1A cells that exhibit low ER expression. Short interfering RNA knockdown of ATX in Ishikawa cells led to decreased cell proliferation and cell colony number, as determined by Cell Counting kit‑8 and colony formation assays. Estrogen stimulated ATX mRNA expression. Inhibition of ATX decreased estrogen and LPA‑induced cell proliferation. High LPA levels markedly elevated the phosphorylation levels of extracellular signal‑regulated kinase (ERK). ATX downregulation moderately decreased estrogen‑ and LPA‑induced phosphorylation of ERK. In addition, the ERK inhibitor, PD98059, reduced cell proliferation with estrogen, ATX and LPA treatment. The present study suggested that the ATX‑LPA axis may facilitate estrogen‑induced cell proliferation in endometrial cancer via the mitogen‑activated protein kinase/ERK signaling pathway. The present study may provide ideas and an experimental basis for clinicians to identify new molecular targeted drugs for the treatment of endometrial cancer.

  20. Isolation of melittin from bee venom and evaluation of its effect on proliferation of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Mahmoodzadeh A

    2013-03-01

    Full Text Available Background: Gastric cancer (GC is one of the most common cancers worldwide and in Iran. Conventional therapies are surgery and chemotherapy. Current studies are evaluating natural compounds in inhibiting growth of cancer cell. In this study isolated peptide melittin with 26 amino acids from bee venom and its impact on the viability and proliferation of gastric cancer cells was investigated. Methods: At first melittin was purified from honeybee venom using a reversed-phase high performance liquid chromatography (RP- HPLC and C18 column. In order to investigate whether melittin, a 26 amino acids peptide which is the main components of honeybee venom, inhibits proliferation of human gastric adenocarcinoma cell line (AGS cells, MTT ((3-(4, 5-dimethylthiazol-2-yl-2, 5- diphenyltetrazolium bromide assay was performed. Hemolytic assay carried out in order to confirm the biologic activity of the isolated melittin. AGS cells were plated in a 96-well plate and treated with serially diluted concentrations of melittin for 6 and 12 hours. The mortality of the cells was measured via MTT assay at 540 nm.Results: The obtained chromatogram from RP-HPLC showed that melittin comprises 50% of the studied bee venom. SDS-PAGE analysis of melittin fraction confirmed purity of isolated melittin. Hemolytic activity assay indicates that isolated melittin shows a strong hemolytic activity (HD50=0.5. MTT assay showed that melittin strongly inhibits proliferation of gastric cancer cells at concentrations more than 2µg/ml. This inhibitory effect is dependent to melittin concentration and incubation time.Conclusion: This study provides evidence that melittin inhibits proliferation of the gastric cancer cells. Results showed that isolated melittin from honey bee venom have cytotoxic effect on AGS cell line with a trend of increasing cytotoxicity with increasing concentration and incubation time.

  1. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  2. Modulation of the uptake of critical nutrients by breast cancer cells by lactate: Impact on cell survival, proliferation and migration.

    Science.gov (United States)

    Guedes, Marta; Araújo, João R; Correia-Branco, Ana; Gregório, Inês; Martel, Fátima; Keating, Elisa

    2016-02-15

    This work aimed to characterize the uptake of folate and glucose by breast cancer cells and to study the effect of lactate upon the transport of these nutrients and upon cell viability, proliferation and migration capacity. Data obtained showed that: a) MCF7 cells uptake (3)H-folic acid ((3)H-FA) at physiological but not at acidic pH; b) T47D cells accumulate (3)H-FA and (14)C-5-methyltetrahydrofolate ((14)C-5-MTHF) more efficiently at acidic than at physiological pH; c) (3)H-deoxyglucose ((3)H-DG) uptake by T47D cells is sodium-independent, inhibited by cytochalasin B (CYT B) and stimulated by insulin. Regarding the effect of lactate, in T47D cells, acute (26 min) and chronic (24 h) exposure to lactic acid (LA) stimulated (3)H-FA uptake. Acute exposure to LA also stimulated (3)H-DG uptake and chronic exposure to LA significantly stimulated T47D cell migratory capacity. In conclusion, the transport of folates is strikingly different in two phenotypically similar breast cancer cell lines: MCF7 and T47D cells. Additionally, lactate seems to act as a signaling molecule which increases the uptake of nutrients and promotes the migration capacity of T47D cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Knock-out transmembrane prostate androgen-induced protein gene suppressed triple-negative breast cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Bantari W.K. Wardhani

    2017-11-01

    Full Text Available Background: Triple negative breast cancer (TNBC tends to grow more rapidly and has poorer prognosis compared to others. High expression of transmembrane prostate androgen-induced protein (TMEPAI correlates with poor prognosis in TNBC patients. However, the mechanistic role of TMEPAI in tumorigenic remains unknown. This study aimed to knock-out TMEPAI in TNBC cell line to determine its function further in cells proliferation.Methods: CRISPR-Cas9 has been used previously to knock-out TMEPAI in Hs857T TNBC cell line. Hs587T TNBC parental cell line (wild-type/WT and TMEPAI knock out Hs 586T cell lines were cultured in Dulbecco’s modified eagle medium (DMEM supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin and amphotericin B. Both cell lines were seeded in 24-well plates and counted every two days, then proliferation rates were plotted. Afterwards, total RNA were isolated from the cells and Ki-67, and TGF-β mRNA expression levels as proliferation markers were determined.Results: Cell proliferation rates as displayed in growth curve plots showed that WT-TMEPAI cell line grew more rapidly than KO-TMEPAI. In accordance, mRNA expression levels of  Ki-67 and TGF-β  were significantly decreased KO-TMEPAI as compare to TMEPAI-WT.Conclusion: Knock-out of TMEPAI attenuates cell proliferation in TNBC.

  4. Chondroitin sulfate proteoglycan protein is stimulated by interleukin 11 and promotes endometrial epithelial cancer cell proliferation and migration.

    Science.gov (United States)

    Winship, Amy; Van Sinderen, Michelle; Heffernan-Marks, Ariella; Dimitriadis, Eva

    2017-03-01

    Endometrial cancer is the most common gynecological cancer. We identified interleukin 11 (IL11) as a critical mediator of endometrial tumourigenesis and demonstrated that IL11 regulates chondroitin sulfate proteoglycan (CSPG4) in human placental trophoblasts. CSPG4 is a cell membrane protein overexpressed in numerous human cancers, although its role in endometrial cancer has not been investigated. We examined CSPG4 expression and localization in primary human type I endometrioid grade (G) 1-3 tumours by qPCR and immunohistochemistry and determined whether IL11 stimulated CSPG4. IL11 upregulated CSPG4 mRNA in HEC1A (G2-derived endometrial epithelial cancer cell line) cells. IL11 administration to BALB/c nude mice enhanced HEC1A xenograft tumour growth and increased CSPG4 protein in tumours. CSPG4 mRNA was unchanged between human G1-3 endometrial cancer and control tissues. CSPG4 protein levels were elevated in the epithelium of G2 and G3 endometrial cancer and in the tumour-associated stroma of G3 tumour tissues compared to proliferative phase or post-menopausal endometrium. CSPG4 knockdown by siRNA reduced HEC1A proliferation and migration in vitro and reduced gene expression of the key epithelial-to-mesenchymal transition (EMT) regulator SNAIL. Our data suggest that CSPG4 inhibition may impair endometrial cancer progression by reducing cancer cell proliferation, migration and potentially EMT.

  5. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Tangfeng Lv

    Full Text Available BACKGROUND: Lysine specific demethylase 1 (LSD1 has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC and to define its exact role in lung cancer proliferation, migration and invasion. METHODS: The protein levels of LSD1 in surgically resected samples from NSCLC patients were detected by immunohistochemistry or Western blotting. The mRNA levels of LSD1 were detected by qRT-PCR. The correlation of LSD1 expression with clinical characteristics and prognosis was determined by statistical analysis. Cell proliferation rate was assessed by MTS assay and immunofluorescence. Cell migration and invasion were detected by scratch test, matrigel assay and transwell invasion assay. RESULTS: LSD1 expression was higher in lung cancer tissue more than in normal lung tissue. Our results showed that over-expression of LSD1 protein were associated with shorter overall survival of NSCLC patients. LSD1 was localized mainly to the cancer cell nucleus. Interruption of LSD1 using siRNA or a chemical inhibitor, pargyline, suppressed proliferation, migration and invasion of A549, H460 and 293T cells. Meanwhile, over-expression of LSD1 enhanced cell growth. Finally, LSD1 was shown to regulate epithelial-to-mesenchymal transition in lung cancer cells. CONCLUSIONS: Over-expression of LSD1 was associated with poor prognosis in NSCLC, and promoted tumor cell proliferation, migration and invasion. These results suggest that LSD1 is a tumor-promoting factor with promising therapeutic potential for NSCLC.

  6. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  7. Piperine inhibits the proliferation of human prostate cancer cells via induction of cell cycle arrest and autophagy.

    Science.gov (United States)

    Ouyang, Dong-yun; Zeng, Long-hui; Pan, Hao; Xu, Li-hui; Wang, Yao; Liu, Kun-peng; He, Xian-hui

    2013-10-01

    Piperine, an alkaloid from black and long peppers (Piper nigrum Linn & Piper longum Linn), has been reported to exhibit antitumor activities in vitro and in vivo. To further understand the antitumor mechanism of piperine, we investigated the growth inhibitory effects of piperine on human prostate cancer DU145, PC-3 and LNCaP cells. Piperine treatment resulted in a dose-dependent inhibition of the proliferation of these cell lines. Cell cycle arrest at G₀/G₁ was induced and cyclin D1 and cyclin A were downregulated upon piperine treatment. Notably, the level of p21(Cip1) and p27(Kip1) was increased dose-dependently by piperine treatment in both LNCaP and DU145 but not in PC-3 cells, in line with more robust cell cycle arrest in the former two cell lines than the latter one. Although piperine induced low levels of apoptosis, it promoted autophagy as evidenced by the increased level of LC3B-II and the formation of LC3B puncta in LNCaP and PC-3 cells. The piperine-induced autophagic flux was further confirmed by assaying LC3-II accumulation and LC3B puncta formation in the presence of chloroquine, a well-known autophagy inhibitor. Taken together, these results indicated that piperine exhibited anti-proliferative effect in human prostate cancer cells by inducing cell cycle arrest and autophagy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiong; Lin, Yao [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Fan, Li [Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shaanxi, 710032 (China); Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 (China); Kuang, Wei [Department of Stomatology, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, 510010 (China); Zheng, Liwei [State Key Laboratory of Oral Diseases, Sichuan University, Wuhou District, Chengdu, 610041 (China); Wu, Jiahua [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Shang, Peng [Patient-specific Orthopedic Technology Research Center in GuangDong Research Centre for Neural Engineering, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili, Nanshan, Shenzhen, 518055 (China); Wang, Qiaofeng [Department of Pharmaceutical Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shanxi, 710032 (China); Tan, Jiali, E-mail: jasminenov@163.com [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China)

    2016-04-29

    Oral squamous cell carcinoma (OSCC) is one of the most common types of the head and neck cancer. Chemo resistance of OSCC has been identified as a substantial therapeutic hurdle. In this study, we analyzed the role of miR-203 in the OSCC and its effects on cisplatin-induced cell death in an OSCC cell line, Tca8113. There was a significant decrease of miR-203 expression in OSCC samples, compared with the adjacent normal, non-cancerous tissue. After 3 days cisplatin treatment, the survived Tca8113 cells had a lower expression of miR-203 than that in the untreated control group. In contrast, PIK3CA showed an inverse expression in cancer and cisplatin survived Tca8113 cells. Transfection of Tca8113 cells with miR-203 mimics greatly reduced PIK3CA expression and Akt activation. Furthermore, miR-203 repressed PIK3CA expression through targeting the 3′UTR. Restoration of miR-203 not only suppressed cell proliferation, but also sensitized cells to cisplatin induced cell apoptosis. This effect was absent in cells that were simultaneously treated with PIK3CA RNAi. In summary, these findings suggest miR-203 plays an important role in cisplatin resistance in OSCC, and furthermore delivery of miR-203 analogs may serve as an adjuvant therapy for OSCC. - Highlights: • Much lower miR-203 expression in cisplatin resistant Tca8113 cells is discovered. • Delivery of miR-203 can sensitize the Tca8113 cells to cisplatin induced cell death. • MiR-203 can downregulate PIK3CA through the 3′UTR. • The effects of miR-203 on cisplatin sensitivity is mainly through PIK3CA pathway.

  9. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    Science.gov (United States)

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  10. CCL21/CCR7 enhances the proliferation, migration, and invasion of human bladder cancer T24 cells.

    Science.gov (United States)

    Mo, Miao; Zhou, Mi; Wang, Lu; Qi, Lin; Zhou, Kehua; Liu, Long-Fei; Chen, Zhi; Zu, Xiong-Bing

    2015-01-01

    To investigate the effects of CCL21/CCR7 on the proliferation, migration, and invasion of T24 cells and the possible associated mechanisms: expression of MMP-2 and MMP-9, and regulation of BCL-2 and BAX proteins. T24 cells received corresponding treatments including vehicle control, antibody (20 ng/mL CCR7 antibody and 50 ng/ml CCL21), and 50, 100, and 200 ng/ml CCL21. Proliferation was evaluated by MTT assay; cell migration and invasion were assayed using a transwell chamber. Cell apoptosis was induced by Adriamycin (ADM). The rate of cell apoptosis was examined by flow cytometry using annexin V-FITC/PI staining. Western-blot was used to analyze MMP-2 and MMP-9 and BCL-2 and BAX proteins. CCL21 promoted T24 cell proliferation in concentration-dependent manner with that 200 ng/mL induced the largest amount of proliferation. Significant differences of cell migration were found between CCL21treatment groups and the control group in both the migration and invasion studies (P T24 cell proliferation and enhanced its migration and invasion via the increased expression of MMP-2 and MMP-9. CCL21/CCR7 had antiapoptotic activities on T24 cells via regulation of Bcl-2 and Bax proteins. CCL21/CCR7 may promote bladder cancer development and metastasis.

  11. VEGFA/VEGFR2-targeted therapies prevent the VEGFA-induced proliferation of regulatory T cells in cancer

    Science.gov (United States)

    Terme, Magali; Tartour, Eric; Taieb, Julien

    2013-01-01

    Some of the anti-angiogenic agents currently used to treat solid malignancies have effects on tumor endothelial cells as well as on immune cells. We have recently demonstrated that targeting the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) signaling pathway reduces the proportion of regulatory T cells (Treg) in a mouse model of colorectal cancer (CRC) and in metastatic CRC patients as it inhibits tumor-induced Treg proliferation. PMID:24083078

  12. Escitalopram oxalate inhibits proliferation and migration and induces apoptosis in non-small cell lung cancer cells.

    Science.gov (United States)

    Yuan, I; Horng, Chi-Ting; Chen, Vincent Chin-Hung; Chen, Chun-Hung; Chen, Li-Jeng; Hsu, Tsai-Ching; Tzang, Bor-Show

    2018-03-01

    Population-based cohort studies have revealed that neuroleptic medications are associated with a reduced cancer risk. Recent studies have demonstrated that selective serotonin reuptake inhibitors (SSRIs) have an antiproliferative or cytotoxic effect on certain cancer types. Known as a superior SSRI, escitalopram oxalate exhibits favorable tolerability with generally mild and temporary adverse events. The present study aimed to examine the effects of escitalopram oxalate on non-small cell lung cancer (NSCLC) cells. The experimental results revealed that escitalopram oxalate significantly inhibited the proliferation and invasion of A549, and H460 cells compared with BEAS-2B cells. Additionally, escitalopram oxalate significantly increased the sub-G 1 population and caspase-3 activity of A549, and H460 cells. Furthermore, escitalopram oxalate significantly induced mitochondria-dependent apoptotic signaling cascades in A549 and H460 cells, which included increases in the protein expression levels of apoptosis regulator Bax, truncated BH3-interacting domain death agonist, cytochrome c , apoptotic protease-activating factor 1, and cleaved caspase-9. These findings suggest that escitalopram oxalate could serve a therapeutic agent for the treatment of NSCLC due to its antiproliferative and apoptotic effects.

  13. Hsp90 Is a Novel Target Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Dong-Jun Qin

    Full Text Available Synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9(11-dien-28-oate (CDDO-Me has been shown as a promising agent against ovarian cancer. However, the underlying mechanism is not well understood. Here, we demonstrate that CDDO-Me directly interacts with Hsp90 in cells by cellular thermal shift assay. CDDO-Me treatment leads to upregulation of Hsp70 and degradation of Hsp90 clients (ErbB2 and Akt, indicating the inhibition of Hsp90 by CDDO-Me in cells. Knockdown of Hsp90 significantly inhibits cell proliferation and enhances the anti-proliferation effect of CDDO-Me in H08910 ovarian cancer cells. Dithiothreitol inhibits the interaction of CDDO-Me with Hsp90 in cells and abrogates CDDO-Me induced upregulation of Hsp70, degradation of Akt and cell proliferation inhibition. This suggests the anti-ovarian cancer effect of CDDO-Me is possibly mediated by the formation of Michael adducts between CDDO-Me and reactive nucleophiles on Hsp90. This study identifies Hsp90 as a novel target protein of CDDO-Me, and provides a novel insight into the mechanism of action of CDDO-Me in ovarian cancer cells.

  14. Effect of SATB1 silencing on the proliferation, invasion and apoptosis of TE-1 esophageal cancer cells.

    Science.gov (United States)

    Huang, Bo; Xiong, Fei; Wang, Siwang; Lang, Xianping; Wang, Xiaodong; Zhou, Hongli

    2017-05-01

    The aim of the present study was to investigate the effect of special AT-rich sequence-binding protein-1 (SATB1)-targeted small interfering RNA (siRNA) on the proliferation, invasion and apoptosis of TE-1 human esophageal cancer cells. SATB1 has been correlated with the metastasis and poor prognosis of colon and breast cancer, but the role of SATB1 in esophageal cancer remains unknown. Therefore, the present study constructed and transfected SATB1-siRNA into TE-1 cells in order to knockdown the expression of the SATB1 gene. Western blot analysis, a cell counting kit, transwell chamber assays and flow cytometry were used to assess the effect of SATB1-siRNA on the proliferation, invasion and apoptosis of cells. The results demonstrated that the expression of the SATB1 gene was efficiently knocked down by SATB1-siRNA, and that SATB1-siRNA inhibited the proliferation, invasion and apoptosis of TE-1 cells. Therefore, it was concluded that the SATB1 gene is important in the pathogenesis of human esophageal cancer, and may present a novel therapeutic target for esophageal cancer.

  15. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    Science.gov (United States)

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells.

    Science.gov (United States)

    Król, Magdalena; Majchrzak, Kinga; Mucha, Joanna; Homa, Agata; Bulkowska, Małgorzata; Jakubowska, Arleta; Karwicka, Malwina; Pawłowski, Karol M; Motyl, Tomasz

    2013-04-05

    Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration ("wound healing" assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach.

  17. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting, E-mail: zzyuantinggu@126.com

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.

  18. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells

    OpenAIRE

    Villa, Nancy Y.; Wasserfall, Clive H.; Meacham, Amy M.; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R.

    2015-01-01

    MYXV binds human T lymphocytes but does not enter and infect T cells until after activation.MYXV-infected T lymphocytes proliferate less and secrete less inflammatory cytokines but deliver oncolytic virus to augment GVM.

  19. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  20. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei [Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029 (China); Yuan, Chuan-Tao [Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272029 (China); Wang, Ai-Liang, E-mail: wang_ailiang@126.com [Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029 (China)

    2015-09-18

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.

  1. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  2. Lentivirus-mediated TPD52L2 depletion inhibits the proliferation of liver cancer cells in vitro.

