WorldWideScience

Sample records for cancer cell cycle

  1. P27 in cell cycle control and cancer

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2000-01-01

    In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were...

  2. Cell cycle-dependent gene networks relevant to cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The analysis of sophisticated interplays between cell cycle-dependent genes in a disease condition is one of the largely unexplored areas in modern tumor biology research. Many cell cycle-dependent genes are either oncogenes or suppressor genes, or are closely asso- ciated with the transition of a cell cycle. However, it is unclear how the complicated relationships between these cell cycle-dependent genes are, especially in cancers. Here, we sought to identify significant expression relationships between cell cycle-dependent genes by analyzing a HeLa microarray dataset using a local alignment algorithm and constructed a gene transcriptional network specific to the cancer by assembling these newly identified gene-gene relationships. We further characterized this global network by partitioning the whole network into several cell cycle phase-specific sub-networks. All generated networks exhibited the power-law node-degree dis- tribution, and the average clustering coefficients of these networks were remarkably higher than those of pure scale-free networks, indi- cating a property of hierarchical modularity. Based on the known protein-protein interactions and Gene Ontology annotation data, the proteins encoded by cell cycle-dependent interacting genes tended to share the same biological functions or to be involved in the same biological processes, rather than interacting by physical means. Finally, we identified the hub genes related to cancer based on the topo- logical importance that maintain the basic structure of cell cycle-dependent gene networks.

  3. EFFECT OF SOMATOSTATIN ON THE CELL CYCLE OF HUMAN GALLBLADDER CANCER CELL

    Institute of Scientific and Technical Information of China (English)

    李济宇; 全志伟; 张强; 刘建文

    2005-01-01

    Objective To explore the effect of somatostatin on the cell cycle of human gallbladder cancer cell. Methods Growth curve of gallbladder cancer cell was measured after somatostatin treated on gradient concentration. Simultaneously, the change of gallbladder cancer cell cycle was detected using flow cytometry.Results Concentration-dependent cell growth inhibition caused by somatostatin was detected in gallbladder cancer cell(P<0.05). Cell growth was arrested in S phase since 12h after somatostatin treated, which reached its peak at 24h, then fell down. The changes in apoptosis index of gallbladder cancer cell caused by somatostatin correlated with that's in cell cycle. Conclusion Somatostatin could inhibit the cell growth of human gallbladder cancer cell in vitro on higher concentration. It might result from inducing growth arrest in S phase in early stage and inducing apoptosis in the late stage.

  4. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  5. Effect of staurosporine on cycle of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Ke-Zuo Hou; Yun-Peng Liu; Yuan Yuan

    2004-01-01

    AIM: To study the effect of staurosporine (ST) on the cell cycle of human gastriccancer cell lines MGC803 and SGC7901.METHODS: Cell proliferation was evaluated by trypan blue dye exclusion method. Apoptotic morphology was observed under a transmission electron microscope. Changes of cell cycle and apoptotic peaks of cells were determined by flow cytometry. Expression of p21WAFI gene was examined using immunohistochemistry and RT-PCR.RESULTS: The growth of MGC803 and SGC7901 cells was inhibited by ST. The inhibitory concentrations against 50% cells (IC50) at 24 h and 48 h were 54 ng/ml and 23 ng/ml for MlGC803, and 61 ng/ml and 37 ng/ml for SGC7901. Typical apoptotic bodies and apoptotic peaks were observed 24 hafter cells were treated wth ST at a concentration of 200ng/ml. The percentage of cells at G0/G1 phase was decreased and that of cells at G2/M was increased significantly in the group treated wth ST at the concentrations of 40ng/ml,60 ng/ml, 100 ng/ml for 24 h, compared with the control group (P<0.01). The expression levels of p21WAFI gene in both MGC803 and SGC7901 cells were markedly up-regulated after treatment with ST.CONCLUSION: ST can cause arrest of gastric cancer cells at G2/M phase, which may be one of the mechanisms that inhibit cell proliferation and cause apoptosis in these cells.Effect of ST on cells at G2/M phase may be attributed to the up-regulattion of p21WAFI gene.

  6. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    Ke-xiu Zhu; Ya-li Cao; Bin Li; Jia Wang; Xiao-bing Han

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM, Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by eisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM, Chk2 and p53 of HeLa cells with and withont cisplatin were detected by RT-PCR and Western blot, respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin inhibited the proliferation of HeLa cells in a dose- and time-dependent manner. The mRNA and protein expressions of ATM, Chk2 and p53 were increased in HeLa cells treated with cisplatin. The cell cycle was arrested in G2/M phase in HeLa cells treated with cisplatin. Conclusion Activation of ATM, Chk2 and p53 might be critical in determining whether cells survive or undergo apoptesis. Targeting ATM, Chk2 and p53 pathway might he a promising strategy for reversing chemoresistance to clsplatin in cervical cancer.

  7. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    Science.gov (United States)

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  8. Mechanism of T-oligo-induced cell cycle arrest in Mia-Paca pancreatic cancer cells

    Science.gov (United States)

    Rankin, Andrew M.; Sarkar, Sibaji; Faller, Douglas V.

    2011-01-01

    DNA oligonucleotides with sequence homology to human telomeric DNA (T-oligo) induce cell cycle arrest, followed by apoptosis, senescence, or autophagy in a human cancer cell type-specific manner. T-oligo has potential as a new therapeutic strategy in oncology because of its ability to target certain types of tumor cells while sparing normal ones. In the present study, we demonstrate the T-oligo-induced S-phase cell cycle arrest in four pancreatic cancer cell lines. To further contribute to the mechanistic understanding of T-oligo, we also identify cyclin dependent kinase 2 (cdk2) as a functional mediator in the T-oligo-induced cell cycle arrest of pancreatic cancer cells. Ectopic expression of a constitutively-active cdk2 mutant abrogates T-oligo-induced cell cycle arrest in these tumor cells while knockdown of cdk2 expression alone recapitulates the T-oligo effect. Finally, we demonstrate the dispensability of T-oligo-induced ATM/ATR-mediated DNA damage response-signaling pathways, which have long been considered functional in the T-oligo signaling mechanism. PMID:21898405

  9. The regulatory effects of radiation and histone deacetylase inhibitor on liver cancer cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Choi, Hyung Seok; Jang, Dong Gun; Lee, Hong Je; Yang, Seoung Oh [Dept. Nuclear Medicine, Dongnam Institute of Radiological and Medicine Sciences Cancer Center, Busan (Korea, Republic of)

    2013-11-15

    Radiation has been an effective tool for treating cancer for a long time. Radiation therapy induces DNA damage within cancer cells and destroys their ability to reproduce. Radiation therapy is often combined with other treatments, like surgery and chemotherapy. Here, we describe the effects of radiation and histone deacetylase inhibitor, Trichostain A, on cell cycle regulation in hepatoma cells. Results demonstrate that the treatment of radiation TSA induces cell cycle arrest, thereby stimulating cell death in hepatoma cells. In addition, since different cells or tissues have different reactivity to radiation and TSA, these results might be an indicator for the combination therapy with radiation and drugs in diverse cancers.

  10. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    Science.gov (United States)

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  11. Parthenolide Induces Apoptosis and Cell Cycle Arrest of Human 5637 Bladder Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Guang Cheng

    2011-08-01

    Full Text Available Parthenolide, the principal component of sesquiterpene lactones present in medical plants such as feverfew (Tanacetum parthenium, has been reported to have anti-tumor activity. In this study, we evaluated the therapeutic potential of parthenolide against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with parthenolide resulted in a significant decrease in cell viability. Parthenolide induced apoptosis through the modulation of Bcl-2 family proteins and poly (ADP-ribose polymerase degradation. Treatment with parthenolide led to G1 phase cell cycle arrest in 5637 cells by modulation of cyclin D1 and phosphorylated cyclin-dependent kinase 2. Parthenolide also inhibited the invasive ability of bladder cancer cells. These findings suggest that parthenolide could be a novel therapeutic agent for treatment of bladder cancer.

  12. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Wei-Jun Qin; He Wang; Guo-Xing Shao; Chen Shao; Chang-Hong Shi; Lei Zhang; Hong-Hong Yue; Peng-Fei Wang; Bo Yang; Yun-Tao Zhang; Fan Liu

    2005-01-01

    Aim: To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. Methods: After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RTPCR) tests were carried out to confirm the results of the chips. Results:After AR antagonist flutamide treatment,three hundred and twenty-six genes (3.93 %) expressed differentially, 97 down-regulated and 219 up-regulated.Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Weel, CLK3,DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, whilep53 mRNA expression had no significant changes. Conclusion: Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.

  13. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    Science.gov (United States)

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  14. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  15. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Directory of Open Access Journals (Sweden)

    Xavier Bisteau

    2014-01-01

    Full Text Available The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC. We also provide a brief summary of novel therapies connected to cell cycle regulation.

  16. The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bisteau, Xavier [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); Caldez, Matias J.; Kaldis, Philipp, E-mail: kaldis@imcb.a-star.edu.sg [Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673 (Singapore); National University of Singapore (NUS), Department of Biochemistry, Singapore 117597 (Singapore)

    2014-01-13

    The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.

  17. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  18. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chiaro, Christopher, E-mail: cchiaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Lazarova, Darina L., E-mail: dlazarova@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States); Bordonaro, Michael, E-mail: mbordonaro@tcmedc.org [Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509 (United States)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that

  19. Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    DEFF Research Database (Denmark)

    Cunningham, J M; Vierkant, R A; Sellers, T A;

    2009-01-01

    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide. METHODS: We examined single nucleotide polymorphisms (SNPs) (n=288) from 39 cell cycle regulation genes, including cyclins, cyclin...... in a replication population, and the association remained suggestive in the combined analysis [OR(BB vs AA) 1.59 (1.08-2.34), P=0.02]. No other SNP associations remained suggestive in the replication populations. CONCLUSION: ABL1 has been implicated in multiple processes including cell division, cell adhesion...

  20. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  1. Changes of the cell cycle regulators and cell cycle arrest in cervical cancer cells after cisplatin therapy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the changes of the cell cycle regulators ATM,Chk2 and p53 and cell cycle arrest in HeLa cells after cisplatin therapy. Methods The proliferation-inhibiting rates of HeLa cells induced by cisplatin of different concentrations were measured by MTT assays. The mRNA and protein expressions of ATM,Chk2 and p53 of HeLa cells with and without cisplatin were detected by RT-PCR and Western blot,respectively. The cell cycle analysis was conducted by flow cytometric analysis. Results Cisplatin...

  2. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    Science.gov (United States)

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  3. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer.

  4. Magnolol causes alterations in the cell cycle in androgen insensitive human prostate cancer cells in vitro by affecting expression of key cell cycle regulatory proteins.

    Science.gov (United States)

    McKeown, Brendan T; McDougall, Luke; Catalli, Adriana; Hurta, Robert A R

    2014-01-01

    Prostate cancer, one of the most common cancers in the Western world, affects many men worldwide. This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on the behavior of 2 androgen insensitive human prostate cancer cell lines, DU145 and PC3, in vitro. Magnolol, in a 24-h exposure at 40 and 80 μM, was found to be cytotoxic to cells. Magnolol also affected cell cycle progression of DU145 and PC3 cells, resulting in alterations to the cell cycle and subsequently decreasing the proportion of cells entering the G2/M-phase of the cell cycle. Magnolol inhibited the expression of cell cycle regulatory proteins including cyclins A, B1, D1, and E, as well as CDK2 and CDK4. Protein expression levels of pRBp107 decreased and pRBp130 protein expression levels increased in response to magnolol exposure, whereas p16(INK4a), p21, and p27 protein expression levels were apparently unchanged post 24-h exposure. Magnolol exposure at 6 h did increase p27 protein expression levels. This study has demonstrated that magnolol can alter the behavior of androgen insensitive human prostate cancer cells in vitro and suggests that magnolol may have potential as a novel anti-prostate cancer agent.

  5. Calcium signaling and T-type calcium channels in cancer cell cycling

    Institute of Scientific and Technical Information of China (English)

    James T Taylor; Xiang-Bin Zeng; Jonathan E Pottle; Kevin Lee; Alun R Wang; Stephenie G Yi; Jennifer A S Scruggs; Suresh S Sikka; Ming Li

    2008-01-01

    Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells,free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells. The detailed mechanism underlying the altered calcium loading pathway remains unclear;however, there is a growing body of evidence that suggests the T-type Ca2+ channel is abnormally expressed in cancerous cells and that blockade of these channels may reduce cell proliferation in addition to inducing apoptosis. Recent studies also show that the expression of T-type Ca2+ channels in breast cancer cells is proliferation state dependent, i.e. the channels are expressed at higher levels during the fast-replication period, and once the cells are in a non-proliferation state, expression of this channel isminimal. Therefore, selectively blocking calcium entry into cancerous cells may be a valuable approach for preventing tumor growth. Since T-type Ca2+ channels are not expressed in epithelial cells, selective T-type Ca2+ channel blockers may be useful in the treatment of certain types of cancers.

  6. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    Science.gov (United States)

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  7. Effect of p27KIP1 on cell cycle and apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zheng; Wei-Zhong Wang; Kai-Zong Li; Wen-Xian Guan; Wei Yan

    2005-01-01

    AIM: To elucidate the effect of p27KIP1 on cell cycle and apoptosis regulation in gastric carcinoma cells.METHODS: The whole length of p27KIP1 cDNA was transfected into human gastric cancer cell line SCG7901by lipofectamine. Expression of p27KIP1 protein or mRNA was analyzed by Western blot and RNA dot blotting,respectively. Effect of p27KIP1 on cell growth was observed by MTT assay and anchorage-independent growth in soft agar. Tumorigenicity in nude mice was used to assess the in vivo biological effect of p27KIP1. Flow cytometry,TUNEL, and electron microscopy were used to assess the effect of p27KIP1 on cell cycle and apoptosis.RESULTS: Expression of p27KIP1 protein or mRNA increased evidently in SCG7901 cells transfected with p27KIP1. The cell growth was reduced by 31% at 48 h after induction with zinc determined by cell viability assay. The alteration of cell malignant phenotype was evidently indicated by the loss of anchorage-independent growth ability in soft agar. The tumorigenicity in nude mice was reduced evidently (0.55±0.14 cm vs 1.36±0.13crn, P<0.01). p27KIP1 overexpression caused cell arrest with 36% increase (from 33.7% to 69.3%,P<0.01) in G1 population. Prolonged p27KIP1 expression induced apoptotic cell death reflected by pre-G1 peak in the histogram of FACS, which was also confirmed by TUNEL assay and electron microscopy.CONCLUSION: p27KIP1 can prolong cell cycle in G1phase and lead to apoptosis. p27KIP1 may be a good candidate for cancer gene therapy.

  8. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Hae-Jeong Park; Sung-Vin Yim; Joo-Ho Chung; Seon-Pyo Hong; Seo-Hyun Yoon; Long-Shan Han; Long-Tai Zheng; Kyung-Hee Jung; Yoon-Kyung Uhm; Je-Hyun Lee; Ji-Seon Jeong; Woo-Sang Joo

    2005-01-01

    AIM: The genes were divided into seven categories according to biological function; apoptosis-reiated, immune response-related, signal transduction-related, cell cyclerelated, cell growth-related, stress response-related and transcription-related genes.METHODS: We compared the gene expression profiles of SNU-C4 cells between amygdalin-treated (5 mg/mL,24 h) and non-treated groups using cDNA microarray analysis. We selected genes downregulated in cDNA microarray and investigated mRNA levels of the genes by RT-PCR. RESULTS: Microarray showed that amygdalin downregulated especially genes belonging to cell cycle category: exonuclease 1 (EXO1), ATP-binding cassette, sub-family F, member 2 (ABCF2), MRE11 meiotic recombination 11 homolog A (MRE114), topoisomerase (DNA) I (TOP1), and FK506 binding protein 12-rapamycin-associated protein 1 (FRAP1). RT-PCR analysis revealed that mRNA levels of these genes were also decreased by amygdalin treatment in SNU-C4 human colon cancer cells.CONCLUSION: These results suggest that amygdalin have an anticancer effect via downregulation of cell cycle-related genes in SNU-C4 human colon cancer cells,and might be used for therapeutic anticancer drug.

  9. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    Science.gov (United States)

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  10. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells.

    Science.gov (United States)

    Yao, Mu; Xie, Chanlu; Kiang, Mei-Yee; Teng, Ying; Harman, David; Tiffen, Jessamy; Wang, Qian; Sved, Paul; Bao, Shisan; Witting, Paul; Holst, Jeff; Dong, Qihan

    2015-10-27

    Cell cycle re-entry of quiescent cancer cells has been proposed to be involved in cancer progression and recurrence. Cytosolic phospholipase A2α (cPLA2α) is an enzyme that hydrolyzes membrane glycerophospholipids to release arachidonic acid and lysophospholipids that are implicated in cancer cell proliferation. The aim of this study was to determine the role of cPLA2α in cell cycle re-entry of quiescent prostate cancer cells. When PC-3 and LNCaP cells were rendered to a quiescent state, the active form of cPLA2α with a phosphorylation at Ser505 was lower compared to their proliferating state. Conversely, the phospho-cPLA2α levels were resurgent during the induction of cell cycle re-entry. Pharmacological inhibition of cPLA2α with Efipladib upon induction of cell cycle re-entry inhibited the re-entry process, as manifested by refrained DNA synthesis, persistent high proportion of cells in G0/G1 and low percentage of cells in S and G2/M phases, together with a stagnant recovery of Ki-67 expression. Simultaneously, Efipladib prohibited the emergence of Skp2 while maintained p27 at a high level in the nuclear compartment during cell cycle re-entry. Inhibition of cPLA2α also prevented an accumulation of cyclin D1/CDK4, cyclin E/CDK2, phospho-pRb, pre-replicative complex proteins CDC6, MCM7, ORC6 and DNA synthesis-related protein PCNA during induction of cell cycle re-entry. Moreover, a pre-treatment of the prostate cancer cells with Efipladib during induction of cell cycle re-entry subsequently compromised their tumorigenic capacity in vivo. Hence, cPLA2α plays an important role in cell cycle re-entry by quiescent prostate cancer cells.

  11. Reconstruction of gene regulatory modules in cancer cell cycle by multi-source data integration.

    Directory of Open Access Journals (Sweden)

    Yuji Zhang

    Full Text Available BACKGROUND: Precise regulation of the cell cycle is crucial to the growth and development of all organisms. Understanding the regulatory mechanism of the cell cycle is crucial to unraveling many complicated diseases, most notably cancer. Multiple sources of biological data are available to study the dynamic interactions among many genes that are related to the cancer cell cycle. Integrating these informative and complementary data sources can help to infer a mutually consistent gene transcriptional regulatory network with strong similarity to the underlying gene regulatory relationships in cancer cells. RESULTS AND PRINCIPAL FINDINGS: We propose an integrative framework that infers gene regulatory modules from the cell cycle of cancer cells by incorporating multiple sources of biological data, including gene expression profiles, gene ontology, and molecular interaction. Among 846 human genes with putative roles in cell cycle regulation, we identified 46 transcription factors and 39 gene ontology groups. We reconstructed regulatory modules to infer the underlying regulatory relationships. Four regulatory network motifs were identified from the interaction network. The relationship between each transcription factor and predicted target gene groups was examined by training a recurrent neural network whose topology mimics the network motif(s to which the transcription factor was assigned. Inferred network motifs related to eight well-known cell cycle genes were confirmed by gene set enrichment analysis, binding site enrichment analysis, and comparison with previously published experimental results. CONCLUSIONS: We established a robust method that can accurately infer underlying relationships between a given transcription factor and its downstream target genes by integrating different layers of biological data. Our method could also be beneficial to biologists for predicting the components of regulatory modules in which any candidate gene is involved

  12. Effects of allitridi on cell cycle arrest of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Rui Ma; Li-Ping Shun; Yue-Hua Gong; Yuan Yuan

    2005-01-01

    AIM: To determine the effect of allitridi on cell cycle of human gastric cancer (HGC) cell lines MGC803 and SGC7901 and its possible mechanism.METHODS: Trypan blue dye exclusion was used to evaluate the proliferation, inhibition of cells and damages of these cells were detected with electron microscope.Flow cytometry and cell mitotic index were used to analyze the change of cell cycle, immunohistochemistry, and RT-PCR was used to examine expression of the p21WAF1 gene.RESULTS: MGC803 cell growth was inhibited by allitridi with 24 h IC50 being 6.4 μg/mL. SGC7901 cell growth was also inhibited by allitridi with 24 h IC50 being 7.3 μg/mL.After being treated with allitridi at the concentration of 12 μg/mL for 24 h, cells were found to have direct cytotoxic effects, including broken cellular membrane, swollen and vesiculated mitochondria and rough endoplasmic reticula,and mass lipid droplet. When cells were treated with allitridi at the concentration of 3, 6, and 9 μg/mL for 24 h, the percentage of G0/G1 phase cells was decreased and that of G2/M phase cells was significantly increased (P = 0.002)compared with those in the group. When cells were treated with allitridi at the concentration of 6 μg/mL, cell mitotic index was much higher (P = 0.003) than that of control group, indicating that allitridi could cause gastric cancer cell arrest in M phase. Besides, the expression levels of p21WAF1 gene of MGC803 cells and p21WAF1 gene of SGC7901 cells were remarkably upregulated after treatment.CONCLUSION: Allitridi can cause gastric cancer cell arrest in M phase, and this may be one of the mechanisms for inhibiting cell proliferation. Effect of allitridi on cells in M phas e may be associated with the upregulation of p21WAF1 genes. This study provides experimental data for clinical use of allitridi in the treatment of gastric carcinoma.

  13. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter

    Science.gov (United States)

    Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.

    2014-01-01

    Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222

  14. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A;

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from...... existing genotype data, we conducted a combined analysis of five independent studies of invasive epithelial ovarian cancer. Up to 2,120 cases and 3,382 controls were genotyped in the course of two collaborations at a variety of SNPs in 11 cell cycle genes (CDKN2C, CDKN1A, CCND3, CCND1, CCND2, CDKN1B, CDK2......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  15. Xanthohumol inhibits cell cycle progression and proliferation of larynx cancer cells in vitro.

    Science.gov (United States)

    Sławińska-Brych, Adrianna; Król, Sylwia Katarzyna; Dmoszyńska-Graniczka, Magdalena; Zdzisińska, Barbara; Stepulak, Andrzej; Gagoś, Mariusz

    2015-10-05

    Xanthohumol (XN), a prenylflavonoid derived from the hop plant (Humulus lupulus L.) has been found to exhibit a broad spectrum of biological properties, including anti-cancer activity. In this study, the mechanisms involved in anti-cancer activity of XN in human RK33 and RK45 larynx cancer cell lines were investigated. The effect of XN on the viability of larynx cancer and normal cells (human skin fibroblasts HSF and rat oligodendroglia-derived cells, OLN-93) was compared. Additionally, the influence of XN on proliferation, cell cycle progression, induction of apoptosis in larynx cancer cells, as well as the molecular mechanisms underlying in these processes were analyzed. XN promoted the reduction of cell viability in cancer cells, but showed low cytotoxicity to normal cells. The decrease in cell viability in the cancer cells was coupled with induction of apoptosis via two pathways. The mechanisms involved in these effects of XN were associated with cell growth inhibition by induction of cell cycle arrest in the G1 phase, increased p53 and p21/WAF1 expression levels, downregulation of cyclin D1 and Bcl-2, and activation of caspases-9, -8, and -3. Moreover, this compound inhibited phosphorylation of ERK1/2, suggesting a key role of the ERKs pathway in the XN-mediated growth suppressing effects against the studied cells. These results indicate that XN could be used as a potential agent for the treatment of patients with larynx cancer.

  16. Cross-talk between the circadian clock and the cell cycle in cancer.

    Science.gov (United States)

    Soták, Matúš; Sumová, Alena; Pácha, Jiří

    2014-06-01

    The circadian clock is an endogenous timekeeper system that controls the daily rhythms of a variety of physiological processes. Accumulating evidence indicates that genetic changes or unhealthy lifestyle can lead to a disruption of circadian homeostasis, which is a risk factor for severe dysfunctions and pathologies including cancer. Cell cycle, proliferation, and cell death are closely intertwined with the circadian clock, and thus disruption of circadian rhythms appears to be linked to cancer development and progression. At the molecular level, the cell cycle machinery and the circadian clocks are controlled by similar mechanisms, including feedback loops of genes and protein products that display periodic activation and repression. Here, we review the circadian rhythmicity of genes associated with the cell cycle, proliferation, and apoptosis, and we highlight the potential connection between these processes, the circadian clock, and neoplastic transformations. Understanding these interconnections might have potential implications for the prevention and therapy of malignant diseases.

  17. ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer

    Science.gov (United States)

    Tao, Shuixiang; Meng, Shuai; Zheng, Xiangyi; Xie, Liping

    2017-01-01

    Ellipticine, an alkaloid isolated from Apocyanaceae plants, has been demonstrated to exhibit antitumor activity in several cancers. However, the effect and the mechanisms underlying its action have not been investigated in human bladder cancer cells. The aim of the present study was to investigate the effect and mechanism of ellipticine on the behavior of T-24 bladder cancer cells. T-24 cells were treated with varying concentrations and durations of ellipticine. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell motility was analyzed by Transwell migration assay. Flow cytometry, reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to detect the cell cycle and signaling pathways involved. The results demonstrated that ellipticine suppressed proliferation and inhibited the migration ability of T-24 bladder cancer cells in a dose- and time-dependent manner, and resulted in G2/M cell cycle arrest. The mechanism of this action was demonstrated to be due to ellipticine-triggered activation of the ATM serine/threonine kinase pathway. These data therefore suggest that ellipticine may be effective towards treating human bladder cancer. PMID:28138703

  18. Deoxyelephantopin from Elephantopus scaber L. induces cell-cycle arrest and apoptosis in the human nasopharyngeal cancer CNE cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Miaoxian [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Chung, Hau Yin, E-mail: anthonychung@cuhk.edu.hk [Biology Programme (Formally Biology Dept.), School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR (China); Li, Yaolan [Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou (China); Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Guangzhou (China)

    2011-07-29

    Highlights: {yields} Deoxyelephantopin (ESD) inhibited cell proliferation in the human nasopharyngeal cancer CNE cells. {yields} ESD induced cell cycle arrest in S and G2/M phases via modulation of cell cycle regulatory proteins. {yields} ESD triggered apoptosis by dysfunction of mitochondria and induction of both intrinsic and extrinsic apoptotic signaling pathways. {yields} ESD also triggered Akt, ERK, and JNK signaling pathways. -- Abstract: Deoxyelephantopin (ESD), a naturally occurring sesquiterpene lactone present in the Chinese medicinal herb, Elephantopus scaber L. exerted anticancer effects on various cultured cancer cells. However, the cellular mechanisms by which it controls the development of the cancer cells are unavailable, particularly the human nasopharyngeal cancer CNE cells. In this study, we found that ESD inhibited the CNE cell proliferation. Cell cycle arrest in S and G2/M phases was also found. Western blotting analysis showed that modulation of cell cycle regulatory proteins was responsible for the ESD-induced cell cycle arrest. Besides, ESD also triggered apoptosis in CNE cells. Dysfunction in mitochondria was found to be associated with the ESD-induced apoptosis as evidenced by the loss of mitochondrial membrane potential ({Delta}{Psi}m), the translocation of cytochrome c, and the regulation of Bcl-2 family proteins. Despite the Western blotting analysis showed that both intrinsic and extrinsic apoptotic pathways (cleavage of caspases-3, -7, -8, -9, and -10) were triggered in the ESD-induced apoptosis, additional analysis also showed that the induction of apoptosis could be achieved by the caspase-independent manner. Besides, Akt, ERK and JNK pathways were found to involve in ESD-induced cell death. Overall, our findings provided the first evidence that ESD induced cell cycle arrest, and apoptosis in CNE cells. ESD could be a potential chemotherapeutic agent in the treatment of nasopharyngeal cancer (NPC).

  19. p21(WAF1) Mediates Cell-Cycle Inhibition, Relevant to Cancer Suppression and Therapy.

    Science.gov (United States)

    El-Deiry, Wafik S

    2016-09-15

    p21 (WAF1/CIP1; CDKN1a) is a universal cell-cycle inhibitor directly controlled by p53 and p53-independent pathways. Knowledge of the regulation and function of p21 in normal and cancer cells has opened up several areas of investigation and has led to novel therapeutic strategies. The discovery in 1993 and subsequent work on p21 has illuminated basic cellular growth control, stem cell phenotypes, the physiology of differentiation, as well as how cells respond to stress. There remain open questions in the signaling networks, the ultimate role of p21 in the p53-deficiency phenotype in the context of other p53 target defects, and therapeutic strategies continue to be a work in progress. Cancer Res; 76(18); 5189-91. ©2016 AACRSee related article by El-Deiry et al., Cancer Res 1994;54:1169-74Visit the Cancer Research 75(th) Anniversary timeline.

  20. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  1. δ-Catenin promotes prostate cancer cell growth and progression by altering cell cycle and survival gene profiles

    Directory of Open Access Journals (Sweden)

    Chen Yan-Hua

    2009-03-01

    Full Text Available Abstract Background δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by altering gene profiles of cell cycle regulation and cell survival. Results We employed gene transfection and small interfering RNA to demonstrate that increased δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability. δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor p21Cip1. Conclusion Taken together, our studies suggest that at least one consequence of an increased expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene profiles, thereby promoting tumor progression.

  2. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  3. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells.

    Science.gov (United States)

    Geisen, Ulf; Zenthoefer, Marion; Peipp, Matthias; Kerber, Jannik; Plenge, Johannes; Managò, Antonella; Fuhrmann, Markus; Geyer, Roland; Hennig, Steffen; Adam, Dieter; Piker, Levent; Rimbach, Gerald; Kalthoff, Holger

    2015-07-20

    Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1). Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data) and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  4. Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression.

    Science.gov (United States)

    Luo, Xue; Peng, Jian-Ming; Su, Lan-DI; Wang, Dong-Yan; Yu, You-Jiang

    2016-02-01

    Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb Stephania tetrandra S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following treatment with Fan, Cell Counting Kit-8, phase contrast imaging and Giemsa staining assays were used to detect cell viability; flow cytometry was performed to analyze the cell cycle distribution; and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to investigate changes in the expression levels of cell cycle-associated genes and proteins. In the present study, treatment with Fan markedly inhibited the proliferation of SPC-A-1 lung cancer cells and significantly increased the percentage of cells in the G0/G1 phase of the cell cycle in a dose-dependent manner (PSPC-A-1 lung cancer cells and induced cell cycle arrest at the G0/G1 phase. These effects may be mediated by the downregulation of cellular CDK4, CDK6 and cyclin D1 levels, thus leading to hypophosphorylation of Rb and subsequent suppression of E2F-1 activity. Therefore, the present results suggest that Fan may be a potential drug candidate for the prevention of lung cancer.

  5. Scorpion (Androctonus bicolor venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Abdulrahman K Al-Asmari

    2016-01-01

    Full Text Available Objectives: The defective apoptosis is believed to play a major role in the survival and proliferation of neoplastic cells. Hence, the induction of apoptosis in cancer cells is one of the targets for cancer treatment. Researchers are considering scorpion venom as a potent natural source for cancer treatment because it contains many bioactive compounds. The main objective of the current study is to evaluate the anticancer property of Androctonus bicolor scorpion venom on cancer cells. Materials and Methods: Scorpions were milked by electrical stimulation of telsons and lyophilized. The breast (MDA-MB-231 and colorectal (HCT-8 cancer cells were maintained in appropriate condition. The venom cytotoxicity was assessed by 3-(4,5-di-methylthiazol-2-yl-2,5-diphenyl-2H-tetrazolium bromide assay, and the cellular and nuclear changes were studied with propidium iodide and 4′,6-diamidino-2-phenylindole stain, respectively. The cell cycle arrest was examined using muse cell analyzer. Results: The A. bicolor venom exerted cytotoxic effects on MDA-MB-231 and HCT-8 cells in a dose- and duration-dependent manner and induced apoptotic cell death. The treatment with this venom arrests the cancer cells in G0/G1 phase of cell cycle. Conclusions: The venom selectively induces the rate of apoptosis in MDA-MB-231 and HCT-8 cells as reflected by morphological and cell cycle studies. To the best of our knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest by A. bicolor scorpion venom.

  6. Scorpion (Androctonus bicolor) venom exhibits cytotoxicity and induces cell cycle arrest and apoptosis in breast and colorectal cancer cell lines

    Science.gov (United States)

    Al-Asmari, Abdulrahman K.; Riyasdeen, Anvarbatcha; Abbasmanthiri, Rajamohamed; Arshaduddin, Mohammed; Al-Harthi, Fahad Ali

    2016-01-01

    Objectives: The defective apoptosis is believed to play a major role in the survival and proliferation of neoplastic cells. Hence, the induction of apoptosis in cancer cells is one of the targets for cancer treatment. Researchers are considering scorpion venom as a potent natural source for cancer treatment because it contains many bioactive compounds. The main objective of the current study is to evaluate the anticancer property of Androctonus bicolor scorpion venom on cancer cells. Materials and Methods: Scorpions were milked by electrical stimulation of telsons and lyophilized. The breast (MDA-MB-231) and colorectal (HCT-8) cancer cells were maintained in appropriate condition. The venom cytotoxicity was assessed by 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, and the cellular and nuclear changes were studied with propidium iodide and 4’,6-diamidino-2-phenylindole stain, respectively. The cell cycle arrest was examined using muse cell analyzer. Results: The A. bicolor venom exerted cytotoxic effects on MDA-MB-231 and HCT-8 cells in a dose- and duration-dependent manner and induced apoptotic cell death. The treatment with this venom arrests the cancer cells in G0/G1 phase of cell cycle. Conclusions: The venom selectively induces the rate of apoptosis in MDA-MB-231 and HCT-8 cells as reflected by morphological and cell cycle studies. To the best of our knowledge, this is the first scientific evidence demonstrating the induction of apoptosis and cell cycle arrest by A. bicolor scorpion venom. PMID:27721540

  7. Theracurmin® efficiently inhibits the growth of human prostate and bladder cancer cells via induction of apoptotic cell death and cell cycle arrest.

    Science.gov (United States)

    Kang, Minyong; Ho, Jin-Nyoung; Kook, Ha Rim; Lee, Sangchul; Oh, Jong Jin; Hong, Sung Kyu; Lee, Sang Eun; Byun, Seok-Soo

    2016-03-01

    In the present study, we aimed to investigate the anticancer properties of Theracurmin®, a novel form of the yellow curry pigment curcumin, as well as explore the molecular mechanisms of the potential anticancer effects of Theracurmin® on human prostate cancer and bladder cancer cells in vitro. The proliferation of cancer cells was examined by using the Cell Counting Kit-8. The clonogenic growth potential was determined by clonogenic assay. Cell cycle distribution was evaluated by flow cytometry using propidium iodide staining. Western blot analysis was applied to explore the expression patterns of molecules associated with apoptotic cell death and cell cycle checkpoint. We noted that Theracurmin® and curcumin exhibited similar anticancer effects in both androgen-dependent and -independent human prostate cancer cells in a dose- and time-dependent manner. These agents reduced cell viability and clonogenic growth potential by inducing apoptosis and cell cycle disturbance in human prostate cancer cells. Theracurmin® and curcumin also exerted marked anticancer effects on human bladder cancer cells, even in cisplatin-resistant T24R2 cells, in a dose- and time-dependent manner. Moreover, Theracurmin® and curcumin treatment decreased cell viability and clonogenicity via induction of apoptotic cell death and cell cycle dysregulation in human bladder cancer cells. In conclusion, our study suggests that Theracurmin® has potential as an anticancer agent in complementary and alternative medicine for these urological cancers.

  8. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    Science.gov (United States)

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  9. Induction of cell cycle arrest in human MCF-7 breast cancer cells by cis-stilbene derivatives related to VIOXX.

    NARCIS (Netherlands)

    Sangjun, S.; de Jong, E.; Nijmeijer, S.; Mutarapat, T.; Ruchirawat, S.; van den Berg, M.; van Duursen, M.B.M.

    2009-01-01

    In our present study, 12 new cis-stilbene derivatives (CRI-1-CRI-13) related to VIOXX((R)) were synthesized and studied for their inhibitory effects on cell cycle progression and anti-estrogenicity in human adenoma breast cancer MCF-7 cells. Based on the different substituents in the cis-stilbene mo

  10. Cucurbitacin B Causes Increased Radiation Sensitivity of Human Breast Cancer Cells via G2/M Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Suwit Duangmano

    2012-01-01

    Full Text Available Purpose. To explore the effects of cucurbitacin B on the radiation survival of human breast cancer cells and to elucidate the cellular mechanism of radiosensitization if any. Materials and Methods. Human breast carcinoma cell lines were treated with cucurbitacin B before irradiation with 0–10 Gy of C137s gamma rays. The effect of cucurbitacin B on cell-survival following irradiation was evaluated by colony-forming assay. Cell cycle distributions were investigated using flow cytometry. Real-time PCR and western blots were performed to investigate the expression of cell cycle checkpoints. Results. Cucurbitacin B inhibited breast cancer cell proliferation in a dose-dependent manner. Only MDA-MB-231 and MCF7:5C cells but not SKBR-3 cells were radiosensitized by cucurbitacin B. Flow cytometric analysis for DNA content indicated that cucurbitacin B resulted in G2/M arrest in MDA-MB-231 and MCF7:5C but not SKBR-3 cells. Moreover, Real-time PCR and western blot analysis demonstrated upregulated p21 expression before irradiation, a likely cause of the cell cycle arrest. Conclusion. Taken together, these findings suggest that cucurbitacin B causes radiosensitization of some breast cancer cells, and that cucurbitacin B induced G2/M arrest is an important mechanism. Therefore, combinations of cucurbitacin B with radiotherapy may be appropriate for experimental breast cancer treatment.

  11. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; Maase, Hans von der; Sørensen, Flemming B.

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors. METHODS: The tissue material consisted of bladder tumors from three groups......(kip1) ( P=0.03), Rb ( P=0.00002), and L-myc ( P=0.00000007) in muscle invasive tumors compared to noninvasive tumors. Tumors presenting as muscle invasive at first diagnosis had significantly lower levels of p16/CDKN2A ( P=0.01) when compared to muscle invasive tumors that followed Ta or T1 precursor...

  12. Cell Cycle Inhibitors as Breast Cancer Prevention Agents

    Science.gov (United States)

    2004-09-01

    histone H1 by CDK regulates its binding to HP1a.. Molecular Cell ; 22:693-699 [see Appendix] Conclusions The results of these studies give firm support...Morrison AJ, Herrera RE (2006) Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1a.. Molecular Cell ; 22:693-699 6 Molecular...only the HP1 a. isoform bound to Molecular Cell 694 A c 3000. a- 2100 ’! 2000. ! . J! 1500 3 I 1000 .. 600’ 0 0 B -... CFP"fl>ltt

  13. Down-regulation of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Xinghua Liu

    Full Text Available BACKGROUND: AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression, regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells. METHODS: Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level. RESULTS: The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to 96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-x(L was inhibited. It didn't induce cell cycle arrest when AP-4 was knockdown in p53 defect gastric cancer cell line Kato-III. CONCLUSIONS: These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has a potential value in the treatment of human gastric cancer.

  14. Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells.

    Science.gov (United States)

    Sakamoto, Takako; Horiguchi, Hyogo; Oguma, Etsuko; Kayama, Fujio

    2010-09-01

    Phytoestrogens have attracted attention as being safer alternatives to hormone replacement therapy (HRT) and as chemopreventive reagents for breast cancer because dietary soy isoflavone intake has been correlated with reduction in risk. To identify safe and effective phytoestrogen candidates for HRT and breast cancer prevention, we investigated the effects of daidzein, genistein, coumestrol, resveratrol and glycitein on cell growth, cell cycle, cyclin D1 expression, apoptosis, Bcl-2/Bax expression ratio and p53-dependent or NF-kappaB-dependent transcriptional activity in MCF-7 breast cancer cells. Phytoestrogens, except for glycitein, significantly enhanced estrogen-response-element-dependent transcriptional activity up to a level similar to that of 17beta-estradiol (E(2)). E(2) increased cell growth significantly, coumestrol increased cell growth moderately, and resveratrol and glycitein reduced cell growth. Phytoestrogens, except for glycitein, stimulated the promotion of cells to G(1)/S transition in cell cycle analysis, similar to E(2). This stimulation was accompanied by transient up-regulation of cyclin D1. While genistein, resveratrol and glycitein all increased apoptosis and reduced the Bcl-2/Bax ratio, resveratrol reduced this ratio more than either genistein or glycitein. Moreover, resveratrol significantly enhanced p53-dependent transcriptional activity, but slightly reduced NF-kappaB-dependent transcriptional activity. On knockdown analysis, genistein, resveratrol and glycitein all reduced the Bcl-2/Bax ratio in the presence of apoptosis-inducing stimuli, and estrogen receptor (ER) alpha silencing had no effect on these reductions. In contrast, in the absence of apoptosis-inducing stimuli, only resveratrol reduced the ratio, and ERalpha silencing abolished this reduction. Thus, resveratrol might be the most promising candidate for HRT and chemoprevention of breast cancer due to its estrogenic activity and high antitumor activity.

  15. Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Lin-hui LIANG; Xiang-huo HE

    2011-01-01

    The cell cycle,which is precisely controlled by a number of regulators,including cyclins and cyclin-dependent kinases (CDKs),is crucial for the life cycle of mammals.Cell cycle dysregulation is implicated in many diseases,including cancer.Recently,compelling evidence has been found that microRNAs play important roles in the regulation of cell cycle progression by modulating the expression of cyclins,CDKs and other cell cycle regulators.Herein,the recent findings on the regulation of the cell cycle by microRNAs are summarized,and the potential implications of miRNAs in anti-cancer therapies are discussed.

  16. Andrographolide inhibits prostate cancer by targeting cell cycle regulators, CXCR3 and CXCR7 chemokine receptors.

    Science.gov (United States)

    Mir, Hina; Kapur, Neeraj; Singh, Rajesh; Sonpavde, Guru; Lillard, James W; Singh, Shailesh

    2016-01-01

    Despite state of the art cancer diagnostics and therapies offered in clinic, prostate cancer (PCa) remains the second leading cause of cancer-related deaths. Hence, more robust therapeutic/preventive regimes are required to combat this lethal disease. In the current study, we have tested the efficacy of Andrographolide (AG), a bioactive diterpenoid isolated from Andrographis paniculata, against PCa. This natural agent selectively affects PCa cell viability in a dose and time-dependent manner, without affecting primary prostate epithelial cells. Furthermore, AG showed differential effect on cell cycle phases in LNCaP, C4-2b and PC3 cells compared to retinoblastoma protein (RB(-/-)) and CDKN2A lacking DU-145 cells. G2/M transition was blocked in LNCaP, C4-2b and PC3 after AG treatment whereas DU-145 cells failed to transit G1/S phase. This difference was primarily due to differential activation of cell cycle regulators in these cell lines. Levels of cyclin A2 after AG treatment increased in all PCa cells line. Cyclin B1 levels increased in LNCaP and PC3, decreased in C4-2b and showed no difference in DU-145 cells after AG treatment. AG decreased cyclin E2 levels only in PC3 and DU-145 cells. It also altered Rb, H3, Wee1 and CDC2 phosphorylation in PCa cells. Intriguingly, AG reduced cell viability and the ability of PCa cells to migrate via modulating CXCL11 and CXCR3 and CXCR7 expression. The significant impact of AG on cellular and molecular processes involved in PCa progression suggests its potential use as a therapeutic and/or preventive agent for PCa.

  17. CRM1 inhibitor S109 suppresses cell proliferation and induces cell cycle arrest in renal cancer cells.

    Science.gov (United States)

    Liu, Xuejiao; Chong, Yulong; Liu, Huize; Han, Yan; Niu, Mingshan

    2016-03-01

    Abnormal localization of tumor suppressor proteins is a common feature of renal cancer. Nuclear export of these tumor suppressor proteins is mediated by chromosome region maintenance-1 (CRM1). Here, we investigated the antitumor eff ects of a novel reversible inhibitor of CRM1 on renal cancer cells. We found that S109 inhibits the CRM1-mediated nuclear export of RanBP1 and reduces protein levels of CRM1. Furthermore, the inhibitory eff ect of S109 on CRM1 is reversible. Our data demonstrated that S109 signifi cantly inhibits proliferation and colony formation of renal cancer cells. Cell cycle assay showed that S109 induced G1-phase arrest, followed by the reduction of Cyclin D1 and increased expression of p53 and p21. We also found that S109 induces nuclear accumulation of tumor suppressor proteins, Foxo1 and p27. Most importantly, mutation of CRM1 at Cys528 position abolished the eff ects of S109. Taken together, our results indicate that CRM1 is a therapeutic target in renal cancer and the novel reversible CRM1 inhibitor S109 can act as a promising candidate for renal cancer therapy.

  18. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance

    Science.gov (United States)

    Zheng, Hongping; Shao, Fangyuan; Martin, Scots; Xu, Xiaoling; Deng, Chu-Xia

    2017-01-01

    Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance. PMID:28262781

  19. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance.

    Science.gov (United States)

    Zheng, Hongping; Shao, Fangyuan; Martin, Scots; Xu, Xiaoling; Deng, Chu-Xia

    2017-03-06

    Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance.

  20. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest.

    Science.gov (United States)

    Poornima, Paramasivan; Weng, Ching Feng; Padma, Viswanadha Vijaya

    2014-01-01

    Neferine is the major bisbenzylisoquinoline alkaloid isolated from the seed embryo of a traditional medicinal plant Nelumbo nucifera (Lotus). Epidemiological studies have revealed the therapeutic potential of lotus seed embryo. Although several mechanisms have been proposed, a clear anticancer action mechanism of neferine on lung cancer cells is still not known. Lung cancer is the most common cause of cancer death in the world, and the patients with advanced stage of nonsmall lung cancer require adjunct chemotherapy after surgical resection for the eradication of cancer cells. In this study, the effects of neferine were evaluated and characterized in A549 cells. Neferine induced apoptosis in a dose-dependent manner with the hypergeneration of reactive oxygen species, activation of MAPKs, lipid peroxidation, depletion of cellular antioxidant pool, loss of mitochondrial membrane potential, and intracellular calcium accumulation. Furthermore, neferine treatment leads to the inhibition of nuclear factor kappaB and Bcl2, upregulation of Bax and Bad, release of cytochrome C, activation of caspase cascade, and DNA fragmentation. In addition, neferine could induce p53 and its effector protein p21 and downregulation of cell cycle regulatory protein cyclin D1 thereby inducing G1 cell cycle arrest. These results suggest a novel function of neferine as an apoptosis inducer in lung cancer cells.

  1. Methyl Jasmonate: Putative Mechanisms of Action on Cancer Cells Cycle, Metabolism, and Apoptosis

    Directory of Open Access Journals (Sweden)

    Italo Mario Cesari

    2014-01-01

    Full Text Available Methyl jasmonate (MJ, an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1 arrests cell cycle, inhibiting cell growth and proliferation, (2 causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis pathways, (3 detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4 induces reactive oxygen species mediated responses, (5 stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6 inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7 inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.

  2. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells.

    Science.gov (United States)

    Sajadian, Saharolsadat; Vatankhah, Melody; Majdzadeh, Maryam; Kouhsari, Shide Montaser; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser

    2015-01-01

    Previous report of the vast effectiveness of opium derivatives in cancer therapy is leading us to see possible effects of these derivatives on cancer stem cells in order to find new agent for cancer therapy. In this study, cells were stained for CSC markers and sorted by magnetic beads. CSCs exhibit the characteristic CD44(+)/CD24(-/low)/ESA(+) phenotype. Noscapine and papaverine (alkaloids) showed anti-proliferative activity on MCF-7 and MDA-MB-231 cell lines. It was observed that noscapine has more cytotoxic effect on CSC derived from both cell lines compared with their parental cells. Papaverine has more cytotoxic effect on MCF-7 CSCs in comparison with parental cells, while CSCs population of MDA-MB-231 is more resistant to papaverine compared with MDA-MB-231 cells. Noscapine enhances apoptosis in MDA-MB-231 CSCs more than parent cells, while in MCF-7 CSCs the apoptosis is less than parent cells. Our results show that papverine is less active in terms of apoptotic effect on CSCs in both cell lines. Moreover, noscapine arrests MCF-7 and MDA-MB-231 CSCs cell cycle at G2/M phase, while papverine arrests cell cycle at G0/G1 phase. It was suggested different mechanism for apoptotic cytotoxicity. The results of this study show possible specific effects of noscapine on these breast cell lines CSCs.

  3. HnRNP-L promotes prostate cancer progression by enhancing cell cycling and inhibiting apoptosis.

    Science.gov (United States)

    Zhou, Xumin; Li, Qi; He, Jincan; Zhong, Liren; Shu, Fangpeng; Xing, Rongwei; Lv, Daojun; Lei, Bin; Wan, Bo; Yang, Yu; Wu, Huayan; Mao, Xiangming; Zou, Yaguang

    2016-12-27

    Expression of the RNA-binding protein HnRNP-L was previously shown to associate with tumorigenesis in liver and lung cancer. In this study, we examined the role of HnRNP-L in prostate cancer (Pca). We found that HnRNP-L is overexpressed in prostate tissue samples from 160 PC patients compared with tissue samples from 32 donors with cancers other than Pca. Moreover, HnRNP-L positively correlated with aggressive tumor characteristics. HnRNP-L knockdown inhibited cell proliferation and promoted cell apoptosis of Pca cell lines in vitro, and suppressed tumor growth when the cells were subcutaneously implanted in an athymic mouse model. Conversely, overexpression of HnRNP-L promoted cell proliferation and tumor growth while prohibiting cell apoptosis. HnRNP-L promoted cell proliferation and tumor growth in Pca in part by interacting with endogenous p53 mRNA, which was closely associated with cyclin p21. In addition, HnRNP-L affected cell apoptosis by directly binding the classical apoptosis protein BCL-2. These observations suggest HnRNP-L is an important regulatory factor that exerts pro-proliferation and anti-apoptosis effects in Pca through actions affecting the cell cycle and intrinsic apoptotic signaling. Thus HnRNP-L could potentially serve as a valuable molecular biomarker or therapeutic target in the treatment of Pca.

  4. Galiellalactone induces cell cycle arrest and apoptosis through the ATM/ATR pathway in prostate cancer cells.

    Science.gov (United States)

    García, Víctor; Lara-Chica, Maribel; Cantarero, Irene; Sterner, Olov; Calzado, Marco A; Muñoz, Eduardo

    2016-01-26

    Galiellalactone (GL) is a fungal metabolite that presents antitumor activities on prostate cancer in vitro and in vivo. In this study we show that GL induced cell cycle arrest in G2/M phase, caspase-dependent apoptosis and also affected the microtubule organization and migration ability in DU145 cells. GL did not induce double strand DNA break but activated the ATR and ATM-mediated DNA damage response (DDR) inducing CHK1, H2AX phosphorylation (fH2AX) and CDC25C downregulation. Inhibition of the ATM/ATR activation with caffeine reverted GL-induced G2/M cell cycle arrest, apoptosis and DNA damage measured by fH2AX. In contrast, UCN-01, a CHK1 inhibitor, prevented GL-induced cell cycle arrest but enhanced apoptosis in DU145 cells. Furthermore, we found that GL did not increase the levels of intracellular ROS, but the antioxidant N-acetylcysteine (NAC) completely prevented the effects of GL on fH2AX, G2/M cell cycle arrest and apoptosis. In contrast to NAC, other antioxidants such as ambroxol and EGCG did not interfere with the activity of GL on cell cycle. GL significantly suppressed DU145 xenograft growth in vivo and induced the expression of fH2AX in the tumors. These findings identify for the first time that GL activates DDR in prostate cancer.

  5. STK31 is a cell-cycle regulated protein that contributes to the tumorigenicity of epithelial cancer cells.

    Directory of Open Access Journals (Sweden)

    Pao-Lin Kuo

    Full Text Available Serine/threonine kinase 31 (STK31 is one of the novel cancer/testis antigens for which its biological functions remain largely unclear. Here, we demonstrate that STK31 is overexpressed in many human colorectal cancer cell lines and tissues. STK31 co-localizes with pericentrin in the centrosomal region throughout all phases of the cell cycle. Interestingly, when cells undergo mitosis, STK31 also localizes to the centromeres, central spindle, and midbody. This localization behavior is similar to that of chromosomal passenger proteins, which are known to be the important players of the spindle assembly checkpoint. The expression of STK31 is cell cycle-dependent through the regulation of a putative D-box near its C-terminal region. Ectopically-expressed STK31-GFP increases cell migration and invasive ability without altering the proliferation rate of cancer cells, whereas the knockdown expression of endogenous STK31 by lentivirus-derived shRNA results in microtubule assembly defects that prolong the duration of mitosis and lead to apoptosis. Taken together, our results suggest that the aberrant expression of STK31 contributes to tumorigenicity in somatic cancer cells. STK31 might therefore act as a potential therapeutic target in human somatic cancers.

  6. Effects of furanodiene on 95-D lung cancer cells: apoptosis, autophagy and G1 phase cell cycle arrest.

    Science.gov (United States)

    Xu, Wen-Shan; Li, Ting; Wu, Guo-Sheng; Dang, Yuan-Ye; Hao, Wen-Hui; Chen, Xiu-Ping; Lu, Jin-Jian; Wang, Yi-Tao

    2014-01-01

    Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Herein, we systematically investigated the effects of FUR on the significant processes of tumor progression with the relatively low concentrations in 95-D lung cancer cells. FUR concentration-dependently inhibited cell proliferation and blocked the cell cycle progressions in G1 phase by down-regulating the protein levels of cyclin D1 and CDK6, and up-regulating those of p21 and p27 in 95-D cells. FUR also affected the signaling molecules that regulate apoptosis in 95-D cells revealed by the down-regulation of the protein levels of full PARP, pro-caspase-7, survivin, and Bcl-2, and the up-regulation of cleaved PARP. Further studies showed that FUR enhanced the expression of light chain 3-II (LC3-II) in the protein level, indicating that autophagy is involved in this process. Besides, the adhesion ability of 95-D cells to matrigel and fibronectin was slightly inhibited after FUR treatment for 1 h in our experimental condition. FUR also slightly suppressed cell migration and invasion in 95-D cells according to the data from wound healing and Transwell assays, respectively. Taken together, FUR activated the signal molecules regulating G1 cell cycle arrest, apoptosis and autophagy, while slightly affecting the key steps of cell metastasis in 95-D lung cancer cells in the relatively low concentrations.

  7. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    Science.gov (United States)

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  8. The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells.

    Science.gov (United States)

    Shao, Nan; Chen, Liu-Hua; Ye, Run-Yi; Lin, Ying; Wang, Shen-Ming

    2013-02-15

    IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  9. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Nan [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Liu-Hua [Department of Minimally Invasive Surgery Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ye, Run-Yi [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Lin, Ying, E-mail: frostlin@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Wang, Shen-Ming, E-mail: shenmingwang@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-02-15

    Highlights: ► IL-8 depletion affects cell cycle distribution. ► Intrinsic IL-8 mediates breast cancer cell migration and invasion. ► IL-8 siRNA down regulates key factors that control survival and metastatic pathway. ► IL-8 depletion reduces integrin β3 expression. ► IL-8 depletion increases the chemosensitivity to docetaxel. -- Abstract: IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  10. Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells.

    Science.gov (United States)

    Li, Ying; Shi, Li; Han, Chun; Wang, Yishang; Yang, Junlan; Cao, Cheng; Jiao, Shunchang

    2012-10-01

    The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27(Kip1), and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p SK-BR-3 cells and JIMT-1 cells, while it promoted p27(Kip1) and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.

  11. The cancer-germline antigen SSX2 causes cell cycle arrest and DNA damage in cancer cells

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2011-01-01

    The SSX family of cancer and germline antigens is mainly expressed in the germ cells of healthy individuals as well as wide range of cancers and is therefore potential targets for immunotherapy. However, little is known about the role of SSX proteins in tumorigenesis and normal cell function. Here......, we show that SSX2 is involved in regulation of cancer cell growth. We found that ectopic expression of SSX2 in melanoma and colon cancer cells strongly reduced cell growth and induced apoptosis in vitro. Importantly, in a xenograft mouse model, the growth of tumors derived from SSX2 overexpressing...... an increase in the number of gamma-H2AX ‘DNA damage foci’, indicating replicative stress, which may lead to genomic instability. As the p53 tumor suppressor is an inducer of G1 arrest after DNA damage and often deregulated in cancer cells, we investigated if the growth reduction due to SSX2 expression was p53...

  12. Nuclear localization of TEF3-1 promotes cell cycle progression and angiogenesis in cancer.

    Science.gov (United States)

    Teng, Kaixuan; Deng, Cuilan; Xu, Jie; Men, Qiuxu; Lei, Tao; Di, Da; Liu, Ting; Li, Wenhua; Liu, Xin

    2016-03-22

    TEF3-1 (transcriptional enhancer factor 3 isoform 1), also known as TEAD4 (TEA domain family member 4), was recently revealed as an oncogenic character in cancer development. However, the underlying molecular pathogenic mechanisms remain undefined. In this paper, we investigated nuclear TEF3-1 could promote G1/S transition in HUVECs, and the expression levels of cyclins and CDKs were upregulated. Additionally, if TEF3-1 was knocked down, the expression of cyclins and CDKs was downregulated while the expression of P21, a negative regulator of the cell cycle, was upregulated. A microarray analysis also confirmed that TEF3-1 overexpression upregulates genes that are related to cell cycle progression and the promotion of angiogenesis. Moreover, we observed that nuclear TEF3-1 was highly expressed during the formation of vascular structures in gastric cancer (GC). Finally, tumor xenograft experiments indicated that, when TEF3-1 was knocked down, tumor growth and angiogenesis were also suppressed. Taken together, these results demonstrate for the first time that TEF3-1 localization to the nucleus stimulates the cell cycle progression in HUVECs and specifically contributes to tumor angiogenesis. Nuclear TEF3-1 in HUVECs may serve as an oncogenic biomarker, and the suppression of TEF3-1 may be a potential target in anti-tumor therapy.

  13. Metformin Induces Growth Inhibition and Cell Cycle Arrest by Upregulating MicroRNA34a in Renal Cancer Cells

    Science.gov (United States)

    Xie, Wei; Wang, Lei; Sheng, Halei; Qiu, Jing; Zhang, Di; Zhang, Le; Yang, Fan; Tang, Dahai; Zhang, Kebin

    2017-01-01

    Background Metformin is a widely used biguanide drug for the treatment of type 2 diabetes. It has been revaluated as a potential anti-cancer drug with promising activity in various tumors. However, the precise mechanisms underlying the suppression of cancer cells by metformin remain not well understood. Material/Methods In this study, human renal cell carcinoma cell line ACHN was used to investigate the anti-proliferation effect of metformin. A cell counting kit-8 assay was used to detect the cell viability. The cell cycle distribution and apoptosis were analyzed by flow cytometry. The expression of cyclin D1 and p27KIP1 was detected by Western blot. The underlying mechanism involving miRNA34a was further investigated by quantitative RT-PCR and transfection with miRNA inhibitor specific for miRNA34a in ACHN, 769-P, and A498 cells. Results Metformin could significantly inhibit the proliferation of ACHN cells in a dose- and time-dependent manner. In addition, the results showed that metformin induced G0/G1 phase arrest and delayed entry into S phase in ACHN cells. It was shown that metformin downregulates the expression of cyclin D1 and increases the p27KIP1 level. Furthermore, metformin increased ACHN cell death. Lastly, miRNA34a was found to be upregulated by metformin in ACHN, 769-P, and A498 cells. Subsequently, it was demonstrated that inhibition of miRNA34a could partially attenuate the suppressive effect of metformin on renal cancer cell proliferation. Conclusions The study data revealed that metformin induced cell growth inhibition and cell cycle arrest partially by upregulating miRNA34a in renal cancer cells. PMID:28045889

  14. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    Science.gov (United States)

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma.

  15. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells.

    Science.gov (United States)

    Chilampalli, Chandeshwari; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Chandrasekher, Gudiseva; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-11-01

    Honokiol is a plant lignan isolated from bark and seed cones of Magnolia officinalis. Recent studies from our laboratory indicated that honokiol pretreatment decreased ultraviolet B-induced skin cancer development in SKH-1 mice. The aim of the present investigation was to study the effects of honokiol on human epidermoid squamous carcinoma A431 cells and to elucidate possible mechanisms involved in preventing skin cancer. A431 cells were pretreated with different concentrations of honokiol for a specific time period and investigated for effects on apoptosis and cell cycle analysis. Treatment with honokiol significantly decreased cell viability and cell proliferation in a concentration- and time-dependent manner. Honokiol pretreatment at 50 μmol/L concentration induced G0/G1 cell cycle arrest significantly (P Cdk4 and Cdk6 proteins and up-regulated the expression of Cdk's inhibitor proteins p21 and p27. Pretreatment of A431 cells with honokiol leads to induction of apoptosis and DNA fragmentation. These findings indicate that honokiol provides its effects in squamous carcinoma cells by inducing cell cycle arrest at G0/G1 phase and apoptosis.

  16. High Erk activity suppresses expression of the cell cycle inhibitor p27Kip1 in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Raabe Thomas

    2010-02-01

    Full Text Available Abstract The molecular heterogeneity of human cancer cells at the level of signaling protein activities remains poorly understood. Using a panel of 64 colorectal (CRC cancer cell lines the activity status of the MAP kinases Erk1 and Erk2 was investigated. Erk1/2 activity varied greatly within the CRC cell line panel and was not detectably associated with the speed of cell growth in 10 CRC lines analyzed. As expected, mutations in K-Ras or B-Raf were often, albeit not always, linked to high Erk1/2 activity. The phosphorylation of several known Erk1/2 targets investigated did not generally reflect Erk1/2 activity in the 10 CRC lines analyzed. However, the reduction of Erk1/2 activity with MEK inhibitors generally abolished cell growth but only led to an increase of cellular p27Kip1 levels in CRC cells with high Erk1/2 activity levels. The results indicate that high Erk1/2 activation is utilized by some CRC lines to override the cell cycle brake p27Kip1, while others presumably rely on different mechanisms in order to inactivate this important cell cycle brake. Such detailed knowledge of the molecular diversity of cancer cell signaling mechanisms may eventually help to develop molecularly targeted, patient-specific therapeutic strategies and treatments.

  17. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation

    Science.gov (United States)

    Wei, Zhengxi; Song, Xiulong; Shaikh, Zahir A.

    2015-01-01

    Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1–0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lack estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cells proliferation. Furthermore, that EGFR plays a critical role in this process. PMID:26385184

  18. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation.

    Science.gov (United States)

    Wei, Zhengxi; Song, Xiulong; Shaikh, Zahir A

    2015-11-15

    Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1-0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lack estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cell proliferation. Furthermore, that EGFR plays a critical role in this process.

  19. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Soma Seal

    Full Text Available Non-small cell lung carcinoma (NSCLC is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473 and Thr(308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  20. Schisandrin B Induces Apoptosis and Cell Cycle Arrest of Gallbladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shan-Shan Xiang

    2014-08-01

    Full Text Available Gallbladder cancer, with high aggressivity and extremely poor prognosis, is the most common malignancy of the bile duct. The main objective of the paper was to investigate the effects of schisandrin B (Sch B on gallbladder cancer cells and identify the mechanisms underlying its potential anticancer effects. We showed that Sch B inhibited the viability and proliferation of human gallbladder cancer cells in a dose-, time -dependent manner through MTT and colony formation assays, and decrease mitochondrial membrane potential (ΔΨm at a dose-dependent manner through flow cytometry. Flow cytometry assays also revealed G0/G1 phase arrest and apoptosis in GBC-SD and NOZ cells. Western blot analysis of Sch B-treated cells revealed the upregulation of Bax, cleaved caspase-9, cleaved caspase-3, cleaved PARP and downregulation of Bcl-2, NF-κB, cyclin D1 and CDK-4. Moreover, this drug also inhibited the tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data demonstrated that Sch B induced apoptosis in gallbladder cancer cells by regulating apoptosis-related protein expression, and suggests that Sch B may be a promising drug for the treatment of gallbladder cancer.

  1. Schisandrin B induces apoptosis and cell cycle arrest of gallbladder cancer cells.

    Science.gov (United States)

    Xiang, Shan-Shan; Wang, Xu-An; Li, Huai-Feng; Shu, Yi-Jun; Bao, Run-Fa; Zhang, Fei; Cao, Yang; Ye, Yuan-Yuan; Weng, Hao; Wu, Wen-Guang; Mu, Jia-Sheng; Wu, Xiang-Song; Li, Mao-Lan; Hu, Yun-Ping; Jiang, Lin; Tan, Zhu-Jun; Lu, Wei; Liu, Feng; Liu, Ying-Bin

    2014-08-27

    Gallbladder cancer, with high aggressivity and extremely poor prognosis, is the most common malignancy of the bile duct. The main objective of the paper was to investigate the effects of schisandrin B (Sch B) on gallbladder cancer cells and identify the mechanisms underlying its potential anticancer effects. We showed that Sch B inhibited the viability and proliferation of human gallbladder cancer cells in a dose-, time -dependent manner through MTT and colony formation assays, and decrease mitochondrial membrane potential (ΔΨm) at a dose-dependent manner through flow cytometry. Flow cytometry assays also revealed G0/G1 phase arrest and apoptosis in GBC-SD and NOZ cells. Western blot analysis of Sch B-treated cells revealed the upregulation of Bax, cleaved caspase-9, cleaved caspase-3, cleaved PARP and downregulation of Bcl-2, NF-κB, cyclin D1 and CDK-4. Moreover, this drug also inhibited the tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data demonstrated that Sch B induced apoptosis in gallbladder cancer cells by regulating apoptosis-related protein expression, and suggests that Sch B may be a promising drug for the treatment of gallbladder cancer.

  2. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    Science.gov (United States)

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  3. Leaf Extracts of Calocedrus formosana (Florin Induce G2/M Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sheau-Yun Yuan

    2011-01-01

    Full Text Available Calocedrus formosana (Florin bark acetone/ethylacetate extracts are known to exert an antitumor effect on some human cancer cell lines, but the mechanism is yet to be defined. The aim of this study was to determine the effects of Florin leaf methanol extracts on the growth and apoptosis of human bladder cancer cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay showed that the growth of these bladder cancer cells was potently inhibited by the Florin leaf extracts. The cell cycle of these extract-treated cells (TCCSUP cells was arrested at the G2/M phase as determined by flow cytometry. Western blot analysis revealed the increases of cyclin B1 and Cdc2 kinase levels, alone with the decrease of phosphorylated Cdc2 kinase, after treating these cells with the extracts. An immunofluorescence assessment of β-tubulin showed decreased levels of polymerized tubulin in treated cells. However, the proteolytic cleavage of poly ADP-ribose polymerase and the activation of caspase-3/-8/-9 were all increased upon treatments of extracts. The concurrent increase of Bax and decrease of Bcl-2 levels indicated that the extracts could induce apoptosis in these treated cells. Taken together, these results suggest that the Florin leaf extracts may be an effective antibladder cancer agent.

  4. Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin

    Science.gov (United States)

    Atashpour, Shekoufeh; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Barzegar, Elmira; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its isolated CD133+ CSCs. Materials and Methods: The CSCs from HT29 cells were isolated using CD133 antibody conjugated to magnetic beads by MACS. Anticancer effects of quercetin and Dox alone and in combination on HT29 cells and CSCs were evaluated using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: The CD133+ CSCs comprised about 10% of HT29 cells. Quercetin and Dox alone and in combination inhibited cell proliferation and induced apoptosis in HT29 cells and to a lesser extent in CSCs. Quercetin enhanced cytotoxicity and apoptosis induction of Dox at low concentration in both cell populations. Quercetin and Dox and their combination induced G2/M arrest in the HT29 cells and to a lesser extent in CSCs. Conclusion: The CSCs were a minor population with a significantly high level of drug resistance within the HT29 cancer cells. Quercetin alone exhibited significant cytotoxic effects on HT29 cells and also increased cytoxicity of Dox in combination therapy. Altogether, our data showed that adding quercetin to Dox chemotherapy is an effective strategy for treatment of both CSCs and bulk tumor cells. PMID:26351552

  5. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Morris Robert

    2010-03-01

    Full Text Available Abstract Background Sulforaphane (SFN, an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC. The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC. Results SFN at concentrations of 5 - 20 μM induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 μM after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 μM decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose-polymerase (PARP. Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex. Conclusions SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.

  6. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression.

    Science.gov (United States)

    Jiang, Yanlin; Zhou, Shaoyu; Sandusky, George E; Kelley, Mark R; Fishel, Melissa L

    2010-11-01

    Pancreatic cancer is a deadly disease that is virtually never cured. Understanding the chemoresistance intrinsic to this cancer will aid in developing new regimens. High expression of APE1/Ref-1, a DNA repair and redox signaling protein, is associated with resistance, poor outcome, and angiogenesis; little is known in pancreatic cancer. Immunostaining of adenocarcinoma shows greater APE1/Ref-1 expression than in normal pancreas tissue. A decrease in APE1/Ref-1 protein levels results in pancreatic cancer cell growth inhibition, increased apoptosis, and altered cell cycle progression. Endogenous cell cycle inhibitors increase when APE1/ Ref-1 is reduced, demonstrating its importance to proliferation and growth of pancreatic cancer.

  7. Cell cycle dependent RRM2 may serve as proliferation marker and pharmaceutical target in adrenocortical cancer

    Science.gov (United States)

    Grolmusz, Vince Kornél; Karászi, Katalin; Micsik, Tamás; Tóth, Eszter Angéla; Mészáros, Katalin; Karvaly, Gellért; Barna, Gábor; Szabó, Péter Márton; Baghy, Kornélia; Matkó, János; Kovalszky, Ilona; Tóth, Miklós; Rácz, Károly; Igaz, Péter; Patócs, Attila

    2016-01-01

    Adrenocortical cancer (ACC) is a rare, but agressive malignancy with poor prognosis. Histopathological diagnosis is challenging and pharmacological options for treatment are limited. By the comparative reanalysis of the transcriptional malignancy signature with the cell cycle dependent transcriptional program of ACC, we aimed to identify novel biomarkers which may be used in the histopathological diagnosis and for the prediction of therapeutical response of ACC. Comparative reanalysis of publicly available microarray datasets included three earlier studies comparing transcriptional differences between ACC and benign adrenocortical adenoma (ACA) and one study presenting the cell cycle dependent gene expressional program of human ACC cell line NCI-H295R. Immunohistochemical analysis was performed on ACC samples. In vitro effects of antineoplastic drugs including gemcitabine, mitotane and 9-cis-retinoic acid alone and in combination were tested in the NCI-H295R adrenocortical cell line. Upon the comparative reanalysis, ribonucleotide reductase subunit 2 (RRM2), responsible for the ribonucleotide dezoxyribonucleotide conversion during the S phase of the cell cycle has been validated as cell cycle dependently expressed. Moreover, its expression was associated with the malignancy signature, as well. Immunohistochemical analysis of RRM2 revealed a strong correlation with Ki67 index in ACC. Among the antiproliferative effects of the investigated compounds, gemcitabine showed a strong inhibition of proliferation and an increase of apoptotic events. Additionally, RRM2 has been upregulated upon gemcitabine treatment. Upon our results, RRM2 might be used as a proliferation marker in ACC. RRM2 upregulation upon gemcitabine treatment might contribute to an emerging chemoresistance against gemcitabine, which is in line with its limited therapeutical efficacy in ACC, and which should be overcome for successful clinical applications.

  8. Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells.

    Science.gov (United States)

    Nazeem, S; Azmi, Asfar S; Hanif, Sarmad; Ahmad, Aamir; Mohammad, Ramzi M; Hadi, S M; Kumar, K Sateesh

    2009-09-01

    Plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica has been shown to exert anticancer and anti-proliferative activities in cells in culture as well as animal tumor models. In our previous paper, we have reported the cytotoxic action of plumbagin in plasmid pBR322 DNA as well as human peripheral blood lymphocytes through a redox mechanism involving copper. Copper has been shown to be capable of mediating the action of several plant-derived compounds through production of reactive oxygen species (ROS). The objective of the present study was to determine whether plumbagin induces apoptosis in human cancer cells through the same mechanism which we proposed earlier. Using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay, 3-(4,5-B-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell growth inhibition, histone/DNA ELISA, homogeneous caspase-3/7 assay for apoptosis as well as alkaline comet assay for DNA single-strand breaks detection in this report, we confirm that plumbagin causes effective cell growth inhibition, induces apoptosis and generates single-strand breaks in cancer cells. Incubation of cancer cells with scavengers of ROS and neocuproine inhibited the cytotoxic action of plumbagin proving that generation of ROS and Cu(I) are the critical mediators in plumbagin-induced cell growth inhibition. This study is the first to investigate the copper-mediated anticancer mechanism of plumbagin in human cancer cells and these properties of plumbagin could be further explored for the development of anticancer agents with higher therapeutic indices, especially for skin cancer.

  9. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  10. DUBbing cancer: Deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets

    Directory of Open Access Journals (Sweden)

    Benedikt M Kessler

    2016-07-01

    Full Text Available Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs, have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  11. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  12. Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Liu, Wensheng; Swetzig, Wendy M; Medisetty, Rajesh; Das, Gokul M

    2011-01-01

    Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA) to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP) assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0)/G(1)-phase and significantly delayed the G(1)-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

  13. Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wensheng Liu

    Full Text Available Noxa is a Bcl-2-homology domain (BH3-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2 induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0/G(1-phase and significantly delayed the G(1-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

  14. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20 in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-02-01

    Full Text Available Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20 in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  15. Cancer Preventive Efficacy of Marine Carotenoid Fucoxanthin: Cell Cycle Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Thamaraiselvan Rengarajan

    2013-12-01

    Full Text Available Epidemiological investigations have shown that overcoming the risk of cancer is related to the consumption of green vegetables and fruits. Many compounds from different origins, such as terrestrial plants and marine and microbial sources, have been reported to have therapeutic effects of which marine sources are the most important because the diversity of marine life is more varied than other sources. Fucoxanthin is one important compound with a marine origin and belongs to the group of carotenoids; it can be found in marine brown seaweeds, macroalgae, and diatoms, all of which have remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable medicinal potential and promising applications in human health. In this review, we summarize the anticancer effects of fucoxanthin through several different mechanisms including anti-proliferation, induction of apoptosis, cell cycle arrest and anti-angiogenesis, and its possible role in the treatment of cancer.

  16. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  17. Calotropin from Asclepias curasavica induces cell cycle arrest and apoptosis in cisplatin-resistant lung cancer cells.

    Science.gov (United States)

    Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-09-16

    Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance.

  18. Prognostic value of a cell cycle progression score for men with prostate cancer.

    Science.gov (United States)

    Cuzick, Jack

    2014-01-01

    A new prognostic score called the cell cycle progression or CCP score has been evaluated for predicting outcome in men with prostate cancer. The score is based on 31 cell cycle progression genes and 15 housekeeper control genes. Results on 5 cohorts have been reported. In all cases the CCP score was strongly predictive of outcome both in univariate models and in multvariate models incorporating standard factors such as Gleason grade, PSA levels and extent of disease. Two cohorts evaluated patients managed by active surveillance where the outcome was death from prostate cancer, two cohorts examined patients treated by radical prostatectomy where biochemical recurrence was the primary endpoint, and one smaller cohort looked at patients treated with radiotherapy where again biochemical recurrence was used as the endpoint. In all cases a unit change in CCP score was associated with an approximate doubling of risk of an event. These data provide strong event to support use of the CCP score to help guide clinical management.

  19. Demethylation and alterations in the expression level of the cell cycle-related genes as possible mechanisms in arsenic trioxide-induced cell cycle arrest in human breast cancer cells.

    Science.gov (United States)

    Moghaddaskho, Farima; Eyvani, Haniyeh; Ghadami, Mohsen; Tavakkoly-Bazzaz, Javad; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2017-02-01

    Arsenic trioxide (As2O3) has been used clinically as an anti-tumor agent. Its mechanisms are mostly considered to be the induction of apoptosis and cell cycle arrest. However, the detailed molecular mechanisms of its anti-cancer action through cell cycle arrest are poorly known. Furthermore, As2O3 has been shown to be a potential DNA methylation inhibitor, inducing DNA hypomethylation. We hypothesize that As2O3 may affect the expression of cell cycle regulatory genes by interfering with DNA methylation patterns. To explore this, we examined promoter methylation status of 24 cell cycle genes in breast cancer cell lines and in a normal breast tissue sample by methylation-specific polymerase chain reaction and/or restriction enzyme-based methods. Gene expression level and cell cycle distribution were quantified by real-time polymerase chain reaction and flow cytometric analyses, respectively. Our methylation analysis indicates that only promoters of RBL1 (p107), RASSF1A, and cyclin D2 were aberrantly methylated in studied breast cancer cell lines. As2O3 induced CpG island demethylation in promoter regions of these genes and restores their expression correlated with DNA methyltransferase inhibition. As2O3 also induced alterations in messenger RNA expression of several cell cycle-related genes independent of demethylation. Flow cytometric analysis revealed that the cell cycle arrest induced by As2O3 varied depending on cell lines, MCF-7 at G1 phase and both MDA-MB-231 and MDA-MB-468 cells at G2/M phase. These changes at transcriptional level of the cell cycle genes by the molecular mechanisms dependent and independent of demethylation are likely to represent the mechanisms of cell cycle redistribution in breast cancer cells, in response to As2O3 treatment.

  20. Rosiglitazone induces autophagy in H295R and cell cycle deregulation in SW13 adrenocortical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cerquetti, Lidia; Sampaoli, Camilla [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); Amendola, Donatella; Bucci, Barbara [Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); Masuelli, Laura [Department of Experimental Medicine, ' Sapienza' University of Rome, Rome (Italy); Marchese, Rodolfo [Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); Misiti, Silvia [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy); De Venanzi, Agostino; Poggi, Maurizio; Toscano, Vincenzo [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Stigliano, Antonio, E-mail: antonio.stigliano@uniroma1.it [Endocrinology, Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, Faculty of Medicine and Psychology ' Sapienza' University of Rome, Via di Grottarossa, 1035-00189 Rome (Italy); Research Center S. Pietro Hospital, Via Cassia, 600-00189 Rome (Italy)

    2011-06-10

    Thiazolidinediones, specific peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) ligands, used in type-2 diabetes therapy, show favourable effects in several cancer cells. In this study we demonstrate that the growth of H295R and SW13 adrenocortical cancer cells is inhibited by rosiglitazone, a thiazolidinediones member, even though the mechanisms underlying this effect appeared to be cell-specific. Treatment with GW9662, a selective PPAR-{gamma}-inhibitor, showed that rosiglitazone acts through both PPAR-{gamma}-dependent and -independent mechanisms in H295R, while in SW13 cells the effect seems to be independent of PPAR-{gamma}. H295R cells treated with rosiglitazone undergo an autophagic process, leading to morphological changes detectable by electron microscopy and an increased expression of specific proteins such as AMPK{alpha} and beclin-1. The autophagy seems to be independent of PPAR-{gamma} activation and could be related to an increase in oxidative stress mediated by reactive oxygen species production with the disruption of the mitochondrial membrane potential, triggered by rosiglitazone. In SW13 cells, flow cytometry analysis showed an arrest in the G0/G1 phase of the cell cycle with a decrease of cyclin E and cdk2 activity, following the administration of rosiglitazone. Our data show the potential role of rosiglitazone in the therapeutic approach to adrenocortical carcinoma and indicate the molecular mechanisms at the base of its antiproliferative effects, which appear to be manifold and cell-specific in adrenocortical cancer lines.

  1. Overexpression of the promyelocytic leukemia gene suppresses growth of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    HE Dalin 贺大林; NAN Xunyi 南勋义; Chang Kun-Song; WANG Yafeng 王亚峰; Chung Leland W.K.

    2003-01-01

    Objectives To examine the anti-oncogenic effects of promyelocytic leukemia (PML) on bladder cancer and to explore its molecular mechanisms of growth suppression.Methods Wild-type PML was transfected into bladder cancer cells (5637 cell) and expressed in a replication-deficient adenovirus-mediated gene delivery system and introduced into human bladder cancer cells (5637 cell) in vitro and in vivo. The effect and mechanisms of the PML gene in cell growth, clonogenicity, and tumorigenicity of bladder cancer cells were studied using in vitro and in vivo growth assays, soft agar colony-forming assay, cell cycle analysis, apoptosis assay and in vivo tumorigenicity assay.Results Overexpression of PML in 5637 cells significantly reduced their growth rate and clonogenicity on soft agar. PML suppressed bladder cancer cell growth by inducing G1 cell cycle arrest and apoptosis. Adenovirus-mediated PML (Ad-PML) significantly suppressed the tumorigenicity and growth of bladder cancer cells. Intratumoral injection of Ad-PML into tumors induced by 5637 cells dramatically suppressed their growth. Conclusions The results indicated that overexpression of PML protein may promote efficient growth inhibition of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis, and adenovirus-mediated PML (Ad-PML) expression efficiently suppresses human bladder cancer growth.

  2. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells.

    Science.gov (United States)

    Ansems, Marleen; Søndergaard, Jonas Nørskov; Sieuwerts, Anieta M; Looman, Maaike W G; Smid, Marcel; de Graaf, Annemarie M A; de Weerd, Vanja; Zuidscherwoude, Malou; Foekens, John A; Martens, John W M; Adema, Gosse J

    2015-02-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prognostic marker in ESR1 (ERα gene)-positive breast cancer patients. In this study, we further investigated the molecular mechanism on how DC-SCRIPT inhibits breast cancer cell growth. DC-SCRIPT mRNA levels from 190 primary ESR1-positive breast tumors were related to global gene expression, followed by gene ontology and pathway analysis. The effect of DC-SCRIPT on breast cancer cell growth and cell cycle arrest was investigated using novel DC-SCRIPT-inducible MCF7 breast cancer cell lines. Genome-wide expression profiling of DC-SCRIPT-expressing MCF7 cells was performed to investigate the effect of DC-SCRIPT on cell cycle-related gene expression. Findings were validated by real-time PCR in a cohort of 1,132 ESR1-positive breast cancer patients. In the primary ESR1-positive breast tumors, DC-SCRIPT expression negatively correlated with several cell cycle gene ontologies and pathways. DC-SCRIPT expression strongly reduced breast cancer cell growth in vitro, breast tumor growth in vivo, and induced cell cycle arrest. In addition, in the presence of DC-SCRIPT, multiple cell cycles related genes were differentially expressed including the tumor suppressor gene CDKN2B. Moreover, in 1,132 primary ESR1-positive breast tumors, DC-SCRIPT expression also correlated with CDKN2B expression. Collectively, these data show that DC-SCRIPT acts as a novel regulator of CDKN2B and induces cell cycle arrest in ESR1-positive breast cancer cells.

  3. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells.

    Science.gov (United States)

    Hahm, Eun-Ryeong; Singh, Krishna Beer; Singh, Shivendra V

    2016-09-01

    Honokiol (HNK), a highly promising phytochemical derived from Magnolia officinalis plant, exhibits in vitro and in vivo anticancer activity against prostate cancer but the underlying mechanism is not fully clear. This study was undertaken to delineate the role of c-Myc in anticancer effects of HNK. Exposure of prostate cancer cells to plasma achievable doses of HNK resulted in a marked decrease in levels of total and/or phosphorylated c-Myc protein as well as its mRNA expression. We also observed suppression of c-Myc protein in PC-3 xenografts upon oral HNK administration. Stable overexpression of c-Myc in PC-3 and 22Rv1 cells conferred significant protection against HNK-mediated growth inhibition and G0-G1 phase cell cycle arrest. HNK treatment decreased expression of c-Myc downstream targets including Cyclin D1 and Enhancer of Zeste Homolog 2 (EZH2), and these effects were partially restored upon c-Myc overexpression. In addition, PC-3 and DU145 cells with stable knockdown of EZH2 were relatively more sensitive to growth inhibition by HNK compared with control cells. Finally, androgen receptor overexpression abrogated HNK-mediated downregulation of c-Myc and its targets particularly EZH2. The present study indicates that c-Myc, which is often overexpressed in early and late stages of human prostate cancer, is a novel target of prostate cancer growth inhibition by HNK.

  4. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

    Science.gov (United States)

    McGowan, Eileen M; Alling, Nikki; Jackson, Elise A; Yagoub, Daniel; Haass, Nikolas K; Allen, John D; Martinello-Wilks, Rosetta

    2011-01-01

    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the

  5. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

    Directory of Open Access Journals (Sweden)

    Eileen M McGowan

    Full Text Available Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex, FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle

  6. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells.

    Science.gov (United States)

    Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio

    2016-12-01

    Epidemiological data indicate that the daily consumption of extra‑virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra‑virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose‑dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co‑treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies.