    Science.gov (United States)

    Pan, Ze-Ya; Yang, Yun; Pan, Hao; Zhang, Jin; Liu, Hui; Yang, Yuan; Huang, Gang; Yin, Lei; Huang, Jian; Zhou, Wei-Ping

    2015-01-01

    Tumor protein D52-like 2, known as hD54 in previous studies (TPD52L2), is a member of TPD52 family which has been implicated in multiple human cancers. In recent reports, TPD52 proteins were indicated to be associated with several malignancies, but very little is known about the function of TPD52L2 in liver cancers. In our present study, in order to explore the role of TPD52L2 in liver cancer, TPD52L2 was knocked down in SMMC-7721 liver cancer cell line by lentivirus mediated RNA interference. The results demonstrated that depletion of TPD52L2 could remarkably inhibit proliferation and colony forming ability of cancer cell SMMC-7721. Furthermore, cell cycle in TPD52L2 depleted cells was verified to be arrested in G0/G1 phase as determined by FACS assay, in consistence with the observation of cell proliferation inhibition. These results unraveled that TPD52L2 played an important role in tumorigenesis pathways of liver cancer and might serve as a promising target in human liver cancer diagnosis and therapy.

  3. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  4. Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan; Zhao, Li; Zang, Wen; Liu, Zhifang; Chen, Long; Liu, Tiantian [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Xu, Dawei, E-mail: Dawei.Xu@ki.se [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China); Department of Medicine, Division of Hematology, Karolinska University Hospital, Solna and Karolinska Institutet, Stockholm (Sweden); Jia, Jihui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer JMJD2B is required for cell proliferation and in vivo tumorigenesis. Black-Right-Pointing-Pointer JMJD2B depletion induces apoptosis and/or cell cycle arrest. Black-Right-Pointing-Pointer JMJD2B depletion activates DNA damage response and enhances p53 stabilization. Black-Right-Pointing-Pointer JMJD2B is overexpressed in human primary gastric cancer. -- Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21{sup CIP1} proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.

  5. Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation.

    Science.gov (United States)

    Zhang, Y; Dayalan Naidu, S; Samarasinghe, K; Van Hecke, G C; Pheely, A; Boronina, T N; Cole, R N; Benjamin, I J; Cole, P A; Ahn, Y-H; Dinkova-Kostova, A T

    2014-01-07

    Heat shock protein 90 (HSP90) has a key role in the maintenance of the cellular proteostasis. However, HSP90 is also involved in stabilisation of oncogenic client proteins and facilitates oncogene addiction and cancer cell survival. The development of HSP90 inhibitors for cancer treatment is an area of growing interest as such agents can affect multiple pathways that are linked to all hallmarks of cancer. This study aimed to test the hypothesis that targeting cysteine residues of HSP90 will lead to degradation of client proteins and inhibition of cancer cell proliferation. Combining chemical synthesis, biological evaluation, and structure-activity relationship analysis, we identified a new class of HSP90 inhibitors. Click chemistry and protease-mass spectrometry established the sites of modification of the chaperone. The mildly electrophilic sulphoxythiocarbamate alkyne (STCA) selectively targets cysteine residues of HSP90, forming stable thiocarbamate adducts. Without interfering with the ATP-binding ability of the chaperone, STCA destabilises the client proteins RAF1, HER2, CDK1, CHK1, and mutant p53, and decreases proliferation of breast cancer cells. Addition of a phenyl or a tert-butyl group in tandem with the benzyl substituent at nitrogen increased the potency. A new compound, S-4, was identified as the most robust HSP90 inhibitor within a series of 19 derivatives. By virtue of their cysteine reactivity, sulphoxythiocarbamates target HSP90, causing destabilisation of its client oncoproteins and inhibiting cell proliferation.

  6. Correlation of serum ASPH and 5’-NT contents with angiogenesis and cancer cell proliferation in patients with liver cancer

    Directory of Open Access Journals (Sweden)

    Gai-Zhuang Liu

    2017-06-01

    Full Text Available Objective: To proliferation in patients with liver cancer. Methods: Patients with primary liver cancer who underwent surgical resection in Yulin Third Hospital between December 2013 and December 2016 were selected as the liver cancer group of the research, and healthy volunteers who received physical examination in Yulin Third Hospital over the same period were selected as the control group of the research. Serum was collected from both groups to test the contents of ASPH and 5’-NT as well as liver cancer cell proliferation molecules; liver cancer lesions and para-carcinoma lesions were collected from liver cancer group to detect the contents of angiogenesis molecules and cancer cell proliferation molecules. Results: Serum ASPH and 5’- NT contents in liver cancer group were significantly higher than those in control group; VEGF, VEGFR1, VEGFR2, HGF, EGFR, Bcl-2, Bcl-x and Bcl-w contents in liver cancer lesions were significantly higher than those in para-carcinoma lesions and positively correlated with serum ASPH and 5’-NT contents in patients with liver cancer while Bax and Bak contents in liver cancer lesions were significantly lower than those in para-carcinoma lesions and negatively correlated with serum ASPH and 5’-NT contents in patients with liver cancer; serum AFP, GP73, GPC3 and DKK1 contents in liver cancer group were significantly higher than those in control group and positively correlated with serum ASPH and 5’-NT contents in patients with liver cancer. Conclusion: Serum ASPH and 5’-NT contents increase significantly in patients with liver cancer and can accurately evaluate angiogenesis and cancer cell proliferation.

  7. Curcumin reverses benzidine-induced cell proliferation by suppressing ERK1/2 pathway in human bladder cancer T24 cells.

    Science.gov (United States)

    Sun, Xin; Deng, Qi-Fei; Liang, Zhao-Feng; Zhang, Zhi-Qiang; Zhao, Li; Geng, Hao; Xie, Dong-Dong; Wang, Yi; Yu, De-Xin; Zhong, Cai-Yun

    2016-04-01

    Bladder cancer is one of the leading causes of cancer-related death in the world. Prolonged exposure to benzidine is a known cause of bladder cancer. Curcumin has been clinically used in chemoprevention and treatment of cancer. However, it remains unknown whether mitogen-activated protein kinase (MAPK) pathways are involved in curcumin-mediated protection from benzidine-associated promotive effects on bladder cancer. In our study, we found that benzidine increased the proliferation of human bladder cancer T24 cells, triggered transition of the cells from G1 to S phase, elevated the expression of cyclin D1 and proliferating cell nuclear antigen (PCNA) and decreased p21 expression. Meanwhile, exposure of T24 cells to benzidine resulted in activation of extracellular regulated protein kinases 1 and 2 (ERK1/2) pathway as well as activator protein 1 (AP-1) proteins. Treatment with ERK1/2 inhibitor U0126 or curcumin effectively abrogated benzidine-triggered cell proliferation and ERK1/2/AP-1 activation. These results suggested for the first time that curcumin in low concentrations played a protective role in benzidine-induced ERK1/2/AP-1 activation and proliferation of bladder cancer cells, therefore providing new insights into the pathogenesis and chemoprevention of benzidine-associated bladder cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  9. MiR-495-3p facilitates colon cancer cell proliferation via Wnt/β ...

    African Journals Online (AJOL)

    development of colon cancer stem cells by inhibiting Wnt inhibitory factor (WIF1). Methods: ... cancer and is a potential target for prevention and treatment of cancer. ... therapy. At present, molecular targets have been investigated in the treatment of many types of cancer. MicroRNAs (miRNAs) are proposed to be prospective ...

  10. A Mathematical Model Quantifies Proliferation and Motility Effects of TGF-β on Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shizhen Emily Wang

    2009-01-01

    Full Text Available Transforming growth factor (TGF-β is known to have properties of both a tumour suppressor and a tumour promoter. While it inhibits cell proliferation, it also increases cell motility and decreases cell–cell adhesion. Coupling mathematical modelling and experiments, we investigate the growth and motility of oncogene-expressing human mammary epithelial cells under exposure to TGF-β. We use a version of the well-known Fisher–Kolmogorov equation, and prescribe a procedure for its parametrisation. We quantify the simultaneous effects of TGF-β to increase the tendency of individual cells and cell clusters to move randomly and to decrease overall population growth. We demonstrate that in experiments with TGF-β treated cells in vitro, TGF-β increases cell motility by a factor of 2 and decreases cell proliferation by a factor of 1/2 in comparison with untreated cells.

  11. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  12. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Xie

    Full Text Available Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53- human cancer cells. We find that compared to p53-competent (p53+ human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53- cells, RNAi-mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53- but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53- cancer cells.

  13. Erbin loss promotes cancer cell proliferation through feedback activation of Akt-Skp2-p27 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hao [Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850 (China); Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004 (China); Song, Yuhua [The Affiliated Hospital of Medical College, Qingdao University, Qingdao (China); Wu, Yan; Guo, Ning [Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850 (China); Ma, Yuanfang [Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004 (China); Qian, Lu, E-mail: mayf@henu.edu.cn [Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850 (China)

    2015-07-31

    Erbin localizes at the basolateral membrane to regulate cell junctions and polarity in epithelial cells. Dysregulation of Erbin has been implicated in tumorigenesis, and yet it is still unclear if and how disrupted Erbin regulates the biological behavior of cancer cells. We report here that depletion of Erbin leads to cancer cell excessive proliferation in vitro and in vivo. Erbin deficiency accelerates S-phase entry by down-regulating CDK inhibitors p21 and p27 via two independent mechanisms. Mechanistically, Erbin loss promotes p27 degradation by enhancing E3 ligase Skp2 activity though augmenting Akt signaling. Interestingly, we also show that Erbin is an unstable protein when the Akt-Skp2 signaling is aberrantly activated, which can be specifically destructed by SCF-Skp2 ligase. Erbin loss facilitates cell proliferation and migration in Skp2-dependent manner. Thus, our finding illustrates a novel negative feedback loop between Erbin and Akt-Skp2 signaling. It suggests disrupted Erbin links polarity loss, hyperproliferation and tumorigenesis. - Highlights: • Erbin loss leads to cancer cell excessive proliferation in vitro and in vivo. • Erbin loss accelerates cell cycle though down-regulating p21 and p27 expression. • Erbin is a novel negative modulator of Akt1-Skp2-p27 signaling pathway. • Our study suggests that Erbin loss contributes to Skp2 oncogenic function.

  14. Ganoderma lucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling.

    Science.gov (United States)

    Zhang, Yu

    2017-07-08

    The medical mushroom Ganoderma lucidum (Reishi), a traditional Chinese medicine, has exhibited a promising anti-cancer effect. However, the molecular mechanism of its action on cancer cells remains unclear. Aberrant activation of Wnt/β-catenin signaling pathway is the cause of many types of cancer, including breast cancer. Here we investigated the effect of Reishi on Wnt/β-catenin signaling pathway and elucidated the molecular mechanism of its function in inhibiting breast cancer cells. We found that Reishi blocked Wnt/β-catenin signaling through inhibiting the phosphorylation of Wnt co-receptor LRP6. In human (MDA-MB-231) and mouse (4T1) breast cancer cell lines, Reishi significantly decreased the phosphorylation of LRP6 and suppressed Wnt3a-activated Wnt target gene Axin2 expression. Administration of Reishi inhibited Wnt-induced hyper-proliferation of breast cancer cells and MDA-MB-231 cell migration. Our results provide evidence that Reishi suppresses breast cancer cell growth and migration through inhibiting Wnt/β-catenin signaling, indicating that Reishi may be a potential natural inhibitor for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    Energy Technology Data Exchange (ETDEWEB)

    Kakoki, Katsura [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki 852-8523 (Japan); Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kamiyama, Haruka [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki 852-8523 (Japan); Izumida, Mai; Yashima, Yuka; Hayashi, Hideki [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Yamamoto, Naoki [Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki 852-8523 (Japan); Department of Microbiology, National University of Singapore (Singapore); Matsuyama, Toshifumi [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Igawa, Tsukasa; Sakai, Hideki [Department of Urology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kubo, Yoshinao, E-mail: yoshinao@nagasaki-u.ac.jp [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki 852-8523 (Japan)

    2014-04-25

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.

  16. microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation.

    Science.gov (United States)

    Jin, Xiu-Li; Sun, Qin-Sheng; Liu, Feng; Yang, Hong-Wei; Liu, Min; Liu, Hong-Xia; Xu, Wei; Jiang, Yu-Yang

    2013-07-01

    Transcriptional repressor Pokemon is a critical factor in embryogenesis, development, cell proliferation, differentiation, and oncogenesis, thus behaving as an oncogene. Oncomine database suggests a potential correlation between the expressions of Pokemon and Sprouty1. This study investigated the regulatory role of Pokemon in Sprouty1 expression and the effect on liver cancer cell growth and proliferation, revealing a novel miR-21-mediated regulatory circuit. In normal (HL-7702) and cancer (QGY-7703) liver cell lines, Sprouty1 expression is inversely correlated with Pokemon levels. Targeted expression or siRNA-mediated silencing showed that Pokemon is a repressor of Sprouty1 expression at both mRNA and protein levels, but Pokemon cannot affect the promoter activity of Sprouty1. Sprouty1 is a target of miR-21 and interestingly, we found that miR-21 is up-regulated by Pokemon in liver cancer cells. Luciferase reporter assays showed that Pokemon up-regulated miR-21 transcription in a dose-dependent manner, and ChIP assay exhibited a direct binding of Pokemon to the miR-21 promoter at -747 to -399 bp. Site-directed mutagenesis of the GC boxes at -684 to -679 bp and -652 to -647 bp of miR-21 promoter abolished the regulatory activity by Pokemon. Furthermore, we found that the modulation of Pokemon and miR-21 expression affected the growth and proliferation of liver cancer cells QGY-7703. In summary, our findings demonstrate that Pokemon suppresses Sprouty1 expression through a miR-21-mediated mechanism, affecting the growth and proliferation of liver cancer cells. This study recognized miR-21 and Sprouty1 as novel targets of the Pokemon regulatory network. Copyright © 2013 Wiley Periodicals, Inc.

  17. Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells.

    Science.gov (United States)

    Alimohammadi, Mohammad; Lahiani, Mohamed Hassen; McGehee, Diamond; Khodakovskaya, Mariya

    2017-01-01

    In recent years, by extensive achievements in understanding the mechanisms and the pathways affected by cancer, the focus of cancer research is shifting from developing new chemotherapy methods to using natural compounds with therapeutic properties to reduce the adverse effects of synthetic drugs on human health. We used fruit extracts from previously generated human type I InsP 5-ptase gene expressing transgenic tomato plants for assessment of the anti-cancer activity of established genetically modified tomato lines. Cellular assays (MTT, Fluorescent microscopy, Flow Cytometry analysis) were used to confirm that InsP 5-ptase fruit extract was more effective for reducing the proliferation of breast cancer cells compared to wild-type tomato fruit extract. Metabolome analysis of InsP 5-ptase expressing tomato fruits performed by LC-MS identified tomato metabolites that may play a key role in the increased anti-cancer activity observed for the transgenic fruits. Total transcriptome analysis of cancer cells (MCF-7 line) exposed to an extract of transgenic fruits revealed a number of differently regulated genes in the cells treated with transgenic extract compared to untreated cells or cells treated with wild-type tomato extract. Together, this data demonstrate the potential role of the plant derived metabolites in suppressing cell viability of cancer cells and further prove the potential application of plant genetic engineering in the cancer research and drug discovery.

  18. Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Mohammad Alimohammadi

    Full Text Available In recent years, by extensive achievements in understanding the mechanisms and the pathways affected by cancer, the focus of cancer research is shifting from developing new chemotherapy methods to using natural compounds with therapeutic properties to reduce the adverse effects of synthetic drugs on human health. We used fruit extracts from previously generated human type I InsP 5-ptase gene expressing transgenic tomato plants for assessment of the anti-cancer activity of established genetically modified tomato lines. Cellular assays (MTT, Fluorescent microscopy, Flow Cytometry analysis were used to confirm that InsP 5-ptase fruit extract was more effective for reducing the proliferation of breast cancer cells compared to wild-type tomato fruit extract. Metabolome analysis of InsP 5-ptase expressing tomato fruits performed by LC-MS identified tomato metabolites that may play a key role in the increased anti-cancer activity observed for the transgenic fruits. Total transcriptome analysis of cancer cells (MCF-7 line exposed to an extract of transgenic fruits revealed a number of differently regulated genes in the cells treated with transgenic extract compared to untreated cells or cells treated with wild-type tomato extract. Together, this data demonstrate the potential role of the plant derived metabolites in suppressing cell viability of cancer cells and further prove the potential application of plant genetic engineering in the cancer research and drug discovery.

  19. Turmeric and Chinese goldthread synergistically inhibit prostate cancer cell proliferation and NF-kB signaling

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2014-07-01

    Full Text Available Background: Pre-clinical studies using bioactive compounds from botanicals appear to offer some protection against cancer. Research using single bioactives contributes greatly to our understanding of their mechanism of action, but in vitro studies demand concentrations that are higher than achievable in humans (µM. However, maintaining these bioactives in the presence of other compounds originally derived from the food or extract of origin may synergistically lower the bioactive dose so translatability becomes feasible. The objective of this study was to determine if bio-efficacy of phytonutrients can be enhanced when used in combination even at doses that are ineffective for any compound when used in isolation. Methods: The anti-proliferative and molecular effects of herbs (turmeric and Chinese goldthread and their bioactives (curcumin and ar-turmerone, berberine and coptisine, respectively were determined in isolation and in combination. Using CWR22Rv1 and HEK293 cells, cell proliferation (as assessed by the MTT assay and NF-κB promoter activity (using a luciferase reporter construct were evaluated and synergy of action was assessed by the ChouTalalay method utilizing CompuSyn® software. Results: Turmeric and Chinese goldthread act synergistically (combination index<1 when inhibiting cell proliferation with all cell lines tested. The synergy of action of combinations of companion bioactives from the same herb (i.e., curcumin/ar-turmerone and berberine/coptisine and bioactives from different herbs (i.e., curcumin/berberine help to explain why turmeric and Chinese goldthread are more effective than their major bioactives in isolation. At the molecule level, curcumin+ar-turmerone and curcumin+coptisine synergistically attenuated TNFα- stimulated NF-κB promoter activity. Even compounds with poor efficacy become more biologically active in the presence of companion compounds. Importantly, the effects of combining any two bioactives or herbal

  20. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chuanyi [Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008 (China); Shen, Liangfang, E-mail: lfshen2008@163.com [Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008 (China); Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi [Department of Radiation Oncology, Yueyang Second People' s Hospital, Yueyang 414000 (China)

    2015-02-27

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells.

  1. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting.

    Science.gov (United States)

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3'-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Effects of arsenic trioxide on the proliferation of human breast cancer SKBR-3 cell and the expression of Notch1].

    Science.gov (United States)

    Li, You-Jian; Xia, Jun; Zhao, Rui

    2012-06-01

    To study the effects of arsenic trioxide (As2O3) on the proliferation and the migration force of human breast cancer SKBR-3 cell and the expression of Notch1. SKBR-3 cells were cultured with different concentrations of As2O3 for 24 h and with the final concentration of 8 micromol/L for 24, 48, and 72 h. The effects of As2O3 on the cell proliferation of SKBR-3 were detected by MTT assay. The effects of the migration force of SKBR-3 cells were detected by Transwell. The expression of Notch1 mRNA was detected using reverse transcription polymerase chain reaction (RT-PCR). The expression of Notch1 protein was detected using Western blot. As2O3 could significantly inhibit the proliferation of SKBR-3 cells in a concentration- and time-dependent manner (P breast cancer cells possibly through Notch1 signaling pathway, thus providing theoretical and experimental bases for treating breast cancer by arsenic.

  3. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation.