  7. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer

    Institute of Scientific and Technical Information of China (English)

    Liang Yu; Zhong-Jie Sun; Sheng-Li Wu; Cheng-En Pan

    2003-01-01

    AIM: To study the antitumour activity of resveratrol and its effect on the expression of ceil cycle proteins including cyclin D1, cyclin B1 and p34cdc2 in transplanted liver cancer of murine.METHODS: Murine transplanted hepatoma H22 model was used to evaluate the in vivo antitumor activity of resveratrol.Following abdominal administration of resveratrol, the change in tumour size was recorded and the protein expression of cyclin D1, cyclin B1 and p34cdc2 in the tumor and adjacent noncancerous liver tissues were measured by immunohistochemistry.RESULTS: Following treatment of H22 tumour bearing mice with resveratrol at 10 or 15 mg/kg bodyweight for 10 days,the growth of murine transplantable liver cancer was inhibited by 36.3% or 49.3%, respectively. The inhibitory effect was significant compared to that in control group (P<0.05).The level of expression of cyclin B1 and p34cdc2 protein was decreased in the transplantable murine hepatoma 22treated with resveratrol whereas the expression of cyclin D1 protein did not change.CONCLUSION: Resveratrol exhibits anti-tumour activities on murine hepatoma H22. The underlying anti-tumour mechanism of resveratrol might involve the inhibition of the cell cycle progression by decreasing the expression of cyclinB1 and p34cdc2 protein.

  8. The Single Cell Proteome Project - Cell-Cycle Dependent Protein Expression in Breast Cancer Cell Lines

    Science.gov (United States)

    2005-01-01

    sequencing or hybridization array capillary chromatography. After a 6-min-long preliminary technologies.30,31 separation, fractions from the first...characterize single cells. These tools include mass cating cells contain diploid, S-phase and tetraploid frac- spectrometry, electrochemistry and capillary...separation tions; and some advanced tumors contain tetraploid and methods. This review focuses on the use of capillary aneuploid cells [2

  9. Mirk/Dyrk1B mediates G0/G1 to S phase cell cycle progression and cell survival involving MAPK/ERK signaling in human cancer cells

    Directory of Open Access Journals (Sweden)

    Gao Jingchun

    2013-01-01

    Full Text Available Abstract Background Mirk/Dyrk1B contributes to G0 arrest by destabilization of cyclin D1 and stabilization of p27kip1 to maintain the viability of quiescent human cancer cells, and it could be negatively regulated by mitogenic-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK signaling. This study was performed to investigate the effect of Mirk/Dyrk1B on cell cycle and survival of human cancer cells involving MAPK/ERK signaling. Methods The correlations between Mirk/Dyrk1B expression and active ERK1/2 detected by western blot in both ovarian cancer and non-small cell lung cancer (NSCLC cells were analyzed by simple regression. Mirk/Dyrk1B unique phosphopeptides with sites associated with Mirk/Dyrk1B protein were isolated and quantitated by liquid chromatography coupled to tandem mass/mass spectrometry (LC-MS/MS proteomics analysis. The human cancer cells were treated with small interfering RNAs (siRNAs and/or U0126, an inhibitor of MEK for indicated duration, followed by investigating the alterations of cell cycle and apoptosis as well as related proteins examined by flow cytometry and Western blot, respectively. Results Our study demonstrated the widely expressed Mirk/Dyrk1B proteins in the human cancer cells were positively correlated with the levels of activated ERK1/2. Moreover, Mirk/Dyrk1B protein expressions consistent with the tyrosine autophosphorylated levels in the human cancer cells were increased by U0126 or growth factor-depleted culture. Conversely, knockdown of Mirk/Dyrk1B by siRNA led to up-regulated activation of c-Raf-MEK-ERK1/2 pathway and subsequent changes in cell cycle proteins (cyclin D1, p27kip1, accompanied by increased growth rate and cells from G0/G1 into S of cell cycle which could be blocked by U0126 in a dose-dependent manner, indicating Mirk/Dyrk1B may sequester MAPK/ERK pathway, and vice versa. Whereas, combined Mirk siRNA and U0126 induced cell apoptosis in the human cancer cells

  10. Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells.

    Science.gov (United States)

    Putaala, Heli; Mäkivuokko, Harri; Tiihonen, Kirsti; Rautonen, Nina

    2011-11-01

    High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse, and distal colon in sequence. The subsequent fermentation metabolomes were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated gene ontology classes linked with cell cycle, and affected number of metabolically active cells. Furthermore, up-regulated effects on classes linked with apoptosis, with increased caspase 2 and 3 activity, implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARα and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia.

  11. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most...... cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2...... and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  12. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Sumit Arora

    Full Text Available Survival rates for patients with pancreatic cancer are extremely poor due to its asymptomatic progression to advanced and metastatic stage for which current therapies remain largely ineffective. Therefore, novel therapeutic agents and treatment approaches are desired to improve the clinical outcome. In this study, we determined the effects of honokiol, a biologically active constituent of oriental medicinal herb Magnolia officinalis/grandiflora, on two pancreatic cancer cell lines, MiaPaCa and Panc1, alone and in combination with the standard chemotherapeutic drug, gemcitabine. Honokiol exerted growth inhibitory effects on both the pancreatic cancer cell lines by causing cell cycle arrest at G₁ phase and induction of apoptosis. At the molecular level, honokiol markedly decreased the expression of cyclins (D1 and E and cyclin-dependent kinases (Cdk2 and Cdk4, and caused an increase in Cdk inhibitors, p21 and p27. Furthermore, honokiol treatment led to augmentation of Bax/Bcl-2 and Bax/Bcl-xL ratios to favor apoptosis in pancreatic cancer cells. These changes were accompanied by enhanced cytoplasmic accumulation of NF-κB with a concomitant decrease in nuclear fraction and reduced transcriptional activity of NF-κB responsive promoter. This was associated with decreased phosphorylation of inhibitor of kappa B alpha (IκB-α causing its stabilization and thus increased cellular levels. Importantly, honokiol also potentiated the cytotoxic effects of gemcitabine, in part, by restricting the gemcitabine-induced nuclear accumulation of NF-κB in the treated pancreatic cancer cell lines. Altogether, these findings demonstrate, for the first time, the growth inhibitory effects of honokiol in pancreatic cancer and indicate its potential usefulness as a novel natural agent in prevention and therapy.

  13. Jatamanvaltrate P induces cell cycle arrest, apoptosis and autophagy in human breast cancer cells in vitro and in vivo.

    Science.gov (United States)

    Yang, Bo; Zhu, Rui; Tian, Shasha; Wang, Yiqi; Lou, Siyue; Zhao, Huajun

    2017-03-10

    Jatamanvaltrate P is a novel iridoid ester isolated from Valeriana jatamansi Jones, a traditional medicine used to treat nervous disorders. In this study, we found that Jatamanvaltrate P possessed notable antitumor properties and therefore evaluated its anticancer effects against human breast cancer cells in vitro and in vivo. Jatamanvaltrate P inhibited the growth and proliferation of MCF-7 and triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-453 and MDA-MB-468) in a concentration-dependent manner, while displayed relatively low cytotoxicity to human breast epithelial cells (MCF-10A). Treatment with Jatamanvaltrate P induced G2/M-phase arrest in TNBC and G0/G1-phase arrest in MCF-7 cells. Further study of the molecular mechanisms of this cytotoxic compound demonstrated that Jatamanvaltrate P enhanced cleavage of PARP and caspases, while decreased the expression levels of cell cycle-related Cyclin B1, Cyclin D1 and Cdc-2. It also activated autophagy, as indicated by the triggered autophagosome formation and increased LC3-II levels. Autophagy inhibition by 3-MA co-treatment undermined Jatamanvaltrate P-induced cell death. Finally, Jatamanvaltrate P exhibited a potential antitumor effect in MDA-MB-231 xenografts without apparent toxicity. These results suggest that Jatamanvaltrate P is a potential therapeutic agent for breast cancer, providing a basis for development of the compound as a novel chemotherapeutic agent.

  14. Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038 (China); Lu, Yuanyuan; Zhao, Xiaodi; Sun, Yi; Shi, Yongquan; Fan, Hongwei; Liu, Changhao; Zhou, Jinfeng; Nie, Yongzhan; Wu, Kaichun [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Fan, Daiming, E-mail: daimingfan@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China); Guo, Xuegang, E-mail: xuegangguo@126.com [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032 (China)

    2013-10-18

    Highlights: •Overexpression of Ran in pancreatic cancer was correlated with histological grade. •Downregulation of Ran could induce cell apoptosis and inhibit cell proliferation. •The effects were mediated by cell cycle proteins, Survivin and cleaved Caspase-3. -- Abstract: Ran, a member of the Ras GTPase family, has important roles in nucleocytoplasmic transport. Herein, we detected Ran expression in pancreatic cancer and explored its potential role on tumour progression. Overexpressed Ran in pancreatic cancer tissues was found highly correlated with the histological grade. Downregulation of Ran led to significant suppression of cell proliferation, cell cycle arrest at the G1/S phase and induction of apoptosis. In vivo studies also validated that result. Further studies revealed that those effects were at least partly mediated by the downregulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, CDK4, phospho-Rb and Survivin proteins and up regulation of cleaved Caspase-3.

  15. Ethanol extract of Kilkyung-baeksan, a traditional herbal formula, induces G0/G1 cell cycle arrest in human lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Jinhee Kim

    2015-09-01

    Conclusion: EE-KKBS exerted its cytostatic activity through regulating G1 cell cycle checkpoint in lung cancer cells, and this activity is mainly mediated by one of its component herbs, seeds of Croton tiglium. Collectively, our data suggest that EE-KKBS could be a novel candidate for adjuvant therapy for lung cancer.

  16. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chiang KC

    2015-08-01

    Full Text Available Kun-Chun Chiang,1,4 Huang-Yang Chen,1 Shu-Yuan Hsu,2 Jong-Hwei S Pang,3 Shang-Yu Wang,4 Jun-Te Hsu,4 Ta-Sen Yeh,4 Li-Wei Chen,5 Sheng-Fong Kuo,6 Chi-Chin Sun,7 Jim-Ming Lee,1 Chun-Nan Yeh,4 Horng-Heng Juang21Department of General Surgery, Chang Gung Memorial Hospital, Chang Gung University, Keelung, 2Department of Anatomy, 3Graduate Institute of Clinical Medical Sciences, 4Department of General Surgery, 5Department of Gastroenterology, 6Department of Endocrinology and Metabolism, 7Department of Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, Republic of China Abstract: Phosphatase and tensin homolog (PTEN, a well-known tumor suppressor gene and frequently mutated or lost in breast cancer, possesses the negative regulation function over the PI3K/Akt/mTOR pathway. PTEN insufficiency has been associated with advanced breast cancer and poor prognosis of breast cancer patients. Recently, target therapies aimed at PI3K/Akt/mTOR pathway to treat breast cancer have got popularity. However, the exact effect of PTEN on breast cancer cells is still not well understood. This study demonstrated that PTEN knockdown in MCF-7 cells strengthened the downstream gene expressions, including p-Akt, p-ERK1/2, p-mTOR, p-p70s6k, and p-GSK3ß. PTEN knockdown MCF-7 cells had increased cell growth and Ki-67 expression. Further Western blot demonstrated that p27 was repressed obviously with p21 slightly inhibited and CDK1, 2, 4, 6, cyclin A, and Cdc25C were upregulated in MCF-7 PTEN knockdown cells, leading to the higher growth rate. More importantly, PTEN knockdown MCF-7 cells had higher tumorigenesis and tumor growth in vivo. From our current work, we provided more detailed PTEN-mediated mechanisms to stimulate ER+ breast cancer cell growth. Our result may pave the way for further target therapy development used alone or in combination with other drugs for ER+ breast cancer with PTEN insufficiency.Keywords: PTEN, breast cancer, MCF-7

  17. Honokiol, a potential therapeutic agent, induces cell cycle arrest and program cell death in vitro and in vivo in human thyroid cancer cells.

    Science.gov (United States)

    Lu, Chieh-Hsiang; Chen, Shu-Hsin; Chang, Yi-Sheng; Liu, Yi-Wen; Wu, Jin-Yi; Lim, Yun-Ping; Yu, Hui-I; Lee, Ying-Ray

    2017-01-01

    Thyroid cancer is the most common endocrine malignancy, the global incidence rate of which is rapidly rising. Surgery and radioiodine therapies are common and effective treatments only for nonmetastasized primary tumors. Therefore, effective treatment modalities are imperative for patients with radioiodine-resistant thyroid cancer. Honokiol, a biophenolic compound derived from Magnolia spp., has been shown have diverse biological and pharmacological activities, including anti-inflammatory, antioxidative, antiangiogenic, and anticancer properties. In the present study, three human thyroid cancer cell lines, namely anaplastic, follicular, and poorly differentiated thyroid cancer cells, were used to evaluate the chemotherapeutic activity of honokiol. Cell viability, cell cycle, apoptosis, and autophagy induction were determined through flow cytometry and western blot analysis. We found that honokiol treatment can suppress cell growth, induce cell cycle arrest, and enhance the induction of caspase-dependent apoptosis and autophagy in cancer cells. Moreover, honokiol treatment modulated signaling pathways including Akt/mTOR, ERK, JNK, and p38 in the studied cells. In addition, the antitumorigenic activity of honokiol was also confirmed in vitro and in vivo. Our data provide evidence that honokiol has a unique application in chemotherapy for human thyroid cancers.

  18. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  19. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer.

    Science.gov (United States)

    Gao, Ning; Zhang, Zhuo; Jiang, Bing-Hua; Shi, Xianglin

    2003-10-31

    Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.

  20. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells.

    Science.gov (United States)

    Janzer, Andreas; German, Natalie J; Gonzalez-Herrera, Karina N; Asara, John M; Haigis, Marcia C; Struhl, Kevin

    2014-07-22

    Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.

  1. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Kim Yoon-Keun

    2009-11-01

    Full Text Available Abstract Background Various cancer cells, including those of colorectal cancer (CRC, release microvesicles (exosomes into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. Results We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Conclusion Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.

  2. Low-dose methotrexate enhances cycling of highly anaplastic cancer cells

    Science.gov (United States)

    Marzi, Ilaria; Olivotto, Massimo

    2017-01-01

    ABSTRACT We previously showed that cellular RedOx state governs the G1-S transition of AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem cell stage. This transition is impaired when the mithocondrial electron transport system is blocked by specific inhibitors (antimycin A) or the respiratory chain is saturated by adding to the cells high concentrations of pyruvate. The antimycin A or pyruvate block is removed by the addition of adequate concentrations of folate (F). This suggests that the G1-S transition of AH130 cells depends on a respiration-linked step of DNA synthesis related to folate metabolism. In the study reported here, we characterized the effects of methotrexate (MTX), an inhibitor of dihydofolate-reductase, on the G1-S transition of hepatoma cells, in the absence or the presence of exogenously added F, dihydrofolate (FH2) or tetrahydrofolate (FH4). MTX, at 1 μM or higher concentrations, inhibited G1-S transition. This inhibition was completely removed by exogenous folates. Surprisingly, 10 nM MTX stimulated G1-S transition. The addition of F, but not FH2 or FH4, significantly increased this effect. Furthermore, 10 nM MTX removed the block of the G1-S transition operated by antimycin A or pyruvate, an effect which was enhanced in the presence of F. Finally, the stimulatory effect of 10 nM MTX was inhibited in the presence of serine. Our findings indicated that, under certain conditions, MTX may stimulate, rather than inhibiting, the cycling of cancer cells exhibiting a stem cell-like phenotype, such as AH130 cells. This may impact the therapeutic use of MTX and of folates as supportive care. PMID:27841718

  3. The microtubule cytoskeleton is required for a G2 cell cycle delay in cancer cells lacking stathmin and p53.

    Science.gov (United States)

    Carney, Bruce K; Caruso Silva, Victoria; Cassimeris, Lynne

    2012-05-01

    In several cancer cell lines, depleting the microtubule (MT)-destabilizing protein stathmin/oncoprotein18 leads to a G2 cell cycle delay and apoptosis. These phenotypes are observed only in synergy with low levels of p53, but the pathway(s) activated by stathmin depletion to delay the cell cycle are unknown. We found that stathmin depletion caused greater MT stability in synergy with loss of p53, measured by the levels of acetylated α-tubulin and the rate of centrosomal MT nucleation. Nocodazole or vinblastine-induced MT depolymerization abrogated the stathmin-depletion induced G2 delay, measured by the percentage of cells staining positive for several markers (TPX2, CDK1 with inhibitory phosphorylation), indicating that MTs are required to lengthen G2. Live cell imaging showed that stathmin depletion increased time in G2 without an impact on the duration of mitosis, indicating that the longer interphase duration is not simply a consequence of a previous slowed mitosis. In contrast, stabilization of MTs with paclitaxel (8 nM) slowed mitosis without lengthening the duration of interphase, demonstrating that increased MT stability alone is not sufficient to delay cells in G2.

  4. Fucoidan Inhibits the Proliferation of Human Urinary Bladder Cancer T24 Cells by Blocking Cell Cycle Progression and Inducing Apoptosis

    Directory of Open Access Journals (Sweden)

    Hye Young Park

    2014-05-01

    Full Text Available Although fucoidan has been shown to exert anticancer activity against several types of cancer cell lines, no reports have explored fucoidan-affected cell growth in human urinary bladder cancer cells. In this study, we investigated the anti-proliferative effects of fucoidan in human bladder cancer T24 cells. Our results indicated that fucoidan decreased the viability of T24 cells through the induction of G1 arrest and apoptosis. Fucoidan-induced G1 arrest is associated with the enhanced expression of the Cdk inhibitor p21WAF1/CIP1 and dephosphorylation of the pRB along with enhanced binding of p21 to Cdk4/6 as well as pRB to the transcription factor E2Fs. Further investigations showed the loss of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol, proving mitochondrial dysfunction upon fucoidan treatment with a corresponding increase in the Bax/Bcl-2 expression ratio. Fucoidan-triggered apoptosis was also accompanied by the up-regulation of Fas and truncated Bid as well as the sequential activation of caspase-8. Furthermore, a significant increased activation of caspase-9/-3 was detected in response to fucoidan treatment with the decreased expression of IAPs and degradation of PARP, whereas a pan-caspase inhibitor significantly suppressed apoptosis and rescued the cell viability reduction. In conclusion, these observations suggest that fucoidan attenuates G1-S phase cell cycle progression and serves as an important mediator of crosstalk between caspase-dependent intrinsic and extrinsic apoptotic pathways in T24 cells.

  5. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Yukari Takahashi

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5' seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6. CONCLUSIONS/SIGNIFICANCE: We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term 'cell cycle'. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.

  6. Six versus fewer planned cycles of first-line platinum-based chemotherapy for non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Rossi, Antonio; Chiodini, Paolo; Sun, Jong-Mu;

    2014-01-01

    BACKGROUND: Platinum-based chemotherapy is the standard first-line treatment for patients with advanced non-small-cell lung cancer. However, the optimum number of treatment cycles remains controversial. Therefore, we did a systematic review and meta-analysis of individual patient data to compare ...

  7. Cell-cycle fate-monitoring distinguishes individual chemosensitive and chemoresistant cancer cells in drug-treated heterogeneous populations demonstrated by real-time FUCCI imaging.

    Science.gov (United States)

    Miwa, Shinji; Yano, Shuya; Kimura, Hiroaki; Yamamoto, Mako; Toneri, Makoto; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Murakami, Takashi; Hayashi, Katsuhiro; Yamamoto, Norio; Bouvet, Michael; Fujiwara, Toshiyoshi; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-01-01

    Essentially every population of cancer cells within a tumor is heterogeneous, especially with regard to chemosensitivity and resistance. In the present study, we utilized the fluorescence ubiquitination-based cell cycle indicator (FUCCI) imaging system to investigate the correlation between cell-cycle behavior and apoptosis after treatment of cancer cells with chemotherapeutic drugs. HeLa cells expressing FUCCI were treated with doxorubicin (DOX) (5 μM) or cisplatinum (CDDP) (5 μM) for 3 h. Cell-cycle progression and apoptosis were monitored by time-lapse FUCCI imaging for 72 h. Time-lapse FUCCI imaging demonstrated that both DOX and CDDP could induce cell cycle arrest in S/G2/M in almost all the cells, but a subpopulation of the cells could escape the block and undergo mitosis. The subpopulation which went through mitosis subsequently underwent apoptosis, while the cells arrested in S/G2/M survived. The present results demonstrate that chemoresistant cells can be readily identified in a heterogeneous population of cancer cells by S/G2/M arrest, which can serve in future studies as a visible target for novel agents that kill cell-cycle-arrested cells.

  8. Cell cycle related proteins in hyperplasia of usual type in breast specimens of patients with and without breast cancer

    Directory of Open Access Journals (Sweden)

    Gobbi Helenice

    2006-07-01

    Full Text Available Abstract Background Hyperplasia of usual type (HUT is a common proliferative lesion associated with a slight elevated risk for subsequent development of breast cancer. Cell cycle-related proteins would be helpful to determine the putative role of these markers in the process of mammary carcinogenesis. The aim of this study was to analyze the expression of cell cycle related proteins in HUT of breast specimens of patients with and without breast cancer, and compare this expression with areas of invasive carcinomas. Results Immunohistochemical evaluation was performed using antibodies against cell cycle related proteins ER, PR, p53, p21, p63, and Ki-67 in hyperplasia of usual type (HUT in specimens of aesthetic reduction mammaplasty (ARM, in specimens of mammaplasty contralateral to breast cancer (MCC, and in specimens of invasive mammary carcinomas (IMC presenting HUT in the adjacent parenchyma. The results showed that the immunoexpression of ER, PR, p21, p53, p63, and KI-67 was similar in HUT from the three different groups. The p63 expression in myoepithelial cells showed discontinuous pattern in the majority of HUT, different from continuous expression in normal lobules. Nuclear expression of p53 and p21 was frequently higher expressed in IMC and very rare in HUT. We also found cytoplasmic expression of p21 in benign hyperplastic lesions and in neoplastic cells of IMC. Conclusion Our data failed to demonstrate different expression of cell cycle related proteins in HUT from patients with and without breast cancer. However, we found discontinuous expression of p63 in myoepithelial cells around HUT adjacent to carcinomas and cytoplasmic expression of p21 in epithelial cells of hyperplastic foci. Further studies are needed to determine how these subgroups relate to molecular abnormalities and cancer risk.

  9. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  10. Upregulation of long non-coding RNA PRNCR1 in colorectal cancer promotes cell proliferation and cell cycle progression.

    Science.gov (United States)

    Yang, Liu; Qiu, Mantang; Xu, Youtao; Wang, Jie; Zheng, Yanyan; Li, Ming; Xu, Lin; Yin, Rong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Long non-coding RNAs (lncRNAs) have been confirmed to play a critical regulatory role in various biological processes including carcinogenesis, which indicates that lncRNAs are valuable biomarkers and therapeutic targets. The novel lncRNA prostate cancer non-coding RNA 1 (PRNCR1) is located in the susceptible genomic area of CRC, however the functional role of PRNCR1 remains unknown. Thus, we aimed to investigate the clinical significance and biological function of PRNCR1 in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess the expression profile of PRNCR1 in CRC tissues and cell lines. An antisense oligonucleotide (ASO) was designed to knock down PRNCR1. In a cohort of 63 patients, PRNCR1 was significantly overexpressed in CRC tissues compared with the expression in adjacent tissues, with an average fold increase of 10.55 (P=0.006). Additionally, a high level of PRNCR1 was associated with large tumor volume (Pline (FHC), PRNCR1 was upregulated in most CRC cell lines (HCT116, SW480, LoVo and HT-29). After knockdown of PRNCR1 by ASO, CRC cell proliferation ability was significantly inhibited. We further found that PRNCR1 knockdown induced cell cycle arrest in the G0/G1 phase and a significant decrease in the proportion of cells in the S phases. In contrast, PRNCR1 knockdown did not affect cell apoptosis or invasive ability. Hence, these data indicate that PRNCR1 promotes the proliferation of CRC cells and is a potential oncogene of CRC.

  11. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner.

    Science.gov (United States)

    Zhang, Jian; Wei, Wei; Jin, Hui-Cheng; Ying, Rong-Chao; Zhu, A-Kao; Zhang, Fang-Jie

    2015-01-01

    Programmed cell death 2 (PDCD2) is a highly conserved nuclear protein, and aberrant PDCD2 expression alters cell apoptosis. The present study aimed to investigate PDCD2 expression in gastric cancer. Tissue specimens from 34 gastric cancer patients were collected for analysis of PDCD2 expression using immunohistochemistry, western blotting and qRT-PCR. Gastric cancer cell lines (a p53-mutated MKN28 line and a wild-type p53 MKN45 line) were used to assess the effects of PDCD2 overexpression. p53-/- nude mice were used to investigate the effect of PDCD2 on ultraviolet B (UVB)-induced skin carcinogenesis. The data showed that PDCD2 expression was reduced in gastric cancer tissue specimens, and loss of PDCD2 expression was associated with the poor survival of patients. PDCD2 expression induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis. The antitumor effects of PDCD2 expression were dependent on p53 expression in gastric cancer cells. Moreover, PDCD2 expression inhibited activity of the ATM/Chk1/2/p53 signaling pathway. In addition, PDCD2 expression suppressed UVB-induced skin carcinogenesis in p53+/+ nude mice, but not in p53-/- mice. The data from the present study demonstrated that loss of PDCD2 expression could contribute to gastric cancer development and progression and that PDCD2-induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis are p53-dependent.

  12. NDRG1 expression is related to the progression and prognosis of gastric cancer patients through modulating proliferation, invasion and cell cycle of gastric cancer cells.

    Science.gov (United States)

    Chang, Xiaojing; Xu, Xiaoyang; Ma, Jinguo; Xue, Xiaoying; Li, Zhenhua; Deng, Peng; Zhang, Shuanglong; Zhi, Yu; Chen, Jing; Dai, Dongqiu

    2014-09-01

    N-myc downstream-regulated gene 1 (NDRG1) has been proposed as a tumor suppressor gene in many different types of tumors, but its potential function and corresponding mechanism are not yet fully elucidated. This study aims to detect the possible function of NDRG1 in gastric cancer progression. In this study, 112 paired gastric cancer tissues and corresponding nonmalignant gastric tissues were utilized to identify the differential protein expression of NDRG1 by immunohistochemistry and its clinical significance was analyzed. Furthermore, 49 of 112 paired gastric specimens were used to detect the differential mRNA expression by real-time PCR. The over expression of NDRG1 in human gastric cancer cell line AGS by PcDNA3.1-NDRG1 transfection was utilized to detect the role of NDRG1 in regulating the biological behavior of gastric cancer. NDRG1 expression was significantly decreased in primary gastric cancer tissues, compared with its corresponding nonmalignant gastric tissues (p < 0.05), and its decreased expression was significantly associated with lymph node metastasis (p < 0.01), invasion depth (p < 0.01) and differentiation (p < 0.05). Additionally, the overall survival rate of gastric cancer patients with high expression of NDRG1 was higher than those with low expression during the follow-up period. NDRG1 overexpression suppressed cells proliferation, invasion and induced a G1 cell cycle arrest in gastric cancer. Furthermore, the down-regulation of NDRG1 in gastric cancer metastatic progression was correlated to E-cadherin and MMP-9. Our results verify that NDRG1 acts as a tumor suppressor gene and may play an important role in the metastasis progression and prognosis of gastric cancer.

  13. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  14. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil.

    Science.gov (United States)

    Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-08-12

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  15. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Roberto Madeddu

    2013-08-01

    Full Text Available Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd, which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  16. Ethanolic extract of Ferula gummosa is cytotoxic against cancer cells by inducing apoptosis and cell cycle arrest.

    Science.gov (United States)

    Gudarzi, Hoda; Salimi, Mona; Irian, Saeed; Amanzadeh, Amir; Mostafapour Kandelous, Hirsa; Azadmanesh, Keyhan; Salimi, Misha

    2015-01-01

    Ferula gummosa Boiss. has medicinal applications in treating a wide range of diseases including cancer. The objective of this study was to evaluate the antiproliferative activities of the seed and gum extracts of F. gummosa as well as to study the effect of the potent extract on the induction of apoptosis and cell cycle arrest. Our results demonstrated that the ethanolic extract had the lowest IC50 value at 72 h (0.001 ± 1.2 mg/mL) in BHY cells. Moreover, flowcytometry and annexin-V analysis revealed that the ethanolic extract induced apoptosis and cell-cycle arrest in BHY cells at G1/S phase. In addition, colorimetric methods exhibited the highest amount of total phenolics and flavonoids in the aqueous and gum extracts (0.12 ± 0.037, 0.01 ± 2.51 mg/g of dry powder). Generally, the results obtained indicate that F. gummosa ethanol extract may contain effective compounds which can be used as a chemotherapeutic agent.

  17. Securinine from Phyllanthus glaucus Induces Cell Cycle Arrest and Apoptosis in Human Cervical Cancer HeLa Cells

    Science.gov (United States)

    Krauze-Baranowska, Mirosława; Ochocka, J. Renata

    2016-01-01

    Background The Securinega-type alkaloids occur in plants belonging to Euphorbiaceae family. One of the most widely distributed alkaloid of this group is securinine, which was identified next to allosecurinine in Phyllanthus glaucus (leafflower). Recently, some Securinega-type alkaloids have paid attention to its antiproliferative potency towards different cancer cells. However, the cytotoxic properties of allosecurinine have not yet been evaluated. Methods The cytotoxicity of the extract, alkaloid fraction obtained from P. glaucus, isolated securinine and allosecurinine against HeLa cells was evaluated by real-time xCELLigence system and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected by annexin V and 7-amino-actinomycin (7-AAD) staining and confirmed with fluorescent Hoechst 33342 dye. The assessment of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation, the level of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), caspase-3/7 activity and cell cycle analysis were measured by flow cytometry. The enzymatic activity of caspase-9 was assessed by a luminometric assay. The expression of apoptosis associated genes was analyzed by real-time PCR. Results The experimental data revealed that securinine and the alkaloid fraction were significantly potent on HeLa cells growth inhibition with IC50 values of 7.02 ± 0.52 μg/ml (32.3 μM) and 25.46 ± 1.79 μg/ml, respectively. The activity of allosecurinine and Phyllanthus extract were much lower. Furthermore, our study showed that the most active securinine induced apoptosis in a dose-dependent manner in the tested cells, increased the percentage of ROS positive cells and depolarized cells as well as stimulated the activity of ERK1/2, caspase-9 and -3/7. Securinine also induced cell cycle arrest in S phase. Real-time PCR analysis showed high expression of TNFRSF genes in the cells stimulated with securinine. Conclusions Securinine

  18. Alterations in Cell Cycle and Induction of Apoptotic Cell Death in Breast Cancer Cells Treated with α-Mangostin Extracted from Mangosteen Pericarp

    Directory of Open Access Journals (Sweden)

    Hitomi Kurose

    2012-01-01

    Full Text Available The development of molecularly targeted drugs has greatly advanced cancer therapy, despite these drugs being associated with some serious problems. Recently, increasing attention has been paid to the anticancer effects of natural products. α-Mangostin, a xanthone isolated from the pericarp of mangosteen fruit, has been shown to induce apoptosis in various cancer cell lines and to exhibit antitumor activity in a mouse mammary cancer model. In this study, we investigated the influence of α-mangostin on apoptosis and cell cycle in the human breast cancer cell line MDA-MB231 (carrying a p53 mutation, and HER2, ER, and PgR negative in order to elucidate its anticancer mechanisms. In α-mangostin-treated cells, induction of mitochondria-mediated apoptosis was observed. On cell-cycle analysis, G1-phase arrest, increased p21cip1 expression and decreases in cyclins, cdc(s, CDKs and PCNA were observed. In conclusion, α-mangostin may be useful as a therapeutic agent for breast cancer carrying a p53 mutation and having HER2- and hormone receptor-negative subtypes.

  19. Cell cycle arrest and mechanism of apoptosis induction in H400 oral cancer cells in response to Damnacanthal and Nordamnacanthal isolated from Morinda citrifolia.

    Science.gov (United States)

    Shaghayegh, Gohar; Alabsi, Aied M; Ali-Saeed, Rola; Ali, Abdul Manaf; Vincent-Chong, Vui King; Zain, Rosnah Binti

    2016-10-01

    Oral cancer is the eleventh most prevalent cancer worldwide. The most prevalent oral cancer is oral squamous cell carcinoma (OSCC). Damnacanthal (DAM) and nordamnacanthal (NDAM), the anthraquinone compounds, are isolated from the root of Morinda citrifolia L. (Noni), which has been used for the treatment of several chronic diseases including cancer. The objectives of this study were to evaluate the cytotoxicity, cell death mode, cell cycle, and the molecular mechanism of apoptosis induced by DAM and NDAM on OSCC. The cytotoxic effects of these compounds against OSCC cell lines were determined by MTT assay. The cell death mode was analysed by DNA laddering and FITC-annexin V/PI flow cytometric assays. In addition, the mechanism of apoptosis induced by DAM and NDAM was detected using mitochondrial membrane potential, Cytochrome c, and caspases assays. Finally, the effect of DAM and NDAM on cell cycle phase distribution of OSCC cells was detected by flow cytometry. In the present study, DAM and NDAM showed cytotoxicity towards OSCC cell lines and the maximum growth inhibition for both compounds was observed in H400 cells with IC50 value of 1.9 and 6.8 μg/ml, respectively, after 72 h treatment. The results also demonstrated the inhibition of H400 OSCC cells proliferation, internucleosomal cleavage of DNA, activation of intrinsic apoptosis pathway, and cell cycle arrest caused by DAM and NDAM. Therefore, these findings suggest that DAM and NDAM can be potentially used as antitumor agents for oral cancer therapy.

  20. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S

    2007-01-01

    The partial cross-utilization of molecules and pathways involved in opposing processes like cell survival, proliferation and cell death, assures that mutations within one signaling cascade will also affect the other opposite process at least to some extent, thus contributing to homeostatic...... both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the induction...

  1. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival

    DEFF Research Database (Denmark)

    Song, H.; Hogdall, E.; Ramus, S.J.;

    2008-01-01

    plausibly influence clinical characteristics of multiple tumors types. EXPERIMENTAL DESIGN: We examined associations between common germ-line genetic variation in 14 genes involved in cell cycle pathway (CCND1, CCND2, CCND3, CCNE1, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CDKN2D, CDK2, CDK4, CDK6, and RB1.......05) in these genes. The genotypes of each polymorphism were tested for association with survival by Cox regression analysis. RESULTS: A nominally statistically significant association between genotype and ovarian cancer survival was observed for polymorphisms in CCND2 and CCNE1. The per-allele hazard ratios (95......% confidence intervals) were 1.16 (1.03-1.31; P = 0.02) for rs3217933, 1.14 (1.02-1.27; P = 0.024) for rs3217901, and 0.85 (0.73-1.00; P = 0.043) for rs3217862 in CCND2 and 1.39 (1.04-1.85; P = 0.033) for rs3218038 in CCNE1. However, these were not significant after adjusting for multiple hypothesis tests...

  2. A predicted protein, KIAA0247, is a cell cycle modulator in colorectal cancer cells under 5-FU treatment

    Directory of Open Access Journals (Sweden)

    Chen Yan-Chu

    2011-05-01

    Full Text Available Abstract Background Colorectal cancer (CRC is the predominant gastrointestinal malignancy and the leading cause of cancer death. The identification of genes related to CRC is important for the development of successful therapies and earlier diagnosis. Methods Molecular analysis of feces was evaluated as a potential method for CRC detection. Expression of a predicted protein with unknown function, KIAA0247, was found in feces evaluated using specific quantitative real-time polymerase chain reaction. Its cellular function was then analyzed using immunofluorescent staining and the changes in the cell cycle in response to 5-fluorouracil (5-FU were assessed. Results Gastrointestinal tissues and peripheral blood lymphocytes ubiquitously expressed KIAA0247. 56 CRC patients fell into two group categories according to fecal KIAA0247 mRNA expression levels. The group with higher fecal KIAA0247 (n = 22; ≥ 0.4897 had a significantly greater five-year overall survival rate than the group with lower fecal KIAA0247 (n = 30; p = 0.035, log-rank test. Fecal expression of KIAA0247 inversely related to CRC tumor size (Kendall's tau-b = -0.202; p = 0.047. Immunofluorescent staining revealed that the cytoplasm of CRC cells evenly expresses KIAA0247 without 5-FU treatment, and KIAA0247 accumulates in the nucleus after 40 μM 5-FU treatment. In HCT116 p53-/- cells, which lack p53 cell cycle control, the proportion of cells in the G2/M phase was larger (13% in KIAA0247-silent cells than in the respective shLuc control (10% and KIAA0247-overexpressing cells (7% after the addition of low dose (40 μM 5-FU. Expression of three cyclin genes (cyclin A2, cyclin B1, and cyclin B2 also downregulated in the cells overexpressing KIAA0247. Conclusions This is the first description of a linkage between KIAA0247 and CRC. The study's data demonstrate overexpression of KIAA0247 associates with 5-FU therapeutic benefits, and also identify the clinical significance of fecal KIAA0247

  3. CSN5 silencing inhibits invasion and arrests cell cycle progression in human colorectal cancer SW480 and LS174T cells in vitro.

    Science.gov (United States)

    Zhong, Gang; Li, Huikai; Shan, Tao; Zhang, Nan

    2015-01-01

    CSN5 has been implicated as a candidate oncogene in human cancers by genetic linkage with activation of the poor-prognosis, wound response gene expression signature. The present study aimed to investigate the effect of silencing CSN5 on invasion and cell cycle progression of human colorectal cancer cells, and to determine the potential molecular mechanisms that are involved. The CSN5 specific small interfering RNA (shRNA) plasmid vector was constructed and then transfected into colorectal cancer cells. The expression of CSN5 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell adhesion and invasion were analyzed using MTS and Transwell assays, respectively, and cell cycle progression was analyzed using flow cytometry. Adhesion, invasion, and cell cycle distribution were assessed following knockdown of CSN5 by RNA interference (RNAi). Furthermore, knockdown of CSN5 significantly inhibited cell adhesion and reduced the number of invasive cells, while increasing the percentage of cells in the G0/G1 phase (Pcell cycle associated proteins in cells with silenced CSN5. The expression levels of CSN5 in colorectal cancer cells transfected with siRNA were decreased, leading to a significant inhibition of colorectal cancer cell adhesion and invasion. Western blot analysis revealed that silencing of CSN5 may inhibit CD44, matrix metalloproteinase (MMP) 2 and MMP 9 protein expression, significantly promoted cell cycle-related genes P53 and P27 expression. In addition, CSN5 silencing may induce activation PI3K/AKT signal regulated cell invasion. Moreover, CSN5 silencing inhibited the secretion of TGF-β, IL-1β and IL-6 and the transcriptional activity of transcription factor NF-κB and Twist in human colorectal cancer cells. Taken together, down regulation of CSN5 may inhibit invasion and arrests cell cycle progression in colorectal cancer via PI3K/AKT/NF-κB signal pathway, which indicates that there is a

  4. Development of cell-based quantitative evaluation method for cell cycle-arrest type cancer drugs for apoptosis by high precision surface plasmon resonance sensor

    Science.gov (United States)

    Ona, Toshihiro; Nishijima, Hiroshi; Kosaihira, Atsushi; Shibata, Junko

    2008-04-01

    In vitro rapid and quantitative cell-based assay is demanded to verify the efficacy prediction of cancer drugs since a cancer patient may have unconventional aspects of tumor development. Here, we show the rapid and non-label quantitative verifying method and instrumentation of apoptosis for cell cycle-arrest type cancer drugs (Roscovitine and D-allose) by reaction analysis of living liver cancer cells cultured on a sensor chip with a newly developed high precision (50 ndeg s -1 average fluctuation) surface plasmon resonance (SPR) sensor. The time-course cell reaction as the SPR angle change rate for 10 min from 30 min cell culture with a drug was significantly related to cell viability. By the simultaneous detection of differential SPR angle change and fluorescence by specific probes using the new instrument, the SPR angle was related to the nano-order potential decrease in inner mitochondrial membrane potential. The results obtained are universally valid for the cell cycle-arrest type cancer drugs, which mediate apoptosis through different cell-signaling pathways, by a liver cancer cell line of Hep G2 (Pcancer cells from patients in clinical use.

  5. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  6. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation.

    Science.gov (United States)

    Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q

    2016-06-02

    Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to

  7. Ubiquitin specific protease 2 acts as a key modulator for the regulation of cell cycle by adiponectin and leptin in cancer cells.

    Science.gov (United States)

    Nepal, Saroj; Shrestha, Anup; Park, Pil-Hoon

    2015-09-05

    Adiponectin and leptin, both produced from adipose tissue, cause cell cycle arrest and progression, respectively in cancer cells. Ubiquitin specific protease-2 (USP-2), a deubiquitinating enzyme, is known to impair proteasome-induced degradation of cyclin D1, a critical cell cycle regulator. Herein, we investigated the effects of these adipokines on USP-2 expression and its potential role in the modulation of cell cycle. Treatment with globular adiponectin (gAcrp) decreased, whereas leptin increased USP-2 expression both in human hepatoma and breast cancer cells. In addition, overexpression or gene silencing of USP-2 affected cyclin D1 expression and cell cycle progression/arrest by adipokines. Adiponectin and leptin also modulated in vitro proteasomal activity, which was partially dependent on USP-2 expression. Taken together, our results reveal that modulation of USP-2 expression plays a crucial role in cell cycle regulation by adipokines. Thus, USP-2 would be a promising therapeutic target for the modulation of cancer cell growth by adipokines.

  8. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity

    Science.gov (United States)

    Nguyen, Lich Thi; Lee, Yeon-Hee; Sharma, Ashish Ranjan; Park, Jong-Bong; Jagga, Supriya; Sharma, Garima

    2017-01-01

    Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells. PMID:28280414

  9. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity.

    Science.gov (United States)

    Nguyen, Lich Thi; Lee, Yeon-Hee; Sharma, Ashish Ranjan; Park, Jong-Bong; Jagga, Supriya; Sharma, Garima; Lee, Sang-Soo; Nam, Ju-Suk

    2017-03-01

    Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

  10. Physangulidine A, a withanolide from Physalis angulata, perturbs the cell cycle and induces cell death by apoptosis in prostate cancer cells.

    Science.gov (United States)

    Reyes-Reyes, E Merit; Jin, Zhuang; Vaisberg, Abraham J; Hammond, Gerald B; Bates, Paula J

    2013-01-25

    Recently, our group reported the discovery of three new withanolides, physangulidines A-C, from Physalis angulata. In this study, the biological effects of physangulidine A (1), which was the most active and abundant of the three new constituents, are described. It was found that 1 significantly reduces survival in clonogenic assays for two hormone-independent prostate cancer cell lines. Flow cytometry and confocal microscopy studies in DU145 human prostate cancer cells indicated that 1 induces cell cycle arrest in the G(2)/M phase and causes defective mitosis. It was determined also that 1 produces programed cell death by apoptosis, as evidenced by biochemical markers and distinct changes in cell morphology. These results imply that the antimitotic and proapoptotic effects of 1 may contribute significantly to the biological activities and potential medicinal properties of its plant of origin.