    Science.gov (United States)

    Kangawa, Yumi; Yoshida, Toshinori; Maruyama, Kiyoshi; Okamoto, Minako; Kihara, Tohru; Nakamura, Michi; Ochiai, Masako; Hippo, Yoshitaka; Hayashi, Shim-Mo; Shibutani, Makoto

    2017-02-01

    We previously reported the anti-inflammatory effects of cilostazol, a selective inhibitor of phosphodiesterase 3, and two antioxidants, enzymatically modified isoquercitrin and α-lipoic acid in a dextran sodium sulphate-induced colitis mouse model. We further examined the chemopreventive effects of these substances in a murine azoxymethane/dextran sodium sulphate -induced colorectal carcinoma model and compared the effects with those of the well-known anticancer natural plant pigment, anthocyanin. In addition, the effects on cell proliferation activity were evaluated in colon cancer cell lines and mucosal epithelial cells in a model of acute dextran sodium sulphate-induced colitis. Cilostazol and enzymatically modified isoquercitrin improved the outcome of azoxymethane/dextran sodium sulphate-induced colorectal cancer along with anthocyanin though inhibiting inflammation and cell proliferation, but the effect of α-lipoic acid was minimal. Inhibition of cell proliferation by cilostazol was confirmed in vitro. In the acute dextran sodium sulphate-induced colitis model, cilostazol and enzymatically modified isoquercitrin prevented the decrease in epithelial proliferative cells. These results indicate that cilostazol and enzymatically modified isoquercitrin first exhibited an anti-dextran sodium sulphate effect at the initial stage of colitis and then showed antitumour effects throughout subsequent inflammation-related cancer developmental stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms.

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P; Fuessel, Susanne

    2014-10-10

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight(EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation,clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion,the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel approach

  5. Effects of anaesthesia on proliferation, invasion and apoptosis of LoVo colon cancer cells in vitro.

    Science.gov (United States)

    Xu, Y J; Li, S Y; Cheng, Q; Chen, W K; Wang, S L; Ren, Y; Miao, C H

    2016-02-01

    Tumour cell proliferation, invasion and apoptosis are crucial steps in tumour metastasis. We evaluated the effect of serum from patients undergoing colon cancer surgery receiving thoracic epidural and propofol anaesthesia on colon cancer cell biology. Patients were randomly assigned to receive propofol anaesthesia with a concomitant thoracic epidural (PEA, n = 20) or sevoflurane anaesthesia with opioid analgesia (SGA, n = 20). Venous blood was obtained before induction of anaesthesia and 24 hours postoperatively. The LoVo colon cancer cells were cultured with patient serum from both groups and the effects on proliferation, invasion and apoptosis were measured. Twenty-four hours after surgery, the absorbance value of LoVo cells at 10% serum concentration from PEA was decreased when compared with SGA (0.302 (0.026) vs 0.391 (0.066), p = 0.005). The inhibitory rate of LoVo cells at 10% serum concentration from PEA was higher than that from SGA (p = 0.004) 24 h after surgery. The number of invasive LoVo cells at 10% serum concentration from PEA was reduced when compared with SGA (44 (4) vs 62 (4), p < 0.001). Exposure of LoVo cells to postoperative serum from patients receiving PEA led to a higher luminescence ratio (apoptosis) than those receiving SGA (0.36 (0.04) vs 0.27 (0.05), p < 0.001). Serum from patients receiving PEA for colon cancer surgery inhibited proliferation and invasion of LoVo cells and induced apoptosis in vitro more than that from patients receiving SGA. Anaesthetic technique might influence the serum milieu in a way that affects cancer cell biology and, thereby, tumour metastastasis. © 2015 The Association of Anaesthetists of Great Britain and Ireland.

  6. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  7. MicroRNA-184 inhibits cell proliferation and metastasis in human colorectal cancer by directly targeting IGF-1R.

    Science.gov (United States)

    Wu, Guannan; Liu, Jiayun; Wu, Zhenfeng; Wu, Xiaoyu; Yao, Xuequan

    2017-09-01

    Colorectal cancer is currently the third most common cancer in males and the second in females worldwide. In spite of marked progress having been achieved in surgical resection, radiotherapy and chemotherapy, the prognosis for patients with colorectal cancer remains poor. Previous studies have demonstrated that the abnormal expression of microRNAs contributed to human cancer carcinogenesis and progression, suggesting miRNAs as novel therapeutic targets in colorectal cancer. The aim of the present study was to investigate the expression, functions and underlying molecular mechanisms of microRNA-184 (miR-184) in colorectal cancer. The results identified that miR-184 was significantly downregulated in colorectal cancer tissues and cell lines. In vitro functional studies demonstrated that miR-184 significantly inhibited colorectal cancer cell proliferation, migration and invasion. Notably, insulin-like growth factor 1 receptor (IGF-1R) was identified as a direct target of miR-184 in colorectal cancer. Furthermore, the functions of IGF-1R small interfering RNA were similar to those induced by miR-184 in colorectal cancer, suggesting IGF-1R as a functional target of miR-184 in colorectal cancer. The results of the present study indicated that miR-184 may be a novel therapeutic strategy regimen of targeted therapy for colorectal cancer.

  8. MicroRNA-584 inhibits cell proliferation and invasion in non-small cell lung cancer by directly targeting MTDH.

    Science.gov (United States)

    Zhang, Yixiang; Wang, Yanjun; Wang, Jinguang

    2018-02-01

    Lung cancer is the third most frequent human malignant tumour and the leading cause of cancer-associated mortality worldwide. Emerging lines of evidence have demonstrated that microRNAs (miRNAs) are upregulated or downregulated in non-small cell lung cancer (NSCLC), and this phenomenon is involved in the regulation of various processes during tumorigenesis and progression, including tumour groWTh, apoptosis, cell invasion, and tumour metastasis. Therefore, understanding the molecular mechanism that associates abnormally expressed miRNAs with NSCLC formation and development may lead to the identification of novel diagnostic, and therapeutic targets for patients with NSCLC. miRNA-584 (miR-584) functions as a tumour suppressor in several types of cancer. However, the expression pattern, detailed biological function and underlying molecular mechanism of miR-584 in NSCLC remain unclear. Therefore, the present study detected the expression of miR-584 in NSCLC, investigated its role in NSCLC cells and determined its underlying molecular mechanism. In the current study, it was demonstrated that miR-584 was downregulated in NSCLC tissues and cell lines. Low miR-584 expression was correlated with tumour size, tumour node metastasis stage and distant metastasis. Overexpression of miR-584 inhibited cell proliferation and invasion in NSCLC. Additionally, metadherin was identified as a direct target gene of miR-584 in NSCLC as confirmed by a series of experiments. Moreover, upregulation of miR-584 was involved in the regulation of the phosphatase and tensin homolog/Akt serine/threonine kinase signalling pathway in NSCLC. Thus, miR-584 may serve as a tumor-suppressor, and the results of the present study provide a reference for future research into the potential mechanisms underlying NSCLC progression.

  9. PIM1 gene silencing inhibits proliferation and promotes apoptosis of human esophageal cancer cell line Eca-109.

    Science.gov (United States)

    Li, Jian-Qiang; Yang, Xun; Zhou, Xin-Ming

    2017-01-01

    We aimed to study the effect of PIM1 gene silencing on the proliferation and apoptosis of human esophageal cancer cell line Eca109. Cultured Eca109 cells were transfected with the recombinant plasmids in mediation of Lipofectamine TM 2000 Reagent. The Eca109 cells in logarithmic growth phase were collected and assigned into three groups: the PIM1 siRNA group (stably transfected with PIM1-shRNA plasmids), the negative control (NC) group (transfected with vacant plasmids), and the blank group (Eca109 cells without any transfection). The PIM1 mRNA expression was determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell cycle was analyzed by flow cytometry. Cell proliferation was evaluated using the Cell Counting Kit-8 (CCK-8). Cell apoptosis was assessed by Annexin V-FITC/PI double-staining and TUNEL assays. The PIM1 mRNA expression of Eca109 cells in the PIM1 siRNA group was significantly lower than that in the NC and blank groups. Compared with the NC and blank groups, the viability and proliferation of the Eca109 cells in the PIM1 siRNA group were significantly decreased at 48 h, 72 h and 96 h after transfection. The cell growth inhibition rate of the PIM1 siRNA group was higher than that of the NC and blank groups after transfection. Furthermore, the apoptotic rate of the PIM1 siRNA group was also higher than that of the NC and blank groups. In conclusion, our preliminary findings suggest that PIM1 gene silencing could inhibit proliferation and promote apoptosis of esophageal cancer cells.

  10. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  11. miR-203 inhibition of renal cancer cell proliferation, migration and invasion by targeting of FGF2.

    Science.gov (United States)

    Xu, Mingxi; Gu, Meng; Zhang, Ke; Zhou, Jun; Wang, Zhong; Da, Jun

    2015-04-09

    Renal cell carcinoma (RCC) is one of the leading causes of cancer related mortality worldwide. Increasing evidence has shown that microRNAs function as oncogenes or tumor suppressors in human malignancies, but the roles of miR-203 in human RCC is still unclear. First, quantitative real-time PCR (qRT-PCR) was performed to detect miR-203 expression in renal cancer cell lines and clear cell RCC (ccRCC) specimens. Then, the association of miR-203 expression with clinicopathological features and survival was later analyzed. Finally, the roles of miR-203 in regulation of tumor proliferation, migration, invasion, and target gene expression were further investigated. Our study showed miR-203 was down-regulated in renal cancer cell lines and ccRCC specimens (P renal cancer cell growth and metastasis (P renal cancer cell growth and metastasis (P renal cancer cells. Our study suggested that miR-203 could be a potential prognostic marker and functions as a tumor suppressor in human renal cancer by post-transcriptionally targeting FGF2. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6828145701534108 .

  12. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    Science.gov (United States)

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Dietary Glycation Products Regulate Immune Homeostasis: Early Glycation Products Promote Prostate Cancer Cell Proliferation through Modulating Macrophages.

    Science.gov (United States)

    Chen, Yingjia; Filipov, Nikolay M; Guo, Tai L

    2017-10-30

    Well-controlled glycation (generally limited to the early stages) has been proposed as a strategy to improve the physiochemical properties of dietary proteins, but the functional studies of glycation products were mostly on advanced glycation end-products (AGEs) rather than early glycation products (EGPs). Since cytokines are important modulators of various biological processes, this study aimed to determine whether EGPs and AGEs affected immune homeostasis differentially and did so through modulating macrophage-derived factors. Two systems (glycine-glucose and whey protein isolate (WPI)-glucose) were established to generate glycation products. They were applied to human macrophages (PMA-differentiated U937 cells), and cell viability and cytokine production were measured. Furthermore, EGPs, AGEs and their conditioned medium (CM) from macrophages were applied to human prostate cancer (PCa) cells with different etiology (LNCaP and PC-3) and murine PCa cells (TRAMP-C2) to determine their direct and indirect effects on PCa cell proliferation. EGPs enhanced the production of anti-inflammatory and immunosuppressive cytokines, and this enhancement was associated with increased PCa cell proliferation. In contrast, AGEs inhibited macrophages to secret cytokines, but increased PCa cell proliferation directly. Our data suggest that EGPs promote the prostate tumor proliferation indirectly through modulating macrophages, while AGEs have a direct effect. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer.

    Science.gov (United States)

    Yan, Liang; Li, Qi; Yang, Juan; Qiao, Baoping

    2017-08-11

    The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is associated with the metastasis and prognosis of bladder cancer. p53 is closely related to the progression of bladder cancer. Human glioma pathogenesis-related protein 1 (GLIPR1) is a p53 target gene with antitumor activity. This study aims to explore the interplay between TPX2, p53, and GLIPR1 and its correlation with cell proliferation, invasion, and tumor growth in bladder cancer. Here, Western blot and qRT-PCR analysis revealed that TPX2 at both mRNA and protein levels was up-regulated in bladder carcinoma tissues compared to their paired adjacent normal tissues. Additionally, tissues expressing high TPX2 level exhibited high p53 level and low GLIPR1 level. The expressions of TPX2 and p53 in non-muscle-invasive bladder cancer cells (KK47 and RT4) were lower than those in muscle-invasive bladder cancer cells (T24, 5637, and UM-UC-3), while GLIPR1 showed the converse expression pattern. Further investigation revealed that TPX2 activated the synthesis of p53; and GLIPR1 is up-regulated by wild-type (wt)-p53 but not affected by mutated p53; Additionally, GLIPR1 inhibited TPX2. These data suggested a TPX2-p53-GLIPR1 regulatory circuitry. Meanwhile, TPX2 overexpression promoted while overexpression of GLIPR1 or p53 inhibited bladder cancer growth. Interestingly, in T24 cells with mutated p53, p53 silence suppressed bladder cancer growth. This study identified a novel TPX2-p53-GLIPR1 regulatory circuitry which modulated cell proliferation, migration, invasion, and tumorigenicity of bladder cancer. Our findings provide new insight into underlying mechanisms of tumorigenesis and novel therapeutic options in bladder cancer. © 2017 Wiley Periodicals, Inc.

  15. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines.

    Science.gov (United States)

    Zhao, Yan; Wang, Xinyu; Li, Lei; Li, Changzhong

    2016-05-01

    The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.

  16. Increased cancer cell proliferation in prostate cancer patients with high levels of serum folate

    Science.gov (United States)

    Introduction: A recent clinical trial revealed that folic acid supplementation is associated with an increased incidence of prostate cancer (1). The present study evaluates serum and prostate tissue folate levels in men with prostate cancer, compared to histologically normal prostate glands from can...

  17. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms.

    Science.gov (United States)

    Liu, Yi; Zhang, Weihe; Cao, Yanyan; Liu, Yan; Bergmeier, Stephen; Chen, Xiaozhuo

    2010-12-08

    Cancer cells depend heavily on glucose as both energy and biosynthesis sources and are found to upregulate glucose transport and switch their main energy supply pathway from oxidative phosphorylation to glycolysis. These molecular and metabolic changes also provide targets for cancer treatment. Here we report that novel small molecules inhibited basal glucose transport and cell proliferation, and induced apoptosis in lung and breast cancer cells without affecting much their normal cell counterparts. Cancer cells survived the compound treatment lost their capability to proliferate. Mechanistic study indicates that the cancer cell inhibition by the test compounds has a component of apoptosis and the induced apoptosis was p53-independent and caspase 3-dependent, similar to those resulted from glucose deprivation. Compound treatment also led to cell cycle arrest in G1/S phase. The inhibition of cancer cell growth was partially relieved when additional glucose was supplied to cells, suggesting that the inhibition was due to, at least in part, the inhibition of basal glucose transport. When used in combination, the test compounds demonstrated synergistic effects with anticancer drugs cisplatin or paclitaxel in inhibition of cancer cell growth. All these results suggest that these glucose transport inhibitors mimic glucose deprivation and work through inhibiting basal glucose transport. These inhibitors have the potential to complement and replace traditional glucose deprivation, which cannot be used in animals, as new tools to study the effects of glucose transport and metabolism on cancer and normal cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Inhibition of proliferation of cervical and leukemic cancer cells by penicillin G.

    Science.gov (United States)

    Banerjee, Aditya; Dahiya, Meetu; Anand, M T; Kumar, Sudhir

    2013-01-01

    Cancer, despite all the efforts, still causes one in five deaths worldwide. Surgery, chemotherapy and radiotherapy provide inadequate protection and instead affect normal cells along with cancer cells. The search for cancer cures from natural products (plants and animals) has been practice for over a decade and the use of purified chemical to treat cancer still continues. Several studies have been undertaken during last three decades to find the anti-cancerous property of various plant extract and toxins secreted by animals and micro-organism. These lead to the discovery of several promising molecule having anticancer activity, some of which are in clinical trial and may emerged to be a potential future drug in cancer therapy. In this study we have used penicillin to evaluate its anti-cancer activity. It shown significant effects at cellular and molecular levels against growth of HeLa and K562 cell lines.

  19. miR-411-5p inhibits proliferation and metastasis of breast cancer cell via targeting GRB2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunda [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Xu, Guoxing [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Liu, Gang; Ye, Yongzhi [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Zhang, Chuankai [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Fan, Chuannan [State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Wang, Haibin; Cai, Huali; Xiao, Rui [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Huang, Zhengjie, E-mail: huangzhengjie@xmu.edu.cn [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Luo, Qi, E-mail: luoqixmzsh@126.com [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China)

    2016-08-05

    miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasion while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy. - Highlights: • miR-411-5p is downregulated in breast cancer tissues and cell lines. • miR-411-5p inhibits breast cancer cells growth, migration and invasion in vitro. • GRB2 is a direct target of miR-411-5p in breast cancer. • GRB2 is overexpressed in breast cancer and associates with disease outcome. • miR-411-5p suppresses breast cancer progression though GRB2-SOS-Ras pathway.

  20. Effect of silencing LRIG3 gene on the proliferation and apoptosis of bladder cancer T24 cells.

    Science.gov (United States)

    Yuan, Xiaoyi; Bao, Shixin; Yang, Weimin; Ye, Zhangqun

    2011-04-01

    This study examined the effect of silencing LRIG3 expression on the proliferation and apoptosis of bladder cancer T24 cells and explored the role of LRIG3 in the tumorigenesis of bladder cancer. Bladder cancer T24 cells were routinely cultured and pSilencer plasmids were employed to construct LRIG3 eukaryotic expression vector of LRIG3-siRNA, i.e., pSilencer-LRIG3-siRNA. After confirmation, the vector was transfected into HEK293 cells to make a replication-deficient adenovirus, pAd-LRIG3-siRNA, which was then introduced into bladder cancer T24 cells. RT-PCR, Western-blotting were performed to detect the levels of LRIG3 mRNA and proteins. Cells number was determined by using MTT test. Hoechst33258 staining, transmission microscopy, flow cytometery were conducted to examine the cell apoptosis. Three groups included a blank control group, a negative control group (containing non-interfering plasmids) and a pAd-LRIG3-siRNA group. Our results showed that the recombinant pAd-LRIG3-siRNA was successfully transfected into the bladder cancer T24 cells. The siRNA formed by the transcription of the recombinant plasmids resulted in significantly reduced expressions of LRIG3 gene and protein and significantly decreased cell proliferation and growth in the pAd-LRIG3-siRNA group as compared with the control group (Pcells, with the apoptosis rate being (17.69±0.75)%, which was significantly different from that of the control group (PT24 cells. Silencing LRIG3 gene might be a novel alternative for the treatment of bladder cancer.

  1. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation

    OpenAIRE

    Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P.; Whelan, Rebecca J.; Patankar, Manish S.

    2016-01-01

    The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, ...

  2. Chromatin-associated CSF-1R binds to the promoter of proliferation-related genes in breast cancer cells.

    Science.gov (United States)

    Barbetti, V; Morandi, A; Tusa, I; Digiacomo, G; Riverso, M; Marzi, I; Cipolleschi, M G; Bessi, S; Giannini, A; Di Leo, A; Dello Sbarba, P; Rovida, E

    2014-08-21

    The colony-stimulating factor-1 (CSF-1) and its receptor CSF-1R physiologically regulate the monocyte/macrophage system, trophoblast implantation and breast development. An abnormal CSF-1R expression has been documented in several human epithelial tumors, including breast carcinomas. We recently demonstrated that CSF-1/CSF-1R signaling drives proliferation of breast cancer cells via 'classical' receptor tyrosine kinase signaling, including activation of the extracellular signal-regulated kinase 1/2. In this paper, we show that CSF-1R can also localize within the nucleus of breast cancer cells, either cell lines or tissue specimens, irrespectively of their intrinsic molecular subtype. We found that the majority of nuclear CSF-1R is located in the chromatin-bound subcellular compartment. Chromatin immunoprecipitation revealed that CSF-1R, once in the nucleus, binds to the promoters of the proliferation-related genes CCND1, c-JUN and c-MYC. CSF-1R also binds the promoter of its ligand CSF-1 and positively regulates CSF-1 expression. The existence of such a receptor/ligand regulatory loop is a novel aspect of CSF-1R signaling. Moreover, our results provided the first evidence of a novel localization site of CSF-1R in breast cancer cells, suggesting that CSF-1R could act as a transcriptional regulator on proliferation-related genes.