  11. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol

    Science.gov (United States)

    SONER, BURAK CEM; AKTUG, HUSEYIN; ACIKGOZ, EDA; DUZAGAC, FAHRIYE; GUVEN, UMMU; AYLA, SULE; CAL, CAG; OKTEM, GULPERI

    2014-01-01

    Flavopiridol is a flavone that inhibits several cyclin-dependent kinases and exhibits potent growth-inhibitory activity, apoptosis and G1-phase arrest in a number of human tumor cell lines. Flavopiridol is currently undergoing investigation in human clinical trials. The present study focused on the effect of flavopiridol in cell proliferation, cell cycle progression and apoptosis in prostate cancer stem cells (CSCs). Therefore, cluster of differentiation 133 (CD133)+high/CD44+high prostate CSCs were isolated from the DU145 human prostate cancer cell line. The cells were treated with flavopiridol in a dose- and time-dependent manner to determine the inhibitory effect. Cell viability and proliferation were analyzed and the efficiency of flavopiridol was assessed using the sphere-forming assay. Flavopiridol was applied to monolayer cultures of CD133high/CD44high human prostate CSCs at the following final concentrations: 100, 300, 500 and 1000 nM. The cultures were incubated for 24, 48 and 72 h. The half maximal inhibitory concentration (IC50) value of the drug was determined as 500 nM for monolayer cells. Dead cells were analyzed prior and subsequent to exposure to increasing flavopiridol doses. Annexin-V and immunofluorescence analyses were performed for the evaluation of apoptotic pathways. According to the results, flavopiridol treatment caused significant growth inhibition at 500 and 1000 nM when compared to the control at 24 h. G0/G1 analysis showed a statistically significant difference between 100 and 500 nM (P<0.005), 100 and 1000 nM (P<0.001), 300 and 1000 nM (P<0.001), and 500 and 1000 nM (P<0.001). Flavopiridol also significantly influenced the cells in the G2/M phase, particularly at high-dose treatments. Flavopiridol induced growth inhibition and apoptosis at the IC50 dose (500 nM), resulting in a significant increase in immunofluorescence staining of caspase-3, caspase-8 and p53. In conclusion, the present results indicated that flavopiridol could be a

  12. Heterogeneous cell-cycle behavior in response to UVB irradiation by a population of single cancer cells visualized by time-lapse FUCCI imaging.

    Science.gov (United States)

    Miwa, Shinji; Yano, Shuya; Kimura, Hiroaki; Yamamoto, Mako; Toneri, Makoto; Murakami, Takashi; Hayashi, Katsuhiro; Yamamoto, Norio; Fujiwara, Toshiyoshi; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2015-01-01

    The present study analyzed the heterogeneous cell-cycle dependence and fate of single cancer cells in a population treated with UVB using a fluorescence ubiquitination-based cell-cycle (FUCCI) imaging system. HeLa cells expressing FUCCI were irradiated by 100 or 200 J/m(2) UVB. Modulation of the cell-cycle and apoptosis were observed by time-lapse confocal microscopy imaging every 30 min for 72 h. Correlation between cell survival and factors including cell-cycle phase at the time of the irradiation of UVB, mitosis and the G1/S transition were analyzed using the Kaplan-Meier method along with the log rank test. Time-lapse FUCCI imaging of HeLa cells demonstrated that UVB irradiation induced cell-cycle arrest in S/G2/M phase in the majority of the cells. The cells irradiated by 100 or 200 J/m(2) UVB during G0/G1 phase had a higher survival rate than the cells irradiated during S/G2/M phase. A minority of cells could escape S/G2/M arrest and undergo mitosis which significantly correlated with decreased survival of the cells. In contrast, G1/S transition significantly correlated with increased survival of the cells after UVB irradiation. UVB at 200 J/m(2) resulted in a greater number of apoptotic cells.

  13. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer

    Directory of Open Access Journals (Sweden)

    Hatoh Shinji

    2009-03-01

    Full Text Available Abstract Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.

  14. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis*

    Science.gov (United States)

    Liu, Shu-min; Ou, Shi-yi; Huang, Hui-hua

    2017-01-01

    In order to study the molecular mechanisms of green tea polyphenols (GTPs) in treatment or prevention of breast cancer, the cytotoxic effects of GTPs on five human cell lines (MCF-7, A549, Hela, PC3, and HepG2 cells) were determined and the antitumor mechanisms of GTPs in MCF-7 cells were analyzed. The results showed that GTPs exhibited a broad spectrum of inhibition against the detected cancer cell lines, particularly the MCF-7 cells. Studies on the mechanisms revealed that the main modes of cell death induced by GTPs were cell cycle arrest and mitochondrial-mediated apoptosis. Flow cytometric analysis showed that GTPs mediated cell cycle arrest at both G1/M and G2/M transitions. GTP dose dependently led to apoptosis of MCF-7 cells via the mitochondrial pathways, as evidenced by induction of chromatin condensation, reduction of mitochondrial membrane potential (ΔΨ m), improvement in the generation of reactive oxygen species (ROS), induction of DNA fragmentation, and activations of caspase-3 and caspase-9 in the present paper. PMID:28124838

  15. Cancer cells mimic in vivo spatial-temporal cell-cycle phase distribution and chemosensitivity in 3-dimensional Gelfoam® histoculture but not 2-dimensional culture as visualized with real-time FUCCI imaging.

    Science.gov (United States)

    Yano, Shuya; Miwa, Shinji; Mii, Sumiyuki; Hiroshima, Yukihiko; Uehara, Fuminaru; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Zhao, Ming; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2015-01-01

    The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We previously reported monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor, intravitally in live mice, using a fluorescence ubiquitination-based cell-cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after cessation of chemotherapy. These results suggested why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. In the present report, we used FUCCI imaging and Gelfoam® collagen-sponge-gel histoculture, to demonstrate in real time, that the cell-cycle phase distribution of cancer cells in Gelfoam® and in vivo tumors is highly similar, whereby only the surface cells proliferate and interior cells are quiescent in G0/G1. This is in contrast to 2D culture where most cancer cells cycle. Similarly, the cancer cells responded similarly to toxic chemotherapy in Gelfoam® culture as in vivo, and very differently than cancer cells in 2D culture which were much more chemosensitive. Gelfoam® culture of FUCCI-expressing cancer cells offers the opportunity to image the cell cycle of cancer cells continuously and to screen for novel effective therapies to target quiescent cells, which are the majority in a tumor and which would have a strong probability to be effective in vivo.

  16. Comparison of cell cycle components, apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast, lung cancer and embryonic stem cells.

    Science.gov (United States)

    Aktug, Huseyin; Acikgoz, Eda; Uysal, Aysegul; Oltulu, Fatih; Oktem, Gulperi; Yigitturk, Gurkan; Demir, Kenan; Yavasoglu, Altug; Bozok Cetintas, Vildan

    2016-09-01

    Similarities and differences in the cell cycle components, apoptosis and cytoskeleton-related molecules among mouse skin fibroblast cells (MSFs), mouse squamous cell lung carcinomas (SqCLCs) and mouse embryonic stem cells (mESCs) are important determinants of the behaviour and differentiation capacity of these cells. To reveal apoptotic pathways and to examine the distribution and the role of cell cycle-cell skeleton comparatively would necessitate tumour biology and stem cell biology to be assessed together in terms of oncogenesis and embryogenesis. The primary objectives of this study are to investigate the effects of flavopiridol, a cell cycle inhibitor, and geldanamycin, a heat shock protein inhibitor on mouse somatic, tumour and embryonic stem cells, by specifically focusing on alterations in cytoskeletal proteins, cell polarity and motility as well as cell cycle regulators. To meet these objectives, expression of several genes, cell cycle analysis and immunofluorescence staining of intracellular cytoskeletal molecules were performed in untreated and flavopiridol- or geldanamycin-treated cell lines. Cytotoxicity assays showed that SqCLCs are more sensitive to flavopiridol than MSFs and mESCs. Keratin-9 and keratin-2 expressions increased dramatically whereas cell cycle regulatory genes decreased significantly in the flavopiridol-treated MSFs. Flavopiridol-treated SqCLCs displayed a slight increase in several cell cytoskeleton regulatory genes as well as cell cycle regulatory genes. However, gene expression profiles of mESCs were not affected after flavopiridol treatment except the Cdc2a. Cytotoxic concentrations of geldanamycin were close to each other for all cell lines. Cdkn1a was the most increased gene in the geldanamycin-treated MSFs. However, expression levels of cell cytoskeleton-associated genes were increased dramatically in the geldanamycin-treated SqCLCs. Our results revealing differences in molecular mechanisms between embryogenesis and

  17. Chaetoglobosin K induces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells.

    Science.gov (United States)

    Li, Bo; Gao, Ying; Rankin, Gary O; Rojanasakul, Yon; Cutler, Stephen J; Tu, Youying; Chen, Yi Charlie

    2015-01-28

    Adverse side effects and acquired resistance to conventional platinum based chemotherapy have become major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs. Chaetoglobosin K (ChK) was shown to have a more potent growth inhibitory effect than cisplatin on two cisplatin-resistant ovarian cancer cell lines, OVCAR-3 and A2780/CP70, and was less cytotoxic to a normal ovarian cell line, IOSE-364, than to the cancer cell lines. Hoechst 33342 staining and Flow cytometry analysis indicated that ChK induced preferential apoptosis and G2 cell cycle arrest in both ovarian cancer cells with respect to the normal ovarian cells. ChK induced apoptosis through a p53-dependent caspase-8 activation extrinsic pathway, and caused G2 cell cycle arrest via cyclin B1 by increasing p53 expression and p38 phosphorylation in OVCAR-3 and A2780/CP70 cells. DR5 and p21 might play an important role in determining the sensitivity of normal and malignant ovarian cells to ChK. Based on these results, ChK would be a potential compound for treating platinum-resistant ovarian cancer.

  18. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression.

    Science.gov (United States)

    Shin, Seung-Shick; Park, Sung-Soo; Hwang, Byungdoo; Kim, Won Tae; Choi, Yung Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2016-10-01

    Despite the clinical significance of tumorigenesis, little is known about the cellular signaling networks of microRNAs (miRs). Here we report a new finding that mir‑106a regulates the proliferation, migration, and invasion of bladder cancer cells. Basal expression levels of mir‑106a were significantly lower in bladder cancer cells than in normal urothelial cells. Overexpression of mir‑106a suppressed the proliferation of bladder cancer cell line EJ. Transient transfection of mir‑106a into EJ cells led to downregulation of ERK phosphorylation and upregulation of p38 and JNK phosphorylation over their levels in the control. Flow cytometry analysis revealed that mir‑106a-transfected cells accumulated in the G1-phase of the cell cycle, and cyclin D1 and CDK6 were significantly downregulated. This G1-phase cell cycle arrest was due in part to the upregulation of p21CIP1/WAF1. In addition, mir‑106a overexpression blocked the wound-healing migration and invasion of EJ cells. Furthermore, mir‑106a transfection resulted in decreased expression of MMP-2 and diminished binding activity of transcription factor Ets-1 in EJ cells. Collectively, we report the novel mir‑106a-mediated molecular signaling networks that regulate the proliferation, migration, and invasion of bladder cancer cells, suggesting that mir‑106a may be a therapeutic target for treating advanced bladder tumors.

  19. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Jennifer L., E-mail: jennifer.dembinski@rr-research.no; Krauss, Stefan [Cellular and Genetic Therapy, Department of Microbiology, Cancer Stem Cell Innovation Center (CAST), Oslo University Hospital, Rikshospitalet, Oslo (Norway)

    2010-11-29

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics.

  20. Serum starvation and thymidine double blocking achieved efficient cell cycle synchronization and altered the expression of p27, p53, bcl-2 in canine breast cancer cells.

    Science.gov (United States)

    Tong, Jinjin; Sun, Dongdong; Yang, Chao; Wang, Yingxue; Sun, Sichao; Li, Qing; Bao, Jun; Liu, Yun

    2016-04-01

    Cell synchronization is an approach to obtain cell populations of the same stage, which is a prerequisite to studying the regulation of cell cycle progression in vivo. Serum starvation and thymidine double blocking (TdR) are two important practices in studying cell cycle synchronization. However, their effects on canine cancer cells as well as the regulatory mechanisms by these two methods are poorly understood. In this study, we determined the optimum conditions of serum starvation and TdR and their effects on cell cycle synchronization. We further explored the involvement of PI3K/Akt signaling pathway in the cell cycle synchronization by investigating the expression of three key genes (p27, p53 and bcl-2). Serum starvation resulted in a reversible cell cycle arrest and synchronously progress through G0/G1. The highest percentage of CHMm cells (87.47%) in G0/G1 stage was obtained after 42 h incubation with 0.5% fetal bovine serum (FBS). TdR double blocking could arrest 98.9% of CHMm cells in G1/S phase (0 h of release), and could arrest 93.74% of CHMm cells in S phase after 4h of release. We also found that the p27, p53, bcl-2 genes were most highly expressed in G0/G1 phase. Our current work revealed that serum starvation and TdR methods could achieve sufficient synchronization of CHMm cells. Moreover, the expression of p27, p53 and bcl-2 genes was related to cyclical movements and apoptosis. Our results will provide a new insight into cell cycle regulation and reprogramming of canine cancer cells induced by serum starvation and TdR blocking.

  1. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    OpenAIRE

    Roberto Vicinanza; Yanjun Zhang; Susanne M Henning; David Heber

    2013-01-01

    Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combi...

  2. Quercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin

    Directory of Open Access Journals (Sweden)

    Shekoufeh Atashpour

    2015-07-01

    Conclusion:The CSCs were a minor population with a significantly high level of drug resistance within the HT29 cancer cells. Quercetin alone exhibited significant cytotoxic effects on HT29 cells and also increased cytoxicity of Dox in combination therapy. Altogether, our data showed that adding quercetin to Dox chemotherapy is an effective strategy for treatment of both CSCs and bulk tumor cells.

  3. A novel muscarinic antagonist R2HBJJ inhibits non-small cell lung cancer cell growth and arrests the cell cycle in G0/G1.

    Directory of Open Access Journals (Sweden)

    Nan Hua

    Full Text Available Lung cancers express the cholinergic autocrine loop, which facilitates the progression of cancer cells. The antagonists of mAChRs have been demonstrated to depress the growth of small cell lung cancers (SCLCs. In this study we intended to investigate the growth inhibitory effect of R2HBJJ, a novel muscarinic antagonist, on non-small cell lung cancer (NSCLC cells and the possible mechanisms. The competitive binding assay revealed that R2HBJJ had a high affinity to M3 and M1 AChRs. R2HBJJ presented a strong anticholinergic activity on carbachol-induced contraction of guinea-pig trachea. R2HBJJ markedly suppressed the growth of NSCLC cells, such as H1299, H460 and H157. In H1299 cells, both R2HBJJ and its leading compound R2-PHC displayed significant anti-proliferative activity as M3 receptor antagonist darifenacin. Exogenous replenish of ACh could attenuate R2HBJJ-induced growth inhibition. Silencing M3 receptor or ChAT by specific-siRNAs resulted in a growth inhibition of 55.5% and 37.9% on H1299 cells 96 h post transfection, respectively. Further studies revealed that treatment with R2HBJJ arrested the cell cycle in G0/G1 by down-regulation of cyclin D1-CDK4/6-Rb. Therefore, the current study reveals that NSCLC cells express an autocrine and paracrine cholinergic system which stimulates the growth of NSCLC cells. R2HBJJ, as a novel mAChRs antagonist, can block the local cholinergic loop by antagonizing predominantly M3 receptors and inhibit NSCLC cell growth, which suggest that M3 receptor antagonist might be a potential chemotherapeutic regimen for NSCLC.

  4. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Science.gov (United States)

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338.

  5. Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis.

    Science.gov (United States)

    Wang, Limin; Gallo, Kathleen A; Conrad, Susan E

    2013-08-01

    Estrogen receptor (ER)-positive tumors represent the most common type of breast cancer, and ER-targeted therapies such as antiestrogens and aromatase inhibitors have therefore been widely used in breast cancer treatment. While many patients have benefited from these therapies, both innate and acquired resistance continue to be causes of treatment failure. Novel targeted therapeutics that could be used alone or in combination with endocrine agents to treat resistant tumors or to prevent their development are therefore needed. In this report, we examined the effects of inhibiting mixed-lineage kinase (MLK) activity on ER-positive breast cancer cells and non-tumorigenic mammary epithelial cells. Inhibition of MLK activity with the pan-MLK inhibitor CEP-1347 blocked cell cycle progression in G2 and early M phase, and induced apoptosis in three ER-positive breast cancer cell lines, including one with acquired antiestrogen resistance. In contrast, it had no effect on the cell cycle or apoptosis in two non-tumorigenic mammary epithelial cell lines. CEP-1347 treatment did not decrease the level of active ERK or p38 in any of the cell lines tested. However, it resulted in decreased JNK and NF-κB activity in the breast cancer cell lines. A JNK inhibitor mimicked the effects of CEP-1347 in breast cancer cells, and overexpression of c-Jun rescued CEP-1347-induced Bax expression. These results indicate that proliferation and survival of ER-positive breast cancer cells are highly dependent on MLK activity, and suggest that MLK inhibitors may have therapeutic efficacy for ER-positive breast tumors, including ones that are resistant to current endocrine therapies.

  6. Induction of apoptosis, stimulation of cell-cycle arrest and inhibition of angiogenesis make human amnion-derived cells promising sources for cell therapy of cancer.

    Science.gov (United States)

    Niknejad, Hassan; Yazdanpanah, Ghasem; Ahmadiani, Abolhassan

    2016-03-01

    Amniotic membrane (AM), the nearest layer of fetal membranes to the fetus, contains two types of cells with unique characteristics that make them excellent candidates for clinical applications. Amniotic epithelial and mesenchymal cells have low immunogenicity, anti-inflammation, anti-fibrosis and anti-bacterial properties and no ethical issues. Although amniotic cells have stem cell properties and express transcription factors specific for pluripotent stem cells, they are not tumorigenic after transplantation. In the last decade, a new line of research has been initiated with a focus on the anti-proliferative effects of amniotic epithelial and mesenchymal cells on tumor growth. Amnion-derived epithelial and mesenchymal cells inhibit tumor growth and invasion through three pathways: the induction of apoptosis, the stimulation of cell-cycle arrest and the inhibition of angiogenesis. In this review, the various aspects of the anti-cancer properties of amnion-derived cells and the underlying mechanisms are discussed with emphasis on the translation of the cell therapy of cancer from experimental into clinical practice.

  7. Prazosin Displays Anticancer Activity against Human Prostate Cancers: Targeting DNA, Cell Cycle

    Directory of Open Access Journals (Sweden)

    Ssu-Chia Lin

    2007-10-01

    Full Text Available Quinazoline-based α1,-adrenoceptor antagonists, in particular doxazosin, terazosin, are suggested to display antineoplastic activity against prostate cancers. However, there are few studies elucidating the effect of prazosin. In this study, prazosin displayed antiproliferative activity superior to that of other α1-blockers, including doxazosin, terazosin, tamsulosin, phentolamine. Prazosin induced G2 checkpoint arrest, subsequent apoptosis in prostate cancer PC-3, DU-145, LNCaP cells. In p53-null PC-3 cells, prazosin induced an increase in DNA str, breaks, ATM/ATR checkpoint pathways, leading to the activation of downstream signaling cascades, including Cdc25c phosphorylation at Ser216, nuclear export of Cdc25c, cyclin-dependent kinase (Cdk 1 phosphorylation at Tyr15. The data, together with sustained elevated cyclin A levels (other than cyclin B1 levels, suggested that Cdki activity was inactivated by prazosin. Moreover, prazosin triggered mitochondria-mediated, caspaseexecuted apoptotic pathways in PC-3 cells. The oral administration of prazosin significantly reduced tumor mass in PC-3-derived cancer xenografts in nude mice. In summary, we suggest that prazosin is a potential antitumor agent that induces cell apoptosis through the induction of DNA damage stress, leading to Cdki inactivation, G2 checkpoint arrest. Subsequently, mitochondriamediated caspase cascades are triggered to induce apoptosis in PC-3 cells.

  8. Identification of fibroblast growth factor-8b target genes associated with early and late cell cycle events in breast cancer cells.

    Science.gov (United States)

    Nilsson, E M; Brokken, L J S; Narvi, E; Kallio, M J; Härkönen, P L

    2012-07-01

    Fibroblast growth factor-8 (FGF-8) is implicated in the development and progression of breast cancer and its levels are frequently elevated in breast tumors. The mechanisms driving FGF-8-mediated tumorigenesis are not well understood. Herein we aimed to identify target genes associated with FGF-8b-mediated breast cancer cell proliferation by carrying out a cDNA microarray analysis of genes expressed in estrogen receptor negative S115 breast cancer cells treated with FGF-8b for various time periods in comparison with those expressed in non-treated cells. Gene and protein expression was validated for selected genes by qPCR and western blotting respectively. Furthermore, using TRANSBIG data, the expression of human orthologs of FGF-8-regulated genes was correlated to the Nottingham prognostic index and estrogen receptor status. The analysis revealed a number of significantly up- and down-regulated genes in response to FGF-8b at all treatment times. The most differentially expressed genes were genes related to cell cycle regulation, mitosis, cancer, and cell death. Several key regulators of early cell cycle progression such as Btg2 and cyclin D1, as well as regulators of mitosis, including cyclin B, Plk1, survivin, and aurora kinase A, were identified as novel targets for FGF-8b, some of which were additionally shown to correlate with prognosis and ER status in human breast cancer. The results suggest that in stimulation of proliferation FGF-8b not only promotes cell cycle progression through the G1 restriction point but also regulates key proteins involved in chromosomal segregation during mitosis and cytokinesis of breast cancer cells.

  9. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53.

    Directory of Open Access Journals (Sweden)

    Vikas Yadav

    Full Text Available Pancreatic cancer, despite being the most dreadful among gastrointestinal cancers, is poorly diagnosed, and further, the situation has been aggravated owing to acquired drug resistance against the single known drug therapy. While previous studies have highlighted the growth inhibitory effects of older generation fluoroquinolones, the current study aims to evaluate the growth inhibitory effects of newer generation fluoroquinolone, Gatifloxacin, on pancreatic cancer cell lines MIA PaCa-2 and Panc-1 as well as to elucidate the underlying molecular mechanisms. Herein, we report that Gatifloxacin suppresses the proliferation of MIA PaCa-2 and Panc-1 cells by causing S and G(2-phase cell cycle arrest without induction of apoptosis. Blockade in S-phase of the cell cycle was associated with increased TGF-β1 expression and translocation of Smad3-4 complex to the nucleus with subsequent activation of p21 in MIA PaCa-2 cells, whereas TGF-β signalling attenuated Panc-1 cells showed S-phase arrest by direct activation of p27. However, Gatifloxacin mediated G(2-phase cell cycle arrest was found to be p53 dependent in both the cell lines. Our study is of interest because fluoroquinolones have the ability to penetrate pancreatic tissue which can be very effective in combating pancreatic cancers that are usually associated with loss or downregulation of CDK inhibitors p21/p27 as well as mutational inactivation of p53. Additionally, Gatifloxacin was also found to synergize the effect of Gemcitabine, the only known drug against pancreatic cancer, as well as the broad spectrum anticancer drug cisplatin. Taken together our results suggest that Gatifloxacin possesses anticancer activities against pancreatic cancer and is a promising candidate to be repositioned from broad spectrum antibiotics to anticancer agent.

  10. Critical Role of AMPK/FoxO3A Axis in Globular Adiponectin-Induced Cell Cycle Arrest and Apoptosis in Cancer Cells.

    Science.gov (United States)

    Shrestha, Anup; Nepal, Saroj; Kim, Mi Jin; Chang, Jae Hoon; Kim, Sang-Hyun; Jeong, Gil-Saeng; Jeong, Chul-Ho; Park, Gyu Hwan; Jung, Sunghee; Lim, Jaecheong; Cho, Eunha; Lee, Soyoung; Park, Pil-Hoon

    2016-02-01

    Adiponectin predominantly secreted from adipose tissue has exhibited potent anti-proliferative properties in cancer cells via modulating cell cycle and apoptosis. FoxO3A, a Forkhead box O member of the transcription factor, plays a critical role in modulating expression of genes involved in cell death and/or survival. In this study, we investigated the role of FoxO3A signaling in anti-cancer activities of adiponectin. Herein, we have shown that treatment with globular adiponectin (gAcrp) increases p27 but decreases cyclinD1 expression in human hepatoma (HepG2) and breast (MCF-7) cancer cells. Gene ablation of FoxO3A prevented gAcrp-induced increase in p27 and decreased in cyclin D1 expression, and further ameliorated cell cycle arrest by gAcrp, indicating a critical role of FoxO3A in gAcrp-induced cell cycle arrest of cancer cells. Moreover, treatment with gAcrp also induced caspase-3/7 activation and increased Fas ligand (FasL) expression in both HepG2 and MCF-7 cells. Transfection with FoxO3A siRNA inhibited gAcrp-induced caspase-3/7 activation and FasL expression, suggesting that FoxO3A signaling also plays an important role in gAcrp-induced apoptosis of cancer cells. We also found that gene silencing of AMPK prevented gAcrp-induced nuclear translocation of FoxO3A in HepG2 and MCF-7 cells. In addition, suppression of AMPK also blocked gAcrp-induced cell cycle arrest and further attenuated gAcrp-induced caspase-3/7 activation, indicating that AMPK signaling plays a pivotal role in both gAcrp-induced cell cycle arrest and apoptosis via acting as an upstream signaling of FoxO3A. Taken together, our findings demonstrated that AMPK/FoxO3A axis plays a cardinal role in anti-proliferative effect of adiponectin in cancer cells.

  11. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells : involvement of nuclear factor kappa B inhibition

    NARCIS (Netherlands)

    Yao, J.; Duan, L.; Fan, M.; Yuan, J.; Wu, X.

    2007-01-01

    Notch signaling can serve as a tumor suppressor or tumor promoter in the same kind of cancer, such as human papillomavirus-positive cervical cancer cells. However, the exact mechanisms remain poorly characterized. Our studies demonstrated that constitutively overexpressed active Notch1 via stable tr

  12. Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells.

    Science.gov (United States)

    Ueki, T; Nishidate, T; Park, J H; Lin, M L; Shimo, A; Hirata, K; Nakamura, Y; Katagiri, T

    2008-09-25

    To investigate the detailed molecular mechanism of mammary carcinogenesis and discover novel therapeutic targets, we previously analysed gene expression profiles of breast cancers. We here report characterization of a significant role of DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein) in mammary carcinogenesis. Semiquantitative RT-PCR and northern blot analyses confirmed upregulation of DTL/RAMP in the majority of breast cancer cases and all of breast cancer cell lines examined. Immunocytochemical and western blot analyses using anti-DTL/RAMP polyclonal antibody revealed cell-cycle-dependent localization of endogenous DTL/RAMP protein in breast cancer cells; nuclear localization was observed in cells at interphase and the protein was concentrated at the contractile ring in cytokinesis process. The expression level of DTL/RAMP protein became highest at G(1)/S phases, whereas its phosphorylation level was enhanced during mitotic phase. Treatment of breast cancer cells, T47D and HBC4, with small-interfering RNAs against DTL/RAMP effectively suppressed its expression and caused accumulation of G(2)/M cells, resulting in growth inhibition of cancer cells. We further demonstrate the in vitro phosphorylation of DTL/RAMP through an interaction with the mitotic kinase, Aurora kinase-B (AURKB). Interestingly, depletion of AURKB expression with siRNA in breast cancer cells reduced the phosphorylation of DTL/RAMP and decreased the stability of DTL/RAMP protein. These findings imply important roles of DTL/RAMP in growth of breast cancer cells and suggest that DTL/RAMP might be a promising molecular target for treatment of breast cancer.

  13. Maternal Embryonic Leucine Zipper Kinase (MELK: A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

    Directory of Open Access Journals (Sweden)

    Pengfei Jiang

    2013-10-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.

  14. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  15. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy

    Science.gov (United States)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd

    2016-08-01

    The present study aimed to synthesize multifunctional ZnO-NP samples, namely ZnO-20, ZnO-40, and ZnO-80 nm, using different approaches, to be used as efficient anticancer agents. Systematic characterizations revealed their particle sizes and demonstrated nanostructures of nanorods (ZnO-80 nm) and nanogranules (ZnO-20 and ZnO-40 nm). They exhibited significant ( p cancer cells. HeLa cell viabilities at 1 mM dose reduced to 37, 32, 15 %, by ZnO-80, ZnO-40, and ZnO-20 nm, respectively, at 48 h. However, the same dose exerted different effects of 79.6, 76, and 75 % on L929 normal cells at 48 h. Measurement of reactive oxygen species (ROS) showed a considerable ROS yields on HeLa cells by all samples with a pronounced percentage (50 %) displayed by ZnO-20 nm. Moreover, ROS-mediated apoptosis induction and blocked cell cycle progression in the S, G2/M, and G0/G1 phases significantly ( p induction was further confirmed by DNA fragmentation and Hoechst-PI costained images viewed under fluorescence microscope. Additionally, morphological changes of HeLa cells visualized under light microscope showed assortment of cell death involved shrinkage, vacuolization and apoptotic bodies' formation. Most importantly, results exposed the impact of size and morphology of ZnO samples on their toxicity to Hela cells mediated mainly by ROS production. ZnO-20 nm in disk form with its nanogranule shape and smallest particle size was the most toxic sample, followed by ZnO-40 nm and then ZnO-80 nm. An additional proposed mechanism contributed in the cell death herein was ZnO decomposition producing zinc ions (Zn2+) into the acidic cancer microenvironment due to the smaller sizes of ZnO-NPs. This mechanism has been adopted in the literatures as a size-dependent phenomenon. The emerged findings were suggested to provide new platforms in the development of therapeutics as selective agents to the fatal cervical cancer, and to benefit from the synergistic influence of size and nanostructure when

  16. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis

    OpenAIRE

    Lee, Hwan Hee; Lee, Seulki; Lee, Kanghyo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun

    2015-01-01

    Background Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. Methods RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h an...

  17. Platinum-(Ⅳ)-derivative satraplatin induced G2/M cell cycle perturbation via p53-p21waf1/cip1-independent pathway in human colorectal cancer cells

    Institute of Scientific and Technical Information of China (English)

    Murugan KALIMUTHO; Antonella MINUTOLO; Sandro GRELLI; Giorgio FEDERICI; Sergio BERNARDINI

    2011-01-01

    Aim:Platinum-(Ⅳ)-derivative satraplatin represents a new generation of orally available anti-cancer drugs that are under development for the treatment of several cancers.Understanding the mechanisms of cell cycle modulation and apoptosis is necessary to define the mode of action of satraplatin.In this study,we investigate the ability of satraplatin to induce cell cycle perturbation,clonogenicity loss and apoptosis in colorectal cancer (CRC) cells.Methods:CRC cells were treated with satraplatin,and the effects of satraplatin on apoptosis and the cell cycle were evaluated by flow cytometry.Western blot analysis was used to investigate the effects of satraplatin on cell cycle and apoptosis-related proteins.RTqPCR was used to evaluate p53-related mRNA modulation.Results:Satraplatin induced an accumulation of CRC cells predominantly in the G2/M phase.Increased p53 protein expression was observed in the p53 wild-type HCT116 and LoVo cells together with p21waf1/cip1 protein up-regulation.However,p21waf1/cip1 protein accumulation was not observed in the p53 mutant HCT15,HT29,and WiDr cells,even when p53 protein expression was compromised,suggesting that the cell cycle perturbation is p53-p21waf1/cip1 independent.Following a candidate approach,we found an elevated expression of 14-3-3o protein levels in CRC cells,which was independent of the status of p53,further supporting the role of satraplatin in the perturbation of the G2/M cell cycle phase.Moreover,satraplatin treatment induced apoptosis along with Bcl-2 protein down-regulation and abrogated the clonogenic formation of CRC cells in vitro.Conclusion:Collectively,our data suggest that satraplatin induces apoptosis in CRC cells,which is preceded by cell cycle arrest at G2/M due to the effect of 14-3-3σ and in a p53-p21waf1/cip1-independent manner.Taken together,these findings highlight the potential use of satraplatin for CRC treatment.

  18. ROLE OF PI3K-AKT-mTOR AND Wnt SIGNALING PATHWAYS IN G1-S TRANSITION OF CELL CYCLE IN CANCER CELLS

    Directory of Open Access Journals (Sweden)

    LAKSHMIPATHI eVADLAKONDA

    2013-04-01

    Full Text Available The PI3K–Akt pathway together with one of its downstream targets, the mechanistic target of rapamycin (mTOR is a highly deregulated pathway in cancers. There is a reciprocal relation between the Akt phosphorylation and mTOR complexes. Akt phosphorylated at T308 activates mTORC1 by inhibition of the tuberous sclerosis complex (TSC1/2, where as mTORC2 is recognized as the kinase that phosphorylates Akt at S473. Recent developments in the research on regulatory mechanisms of autophagy places mTORC1 mediated inhibition of autophagy at the central position in activation of proliferation and survival pathways in cells. Autophagy is a negative regulator of Wnt signaling pathway and the downstream effectors of Wnt signaling pathway, cyclin D1 and the c-Myc, are the key players in initiation of cell cycle and regulation of the G1-S transition in cancer cells. Production of reaction oxygen species (ROS, a common feature of a cancer cell metabolism, activates several downstream targets like the transcription factors FoxO, which play key roles in promoting the progression of cell cycle. A model is presented on the role of PI3K -Akt - mTOR and Wnt pathways in regulation of the progression of cell cycle through Go-G1-and S phases.

  19. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Science.gov (United States)

    Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  20. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Directory of Open Access Journals (Sweden)

    María Ll Valero

    Full Text Available Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  1. Relationship between the expression of human telomerase reverse transcriptase gene and cell cycle regulators in gastric cancer and its significance

    Institute of Scientific and Technical Information of China (English)

    Jin-Chen Shao; Ji-Feng Wu; Dao-Bin Wang; Rong Qin; Hong Zhang

    2003-01-01

    AIM: To investigate the expression of human telomerase reverse transcriptase gene (hTRT) in gastric cancer (GC)and its relevance with cell cycle regulators including P16INK4,cyclin and P53.METHODS: In situ hybridization (ISH) for hTRT mRNA was performed in 53 cases of gastric cancer and adjacent cancerous tissues. Immunohistochemical staining (S-Pmethod) for hTRT protein, P16INK4, cyclinD1 and P53 was performed in 53 cases of GC and adjacent cancerous tissues.RESULTS: Of 53 cases of GC, the expression of hTRT mRNA and hTRT protein was significantly higher than the expression of hTRT mRNA and hTRT protein in adjacent canerous tissues (P<0.01), the positive rates of hTRTmRNA and hTRT protein were 79.2 % and 88.6 %. There was a stastical difference of the expression of hTRT protein among well differentiated adenocarcinoma, poorly differentiated adenocarcinoma and mucoid carcinoma. And there was a highly significant positive correlation between the expression of hTRT mRNA and hTRT protein (r=0.625, P<0.01). However, the expression of hTRT mRNA and its protein in GC were not related with other clinicopathological parameters including gender, age, location and size of neoplasm, invasion depth, lymph node metastasis and clinical stage. There was a significant positive correlation between the expression of hTRT mRNA and cyclinD1 protein (r=0.350, P<0.01). There was a significant positive correlation between the expression of cyclinD1 protein and hTRT protein (r=0.549, P<0.01), so was between P53 and hTRT protein (r=0.319, P<0.05).CONCLUSION: The expression of hTRT gene is correlated significantly to the specific defects of cell cycle on G1/S check point; telomerase activity may depend on cell cycle in gastric cancer and it is available to clarify the molecular mechanism of telomerase activity regulation. The expression of hTRT mRNA and hTRT protein in GC is significantly different from the expression of hTRT mRNA and hTRT protein in adjacent cancerous tissue

  2. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines.

    Science.gov (United States)

    Yi, Jin-Ling; Shi, Song; Shen, Yan-Li; Wang, Ling; Chen, Hai-Yan; Zhu, Jun; Ding, Yan

    2015-01-01

    Drug combination therapies are common practice in the treatment of cancer. In this study, we evaluated the anticancer effects of myricetin (MYR), methyl eugenol (MEG) and cisplatin (CP) both separately as well as in combination against cervical cancer (HeLa) cells. To demonstrate whether MYR and MEG enhance the anticancer activity of CP against cervical cancer cells, we treated HeLa cells with MYR and MEG alone or in combination with cisplatin and evaluated cell growth and apoptosis using MTT (3 (4, 5 dimethyl thiazol 2yl) 2, 5 diphenyltetrazolium bromide) assay, LDH release assay, flow cytometry and fluorescence microscopy. The results revealed that, as compared to single drug treatment, the combination of MYR or MEG with CP resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Cell apoptosis induction, Caspase-3 activity, cell cycle arrest and mitochondrial membrane potential loss were systematically studied to reveal the mechanisms of synergy between MYR, MEG and CP. Combination of MYR or MEG with CP resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33258 and AO-ETBR staining. The combination treatment also increased the number of cells in G0/G1 phase dramatically as compared to single drug treatment. Mitochondrial membrane potential loss (ΛΨm) as well as Caspase-3 activity was much higher in combination treatment as compared to single drug treatment. Findings of this investigation suggest that MYR and MEG combined with cisplatin is a potential clinical chemotherapeutic approach in human cervical cancer.

  3. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future.

  4. Overexpression of cyclin L2 induces apoptosis and cell-cycle arrest in human lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; WANG Tong-shan; LI Xiao-yu; LI Nan; HUANG Ding-zhi; CHEN Qi; BA Yi

    2007-01-01

    Background Uncontrolled cell division is one of the hallmarks of tumor growth. Researches have been focused on numerous molecules involved in this process. Cyclins are critical regulatory proteins of cell cycle progression and/or transcription. The present study aimed to investigate the anti-proliferative effect of cyclin L2, and to define its growth regulatory mechanisms using human lung adenocarcinoma cell line A549.Methods Human cyclin L2 was transfected into human lung adenocarcinoma cells (A549 cell), and was expressed in a mammalian expression vector pcDNA3.1. The effects and mechanisms of the cyclin L2 in cell growth, cell cycle analysis and apoptosis were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry or Western blot, respectively.Results Overexpression of cyclin L2 inhibited the growth of A549 cells. Cell cycle analysis in cells transfected with pCCNL2 revealed an increment in proportion in G0/G1 phase ((68.07 ± 4.2)%) in contrast to (60.39 ± 2.82)% of the cells transfected with mock vector. Apoptosis occurred in (7.25 ± 0.98)% cells transfected with pCCNL2, as compared with (1.25 ± 0.21)% of the mock vector control group. Cyclin L2-induced-G0/G1 arrest and apoptosis involved upregulation of caspase-3 and downregulation of Bcl-2 and survivin.Conclusion The results indicate that overexpression of cyclin L2 protein may promote efficient growth inhibition of human lung adenocarcinoma cells by inducing G0/G1 cell cycle arrest and apoptosis.

  5. Achyranthes aspera Root Extracts Induce Human Colon Cancer Cell (COLO-205 Death by Triggering the Mitochondrial Apoptosis Pathway and S Phase Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Shagun Arora

    2014-01-01

    Full Text Available Achyranthes aspera (AA has been used traditionally for the cure of various disorders. However, the action of root extracts of AA as anticancer agent and its cellular mechanism remain unclear. The aim was to screen the antitumor effect of ethanolic (EAA and aqueous (AAA root extracts on the growth of colon cancer COLO-205 cells by testing their cytotoxicity, followed by their effect on clonogenicity, migration, and induction of apoptosis. Mechanisms leading to apoptosis and cell cycle arrest were also investigated by expression studies of caspase-9, caspase-3, Bax, Bcl-2, p16, p21, and p27 genes, followed by flow cytometric analysis for cell cycle distribution. Cytotoxicity screening of AA extracts indicated greater cytotoxic activity of AAA extract against COLO-205 cells. A series of events marked by apoptosis revealed loss of cell viability, chromatin condensation, and DNA fragmentation in AAA treated cells to a greater extent. The mRNA expression levels of caspase-9, caspase-3, Bax, p16, p21, and p27 were markedly increased in the AAA treated cells, along with decreased Bcl-2 expression. The cell cycle arrest at S phase was detected by flow cytometric analysis after treatment with AAA. Overall the study signifies the aqueous extracts as a promising therapeutic candidate against cancer.

  6. Estrogen-Mediated Upregulation of Noxa Is Associated with Cell Cycle Progression in Estrogen Receptor-Positive Breast Cancer Cells

    OpenAIRE

    2011-01-01

    Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimen...

  7. Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor prognosis in HER2/neu-overexpressing breast cancer patients.

    Science.gov (United States)

    Zhao, Xiangshan; Mirza, Sameer; Alshareeda, Alaa; Zhang, Ying; Gurumurthy, Channabasavaiah Basavaraju; Bele, Aditya; Kim, Jun Hyun; Mohibi, Shakur; Goswami, Monica; Lele, Subodh M; West, William; Qiu, Fang; Ellis, Ian O; Rakha, Emad A; Green, Andrew R; Band, Hamid; Band, Vimla

    2012-07-01

    Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P=0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P=0.013), mitotic index (P=0.032), and Nottingham Prognostic Index score (P=0.014). Ecd expression was positively associated with HER2/neu (P=0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P=0.008) and disease-free survival (DFS) (P=0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.

  8. LGH00031, a novel ortho-quinonoid inhibitor of cell division cycle 25B, inhibits human cancer cells via ROS generation

    Institute of Scientific and Technical Information of China (English)

    Yu-bo ZHOU; Xu FENG; Li-na WANG; Jun-qing DU; Yue-yang ZHOU; Hai-ping YU; Yi ZANG; Jing-ya LI; Jia LI

    2009-01-01

    Aim: To discover novel cell division cycle 25 (CDC25) B inhibitors and elucidate the mechanisms of inhibition in cancer cells. Methods: Cell growth inhibition was detected by MTT assay, the cell cycle was analyzed by flow cytometry, and protein expression and phosphorylation was examined by Western blot analysis. Results: LGH00031 inhibited CDC25B irreversibly in vitro in a dose-dependent manner, and impaired the proliferation of tumor cell lines. In synchronized HeLa cells, LGH00031 delayed the cell cycle progression at the G2/M phase. LGH00031 increased cyclin-dependent kinase 1 (CDK1) tyrosine 15 phosphorylation and cyclin B1 protein level. The activity of LGH00031 against CDC25B in vitro relied on the existence of 1, 4-dithiothreitol (DTT) or dihydrolipoic acid and oxygen. The oxygen free radical scavenger catalase and superoxide dismutase reduced the inactivation of CDC25 by LGH00031, confirming that reactive oxygen species (ROS) mediate the inactivation process in vitro. LGH00031 accelerated cellular ROS production in a dose-dependent manner, and N-acetyl cysteine (NAC) markedly decreased the ROS production induced by LGH00031.Correspondingly, the LGH00031-induced decrease in cell viability and cell cycle arrest, cyclin B1 protein level, and phosphorylation of CDK1 tyrosine 15 were also rescued by NAC that decreased ROS pro-duction. Conclusion: The activity of LGH00031 at the molecular and cellular level is mediated by ROS.