  3. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    Science.gov (United States)

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Inhibition of endothelial cell proliferation and tumor angiogenesis by up-regulating NDRG2 expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Ji Ma

    Full Text Available The N-myc downstream-regulated gene 2 (NDRG2 is involved in tumor cell differentiation and apoptosis, but its function in tumor angiogenesis remains to be established. Here, we employed adenovirus overexpressing NDRG2 (Ad-NDRG2 to efficiently up-regulate target gene expression in the NDRG2-low-expressing, breast cancer cell line MCF-7. Moreover, VEGF secretion was decreased in MCF-7 cells infected by Ad-NDRG2, and medium conditioned by these infected cells could significantly inhibit the proliferation, tube formation and invasion of human umbilical vein endothelial cells (HUVECs. Further study indicated that the angiogenesis promoting factors VEGF and HIF-1α were down-regulated, whereas the angiogenesis suppressing factors p53 and VHL were up-regulated in MCF-7 cells infected by Ad-NDRG2. Finally, in a nude mouse model, intratumoral injections of Ad-NDRG2 every 3 days for 20 days significantly inhibited the growth and angiogenesis of xenografted MCF-7 tumors. In summary, these data indicate that NDRG2 may be involved in angiogenesis by impacting the expression of angiogenesis related factors. Thus, specific overexpression of NDRG2 by adenovirus represents a promising approach for the treatment of tumor angiogenesis.

  5. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Kim Yoon-Keun

    2009-11-01

    Full Text Available Abstract Background Various cancer cells, including those of colorectal cancer (CRC, release microvesicles (exosomes into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. Results We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Conclusion Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.

  6. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Department of Chemistry, Jinan University, Guangzhou (China); Zhang, Yikai [Institute of Hematology, Jinan University, Guangzhou (China); Zheng, Shanyuan [School of Life Sciences, The Chinese University of Hong Kong, Hong Kong (China); Weng, Zeping; Ma, Jun [First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Yangqiu [Institute of Hematology, Jinan University, Guangzhou (China); First Affiliated Hospital, Jinan University, Guangzhou (China); Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 (China); Xie, Xinyuan [Department of Chemistry, Jinan University, Guangzhou (China); Zheng, Wenjie, E-mail: tzhwj@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou (China)

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  7. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    Science.gov (United States)

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  8. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII.

    Science.gov (United States)

    Zhao, Xiaojian; Lu, Caiping; Chu, Weiwei; Zhang, Bing; Zhen, Qiang; Wang, Renfeng; Zhang, Yaxiao; Li, Zhe; Lv, Baolei; Li, Huixian; Liu, Jiabao

    2017-05-01

    Non-small cell lung cancer accounts for 85% of all types of lung cancer and is the leading cause of worldwide cancer-associated mortalities. MiR-124 is epigenetically silenced in various types of cancer and plays important roles in tumor development and progression. MiR-124 was also significantly downregulated in non-small cell lung cancer patients. Glycolysis has been considered as a feature of cancer cells; hypoxia-inducible factor 1-alpha/beta and Akt are key enzymes in the regulation of glycolysis and energy metabolism in cancer cells. However, the role of miR-124 in non-small cell lung cancer cell proliferation, glycolysis, and energy metabolism remains unknown. In this research, cell proliferation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; furthermore, glucose consumption and lactic acid production were assessed; adenosine triphosphate content and NAD + /NADH were also detected. These tests were conducted using the normal non-small cell lung cancer cell line A549, which was transfected variedly with miR-mimics, miR-124 mimics, miR-124 inhibitor, pc-DNA3.1(+)-AKT1, and pc-DNA3.1(+)-AKT2 plasmid. Here, we show that miR-124 overexpression directly decreased cell growth, glucose consumption, lactate production, and energy metabolism. MiR-124 also negatively regulates glycolysis rate-limiting enzymes, glucose transporter 1 and hexokinase II. Our results also showed that miR-124 negatively regulates AKT1 and AKT2 but no regulatory effect on hypoxia-inducible factor 1-alpha/beta. Overexpression of AKT reverses the inhibitory effect of miR-124 on cell proliferation and glycolytic metabolism in non-small cell lung cancer. AKT inhibition blocks miR-124 silencing-induced AKT1/2, glucose transporter 1, hexokinase II activation, cell proliferation, and glycolytic or energy metabolism changes. In summary, this study demonstrated that miR-124 is able to inhibit proliferation, glycolysis, and energy metabolism, potentially by

  9. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene.

    Directory of Open Access Journals (Sweden)

    Zhiwei Liu

    Full Text Available All-trans retinoic acid (ATRA has been widely investigated for treatments of many cancers including prostate cancer. HOXB13, silenced in androgen receptor-negative (AR(- prostate cancer cells, plays a role in AR(- prostate cancer cell growth arrest. In this study we intended to elucidate the mechanisms that are involved in the proliferation inhibition of AR(- prostate cancer cells triggered by ATRA. We discovered that ATRA was able to induce the growth arrest and to increase HOXB13 expression in AR(- prostate cancer cells. Both EZH2 and DNMT3b participated in the repression of HOXB13 expression through an epigenetic mechanism involving DNA and histone methylation modifications. Specifically, EZH2 recruited DNMT3b to HOXB13 promoter to form a repression complex. Moreover, ATRA could upregulate HOXB13 through decreasing EZH2 and DNMT3b expressions and reducing their interactions with the HOXB13 promoter. Concurrently, the methylation level of the HOXB13 promoter was reduced upon the treatment of ATRA. Results from this study implicated a novel effect of ATRA in inhibition of the growth of AR(- resistant human prostate cancer cells through alteration of HOXB13 expression as a result of epigenetic modifications.

  10. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells

    Directory of Open Access Journals (Sweden)

    Irimie AI

    2015-02-01

    Full Text Available Alexandra Iulia Irimie,1 Cornelia Braicu,2 Oana Zanoaga,2 Valentina Pileczki,2,3 Claudia Gherman,2,4 Ioana Berindan-Neagoe,2,4–6 Radu Septimiu Campian7 1Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 2Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 3Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 4Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr. Ion Chiricuta”, Cluj-Napoca, Romania; 5Department of Immunology, Faculty of Medicine, University of Medicine and Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 6Department of Experimental Therapeutics MD Anderson Cancer Center Houston, TX, USA; 7Department of Oral Rehabilitation, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania Abstract: Epigallocatechin-3-gallate (EGCG is the major bioactive component of green tea. Our experimental data indicated that EGCG treatment suppresses cell proliferation of SSC-4 human oral squamous cell carcinoma (OSCC, the effect being dose- and time-dependent. In parallel was observed the activation of apoptosis and autophagy, in response to EGCG exposure in SSC-4 cells. Treatment with EGCG activates the expression of the BAD, BAK, FAS, IGF1R, WNT11, and ZEB1 genes and inhibits CASP8, MYC, and TP53. All of these results suggest that EGCG has an excellent potential to become a therapeutic compound for patients with OSCC, by inducing tumor cell death via apoptosis and autophagy. Keywords: oral squamous carcinoma, time dependent cell proliferation, gene expression

  11. CCL21/CCR7 enhances the proliferation, migration, and invasion of human bladder cancer T24 cells.

    Directory of Open Access Journals (Sweden)

    Miao Mo

    Full Text Available To investigate the effects of CCL21/CCR7 on the proliferation, migration, and invasion of T24 cells and the possible associated mechanisms: expression of MMP-2 and MMP-9, and regulation of BCL-2 and BAX proteins.T24 cells received corresponding treatments including vehicle control, antibody (20 ng/mL CCR7 antibody and 50 ng/ml CCL21, and 50, 100, and 200 ng/ml CCL21. Proliferation was evaluated by MTT assay; cell migration and invasion were assayed using a transwell chamber. Cell apoptosis was induced by Adriamycin (ADM. The rate of cell apoptosis was examined by flow cytometry using annexin V-FITC/PI staining. Western-blot was used to analyze MMP-2 and MMP-9 and BCL-2 and BAX proteins.CCL21 promoted T24 cell proliferation in concentration-dependent manner with that 200 ng/mL induced the largest amount of proliferation. Significant differences of cell migration were found between CCL21treatment groups and the control group in both the migration and invasion studies (P < 0.001 for all. The expressions of MMP-2 and MMP-9 proteins were significantly increased after CCL21 treatment (p < 0.05 for all. Protein expression of Bcl-21 follows an ascending trend while the expression of Bax follows a descending trend as the concentration of CCL21 increases. No difference was found between the control group and antibody group for all assessments.CCL21/CCR7 promoted T24 cell proliferation and enhanced its migration and invasion via the increased expression of MMP-2 and MMP-9. CCL21/CCR7 had antiapoptotic activities on T24 cells via regulation of Bcl-2 and Bax proteins. CCL21/CCR7 may promote bladder cancer development and metastasis.

  12. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongxue [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Department of Urology, Hospital of Xinjiang Production and Construction Corps, Urumqi 830002 (China); Li, Xuechao; Song, Yarong; Zhang, Peng; Xiao, Yajun [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Xing, Yifei, E-mail: yifei_xing@163.com [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-11-13

    Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cell apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.

  13. VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis.

    Science.gov (United States)

    Lu, Chun-Wun; Lo, Yi-Hsuan; Chen, Chu-Huang; Lin, Ching-Yi; Tsai, Chun-Hao; Chen, Po-Jung; Yang, Yi-Fang; Wang, Chie-Hong; Tan, Chun-Hsiang; Hou, Ming-Feng; Yuan, Shyng-Shiou F

    2017-03-01

    Abnormal lipoprotein profiles are associated with breast cancer progression. However, the mechanisms linking abnormal lipoprotein levels to breast cancer progression, especially metastasis, remain unclear. Herein, we found that L1 and L5 subfractions of LDL and VLDL, but not HDL, enhanced breast cancer cell viability. L1, L5, and VLDL also increased the in vitro tumorigenesis of breast cancer cells in anchorage-independent soft agar assay. In addition, L1, L5, and VLDL, but not HDL, increased the levels of mesenchymal markers Slug, Vimentin, and β-Catenin, and promoted breast cancer cell migration and invasion. L1, L5, and VLDL increased Akt Ser473 phosphorylation and promoted cell migration, which were reversed by the PI3K/Akt inhibitor wortmannin. Further in vitro angiogenesis assay and cytokine array analysis demonstrated that L1, L5, and VLDL enhanced secretion of angiogenic factors in breast cancer cells and promoted angiogenic activity. However, only VLDL reduced anchorage-dependent cell death and promoted lung metastasis in nude mice. In summary, our data suggest that L1, L5, and especially VLDL promote breast cancer progression and metastasis through Akt-induced EMT and angiogenesis, and provide a novel mechanism of how dyslipoproteinemia promotes breast cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition.

    Directory of Open Access Journals (Sweden)

    Danielle B Ulanet

    Full Text Available Recent work has highlighted glutaminase (GLS as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.

  15. Resveratrol Treatment Inhibits Proliferation of and Induces Apoptosis in Human Colon Cancer Cells.

    Science.gov (United States)

    Feng, Miao; Zhong, Lu-Xing; Zhan, Zheng-Yu; Huang, Zhi-Hao; Xiong, Jian-Ping

    2016-04-04

    Resveratrol, a natural isolate from plant sources, has a long and important history in traditional Chinese medicine. In the present study we investigated the effect of resveratrol on human colon cancer cell lines. We used the Cell Counting kit-8 (CCK-8) for determination of colon cancer cell viability. Apoptosis induction was analyzed using the DeadEnd™ Colorimetric TUNEL System (Promega, Madison, WI, USA). The siRNA Transfection Reagent kit (Santa Cruz Biotechnology, Inc.) was used for the administration of COX-2 silencer RNA (siRNA) into the colon cancer cells. Primer Express® software for Real-Time PCR ver. 3.0 (Applied Biosystems, Foster City, CA, USA) was used to prepare the primers for RT-PCR. The results revealed that exposure of colon cancer cells to resveratrol inhibited cell viability. Resveratrol exhibited a significant inhibitory effect on cell viability at 30 μM concentration after 48 h of exposure. We observed that 30-μM doses of resveratrol for 72 h led to 18, 29, and 34% reduction in the viability of HCA-17, SW480, and HT29 cells, respectively. It also significantly induced apoptosis in both of the tested carcinoma cell lines. The population of apoptotic cells in HCA-17 and SW480 cell lines after 48 h of resveratrol treatment was 59.8±4 and 67.2±4%, respectively, compared to 2.3±1% in the control cells. The colon cancer cells exposed to resveratrol showed significantly lower cyclooxygenase-2 and prostaglandin receptor expression. Treatment of colon cancer cells with the inhibitor of cyclooxygenase-2, indomethacin, and administration of silencer RNA for cyclooxygenase-2 also produced similar results. These findings suggest that resveratrol treatment can be a promising strategy for the treatment of colon cancer.

  16. Stimulation of extracellular signal-regulated kinases and proliferation in the human gastric cancer cells KATO-III by obestatin.

    Science.gov (United States)

    Pazos, Yolanda; Alvarez, Carlos J P; Camiña, Jesus P; Casanueva, Felipe F

    2007-12-01

    Obestatin, the ghrelin-associated peptide, activates cell proliferation in the gastric cancer cell line KATO-III. The results showed that this peptide induced cell proliferation by mitogen-activated kinase kinase/extracellular signal-regulated kinases1/2 (ERK1/2) phosphorylation. A sequential analysis of the obestatin transmembrane signalling pathway indicated that the ERK1/2 activity is partially blocked after preincubation of the cells with pertussis toxin, as well as by wortmannin (an inhibitor of phosphoinositide 3-kinase (PI3K)), staurosporine (an inhibitor of protein kinase C (PKC)) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2, which inhibits the non receptor tyrosine kinase Src). Upon administration of obestatin, the intracellular levels of phospho-PKCepsilon- and theta-isoenzymes rise with similar time-courses, from which PKCepsilon appears to be the responsible for ERK1/2 response. Based on the experimental data, a signalling pathway involving the consecutive activation of G(i), PI3K, novel PKCepsilon and Src for ERK1/2 activation is proposed. These results point to a functionally active peptide that regulates proliferation of the gastric cancer cells KATO-III.

  17. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction.

    Science.gov (United States)

    Juhasz, Agnes; Markel, Susan; Gaur, Shikha; Liu, Han; Lu, Jiamo; Jiang, Guojian; Wu, Xiwei; Antony, Smitha; Wu, Yongzhong; Melillo, Giovanni; Meitzler, Jennifer L; Haines, Diana C; Butcher, Donna; Roy, Krishnendu; Doroshow, James H

    2017-05-12

    Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2̇̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80-90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2-3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. [Effect of RNA interference of CD59 gene on proliferation of non-small cell lung cancer cell line GLC-P in vitro].

    Science.gov (United States)

    Wu, Weidong; Liu, Dan; Hou, Wenjin; Yi, Yongsheng; Wang, Yuejun; Lin, Weijia

    2015-06-01

    To investigate the effect of CD59 gene inhibition mediated by RNA interference on the proliferation and apoptosis of non-small cell lung cancer (NSCLC) GLC-P cells in vitro. Recombinant plasmids for RNA interference of CD59 gene were constructed and transfected into GLC-P cells via lipofectamine 2000. The stably transfected cells were examined with real-time RT-PCR, MTT assay and enzyme-linked immunosorbent assay to investigate the changes in cell proliferation and apoptosis. Compared with the control cells, the cells transfected with CD59-siRNA showed significantly decreased expression levels of CD59 mRNA (PRNA interference-mediated CD59 silencing can strongly inhibit the proliferation and induce apoptosis in GLC-P cells, which shed light on a potentially new target for targeted gene therapy of NSCLC.

  20. The role of microRNA-1274a in the tumorigenesis of gastric cancer: Accelerating cancer cell proliferation and migration via directly targeting FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guo-Jun, E-mail: wwangguojun@163.com; Liu, Guang-Hui; Ye, Yan-Wei; Fu, Yang; Zhang, Xie-Fu

    2015-04-17

    MicroRNAs (miRNAs) are a series of 18–25 nucleotides length non-coding RNAs, which play critical roles in tumorigenesis. Previous study has shown that microRNA-1274a (miR-1274a) is upregulated in human gastric cancer. However, its role in gastric cancer progression remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-1274a on gastric cancer cells. We found that miR-1274a was overexpressed in gastric cancer tissues or gastric cancer cells including HGC27, MGC803, AGS, and SGC-7901 by qRT-PCR analysis. Transfection of miR-1274a markedly promoted gastric cancer cells proliferation and migration as well as induced epithelial–mesenchymal transition (EMT) of cancer cells. Our further examination identified FOXO4 as a target of miR-1274a, which did not influence FOXO4 mRNA expression but significantly inhibited FOXO4 protein expression. Moreover, miR-1274a overexpression activated PI3K/Akt signaling and upregulated cyclin D1, MMP-2 and MMP-9 expressions. With tumor xenografts in mice models, we also showed that miR-1274a promoted tumorigenesis of gastric cancer in vivo. In all, our study demonstrated that miR-1274a prompted gastric cancer cells growth and migration through dampening FOXO4 expression thus provided a potential target for human gastric cancer therapy. - Highlights: • MiR-1274a expression was augmented in gastric cancer. • MiR-1274a promoted proliferation, migration and induced EMT in cancer cells. • MiR-1274a directly targeted FOXO4 expression. • MiR-1274a triggered PI3K/Akt signaling in cancer cells. • MiR-1274a significantly increased tumor xenografts growth.

  1. Liver × receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism.

    Science.gov (United States)

    Nguyen-Vu, Trang; Vedin, Lise-Lotte; Liu, Ka; Jonsson, Philip; Lin, Jean Z; Candelaria, Nicholes R; Candelaria, Lindsay P; Addanki, Sridevi; Williams, Cecilia; Gustafsson, Jan-Åke; Steffensen, Knut R; Lin, Chin-Yo

    2013-06-20

    Liver × receptors (LXRs) are members of the nuclear receptor family of ligand-dependent transcription factors and have established functions as regulators of cholesterol, glucose, and fatty acid metabolism and inflammatory responses. Published reports of anti-proliferative effects of synthetic LXR ligands on breast, prostate, ovarian, lung, skin, and colorectal cancer cells suggest that LXRs are potential targets in cancer prevention and treatment. To further determine the effects of LXR ligands and identify their potential mechanisms of action in breast cancer cells, we carried out microarray analysis of gene expression in four breast cancer cell lines following treatments with the synthetic LXR ligand GW3965. Differentially expressed genes were further subjected to gene ontology and pathway analyses, and their expression profiles and associations with disease parameters and outcomes were examined in clinical samples. Response of E2F target genes were validated by real-time PCR, and the posited role of E2F2 in breast cancer cell proliferation was tested by RNA interference experiments. We observed cell line-specific transcriptional responses as well as a set of common responsive genes. In the common responsive gene set, upregulated genes tend to function in the known metabolic effects of LXR ligands and LXRs whereas the downregulated genes mostly include those which function in cell cycle regulation, DNA replication, and other cell proliferation-related processes. Transcription factor binding site analysis of the downregulated genes revealed an enrichment of E2F binding site sequence motifs. Correspondingly, E2F2 transcript levels are downregulated following LXR ligand treatment. Knockdown of E2F2 expression, similar to LXR ligand treatment, resulted in a significant disruption of estrogen receptor positive breast cancer cell proliferation. Ligand treatment also decreased E2F2 binding to cis-regulatory regions of target genes. Hierarchical clustering of breast

  2. Prostaglandin receptor EP3 regulates cell proliferation and migration with impact on survival of endometrial cancer patients.