  9. Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells.

    Science.gov (United States)

    Bhatia, N; Agarwal, C; Agarwal, R

    2001-01-01

    Silibinin, quercetin, and epigallocatechin 3-gallate (EGCG) have been shown to be skin cancer-preventive agents, albeit by several different mechanisms. Here, we assessed whether these agents show their cancer-preventive potential by a differential effect on mitogenic signaling molecules and cell cycle regulators. Treatment of human epidermoid carcinoma A431 cells with these agents inhibited the activation of the epidermal growth factor receptor and the downstream adapter protein Shc, but only silibinin showed a marked inhibition of mitogen-activated protein kinase-extracellular signal-regulated kinase-1 and -2 activation. In terms of cell cycle regulators, silibinin treatment showed an induction of Cip1/p21 and Kip1/p27 together with a significant decrease in cyclin-dependent kinase (CDK)-4, CDK2, and cyclin D1. Quercetin treatment, however, resulted in a moderate increase in Cip1/p21 with no change in Kip1/p27 and a decrease in CDK4 and cyclin D1. EGCG treatment also led to an induction of Cip1/p21 but no change in Kip1/27, CDK2, and cyclin D1 and a decrease in CDK4 only at low doses. Treatment of cells with these agents resulted in a strong dose- and time-dependent cell growth inhibition. A high dose of silibinin and low and high doses of quercetin and EGCG also led to cell death by apoptosis, suggesting that a lack of their inhibitory effect on mitogen-activated protein kinase-extracellular signal-regulated kinase-1 and -2 activation possibly "turns on" an apoptotic cell death response associated with their cancer-preventive and anticarcinogenic effects. Together, these results suggest that silibinin, quercetin, and EGCG exert their cancer-preventive effects by differential responses on mitogenic signaling and cell cycle regulators.

  10. Nexrutine inhibits survival and induces G1 cell cycle arrest, which is associated with apoptosis or autophagy depending on the breast cancer cell line.

    Science.gov (United States)

    Yan, Guang; Lanza-Jacoby, Susan; Wang, Chenguang

    2014-01-01

    Breast cancers that are estrogen receptor (ER) negative or are ER negative with ErbB2/HER-2 overexpression have a poor prognosis, which emphasizes the importance of developing compounds for preventing breast cancer. Nexrutine, an herbal extract from the plant Phellodendron amurense, has been used for centuries in Asian medicine to treat inflammation, gastroenteritis, abdominal pain, and diarrhea. In this study we investigated the anticancer effects of Nexrutine on ER negative breast cancer cell lines that are positive or negative for HER-2. Nexrutine decreased the activities of 2 potential targets of breast cancer, cyclooxygenase (COX)-2, and peroxisome proliferators activated receptor gamma (PPARγ). The antiinflammatory effects of Nexrutine were evident with decreased prostaglandin (PG)E2 production, protein expression of microsomal PGE2 synthase (mPGES), and PPARγ. Nexrutine decreased cell survival and induced a G1 cell cycle arrest in SkBr3 and MDA-MB 231 cells, which were associated with reduced protein expression of Cyclin D1 and cdk2 along with increased protein expression of p21 and p27. The growth-inhibitory effect of Nexrutine was associated with apoptosis in SkBr3 cells and autophagy in MDA-MB231 cells. Based on these findings, we propose that Nexrutine may provide a novel approach for protection against breast cancer.

  11. Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Emanuelly Bernardes-Oliveira

    2016-01-01

    Full Text Available Bothrops jararaca (BJ and Bothrops erythromelas (BE are viper snakes found in South-Southeast and Northeast regions of Brazil, respectively. Snake venoms are bioactive neurotoxic substances synthesized and stored by venom glands, with different physiological and pharmacological effects, recently suggesting a possible preference for targets in cancer cells; however, mechanisms of snakes have been little studied. Here, we investigated the mechanism responsible for snake crude venoms toxicity in cultured cervical cancer cells SiHa and HeLa. We show that BJ and BE snake crude venoms exert cytotoxic effects to these cells. The percentage of apoptotic cells and cell cycle analysis and cell proliferation were assessed by flow cytometry and MTT assay. Detection of mitochondrial membrane potential (Rhodamine-123, nuclei morphological change, and DNA fragmentation were examined by staining with DAPI. The results showed that both the BJ and BE venoms were capable of inhibiting tumor cell proliferation, promoting cytotoxicity and death by apoptosis of target SiHa and HeLa cells when treated with BJ and BE venoms. Furthermore, data revealed that both BJ venoms in SiHa cell promoted nuclear condensation, fragmentation, and formation of apoptotic bodies by DAPI assay, mitochondrial damage by Rhodamine-123, and cell cycle block in the G1-G0 phase. BJ and BE venoms present anticancer potential, suggesting that both Bothrops venoms could be used as prototypes for the development of new therapies.

  12. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis.

    Science.gov (United States)

    Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang

    2012-08-01

    Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer.

  13. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Science.gov (United States)

    Barzegar, Elmira; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Atashpour, Shekoufeh; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, flow cytometry analysis was performed to evaluate the cell cycle alteration and apoptosis induction in these cell lines following exposure to berberine and doxorubicin alone and in combination. Results: The IC50 of berberine was determined to be 25 µM after 48 hr of treatment in both cell lines but for doxorubicin it was 250 nM and 500 nM in T47D and MCF-7 cell lines, respectively. Co-treatment with berberine and doxorubicin increased cytotoxicity in T47D cells more significantly than in MCF-7 cells. Flow cytometry results demonstrated that berberine alone or in combination with doxorubicin induced G2/M arrest in the T47D cells, but G0/G1 arrest in the MCF-7 cells. Doxorubicin alone induced G2/M arrest in both cell lines. Furthermore, berberine and doxorubicin alone or in combination significantly induced apoptosis in both cell lines. Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer. PMID:26019795

  14. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  15. A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells.

    Science.gov (United States)

    Yang, Liyan; Liang, Qiannan; Shen, Ke; Ma, Li; An, Na; Deng, Weiping; Fei, Zhewei; Liu, Jianwen

    2015-04-01

    Epigenetic mutations are closely associated with human diseases, especially cancers. Among them, dysregulations of histone deacetylases (HDACs) are commonly observed in human cancers. Recent years, HDAC inhibitors have been identified as promising anticancer agents; several HDAC inhibitors have been applied in clinical practice. In this study, we synthesized a novel N-hydroxyacrylamide-derived HDAC inhibitor, I-7ab, and examined its antitumor activity. Our investigations demonstrated that I-7ab exerted cytotoxicity toward and inhibited the growth of human cancer cell lines at micromolar concentrations. Among tested cells, HCT116 was the most sensitive one to the treatment of I-7ab. However, I-7ab displayed far less cytotoxicity in human normal cells. In HCT116 cells, I-7ab inhibited the expression of class I HDACs, especially that of HDAC3, and suppressed EGFR signaling pathway. With respect to the cytotoxic effect of I-7ab, it induced apoptosis via increasing the Bax/Bcl-2 ratio and suppressing the translocation of NF-κB. Other than inducing apoptosis, I-7ab inhibited the expression of cyclin B1 and thereby arrests cell cycle progression at G2/M phase. Further analyses revealed potential role of p53 and p21 in I-7ab-induced apoptosis and cell cycle arrest. According to our findings, I-7ab may serve as a lead compound for potential antitumor drugs.

  16. The Dietary Flavonoid Fisetin Causes Cell Cycle Arrest, Caspase-Dependent Apoptosis, and Enhanced Cytotoxicity of Chemotherapeutic Drugs in Triple-Negative Breast Cancer Cells.

    Science.gov (United States)

    Smith, Matthew L; Murphy, Kaylee; Doucette, Carolyn D; Greenshields, Anna L; Hoskin, David W

    2016-08-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a flavonoid found in a number of fruits and vegetables, has diverse biological activities, including cytotoxic effects on cancer cells. In this study, we investigated the effect of fisetin on triple-negative breast cancer (TNBC) cells. TNBC has a poorer prognosis than other types of breast cancer and treatment options for this disease are limited. Fisetin inhibited the growth of MDA-MB-468 and MDA-MB-231 TNBC cells, as well as their ability to form colonies, without substantially affecting the growth of non-malignant cells. In addition, fisetin inhibited the growth of estrogen receptor-bearing MCF-7 breast cancer cells and human epidermal growth factor receptor 2-overexpressing SK-BR-3 breast cancer cells. Fisetin inhibited TNBC cell division and induced apoptosis, which was associated with mitochondrial membrane permeabilization and the activation of caspase-9 and caspase-8, as well as the cleavage of poly(ADP-ribose) polymerase-1. Induction of caspase-dependent apoptosis by fisetin was confirmed by reduced killing of TNBC cells in the presence of the pan-caspase inhibitors Z-VAD-FMK and BOC-D-FMK. Decreased phosphorylation of histone H3 at serine 10 in fisetin-treated TNBC cells at G2/M phase of the cell cycle suggested that fisetin-induced apoptosis was the result of Aurora B kinase inhibition. Interestingly, the cytotoxic effect of cisplatin, 5-fluorouracil, and 4-hydroxycyclophosphamide metabolite of cyclophosphamide on TNBC cells was increased in the presence of fisetin. These findings suggest that further investigation of fisetin is warranted for possible use in the management of TNBC. J. Cell. Biochem. 117: 1913-1925, 2016. © 2016 Wiley Periodicals, Inc.

  17. Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    V. Vucic

    2006-02-01

    Full Text Available Gamma-irradiation (gamma-IR is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD, specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001 antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control to 49% (IR cells, with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.

  18. Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Vucic V.

    2006-01-01

    Full Text Available Gamma-irradiation (gamma-IR is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD, specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001 antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control to 49% (IR cells, with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.

  19. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis

    Directory of Open Access Journals (Sweden)

    Roberto Vicinanza

    2013-01-01

    Full Text Available Ellagitannins (ETs from pomegranate juice (PJ are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa. ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA. Colonic microflora can convert EA to urolithin A (UA, and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention.

  20. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis.

    Science.gov (United States)

    Vicinanza, Roberto; Zhang, Yanjun; Henning, Susanne M; Heber, David

    2013-01-01

    Ellagitannins (ETs) from pomegranate juice (PJ) are bioactive polyphenols with chemopreventive potential against prostate cancer (PCa). ETs are not absorbed intact but are partially hydrolyzed in the gut to ellagic acid (EA). Colonic microflora can convert EA to urolithin A (UA), and EA and UA enter the circulation after PJ consumption. Here, we studied the effects of EA and UA on cell proliferation, cell cycle, and apoptosis in DU-145 and PC-3 androgen-independent PCa cells and whether combinations of EA and UA affected cell proliferation. EA demonstrated greater dose-dependent antiproliferative effects in both cell lines compared to UA. EA induced cell cycle arrest in S phase associated with decreased cyclin B1 and cyclin D1 levels. UA induced a G2/M arrest and increased cyclin B1 and cdc2 phosphorylation at tyrosine-15, suggesting inactivation of the cyclin B1/cdc2 kinase complex. EA induced apoptosis in both cell lines, while UA had a less pronounced proapoptotic effect only in DU-145. Cotreatment with low concentrations of EA and UA dramatically decreased cell proliferation, exhibiting synergism in PC-3 cells evaluated by isobolographic analysis and combination index. These data provide information on pomegranate metabolites for the prevention of PCa recurrence, supporting the role of gut flora-derived metabolites for cancer prevention.

  1. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer

    Science.gov (United States)

    Heger, Zbynek; Merlos Rodrigo, Miguel Angel; Michalek, Petr; Polanska, Hana; Masarik, Michal; Vit, Vitezslav; Plevova, Mariana; Pacik, Dalibor; Eckschlager, Tomas; Stiborova, Marie

    2016-01-01

    The effects of sarcosine on the processes driving prostate cancer (PCa) development remain still unclear. Herein, we show that a supplementation of metastatic PCa cells (androgen independent PC-3 and androgen dependent LNCaP) with sarcosine stimulates cells proliferation in vitro. Similar stimulatory effects were observed also in PCa murine xenografts, in which sarcosine treatment induced a tumor growth and significantly reduced weight of treated mice (p < 0.05). Determination of sarcosine metabolism-related amino acids and enzymes within tumor mass revealed significantly increased glycine, serine and sarcosine concentrations after treatment accompanied with the increased amount of sarcosine dehydrogenase. In both tumor types, dimethylglycine and glycine-N-methyltransferase were affected slightly, only. To identify the effects of sarcosine treatment on the expression of genes involved in any aspect of cancer development, we further investigated expression profiles of excised tumors using cDNA electrochemical microarray followed by validation using the semi-quantitative PCR. We found 25 differentially expressed genes in PC-3, 32 in LNCaP tumors and 18 overlapping genes. Bioinformatical processing revealed strong sarcosine-related induction of genes involved particularly in a cell cycle progression. Our exploratory study demonstrates that sarcosine stimulates PCa metastatic cells irrespectively of androgen dependence. Overall, the obtained data provides valuable information towards understanding the role of sarcosine in PCa progression and adds another piece of puzzle into a picture of sarcosine oncometabolic potential. PMID:27824899

  2. What cycles the cell? -Robust autonomous cell cycle models.

    Science.gov (United States)

    Lavi, Orit; Louzoun, Yoram

    2009-12-01

    The cell cycle is one of the best studied cellular mechanisms at the experimental and theoretical levels. Although most of the important biochemical components and reactions of the cell cycle are probably known, the precise way the cell cycle dynamics are driven is still under debate. This phenomenon is not atypical to many other biological systems where the knowledge of the molecular building blocks and the interactions between them does not lead to a coherent picture of the appropriate dynamics. We here propose a methodology to develop plausible models for the driving mechanisms of embryonic and cancerous cell cycles. We first define a key property of the system (a cyclic behaviour in the case of the embryonic cell cycle) and set mathematical constraints on the types of two variable simplified systems robustly reproducing such a cyclic behaviour. We then expand these robust systems to three variables and reiterate the procedure. At each step, we further limit the type of expanded systems to fit the known microbiology until a detailed description of the system is obtained. This methodology produces mathematical descriptions of the required biological systems that are more robust to changes in the precise function and rate constants. This methodology can be extended to practically any type of subcellular mechanism.

  3. Coleusin factor exerts cytotoxic activity by inducing G0/G1 cell cycle arrest and apoptosis in human gastric cancer BGC-823 cells.

    Science.gov (United States)

    Sun, Bo; Geng, Shuo; Huang, Xiaojia; Zhu, Jin; Liu, Shu; Zhang, Yajing; Ye, Jian; Li, Yongjin; Wang, Jingze

    2011-02-01

    Coleusin factor (CF), a kind of diterpenoids, is isolated and purified from the root of a Chinese tropical plant Coleus forskohlii by our laboratory. Our previous studies have demonstrated that CF significantly inhibits growth in some kinds of cancer cell lines. Here, we found that CF remarkably inhibited growth in human gastric cancer BGC-823 cells by decreasing cell proliferation, inducing G(0)/G(1) cell cycle arrest and apoptosis. CF also decreased the mitochondrial membrane potential in BGC-823 cells. Immunoblotting analysis revealed that CF significantly decreased the expressions of cyclinD1, Bcl-2, and Bcl-x(L), increased the expressions of cytosol cytochrome c, p53, p21, and Rb. In addition, CF significantly increased the expressions and activities of caspase-3 and -9. More importantly, CF potently inhibited the growth of BGC-823 cells xenografted in athymic nude mice with negligible body weight loss and damage towards the spleen. These results indicate that CF exerts a cytotoxic effect on BGC-823 cells by inducing cell cycle arrest and apoptosis.

  4. Epigenetic modification regulates both expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines:Colo-320 and SW1116

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan FANG; Ying Xuan CHEN; Juan LU; Rong LU; Li YANG; Hong Yin ZHU; Wei Qi GU; Lun Gen LU

    2004-01-01

    The aim of this study is to assess the effects of DNA methylation and histone acetylation, alone or in combination, on the expression of several tumor-associated genes and cell cycle progression in two established human colon cancer cell lines: Colo-320 and SW1116. Treatments with 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A, alone or in combination, were applied respectively. The methylation status of the CDKN2A promoter was determined by methylation-specific PCR, and the acetylated status of the histones associated with the p21wAF1 and CDKN2A genes was examined by chromatin immunoprecipitation. The expression of the CDKN2A, p21WAF1, p53, p73, APC, c-myc, c-Ki-ras and survivin genes was detected by real-time RT-PCR and RT-PCR. The cell cycle profile was established by flow cytometry.We found that along with the demethylation of the CDKN2A gene promoter in both cell lines induced by 5-aza-dC alone or in combination with TSA, the expression of both CDKN2A and APC genes increased. The treatment of TSA or sodium butyrate up-regulated the transcription of p21 WAF1 significantly by inducing the acetylation of histones H4 and H3, but failed to alter the acetylation level of CDKN2A-associated histones. No changes in transcription of p53, p73,c-myc, c-Ki-ras and survivin genes were observed. In addition, TSA or sodium butyrate was shown to arrest cells at the G1 phase. However, 5-aza-dC was not able to affect the cell cycle progression. In conclusion, regulation by epigenetic modification of the transcription of tumor-associated genes and the cell cycle progression in both human colon cancer cell lines Colo-320 and SW1116 is gene-specific.

  5. Noscapine Increases the Sensitivity of Drug-Resistant Ovarian Cancer Cell Line SKOV3/DDP to Cisplatin by Regulating Cell Cycle and Activating Apoptotic Pathways.

    Science.gov (United States)

    Shen, Wei; Liang, Bingfeng; Yin, Jie; Li, Xiurong; Cheng, Jianxin

    2015-05-01

    Cisplatin is a first-line chemotherapy drug against ovarian cancer. However, its strong toxic side effects and the development of cisplatin resistance in human cancer cells seriously influence the effects of chemotherapy and quality of life in patients. Noscapine (Nos), a non-toxic benzylisoquinoline alkaloid extracted from opium, has been recently reported to have anti-cancer activity, but the mechanism of that effect has not been clearly established. In the present study, we investigated cytotoxicity of Nos in combination with cisplatin (DDP) in drug-resistant human ovarian cancer cell line SKOV3/DDP in vitro and in vivo null mice xenograft model. Cell proliferation was measured by MTT assay, flow cytometry was used to analyze cell cycle and apoptosis, protein expression of several apoptotic factors was investigated by flow cytometry and immunohistochemical method, and their mRNA expression levels were determined by real-time PCR. In vitro experiments showed that Nos significantly inhibited proliferation of SKOV3/DDP cells. DDP/Nos-combined treatment notably enhanced DDP-induced inhibition of cell proliferation and increased the pro-apoptotic effect of DDP in SKOV3/DDP cells. DDP/Nos administration increased the proportion of G2/M cells, reduced both protein and mRNA expression of anti-apoptotic factors XIAP, surviving and NF-kB, and augmented protein and mRNA levels of pro-apoptotic caspase-3. In vivo experiments revealed that Nos/DDP treatment increased the apoptotic rate of xenograft tumors in null mice. Tumor volume decreased from 1.733 ± 0.155 g in mice treated with DDP alone to 1.191 ± 0.106 g in animals treated with Nos/DDP. These observations suggest that Nos increases the anti-cancer activity of DDP against the drug-resistant ovarian cancer cell line SKOV3/DDP by modulating the cell cycle and activating apoptotic pathways. The study provides a new chemotherapy strategy for the treatment of DDP-resistant human ovarian cancer.

  6. Enhancement of peripheral benzodiazepine receptor ligand-induced apoptosis and cell cycle arrest of esophageal cancer cells by simultaneous inhibition of MAPK/ERK kinase.

    Science.gov (United States)

    Sutter, Andreas P; Maaser, Kerstin; Gerst, Bastian; Krahn, Antje; Zeitz, Martin; Scherübl, Hans

    2004-05-01

    Specific ligands of the peripheral benzodiazepine receptor (PBR) activate pro-apoptotic and anti-proliferative signaling pathways. Previously, we found that PBR ligands activated the p38 mitogen-activated protein kinase (MAPK) pathway in esophageal cancer cells, and that the activation of p38MAPK contributed to tumor cell apoptosis and cell cycle arrest. Here, we report that PBR ligands also activate the pro-survival MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway in esophageal cancer cells, which might compromise the efficacy of PBR ligands. Hence, a combination treatment of PBR ligands and MEK inhibitors, which are emerging as promising anticancer agents, was pursued to determine whether this treatment could lead to enhanced apoptosis and cell cycle arrest. Using Western blotting we demonstrated a time- and dose-dependent phosphorylation of ERK1/2 in response to PBR ligands. Apoptosis was investigated by assessment of mitochondrial alterations and caspase-3 activity. Cell cycle arrest was measured by flow cytometric analysis of stained isolated nuclei. The inhibition of MEK/ERK with a pharmacologic inhibitor, 2'-amino-3'-methoxyflavone (PD 98059), resulted in a synergistic enhancement of PBR-ligand-induced growth inhibition, apoptosis and cell cycle arrest. Specifity of the pharmacologic inhibitor was confirmed by the use of 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (U 0126), a second MEK/ERK inhibitor, and 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U 0124), a structural analogue of it which does not display any affinity to MEK. Enhanced pro-apoptotic and anti-proliferative effects were observed both in KYSE-140 esophageal squamous cancer and OE-33 adenocarcinoma cells, suggesting that this effect was not cell-type specific. In addition, the PBR-mediated overexpression of the stress response gene (growth arrest and DNA-damage-inducible gene gadd153) was synergistically enhanced by MEK inhibition. This is the

  7. Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2016-06-01

    Full Text Available The objective of the present study was to investigate the anti-cancer effects of eriodictyol in human hepatocellular carcinoma cells (Hep-G2 and normal liver hepatocyte cell line (AML12 along with evaluating its mode of action. Sulforhodamine B assay was used to evaluate the cytotoxic effect of the compound while as fluorescence microscopy was involved to demonstrate the effect of eriodictyol on cellular apoptosis. Flow cytometry was used to investigate the effect of eriodictyol on cell cycle while Western blot analysis revealed the effect on apoptosis-related protein expressions. Results indicate that eriodictyol-induced selective and concentration-dependent cytotoxic effect on Hep-G2 cancer cells while AML12 normal liver cells were very less susceptible to its effect. Eriodictyol-induced apoptosis related morphological changes including chromatin condensation and nuclear fragmentation. It also induced G2/M cell cycle arrest in these cells. Eriodictyol led to up-regulation of Bax and PARP and down-regulation of Bcl-2 protein.

  8. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Choi Hyun

    2009-05-01

    Full Text Available Abstract Background 3,3'-Diindolylmethane (DIM, an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both in vivo and in vitro models. We have previously determined that DIM (0 – 30 μmol/L inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells. Methods HT-29 cells were cultured with various concentrations of DIM (0 – 30 μmol/L and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [3H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and in vitro kinase assays for cyclin-dependent kinase (CDK and cell division cycle (CDC2 were conducted. Results The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21CIP1/WAF1 and p27KIPI. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1. Conclusion Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.

  9. Regulators of hypoxia response and the cell cycle in breast cancer

    OpenAIRE

    Peurala, E. (Emmi)

    2013-01-01

    Abstract Breast cancer is the most common cancer affecting the female population of the Western world. It is a heterogeneous disease entity that encompasses tumors with remarkably different forms of behaviour, and it is therefore vital to distinguish patients with good and poor prognoses. The classical prognostic and predictive factors for breast cancer serve as tools for clinical oncologists when planning treatment, but the growing awareness of breast cancer biology is bringing about a n...

  10. CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1.

    Science.gov (United States)

    Kim, Jae-Sung; Kim, Eun Ju; Oh, Jeong Su; Park, In-Chul; Hwang, Sang-Gu

    2013-11-15

    Abnormal cell-cycle control can lead to aberrant cell proliferation and cancer. The oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) is an inhibitor of protein phosphatase 2A (PP2A) that stabilizes c-Myc. However, the precise role of CIP2A in cell division is not understood. Herein, we show that CIP2A is required for mitotic progression by regulating the polo-like kinase (Plk1). With mitotic entry, CIP2A translocated from the cytoplasm to the nucleus, where it was enriched at spindle poles. CIP2A depletion delayed mitotic progression, resulting in mitotic abnormalities independent of PP2A activity. Unexpectedly, CIP2A interacted directly with the polo-box domain of Plk1 during mitosis. This interaction was required to maintain Plk1 stability by blocking APC/C-Cdh1-dependent proteolysis, thereby enhancing the kinase activity of Plk1 during mitosis. We observed strong correlation and in vivo interactions between these two proteins in multiple human cancer specimens. Overall, our results established a novel function for CIP2A in facilitating the stability and activity of the pivotal mitotic kinase Plk1 in cell-cycle progression and tumor development.

  11. Epigenetic reader BRD4 inhibition as a therapeutic strategy to suppress E2F2-cell cycle regulation circuit in liver cancer

    Science.gov (United States)

    Choi, Sung Kyung; Shen, Qingyu; Choi, Wahn Soo; Han, Jeung-Whan; Nam, Suk Woo; You, Jueng Soo

    2016-01-01

    Deregulation of the epigenome component affects multiple pathways in the cancer phenotype since the epigenome acts at the pinnacle of the hierarchy of gene expression. Pioneering work over the past decades has highlighted that targeting enzymes or proteins involved in the epigenetic regulation is a valuable approach to cancer therapy. Very recent results demonstrated that inhibiting the epigenetic reader BRD4 has notable efficacy in diverse cancer types. We investigated the potential of BRD4 as a therapeutic target in liver malignancy. BRD4 was overexpressed in three different large cohort of hepatocellular carcinoma (HCC) patients as well as in liver cancer cell lines. BRD4 inhibition by JQ1 induced anti-tumorigenic effects including cell cycle arrest, cellular senescence, reduced wound healing capacity and soft agar colony formation in liver cancer cell lines. Notably, BRD4 inhibition caused MYC-independent large-scale gene expression changes in liver cancer cells. Serial gene expression analyses with SK-Hep1 liver cancer cells treated with JQ1 to delineate the key player of BRD4 inhibition identified E2F2 as the first line of downstream direct target of BRD4. Further experiments including chromatin immunoprecipitation (ChIP) assay and loss of function study confirmed E2F2 as key player of BRD4 inhibition. Overexpressed E2F2 is a crucial center of cell cycle regulation and high expression of E2F2 is significantly associated with poor prognosis of HCC patients. Our findings reveal BRD4-E2F2-cell cycle regulation as a novel molecular circuit in liver cancer and provide a therapeutic strategy and innovative insights for liver cancer therapies. PMID:27081696

  12. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway.

    Science.gov (United States)

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-11-01

    Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine-suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xenograft athymic nude mice. Solanine regulates the protein levels of cell cycle proteins, including Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, and P21 in vivo and in vitro. Also, in cultured DU145 cell, solanine significantly inhibits cell growth. Moreover, the administration of NAC, an active oxygen scavenger, markedly reduces solanine-induced cell death. Blockade of P38 MAPK kinase cannot suppress reactive oxygen species (ROS), but can suppress solanine-induced cell apoptosis. Also, inhibition of ROS by NAC inactivates P38 pathway. Taken together, the data suggest that inhibition of prostate cancer growth by solanine may be through blocking the expression of cell cycle proteins and inducing apoptosis via ROS and activation of P38 pathway. These findings indicate an attractive therapeutic potential of solanine for suppression of prostate cancer.

  13. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation

    Directory of Open Access Journals (Sweden)

    Hye Young Park

    2015-06-01

    Full Text Available AbstractFucoidan, a sulfated polysaccharide found in marine algae and brown seaweeds, has been shown to inhibit the in vitro growth of human cancer cells. This study was conducted in cultured human bladder cancer EJ cells to elucidate the possible mechanisms by which fucoidan exerts its anti-proliferative activity, which until now has remained poorly understood. Fucoidan treatment of EJ cells resulted in dose-dependent inhibition of cell growth and induced apoptotic cell death. Flow cytometric analysis revealed that fucoidan led to G1 arrest in cell cycle progression. It was associated with down-regulation of cyclin D1, cyclin E, and cyclin-dependent-kinases (Cdks in a concentration-dependent manner, without any change in Cdk inhibitors, such as p21 and p27. Furthermore, dephosphorylation of retinoblastoma protein (pRB by this compound was associated with enhanced binding of pRB with the transcription factors E2F-1 and E2F-4. Overall, our results demonstrate that fucoidan possesses anticancer activity potential against bladder cancer cells by inhibiting pRB phosphorylation.

  14. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Bruno Christian Koehler

    Full Text Available Despite the fact that new treatment regimes have improved overall survival of patients challenged by colorectal cancer (CRC, prognosis in the metastatic situation is still restricted. The Bcl-2 family of proteins has been identified as promising anti cancer drug target. Even though small molecules targeting Bcl-2 proteins are in clinical trials, little is known regarding their effects on CRC. The aim of this study was to preclinically investigate the value of ABT-737 and Obatoclax as anticancer drugs for CRC treatment. The effects of the BH3-mimetics ABT-737 and Obatoclax on CRC cells were assessed using viability and apoptosis assays. Wound healing migration and boyden chamber invasion assays were applied. 3-dimensional cell cultures were used for long term assessment of invasion and proliferation. Clinically relevant concentrations of pan-Bcl-2 inhibitor Obatoclax did not induce cell death. In contrast, the BH3-mimetic ABT-737 induced apoptosis in a dose dependent manner. Obatoclax caused a cell line specific slowdown of CRC cell growth. Furthermore, Obatoclax, but not ABT-737, recovered E-Cadherin expression and led to impaired migration and invasion of CRC cells. The proliferative capacity and invasiveness of CRC cells was strikingly inhibited by low dose Obatoclax in long term 3-dimensional cell cultures. Obatoclax, but not ABT-737, caused a G1-phase arrest accompanied by a downregulation of Cyclin D1 and upregulation of p27 and p21. Overexpression of Mcl-1, Bcl-xL or Bcl-2 reversed the inhibitory effect of Obatoclax on migration but failed to restore the proliferative capacity of Obatoclax-treated CRC cells. The data presented indicate broad and multifaceted antitumor effects of the pan-Bcl-2 inhibitor Obatoclax on CRC cells. In contrast to ABT-737, Obatoclax inhibited migration, invasion and proliferation in sublethal doses. In summary, this study recommends pan-Bcl-2 inhibition as a promising approach for clinical trials in CRC.

  15. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells

    Science.gov (United States)

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-01-01

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer. PMID:27527160

  16. 1-(2-Hydroxy-5-methylphenyl-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jie-Heng Tsai

    2016-08-01

    Full Text Available The natural agent, 1-(2-hydroxy-5-methylphenyl-3-phenyl-1,3-propanedione (HMDB, has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27, thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3, followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer.

  17. Effect of Crocin on Cell Cycle Regulators in N-Nitroso-N-Methylurea-Induced Breast Cancer in Rats.

    Science.gov (United States)

    Ashrafi, Mahboobeh; Bathaie, S Zahra; Abroun, Saeid; Azizian, Mahshid

    2015-11-01

    We previously showed the anticancer effect of crocin, a saffron carotenoid, in both breast and gastric cancers in animal models, but its mechanism of action is not clearly known, yet. In this study, the effect of crocin on cell cycle regulators is investigated. Female Wistar Albino rats were divided into two groups, with or without N-nitroso-N-methylurea (NMU) injection. After tumor formation, each group of rats was divided into two subgroups, receiving crocin or vehicle only. After 5 weeks, the rats were sacrificed and the tumors were retained for pathologic investigation and determination of the parameters. Before crocin treatment, the tumor volumes were 13.27±3.77 and 12.37±1.88, but at the end of the experiment, they were 23.66±8.82 and 11.91±2.27 in the control and crocin-treated groups, respectively. Pathologic investigation indicated the adenocarcinoma induction by NMU. Reverse transcription-polymerase chain reaction and Western blot analysis showed overexpression of cyclin D1 and p21(Cip1) in the NMU-induced breast tumors; however, the expression of both of them suppressed by crocin treatment. The previous studies indicated that crocin induces apoptosis in tumor tissue. In this study, we show that it also suppresses tumor growth and induces cell cycle arrest by downregulation of cyclin D1. In addition, crocin suppressed p21(Cip1) in a p53-dependent manner.

  18. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  19. Curcumin inhibits the proliferation of a human colorectal cancer cell line Caco-2 partially by both apoptosis and G2/M cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Yohko Fujimoto

    2014-06-01

    Full Text Available The aim of this study was to assess the possible roles of the phytochemical compounds, curcumin, quercetin and resveratrol in the proliferation of human colorectal cancer cell line Caco-2. All three phytochemical compounds inhibited Caco-2 cell proliferation, with curcumin being more effective than quercetin and resveratrol. Investigations concerning DNA fragmentation in the nucleus, Bax and Bcl-2 mRNA expression levels, and caspase-3/7 activity indicated that curcumin induced apoptosis in Caco-2 cells through an increase in the Bax/Bcl-2 ratio and activation of caspase-3/7. Furthermore, the analysis of flow-cytometry showed that curcumin caused an arrest of G2/M phase in Caco-2 cells. These results suggest that curcumin suppresses Caco-2 proliferation partially via activation of the mitochondrial apoptotic pathway and cell cycle retardation.

  20. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line

    Directory of Open Access Journals (Sweden)

    Qi XL

    2012-04-01

    Full Text Available Xiaoli Qi1, Dianrui Zhang2, Xia Xu1, Feifei Feng2, Guijie Ren1, Qianqian Chu1, Qiang Zhang3, Keli Tian11Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, 2Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, 3State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of ChinaAbstract: Oridonin, a diterpenoid isolated from Rabdosia rubescencs, has been reported to have antitumor effects. However, low solubility has limited its clinical applications. Preparation of drugs in the form of nanosuspensions is an extensively utilized protocol. In this study, we investigated the anticancer activity of oridonin and oridonin nanosuspension on human pancreatic carcinoma PANC-1 cells. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed to investigate the effect of oridonin on cell growth. Propidium iodide and Hoechst 33342 staining were used to detect morphologic changes. The percentage of apoptosis and cell cycle progression was determined by flow cytometric method staining with propidium iodide. Annexin V-fluorescein isothiocyanate (FITC/PI staining was used to evaluate cell apoptosis by flow cytometry. Caspase-3 activity was measured by spectrophotometry. The apoptotic and cell cycle protein expression were determined by Western blot analysis. Both oridonin and oridonin nanosuspension induced apoptosis and G2/M phase cell cycle arrest, and the latter had a more significant cytotoxic effect. The ratio of Bcl-2/Bax protein expression was decreased and caspase-3 activity was stimulated. The expression of cyclin B1 and p-cdc2 (T161 was suppressed. Our results showed that oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line.Keywords: cyclin B1, cdc2, caspase-3, Bcl-2, Bax

  1. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Che-Ming Liu

    Full Text Available Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4 expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21(Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.

  2. Characterization of the N-methoxyindole-3-carbinol (NI3C)–Induced Cell Cycle Arrest in Human Colon Cancer Cell Lines

    DEFF Research Database (Denmark)

    Neave, Antje S.; Sarup, Sussi; Seidelin, Michel;

    2005-01-01

    of cellular proliferation, NI3C caused an accumulation of HCT-116 cells in the G2/M phase, in contrast to I3C, which led to an accumulation of the colon cells in G0/G1 phase. Furthermore, NI3C delays the G1-S phase transition of synchronized HCT-116 cells. The indole-mediated cell-cycle arrest may be related......Recent results have shown that indole-3-carbinol (I3C) inhibits the cellular growth of human cancer cell lines. In some cruciferous vegetables, another indole, N-methoxyindole-3-carbinol (NI3C), is found beside I3C. Knowledge about the biological effects of NI3C is limited. The aim of the present...... study was to show the effect of NI3C on cell growth of two human colon cancer cell lines, DLD-1 and HCT-116. For the first time it is shown that NI3C inhibits cellular growth of DLD-1 and HCT-116 and that NI3C is a more potent inhibitor of cell proliferation than I3C. In addition to the inhibition...

  3. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  4. P53-mediated cell cycle arrest and apoptosis through a caspase-3-independent, but caspase-9-dependent pathway in oridonin-treated MCF-7 human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Qiao CUI; Jing-hua YU; Jin-nan WU; Shin-ichi TASHIRO; Satoshi ONODERA; Mutsuhiko MINAMI; Takashi IKEJIMA

    2007-01-01

    Aim: To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. Methods: The viability of oridonin-treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleoso-mal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated Dnase (ICAD) protein expressions were detected by Western blot analysis. Results: Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pan-caspase inhibitor Z-VAD-fmk and calpain inhibitor Ⅱ both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of △ψmit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by capase-3. Conclusion: DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.

  5. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling.

    Science.gov (United States)

    Jiang, Mingzuo; Qiu, Zhaoyan; Zhang, Song; Fan, Xing; Cai, Xiqiang; Xu, Bing; Li, Xiaowei; Zhou, Jinfeng; Zhang, Xiangyuan; Chu, Yi; Wang, Weijie; Liang, Jie; Horvath, Tamas; Yang, Xiaoyong; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2016-09-20

    O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways. In vivo xenograft assays also demonstrated that the hyper-O-GlcNAc level markedly promoted the proliferation of tumors. Moreover, compared with noncancerous tissues, the O-GlcNAcylation level was increased in cancerous tissues. GC patients with higher levels of O-GlcNAcylation exhibited large tumor sizes (≥5 cm), deep tumor invasion (T3 and T4), high AJCC stages (stage III and IV), more lymph node metastases and lower overall survival. Notably, the phosphorylation level of ERK 1/2 was increased progressively with the increase of O-GlcNAcylation in both SGC 7901 and AGS cells. Consistently, human GC tissue arrays also revealed that ERK 1/2 signaling was positively correlated to O-GlcNAcylation (r = 0.348; P = 0.015). Taken together, here we reported that hyper-O-GlcNAcylation significantly promotes GC cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling, suggesting that inhibition of OGT may be a potential novel therapeutic target of GC.

  6. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    critical role in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition (EMT, and reactive oxygen species generation. The proteomic study showed substantial differences in response to PLB treatment between PC-3 and DU145 cells. PLB treatment significantly modulated the expression of critical proteins that regulate cell cycle, apoptosis, and EMT signaling pathways in PC-3 cells but not in DU145 cells. Consistently, our Western blotting analysis validated the bioinformatic and proteomic data and confirmed the modulating effects of PLB on important proteins that regulated cell cycle, apoptosis, autophagy, and EMT in PC-3 and DU145 cells. The data from the Western blot assay could not display significant differences between PC-3 and DU145 cells. These findings indicate that PLB elicits different proteomic responses in PC-3 and DU145 cells involving proteins and pathways that regulate cell cycle, apoptosis, autophagy, reactive oxygen species production, and antioxidation/oxidation homeostasis. This is the first systematic study with integrated computational, proteomic, and functional analyses revealing the networks of signaling pathways and differential proteomic responses to PLB treatment in prostate cancer cells. Quantitative proteomic analysis using SILAC represents an efficient and highly sensitive approach to identify the target networks of anticancer drugs like PLB, and the data may be used to discriminate the molecular and clinical subtypes, and to identify new therapeutic targets and biomarkers, for prostate cancer. Further studies are warranted to explore the potential of quantitative proteomic analysis in the identification of new targets and biomarkers for prostate cancer.Keywords: EMT, proteomics, SILAC

  7. Oncology meets immunology: the cancer-immunity cycle.

    Science.gov (United States)

    Chen, Daniel S; Mellman, Ira

    2013-07-25

    The genetic and cellular alterations that define cancer provide the immune system with the means to generate T cell responses that recognize and eradicate cancer cells. However, elimination of cancer by T cells is only one step in the Cancer-Immunity Cycle, which manages the delicate balance between the recognition of nonself and the prevention of autoimmunity. Identification of cancer cellcell inhibitory signals, including PD-L1, has prompted the development of a new class of cancer immunotherapy that specifically hinders immune effector inhibition, reinvigorating and potentially expanding preexisting anticancer immune responses. The presence of suppressive factors in the tumor microenvironment may explain the limited activity observed with previous immune-based therapies and why these therapies may be more effective in combination with agents that target other steps of the cycle. Emerging clinical data suggest that cancer immunotherapy is likely to become a key part of the clinical management of cancer.

  8. The Roles of 4β-Hydroxywithanolide E from Physalis peruviana on the Nrf2-Anti-Oxidant System and the Cell Cycle in Breast Cancer Cells.

    Science.gov (United States)

    Peng, Chieh Yu; You, Bang Jau; Lee, Chia Lin; Wu, Yang Chang; Lin, Wen Hsin; Lu, Te Ling; Chang, Fei-Ching; Lee, Hong Zin

    2016-01-01

    4[Formula: see text]-Hydroxywithanolide E is an active component of the extract of Physalis peruviana that has been reported to exhibit antitumor effects. Although the involvement of reactive oxygen species (ROS) production and the ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway in 4[Formula: see text]-hydroxywithanolide E-induced apoptosis of breast cancer MCF-7 cells was demonstrated in our previous study, the relationship between ROS production and the cellular defense system response in 4[Formula: see text]-hydroxywithanolide E-induced cell death requires further verification. The present study suggests that ROS play an important role in 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in which anti-oxidants, such as glutathione or N-acetylcysteine, can resist the 4[Formula: see text]-hydroxywithanolide E-induced accumulation of ROS and cell death. Furthermore, N-acetylcysteine or glutathione can reverse the 4[Formula: see text]-hydroxywithanolide E-induced changes in the cell cycle distribution and the expression of cell cycle regulators. We found that the 4[Formula: see text]-hydroxywithanolide E-induced ROS accumulation was correlated with the upregulation of Nrf2 and Nrf2-downstream genes, such as antioxidative defense enzymes. In general, the activity of Nrf2 is regulated by the Ras signalling pathway. However, we demonstrated that Nrf2 was activated during 4[Formula: see text]-hydroxywithanolide E-induced MCF-7 cell death in spite of the 4[Formula: see text]-hydroxywithanolide E-induced inhibition of the Ras/Raf/ERK pathway. The activity and protein expression of superoxide dismutase and catalase were involved in the 4[Formula: see text]-hydroxywithanolide E-induced ROS production in MCF-7 cells. Furthermore, 4[Formula: see text]-hydroxywithanolide E was demonstrated to significantly reduce the sizes of the tumor nodules in the human breast cancer MDA-MB231 xenograft tumor model.

  9. Anti cancer effects of curcumin: cycle of life and death

    Directory of Open Access Journals (Sweden)

    Das Tanya

    2008-10-01

    Full Text Available Abstract Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane, a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.

  10. Prognostic Utility of Cell Cycle Progression Score in Men With Prostate Cancer After Primary External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Freedland, Stephen J., E-mail: steve.freedland@duke.edu [Department of Surgery, Durham VA Medical Center, Durham, North Carolina (United States); Department of Surgery (Urology), Duke University School of Medicine, Durham, North Carolina (United States); Department of Pathology, Duke University School of Medicine, Durham, North Carolina (United States); Gerber, Leah [Department of Surgery, Durham VA Medical Center, Durham, North Carolina (United States); Department of Surgery (Urology), Duke University School of Medicine, Durham, North Carolina (United States); Department of Pathology, Duke University School of Medicine, Durham, North Carolina (United States); Reid, Julia; Welbourn, William; Tikishvili, Eliso; Park, Jimmy; Younus, Adib; Gutin, Alexander; Sangale, Zaina; Lanchbury, Jerry S. [Myriad Genetics, Inc, Salt Lake City, Utah (United States); Salama, Joseph K. [Department of Radiation Oncology, Durham VA Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Stone, Steven [Myriad Genetics, Inc, Salt Lake City, Utah (United States)

    2013-08-01

    Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-up for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy.

  11. Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest.

    Science.gov (United States)

    Chiao, Jen Wei; Wu, Hongyan; Ramaswamy, Gita; Conaway, C Clifford; Chung, Fung-Lung; Wang, Longgui; Liu, Delong

    2004-08-01

    Epidemiological surveys indicate that intake of cruciferous vegetables is inversely related to prostate cancer incidence, although the responsible dietary factors have not been identified. Our studies demonstrated that exposure of human prostate cancer cells in culture to the N-acetylcysteine (NAC) conjugate of phenethyl isothiocyanate (PEITC-NAC), the major metabolite of PEITC that is abundant in watercress, inhibited proliferation and tumorigenesis. The PEITC-NAC is known to mediate cytoprotection at initiation of carcinogenesis. The relevance of PEITC-NAC in diets on the growth of prostate tumor cells has been evaluated in immunodeficient mice with xenografted tumors of human prostate cancer PC-3 cells. The daily PEITC-NAC (8 micromol/g) supplemented diet group showed a significant reduction in tumor size in 100% of the mice during the 9-week treatment period. Tumor weight at autopsy was reduced by 50% compared with mice on the diet without PEITC-NAC (P = 0.05). Mitosis and in vivo 5-bromo-2'-deoxyuridine labeled proliferating cells were reduced in these tumors. The PEITC-NAC diet up-regulated the inhibitors of cyclin-dependent kinases p21WAF-1/Cip-1 and p27Kip1, and reduced the expression of cyclins D and E, indicating they were potential molecular targets. As a result, phosphorylated Rb was significantly decreased and the G1- to S-phase transition retarded. The treated tumors also showed a significant increase in apoptosis as determined by in situ end-labeling, and by poly ADP-ribose polymerase cleavage. This study demonstrates the first in vivo evidence of dietary PEITC-NAC inhibiting tumorigenesis of prostate cancer cells. PEITC-NAC may prevent initiation of carcinogenesis and modulate the post-initiation phase by targeting cell cycle regulators and apoptosis induction.

  12. Chamaejasmine Arrests Cell Cycle, Induces Apoptosis and Inhibits Nuclear NF-κB Translocation in the Human Breast Cancer Cell Line MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Yuxian Bai

    2013-01-01

    Full Text Available In this study, the anticancer activity of chamaejasmine was characterized in the human breast cancer cell line, MDA-MB-231. Cell viability and cell cycle distribution were determined by MTT assay and flow cytometry, respectively. Western blotting was performed to determine changes in levels of various proteins. Results showed that treatment with chamaejasmine (4–16 μM inhibited cell proliferation, which correlated with G2/M phase arrest and apoptosis in MDA-MB-231 cells. Chamaejasmine treatment of MDA-MB-231 cells resulted in induction of WAF1/p21 and KIP1/p27, decrease in cyclins A and cyclins B1. Cyclin-dependent kinase (cdk 2 and cdc2 was also decreased after chamaejasmine treatment. Moreover, inhibition of nuclear translocation, phosphorylation of NF-κB, activation of IKKα and IKKβ, inhibition of phosphorylation and degradation of IκBα were also detected in this work. Our findings suggested that chamaejasmine could be explored as a preventive and perhaps as a chemotherapeutic agent in the management of breast cancer.

  13. Role of PSMA in Aberrant Cell Cycle Progression in Prostate Cancer

    Science.gov (United States)

    2009-11-01

    development and progression. While a high- fat diet has 10 been linked to prostate cancer the identity of other food products contributing to...m etastatic PCa. One of the critical ingredients of processed m eat is the high level of sodium from salt, food preservatives, and flavoring

  14. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance.

    Science.gov (United States)

    Ko, Ying-Hui; Lin, Zhao; Flomenberg, Neal; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E

    2011-12-15

    Glutamine metabolism is crucial for cancer cell growth via the generation of intermediate molecules in the tricarboxylic acid (TCA) cycle, antioxidants and ammonia. The goal of the current study was to evaluate the effects of glutamine on metabolism in the breast cancer tumor microenvironment, with a focus on autophagy and cell death in both epithelial and stromal compartments. For this purpose, MCF7 breast cancer cells were cultured alone or co-cultured with non-transformed fibroblasts in media containing high glutamine and low glucose (glutamine +) or under control conditions, with no glutamine and high glucose (glutamine -). Here, we show that MCF7 cells maintained in co-culture with glutamine display increased mitochondrial mass, as compared with control conditions. Importantly, treatment with the autophagy inhibitor chloroquine abolishes the glutamine-induced augmentation of mitochondrial mass. It is known that loss of caveolin-1 (Cav-1) expression in fibroblasts is associated with increased autophagy and an aggressive tumor microenvironment. Here, we show that Cav-1 downregulation which occurs in fibroblasts maintained in co-culture specifically requires glutamine. Interestingly, glutamine increases the expression of autophagy markers in fibroblasts, but decreases expression of autophagy markers in MCF7 cells, indicating that glutamine regulates the autophagy program in a compartment-specific manner. Functionally, glutamine protects MCF7 cells against apoptosis, via the upregulation of the anti-apoptotic and anti-autophagic protein TIGAR. Also, we show that glutamine cooperates with stromal fibroblasts to confer tamoxifen-resistance in MCF7 cancer cells. Finally, we provide evidence that co-culture with fibroblasts (1) promotes glutamine catabolism, and (2) decreases glutamine synthesis in MCF7 cancer cells. Taken together, our findings suggest that autophagic fibroblasts may serve as a key source of energy-rich glutamine to fuel cancer cell mitochondrial

  15. Isolinderanolide B, a butanolide extracted from the stems of Cinnamomum subavenium, inhibits proliferation of T24 human bladder cancer cells by blocking cell cycle progression and inducing apoptosis.

    Science.gov (United States)

    Shen, Kun-Hung; Lin, En-Shyh; Kuo, Po-Lin; Chen, Chung-Yi; Hsu, Ya-Ling

    2011-12-01

    Isolinderanolide B (IOB), a butanolide extracted from the stems of Cinnamomum subavenium, was investigated for its antiproliferative activity in T24 human bladder cancer cells. To identity the anticancer mechanism of IOB, its effect on apoptosis, cell cycle distribution, and levels of p53, p21 Waf1/Cip1, Fas/APO-1 receptor, and Fas ligand was assayed. Enzyme-linked immunosorbent assay showed that the G0/G1 phase arrest is because of increase in the expression of p21 Waf1/Cip1. An enhancement in Fas/APO-1 and membrane-bound Fas ligand (mFasL) might be responsible for the apoptotic effect induced by IOB. This study reports the novel finding that the induction of p21 Waf1/Cip1 and activity of the Fas/mFas ligand apoptotic system may participate in the antiproliferative activity of IOB in T24 cells.

  16. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells.

    Science.gov (United States)

    Bernard, Megan M; McConnery, Jason R; Hoskin, David W

    2017-03-16

    The ginger rhizome is rich in bioactive compounds, including [6]-gingerol, [8]-gingerol, and [10]-gingerol; however, to date, most research on the anti-cancer activities of gingerols have focused on [6]-gingerol. In this study, we compared [10]-gingerol with [8]-gingerol and [6]-gingerol in terms of their ability to inhibit the growth of human and mouse mammary carcinoma cells. A colorimetric assay based on the enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide revealed that [10]-gingerol was more potent than [6]-gingerol and at least as potent as [8]-gingerol for the inhibition of triple-negative human (MDA-MB-231, MDA-MB-468) and mouse (4T1, E0771) mammary carcinoma cell growth. Further investigation of [10]-gingerol showed that it suppressed the growth of estrogen receptor-bearing (MCF-7, T47D) and HER2-overexpressing (SKBR3) breast cancer cells. The inhibitory effect of [10]-gingerol on the growth of MDA-MB-231 cells was associated with a reduction in the number of rounds of cell division and evidence of S phase-cell cycle arrest, as well as induction of apoptosis due to mitochondrial outer membrane permeabilization and the release of proapoptotic mitochondrial cytochrome c and SMAC/DIABLO into the cytoplasm. Surprisingly, killing of MDA-MB-231 cells by [10]-gingerol was not affected by a pan-caspase inhibitor (zVAD-fmk) or an anti-oxidant (N-acetylcysteine), suggesting that the cytotoxic effect of [10]-gingerol did not require caspase activation or the accumulation of reactive oxygen species. These findings suggest that further investigation of [10]-gingerol is warranted for its possible use in the treatment of breast cancer.

  17. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.

    Science.gov (United States)

    Dasgupta, Tanushree; Antony, Jisha; Braithwaite, Antony W; Horsfield, Julia A

    2016-06-10

    Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

  18. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment.

    Science.gov (United States)

    Nettersheim, Daniel; Jostes, Sina; Fabry, Martin; Honecker, Friedemann; Schumacher, Valerie; Kirfel, Jutta; Kristiansen, Glen; Schorle, Hubert

    2016-11-15

    In Western countries, the incidence of testicular germ cell cancers (GCC) is steadily rising over the last decades. Mostly, men between 20 and 40 years of age are affected. In general, patients suffering from GCCs are treated by orchiectomy and radio- or chemotherapy. Due to resistance mechanisms, intolerance to the therapy or denial of chemo- / radiotherapy by the patients, GCCs are still a lethal threat, highlighting the need for alternative treatment strategies.In this study, we revealed that germ cell cancer cell lines are highly sensitive to the histone deacetylase inhibitor romidepsin in vitro and in vivo, highlighting romidepsin as a potential therapeutic option for GCC patients.Romidepsin-mediated inhibition of histone deacetylases led to disturbances of the chromatin landscape. This resulted in locus-specific histone-hyper- or hypoacetylation. We found that hypoacetylation at the ARID1A promotor caused repression of the SWI/SNF-complex member ARID1A. In consequence, this resulted in upregulation of the stress-sensors and apoptosis-regulators GADD45B, DUSP1 and CDKN1A. RNAi-driven knock down of ARID1A mimicked in parts the effects of romidepsin, while CRISPR/Cas9-mediated deletion of GADD45B attenuated the romidepsin-provoked induction of apoptosis and cell cycle alterations.We propose a signaling cascade involving ARID1A, GADD45B and DUSP1 as mediators of the romidepsin effects in GCC cells.

  19. ATM Expression Predicts Veliparib and Irinotecan Sensitivity in Gastric Cancer by Mediating P53-Independent Regulation of Cell Cycle and Apoptosis.

    Science.gov (United States)

    Subhash, Vinod Vijay; Tan, Shi Hui; Yeo, Mei Shi; Yan, Fui Leng; Peethala, Praveen C; Liem, Natalia; Krishnan, Vaidehi; Yong, Wei Peng

    2016-12-01

    Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR.

  20. Resveratrol analogue 3,4,4′,5-tetramethoxystilbene inhibits growth, arrests cell cycle and induces apoptosis in ovarian SKOV‐3 and A-2780 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowska, Hanna; Myszkowski, Krzysztof; Ziółkowska, Alicja [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kulcenty, Katarzyna [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Wierzchowski, Marcin [Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan (Poland); Kaczmarek, Mariusz [Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan (Poland); Murias, Marek [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland); Kwiatkowska-Borowczyk, Eliza [Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan (Poland); Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan (Poland); Jodynis-Liebert, Jadwiga, E-mail: liebert@ump.edu.pl [Department of Toxicology, Poznan University of Medical Sciences, Poznan (Poland)

    2012-08-15

    In the screening studies, cytotoxicity of 12 methylated resveratrol analogues on 11 human cancer cell lines was examined. The most active compound 3,4,4′5-tetramethoxystilbene (DMU-212) and two ovarian cancer cell lines A-2780 (IC{sub 50} = 0.71 μM) and SKOV-3 (IC{sub 50} = 11.51 μM) were selected for further investigation. To determine the mechanism of DMU-212 cytotoxicity, its ability to induce apoptosis was examined. DMU-212 arrested cell cycle in the G2/M or G0/G1 phase which resulted in apoptosis of both cell lines. The expression level of 84 apoptosis-related genes was investigated. In SKOV-3 cells DMU-212 caused up-regulation of pro-apoptotic Bax, Apaf-1 and p53 genes, specific to intrinsic pathway of apoptosis, and a decrease in Bcl-2 and Bcl 2110 mRNA expressions. Conversely, in A-2780 cells an increased expression of pro-apoptotic genes Fas, FasL, TNF, TNFRSF10A, TNFRSF21, TNFRSF16 specific to extracellular mechanism of apoptosis was observed. There are no data published so far regarding the receptor mediated apoptosis induced by DMU-212. The activation of caspase-3/7 was correlated with decreased TRAF-1 and BIRC-2 expression level in A-2780 cells exposed to DMU-212. DMU-212 caused a decrease in CYP1A1 and CYP1B1 mRNA levels in A-2780 by 50% and 75%, and in SKOV-3 cells by 15% and 45%, respectively. The protein expression was also reduced in both cell lines. It is noteworthy that the expression of CYP1B1 protein was entirely inhibited in A-2780 cells treated with DMU-212. It can be suggested that different CYP1B1 expression patterns in either ovarian cell line may affect their sensitivity to cytotoxic activity of DMU-212. -- Highlights: ► DMU-212 was the most cytotoxic among 12 O-methylated resveratrol analogues. ► DMU-212 arrested cell cycle at G2/M and G0/G1phase ► DMU-212 triggered mitochondria- and receptor‐mediated apoptosis. ► DMU-212 entirely inhibited CYP1B1 protein expression in A-2780 cells.

  1. Molecular control of the cell cycle in cancer: biological and clinical aspects

    DEFF Research Database (Denmark)

    Møller, Michael Boe

    2003-01-01

    The RB1 pathway and the p53 pathway represent important, interconnected biochemical units frequently perturbed in human cancer. Essential tumor protective mechanisms, such as cellular growth control and apoptosis, are regulated through these systems. Comprehensive studies of these pathways...... to treatment. Chemotherapeutic regimens used in lymphoma treatment are based on apoptosis induction, and as both E2F-1 and p53 are regulators of apoptosis, it is possible that the observed treatment failure is associated with reduced E2F-1- and p53-mediated apoptosis. Survival analyses revealed numerous novel...

  2. Prognostic value of the apoptotic index analysed jointly with selected cell cycle regulators and proliferation markers in non-small cell lung cancer.

    Science.gov (United States)

    Dworakowska, Dorota; Jassem, Ewa; Jassem, Jacek; Karmoliński, Andrzej; Lapiński, Mariusz; Tomaszewski, Dariusz; Rzyman, Witold; Jaśkiewicz, Kazimierz; Sworczak, Krzysztof; Grossman, Ashley B

    2009-10-01

    In a previous small series of surgically treated non-small cell lung cancer patients (NSCLC), we found that higher apoptotic index (AI) negatively influenced survival (Dworakowska D, Jassem E, Jassem J, Karmolinski A, Dworakowski R, Wirth T, et al. Clinical significance of apoptotic index in non-small cell lung cancer: correlation with p53, mdm2, pRb and p21WAF1/CIP1 protein expression. J Cancer Res Clin Oncol 2005; 131:617-623.). In this study we attempted to verify our previous finding in larger group of 170 NSCLC cases, additionally correlating AI to selected cell cycle regulators as well as a proliferation marker. Apoptosis was assessed with the use of the TUNEL technique, whereas the expression of p53, pRb, mdm2, p21(WAF1/CIP1), cyclin D1 and PCNA were assessed immunohistochemically. The mean and the median AI was 12 and 8, respectively. The expression of p53, pRb, mdm2, p21(WAF1/CIP1) proteins and cyclin D1 was found in 47%, 71%, 37%, 65% and 40% of cases, respectively. The mean and the median PCNA labeling index (PCNA LI) was 34 and 35, respectively. AI was not correlated with any patient characteristic or other tumor markers. In uni- and multivariate analysis AI, analysed separately or jointly with cell cycle regulators and PCNA LI, did not influence disease-free or over-all survival. However, patients with "very high AI/very high PCNA LI" had a particularly poor prognosis (P=0.001). Patients with "very low AI/negative pRb" phenotype survived for a shorter time in comparison to others (P=0.04). In addition, patients with the highest PCNA LI had a worse outcome in comparison to patients with the lowest PCNA LI (P=0.04), especially those with concomitant p53 protein expression (P=0.026) or lacking pRb protein expression (P=0.04). This study demonstrates that joint analysis of several factors involved in apoptosis, proliferation and cell cycle regulation, but not AI alone, might provide additional prognostic information in NSCLC patients.

  3. KU004 induces G1 cell cycle arrest in human breast cancer SKBR-3 cells by modulating PI3K/Akt pathway.

    Science.gov (United States)

    Fu, Jing; Tian, Chongchong; Xing, Mengtao; Wang, Xinzhi; Guo, Hongli; Sun, Lixin; Sun, Lan; Jiang, Zhenzhou; Zhang, Luyong

    2014-06-01

    KU004 is a newly synthesized compound which has been demonstrated possessing potent anti-cancer activities through targeting the highly-expressed protein HER2 on the surface of the cells. In this study, we investigated the potential roles of KU004 in the induced-cell cycle arrest in human breast cancer SK-BR-3 cells. KU004 could not only inhibit the proliferation of SK-BR-3 in a concentration-dependent manner but also induce G1 phase arrest in SK-BR-3 cells. The western blot results showed KU004 decreased the expression of cyclin D, CDK-4, p-Rb708/780, and up-regulated the p21. In order to verify whether KU004 takes the anti-tumor effect thought the regulation of PI3K/Akt pathway, we used western blot to detect the expression of protein Akt, Her2, p-Akt and p-Her2. Our results shown that after KU004 treatment, the amount of p-Akt and p-Her2 decreased but the total amount of Akt and Her2 remained unchanged. In conclusion, these results provide a framework for further exploration of KU004 as a novel chemotherapeutic for human breast tumors by modulating PI3K/Akt pathway.

  4. The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Xiangli Cui

    Full Text Available Protein Arginine Deiminases (PADs catalyze the post-translational conversion of peptidyl-Arginine to peptidyl-Citrulline in a calcium-dependent, irreversible reaction. Evidence is emerging that PADs play a role in carcinogenesis. To determine the cancer-associated functional implications of PADs, we designed a small molecule PAD inhibitor (called Chor-amidine or Cl-amidine, and tested the impact of this drug on the cell cycle. Data derived from experiments in colon cancer cells indicate that Cl-amidine causes a G1 arrest, and that this was p53-dependent. In a separate set of experiments, we found that Cl-amidine caused a significant increase in microRNA-16 (miRNA-16, and that this increase was also p53-dependent. Because miRNA-16 is a putative tumor suppressor miRNA, and others have found that miRNA-16 suppresses proliferation, we hypothesized that the p53-dependent G1 arrest associated with PAD inhibition was, in turn, dependent on miRNA-16 expression. Results are consistent with this hypothesis. As well, we found the G1 arrest is at least in part due to the ability of Cl-amidine-mediated expression of miRNA-16 to suppress its' G1-associated targets: cyclins D1, D2, D3, E1, and cdk6. Our study sheds light into the mechanisms by which PAD inhibition can protect against or treat colon cancer.

  5. Simulating hypoxia-induced acidic environment in cancer cells facilitates mobilization and redox-cycling of genomic copper by daidzein leading to pro-oxidant cell death: implications for the sensitization of resistant hypoxic cancer cells to therapeutic challenges.

    Science.gov (United States)

    Ullah, Mohammad F; Ahmad, Aamir; Bhat, Showket H; Khan, Husain Y; Zubair, Haseeb; Sarkar, Fazlul H; Hadi, Sheikh M

    2016-04-01

    This study was conducted to investigate the mechanism of action involved in the anti-cancer activity of daidzein and identification of cancer specific micro-environment as therapeutic target of this secondary metabolite derived from soy. Our data indicated that daidzein induces cellular DNA breakage, anti-proliferative effects and apoptosis in a concentration-dependent manner. We demonstrated that such a daidzein-induced anti-cancer action involves a copper-dependant pathway in which endogenous copper is mobilized by daidzein and redox-cycled to generate reactive oxygen species which act as an upstream signal leading to pro-oxidant cell death. Further in the context of hypoxia being a resistant factor against standard therapies and that an effect secondary to hypoxia is the intracellular acidification, we show that the anticancer activity of daidzein is modulated positively in acidic pH but copper-specific chelator is still able to inhibit daidzein activity. Moreover, an experimental setup of hypoxia mimic (cobalt chloride) revealed an enhanced sensitivity of cancer cells to the cytotoxic effects of daidzein which was neutralized in the presence of neocuproine. The findings support a paradigm shift from the conventional antioxidant property of dietary isoflavones to molecules capable of initiating a pro-oxidant signaling mediated by reactive oxygen species. Further, the clinical relevance of such an action mechanism in cancer chemoprevention is also proposed. This study identified endogenous copper as a molecular target and acidic pH as a modulating factor for the therapeutic activity of daidzein against cancer. The evidence presented highlights the potential of dietary agents as adjuvants to standard therapeutic regimens.

  6. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  7. Phenformin Induces Cell Cycle Change, Apoptosis, and Mesenchymal-Epithelial Transition and Regulates the AMPK/mTOR/p70s6k and MAPK/ERK Pathways in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Zhao Liu

    Full Text Available Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error. Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.

  8. Phenformin Induces Cell Cycle Change, Apoptosis, and Mesenchymal-Epithelial Transition and Regulates the AMPK/mTOR/p70s6k and MAPK/ERK Pathways in Breast Cancer Cells.

    Science.gov (United States)

    Liu, Zhao; Ren, Lidong; Liu, Chenghao; Xia, Tiansong; Zha, Xiaoming; Wang, Shui

    2015-01-01

    Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.

  9. CDK5 Regulates Paclitaxel Sensitivity in Ovarian Cancer Cells by Modulating AKT Activation, p21Cip1- and p27Kip1-Mediated G1 Cell Cycle Arrest and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Shu Zhang

    Full Text Available Cyclin-dependent kinase 5 (CDK5 is a cytoplasmic serine/ threonine kinase. Knockdown of CDK5 enhances paclitaxel sensitivity in human ovarian cancer cells. This study explores the mechanisms by which CDK5 regulates paclitaxel sensitivity in human ovarian cancers. Multiple ovarian cancer cell lines and xenografts were treated with CDK5 small interfering RNA (siRNA with or without paclitaxel to examine the effect on cancer cell viability, cell cycle arrest and tumor growth. CDK5 protein was measured by immunohistochemical staining of an ovarian cancer tissue microarray to correlate CDK5 expression with overall patient survival. Knockdown of CDK5 with siRNAs inhibits activation of AKT which significantly correlates with decreased cell growth and enhanced paclitaxel sensitivity in ovarian cancer cell lines. In addition, CDK5 knockdown alone and in combination with paclitaxel induced G1 cell cycle arrest and caspase 3 dependent apoptotic cell death associated with post-translational upregulation and nuclear translocation of TP53 and p27(Kip1 as well as TP53-dependent transcriptional induction of p21(Cip1 in wild type TP53 cancer cells. Treatment of HEYA8 and A2780 wild type TP53 xenografts in nu/nu mice with CDK5 siRNA and paclitaxel produced significantly greater growth inhibition than either treatment alone. Increased expression of CDK5 in human ovarian cancers correlates inversely with overall survival. CDK5 modulates paclitaxel sensitivity by regulating AKT activation, the cell cycle and caspase-dependent apoptosis. CDK5 inhibition can potentiate paclitaxel activity in human ovarian cancer cells.

  10. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK pathways and activation of 5'-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/ mammalian target of rapamycin and p38 MAPK mediated pathways. Keywords: Plumbagin, pancreatic cancer, cell cycle, autophagy, EMT, Sirt1

  11. Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial–mesenchymal transition and cancer-stem cell trait as biological end points

    Energy Technology Data Exchange (ETDEWEB)

    Narang, Himanshi, E-mail: narangh@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Amit [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhat, Nagesh [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Badri N.; Ghosh, Anu [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-10-15

    Highlights: • Biological effectiveness of proton and gamma irradiation is compared in A549 cells. • Proton irradiation is two times more cytotoxic than gamma irradiation. • It alters ten times more number of early genes, as observed by microarray study. • It does not enhance cell migration, invasion and adhesion, unlike gamma irradiation. • It was more effective in reducing the percentage of cancer stem cell like cells. - Abstract: Proton beam therapy is a cutting edge modality over conventional gamma radiotherapy because of its physical dose deposition advantage. However, not much is known about its biological effects vis-a-vis gamma irradiation. Here we investigated the effect of proton- and gamma- irradiation on cell cycle, death, epithelial-mesenchymal transition (EMT) and “stemness” in human non-small cell lung carcinoma cells (A549). Proton beam (3 MeV) was two times more cytotoxic than gamma radiation and induced higher and longer cell cycle arrest. At equivalent doses, numbers of genes responsive to proton irradiation were ten times higher than those responsive to gamma irradiation. At equitoxic doses, the proton-irradiated cells had reduced cell adhesion and migration ability as compared to the gamma-irradiated cells. It was also more effective in reducing population of Cancer Stem Cell (CSC) like cells as revealed by aldehyde dehydrogenase activity and surface phenotyping by CD44{sup +}, a CSC marker. These results can have significant implications for proton therapy in the context of suppression of molecular and cellular processes that are fundamental to tumor expansion.

  12. The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer.

    Directory of Open Access Journals (Sweden)

    Tingxiu Xiang

    Full Text Available BACKGROUND: Breast cancer (BrCa is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1 is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90% and 53 of 66 (80% primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells. CONCLUSIONS/SIGNIFICANCE: UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.

  13. Correlation between cell cycle proteins and hMSH2 in actinic cheilitis and lip cancer.

    Science.gov (United States)

    Lopes, Maria Luiza Diniz de Sousa; de Oliveira, Denise Hélen Imaculada Pereira; Sarmento, Dmitry José de Santana; Queiroz, Lélia Maria Guedes; Miguel, Márcia Cristina da Costa; da Silveira, Éricka Janine Dantas

    2016-04-01

    This study aims to evaluate and verify the relationship between the immunoexpression of hMSH2, p53 and p21 in actinic cheilitis (AC) and lower lip squamous cell carcinoma (SCC) cases. Forty AC and 40 SCC cases were submitted to immunoperoxidase method and quantitatively analyzed. Expression was compared by Mann-Whitney test, Student t test or one-way ANOVA. To correlate the variables, Pearson's correlation coefficient was calculated. The expression of p53 and p21 showed no significant differences between histopathological grades of AC or lower lip SCC (p > 0.05). Immunoexpression of p53 was higher in SCC than in AC (p < 0.001), while p21 expression was more observed in AC when compared to SCC group (p = 0.006). The AC group revealed an inverse correlation between p53 and hMSH2 expression (r = -0.30, p = 0.006). Alterations in p53 and p21 expression suggest that these proteins are involved in lower lip carcinogenesis. Moreover, p53 and hMSH2 seem to be interrelated in early events of this process.

  14. Beryllium sulfate induces p21 CDKN1A expression and a senescence-like cell cycle arrest in susceptible cancer cell types.

    Science.gov (United States)

    Gorjala, Priyatham; Gary, Ronald K

    2010-12-01

    In fibroblasts, beryllium salt causes activation of the p53 transcription factor and induction of a senescence-like state. It is not known whether Be(2+) can affect the proliferation of cancer cells, which are generally unsusceptible to senescence. A172 glioblastoma and RKO colon carcinoma cell lines each have wildtype p53, so these cell types have the potential to be responsive to agents that activate p53. In A172 cells, BeSO(4) produced a G(0)/G(1)-phase cell cycle arrest and increased expression of senescence-associated β-galactosidase, an enzymatic marker of senescence. BeSO(4) caused phosphorylation of serine-15 of p53, accumulation of p53 protein, and expression of p21, the cyclin-dependent kinase inhibitor that is prominent during senescence. BeSO(4) inhibited A172 growth with an IC(50) = 4.7 μM in a 6-day proliferation assay. In contrast, BeSO(4) had no effect on RKO cells, even though Be(2+) uptake was similar for the two cell types. This differential responsiveness marks BeSO(4) as a reagent capable of activating a separable branch of the p53 signaling network. A172 and RKO cells are known to exhibit p53-dependent upregulation of p21 in response to DNA damage. The RKO cells produced high levels of p21 when exposed to DNA damaging agents, yet failed to express p21 when treated with BeSO(4). Conversely, BeSO(4) did not cause DNA damage in A172 cells, yet it was a potent inducer of p21 expression. These observations indicate that the growth control pathway affected by BeSO(4) is distinct from the DNA damage response pathway, even though both ultimately converge on p53 and p21.

  15. Xanthatin Induces Cell Cycle Arrest at G2/M Checkpoint and Apoptosis via Disrupting NF-κB Pathway in A549 Non-Small-Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yin Lu

    2012-03-01

    Full Text Available Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65 and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65 translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.

  16. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway.

    Science.gov (United States)

    Kim, Joo-Young; Yi, Bo-Rim; Go, Ryeo-Eun; Hwang, Kyung-A; Nam, Ki-Hoan; Choi, Kyung-Chul

    2014-05-01

    Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.

  17. P120-catenin isoforms 1 and 3 regulate proliferation and cell cycle of lung cancer cells via β-catenin and Kaiso respectively.

    Directory of Open Access Journals (Sweden)

    Guiyang Jiang

    Full Text Available BACKGROUND: The different mechanisms involved in p120-catenin (p120ctn isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date. METHODS AND FINDINGS: We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection with siRNA-cyclin D1 in p120ctn depleted cells restoring p120ctn-1A or 3A, the expression of cyclin E was slightly decreased, not increased, implying that p120ctn isoforms 1 and 3 cannot up-regulate cyclin E directly but may do so through up-regulation of cyclin D1. Interestingly, overexpression of p120ctn-1A increased β-catenin and cyclin D1 expression, while co-transfection with siRNA targeting β-catenin abolishes the effect of p120ctn-1A on up-regulation of cyclin D1, suggesting a role of β-catenin in mediating p120ctn-1A's regulatory function on cyclin D1 expression. On the other hand, overexpression of p120ctn isoform 3A reduced nuclear Kaiso localization, thus decreasing the binding of Kaiso to KBS on the cyclin D1 promoter and thereby enhancing the expression of cyclin D1 gene by relieving the repressor effect of Kaiso. Because overexpressing NLS-p120ctn-3A (p120ctn-3A nuclear target localization plasmids or inhibiting nuclear export of p120ctn-3 by Leptomycin B (LMB caused translocation of Kaiso to the nucleus, it is plausible that the nuclear export of Kaiso is p120ctn-3-dependent. CONCLUSIONS: Our results suggest that p120ctn isoforms 1 and 3 up-regulate cyclin D1, and thereby cyclin E, resulting in the promotion of cell proliferation and cell cycle progression in lung cancer cells probably via different protein mediators, namely, β-catenin for isoform 1 and Kaiso, a negative transcriptional factor of cyclin D1, for isoform 3.

  18. Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer.

    Science.gov (United States)

    Miceli, C; Tejada, A; Castaneda, A; Mistry, S J

    2013-05-01

    Stathmin is the founding member of a family of microtubule-destabilizing proteins that have a critical role in the regulation of mitosis. Stathmin is expressed at high levels in breast cancer and its overexpression is linked to disease progression. Although there is a large body of evidence to support a role for stathmin in breast cancer progression, the validity of stathmin as a viable therapeutic target for breast cancer has not been investigated. Here, we used a bicistronic adenoviral vector that co-expresses green fluorescent protein and a ribozyme that targets stathmin messenger RNA in preclinical breast cancer models with different estrogen receptor (ER) status. We examined the effects of anti-stathmin ribozyme on the malignant phenotype of breast cancer cells in vitro and in xenograft models in vivo both as a single agent and in combination with chemotherapeutic agents. Adenovirus-mediated gene transfer of anti-stathmin ribozyme resulted in a dose-dependent inhibition of proliferation and clonogenicity associated with a G2/M arrest and increase in apoptosis in both ER-positive and ER-negative breast cancer cell lines. This inhibition was markedly enhanced when stathmin-inhibited breast cancer cells were exposed to low concentrations of taxol, which resulted in virtually complete loss of the malignant phenotype. Interestingly, breast cancer xenografts treated with low doses of anti-stathmin therapy and taxol showed regression in a majority of tumors, while some tumors stopped growing completely. In contrast, combination of anti-stathmin ribozyme and adriamycin resulted in only a modest inhibition of growth in vitro and in breast cancer xenografts in vivo. Although inhibition of tumor growth was observed in both the combination treatment groups compared with groups treated with single agent alone, combination of anti-stathmin therapy and taxol had a more profound inhibition of tumorigenicity, as both agents target the microtubule pathway. Clinically, these

  19. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  20. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells.

    Science.gov (United States)

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-09-29

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.

  1. Multi-target siRNA based on DNMT3A/B homologous conserved region influences cell cycle and apoptosis of human prostate cancer cell line TSU-PR1

    Directory of Open Access Journals (Sweden)

    Yue-feng Du

    2012-01-01

    Full Text Available Abnormal genome hypermethylation participates in the tumorigenesis and development of prostate cancer. Prostate cancer cells highly express DNA methyltransferase 3 (DMNT3 family genes, essential for maintaining genome methylation. In the present study, multi-target siRNA, based on the homologous region of the DNMT3 family, was designed for the in vitro investigation of its effects on the proliferation, migration, and invasion of TSU-PR1 prostate cancer cells. The consequential cell-cycle derangement, through DNMT3A/B or only DNMT3B silencing, was partially efficient, without affecting apoptosis. DNMT3A silencing had absolutely no effect on changing TSU-PR1 cell biological behavior. Hence, DNMT3B alone apparently plays a key role in maintaining the unfavorable behavior of prostate-cancer cells, thereby implying its potential significance as a promising therapeutic target, with DNMT3A simply in the role of helper.

  2. The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells.

    Science.gov (United States)

    Berrak, Özge; Akkoç, Yunus; Arısan, Elif Damla; Çoker-Gürkan, Ajda; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin

    2016-02-01

    Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis.

  3. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer.

    Science.gov (United States)

    Yang, Hee Doo; Kim, Pum-Joon; Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-03-08

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.

  4. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer

    Science.gov (United States)

    Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-01-01

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy. PMID:26863632

  5. Effect of Chimaerins, Novel Receptors for Phorbol Esters, on Breast Cancer Cell Proliferation and Cell Cycle Progression

    Science.gov (United States)

    2006-07-01

    Indeed, dominant-negative PKCd is capable of inhibiting both PKCa and PKCe in COS-1 cells [11]. The cellular effects elicited by phorbol esters have...isozyme- mediated activation of the ERK cascade and its functional outcome depends on the cellular context. Although it is generally believed that PKCd ...tips.trends.com revealed that PKCd is capable of activating the ERK signaling pathway, regulating cell proliferation and cell differentiation. PKCd activates ERK in

  6. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells.

    Science.gov (United States)

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2014-09-01

    Parabens are alkyl esters of p-hydroxybenzoic acid used widely as antimicrobial preservatives in consumer products, including pharmaceuticals, foods and cosmetics. We showed previously that methyl-, butyl- and propylparaben parabens, even at low doses, stimulate the proliferation of MCF-7 breast cancer cells and non-transformed MCF-10A breast epithelial cells. The present study was undertaken to determine whether this represents a direct effect on cell cycle and apoptotic gene expression. MCF-7 and MCF-10A cells were exposed to methyl, butyl- and propylparaben (20 nm) or 17β-estradiol (10 nm). Cell cycle and apoptotic gene expression were evaluated by real-time polymerase chain reaction and protein expression by Western blot. 17β-estradiol upregulated G1 /S phase genes and downregulated cell cycle progression inhibitors in both MCF-7 and MCF-10A. Upregulation of Bcl-xL and downregulation of caspase 9 was observed in MCF-7, while upregulation of Bcl-xL, BCL2L2 and caspase 9 was noted in MCF-10A. Cyclins in MCF-7 cells were not affected by any of the parabens. Methyl- and butylparaben had no effect on the expression of selected apoptotic genes in MCF-7. In MCF-10A, all parabens tested increased the expression of G1 /S phase genes, and downregulated cell cycle inhibitors. Methylparaben increased pro-survival gene. Butylparaben increased BCL2L1 gene, as did 17β-estradiol, while propylparaben upregulated both the extrinsic and intrinsic apoptotic pathways. There are differences in cell cycle and apoptosis gene expression between parabens and 17β-estradiol in MCF-7 cells. In MCF-10A cells, most of the genes activated by parabens were comparable to those activated by 17β-estradiol.

  7. Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Jin Hee Park

    Full Text Available BACKGROUND: Cancer is one of the highly virulent diseases known to humankind with a high mortality rate. Breast cancer is the most common cancer in women worldwide. Sorghum is a principal cereal food in many parts of the world, and is critical in folk medicine of Asia and Africa. In the present study, we analyzed the effects of HSE in metastatic breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: Preliminary studies conducted on MDA-MB 231 and MCF-7 xenograft models showed tumor growth suppression by HSE. Western blotting studies conducted both in vivo and in vitro to check the effect of HSE in Jak/STAT pathways. Anti-metastatic effects of HSE were confirmed using both MDA-MB 231 and MCF-7 metastatic animal models. These studies showed that HSE can modulate Jak/STAT pathways, and it hindered the STAT5b/IGF-1R and STAT3/VEGF pathways not only by down-regulating the expression of these signal molecules and but also by preventing their phosphorylation. The expression of angiogenic factors like VEGF, VEGF-R2 and cell cycle regulators like cyclin D, cyclin E, and pRb were found down-regulated by HSE. In addition, it also targets Brk, p53, and HIF-1α for anti-cancer effects. HSE induced G1 phase arrest and migration inhibition in MDA-MB 231 cells. The metastasis of breast cancer to the lungs also found blocked by HSE in the metastatic animal model. CONCLUSIONS/SIGNIFICANCE: Usage of HS as a dietary supplement is an inexpensive natural cancer therapy, without any side effects. We strongly recommend the use of HS as an edible therapeutic agent as it possesses tumor suppression, migration inhibition, and anti-metastatic effects on breast cancer.

  8. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, Andrea; Ziemann, Frank; Wittig, Andrea; Preising, Stefanie; Engenhart-Cabillic, Rita [Philipps-University, Department of Radiotherapy and Radiooncology, BMFZ - Biomedical Research Center, Marburg (Germany); Mayer, Christina; Wagner, Steffen; Klussmann, Jens-Peter; Wittekindt, Claus [Justus Liebig University, Department of Otorhinolaryngology and Head and Neck Surgery, Giessen (Germany); Dreffke, Kirstin [Philipps-University, Institute for Radiobiology and Molecular Radiooncology, Marburg (Germany)

    2014-09-15

    Human Papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) respond favourably to radiotherapy as compared to HPV-unrelated HNSCC. We investigated DNA damage response in HPV-positive and HPV-negative HNSCC cell lines aiming to identify mechanisms, which illustrate reasons for the increased sensitivity of HPV-positive cancers of the oropharynx. Radiation response including clonogenic survival, apoptosis, DNA double-strand break (DSB) repair, and cell cycle redistribution in four HPV-positive (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) and four HPV-negative (UD-SCC-1, UM-SCC-6, UM-SCC-11b, UT-SCC-33) cell lines was evaluated. HPV-positive cells were more radiosensitive (mean SF2: 0.198 range: 0.22-0.18) than HPV-negative cells (mean SF2: 0.34, range: 0.45-0.27; p = 0.010). Irradiated HPV-positive cell lines progressed faster through S-phase showing a more distinct accumulation in G2/M. The abnormal cell cycle checkpoint activation was accompanied by a more pronounced increase of cell death after x-irradiation and a higher number of residual and unreleased DSBs. The enhanced responsiveness of HPV-related HNSCC to radiotherapy might be caused by a higher cellular radiosensitivity due to cell cycle dysregulation and impaired DNA DSB repair. (orig.) [German] Fuer Patienten mit HPV-assoziierten Kopf-Hals-Tumoren (HNSCC) ist im Vergleich zu Patienten mit nicht-HPV-assoziierten Tumoren ein besseres Ueberleben nach Radiotherapie gesichert. Ziel der Untersuchung war die Identifizierung von Unterschieden in der zellulaeren DNA-Schadensantwort von HPV-positiven und HPV-negativen Zelllinien, wodurch die bereits in Erprobung stehende Deeskalation einer Radiotherapie bei Patienten mit HPV-assoziierten HNSCC durch experimentelle Daten abgesichert werden koennte. Klonogenes Ueberleben, Induktion von Apoptose, DNA-Doppelstrang-Reparatur und Zellzyklusverhalten wurden in vier HPV-positiven (UM-SCC-47, UM-SCC-104, 93-VU-147T, UPCI:SCC152) und vier HPV

  9. MULTICELLULAR-MEDIATED EXPRESSION OF P-GP AND MRP AND RELATIONSHIP WITH CELL CYCLE PROFILES IN HUMAN OVARIAN CANCER SK-OV-3ip1 MULTICELLULAR AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    陈建利; 丰有吉; 张琴

    2001-01-01

    To investigate the expression of P-glycoprotein (P-gp) and multidrug resistance- associated protein (MRP) and the relationship with cell cycle profiles in ovarian cancer SK-OV-3ip1 multicellular aggregates. Methods: Liquid overlay system was employed to obtain multicellular aggregates. Expression of P-gp and MRP was detected with flow cytometry (FCM). Outer, intermediate and inner cells from multicellular aggregates were collected by layer-trypsinized method. Cell cycle profiles were also analyzed by FCM. Results: Compared with control cells, no expression of P-gp and MRP was detected in monolyer cells (P=0.128 and P=0.604), but expression of P-gp and MRP in aggregate cells was significantly elevated (P<0.01). P-gp expression in every layer cells was also obviously increased (P<0.01). Furthermore, P-gp expression in every layer cells was also obviously increased (P=0.071). Tendency to increased G0-G1 phase and reduced S phase cells existed from outer through intermediate to inner layers in multicellular aggregates but with no statistical difference. Cell percentages in G2-M phase also had no difference. However, compared with monolayer cells, cells in G0-G1 phase increased and cells in S and G2-M phases lowered significantly in every layer and in the whole multicellular aggregates. Expression elevation of P-gp and MRP was consistent with increased G0-G1 percentage in aggregate cells. Conclusion: Expression of P-gp and MRP increases in cells of SK-OV-3ip1 multicellular aggregates and is consistent with increased G0-G1 percentage, which implies the possible relationship between them and the possible role in multicellular-mediated drug resistance.