    Science.gov (United States)

    Zhu, Junyan; Trillsch, Fabian; Mayr, Doris; Kuhn, Christina; Rahmeh, Martina; Hofmann, Simone; Vogel, Marianne; Mahner, Sven; Jeschke, Udo; von Schönfeldt, Viktoria

    2018-01-02

    Prostaglandin E2 (PGE2) receptor 3 (EP3) regulates tumor cell proliferation, migration, and invasion in numerous cancers. The role of EP3 as a prognostic biomarker in endometrial cancer remains unclear. The primary aim of this study was to analyze the prognostic significance of EP3 expression in endometrial cancer. We analyzed the EP3 expression of 140 endometrial carcinoma patients by immunohistochemistry. RL95-2 endometrial cancer cell line was chosen from four endometrial cancer cell lines (RL95-2, Ishikawa, HEC-1-A, and HEC-1-B) according to EP3 expression level. Treated with PGE2 and EP3 antagonist, RL95-2 cells were investigated by MTT, BrdU, and wound healing assay for functional assessment of EP3. EP3 staining differed significantly according to WHO tumor grading in both whole cohort (p = 0.01) and the subgroup of endometrioid carcinoma (p = 0.01). Patients with high EP3 expression in their respective tumors had impaired progression-free survival as well as overall survival in both cohorts above. EP3 expression in the overall cohort was identified as an independent prognostic marker for progression-free survival (HR 1.014, 95%CI 1.003-1.024, p = 0.01) when adjusted for age, stage, grading, and recurrence. Treatment with EP3 antagonists induced upregulation of estrogen receptor β and decreased activity of Ras and led to attenuated proliferation and migration of RL95-2 cells. EP3 seems to play a crucial role in endometrial cancer progression. In the context of limited systemic treatment options for endometrial cancer, this explorative analysis identifies EP3 as a potential target for diagnostic workup and therapy.

  3. Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers.

    Science.gov (United States)

    Ohta, Tetsuo; Shimizu, Koichi; Yi, Shuangqin; Takamura, Hiroyuki; Amaya, Kohji; Kitagawa, Hirohisa; Kayahara, Masato; Ninomiya, Itasu; Fushida, Sachio; Fujimura, Takashi; Nishimura, Gen-Ichi; Miwa, Koichi

    2003-07-01

    Protease-activated receptor (PAR)-2 is a G protein-coupled receptor that is activated by trypsin. The purpose of this study was to examine PAR-2 expression and the role of trypsin in cell proliferation in human pancreatic cancer cells. All four pancreatic cancer cell lines studied, from well to undifferentiated types, AsPC-1, BxPC-3, Panc-1, and MIAPaCa-2, had significant levels of PAR-2 mRNA detected by reverse transcription-polymerase chain reaction, and showed a band of about 55 kDa corresponding to the known molecular weight of PAR-2: AsPC-1, BxPC-3 and Panc-1 showed a strong band, and MIAPaCa-2 showed a weak one. Immunocytochemically, AsPC-1, BxPC-3, and Panc-1 showed intense immunostaining for PAR-2, predominantly in the plasma membrane, while in MIAPaCa-2, immunostaining was weak. Proliferative activity of AsPC-1 cells was increased by concentrations of trypsin as low as 10 nM, and activity peaked at a concentration of 100 nM, representing almost 60% of that induced by 10% fetal bovine serum. In contrast, trypsin had no significant effect on proliferation of MIAPaCa-2 cells. These findings suggest that trypsin plays a role in the growth of PAR-2-positive pancreatic cancer cells and serves as a potent mitogen in vitro, functioning as a growth factor.

  4. Downregulation of SRC Kinase Signaling Inhibitor 1 (SRCIN1) Expression By MicroRNA-32 Promotes Proliferation and Epithelial-Mesenchymal Transition in Human Liver Cancer Cells.

    Science.gov (United States)

    Chen, Ren; Liao, Jin-Yao; Huang, Jing; Chen, Wen-Li; Ma, Xiao-Jun; Luo, Xiao-Dan

    2017-05-22

    MicroRNAs play an important role in regulating gene expression by binding to the 3' UTR of target mRNAs. In this studywe have made an attempt to assess the molecular mechanisms by which miR-32 suppresses the expression of SRCIN1, thereby leading to promotion of proliferation and epithelial-mesenchymal transition of human liver cancer cells. Human liver cancer cell lines HepG2 were transfected with miR-32 mimics and its control. The HepG2 cell lines were the assessed for miR-32 expression. The transfected cell lines were then studied for SRCIN1 expression by luciferase assay, effect of transfection on cell proliferation and finally epithelial-mesenchymal transition. SRCIN1 expression was down-regulated in human liver cancer cell line HepG2. Over-expression of SRCIN1 inhibited the proliferation of human liver cancer HepG2 cancer cells and blocked epithelial-mesenchymal transition. It was observed that SRCIN1 expression was regulated by miR-32 in human liver cancer cells. Overexpression of miR-32 promoted cell proliferation and epithelial-mesenchymal transition of human liver cancer HepG2 cells. Our data demonstrated that SRCIN1 functions as a tumor suppressor in human liver cancers. Additionally, SRCIN1 functions to inhibit the proliferation and epithelial-mesenchymal transition of human liver cancer HepG2 cells. MiRNA-32 was a direct target of SRCIN1. Overexpression of miR-32 promoted cell proliferation and epithelial-mesenchymal transition of human liver cancer HepG2 cells.

  5. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Directory of Open Access Journals (Sweden)

    Stefania Gessi

    2017-12-01

    Full Text Available Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl-N5-(2-methoxybenzyl[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455. Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethylphenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680, concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethylphenol (ZM241385. As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC and protein kinase C-delta (PKC-δ. In addition, we evaluated, through the AlphaScreen SureFire phospho(p protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT, extracellular regulated kinases (ERK1/2, and c-Jun N-terminal kinases (JNKs. Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was

  6. SUZ12 is involved in progression of non-small cell lung cancer by promoting cell proliferation and metastasis.

    Science.gov (United States)

    Liu, Chunhua; Shi, Xuefei; Wang, Li; Wu, Ying; Jin, Feiyan; Bai, Cuiqing; Song, Yong

    2014-06-01

    The suppressor of zeste-12 protein (SUZ12), a core component of Polycomb repressive complex 2 (PRC2), is implicated in transcriptional silencing by generating di- and tri-methylation of lysine 27 on histone H3 (H3K27Me3). Although SUZ12 is known to be of great importance in several human cancer tumorigenesis, limited data are available on the expression profile and functional role of SUZ12 in non-small cell lung cancer (NSCLC). Here, we determined the expression level of SUZ12 in 40 paired clinical NSCLC tissues and adjacent normal tissues by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The results showed that SUZ12 was anomalously expressed in NSCLC tissues compared to adjacent noncancerous tissues (PROBO1) through Western blot analysis. Altogether, we provide evidences suggesting that SUZ12 is an oncogene in NSCLC and can regulate NSCLC cells proliferation and metastasis partly via reducing E2F1, ROCK1, and ROBO1. Thus, SUZ12 may represent a new potential diagnostic marker for NSCLC and may be a novel therapeutic target for NSCLC intervention.

  7. RNAi-mediatedTCF-3gene silencing inhibits proliferation of Eca-109 esophageal cancer cells by inducing apoptosis.

    Science.gov (United States)

    Ma, Jie; Wang, Xian-Bin; Li, Rui; Xuan, Shu-Hong; Wang, Fang; Li, Xin-Hua; Zhang, Zhi-Ping; Tan, Lu; Li, Lian

    2017-12-22

    Esophageal cancer (EC) remains an important health problem in China. In the present study, through the use of siRNA, specific gene knockdown of transcription factor 3 gene ( TCF-3 ) was achieved in vitro and the effect of TCF-3 gene on human EC Eca-109 cell proliferation and apoptosis. Eca-109 cells were treated using negative control (NC) of siRNA against TCF-3 (siTCF-3) and siTCF-3 group. Colony formation assay was used to detect the colony formation ability in Eca-109 cells. MTT assay was used to measure the cell growth and viability, whereas BrDU assay was used to evaluate cell proliferation, and flow cytometry (FCM) to assess cell apoptosis. Reverse-transcription quantitative PCR (RT-qPCR) was applied to measure TCF-3 gene expression. Protein expressions of TCF-3, apoptosis-related proteins, Bcl-2, Bax, and caspase-3 were determined using Western blotting. Transfection of siTCF-3 successfully down-regulated TCF-3 gene expression. In addition, siTCF-3, reduced Eca-109 cell viability and proliferation, in a time-dependent manner, and inhibited progression of cell cycle from G 0 /G 1 to S-stage. When treated with siTCF-3, the Eca-109 cells exhibited increased apoptosis, with up-regulated cleaved caspase and Bax expressions, whereas Bcl-2 expression was down-regulated. The present study shows that TCF-3 gene silencing inhibits Eca-109 cell growth and proliferation, suppresses cell cycle progression, and promotes apoptosis, which might serve as a new objective for EC treatment. © 2017 The Author(s).

  8. Bone stroma-derived cells change coregulators recruitment to androgen receptor and decrease cell proliferation in androgen-sensitive and castration-resistant prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Villagran, Marcelo A.; Gutierrez-Castro, Francisco A.; Pantoja, Diego F.; Alarcon, Jose C.; Fariña, Macarena A.; Amigo, Romina F.; Muñoz-Godoy, Natalia A. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Pinilla, Mabel G. [Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Peña, Eduardo A.; Gonzalez-Chavarria, Ivan; Toledo, Jorge R.; Rivas, Coralia I.; Vera, Juan C. [Department of Physiopathology, School of Biological Sciences, University of Concepcion, Concepcion (Chile); McNerney, Eileen M. [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Onate, Sergio A., E-mail: sergio.onate@udec.cl [Molecular Endocrinology and Oncology Laboratory, University of Concepcion, Concepcion (Chile); Department of Medical Specialties, School of Medicine, University of Concepcion, Concepcion (Chile); Department of Urology, State University of New York at Buffalo, NY (United States)

    2015-11-27

    Prostate cancer (CaP) bone metastasis is an early event that remains inactive until later-stage progression. Reduced levels of circulating androgens, due to andropause or androgen deprivation therapies, alter androgen receptor (AR) coactivator expression. Coactivators shift the balance towards enhanced AR-mediated gene transcription that promotes progression to androgen-resistance. Disruptions in coregulators may represent a molecular switch that reactivates latent bone metastasis. Changes in AR-mediated transcription in androgen-sensitive LNCaP and androgen-resistant C4-2 cells were analyzed for AR coregulator recruitment in co-culture with Saos-2 and THP-1. The Saos-2 cell line derived from human osteosarcoma and THP-1 cell line representing human monocytes were used to display osteoblast and osteoclast activity. Increased AR activity in androgen-resistant C4-2 was due to increased AR expression and SRC1/TIF2 recruitment and decreased SMRT/NCoR expression. AR activity in both cell types was decreased over 90% when co-cultured with Saos-2 or THP-1 due to dissociation of AR from the SRC1/TIF2 and SMRT/NCoR coregulators complex, in a ligand-dependent and cell-type specific manner. In the absence of androgens, Saos-2 decreased while THP-1 increased proliferation of LNCaP cells. In contrast, both Saos-2 and THP-1 decreased proliferation of C4-2 in absence and presence of androgens. Global changes in gene expression from both CaP cell lines identified potential cell cycle and androgen regulated genes as mechanisms for changes in cell proliferation and AR-mediated transactivation in the context of bone marrow stroma cells. - Highlights: • Decreased corepressor expression change AR in androgen-resistance prostate cancer. • Bone stroma-derived cells change AR coregulator recruitment in prostate cancer. • Bone stroma cells change cell proliferation in androgen-resistant cancer cells. • Global gene expression in CaP cells is modified by bone stroma cells in co

  9. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. γ-Tocotrienol Inhibits Proliferation and Induces Apoptosis via the Mitochondrial Pathway in Human Cervical Cancer HeLa Cells

    Directory of Open Access Journals (Sweden)

    Weili Xu

    2017-08-01

    Full Text Available γ-Tocotrienol, a kind of isoprenoid phytochemical, has antitumor activity. However, there is limited evidence that it has an effect on cervical cancer. In this study, the capacity to inhibit proliferation and induce apoptosis in human cervical cancer HeLa cells and the mechanism underlying these effects were examined. The results indicated that a γ-tocotrienol concentration over 30 μM inhibited the growth of HeLa cells with a 50% inhibitory concentration (IC50 of 46.90 ± 3.50 μM at 24 h, and significantly down-regulated the expression of proliferative cell nuclear antigen (PCNA and Ki-67. DNA flow cytometric analysis indicated that γ-tocotrienol arrested the cell cycle at G0/G1 phase and reduced the S phase in HeLa cells. γ-tocotrienol induced apoptosis of HeLa cells in a time- and dose-dependent manner. γ-tocotrienol-induced apoptosis in HeLa cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, release of cytochrome from mitochondria, activation of caspase-9 and caspase-3, and subsequent poly (ADP-ribose polymerase (PARP cleavage. These results suggested that γ-tocotrienol could significantly inhibit cell proliferation through G0/G1 cell cycle arrest, and induce apoptosis via the mitochondrial apoptotic pathway in human cervical cancer HeLa cells. Thus, our findings revealed that γ-tocotrienol may be considered as a potential agent for cervical cancer therapy.

  11. Diverse functions of IGF/insulin signaling in malignant and noncancerous prostate cells: proliferation in cancer cells and differentiation in noncancerous cells.

    Science.gov (United States)

    Heidegger, Isabel; Ofer, Philipp; Doppler, Wolfgang; Rotter, Varda; Klocker, Helmut; Massoner, Petra

    2012-10-01

    The insulin-like growth factor (IGF) pathway represents one of the most studied molecular regulatory networks in oncology. Clinical trials investigating the therapeutic value of anti-IGF1 receptor (IGF1R) therapies in cancer, including prostate cancer, are ongoing. However, the multiple functions of the IGF network in the prostate are not entirely known. To elucidate the effects of IGF and insulin (INS) on prostate cells, we stimulated prostate cancer (PC3, DU145, LNCaP, DUCaP) and noncancerous prostate cells (EP156T, RWPE-1) and observed differing responses: whereas cancer cells responded to IGF and INS exposure by way of enhanced cell proliferation and glucose consumption, basal to luminal differentiation was induced in noncancerous cells. The same diverse responses were observed when the growth factor receptors IGF1R or INSR were overexpressed. Down-regulation of IGF1R or INSR isoform A (INSRA) also inhibited only proliferation of cancer cells. The proliferative response induced by the INSR in cancer cells was mediated solely by the INSRA. Moreover we observed that the receptors of the IGF network mutually influence their expression and exert redundant functions, thus underscoring the functional molecular network formed by IGF, INS, IGF1R, and INSR. Collectively we found that both IGF1R and INSRA have oncogenic effects in prostate cancer, but the IGF network also has important physiological functions in the noncancerous prostate. These data provide new insights into the biology of the IGF network in the prostate, thereby facilitating the design and interpretation of clinical studies investigating IGF1R targeting agents.

  12. Identification of glucocorticoid-induced leucine zipper as a key regulator of tumor cell proliferation in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fernandez Hervé

    2009-10-01

    Full Text Available Abstract Background Little is known about the molecules that contribute to tumor progression of epithelial ovarian cancer (EOC, currently a leading cause of mortality from gynecological malignancies. Glucocorticoid-Induced Leucine Zipper (GILZ, an intracellular protein widely expressed in immune tissues, has been reported in epithelial tissues and controls some of key signaling pathways involved in tumorigenesis. However, there has been no report on GILZ in EOC up to now. The objectives of the current study were to examine the expression of GILZ in EOC and its effect on tumor cell proliferation. Results GILZ expression was measured by immunohistochemical staining in tissue sections from 3 normal ovaries, 7 benign EOC and 50 invasive EOC. GILZ was not detected on the surface epithelium of normal ovaries and benign tumors. In contrast, it was expressed in the cytoplasm of tumor cells in 80% EOC specimens. GILZ immunostaining scores correlated positively to the proliferation marker Ki-67 (Spearman test in univariate analysis, P P Conclusion The present study is the first to identify GILZ as a molecule produced by ovarian cancer cells that promotes cell cycle progression and proliferation. Our findings clearly indicate that GILZ activates AKT, a crucial signaling molecule in tumorigenesis. GILZ thus appears as a potential key molecule in EOC.

  13. G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.

    Science.gov (United States)

    Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao

    2015-01-01

    Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  14. Fibulin-5 localisation in human endometrial cancer shifts from epithelial to stromal with increasing tumour grade, and silencing promotes endometrial epithelial cancer cell proliferation.

    Science.gov (United States)

    Winship, Amy Louise; Rainczuk, Kate; Ton, Amanda; Dimitriadis, Eva

    2016-07-01

    Endometrial cancer is the most common invasive gynaecological malignancy. While endocrine, genetic and inflammatory factors are thought to contribute to its pathogenesis, its precise etiology and molecular regulators remain poorly understood. Fibulin-5 is an extracellular matrix (ECM) protein that inhibits cell growth and invasion in several cancer cell types and is downregulated in a number of types of human cancer. However, it is unknown whether fibulin-5 plays a role in endometrial tumourigenesis. In the current report, the expression and localisation of fibulin-5 in type I endometrioid human endometrial cancers of grades (G) 1-3 was investigated using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Fibulin-5 mRNA was found to be significantly reduced in whole tumour tissues from women across G1-3 compared with benign endometrium (Pendometrial epithelial cancer cells expressing fibulin-5 stimulated cell adhesion and proliferation in vitro . Fibulin-5 mRNA expression in Ishikawa cells was induced by transforming growth factor-β and fibulin-5 in turn activated extracellular signal-regulated kinases (ERK1/2), suggesting that it may act via the mitogen-activated protein kinase pathway. In summary, the present study identified fibulin-5 as a downregulated ECM gene in human endometrial cancer and observed a shift from epithelial to stromal protein localisation with increasing tumour grade in women. These data suggest that loss of fibulin-5 function may promote endometrial cancer progression by enhancing epithelial cell adhesion and proliferation.

  15. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  16. IL-8 Is Involved in Estrogen-Related Receptor α-Regulated Proliferation and Migration of Colorectal Cancer Cells.

    Science.gov (United States)

    Ding, Sijuan; Tang, Zhaohui; Jiang, Yongjun; Huang, Honglin; Luo, Pengfei; Qing, Bohua; Zhang, Siyuan; Tang, Ruoting

    2017-10-09

    Studies revealed that estrogenic signals were involved in the development of colorectal cancer (CRC), while the roles of estrogen related receptor (ERR) on the progression of CRC have not been well illustrated. Its roles on the development of CRC were investigated. The expression of ERRα/β/γ in CRC cells were measured. The effects of ERRα on cell proliferation, migration and expression of cytokines were investigated accordingly. Our data revealed that the expression of ERRα, while not ERRβ or ERRγ, was significantly increased in CRC cells and clinical CRC tissues. Both the inverse agonist of ERRα (XCT-790) and si-ERRα can inhibit the proliferation of CRC cells. XCT-790 treatment can also suppress the wound healing and in vitro migration of CRC cells. Cytokine assays showed that XCT-790 can significantly decrease the expression of interleukin-8 (IL-8), while not IL-4, IL-6, IL-8, IL-9, IL-10, IL-18, IFN-γ, or TGF-β, in CRC cells. Over expression of ERRα increased the expression of IL-8. Luciferase assay showed XCT-790 decreased the promoter activity of IL-8. XCT-790 can increase the decay of IL-8 mRNA in SW480 cells. The recombinant IL-8 (rIL-8) can rescue XCT-790 induced suppression of proliferation and migration of CRC cells. XCT-790 can decrease the phosphorylation of ERK1/2 and STAT3, two downstream signal molecules of IL-8, in CRC cells. While rIL-8 can markedly attenuate XCT-790 induced dephosphorylation of ERK1/2 and STAT3. Our data showed that ERRα can trigger the proliferation and migration of CRC cells via up regulation of IL-8. Therefor targeted inhibition of ERRα/IL-8 might be a potential approach for CRC treatment and drug development.