  10. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  11. External Qi of Yan Xin Qigong Inhibits Activation of Akt, Erk1/2 and NF-ĸB and Induces Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xin Yan

    2013-01-01

    Full Text Available Background/Aims: Colorectal cancer (CRC is the second leading cause of cancer death in the Western countries. Novel approaches of treatment are needed for CRC. The purpose of the present study was to investigate cytotoxic effect of external Qi of Yan Xin Qigong (YXQ-EQ on human colorectal cancer cells. Methods: The effect of YXQ-EQ on viability, cell cycle progression and apoptosis in colorectal cancer HT-29 cells was investigated. Phosphorylation of Akt and Erk1/2, activation of NF-ĸB and the expression of proteins involved in regulation of cell cycle and apoptosis were examined by Western blot analysis. Results: YXQ-EQ markedly decreased viability and blocked colony formation of HT-29 cells. YXQ-EQ downregulated cyclin D1 expression and increased accumulation of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, resulting in G1 cell cycle arrest. YXQ-EQ induced apoptosis in HT-29 cells in association with decreased expression of antiapoptotic proteins Bcl-xL, XIAP, survivin and Mcl-1 and elevated expression of proapoptotic protein Bax. YXQ-EQ significantly repressed phosphorylation of Akt and Erk1/2 and NF-ĸB activation in HT-29 cells, suggesting that YXQ-EQ may exert cytotoxic effect through regulating signaling pathways critical for cell proliferation and survival. Furthermore, YXQ-EQ treated PBS and an YXQ-EQ treated plant extract induced apoptosis in HT-29 cells. Conclusion: These findings show that YXQ-EQ has potent cytotoxic effect on HT-29 cells and suggest that YXQ-EQ could be potentially used for colorectal cancer treatment either directly or indirectly via carriers.

  12. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Abhilasha Gupta

    Full Text Available Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2 in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9, members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA. CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.

  13. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest

    Directory of Open Access Journals (Sweden)

    Han Jin Cho

    2016-02-01

    Full Text Available Benzyl isothiocyanate (BITC is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker, cyclin A, cyclin D1, and cyclin-dependent kinase (CDK2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC.

  14. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo

    Science.gov (United States)

    Karimian, Hamed; Arya, Aditya; Fadaeinasab, Mehran; Razavi, Mahboubeh; Hajrezaei, Maryam; Karim Khan, Ataul; Mohd Ali, Hapipah; Abdulla, Mahmood Ameen; Noordin, Mohamad Ibrahim

    2017-01-01

    Background The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action. Materials and methods K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated. Results Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2. Conclusion This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest. PMID:28203057

  15. Sulindac and Celecoxib regulate cell cycle progression by p53/p21 up regulation to induce apoptosis during initial stages of experimental colorectal cancer.

    Science.gov (United States)

    Vaish, Vivek; Rana, Chandan; Piplani, Honit; Vaiphei, Kim; Sanyal, Sankar Nath

    2014-03-01

    In the present study we have elaborated the putative mechanisms could be followed by the non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib in the regulation of cell cycle checkpoints along with tumor suppressor proteins to achieve their chemopreventive effects in the initial stages of experimental colorectal cancer. Male Sprague-Dawley rats were administered with 1,2-dimethylhydrazine dihydrochloride (DMH) to produce early stages of colorectal carcinogenesis. The mRNA expression profiles of various target genes were analyzed by RT-PCR and validated by quantitative real-time PCR, whereas protein expression was analyzed by Western blotting. Nuclear localization of transcription factors or other nuclear proteins was analyzed by electrophoretic mobility shift assay and immunofluorescence. Flowcytometry was performed to analyze the differential apoptotic events and cell cycle regulation. Molecular docking studies with different target proteins were also performed to deduce the various putative mechanisms of action followed by Sulindac and Celecoxib. We observed that DMH administration has abruptly increased the proliferation of colonic cells which is macroscopically visible in the form of multiple plaque lesions and co-relates with the disturbed molecular mechanisms of cell cycle regulation. However, co-administration of NSAIDs has shown regulatory effects on cell cycle checkpoints via induction of various tumor suppressor proteins. We may conclude that Sulindac and Celecoxib could possibly follow p53/p21 mediated regulation of cell proliferation, where down regulation of NF-κB signaling and activation of PPARγ might serve as important additional events in vivo.

  16. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    Science.gov (United States)

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  17. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Directory of Open Access Journals (Sweden)

    Elena Favaro

    Full Text Available BACKGROUND: Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1 and a microRNA, hsa-miR-210 (miR-210 which is associated with a poor prognosis. METHODS AND FINDINGS: In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis. CONCLUSIONS: Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  18. The aqueous extract of Ficus religiosa induces cell cycle arrest in human cervical cancer cell lines SiHa (HPV-16 Positive and apoptosis in HeLa (HPV-18 positive.

    Directory of Open Access Journals (Sweden)

    Amit S Choudhari

    Full Text Available Natural products are being extensively explored for their potential to prevent as well as treat cancer due to their ability to target multiple molecular pathways. Ficus religiosa has been shown to exert diverse biological activities including apoptosis in breast cancer cell lines. In the present study, we report the anti-neoplastic potential of aqueous extract of F. religiosa (FRaq bark in human cervical cancer cell lines, SiHa and HeLa. FRaq altered the growth kinetics of SiHa (HPV-16 positive and HeLa (HPV-18 positive cells in a dose-dependent manner. It blocked the cell cycle progression at G1/S phase in SiHa that was characterized by an increase in the expression of p53, p21 and pRb proteins with a simultaneous decrease in the expression of phospho Rb (ppRb protein. On the other hand, in HeLa, FRaq induced apoptosis through an increase in intracellular Ca(2+ leading to loss of mitochondrial membrane potential, release of cytochrome-c and increase in the expression of caspase-3. Moreover, FRaq reduced the migration as well as invasion capability of both the cervical cancer cell lines accompanied with downregulation of MMP-2 and Her-2 expression. Interestingly, FRaq reduced the expression of viral oncoproteins E6 and E7 in both the cervical cancer cell lines. All these data suggest that F. religiosa could be explored for its chemopreventive potential in cervical cancer.

  19. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  20. New derivative of 2-(2,4-dihydroxyphenyl)thieno-1,3-thiazin-4-one (BChTT) elicits antiproliferative effect via p38-mediated cell cycle arrest in cancer cells.

    Science.gov (United States)

    Juszczak, Małgorzata; Walczak, Katarzyna; Matysiak, Joanna; Lemieszek, Marta K; Langner, Ewa; Karpińska, Monika M; Pożarowski, Piotr; Niewiadomy, Andrzej; Rzeski, Wojciech

    2016-03-15

    2-(2,4-Dihydroxyphenyl)thieno-1,3-thiazin-4-ones are a group of new compounds with potential anticancer activity. This type of derivatives was poorly investigated in the area of synthesis and biological activities. In the present study the antiproliferative action of the most active derivative BChTT was described. The aim of biological evaluation was to investigate the ability of the compound to inhibit cancer cell proliferation and identify mechanism involved in its action on the molecular level. BChTT inhibited the proliferation of lung cancer A549, colon cancer HT-29 and glioma C6 cells in the concentration-dependent manner. It was not toxic to normal cells including skin fibroblasts, hepatocytes and oligodendrocytes in the antiproliferative concentrations. BChTT decreased the DNA synthesis in the treated cancer cells and induced cell cycle arrest in the G0/G1 phase. Moreover, the ability of the compound to activate p38 kinase and decrease cyclin D1 expression was estimated. Participation of p38 kinase in the antiproliferative action of the compound was confirmed by the analysis of BChTT activity in the cells with the p38 silenced gene. The obtained results may suggest the ability of the tested derivative to inhibit cancer cells proliferation by induction of p38-mediated cyclin D1 downregulation.

  1. α-Tomatine-mediated anti-cancer activity in vitro and in vivo through cell cycle- and caspase-independent pathways.

    Directory of Open Access Journals (Sweden)

    Min-Wu Chao

    Full Text Available α-Tomatine, a tomato glycoalkaloid, has been reported to possess antibiotic properties against human pathogens. However, the mechanism of its action against leukemia remains unclear. In this study, the therapeutic potential of α-tomatine against leukemic cells was evaluated in vitro and in vivo. Cell viability experiments showed that α-tomatine had significant cytotoxic effects on the human leukemia cancer cell lines HL60 and K562, and the cells were found to be in the Annexin V-positive/propidium iodide-negative phase of cell death. In addition, α-tomatine induced both HL60 and K562 cell apoptosis in a cell cycle- and caspase-independent manner. α-Tomatine exposure led to a loss of the mitochrondrial membrane potential, and this finding was consistent with that observed on activation of the Bak and Mcl-1 short form (Mcl-1s proteins. Exposure to α-tomatine also triggered the release of the apoptosis-inducing factor (AIF from the mitochondria into the nucleus and down-regulated survivin expression. Furthermore, α-tomatine significantly inhibited HL60 xenograft tumor growth without causing loss of body weight in severe combined immunodeficiency (SCID mice. Immunohistochemical test showed that the reduced tumor growth in the α-tomatine-treated mice was a result of increased apoptosis, which was associated with increased translocation of AIF in the nucleus and decreased survivin expression ex vivo. These results suggest that α-tomatine may be a candidate for leukemia treatment.

  2. Autoradiography and the Cell Cycle.

    Science.gov (United States)

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and…

  3. Novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, MHY-449, induces cell cycle arrest and apoptosis via the downregulation of Akt in human lung cancer cells.

    Science.gov (United States)

    Lim, Hyun Sook; Kang, Yong Jung; Sung, Bokyung; Kim, Seon Hee; Kim, Min Jeong; Kim, Hye Rim; Kim, Seong Jin; Choi, Yung Hyun; Moon, Hyung Ryong; Chung, Hae Young; Kim, Nam Deuk

    2015-11-01

    The anticancer properties of MHY-449, a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, in various human cancer cell lines have been previously reported. The aim of the present study was to investigate the activities of MHY-449 on human lung cancer cells in order to elucidate its underlying molecular mechanisms of action. The result showed that MHY-449 treatment inhibited cell growth in a time- and concentration‑dependent manner. Specifically, MHY-449 induced cell cycle arrest at the S phase, and the resulting increased sub-G1 fraction led to the induction of apoptosis, as determined by flow cytometric analysis and DNA fragmentation. In addition, MHY-449 was shown to induce alterations in the ratio of Bax/Bcl-2 protein expression, and contribute to the loss of mitochondrial membrane potential. These cellular events then triggered the caspase cascade and subsequent poly(ADP‑ribose) polymerase cleavage. The apoptotic cell death induced by MHY-449 was inhibited by pretreatment with Z-VAD‑FMK, a pan-caspase inhibitor. Moreover, MHY-449 downregulated the phosphorylation of Akt, and the phosphatidylinositol-3 kinase/Akt inhibitor LY294002 was found to enhance its induction of apoptosis. Taken together, the results suggested that MHY-449 exerts anticancer effects by promoting cell cycle arrest and apoptosis via the downregulation of Akt. Based on these data, MHY-449 serves as a potential candidate in the chemoprevention and/or treatment of lung cancer.

  4. Combination of Low Concentration of (−-Epigallocatechin Gallate (EGCG and Curcumin Strongly Suppresses the Growth of Non-Small Cell Lung Cancer in Vitro and in Vivo through Causing Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Wenbin Huang

    2013-06-01

    Full Text Available (−-Epigallocatechin gallate (EGCG and curcumin are two naturally derived agents that have been widely investigated worldwide. They exhibit their anti-tumor effects in many types of cancers. In the current study, the effect of the combination of the two agents on non-small cell lung cancer (NSCLC cells was investigated. The results revealed that at low concentrations, the combination of the EGCG and curcumin strongly enhanced cell cycle arrest. Flow cytometry analysis showed that the cells were arrested at G1 and S/G2 phases. Two main cell cycle related proteins cyclin D1 and cyclin B1 were significantly inhibited at the present of EGCG and curcumin. EdU (5-ethynyl-2'-deoxyuridine fluorescence staining showed that the DNA replication was significantly blocked. A clonal growth assay also confirmed a marked repression of cell growth. In a lung cancer xenograft node mice model, combination of EGCG and curcumin exhibited protective effect against weight loss due to tumor burden. Tumor growth was strongly repressed by the combination of the two agents, without causing any serious side-effect. Overall, these results strongly suggest that EGCG in combination with curcumin could be a candidate for chemoprevention agent of NSCLC.

  5. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  6. pERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner.

    Science.gov (United States)

    Mandal, Ranadip; Raab, Monika; Matthess, Yves; Becker, Sven; Knecht, Rainald; Strebhardt, Klaus

    2014-03-01

    ERK 1/2 are found to be hyperactive in many cancers. Active ERK 1/2 (pERK 1/2) are known to protect cancer cells from undergoing death receptor-mediated apoptosis, although the mechanism(s) behind this is poorly understood. Through in vitro kinase assays and mass-spectrometry we demonstrate that pERK 1/2 can phosphorylate pro-Caspase-8 at S387. Also, in EGFR-overexpressing Type I and II ovarian and breast cancer cell lines respectively, ERK 1/2 remain active only during the interphase. During this period, pERK 1/2 could inhibit Trail-induced apoptosis, most effectively during the G1/S phase. By knocking-down the endogenous pro-Caspase-8 using RNAi and replacing it with its non-phosphorylatable counterpart (S387A), a significant increase in Caspase-8 activity upon Trail stimulation was observed, even in the presence of pERK 1/2. Taken together, we propose that a combination of Trail and an inhibitor of ERK 1/2 activities could potentially enhance of Trail's effectiveness as an anti-cancer agent in ERK 1/2 hyperactive cancer cells.

  7. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway

    OpenAIRE

    Pan, Bin; Zhong, Weifeng; Deng, Zhihai; Lai, Caiyong; Chu, Jing; Jiao, Genlong; Liu, Junfeng; Zhou, Qizhao

    2016-01-01

    Abstract Solanine, a naturally steroidal glycoalkaloid in nightshade (Solanum nigrum Linn.), can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism of solanine‐suppressing prostate cancer cell growth remains to be elucidated. This study investigates the inhibition mechanism of solanine on cancer development in vivo and in cultured human prostate cancer cell DU145 in vitro. Results show that solanine injection significantly suppresses the tumor cell growth in xen...

  8. Targeting cell cycle regulators in hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Eiman eAleem

    2015-04-01

    Full Text Available Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia, and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219, pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638 as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed.

  9. Fisetin induces G2/M phase cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation in human endometrial cancer cells

    Directory of Open Access Journals (Sweden)

    Zhan-Ying Wang

    2015-06-01

    Full Text Available Endometrial cancer is one of the most prevalent gynaecological malignancies where, currently available therapeutic options remain limited. Recently phytochemicals are exploited for their efficiency in cancer therapy. The present study investigates the anti-proliferative effect of fisetin, a flavonoid on human endometrial cancer cells (KLE and Hec1 A. Fisetin (20-100 µM effectively reduced the viability of Hec1 A and KLE cells and potentially altered the cell population at G2/M stage. Expression levels of the cell cycle proteins (cyclin B1, p-Cdc2, p-Cdc25C, p-Chk1, Chk2, p-ATM, cyclin B1, H2AX, p21 and p27 were analyzed. Fisetin suppressed cyclin B1 expression and caused inactiva-tion of Cdc25C and Cdc2 by increasing their phosphorylation levels and further activated ATM, Chk1 and Chk2. Increased levels of p21 and p27 were observed as well. These results suggest that fisetin induced G2/M cell cycle arrest via inactivating Cdc25c and Cdc2 through activation of ATM, Chk1 and Chk2.

  10. Furanodiene presents synergistic anti-proliferative activity with paclitaxel via altering cell cycle and integrin signaling in 95-D lung cancer cells.

    Science.gov (United States)

    Xu, Wen-Shan; Dang, Yuan-Ye; Chen, Xiu-Ping; Lu, Jin-Jian; Wang, Yi-Tao

    2014-02-01

    Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma Curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Recently, we found that the combined treatment of FUR with paclitaxel (TAX) showed synergetic anti-proliferative activities in 95-D lung cancer cells. Herein, we showed that FUR reduced the cell numbers distributed in mitosis phase induced by TAX while increased those in G1 phase. The protein levels of cyclin D1, cyclin B1, CDK6 and c-Myc were all down-regulated in the group of combined treatment. The dramatically down-regulated expression of integrin β4, focal adhesion kinase and paxillin might partially contribute to the synergic effect. Though FUR alone obviously induced endoplasmic reticulum stress, this signaling pathway may not contribute to the synergetic anti-proliferative effect as the protein expression of CHOP and BIP was similar in FUR alone and combined treatment group.

  11. 5-alpha-reductase type I (SRD5A1 is up-regulated in non-small cell lung cancer but does not impact proliferation, cell cycle distribution or apoptosis

    Directory of Open Access Journals (Sweden)

    Kapp Friedrich G

    2012-01-01

    Full Text Available Abstract Background Non-small cell lung cancer (NSCLC is one of the most frequent malignancies and has a high mortality rate due to late detection and lack of efficient treatments. Identifying novel drug targets for this indication may open the way for new treatment strategies. Comparison of gene expression profiles of NSCLC and normal adjacent tissue (NAT allowed to determine that 5-alpha-reductase type I (SRD5A1 was up-regulated in NSCLC compared to NAT. This raised the question whether SRD5A1 was involved in sustained proliferation and survival of NSCLC. Methods siRNA-mediated silencing of SRD5A1 was performed in A549 and NCI-H460 lung cancer cell lines in order to determine the impact on proliferation, on distribution during the different phases of the cell cycle, and on apoptosis/necrosis. In addition, lung cancer cell lines were treated with 4-azasteroids, which specifically inhibit SRD5A1 activity, and the effects on proliferation were measured. Statistical analyses using ANOVA and post-hoc Tamhane-T2-test were performed. In the case of non-parametric data, the Kruskal-Wallis test and the post-hoc Mann-Whitney-U-test were used. Results The knock-down of SRDA51 expression was very efficient with the SRD5A1 transcripts being reduced to 10% of control levels. Knock-down efficiency was furthermore confirmed at the protein level. However, no effect of SRD5A1 silencing was observed in the proliferation assay, the cell cycle analysis, and the apoptosis/necrosis assay. Treatment of lung cancer cell lines with 4-azasteroids did not significantly inhibit proliferation. Conclusions In summary, the results suggest that SRD5A1 is not a crucial enzyme for the sustained proliferation of NSCLC cell lines.

  12. Targeting the cell cycle and the PI3K pathway: a possible universal strategy to reactivate innate tumor suppressor programmes in cancer cells.

    Science.gov (United States)

    David-Pfeuty, Thérèse; Legraverend, Michel; Ludwig, Odile; Grierson, David S

    2010-04-01

    Corruption of the Rb and p53 pathways occurs in virtually all human cancers. This could be because it lends oncogene-bearing cells a surfeit of Cdk activity and growth, enabling them to elaborate strategies to evade tumor-suppressive mechanisms and divide inappropriately. Targeting both Cdk activities and the PI3K pathway might be therefore a potentially universal means to palliate their deficiency in cancer cells. We showed that the killing efficacy of roscovitine and 16 other purines and potentiation of roscovitine-induced apoptosis by the PI3K inhibitor, LY294002, decreased with increasing corruption of the Rb and p53 pathways. Further, we showed that purines differing by a single substitution, which exerted little lethal effect on distant cell types in rich medium, could display widely-differing cytotoxicity profiles toward the same cell types in poor medium. Thus, closely-related compounds targeting similar Cdks may interact with different targets that could compete for their interaction with therapeutically-relevant Cdk targets. In the perspective of clinical development in association with the PI3K pathway inhibitors, it might thus be advisable to select tumor cell type-specific Cdk inhibitors on the basis of their toxicity in cell-culture-based assays performed at a limiting serum concentration sufficient to suppress their interaction with undesirable crossreacting targets whose range and concentration would depend on the cell genotype.

  13. Expression of cell cycle regulator p57kip2, cyclinE protein and proliferating cell nuclear antigen in human pancreatic cancer: An immunohistochemical study

    Institute of Scientific and Technical Information of China (English)

    Hui Yue; Hui-Yong Jiang

    2005-01-01

    AIM: To investigate the effects of p57kip2, cyclinE protein and proliferating cell nuclear antigen (PCNA) on occurrence and progression of human pancreatic cancer.METHODS: The expression of p57kip2, cyclinE protein and PCNA in tumor tissues and adjacent tissues from 32patients with pancreatic cancer was detected by SP immunohistochemical technique.RESULTS: The positive expression rate of p57kip2 protein in tumor tissues was 46.9%, which was lower than that in adjacent pancreatic tissues (x2 = 5.317, P<0.05). P57kip2protein positive expression remarkably correlated with tumor cell differentiation (P<0.05), but not with lymph node metastasis (P>0.05). The positive expression rate of cyclinE protein in tumor tissues was 68.8%, which was higher than that in adjacent pancreatic tissues (x2 = 4.063,P<0.05). CyclinE protein positive expression significantly correlated with tumor cell differentiation and lymph node metastasis (P<0.05). The positive expression rate of PCNA in the tumor tissues was 71.9%, which was higher than that in adjacent pancreatic tissues (x2 = 5.189, P<0.05).PCNA positive expression remarkably correlated with tumor cell differentiation and lymph node metastasis (P<0.05).CONCLUSION: The decreased expression of p57kip2 and/or overexpression of cyclinE protein and PCNA may contribute to the occurrence and progression of pancreatic cancer.p57kip2, cyclinE protein, and PCNA play an important role in occurrence and progression of pancreatic cancer.

  14. Relationship between radioresistance of breast cancer stem cell and cell cycle%乳腺癌干细胞耐放射性与细胞周期的关系

    Institute of Scientific and Technical Information of China (English)

    沈皓月; 李连宏

    2012-01-01

    肿瘤的放射疗法是一种建立在细胞周期基础上的治疗方法,乳腺癌干细胞在放疗过程中出现的G2/M期阻滞、衰老途径下调、APE1水平升高及细胞周期调控相关基因p21和p53活性等改变直接或间接导致细胞周期紊乱,均与乳腺癌干细胞的耐放射性密切相关,是分子遗传学和肿瘤生物学研究的热点.%Radiative therapy of carcinoma is founded at the basis of eell cycle theory. The changes of breast cancer stem cell during radiation which include G2/M phase arrest, the senescence evasion, an elevated level of APE1 and alternation of cell cycle regulation related genes p21/p53, directly or indirectly cause the abnormal proliferation of cancer stem cells. These fundamental studies may result in broad applications within many different fields and may, in the long term, open a new path for cancer therapy.

  15. 125I brachytherapy of locally advanced non-small-cell lung cancer after one cycle of first-line chemotherapy:a comparison with best supportive care

    Directory of Open Access Journals (Sweden)

    Song J

    2017-03-01

    Full Text Available Jingjing Song* Xiaoxi Fan* Zhongwei Zhao* Minjiang Chen* Weiqian Chen, Fazong Wu, Dengke Zhang, Li Chen, Jianfei Tu, Jiansong Ji Department of Interventional Radiology, Zhejiang University Lishui Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, People’s Republic of China *These authors have contributed equally to this work Objectives: The objective of this study was to assess the efficacy of computed tomography (CT-guided 125I brachytherapy alone in improving the survival and quality of life of patients with unresectable locally advanced non-small-cell lung cancer (NSCLC after one cycle of first-line chemotherapy.Patients and methods: Sixteen patients with locally advanced NSCLC were treated with CT-guided 125I brachytherapy after one cycle of first-line chemotherapy (group A. Sixteen patients who received only best supportive care (group B were matched up with the patients in group A. Primary end point included survival, and secondary end point included assessment of safety, effectiveness of CT-guided 125I brachytherapy, and improvement in the quality of life.Results: The two groups were well balanced in terms of age, disease histology, tumor stage, tumor location, and performance status (P>0.05. The median follow-up time was 16 months (range, 3–30. The total tumor response rate was 75.0% in group A, which was significantly higher than that in group B (0.0% (P<0.01. The median progression-free survival time was 4.80 months for patients in group A and 1.35 months for patients in group B (P<0.001. Kaplan–Meier survival analysis showed that the median survival time of group A was 9.4±0.3 months versus 8.4±0.1 months in group B (P=0.013. Tumor-related symptoms of patients were significantly relieved, and the quality of life was markedly improved in group A than in group B.Conclusion: CT-guided 125I brachytherapy improved the survival of patients with locally advanced

  16. Cordyceps militaris Grown on Germinated Soybean Induces G2/M Cell Cycle Arrest through Downregulation of Cyclin B1 and Cdc25c in Human Colon Cancer HT-29 Cells

    Science.gov (United States)

    Mollah, Mohammad Lalmoddin; Park, Dong Ki; Park, Hye-Jin

    2012-01-01

    Cordyceps militaris (CM) is an insect-borne fungus that has been used in traditional Chinese medicine because of its wide range of pharmacological activities. In this paper, we studied CM grown on germinated soybean (GSC) and investigated the possible mechanisms underlying antiproliferative effect of GSC on HT-29 human colon cancer cells. In comparison with CM extracts and germinated soybean (GS) BuOH extracts, BuOH extracts of GSC showed remarkable inhibitory and antiproliferative effects on HT-29 colon cancer cells. After GSC treatment, HT-29 cells became smaller and irregular in shape. High G2/M phase cell populations were observed in the GSC-treated group. The levels of cyclin B1 and Cdc25 in the GSC-treated group were lower than those in the control group. These findings suggest that GSC BuOH extracts might act as an effective anti-proliferative agent by inducing G2/M cell cycle arrest in colon cancer cells. PMID:22474493

  17. Cordyceps militaris Grown on Germinated Soybean Induces G2/M Cell Cycle Arrest through Downregulation of Cyclin B1 and Cdc25c in Human Colon Cancer HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Lalmoddin Mollah

    2012-01-01

    Full Text Available Cordyceps militaris (CM is an insect-borne fungus that has been used in traditional Chinese medicine because of its wide range of pharmacological activities. In this paper, we studied CM grown on germinated soybean (GSC and investigated the possible mechanisms underlying antiproliferative effect of GSC on HT-29 human colon cancer cells. In comparison with CM extracts and germinated soybean (GS BuOH extracts, BuOH extracts of GSC showed remarkable inhibitory and antiproliferative effects on HT-29 colon cancer cells. After GSC treatment, HT-29 cells became smaller and irregular in shape. High G2/M phase cell populations were observed in the GSC-treated group. The levels of cyclin B1 and Cdc25 in the GSC-treated group were lower than those in the control group. These findings suggest that GSC BuOH extracts might act as an effective anti-proliferative agent by inducing G2/M cell cycle arrest in colon cancer cells.

  18. Cordyceps militaris Grown on Germinated Soybean Induces G2/M Cell Cycle Arrest through Downregulation of Cyclin B1 and Cdc25c in Human Colon Cancer HT-29 Cells.

    Science.gov (United States)

    Mollah, Mohammad Lalmoddin; Park, Dong Ki; Park, Hye-Jin

    2012-01-01

    Cordyceps militaris (CM) is an insect-borne fungus that has been used in traditional Chinese medicine because of its wide range of pharmacological activities. In this paper, we studied CM grown on germinated soybean (GSC) and investigated the possible mechanisms underlying antiproliferative effect of GSC on HT-29 human colon cancer cells. In comparison with CM extracts and germinated soybean (GS) BuOH extracts, BuOH extracts of GSC showed remarkable inhibitory and antiproliferative effects on HT-29 colon cancer cells. After GSC treatment, HT-29 cells became smaller and irregular in shape. High G2/M phase cell populations were observed in the GSC-treated group. The levels of cyclin B1 and Cdc25 in the GSC-treated group were lower than those in the control group. These findings suggest that GSC BuOH extracts might act as an effective anti-proliferative agent by inducing G2/M cell cycle arrest in colon cancer cells.

  19. Novel miR-5582-5p functions as a tumor suppressor by inducing apoptosis and cell cycle arrest in cancer cells through direct targeting of GAB1, SHC1, and CDK2.

    Science.gov (United States)

    An, Hyun-Ju; Kwak, Seo-Young; Yoo, Je-Ok; Kim, Jae-Sung; Bae, In-Hwa; Park, Myung-Jin; Cho, Mee-Yon; Kim, Joon; Han, Young-Hoon

    2016-10-01

    MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells. GAB1, SHC1, and CDK2 were identified as direct targets of miR-5582-5p. Knockdown of GAB1/SHC1 or CDK2 phenocopied the apoptotic or cell cycle arrest-inducing function of miR-5582-5p, respectively. The expression of miR-5582-5p was lower in tumor tissues than in adjacent normal tissues of colorectal cancer patients, while the expression of the target proteins exhibited patterns opposite to that of miR-5582-5p. Intratumoral injection of a miR-5582-5p mimic or induced expression of miR-5582-5p in tumor cells suppressed tumor growth in HCT116 xenografts. Collectively, our results suggest a novel tumor suppressive function for miR-5582-5p and its potential applicability for tumor control.

  20. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  1. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells.

    Science.gov (United States)

    Yang, Lina; Zhou, Yunjiao; Li, Yinghua; Zhou, Juan; Wu, Yougen; Cui, Yunqing; Yang, Gong; Hong, Yang

    2015-02-28

    Although mutations of p53 and KRAS and activation of NF-κB signaling have been highly associated with chemoresistance and tumorigenesis of lung cancer, the interactive mechanisms between two of p53, KRAS, and NF-κB are elusive. In the present study, we first observed that blocking of NF-κB function in KRAS mutant A549 cell line with an IκBα mutant (IκBαM) inhibited cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis. Silencing of p53 or KRAS in A549 or H358 cells either enhanced or attenuated the resistance of cells to cisplatin and taxol through promotion or suppression of the NF-κB p65 nuclear translocation. Introduction of a wild type p53 into p53 null lung cancer cell lines H1299 and H358 inhibited NF-κB activity, leading to the enhanced response to chemotherapeutic drugs. Delivery of a mutant p53 or KRAS-V12 into A549/IκBαM or H1299/p53Wt cells increased cell cycle progression, anti-apoptosis, chemoresistance, and tumorigenesis due to the accumulated nuclear localization of NF-κB p65, while treatment of H1299/p53Wt/KRAS-V12 with NF-κB inhibitor PS1145 diminished these effects. Thus, we conclude that p53 deficiency and KRAS mutation activate the NF-κB signaling to control chemoresistance and tumorigenesis, and that the status of p53 and KRAS may be considered for the targeted therapy against NF-κB in lung cancer patients.

  2. Regulación del ciclo celular y desarrollo de cáncer: perspectivas terapéuticas Relationship between cell cycle and cancer development: Therapeutical approaches

    Directory of Open Access Journals (Sweden)

    OSCAR PERALTA-ZARAGOZA

    1997-09-01

    Full Text Available Durante el proceso de transformación de las células normales a células cancerosas, ocurren varias alteraciones genéticas. En este proceso se presenta la pérdida del control de los mecanismos de replicación y reparación del ADN, así como de la segregación del material genético. Aunque las células normales tienen estrategias de defensa contra el desarrollo del cáncer, las células tumorales activan diferentes vías de escape que permiten la progresión de la neoplasia. Avances recientes han permitido enfocar la investigación del cáncer hacia la identificación de algunos de sus factores etiológicos. El estudio del ciclo celular y su regulación han permitido conocer cómo la fidelidad y la integridad de la replicación del genoma son mantenidas por las funciones coordinadas de los puntos de control y de los sistemas de reparación del ADN. El funcionamiento adecuado de estos procesos puede ser alterado por mutaciones genéticas. Estos hallazgos sugieren que los mecanismos moleculares de regulación que participan en la transformación celular pueden ser empleados como sistemas potenciales para instrumentar nuevas terapias contra el desarrollo del cáncer.Several genetic alterations occur during the transformation process from normal to tumor cells, that involve the loss of fidelity of processes as replication, reparation, and segregation of the genomic material. Although normal cells have defense mechanisms against cancer progression, in tumor cells different escape pathways are activated leading to tumor progression. Recent advances have permitted cancer research to focus on the identification of some of its etiological factors. The knowledge of cell cycle reveals a precise mechanism achieved by the coordinated interactions and functions of cyclin-dependent kinases, control checkpoint, and repair pathways. Furthermore, it has been demonstrated that this coordinated function can be abrogated by specific genetic changes. These

  3. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  4. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  5. Connecting the nucleolus to the cell cycle and human disease.

    Science.gov (United States)

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.

  6. Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks.

    Science.gov (United States)

    Evelyn, Chris R; Lisabeth, Erika M; Wade, Susan M; Haak, Andrew J; Johnson, Craig N; Lawlor, Elizabeth R; Neubig, Richard R

    2016-05-28

    Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL) and serum response factor (SRF) drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B), which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (DRB) showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.

  7. Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks

    Directory of Open Access Journals (Sweden)

    Chris R. Evelyn

    2016-05-01

    Full Text Available Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL and serum response factor (SRF drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B, which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (DRB showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.

  8. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang F

    2015-01-01

    PC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR, p38 mitogen-activated protein kinase (p38 MAPK, and extracellular signal-regulated kinases 1 and 2 (Erk1/2 but activation of 5'-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1 and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and mechanisms and verify the efficacy and safety of ALS in the treatment of pancreatic cancer.Keywords: alisertib, pancreatic cancer, cell cycle, autophagy, EMT, Sirt1

  9. Antitumor activity of a novel bis-aziridinylnaphthoquinone (AZ4) mediat-ing cell cycle arrest and apoptosis in non-small cell lung cancer cell line NCI-H460

    Institute of Scientific and Technical Information of China (English)

    Kou-gea SHYU; Sheng-tung HUANG; Hsien-shou KUO; Wen-pin CHENG; Yuh-ling LIN

    2007-01-01

    Aim: The cytotoxic activities of a series of bis-aziridinylnaphthoquinone, AZ1 to AZ4, on human lung carcinoma cell lines, H460, and normal lung cells fibroblast cell line, MRC-5, and the mechanisms of H460 cells induced by AZ4 were investigated. Methods: The MTT assay was used to determine the cell proliferation. Cell cycle was analysed by FACS. The activity of caspase 3, 8 and 9was determined by cell-permeable fluorogenic detection system. Western blot assay was used to evaluate the regulation of cyclin B, Cdc-2, p53, p21, and the Bcl-2 protein. Results: AZ1 to AZ4 displayed various cytotoxicity activities against H460 and MRC-5 cells. Compared to those compounds, AZ4 was with the most effective agent among the 5 tested analogues at reducing H460 cell viability with an IC50 value of 1.23 μmol/L; it also exhibited weak cytotoxicity against MRC-5 cells with an IC50 value of 12.7 μmol/L. The results show that growth arrest on the G2-M phase of H460 cells induced by AZ4 for 24 h was discovered, and this might be altered with the reduced Cdc-2 protein expression of 47% at 2.0 μmol/L AZ4, but not with cyclin B protein expression. The AZ4 treated cells were then led to apoptosis after 48 h. This was associated with the activation of apoptotic enzyme caspase 3 and mediated by caspase 8, but not caspase 9 at various concentrations of AZ4 after being cultured for 48 h and 30 h, respectively. The anti-apoptotic protein (Bcl-2)expression in H460 cells altered by 39% with downregulation, and the p53 protein by 25% with upregulation after being cultured with 2.0 μmol/LAZ4 for 48 h. In a time-dependent wanrer, the expression of the p53 and p21 proteins were increased to the maximum at 24 h, and then decreased at 48. Conclusion: AZ4 represents a novel antitumor aziridinylnaphthoquinone with therapeutic potential against the non-small cell lung cancer cells.

  10. The investigational Aurora kinase A inhibitor alisertib (MLN8237 induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li JP

    2015-03-01

    /M phase in MCF7 and MDA-MB-231 cells which was accompanied by the downregulation of cyclin-dependent kinase (CDK1/cell division cycle (CDC 2, CDK2, and cyclin B1 and upregulation of p21 Waf1/Cip1, p27 Kip1, and p53, suggesting that ALS induces G2/M arrest through modulation of p53/p21/CDC2/cyclin B1 pathways. ALS induced mitochondria-mediated apoptosis in MCF7 and MDA-MB-231 cells; ALS significantly decreased the expression of B-cell lymphoma 2 (Bcl-2, but increased the expression of B-cell lymphoma 2-associated X protein (Bax and p53-upregulated modulator of apoptosis (PUMA, and increased the expression of cleaved caspases 3 and 9. ALS significantly increased the expression level of membrane-bound microtubule-associated protein 1 light chain 3 (LC3-II and beclin 1 and induced inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase (MAPK pathways in MCF7 and MDA-MB-231 cells as indicated by their altered phosphorylation, contributing to the pro-autophagic activities of ALS. Furthermore, treatment with wortmannin markedly downregulated ALS-induced p38 MAPK activation and LC3 conversion. In addition, knockdown of the p38 MAPK gene by ribonucleic acid interference upregulated Akt activation and resulted in LC3-II accumulation. These findings indicate that ALS promotes cellular apoptosis and autophagy in breast cancer cells via modulation of p38 MAPK/Akt/ mTOR pathways. Further studies are warranted to further explore the molecular targets of ALS in the treatment of breast cancer.Keywords: ALS, breast cancer, cell cycle, apoptosis, autophagy, p38 MAPK

  11. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  12. Microwave-Assisted Syntheses of Benzimidazole-Containing Selenadiazole Derivatives That Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Activation of the ROS/AKT Pathway.

    Science.gov (United States)

    Liang, Yuanwei; Zhou, Yangliang; Deng, Shulin; Chen, Tianfeng

    2016-10-19

    The use of selenium-containing heterocyclic compounds as potent cancer chemopreventive and chemotherapeutic agents has been well documented by a large number of clinical studies. In this study we developed a new approach to synthesize four benzimidazole-containing selenadiazole derivatives (BSeDs). The method uses a combination of peptide coupling reagents and microwave irradiation. This strategy features milder reaction conditions, higher yields, and shorter reaction times. The synthetic BSeDs were identified as potent antiproliferative agents against the human MCF-7 and MDA-MB-231 breast cancer cell lines. Compounds 1 b (5-(6-methyl-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]selenadiazole), 1 c (5-(6-chloro-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]selenadiazole), and 1 d (5-(6-bromo-1H-benzo[d]imidazol-2-yl)benzo[c][1,2,5]selenadiazole) were found to show greater cytotoxicity against the triple-negative breast cancer cell line MDA-MB-231 than MCF-7, and to exhibit dose-dependent inhibition of cell migration, in which a significant decrease in the zone of cell monolayer wound closure was observed relative to untreated controls. Our results demonstrate that BSeDs can cause cell-cycle arrest and apoptosis in MDA-MB-231 cells by inducing DNA damage, inhibiting protein kinase B (AKT), and activating mitogen-activated protein kinase (MAPK) family members through the overproduction of reactive oxygen species (ROS). Taken together, the results of this study provide a facile microwave-assisted strategy for the synthesis of selenium-containing organic compounds that exhibit a high level of anticancer efficacy.

  13. "Constructing" the Cell Cycle in 3D

    Science.gov (United States)

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  14. Esculetin, a natural coumarin compound, evokes Ca(2+) movement and activation of Ca(2+)-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells.

    Science.gov (United States)

    Chang, Hong-Tai; Chou, Chiang-Ting; Lin, You-Sheng; Shieh, Pochuen; Kuo, Daih-Huang; Jan, Chung-Ren; Liang, Wei-Zhe

    2016-04-01

    Esculetin (6,7-dihydroxycoumarin), a derivative of coumarin compound, is found in traditional medicinal herbs. It has been shown that esculetin triggers diverse cellular signal transduction pathways leading to regulation of physiology in different models. However, whether esculetin affects Ca(2+) homeostasis in breast cancer cells has not been explored. This study examined the underlying mechanism of cytotoxicity induced by esculetin and established the relationship between Ca(2+) signaling and cytotoxicity in human breast cancer cells. The results showed that esculetin induced concentration-dependent rises in the intracellular Ca(2+) concentration ([Ca(2+)]i) in ZR-75-1 (but not in MCF-7 and MDA-MB-231) human breast cancer cells. In ZR-75-1 cells, this Ca(2+) signal response was reduced by removing extracellular Ca(2+) and was inhibited by the store-operated Ca(2+) channel blocker 2-aminoethoxydiphenyl borate (2-APB). In Ca(2+)-free medium, pre-treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) abolished esculetin-induced [Ca(2+)]i rises. Conversely, incubation with esculetin abolished TG-induced [Ca(2+)]i rises. Esculetin induced cytotoxicity that involved apoptosis, as supported by the reduction of mitochondrial membrane potential and the release of cytochrome c and the proteolytic activation of caspase-9/caspase-3, which were partially reversed by pre-chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Moreover, esculetin increased the percentage of cells in G2/M phase and regulated the expressions of p53, p21, CDK1, and cyclin B1. Together, in ZR-75-1 cells, esculetin induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through 2-APB-sensitive store-operated Ca(2+) entry. Furthermore, esculetin activated Ca(2+)-associated mitochondrial apoptotic pathways that involved G2/M cell cycle arrest. Graphical abstract The summary of esculetin

  15. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  16. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells

    NARCIS (Netherlands)

    M. Ansems (Marleen); J.N. Søndergaard (Jonas Nørskov); A.M. Sieuwerts (Anieta); M.W.G. Looman (Maaike W. G.); M. Smid (Marcel); A.M.A. de Graaf (Annemarie M. A.); V. de Weerd (Vanja); M. Zuidscherwoude (Malou); J.A. Foekens (John); J.W.M. Martens (John); G.J. Adema (Gosse J.)

    2015-01-01

    textabstractBreast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prog

  17. DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERalpha-positive breast cancer cells

    NARCIS (Netherlands)

    Ansems, M.; Sondergaard, J.N.; Sieuwerts, A.M.; Looman, M.W.G.; Smid, M.; Graaf, A.M.A. de; Weerd, V. de; Zuidscherwoude, M.; Foekens, J.A.; Martens, J.W.; Adema, G.J.