  17. Effects of Calophyllum inophyllum fruit extract on the proliferation and morphological characteristics of human breast cancer cells MCF-7

    Directory of Open Access Journals (Sweden)

    Shanmugapriya

    2016-04-01

    Full Text Available Objective: To evaluate the antiproliferative activity of Calophyllum inophyllum (C. inophyllum fruit extract against human breast cancer cells MCF-7. Methods: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays for 24 h and the morphological investigation of treated MCF-7 cells was observed under optical microscope using Giemsa staining. Results: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays simultaneously for 24 h after treatment, which demonstrated the inhibition of cell viability with the IC50 values of 19.63 µg/mL and 27.54 µg/mL, respectively. The preliminary time-based morphological investigation of MCF-7 cells treated with the IC 50 value (23.59 µg/mL of C. inophyllum fruit extract was observed under an optical microscopy via Giemsa staining, which exhibited prominent histological characteristics of apoptosis. Conclusions: This study clearly proved that the proliferation of human breast cancer cell MCF-7 was inhibited by C. inophyllum fruit extract resulted from the induction of apoptosis in MCF-7 cells.

  18. MicroRNA-101 inhibits cell proliferation, promotes cell apoptosis and increases sensitivity of breast cancer MDA-MB-231 cells to paclitaxel

    Directory of Open Access Journals (Sweden)

    Qiu-Lin Ke

    2016-02-01

    Full Text Available Objective: To explore the effect that miR-101 inhibits breast cancer MDA-MB-231 cell proliferation and increases the chemosensitivity of paclitaxel to breast cancer MDA-MB-231 cells and its influence on protein expression level of target gene Bcl2. Methods: miR-101 was artificially synthesized, it used liposome 3000 to transfect MDA-MB-231 cells, and experiment was divided into three groups: blank control group, negative control group and miR-101 group. MTT assay was used to detect the effect of miR-101 on MDA-MB-231 cell proliferation and chemosensitivity of paclitaxel-mediated MDA-MB-231 cells; flow cytometer was used to detect cell apoptosis. Real-time PCR and Western bloting were used to detect the changes of mRNA and protein expression levels of Bcl2. Results: After miR-101 transfected MDA-MB- 231 cells, cell proliferation ability significantly decreased compared with negative control group, and differences had statistical significance (P<0.01; after paclitaxel was used to process cells, IC50 of miR-101-processing group decreased by 2.45 times compared with blank control group, differences had statistical significance (P<0.05 and differences between blank control group and negative control group had no statistical significance; detection results by flow cytometer showed that both early-stage and late-stage apoptosis rates of MDA-MB-231 cells of miR-101 group were significantly higher than those of negative control group (P<0.05, and early-stage apoptosis rate was more significant (P<0.01; after transfection of miR-101, mRNA and protein levels of Bcl2 of MDA-MB-231 cells significantly decreased, and differences had statistical significance (P<0.05. Conclusion: miR-101 can inhibit breast cancer MDAMB- 231 cell proliferation through targeting and downregulating Bcl2, thereby increasing the chemosensitivity of breast cancer cells to paclitaxel and promoting cell apoptosis.

  19. Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage.

    Science.gov (United States)

    Song, Meijun; Wu, Hongcheng; Wu, Shibo; Ge, Ting; Wang, Guoan; Zhou, Yingyan; Sheng, Shimo; Jiang, Jingbo

    2016-12-01

    Lung cancer is the leading cause of cancer death worldwide and its clinical management remains challenge. Here, we repurposed antibiotic levofloxacin for lung cancer treatment. We show that levofloxacin is effectively against a panel of lung cancer cell lines via inhibiting proliferation and inducing apoptosis, regardless of cellular origin and genetic pattern, in in vitro cell culture system and in vivo xenograft lung tumor model. Mechanistically, levofloxacin inhibits activities of mitochondrial electron transport chain complex I and III, leading to inhibition of mitochondrial respiration and reduction of ATP production. In addition, levofloxacin significantly increases levels of ROS, mitochondrial superoxide and hydrogen peroxide in vitro and oxidative stress markers (HEL and 4-HNE) in vivo. Antioxidants, such as NAC and vitamin C, prevent the inhibitory effects of levofloxacin, confirming the induction of oxidative damage as the mechanism of its action in lung cancer cells. Our work demonstrates that levofloxacin is a useful addition to the treatment of lung cancer. Our work also suggests that targeting mitochondria may be an alternative therapeutic strategy for lung cancer treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Cardiotoxin III Inhibits Proliferation and Migration of Oral Cancer Cells through MAPK and MMP Signaling

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    2013-01-01

    Full Text Available Cardiotoxin III (CTXIII, isolated from the snake venom of Formosan cobra Naja naja atra, has previously been found to induce apoptosis in many types of cancer. Early metastasis is typical for the progression of oral cancer. To modulate the cell migration behavior of oral cancer is one of the oral cancer therapies. In this study, the possible modulating effect of CTXIII on oral cancer migration is addressed. In the example of oral squamous carcinoma Ca9-22 cells, the cell viability was decreased by CTXIII treatment in a dose-responsive manner. In wound-healing assay, the cell migration of Ca9-22 cells was attenuated by CTXIII in a dose- and time-responsive manner. After CTXIII treatment, the MMP-2 and MMP-9 protein expressions were downregulated, and the phosphorylation of JNK and p38-MAPK was increased independent of ERK phosphorylation. In conclusion, CTXIII has antiproliferative and -migrating effects on oral cancer cells involving the p38-MAPK and MMP-2/-9 pathways.

  1. L-securinine inhibits the proliferation of A549 lung cancer cells and promotes DKK1 promoter methylation.

    Science.gov (United States)

    Han, Shuwen; Yang, Xi; Pan, Yuefen; Qi, Quan; Shen, Junjun; Fang, Huifen; Ji, Zhaoning

    2017-10-01

    L-securinine is a natural product extracted and isolated from the leaf of dried Securinega suffruticosa. The aim of the present study was to explore the effects of L-securinine on proliferation, and the methylation profile of the dickkopf-related protein 1 (DKK1) gene in human lung cancer cells and fibroblasts. L-securinine was extracted, isolated and the structure was identified. The cytotoxicity of L-securinine in A549 cells was evaluated by Cell Counting Kit-8 assays. The expression and DNA methylation profile of DKK genes was analyzed by reverse transcription-quantitative polymerase chain reaction and bisulfite sequencing polymerase chain reaction, respectively. L-securinine inhibited the proliferation of lung cancer cells; the half-maximal inhibitory concentration values were 8.92, 4.73 and 3.81 µg/ml, at 24, 36 and 48 h post-treatment, respectively. DKK1, 2 and 3 expression was significantly increased in A549 cells compared with HLF-a cells. L-securinine induced the downregulation of DKK1 in A549 cells in a dose-dependent manner and induced methylation changes at CpG sites in the DKK1 promoter region. L-securinine may be a potential anticancer drug that mediates its effects by altering DKK1 gene methylation.

  2. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vikas Kumar [Department of Radiotherapy, C.S.M. Medical University, Lucknow, Uttar Pradesh 226003 (India); Gara, Rishi Kumar [Department of Endocrinology, Central Drug Research Institute, Chattar Manzil Palace,1 MG Marg, Lucknow, Uttar Pradesh 226001 (India); Bhatt, M.L.B. [Department of Radiotherapy, C.S.M. Medical University, Lucknow, Uttar Pradesh 226003 (India); Sahu, D.P. [Medicinal and Processing Chemistry, Central Drug Research Institute, Chattar Manzil Palace,1 MG Marg, Lucknow, Uttar Pradesh 226001 (India); Mishra, Durga Prasad, E-mail: dpm@cdri.res.in [Department of Endocrinology, Central Drug Research Institute, Chattar Manzil Palace,1 MG Marg, Lucknow, Uttar Pradesh 226001 (India)

    2011-01-07

    Research highlights: {yields} Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. {yields} CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. {yields} CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head and neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.

  3. Inositol Hexaphosphate Inhibits Proliferation and Induces Apoptosis of Colon Cancer Cells by Suppressing the AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2017-10-01

    Full Text Available Abstract: AKT, a serine/threonine protein kinase and mammalian target of rapamycin (mTOR plays a critical role in the proliferation and resistance to apoptosis that are essential to the development and progression of colon cancer. Therefore, AKT/mTOR signaling pathway has been recognized as an attractive target for anticancer therapy. Inositol hexaphosphate (InsP6, a natural occurring phytochemical, has been shown to have both preventive and therapeutic effects against various cancers, however, its exact molecular mechanisms of action are not fully understood. The aim of the in vitro study was to investigate the anticancer activity of InsP6 on colon cancer with the focus on inhibiting the AKT1 kinase and p70S6K1 as mTOR effector, in relation to proliferation and apoptosis of cells. The colon cancer Caco-2 cells were cultured using standard techniques and exposed to InsP6 at different concentrations (1 mM, 2.5 mM and 5 mM. Cellular proliferative activity was monitored by 5-bromo-2′-deoxyuridine (BrdU incorporation into cellular DNA. Flow cytometric analysis was performed for cell cycle progression and apoptosis studies. Real-time RT-qPCR was used to validate mRNA levels of CDNK1A, CDNK1B, CASP3, CASP9, AKT1 and S6K1 genes. The concentration of p21 protein as well as the activities of caspase 3, AKT1 and p70S6K1 were determined by the ELISA method. The results revealed that IP6 inhibited proliferation and stimulated apoptosis of colon cancer cells. This effect was mediated by an increase in the expression of genes encoding p21, p27, caspase 3, caspase 9 as well a decrease in transcription of AKT1 and S6K1. InsP6 suppressed phosphorylation of AKT1 and p70S6K1, downstream effector of mTOR. Based on these studies it may be concluded that InsP6 can reduce proliferation and induce apoptosis through inhibition of the AKT/mTOR pathway and mTOR effector followed by modulation of the expression and activity of several key components of these pathways in

  4. Dysregulated connexin 43 in HER2-positive drug resistant breast cancer cells enhances proliferation and migration.

    Science.gov (United States)

    Yeh, Elizabeth S; Williams, Christina J; Williams, Carly Bess; Bonilla, Ingrid V; Klauber-DeMore, Nancy; Phillips, Stephanie L

    2017-12-12

    Connexin 43 (Cx43) is a gap junction protein whose function in the development of breast cancer and in breast cancer progression remains unclear. Evidence suggests that Cx43 ( GJA1 ) mRNA and protein expression is altered in breast tumors. However, reports indicate both increased and decreased Cx43 levels in human breast cancer samples. Studies also suggest that loss of Cx43 regulated gap junction intercellular communication is a common feature of breast malignancies that potentially correlates with histological stage. Further evidence suggests that Cx43 ( GJA1 ) mRNA expression is negatively correlated with HER2 positivity but a relationship between Cx43 and HER2 in breast cancer is not well defined. Therefore, in this study, we sought to evaluate the relationship between Cx43 activity, HER2, and drug resistance. Using HER2+ breast cancer cell lines that are sensitive or resistant to HER2 inhibitor, we evaluated Cx43 gap junction function. We found that Cx43 gap junction activity is completely lost in drug resistant HER2-positive (HER2+) breast cancer cells, whereas Cx43 gap junction activity can be restored by Cx43 overexpression in drug sensitive HER2+ cells. Moreover, the dysregulation of Cx43 resulted in increased tumorigenic and migratory capacity of the HER2+ drug resistant breast cancer cells.

  5. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2017-11-10

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 2017;9999:XX-XX. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Amantadine inhibits cellular proliferation and induces the apoptosis of hepatocellular cancer cells in vitro.

    Science.gov (United States)

    Lan, Zengmei; Chong, Zhaoyang; Liu, Cong; Feng, Danyang; Fang, Dihai; Zang, Weijin; Zhou, Jun

    2015-09-01

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide, and its incidence associated with viral infection has increased in recent years. Amantadine is a tricyclic symmetric amine that can effectively protect against the hepatitis C virus. However, its antitumor properties remain unclear. In the present study, the effects of amantadine on tumor cell viability, cell cycle regulation and apoptosis were investigated. The growth of HepG2 and SMMC‑7721 cells (HCC cell lines) was detected by an MTT assay. Flow cytometry was used to investigate cell cycle regulation and apoptosis. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were also performed to examine the expression of cell cycle‑ and apoptosis‑related genes and proteins, including cyclin E, cyclin D1, cyclin‑dependent kinase 2 (CDK2), B‑cell lymphoma 2 (Bcl‑2) and Bax. Our results demonstrated that amantadine markedly inhibited the proliferation of HepG2 and SMMC‑7721 cells in a dose‑ and time‑dependent manner and arrested the cell cycle at the G0/G1 phase. The levels of the cell cycle‑related genes and proteins (cyclin D1, cyclin E and CDK2) were reduced by amantadine, and apoptosis was significantly induced. Amantadine treatment also reduced Bcl‑2 and increased the Bax protein and mRNA levels. Additionally, Bcl‑2/Bax ratios were lower in the two HCC cell lines following amantadine treatment. Collectively, these results emphasize the role of amantadine in suppressing proliferation and inducing apoptosis in HCC cells, advocating its use as a novel tumor-suppressive therapeutic candidate.

  7. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion

    Directory of Open Access Journals (Sweden)

    Xie Xiaofang

    2010-07-01

    Full Text Available Abstract Background Tumor cell expression of Toll-like receptors (TLRs can promote inflammation and cell survival in the tumor microenvironment. Toll-like receptor 4 (TLR4 signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. The expression of TLR4 in human breast cancer cell line MDA-MB-231 and its biological function in the development and progression of breast cancer have not been investigated. We sought to characterize the expression of TLR1-TLR10 in the established human breast cancer cell line MDA-MB-231, and to investigate the biological roles of TLR4 in breast cancer cells growth, survival, and its potential as a target for breast cancer therapy. Methods TLRs mRNA and protein expressions were detected in human breast cancer cell line MDA-MB-231 by RT-PCR, real-time PCR and flow cytometry (FCM. RNA interference was used to knockdown the expression of TLR4 in MDA-MB-231. MDA-MB-231 transfected with the vector pGenesil-1 and the vector containing a scrambled siRNA were as controls. Recombinant plasmids named TLR4AsiRNA, TLR4BsiRNA and TLR4CsiRNA specific to TLR4 were transfected into human breast cancer cell line MDA-MB-231 with Lipfectamine™2000 reagent. TLR4 mRNA and protein expressions were investigated by RT-PCR, real-time PCR, FCM and immunofluorescence after silence. MTT analysis was performed to detect cell proliferation and FCM was used to detect the secretion of inflammatory cytokines in supernatant of transfected cells. Results The human breast cancer cell line MDA-MB-231 was found to express TLR1-TLR10 at both the mRNA and protein levels. TLR4 was found to be the highest expressed TLR in MDA-MB-231. TLR4AsiRNA, TLR4BsiRNA and TLR4CsiRNA were found to significantly inhibit TLR4 expression in MDA-MB-231 at both mRNA and protein levels as compared to vector control(vector transfected cells. TLR4Asi

  8. Relationship between apoptosis and immunohistochemical staining for proliferating cell nuclear antigen and Ki-67 in non-small cell lung cancer.

    Science.gov (United States)

    Ishiwata, N; Jinn, Y; Tsukada, Y; Inase, N; Ichioka, M; Yoshizawa, Y

    2000-01-01

    The relationship between apoptosis and cellular proliferative activity in human non-small cell lung cancer (25 cases) was investigated using the in situ DNA nick-end labeling method and immunohistochemistry for both proliferating cell nuclear antigen (PCNA) and Ki-67 antigen. Comparison of the distribution of Ki-67-positive cells to that of apoptotic cells shows an inverse correlation in semi-serial sections. The PCNA labeling rates were closely correlated with Ki-67 labeling rates in non-small cell lung cancer. It was concluded that the immunostainings of PCNA and Ki-67 were almost equally valuable for assessing the proliferative activity in paraffin-embedded tissue from non-small cell lung cancer and that apoptosis may be related with the cell cycle in this cancer.

  9. Construction of interference vector targeting Ep-CAM gene and its effects on colorectal cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Qi Y

    2015-05-01

    Full Text Available Yanmei Qi,1 Fengqiang Zhou,2 Lu Zhang,2 Lei Liu,2 Hong Xu,2 Huiguang Guo2 1Department of Gastroenterology, 2Department of General Surgery, Binzhou People’s Hospital, Binzhou, Shandong, People’s Republic of China Background: Prior study indicates that abnormal protein expression and functional changes in the development and progression of colorectal cancer is related to gene expression. The aim of this study was to construct an interference plasmid targeting the Ep-CAM gene and to investigate its effects on the proliferation of colorectal cancer cells.  Methods: In this study, HT-29 and HCT-116 colorectal cancer cell lines were selected as cell models. The double-stranded micro (miRNA oligo was inserted into the pcDNATM6.2-GW/EmGFPmiR vector, which is an expression of miRNA. Lipofectamine™ 2000 was used to transfer plasmid into the empty plasmid group (transfected pcDNATM6.2-GW/EmGFPmiR-neg and the interference group (transfected pcDNATM6.2-GW/EmGFPmiR-Ep-CAM-1, respectively. Meanwhile, the nontransferred HT-29 and HCT-116 acts as the blank control group. Reverse transcription polymerase chain reaction (RT-PCR was used to detect the transfection efficiency. Western blot was used to detect Ep-CAM protein expression. The cell proliferation in each group was detected by using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: The results indicated that the Ep-CAM messenger (mRNA expression in the interference group was lower significantly compared with that of the empty plasmid group and control group (P<0.01. Western blot analysis results showed that Ep-CAM protein expression was significantly lower in interference group compared with that of the empty plasmid group and the control group (P<0.01. MTT assay results demonstrated that the proliferation ability of cells in the interference group was significantly inhibited compared with the two other groups (P<0.05.  Conclusion: Silencing of Ep-CAM can

  10. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro.

    Science.gov (United States)

    Rakashanda, Syed; Qazi, Asif Khurshid; Majeed, Rabiya; Andrabi, Syed Mubashir; Hamid, Abid; Sharma, P R; Amin, Shajrul

    2015-01-01

    The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.

  11. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.

    Science.gov (United States)

    Kimbrough-Allah, Mawiyah N; Millena, Ana C; Khan, Shafiq A

    2018-04-01

    Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration. © 2018 Wiley Periodicals, Inc.

  12. Anti-proliferation activity of terpenoids isolated from Euphorbia kansui in human cancer cells and their structure-activity relationship.

    Science.gov (United States)

    Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An

    2017-10-01

    Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Effect of hydroxyapatite particle size, morphology and crystallinity on proliferation of colon cancer HCT116 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sangeeta; Das, Mitun, E-mail: mitun@cgcri.res.in; Balla, Vamsi Krishna

    2014-06-01

    The aim of the present work is to chemically and physically characterize the synthesized Hydroxyapatite (HAp) micro and nanoparticles and to explore the inhibitory effect of nano-HAps on the in vitro growth of human colon cancerous cells HCT116. HAp powder was synthesized using three different routes to achieve micro and nanosized powders, with different morphologies and crystallinity. The synthesized powders were characterized using X-ray diffraction, FTIR spectroscopy and scanning electron microscope. The results showed that the average crystallite size of HAp powder varies from 11 nm to 177 nm and respective crystallinity of powder found to be in the range of 0.12 and 0.92. The effect of these physico-chemical properties of HAp powders on human colon cancer HCT116 cells inhibition was determined in vitro. It was found that decreasing the HAp powder crystallite size between 11 nm and 22 nm significantly increases the HCT116 cell inhibition. Our results demonstrate that apart from HAp powder size their crystallinity and morphology also play an important role in cellular inhibition of human colon cancer cells. - Highlights: • Chemically synthesized hydroxyapatite micro and nano-particles with different morphologies and crystallinity. • In vitro cell–material interaction showed that hydroxyapatite nano-particles inhibit colon cancer cells. • Human colon cancer cell inhibition also depends on crystallinity and morphology of HAp powder.

  14. MiR-495-3p facilitates colon cancer cell proliferation via Wnt/β ...

    African Journals Online (AJOL)

    Expression protein was tested using Western blotting. β-catenin binding ability was detected by chromatin immunoprecipitation (ChIP) assay. MiRNA target gene was defined by luciferase assay. Results: Compared with normal colon cells and tissue, miR-495-3p is elevated in colon cancer cells and tissues, which regulate ...

  15. Effect of Static Magnetic Field on the Rate of Proliferation and Viability in HeLa Cancer Cells and Normal Fibroblasts

    Directory of Open Access Journals (Sweden)

    E. Shams

    2017-01-01

    Full Text Available Aims: The increasing use of the electromagnetic devices in daily life leads to higher electromagnetic filed effects. The effects on the organic systems are contradictory and controversial. The aim of this study was to investigate the effects of different intensities and durations of the static magnetic fields on the living cells and their proliferation rate. Materials & Methods: In the applied study, two HeLa cancer cell lines and human fibroblast natural cells were studied. At first, the cells were cultured on DMEN medium. Three magnetic intensities (7, 14, and 21T and two durations (24 and 48h were used, and the cells were treated by static magnetic field. The living cell percentage and cell proliferation rate were assessed by MTT method. Trypan blue was used in staining. And an optical microscope was used in enumeration. Data was analyzed by Graphpad Prism 5 using one-way ANOVA. Findings: The higher the static magnetic field and the more the duration were, the lesser the percentage of living cells and cell proliferation, showing a significant reduction in the HeLa cancer cells, while it was insignificant in the fibroblast natural cells. The highest reduction in the living cell percentage and cell proliferation rate was in 48-hour 21T (p<0.05. Conclusion: The static magnetic field affects the HeLa cancer cells more than the fibroblast cells. The higher the field intensity and the more the duration are, the lesser the alive cell percentage and cell proliferation rate.

  16. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Kyoung [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Park, Sae-Gwang; Choi, Il-Whan [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Soo-Woong [Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Lee, Sang Min [Department of Internal Medicine, Division of Hematology/Oncology, Busan Paik Hospital, Inje University, Busan 614-735 (Korea, Republic of); Choi, Inhak, E-mail: miccih@inje.ac.kr [Department of Microbiology and Immunology, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan 614-735 (Korea, Republic of)

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  17. The effects of cordycepin on the cell proliferation, migration and apoptosis in human lung cancer cell lines A549 and NCI-H460.

    Science.gov (United States)

    Tao, Xiandong; Ning, Ye; Zhao, Xuewei; Pan, Tiewen

    2016-07-01

    Our study aimed to evaluate the effect of cordycepin on human lung cancer cell lines A549 and NCI-H460. Human lung cancer A549 cells and NCI-H460 cells were treated with different concentrations of cordycepin for different times. Cells incubated without cordycepin were defined as a control. The cell proliferation, migration and apoptosis were, respectively, determined by MTT assay, transwell migration assay and flow cytometry. Additionally, the expression levels of related proteins associated with cell cycle, epithelial-mesenchymal transition (EMT) and apoptosis were examined. The survival rate of A549 cells and NCI-H460 cells treated with cordycepin significantly decreased compared with untreated cells in a concentration-dependent manner, while the apoptosis rate increased. The migration number of cells treated with cordycepin significantly decreased as the increase in concentration. qRT-PCR and Western blot analysis showed that the aberrant expression of related molecules associated with cell cycle, migration and apoptosis was observed in the lung cancer cells, such as cyclin B, cyclin E, MMP-9, caspase-3 and Bcl-2. Cordycepin may exert inhibitory effects on the development of human lung cancer via inhibiting cell proliferation, suppressing migration and inducing apoptosis, suggesting that cordycepin may have therapeutic potential for the treatment of this disease. © 2016 Royal Pharmaceutical Society.

  18. Punicalagin suppresses the proliferation and invasion of cervical cancer cells through inhibition of the β-catenin pathway.

    Science.gov (United States)

    Tang, Jianming; Li, Bingshu; Hong, Shasha; Liu, Cheng; Min, Jie; Hu, Ming; Li, Yang; Liu, Yaodan; Hong, Li

    2017-08-01

    Natural botanical drugs have attracted attention due to their cancer chemopreventive and chemotherapeutic properties in cancer. Punicalagin (PUN) is the major bioactive component of pomegranate peel, and has been shown to have antioxidant, anti-inflammatory, antiviral, antiproliferation and anticancer properties. PUN has been shown to induce apoptosis in several cancer cell lines. The aim of the present study was to investigate the effect of PUN on HeLa human cervical cancer cells in vitro. The viability of the HeLa cells was assessed following treatment with PUN (0, 12.5, 25, 50, 100 and 200 µM) for 24, 36 and 48 h using a Cell Counting Kit‑8 assay. In addition, the cell cycle distribution, protein expression levels of B‑cell lymphoma 2 (Bcl‑2)‑associated X protein (Bax), Bcl‑2, tissue inhibitor of metalloproteinase (TIMP)-2, TIMP‑3 and the β‑catenin pathway, and the activities of matrix metalloproteinase (MMP)‑2 and MMP‑9 were analyzed following treatment with PUN (0, 25, 50 and 100 µM) for 36 h using cell cycle analysis, western blot analysis and gelatin zymography, respectively. In addition, a wound‑healing assay was used to detect cell migration. PUN led to a number of effects on the HeLa cells, including the inhibition of cell proliferation and cell migration, downregulation of MMP‑2 and MMP‑9, upregulation of TIMP‑2 and TIMP‑3, cell‑cycle arrest in the G1 phase, induction of apoptosis via alterations of Bcl‑2 and Bax, and downregulation of β‑catenin and its downstream proteins, cyclin D1 and c-myc. These results suggested that PUN may have chemopreventive and chemotherapeutic effects against cervical cancer in humans through inhibition of the β-catenin signaling pathway.

  19. Exenatide suppresses 1,2-dimethylhydrazine-induced colon cancer in diabetic mice: Effect on tumor angiogenesis and cell proliferation.

    Science.gov (United States)

    Tawfik, Mona K; Mohamed, Magda I

    2016-08-01

    Colon cancer is the third leading cause of cancer mortality worldwide, which results from interactions of different factors. It is frequently a pathological consequence of persistent inflammation. Diabetes affects several cancers and is positively correlated with the incidence of colon cancer. This study aimed to study the effect of exenatide in ameliorating inflammation, angiogenesis and cell proliferation in 1,2-dimethyl hydrazine (DMH) induced colorectal carcinoma in diabetic mice. Mice were randomly allocated into six groups, 8 mice each. Group 1: vehicle control group. Group 2: diabetic control group. Group 3: DMH control group: diabetic mice treated with DMH (20mg/kg/week,s.c.) for 15 week. Group 4: DMH-cisplatin group: mice received cisplatin (4mg/kg/week, i.p.). Groups 5 & 6: DMH-exenatide (10 and 20μg/kg) group: mice received exenatide (10 or 20μg/kg/day,s.c.), respectively. The present results highlighted an increase in angiogenic markers and cell proliferation in the DMH-diabetic group in comparison with the control group with greater expression of endothelial marker (CD34) and Ki-67 in colon tissue. Monotherapy with cisplatin or exenatide (10 and 20μg/kg) downregulated these markers to different extents. The current results provided evidence that exenatide represents a promising chemopreventive effect against DMH-induced colon carcinogenesis in diabetic mice, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    NARCIS (Netherlands)

    Tang, C.; Yang, L.; Jiang, X.; Xu, C.; Wang, M.; Wang, Q.; Zhou, Z.; Xiang, Z.; Cui, H.

    2014-01-01

    Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of

  1. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer

    Directory of Open Access Journals (Sweden)

    Hatoh Shinji

    2009-03-01

    Full Text Available Abstract Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.

  2. The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Tomasz Anchim

    2005-02-01

    Full Text Available Doxorubicin (Adriamycin is the most active drug in the treatment of breast cancer. The aim of this study was to investigate the interaction of doxorubicin and retinoids in the inhibition of proliferation of hormone sensitive (ER+ human breast cancer cell line MCF-7 and to find out whether this combination can result in the enhancement of its therapeutic effect. As a comparison we also used estradiol and tamoxifen. We also made an attempt to elucidate the effect of these compounds on the stimulation of the apoptotic pathway in breast cancer cells. Cell proliferation in a 24-hour culture was assessed by [3H] thymidine incorporation into cancer cells and by immunocytochemical analysis of cellular cycle-related PCNA and Ki-67 antigens expression, after the incubation of the cell culture with 10, 20 and 50 nM doxorubicin (DOX, 2 nM estradiol (E2, 10 microM tamoxifen (TAM and 1 nM, 0.01, 0.1, 1 and 10 microM of all-trans retinoid acid (ATRA. The assessment of cell viability and analysis of apoptotic and necrotic cells were performed after the 72-hour incubation of the culture with the examined substances and following apoptosis induction using acridine orange and ethidine bromide. Of the doxorubicin concentrations used in the study, 20 nM inhibited thymidine incorporation to 84.83 +/- 10.00% (control=100%. In the same culture conditions, 2 nM E2 stimulated cancer cells to 157.09 +/- 8.84%. Concentrations of 10 microM TAM and 10 microM ATRA inhibited the proliferation to 63.16 +/- 7.85% and 52.19 +/- 3.21%, respectively. A statistically significant reduction of these values was observed when 20 nM DOX was added to medium with E2 - 39.24 +/- 7.6%, TAM - 48.34 +/- 2.05% and ATRA - 21.98 +/- 1.69%, respectively; the percentage of PCNA- and Ki-67-positive cells was also reduced. Despite high antiproliferative efficacy of 20 nM DOX and 10 microM ATRA combination, the percentage of apoptotic cells was only 25 +/- 0.81%, being similar to that obtained in the

  3. CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells

    Science.gov (United States)

    Bhutia, Yangzom D.; Hung, Sau Wai; Patel, Bhavi; Lovin, Dylan; Govindarajan, Rajgopal

    2011-01-01

    Overcoming the inherent chemoresistance of pancreatic cancers remains a major goal of therapeutic investigations in this disease. In this study, we discovered a role for the human concentrative nucleoside transporter-1 (hCNT1; SLC28A1), a high-affinity pyrimidine nucleoside transporter, in determining the chemosensitivity of human pancreatic cancer cells to gemcitabine, the drug used presently as a standard of care. Compared with normal pancreas and pancreatic ductal epithelial cells, hCNT1 expression was frequently reduced in pancreatic tumors and tumor cell lines. In addition, hCNT1-mediated 3H-gemcitabine transport was lower in pancreatic cancer cell lines and correlated with cytotoxic IC50 estimations of gemcitabine. In contrast to gemcitabine-sensitive pancreatic cancer cell lines, MIA PaCa-2, a gemcitabine-resistant pancreatic cancer cell line exhibited relatively restrictive, cell cycle-dependent hCNT1 expression and transport. hCNT1 translation was suppressed in the late G1-enriched MIA PaCa-2 cell population possibly in an miRNA-dependent manner, which corresponded with the lowest hCNT1-mediated gemcitabine transport during this phase. While hCNT1 protein was induced during G1/S transition, increased hCNT1 trafficking resulted in maximal cell surface recruitment and transport-overshoot in the G2/M phase-enriched cell population. hCNT1 protein was directed predominantly to proteasomal or lysosomal degradation in S or G2/M phase MIA PaCa-2 cells, respectively. Pharmacological inhibition of hCNT1 degradation moderately increased cell surface hCNT1 expression and cellular gemcitabine transport in MIA PaCa-2 cells. Constitutive hCNT1 expression reduced clonogenic survival of MIA PaCa-2 cells and steeply augmented gemcitabine transport and chemosensitization. In addition to supporting a putative tumor suppressor role for hCNT1, our findings identify hCNT1 as a potential candidate to render drug-resistant pancreatic cancer cells amenable to chemotherapy. PMID

  4. Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells.

    Science.gov (United States)

    Scarpa, E S; Emanuelli, M; Frati, A; Pozzi, V; Antonini, E; Diamantini, G; Di Ruscio, G; Sartini, D; Armeni, T; Palma, F; Ninfali, P

    2016-12-07

    Betacyanins (BC) were purified from beetroot (Beta vulgaris var. rubra L.) and tested, alone or in combination with vitexin-2-O-xyloside (XVX) from Beta vulgaris var. cicla L., for their ability to reduce the proliferation rate in T24 bladder cancer cells. Combination of BC and XVX exhibited a synergistic effect concerning the inhibition of proliferation in T24 cancer cells at 24 and 48 h but not after 72 h of incubation. The induction of apoptosis was evidenced by means of fluorescence activated cell sorting (FACS) analysis, as well as through the increase in caspase 3 and 8 activities. Using RTqPCR experiments, it was shown that the combination of XVX + BC was able to enhance the expression levels of pro-apoptotic BAX and downregulate anti-apoptotic BIRC5 (survivin), as well as pro-survival CTNNB1 (β-catenin). The most evident effect of BC was the increase of the activity of caspase 8, leading to induction of extrinsic apoptosis. Moreover, XVX, BC and their combination showed no cytotoxic effect on normal human skin NCTC 2544 keratinocytes. These results demonstrated the efficacy and the mechanisms of the action of BC and XVX, extracted from edible plants, and suggested that a diet or a nutrition supplement, enriched with these bioactive molecules, could be used in the prevention of human bladder cancer.

  5. Binding of galectin-1 to breast cancer cells MCF7 induces apoptosis and inhibition of proliferation in vitro in a 2D- and 3D- cell culture model.

    Science.gov (United States)

    Geiger, Pamina; Mayer, Barbara; Wiest, Irmi; Schulze, Sandra; Jeschke, Udo; Weissenbacher, Tobias

    2016-11-08

    Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen. For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment. Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected. Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce

  6. Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation.

    Science.gov (United States)

    Noble, Amanda R; Maitland, Norman J; Berney, Daniel M; Rumsby, Martin G

    2018-01-01

    Phospholipases D1 and D2 (PLD1/2) hydrolyse cell membrane glycerophospholipids to generate phosphatidic acid, a signalling lipid, which regulates cell growth and cancer progression through effects on mTOR and PKB/Akt. PLD expression and/or activity is raised in breast, colorectal, gastric, kidney and thyroid carcinomas but its role in prostate cancer (PCa), the major cancer of men in the western world, is unclear. PLD1 protein expression in cultured PNT2C2, PNT1A, P4E6, LNCaP, PC3, PC3M, VCaP, 22RV1 cell lines and patient-derived PCa cells was analysed by western blotting. PLD1 protein localisation in normal, benign prostatic hyperplasia (BPH), and castrate-resistant prostate cancer (CRPC) tissue sections and in a PCa tissue microarray (TMA) was examined by immunohistochemistry. PLD activity in PCa tissue was assayed using an Amplex Red method. The effect of PLD inhibitors on PCa cell viability was measured using MTS and colony forming assays. PLD1 protein expression was low in the luminal prostate cell lines (LNCaP, VCaP, 22RV1) compared with basal lines (PC3 and PC3M). PLD1 protein expression was elevated in BPH biopsy tissue relative to normal and PCa samples. In normal and BPH tissue, PLD1 was predominantly detected in basal cells as well in some stromal cells, rather than in luminal cells. In PCa tissue, luminal cells expressed PLD1. In a PCa TMA, the mean peroxidase intensity per DAB-stained Gleason 6 and 7 tissue section was significantly higher than in sections graded Gleason 9. In CRPC tissue, PLD1 was expressed prominently in the stromal compartment, in luminal cells in occasional glands and in an expanding population of cells that co-expressed chromogranin A and neurone-specific enolase. Levels of PLD activity in normal and PCa tissue samples were similar. A specific PLD1 inhibitor markedly reduced the survival of both prostate cell lines and patient-derived PCa cells compared with two dual PLD1/PLD2 inhibitors. Short-term exposure of PCa cells to the

  7. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  8. The colony-stimulating factor-1 (CSF-1 receptor sustains ERK1/2 activation and proliferation in breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Andrea Morandi

    Full Text Available Breast cancer is the second leading cause of cancer-related deaths in western countries. Colony-Stimulating Factor-1 (CSF-1 and its receptor (CSF-1R regulate macrophage and osteoclast production, trophoblast implantation and mammary gland development. The expression of CSF-1R and/or CSF-1 strongly correlates with poor prognosis in several human epithelial tumors, including breast carcinomas. We demonstrate that CSF-1 and CSF-1R are expressed, although at different levels, in 16/17 breast cancer cell lines tested with no differences among molecular subtypes. The role of CSF-1/CSF-1R in the proliferation of breast cancer cells was then studied in MDAMB468 and SKBR3 cells belonging to different subtypes. CSF-1 administration induced ERK1/2 phosphorylation and enhanced cell proliferation in both cell lines. Furthermore, the inhibition of CSF-1/CSF-1R signaling, by CSF-1R siRNA or imatinib treatment, impaired CSF-1 induced ERK1/2 activation and cell proliferation. We also demonstrate that c-Jun, cyclin D1 and c-Myc, known for their involvement in cell proliferation, are downstream CSF-1R in breast cancer cells. The presence of a proliferative CSF-1/CSF-1R autocrine loop involving ERK1/2 was also found. The wide expression of the CSF-1/CSF-1R pair across breast cancer cell subtypes supports CSF-1/CSF-1R targeting in breast cancer therapy.

  9. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  10. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  11. Inhibition of Cancer Derived Cell Lines Proliferation by Synthesized Hydroxylated Stilbenes and New Ferrocenyl-Stilbene Analogs. Comparison with Resveratrol

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Further advances in understanding the mechanism of action of resveratrol and its application require new analogs to identify the structural determinants for the cell proliferation inhibition potency. Therefore, we synthesized new trans-resveratrol derivatives by using the Wittig and Heck methods, thus modifying the hydroxylation and methoxylation patterns of the parent molecule. Moreover, we also synthesized new ferrocenylstilbene analogs by using an original protective group in the Wittig procedure. By performing cell proliferation assays we observed that the resveratrol derivatives show inhibition on the human colorectal tumor SW480 cell line. On the other hand, cell viability/cytotoxicity assays showed a weaker effects on the human hepatoblastoma HepG2 cell line. Importantly, the lack of effect on non-tumor cells (IEC18 intestinal epithelium cells demonstrates the selectivity of these molecules for cancer cells. Here, we show that the numbers and positions of hydroxy and methoxy groups are crucial for the inhibition efficacy. In addition, the presence of at least one phenolic group is essential for the antitumoral activity. Moreover, in the series of ferrocenylstilbene analogs, the presence of a hidden phenolic function allows for a better solubilization in the cellular environment and significantly increases the antitumoral activity.

  12. Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell

    Science.gov (United States)

    Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung

    2016-07-01

    Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.

  13. The intermediate conductance Ca2+-activated K+ channel inhibitor TRAM-34 stimulates proliferation of breast cancer cells via activation of oestrogen receptors

    Science.gov (United States)

    Roy, JW; Cowley, EA; Blay, J; Linsdell, P

    2010-01-01

    Background and purpose: K+ channels play a role in the proliferation of cancer cells. We have investigated the effects of specific K+ channel inhibitors on basal and oestrogen-stimulated proliferation of breast cancer cells. Experimental approach: Using the mammary adenocarcinoma cell line MCF-7 we assayed cell proliferation by radiolabelled thymidine incorporation in the absence or presence of various K+ channel inhibitors with or without 17β-oestradiol. Key results: Inhibitors of Kv10.1 and KCa3.1 K+ channels suppressed basal proliferation of MCF-7 cells, but not oestrogen-stimulated proliferation. TRAM-34, a specific inhibitor of KCa3.1 channels increased or decreased cell proliferation depending on the concentration. At intermediate concentrations (3–10 µM) TRAM-34 increased cell proliferation, whereas at higher concentrations (20–100 µM) TRAM-34 decreased cell proliferation. The enhancement of cell proliferation caused by TRAM-34 was blocked by the oestrogen receptor antagonists ICI182,780 and tamoxifen. TRAM-34 also increased progesterone receptor mRNA expression, decreased oestrogen receptor-α mRNA expression and reduced the binding of radiolabelled oestrogen to MCF-7 oestrogen receptor, in each case mimicking the effects of 17β-oestradiol. Conclusions and implications: Our results demonstrate that K+ channels Kv10.1 and KCa3.1 play a role in basal, but not oestrogen-stimulated MCF-7 cell proliferation. TRAM-34, as well as inhibiting KCa3.1, directly interacts with the oestrogen receptor and mimics the effects of 17β-oestradiol on MCF-7 cell proliferation and gene modulation. Our finding that TRAM-34 is able to activate the oestrogen receptor suggests a novel action of this supposedly specific K+ channel inhibitor and raises concerns of interpretation in its use. PMID:20050851

  14. Olive phenolics as c-Met inhibitors: (--Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.

    Directory of Open Access Journals (Sweden)

    Mohamed R Akl

    Full Text Available Dysregulation of the Hepatocyte growth factor (HGF/c-Met signaling axis upregulates diverse tumor cell functions, including cell proliferation, survival, scattering and motility, epithelial-to-mesenchymal transition (EMT, angiogenesis, invasion, and metastasis. (--Oleocanthal is a naturally occurring secoiridoid from extra-virgin olive oil, which showed antiproliferative and antimigratory activity against different cancer cell lines. The aim of this study was to characterize the intracellular mechanisms involved in mediating the anticancer effects of (--oleocanthal treatment and the potential involvement of c-Met receptor signaling components in breast cancer. Results showed that (--oleocanthal inhibits the growth of human breast cancer cell lines MDA-MB-231, MCF-7 and BT-474 while similar treatment doses were found to have no effect on normal human MCF10A cell growth. In addition, (--oleocanthal treatment caused a dose-dependent inhibition of HGF-induced cell migration, invasion and G1/S cell cycle progression in breast cancer cell lines. Moreover, (--oleocanthal treatment effects were found to be mediated via inhibition of HGF-induced c-Met activation and its downstream mitogenic signaling pathways. This growth inhibitory effect is associated with blockade of EMT and reduction in cellular motility. Further results from in vivo studies showed that (--oleocanthal treatment suppressed tumor cell growth in an orthotopic model of breast cancer in athymic nude mice. Collectively, the findings of this study suggest that (--oleocanthal is a promising dietary supplement lead with potential for therapeutic use to control malignancies with aberrant c-Met activity.

  15. Inhibition of CXCR4 and CXCR7 for reduction of cell proliferation and invasion in human endometrial cancer.

    Science.gov (United States)

    Long, Ping; Sun, Fengyi; Ma, Yingying; Huang, Yu

    2016-06-01

    As one of the most common malignant cancers in female reproductive tract, endometrial cancer accounts for 20-30 % of the most frequent gynecological malignancy, which is originated from endometrial epithelial. The molecular mechanisms for the generation of endometrial cancer are up to now unclear, hindering the development of corresponding therapy. CXCR4 and CXCR7 were receptors of CXCL12 chemokine ligand, which could regulate critical procedures of neoplastic transformation, including proliferation, invasion, and apoptosis of the cells. The messenger RNA (mRNA) and protein expression levels of CXCR4 and CXCR7 in human endometrial adenocarcinoma cancer, as well as in Ishikawa and HEC-1-A cell line, were analyzed by using reverse-transcription polymerase chain reaction (RT-PCR) and Western blotting. In order to explore the biological function of CXCR4 and CXCR7 in endometrial tumor, small interference RNAs of CXCR4 and CXCR7 fragments were designed, synthesized, and transfected into Ishikawa and HEC-1-A by using Lipofectamine2000. The influence of RNA interference (RNAi)-mediated silencing CXCR4 and CXCR7 on the cell proliferation was investigated under CCK-8. The invasion assay was performed transwell, and cell apoptosis was tested by FCM. Higher mRNA and protein expression levels of CXCR4 and CXCR7 were investigated in endometrial adenocarcinomas. The expression levels of CXCR4 and CXCR7 could be inhibited by RNA interference, reducing the cell proliferation, invasion in Ishikawa and HEC-1-A cells. In this study, we also observed that treated with CXCR4 and CXCR7 small interfering RNA (siRNA) arrested cells in S phase. CXCL12/CXCR4 and CXCL12/CXCR7 receptor ligand systems affect the invasion of endometrial carcinoma cell line into Ishikawa and HEC-1-A. CXCR4 and CXCR7 were silenced by RNAi, which can inhibit the invasion of Ishikawa and HEC-1-A cell lines. Hence, CXCR4 and CXCR7 are expected to become two target genes for the treatment of endometrial carcinoma.

  16. Crude aqueous extracts of Pluchea indica (L.) Less. inhibit proliferation and migration of cancer cells through induction of p53-dependent cell death

    Science.gov (United States)

    2012-01-01

    Background Pluchea indica (L.) Less. (Asteraceae) is a perennial shrub plant with anti-inflammatory and antioxidant medicinal properties. However, the anti-cancer properties of its aqueous extracts have not been studied. The aim of this study was to investigate the anti-proliferation, anti-migration, and pro-apoptotic properties of crude aqueous extracts of P. indica leaf and root on human malignant glioma cancer cells and human cervical cancer cells, and the underlying molecular mechanism. Methods GBM8401 human glioma cells and HeLa cervical carcinoma cells were treated with various concentrations of crude aqueous extracts of P. indica leaf and root and cancer cell proliferation and viability were measured by cell growth curves, trypan blue exclusions, and the tetrazolium reduction assay. Effects of the crude aqueous extracts on focus formation, migration, and apoptosis of cancer cells were studied as well. The molecular mechanism that contributed to the anti-cancer activities of crude aqueous extracts of P. indica root was also examined using Western blotting analysis. Results Crude aqueous extracts of P. indica leaf and root suppressed proliferation, viability, and migration of GBM8401 and HeLa cells. Treatment with crude aqueous extracts of P. indica leaf and root for 48 hours resulted in a significant 75% and 70% inhibition on proliferation and viability of GBM8401 and HeLa cancer cells, respectively. Crude aqueous extracts of P. indica root inhibited focus formation and promoted apoptosis of HeLa cells. It was found that phosphorylated-p53 and p21 were induced in GBM8401 and HeLa cells treated with crude aqueous extracts of P. indica root. Expression of phosphorylated-AKT was decreased in HeLa cells treated with crude aqueous extracts of P. indica root. Conclusion The in vitro anti-cancer effects of crude aqueous extracts of P. indica leaf and root indicate that it has sufficient potential to warrant further examination and development as a new anti-cancer

  17. Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD Signaling Pathways and Promotes Cell Proliferation of Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chia-Lung Tsai

    2012-08-01

    Full Text Available Stress-induced phosphoprotein 1 (STIP1, a cochaperone that organizes other chaperones, heat shock proteins (HSPs, was recently shown to be secreted by human ovarian cancer cells. In neuronal tissues, binding to prion protein was required for STIP1 to activate the ERK (extracellular-regulated MAP kinase signaling pathways. However, we report that STIP1 binding to a bone morphogenetic protein (BMP receptor, ALK2 (activin A receptor, type II-like kinase 2, was necessary and sufficient to stimulate proliferation of ovarian cancer cells. The binding of STIP1 to ALK2 activated the SMAD signaling pathway, leading to transcriptional activation of ID3 (inhibitor of DNA binding 3, promoting cell proliferation. In conclusion, ovarian-cancer-tissue-secreted STIP1 stimulates cancer cell proliferation by binding to ALK2 and activating the SMAD-ID3 signaling pathways. Although animal studies are needed to confirm these mechanisms in vivo, our results may pave the way for developing novel therapeutic strategies for ovarian cancer.

  18. Endogenous miRNA Sponge LincRNA-ROR promotes proliferation, invasion and stem cell-like phenotype of pancreatic cancer cells.

    Science.gov (United States)

    Fu, Zhiqiang; Li, Guolin; Li, Zhihua; Wang, Yingxue; Zhao, Yue; Zheng, Shangyou; Ye, Huilin; Luo, Yuming; Zhao, Xiaohui; Wei, Lusheng; Liu, Yimin; Lin, Qing; Zhou, Quanbo; Chen, Rufu

    2017-01-01

    The long intergenic non-coding RNA, regulator of reprogramming (linc-ROR) is an oncogene and plays a key role in the embryonic stem cell maintenance and is involved in cancer progression. The objective of this study was to analyze linc-ROR expression in pancreatic ductal adenocarcinoma (PDAC) and determine the regulation effects of linc-ROR on proliferation and invasion of cancer cells, as well as properties of cancer stem-like cells (CSLCs). In this study, we found that linc-ROR was up-regulated in PDAC tissues and related to poor prognosis. Linc-ROR knockdown in pancreatic cancer cells inhibited cell growth and arrested in G1 phrase. Suppressed linc-ROR expression also attenuated cancer cell migration, invasion, and epithelial-mesenchymal transition. We observed that linc-ROR expression was increased in CSLCs. Importantly, linc-ROR knockdown impaired the properties and tumorigenesis of pancreatic CSLCs in vivo. Mechanistically, we found that linc-ROR functioned as a competing endogenous RNA (ceRNA) to several tumor suppressor microRNAs, particularly some members of let-7 family. We conclude that, as a crucial oncogene, linc-ROR promotes cell proliferation, invasiveness and contributes to stem cell properties of CSLCs in PDAC via acting as a ceRNA to regulate function of microRNAs. The linc-ROR is a potential therapeutic target for PDAC.

  19. Downregulation of KLF8 expression by shRNA induces inhibition of cell proliferation in CAL27 human oral cancer cells.

    Science.gov (United States)

    Bin, Zhang; Ke-Yi, Li; Wei-Feng, Zhang; Li-Cheng, Jiang; Xian-Bin, Liu; Chun-Peng, Xia; Dao-Ying, Yuan; Shu-Wei, Liu

    2013-07-01

    KLF8 is a member of KLF transcription factors which play an important tolr in oncogenesis. It is barely expressed in normal human epithelial cells but highly overexpressed in several types of human cancer cell lines. In the present study, we investigate the role of KLF8 in oral cancer and the effects of KLF8 knockdown via lentivirus mediated siRNA infection in human adenosquamos carcinoma CAL 27 cells. We developed a vector-based siRNA expression system that can induce RNAi in CAL 27 oral cancer cells. Downregulation of KLF8 was confirmed by evaluating GFP expressions, RT-PCR and western blot analysis. Finally, the effects of KLF8 downregulation were analyzed by MTT assay and colony formation assays. The expression levels of KLF8 mRNA and proteins are reduced in CAL 27 cells that transfected with 21-nt siRNA against KLF8. Lentivirus-mediated silencing of KLF8 reduces cell proliferation and colonies number, thereby indicating the role of KLF8 in cell proliferation and tumorigenesis. These results strongly suggest that KLF8 is essential for growth of CAL 27 cancer cells. A better understanding of KLF8 function and processing may provide novel insights into the clinical therapy of oral cancer.

  20. Study on the proliferation of human gastric cancer cell AGS by activation of EGFR in H2O2.

    Science.gov (United States)

    Wang, Q; Shen, W; Tao, G-Q; Sun, J; Shi, L-P

    2017-03-01

    This study is to investigate the effect of low concentration hydrogen peroxide (H2O2) on the proliferation of gastric cancer AGS cell line in vitro and the mechanism. AGS cells were treated with different low concentrations of H2O2 (1, 0.1, 0.01, and 0.001 μm) for 48 hours. The effect of H2O2 concentration gradient on the activity of AGS cell activities was detected by methyl thiazolyl tetrazolium (MTT) method. The expression of the epidermal growth factor receptor (EGFR) and its downstream signaling pathway extracellular signal-regulated kinase (ERK) protein in H2O2 was detected by Western blot method; moreover, the effect of H2O2 on intracellular reactive oxygen species (ROS) in AGS cells was observed under the fluorescence microscope and quantitative analysis by flow cytometry. The effect of H2O2 on the level of c-myc mRNA in AGS cells was also detected by reverse transcription polymerase chain reaction (RT-PCR). MTT detection results showed that 1 μm and 0.1 μm H2O2 at 48h can effectively promote the proliferation of AGS cells (pH2O2 treatment of AGS cells, the EGFR protein levels and ERK protein phosphorylation levels increased significantly (pH2O2 increased the intracellular reactive oxygen species (ROS). RT-PCR results showed the levels of c-myc mRNA in AGS cells treated with a low concentration of H2O2 were significantly increased (pH2O2 can significantly promote the proliferation of AGS cells by activating EGFR/ERK signaling pathway.

  1. Prolactin-induced protein (PIP regulates proliferation of luminal A type breast cancer cells in an estrogen-independent manner.

    Directory of Open Access Journals (Sweden)

    Sanjeev K Baniwal

    Full Text Available Prolactin-induced Protein (PIP, an aspartyl protease unessential for normal mammalian cell function, is required for the proliferation and invasion of some breast cancer (BCa cell types. Because PIP expression is particularly high in the Luminal A BCa subtype, we investigated the roles of PIP in the related T47D BCa cell line. Nucleic acid and antibody arrays were employed to screen effects of PIP silencing on global gene expression and activation of receptor tyrosine kinases (RTKs, respectively. Expression of PIP-stimulated genes, as defined in the T47D cell culture model, was well correlated with the expression of PIP itself across a cohort of 557 mRNA profiles of diverse BCa tumors, and bioinformatics analysis revealed cJUN and cMYC as major nodes in the PIP-dependent gene network. Among 71 RTKs tested, PIP silencing resulted in decreased phosphorylation of focal adhesion kinase (FAK, ephrin B3 (EphB3, FYN, and hemopoietic cell kinase (HCK. Ablation of PIP also abrogated serum-induced activation of the downstream serine/threonine kinases AKT, ERK1/2, and JNK1. Consistent with these results, PIP-depleted cells exhibited defects in adhesion to fibronectin, cytoskeletal stress fiber assembly and protein secretion. In addition, PIP silencing abrogated the mitogenic response of T47D BCa cells to estradiol (E2. The dependence of BCa cell proliferation was unrelated, however, to estrogen signaling because: 1 PIP silencing did not affect the transcriptional response of estrogen target genes to hormone treatment, and 2 PIP was required for the proliferation of tamoxifen-resistant BCa cells. Pharmacological inhibition of PIP may therefore serve the bases for both augmentation of existing therapies for hormone-dependent tumors and the development of novel therapeutic approaches for hormone-resistant BCa.

  2. WISP-2 gene in human breast cancer: estrogen and progesterone inducible expression and regulation of tumor cell proliferation.

    Science.gov (United States)

    Banerjee, Snigdha; Saxena, Neela; Sengupta, Krishanu; Tawfik, Ossama; Mayo, Matthew S; Banerjee, Sushanta K

    2003-01-01

    WISP-2 mRNA and protein was overexpressed in preneoplastic and cancerous cells of human breast. Statistical analyses show a significant association between WISP-2 expression and estrogen receptor (ER) positivity. In normal breast, the expression was virtually undetected. The studies showed that WISP-2 is an estrogen-induced early response gene in MCF-7 cells and the expression was continuously increased to reach a maximum level at 24 h. The estrogen effect was inhibited by a pure antiestrogen (ICI 182,780). Human mammary epithelial cells, in which WISP-2 expression was undetected or minimally detected, responded to 17beta-estradiol by upregulating the WISP-2 gene after transfection with ER-alpha, providing further evidences that WISP-2 expression is mediated through ER-alpha. Overexpression of WISP-2 mRNA by estrogen may be accomplished by both transcriptional activation and stabilization. MCF-7 cells exposed to progesterone had a rapid but transient increase in WISP-2 expression, and PR antagonist RU38486 blocked this mRNA induction. In combination with estradiol, progesterone acted as an antagonist inhibiting the expression of WISP-2 mRNA. Moreover, disruption of WISP-2 signaling in MCF-7 cells by use of antisense oligomers caused a significant reduction in tumor cell proliferation. The results are consistent with the conclusion that WISP-2 expression is a requirement for breast tumor cells proliferation.

  3. WISP-2 Gene in Human Breast Cancer: Estrogen and Progesterone Inducible Expression and Regulation of Tumor Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Snigdha Banerjee

    2003-01-01

    Full Text Available WISP-2 mRNA and protein was overexpressed in preneoplastic and cancerous cells of human breast. Statistical analyses show a significant association between WISP-2 expression and estrogen receptor (ER positivity. In normal breast, the expression was virtually undetected. The studies showed that WISP-2 is an estrogen-induced early response gene in MCF-7 cells and the expression was continuously increased to reach a maximum level at 24 h. The estrogen effect was inhibited by a pure antiestrogen (ICI 182,780. Human mammary epithelial cells, in which WISP-2 expression was undetected or minimally detected, responded to 17β-estradiol by upregulating the WISP-2 gene after transfection with ER-α, providing further evidences that WISP-2 expression is mediated through ER-α. Overexpression of WISP-2 mRNA by estrogen may be accomplished by both transcriptional activation and stabilization. MCF-7 cells exposed to progesterone had a rapid but transient increase in WISP-2 expression, and PR antagonist RU38486 blocked this mRNA induction. In combination with estradiol, progesterone acted as an antagonist inhibiting the expression of WISP-2 mRNA. Moreover, disruption of WISP-2 signaling in MCF-7 cells by use of antisense oligomers caused a significant reduction in tumor cell proliferation. The results are consistent with the conclusion that WISP-2 expression is a requirement for breast tumor cells proliferation.

  4. WISP-2 Gene in Human Breast Cancer: Estrogen and Progesterone Inducible Expression and Regulation of Tumor Cell Proliferation1

    Science.gov (United States)

    Banerjee, Snigdha; Saxena, Neela; Sengupta, Krishanu; Tawfik, Ossama; Mayo, Matthew S; Banerjee, Sushanta K

    2003-01-01

    Abstract WISP-2 mRNA and protein was overexpressed in preneoplastic and cancerous cells of human breast. Statistical analyses show a significant association between WISP-2 expression and estrogen receptor (ER) positivity. In normal breast, the expression was virtually undetected. The studies showed that WISP-2 is an estrogen-induced early response gene in MCF-7 cells and the expression was continuously increased to reach a maximum level at 24 h. The estrogen effect was inhibited by a pure antiestrogen (ICI 182,780). Human mammary epithelial cells, in which WISP-2 expression was undetected or minimally detected, responded to 17β-estradiol by upregulating the WISP-2 gene after transfection with ER-α, providing further evidences that WISP-2 expression is mediated through ER-α. Overexpression of WISP-2 mRNA by estrogen may be accomplished by both transcriptional activation and stabilization. MCF-7 cells exposed to progesterone had a rapid but transient increase in WISP-2 expression, and PR antagonist RU38486 blocked this mRNA induction. In combination with estradiol, progesterone acted as an antagonist inhibiting the expression of WISP-2 mRNA. Moreover, disruption of WISP-2 signaling in MCF-7 cells by use of antisense oligomers caused a significant reduction in tumor cell proliferation. The results are consistent with the conclusion that WISP-2 expression is a requirement for breast tumor cells proliferation. PMID:12659671

  5. SILENCING THE NUCLEOCYTOPLASMIC O-GLCNAC TRANSFERASE REDUCES PROLIFERATION, ADHESION AND MIGRATION OF CANCER AND FETAL HUMAN COLON CELL LINES

    Directory of Open Access Journals (Sweden)

    AGATA eSTEENACKERS

    2016-05-01

    Full Text Available The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP, whereas O-GlcNAcase (OGA removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically de-creased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of mi-gration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disor-ganize microfilament, microtubule and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migra-tory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biolog-ical properties of cancer cell lines but also for normal cells.

  6. Brachyury Essential for Notochord Cell Fate, Not Proliferation or EMT | Center for Cancer Research

    Science.gov (United States)

    The Brachyury or T gene encodes a transcription factor that is essential for body axis elongation during embryonic development. T is also highly expressed in chordomas, rare sarcomas derived from notochord cells, and a number of additional tumor types, including lung, prostate, and colon cancers

  7. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    Science.gov (United States)

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  8. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    Directory of Open Access Journals (Sweden)

    Ayumi Yoshida

    2015-09-01

    Full Text Available Neuropilin-1 (NRP1 has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.

  9. miR-22 suppresses the proliferation and invasion of gastric cancer cells by inhibiting CD151

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xun [Department of Gastroenterology, Renmin