    2015-01-01

    Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERalpha) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERalpha and as a strong and independent prognost

  18. HSPA6 augments garlic extract-induced inhibition of proliferation, migration, and invasion of bladder cancer EJ cells; Implication for cell cycle dysregulation, signaling pathway alteration, and transcription factor-associated MMP-9 regulation

    Science.gov (United States)

    Hwang, Byungdoo; Noh, Dae-Hwa; Park, Sung Lyea; Kim, Won Tae; Park, Sung-Soo; Kim, Wun-Jae; Moon, Sung-Kwon

    2017-01-01

    Although recent studies have demonstrated the anti-tumor effects of garlic extract (GE), the exact molecular mechanism is still unclear. In this study, we investigated the molecular mechanism associated with the inhibitory action of GE against bladder cancer EJ cell responses. Treatment with GE significantly inhibited proliferation of EJ cells dose-dependently through G2/M-phase cell cycle arrest. This G2/M-phase cell cycle arrest by GE was due to the activation of ATM and CHK2, which appears to inhibit phosphorylation of Cdc25C (Ser216) and Cdc2 (Thr14/Tyr15), this in turn was accompanied by down-regulation of cyclin B1 and up-regulation of p21WAF1. Furthermore, GE treatment was also found to induce phosphorylation of MAPK (ERK1/2, p38MAPK, and JNK) and AKT. In addition, GE impeded the migration and invasion of EJ cells via inhibition of MMP-9 expression followed by decreased binding activities of AP-1, Sp-1, and NF-κB motifs. Based on microarray datasets, we selected Heat shock protein A6 (HSPA6) as the most up-regulated gene responsible for the inhibitory effects of GE. Interestingly, overexpression of HSPA6 gene resulted in an augmentation effect with GE inhibiting proliferation, migration, and invasion of EJ cells. The augmentation effect of HSPA6 was verified by enhancing the induction of G2/M-phase-mediated ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade, phosphorylation of MAPK and AKT signaling, and suppression of transcription factor-associated MMP-9 regulation in response to GE in EJ cells. Overall, our novel results indicate that HSPA6 reinforces the GE-mediated inhibitory effects of proliferation, migration, and invasion of EJ cells and may provide a new approach for therapeutic treatment of malignancies. PMID:28187175

  19. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade

    OpenAIRE

    Yong-sen Jia; Xue-qin Hu; Hegyi Gabriella; Li-juan Qin; Nora Meggyeshazi

    2015-01-01

    Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH) inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined...

  20. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle.

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh

    Full Text Available The cell cycle is a ubiquitous, multi-step process that is essential for growth and proliferation of cells. The role of membrane lipids in cell cycle regulation is not explored well, although a large number of cytoplasmic and nuclear regulators have been identified. We focus in this work on the role of membrane cholesterol in cell cycle regulation. In particular, we have explored the stringency of the requirement of cholesterol in the regulation of cell cycle progression. For this purpose, we utilized distal and proximal inhibitors of cholesterol biosynthesis, and monitored their effect on cell cycle progression. We show that cholesterol content increases in S phase and inhibition of cholesterol biosynthesis results in cell cycle arrest in G1 phase under certain conditions. Interestingly, G1 arrest mediated by cholesterol biosynthesis inhibitors could be reversed upon metabolic replenishment of cholesterol. Importantly, our results show that the requirement of cholesterol for G1 to S transition is absolute, and even immediate biosynthetic precursors of cholesterol, differing with cholesterol merely in a double bond, could not replace cholesterol for reversing the cell cycle arrest. These results are useful in the context of diseases, such as cancer and Alzheimer's disease, that are associated with impaired cholesterol biosynthesis and homeostasis.

  1. Cell cycle progression score is a marker for five-year lung cancer-specific mortality risk in patients with resected stage I lung adenocarcinoma

    Science.gov (United States)

    Eguchi, Takashi; Kadota, Kyuichi; Chaft, Jamie; Evans, Brent; Kidd, John; Tan, Kay See; Dycoco, Joe; Kolquist, Kathryn; Davis, Thaylon; Hamilton, Stephanie A.; Yager, Kraig; Jones, Joshua T.; Travis, William D.; Jones, David R.; Hartman, Anne-Renee; Adusumilli, Prasad S.

    2016-01-01

    Purpose The goals of our study were (a) to validate a molecular expression signature (cell cycle progression [CCP] score and molecular prognostic score [mPS; combination of CCP and pathological stage {IA or IB}]) that identifies stage I lung adenocarcinoma (ADC) patients with a higher risk of cancer-specific death following curative-intent surgical resection, and (b) to determine whether mPS stratifies prognosis within stage I lung ADC histological subtypes. Methods Formalin-fixed, paraffin-embedded stage I lung ADC tumor samples from 1200 patients were analyzed for 31 proliferation genes by quantitative RT-PCR. Prognostic discrimination of CCP score and mPS was assessed by Cox proportional hazards regression, using 5-year lung cancer–specific mortality as the primary outcome. Results In multivariable analysis, CCP score was a prognostic marker for 5-year lung cancer–specific mortality (HR=1.6 per interquartile range; 95% CI, 1.14–2.24; P=0.006). In a multivariable model that included mPS instead of CCP, mPS was a significant prognostic marker for 5-year lung cancer–specific mortality (HR=1.77; 95% CI, 1.18–2.66; P=0.006). Five-year lung cancer–specific survival differed between low-risk and high-risk mPS groups (96% vs 81%; P<0.001). In patients with intermediate-grade lung ADC of acinar and papillary subtypes, high mPS was associated with worse 5-year lung cancer–specific survival (P<0.001 and 0.015, respectively), compared with low mPS. Conclusion This study validates CCP score and mPS as independent prognostic markers for lung cancer–specific mortality and provides quantitative risk assessment, independent of known high-risk features, for stage I lung ADC patients treated with surgery alone. PMID:27153551

  2. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism.

    Science.gov (United States)

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur; Rizvi, M Moshahid Alam; Tabish, Mohammad

    2015-12-01

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we have shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS.

  3. The circadian clock and cell cycle: interconnected biological circuits.

    Science.gov (United States)

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-12-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the 'gating' controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping.

  4. Delayed cell cycle progression from SEPW1 depletion is p53- and p21-dependent in MCF-7 breast cancer cells

    Science.gov (United States)

    Selenium (Se) is an essential redox-active element with close connections to cancer. Most of Se’s biological functions have been attributed to the antioxidant properties of Se-containing proteins. The relative contribution of selenoproteins and small Se compounds in cancer protection is a matter of ...

  5. Fission Yeast Cell Cycle Synchronization Methods.

    Science.gov (United States)

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells.

  6. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.

    Science.gov (United States)

    Sajnani, Karishma; Islam, Farhadul; Smith, Robert Anthony; Gopalan, Vinod; Lam, Alfred King-Yin

    2017-04-01

    Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis. Mutations in genes encoding aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, and citrate synthase are noted in many cancers. Abnormalities of Krebs cycle enzymes cause ectopic production of Krebs cycle intermediates (oncometabolites) such as 2-hydroxyglutarate, and citrate. These oncometabolites stabilize hypoxia inducible factor 1 (HIF1), nuclear factor like 2 (Nrf2), inhibit p53 and prolyl hydroxylase 3 (PDH3) activities as well as regulate DNA/histone methylation, which in turn activate cell growth signalling. They also stimulate increased glutaminolysis, glycolysis and production of reactive oxygen species (ROS). Additionally, genetic alterations in Krebs cycle enzymes are involved with increased fatty acid β-oxidations and epithelial mesenchymal transition (EMT) induction. These altered phenomena in cancer could in turn promote carcinogenesis by stimulating cell proliferation and survival. Overall, epigenetic and genetic changes of Krebs cycle enzymes lead to the production of oncometabolite intermediates, which are important driving forces of cancer pathogenesis and progression. Understanding and applying the knowledge of these mechanisms opens new therapeutic options for patients with cancer.

  7. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  8. Overexpression of cyclin Y in non-small cell lung cancer is associated with cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.

  9. Expression of cell cycle bio-markers and telomere length in papillary thyroid carcinoma: a comparative study between radiation-associated and spontaneous cancers

    Energy Technology Data Exchange (ETDEWEB)

    Achille, M.; Boukheris, H.; Caillou, B.; Talbot, M.; De Vathaire, F.; Sabatier, L.; Desmaze, C.; Schlumberger, M.; Soria, J.C. [Laboratoire de Radiobiologie et Oncologie, DSV/DRR/Commissariat a l' Energie Atomique, Villejuif (France)

    2009-07-01

    Objective: Radiation exposure during childhood is the only well-established risk factor for papillary thyroid carcinoma (PTC). To better define the biologic profile of radiation-induced and sporadic PTC, we compared in these two groups of PTC the expression of cell cycle regulatory proteins and telomere length. Methods: Cell cycle markers (cyclin A, B1, D1, E, and Ki67) were evaluated on 100 PTC specimens (26 radiation-induced and 74 sporadic PTCs). The expression of cell cycle regulators was studied using immunohistochemistry; telomere length heterogeneity was studied using in situ hybridization in a subset of 16 formalin-fixed samples (8 radiation-induced and 8 sporadic PTCs). Results: At multivariate analysis, only cytoplasmic cyclin E staining was over expressed in sporadic cases (P = 0.006). The other cell cycle markers and telomere length did not differ significantly between sporadic PTC and radiation-induced PTC. Conclusions: These markers cannot be used to differentiate radiation-induced from sporadic PTCs. (authors)

  10. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  11. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade

    Directory of Open Access Journals (Sweden)

    Yong-sen Jia

    2015-01-01

    Full Text Available Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P<0.05. In vivo, TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P<0.05. Conclusion. TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  12. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade.

    Science.gov (United States)

    Jia, Yong-Sen; Hu, Xue-Qin; Gabriella, Hegyi; Qin, Li-Juan; Meggyeshazi, Nora

    2015-01-01

    Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH) inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  13. Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

    Science.gov (United States)

    Scotti, Claudia; Sommi, Patrizia; Pasquetto, Maria Valentina; Cappelletti, Donata; Stivala, Simona; Mignosi, Paola; Savio, Monica; Chiarelli, Laurent Roberto; Valentini, Giovanna; Bolanos-Garcia, Victor M.; Merrell, Douglas Scott; Franchini, Silvia; Verona, Maria Luisa; Bolis, Cristina; Solcia, Enrico; Manca, Rachele; Franciotta, Diego; Casasco, Andrea; Filipazzi, Paola; Zardini, Elisabetta; Vannini, Vanio

    2010-01-01

    Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application. PMID:21085483

  14. Studies on regulation of the cell cycle in fission yeast.

    Directory of Open Access Journals (Sweden)

    Miroslava Požgajová

    2015-05-01

    Full Text Available All living organisms including plants and animals are composed of millions of cells. These cells perform different functions for the organism although they possess the same chromosomes and carry the same genetic information. Thus, to be able to understand multicellular organism we need to understand the life cycle of individual cells from which the organism comprises. The cell cycle is the life cycle of a single cell in the plant or animal body. It involves series of events in which components of the cell doubles and afterwards equally segregate into daughter cells. Such process ensures growth of the organism, and specialized reductional cell division which leads to production of gamets, assures sexual reproduction. Cell cycle is divided in the G1, S, G2 and M phase. Two gap-phases (G1 and G2 separate S phase (or synthesis and M phase which stays either for mitosis or meiosis. Essential for normal life progression and reproduction is correct chromosome segregation during mitosis and meiosis. Defects in the division program lead to aneuploidy, which in turn leads to birth defects, miscarriages or cancer. Even thou, researchers invented much about the regulation of the cell cycle, there is still long way to understand the complexity of the regulatory machineries that ensure proper segregation of chromosomes. In this paper we would like to describe techniques and materials we use for our studies on chromosome segregation in the model organism Schizosaccharomyces pombe.

  15. Cell-cycle inhibition by Helicobacter pylori L-asparaginase.

    Directory of Open Access Journals (Sweden)

    Claudia Scotti

    Full Text Available Helicobacter pylori (H. pylori is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application.

  16. Ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Li Li; George G Chen; Ying-nian Lu; Yi Liu; Ke-feng Wu; Xian-ling Gong; Zhan-ping Gou; Ming-yue Li; Nian-ci Liang

    2012-01-01

    Objective:To examine the apoptotic effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F),a compound isolated from Pteris semipinnata L(PsL),in human lung cancer A549 cells.Methods:A549 cells were treated with 5F (0-80 μg/ml) for different time periods.Cytotoxicity was examined using a MTT method.Cell cycle was examined using propidium iodide staining.Apoptosis was examined using Hoechst 33258 staining,enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis.Expression of representative apoptosis-related proteins was evaluated by Western blot analysis.Reactive oxygen species (ROS) level was measured using standard protocols.Potential interaction of 5F with cisplatin was also examined.Results:5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner.5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase.Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis.The expression of p21 was increased.5F exposure also increased Bax expression,release of cytochrome c and apoptosis inducing factor (AIF),and activation of caspase-3.5F significantly sensitized the cells to cisplatin toxicity Interestingly,treatment with 5F did not increase ROS,but reduced ROS production induced by cisplatin.Conclusion:SF could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

  17. Cell cycle gene expression under clinorotation

    Science.gov (United States)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  18. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Directory of Open Access Journals (Sweden)

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  19. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth.

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T J; Levi, Francis; Rand, David A; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  20. EVI1 targets ΔNp63 and upregulates the cyclin dependent kinase inhibitor p21 independent of p53 to delay cell cycle progression and cell proliferation in colon cancer cells.

    Science.gov (United States)

    Nayak, Kasturi Bala; Kuila, Nivedita; Das Mohapatra, Alok; Panda, Aditya K; Chakraborty, Soumen

    2013-08-01

    Several lines of evidence suggest that specific transcriptional events are involved in cell cycle, proliferation and differentiation processes; however, their deregulation by proto-oncogenes are involved in the development of leukemia and tumors. One such proto-oncogene is ecotropic viral integration site I which can differentially effect cell cycle progression and proliferation, in cell types of different origin. Our data for the first time shows that ecotropic viral integration site I binds to ΔNp63 promoter element directly and down regulates its expression. Down regulation of ΔNp63 induces the expression of p21 in HT-29 cells and also in colon carcinoma cells that do not express p53 including patient samples expressing low level of p53, that eventually delay cell cycle progression at G0/G1 phase. Concomitant silencing of ecotropic viral integration site I from the cells or introduction of ΔNp63 to the cells significantly rescued this phenotype, indicating the growth defect induced by ΔNp63 deficiency to be, at least in part, attributable to ecotropic viral integration site I function. The mutual regulation between ecotropic viral integration site I and ΔNp63 may constitute a novel axis which might affect the downstream pathways in cells that do not express functional p53.

  1. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  2. Differential effects of resveratrol and its methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells

    Science.gov (United States)

    Stilbenes are a group of phytochemicals known as phytoalexins that become activated when plants are stressed. These compounds exist in many foods and are widely consumed. Resveratrol is a grape-derived phytoalexin notable for a wide range of health promoting activities, including anti-cancer propert...

  3. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  4. High-Cycle-Life Lithium Cell

    Science.gov (United States)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  5. Microfluidic Cell Cycle Analysis of Spread Cells by DAPI Staining

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-01-01

    Full Text Available Single-cell cell cycle analysis is an emerging technique that requires detailed exploration of the image analysis process. In this study, we established a microfluidic single-cell cell cycle analysis method that can analyze cells in small numbers and in situ on a microfluidic chip. In addition, factors that influenced the analysis were carefully investigated. U87 or HeLa cells were seeded and attached to microfluidic channels before measurement. Cell nucleic DNA was imaged by 4′-6-diamidino-2-phenylindole (DAPI staining under a fluorescent microscope and subsequently fluorescent intensities of the cell nuclei DNA were converted to depict histograms for cell cycle phases. DAPI concentration, microscopic magnification, exposure time and cell number were examined for optimal cell cycle analysis conditions. The results showed that as few as a few hundred cells could be measured by DAPI staining in the range of 0.4–0.6 μg/mL to depict histograms with typical cell cycle phase distribution. Microscopic magnification during image acquisition, however, could distort the phase distribution. Exposure time did not significantly affect the cell cycle analysis. Furthermore, cell cycle inhibitor rapamycin treatment changed the cell cycle phase distribution as expected. In conclusion, a method for microfluidic single-cell cell cycle analysis of spread cells in situ was developed. Factors such as dye concentration and microscopic magnification had more influence on cell cycle phase distribution. Further studies will focus on detail differentiation of cell cycle phases and the application of such a method for biological meanings.

  6. Nucleosome architecture throughout the cell cycle.

    Science.gov (United States)

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  7. 辣椒素诱导人膀胱癌RT4细胞细胞周期阻滞的实验观察%Induction of cell cycle arrest in bladder cancer RT4 cells by capsaicin

    Institute of Scientific and Technical Information of China (English)

    黎勤; 王行环; 扬中华; 王怀鹏; 杨志伟; 李世文; 郑新民

    2010-01-01

    Objective To study the effects of capsaicin on the growth of bladder cancer RT4 cell and its potential mechanism. Methods Cell counting kit-8 (CCK-8) assay and flow cytometry were employed to observe the effects of capsaicin (50, 100, 150,200, 250 μmol/L) on cell growth, cell cycle and apoptosis. Capsaicin (0μmol/L) was used as a control. The effects of mRNA and protein of transient receptor potential cation channel subfamily V 1 (TRPV1) on RT4 cells were tested by RT-PCR and immunofluoresence respectively. And the expressions of cell cycle protein P53, P21, CDK2 were detected by Western blot after the treatment of capsaicin. Results 100 μmol/L capsaicin significantly decreased the viability of RT4 cell [82.0% ± 6. 2% vs 100. 0% ± 12.4% ( control ), P = 0. 036] while the cell viability was 7.8% ±2. 9% at 250 μmol/L (P =0. 000). It was in a dose-dependent manner. On the other hand,capsaicin induced the cell cycle arrest of bladder cancer RT4 cells G0/G1 phase in a dose-dependent way.The cell proportion of G0/G1 phase in the control was 37.4% ±5.6% ,however, it was 72.4% ±5. 3% at 250 μ mol/L (P =0. 000). It was showed that TRPV1 mRNA and protein were expressed in RT4 cells.After a 48-hour treatment with capsaicin, the expressions of P53 and P21 were up-regulated in contrary to the expression of CDK2. Conclusion Capsaicin induces the cell cycle arrest of bladder cancer RT4 cells G0/G1 phase and growth inhibition via TRPV1 receptor by modulating the expression of P53, P21 and CDK2.%目的 了解辣椒素对膀胱癌RT4细胞生长的影响及可能机制.方法 采用细胞计数kit-8(CCK-8)试剂盒观察辣椒素(50、100、150、200、250μmol/L)对膀胱癌RT4细胞生长的影响,以辣椒素(0 μmol/L)为对照组;流式细胞术检测细胞周期和凋亡;逆转录-聚合酶链式反应(RT-PCR)和免疫荧光检测瞬时受体电位香草酸亚型1(TRPV1)的表达;Western印迹检测细胞周期蛋白P53、P21、细胞周期依赖性激酶(CDK)2

  8. Coupling between the circadian clock and cell cycle oscillators : implication for healthy cells and malignant growth

    OpenAIRE

    Feillet, Céline‏; Horst, Gijsbertus Theodorus Johannes van der‏; Lévi, Francis A.; Rand, D. A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two process...

  9. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja;

    2013-01-01

    -3p in a second independent cohort of 43 CRC patients, using single TaqMan® microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified...... as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel...

  10. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    Science.gov (United States)

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  11. Cell "circadian" cycle: new role for mammalian core clock genes.

    Science.gov (United States)

    Borgs, Laurence; Beukelaers, Pierre; Vandenbosch, Renaud; Belachew, Shibeshih; Nguyen, Laurent; Malgrange, Brigitte

    2009-03-15

    In mammals, 24 hours rhythms are organized as a biochemical network of molecular clocks that are operative in all tissues, with the master clock residing in the hypothalamic suprachiasmatic nucleus (SCN). The core pacemakers of these clocks consist of auto-regulatory transcriptional/post-transcriptional feedback loops. Several lines of evidence suggest the existence of a crosstalk between molecules that are responsible for the generation of circadian rhythms and molecules that control the cell cycle progression. In addition, highly specialized cell cycle checkpoints involved in DNA repair after damage seem also, at least in part, mediated by clock proteins. Recent studies have also highlighted a putative connection between clock protein dysfunction and cancer progression. This review discusses the intimate relation that exists between cell cycle progression and components of the circadian machinery.

  12. Effect on growth and cell cycle kinetics of estradiol and tamoxifen on MCF-7 human breast cancer cells grown in vitro and in nude mice

    DEFF Research Database (Denmark)

    Brünner, N; Bronzert, D; Vindeløv, L L

    1989-01-01

    determined by repeated flow cytometric DNA analyses in vitro and in vivo and by the technique of labeled mitosis in nude mouse-grown tumors. Under in vitro conditions, estradiol induced a pronounced increase in S-phase fraction and cell number. TAM inhibited growth of MCF-7 cells with a concomitant increase...... cytometric DNA analysis and percentage of labeled mitosis investigations revealed no significant differences in the proliferation kinetics of TAM-treated and control tumors. Calculating the cell loss factor demonstrated an increase from 69% in control tumors to 107% in TAM-treated tumors. These experiments...

  13. Cell cycle features of primate embryonic stem cells.

    Science.gov (United States)

    Fluckiger, Anne-Catherine; Marcy, Guillaume; Marchand, Mélanie; Négre, Didier; Cosset, François-Loïc; Mitalipov, Shoukhrat; Wolf, Don; Savatier, Pierre; Dehay, Colette

    2006-03-01

    Using flow cytometry measurements combined with quantitative analysis of cell cycle kinetics, we show that rhesus monkey embryonic stem cells (ESCs) are characterized by an extremely rapid transit through the G1 phase, which accounts for 15% of the total cell cycle duration. Monkey ESCs exhibit a non-phasic expression of cyclin E, which is detected during all phases of the cell cycle, and do not growth-arrest in G1 after gamma-irradiation, reflecting the absence of a G1 checkpoint. Serum deprivation or pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) did not result in any alteration in the cell cycle distribution, indicating that ESC growth does not rely on mitogenic signals transduced by the Ras/Raf/MEK pathway. Taken together, these data indicate that rhesus monkey ESCs, like their murine counterparts, exhibit unusual cell cycle features in which cell cycle control mechanisms operating during the G1 phase are reduced or absent.

  14. Cell cycle activation by plant parasitic nematodes

    NARCIS (Netherlands)

    Goverse, A.; Almeida Engler, de J.; Verhees, J.; Krol, van der S.; Helder, J.; Gheysen, G.

    2000-01-01

    Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plan

  15. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    Science.gov (United States)

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  16. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.

  17. Visualizing cell-cycle kinetics after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci).

    Science.gov (United States)

    Goto, Tatsuaki; Kaida, Atsushi; Miura, Masahiko

    2015-12-10

    Hypoxia induces G1 arrest in many cancer cell types. Tumor cells are often exposed to hypoxia/reoxygenation, especially under acute hypoxic conditions in vivo. In this study, we investigated cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). Hypoxic treatment halted cell-cycle progression during mid-S to G2 phase, as determined by the cell cycle-regulated E3 ligase activities of SCF(Skp2) and APC/C(Cdh1), which are regulators of the Fucci probes; however, the DNA content of the arrested cells was equivalent to that in G1 phase. After reoxygenation, time-lapse imaging and DNA content analysis revealed that all cells reached G2 phase, and that Fucci fluorescence was distinctly separated into two fractions 24h after reoxygenation: red cells that released from G2 arrest after repairing DNA double-strand breaks (DSBs) exhibited higher clonogenic survival, whereas most cells that stayed green contained many DSBs and exhibited lower survival. We conclude that hypoxia disrupts coordination of DNA synthesis and E3 ligase activities associated with cell-cycle progression, and that DSB repair could greatly influence cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation.

  18. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  19. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network.

    Science.gov (United States)

    Ramos-Montoya, Antonio; Lamb, Alastair D; Russell, Roslin; Carroll, Thomas; Jurmeister, Sarah; Galeano-Dalmau, Nuria; Massie, Charlie E; Boren, Joan; Bon, Helene; Theodorou, Vasiliki; Vias, Maria; Shaw, Greg L; Sharma, Naomi L; Ross-Adams, Helen; Scott, Helen E; Vowler, Sarah L; Howat, William J; Warren, Anne Y; Wooster, Richard F; Mills, Ian G; Neal, David E

    2014-05-01

    Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies.

  20. HES6 drives a critical AR transcriptional programme to induce castration-resistant prostate cancer through activation of an E2F1-mediated cell cycle network

    Science.gov (United States)

    Ramos-Montoya, Antonio; Lamb, Alastair D; Russell, Roslin; Carroll, Thomas; Jurmeister, Sarah; Galeano-Dalmau, Nuria; Massie, Charlie E; Boren, Joan; Bon, Helene; Theodorou, Vasiliki; Vias, Maria; Shaw, Greg L; Sharma, Naomi L; Ross-Adams, Helen; Scott, Helen E; Vowler, Sarah L; Howat, William J; Warren, Anne Y; Wooster, Richard F; Mills, Ian G; Neal, David E

    2014-01-01

    Castrate-resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c-Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co-factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up-regulated in aggressive human prostate cancer and drives castration-resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6-associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient-specific therapeutic strategies. PMID:24737870

  1. Analysis of cell-cycle regulation following exposure of lung-derived cells to γ-rays

    Science.gov (United States)

    Trani, D.; Lucchetti, C.; Cassone, M.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Acute exposure of mammalian cells to ionizing radiation results in a delay of cell-cycle progression and/or augmentation of apoptosis. Following ionizing radiation-induced DNA damage, cell-cycle arrest in the G1- or G2-phase of the cell-cycle prevents or delays DNA replication or mitosis, providing time for the DNA repair machinery to exert its function. Deregulation or failing of cell-cycle checkpoints and/or DNA repair mechanisms may lead normal cells bearing chromosome mutations to acquire neoplastic autonomy, which in turn can trigger the onset of cancer. Existing studies have focused on the impact of p53 status on the radiation response of lung cancer (LC) cell lines in terms of both cell-cycle regulation and apoptosis, while no comparative studies have been performed on the radiation response of lung derived normal and cancerous epithelial cells. To investigate the radiation response in normal and cancerous phenotypes, along with the role and impact of p53 status, and possible correlations with pRb/p105 or other proteins involved in carcinogenesis and cell-cycle regulation, we selected two lung-derived epithelial cell lines, one normal (NL20, p53 wild-type) and one non-small cell lung cancer (NSCLC), H358 (known to be p53-deficient). We compared the levels of γ-induced cell proliferation ability, cell-cycle arrest, apoptotic index, and expression levels of cell-cycle regulating and regulated proteins. The different cell sensitivity, apoptotic response and protein expression profiles resulting from our study for NL20 and H358 cells suggest that still unknown mechanisms involving p53, pRb/p105 and their target molecules might play a pivotal role in determining cell sensitivity and resistance upon exposure to ionizing radiation.

  2. Acanthamoeba induces cell-cycle arrest in host cells.

    Science.gov (United States)

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Kim, Kwang Sik; Stins, Monique; Khan, Naveed Ahmed

    2004-08-01

    Acanthamoeba can cause fatal granulomatous amoebic encephalitis (GAE) and eye keratitis. However, the pathogenesis and pathophysiology of these emerging diseases remain unclear. In this study, the effects of Acanthamoeba on the host cell cycle using human brain microvascular endothelial cells (HBMEC) and human corneal epithelial cells (HCEC) were determined. Two isolates of Acanthamoeba belonging to the T1 genotype (GAE isolate) and T4 genotype (keratitis isolate) were used, which showed severe cytotoxicity on HBMEC and HCEC, respectively. No tissue specificity was observed in their ability to exhibit binding to the host cells. To determine the effects of Acanthamoeba on the host cell cycle, a cell-cycle-specific gene array was used. This screened for 96 genes specific for host cell-cycle regulation. It was observed that Acanthamoeba inhibited expression of genes encoding cyclins F and G1 and cyclin-dependent kinase 6, which are proteins important for cell-cycle progression. Moreover, upregulation was observed of the expression of genes such as GADD45A and p130 Rb, associated with cell-cycle arrest, indicating cell-cycle inhibition. Next, the effect of Acanthamoeba on retinoblastoma protein (pRb) phosphorylation was determined. pRb is a potent inhibitor of G1-to-S cell-cycle progression; however, its function is inhibited upon phosphorylation, allowing progression into S phase. Western blotting revealed that Acanthamoeba abolished pRb phosphorylation leading to cell-cycle arrest at the G1-to-S transition. Taken together, these studies demonstrated for the first time that Acanthamoeba inhibits the host cell cycle at the transcriptional level, as well as by modulating pRb phosphorylation using host cell-signalling mechanisms. A complete understanding of Acanthamoeba-host cell interactions may help in developing novel strategies to treat Acanthamoeba infections.

  3. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  4. Cell cycle phase regulates glucocorticoid receptor function.

    Directory of Open Access Journals (Sweden)

    Laura Matthews

    Full Text Available The glucocorticoid receptor (GR is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1. Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G(1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase. The impact of cell cycle-driven GR trafficking on a panel of glucocorticoid actions was profiled. In G2/M-enriched cells there was marked prolongation of glucocorticoid-induced ERK activation. This was accompanied by DNA template-specific, ligand-independent GR transactivation. Using chimeric and domain-deleted receptors we demonstrate that this transactivation effect is mediated by the AF1 transactivation domain. AF-1 harbours multiple phosphorylation sites, which are consensus sequences for kinases including CDKs, whose activity changes during the cell cycle. In G2/M there was clear ligand independent induction of GR phosphorylation on residues 203 and 211, both of which are phosphorylated after ligand activation. Ligand-independent transactivation required induction of phospho-S211GR but not S203GR, thereby directly linking cell cycle driven GR modification with altered GR function. Cell cycle phase therefore regulates GR localisation and post-translational modification which selectively impacts GR activity. This suggests that cell cycle phase is an important determinant in the cellular response to Gc, and that mitotic index contributes to tissue Gc sensitivity.

  5. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    Science.gov (United States)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  6. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    Science.gov (United States)

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  7. Prognostic Importance of Cell Cycle Regulators Cyclin D1 (CCND1) and Cyclin-Dependent Kinase Inhibitor 1B (CDKN1B/p27) in Sporadic Gastric Cancers

    Science.gov (United States)

    Minarikova, Petra; Halkova, Tereza; Belsanova, Barbora; Tuckova, Inna; Belina, Frantisek; Dusek, Ladislav; Zavoral, Miroslav

    2016-01-01

    Background. Gastric cancer is known for a notable variety in the course of the disease. Clinical factors, such as tumor stage, grade, and localization, are key in patient survival. It is expected that molecular factors such as somatic mutations and gene amplifications are also underlying tumor biological behavior and may serve as factors for prognosis estimation. Aim. The purpose of this study was to examine gene amplifications from a panel of genes to uncover potential prognostic marker candidates. Methods. A panel of gene amplifications including 71 genes was tested by multiplex ligation-dependent probe amplification (MLPA) technique in 76 gastric cancer samples from a Caucasian population. The correlation of gene amplification status with patient survival was determined by the Kaplan-Meier method. Results. The amplification of two cell cycle regulators, CCND1 and CDKN1B, was identified to have a negative prognostic role. The medial survival of patients with gastric cancer displaying amplification compared to patients without amplification was 192 versus 725 days for CCND1 (P = 0.0012) and 165 versus 611 days for CDKN1B (P = 0.0098). Conclusion. Gene amplifications of CCND1 and CDKN1B are potential candidates to serve as prognostic markers for the stratification of patients based on the estimate of survival in the management of gastric cancer patients.

  8. Effect of Docosahexaenoic Acid on Cell Cycle Pathways in Breast Cell Lines With Different Transformation Degree.

    Science.gov (United States)

    Rescigno, Tania; Capasso, Anna; Tecce, Mario Felice

    2016-06-01

    n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in fish, have been shown to affect development and progression of some types of cancer, including breast cancer. The aim of our study was to further analyze and clarify the effects of these nutrients on the molecular mechanisms underlying breast cancer. Following treatments with DHA we examined cell viability, death, cell cycle, and some molecular effects in breast cell lines with different transformation, phenotypic, and biochemical characteristics (MCF-10A, MCF-7, SK-BR-3, ZR-75-1). These investigations showed that DHA is able to affect cell viability, proliferation, and cell cycle progression in a different way in each assayed breast cell line. The activation of ERK1/2 and STAT3 pathways and the expression and/or activation of molecules involved in cell cycle regulation such as p21(Waf1/Cip1) and p53, are very differently regulated by DHA treatments in each cell model. DHA selectively: (i) arrests non tumoral MCF-10A breast cells in G0 /G1 cycle phase, activating p21(Waf1/Cip1) , and p53, (ii) induces to death highly transformed breast cells SK-BR-3, reducing ERK1/2 and STAT3 phosphorylation and (iii) only slightly affects each analyzed process in MCF-7 breast cell line with transformation degree lower than SK-BR-3 cells. These findings suggest a more relevant inhibitory role of DHA within early development and late progression of breast cancer cell transformation and a variable effect in the other phases, depending on individual molecular properties and degree of malignancy of each clinical case.

  9. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle.

    Directory of Open Access Journals (Sweden)

    Wohn-Jenn Leu

    Full Text Available In the past decade, there has been a profound increase in the number of studies revealing that cardenolide glycosides display inhibitory activity on the growth of human cancer cells. The use of potential cardenolide glycosides may be a worthwhile approach in anticancer research. Reevesioside A, a cardenolide glycoside isolated from the root of Reevesia formosana, displayed potent anti-proliferative activity against human hormone-refractory prostate cancers. A good correlation (r² = 0.98 between the expression of Na⁺/K⁺-ATPase α₃ subunit and anti-proliferative activity suggested the critical role of the α₃ subunit. Reevesioside A induced G1 arrest of the cell cycle and subsequent apoptosis in a thymidine block-mediated synchronization model. The data were supported by the down-regulation of several related cell cycle regulators, including cyclin D1, cyclin E and CDC25A. Reevesioside A also caused a profound decrease of RB phosphorylation, leading to an increased association between RB and E2F1 and the subsequent suppression of E2F1 activity. The protein and mRNA levels of c-myc, which can activate expression of many downstream cell cycle regulators, were dramatically inhibited by reevesioside A. Transient transfection of c-myc inhibited the down-regulation of both cyclin D1 and cyclin E protein expression to reevesioside A action, suggesting that c-myc functioned as an upstream regulator. Flow cytometric analysis of JC-1 staining demonstrated that reevesioside A also induced the significant loss of mitochondrial membrane potential. In summary, the data suggest that reevesioside A inhibits c-myc expression and down-regulates the expression of CDC25A, cyclin D1 and cyclin E, leading to a profound decrease of RB phosphorylation. G1 arrest is, therefore, induced through E2F1 suppression. Consequently, reevesioside A causes mitochondrial damage and an ultimate apoptosis in human hormone-refractory prostate cancer cells.

  10. Quantification of nanoscale nuclear refractive index changes during the cell cycle

    Science.gov (United States)

    Bista, Rajan K.; Uttam, Shikhar; Wang, Pin; Staton, Kevin; Choi, Serah; Bakkenist, Christopher J.; Hartman, Douglas J.; Brand, Randall E.; Liu, Yang

    2011-07-01

    Intrigued by our recent finding that the nuclear refractive index is significantly increased in malignant cells and histologically normal cells in clinical histology specimens derived from cancer patients, we sought to identify potential biological mechanisms underlying the observed phenomena. The cell cycle is an ordered series of events that describes the intervals of cell growth, DNA replication, and mitosis that precede cell division. Since abnormal cell cycles and increased proliferation are characteristic of many human cancer cells, we hypothesized that the observed increase in nuclear refractive index could be related to an abundance or accumulation of cells derived from cancer patients at a specific point or phase(s) of the cell cycle. Here we show that changes in nuclear refractive index of fixed cells are seen as synchronized populations of cells that proceed through the cell cycle, and that increased nuclear refractive index is strongly correlated with increased DNA content. We therefore propose that an abundance of cells undergoing DNA replication and mitosis may explain the increase in nuclear refractive index observed in both malignant and histologically normal cells from cancer patients. Our findings suggest that nuclear refractive index may be a novel physical parameter for early cancer detection and risk stratification.

  11. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro.

    Science.gov (United States)

    Huang, Shujuan; Wang, Juan; Xing, Lingxiao; Shen, Haitao; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2014-04-01

    Sterigmatocystin (ST) is a carcinogenic mycotoxin that is commonly found in human food, animal feed and in the indoor environment. Although the correlation between ST exposure and lung cancer has been widely reported in many studies, the cytotoxicity of ST on human pulmonary cells is not yet fully understood. In the current study, we found that ST could induce DNA double-strand breaks in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells). In addition, the effects of ST on cell cycle arrest were complex and dependent on the tested ST concentration and cell type. Low concentrations of ST arrested cells in the G2/M phase in BEAS-2B cells and in the S phase in A549 cells, while at high concentration both cells lines were arrested in S and G2/M phases. Furthermore, we observed that the modulation of cyclins and CDK expression showed concomitant changes with cell cycle arrest upon ST exposure in BEAS-2B and A549 cells. In conclusion, ST induced DNA damage and affected key proteins involved in cell cycle regulation to trigger genomic instability, which may be a potential mechanism underlying the developmental basis of lung carcinogenesis.

  12. Differential expression and alternative splicing of cell cycle genes in imatinib-treated K562 cells.

    Science.gov (United States)

    Liu, Jing; Lin, Jin; Huang, Lin-Feng; Huang, Bo; Xu, Yan-Mei; Li, Jing; Wang, Yan; Zhang, Jing; Yang, Wei-Ming; Min, Qing-Hua; Wang, Xiao-Zhong

    2015-09-01

    Cancer progression often involves the disorder of the cell cycle, and a number of effective chemotherapeutic drugs have been shown to induce cell cycle arrest. The purpose of this study was to comprehensively investigate the effects of imatinib on the expression profile of cell cycle genes in the chronic myeloid leukemia (CML) K562 cell line. In addition, we also investigated alternative splicing of the cell cycle genes affected by imatinib, since an important relationship has been shown to exist between RNA splicing and cell cycle progression. Exon array analysis was performed using total RNA purified from normal and imatinib-treated K562 cells. We identified 185 differentially expressed genes and 277 alternative splicing events between the two cell groups. A detailed analysis by reverse transcription-PCR (RT-PCR) of key genes confirmed the experimental results of the exon array. These results suggested that treatment of K562 cells with imatinib shifts the expression and alternative splicing profiles of several cell cycle-related genes. Importantly, these findings may help improve imatinib treatment strategies in patients with CML and may be useful for imatinib resistance research and CML drug development.

  13. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  14. MFSD2A is a novel lung tumor suppressor gene modulating cell cycle and matrix attachment

    Directory of Open Access Journals (Sweden)

    Shames David S

    2010-03-01

    Full Text Available Abstract Background MFSD2A (major facilitator superfamily domain containing 2 gene maps on chromosome 1p34 within a linkage disequilibrium block containing genetic elements associated with progression of lung cancer. Results Here we show that MFSD2A expression is strongly downregulated in non-small cell lung cancer cell lines of different histotypes and in primary lung adenocarcinomas. Experimental modulation of MFSD2A in lung cancer cells is associated with alteration of mRNA levels of genes involved in cell cycle control and interaction with the extracellular matrix. Exogenous expression of MFSD2A in lung cancer cells induced a G1 block, impaired adhesion and migration in vitro, and significantly reduced tumor colony number in vitro (4- to 27-fold, P in vivo (~3-fold, P Conclusion Together these data suggest that MFSD2A is a novel lung cancer tumor suppressor gene that regulates cell cycle progression and matrix attachment.

  15. Microfluidic Cell Cycle Analysis of Spread Cells by DAPI Staining

    OpenAIRE

    Jing Sun; Jiayu Zhang; Haibo Yang; Gongzhuo Wang; Yanzhao Li; Xuxin Zhang; Qidan Chen; Ming-Fei Lang

    2017-01-01

    Single-cell cell cycle analysis is an emerging technique that requires detailed exploration of the image analysis process. In this study, we established a microfluidic single-cell cell cycle analysis method that can analyze cells in small numbers and in situ on a microfluidic chip. In addition, factors that influenced the analysis were carefully investigated. U87 or HeLa cells were seeded and attached to microfluidic channels before measurement. Cell nucleic DNA was imaged by 4′-6-diamidino-2...

  16. SAFT nickel hydrogen cell cycling status

    Science.gov (United States)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  17. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells

    Science.gov (United States)

    Mao, Zhiyong; Bozzella, Michael; Seluanov, Andrei; Gorbunova, Vera

    2009-01-01

    DNA double-strand breaks (DSBs) are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSBs are nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ is an intrinsically error-prone pathway while HR results in accurate repair. To understand the origin of genomic instability in human cells it is important to know the contribution of each DSB repair pathway. Studies of rodent cells and human cancer cell lines have shown that the choice between NHEJ or HR pathways depends on cell cycle stage. Surprisingly, cell cycle regulation of DSB repair has not been examined in normal human cells with intact cell cycle checkpoints. Here we measured the efficiency of NHEJ and HR at different cell cycle stages in hTERT-immortalized diploid human fibroblasts. We utilized cells with chromosomally-integrated fluorescent reporter cassettes, in which a unique DSB is introduced by a rare-cutting endonuclease. We show that NHEJ is active throughout the cell cycle, and its activity increases as cells progress from G1 to G2/M (G1cell cycle stages. We conclude that human somatic cells utilize error-prone NHEJ as the major DSB repair pathway at all cell cycle stages, while HR is used, primarily, in the S phase. PMID:18769152

  18. Control of cell cycle and cell growth by molecular chaperones.

    Science.gov (United States)

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  19. Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival.

    Science.gov (United States)

    Suzuki, A; Shiraki, K

    2001-04-01

    Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.

  20. A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles.

    Science.gov (United States)

    Chen, Zheng; McKnight, Steven L

    2007-12-01

    The circadian clock drives endogenous oscillations of cellular and physiological processes with a periodicity of approximately 24 h. Progression of the cell division cycle (CDC) has been found to be coupled to the circadian clock, and it has been postulated that gating of the CDC by the circadian cycle may have evolved to protect DNA from the mutagenic effects of ultraviolet light. When grown under nutrient-limiting conditions in a chemostat, prototrophic strains of budding yeast, Saccharomyces cerevisiae, adopt a robust metabolic cycle of ultradian dimensions that temporally compartmentalizes essential cellular events. The CDC is gated by this yeast metabolic cycle (YMC), with DNA replication strictly segregated away from the oxidative phase when cells are actively respiring. Mutants impaired in such gating allow DNA replication to take place during the respiratory phase of the YMC and have been found to suffer significantly elevated rates of spontaneous mutation. Analogous to the circadian cycle, the YMC also employs the conserved DNA checkpoint kinase Rad53/Chk2 to facilitate coupling with the CDC. These studies highlight an evolutionarily conserved mechanism that seems to confine cell division to particular temporal windows to prevent DNA damage. We hypothesize that DNA damage itself might constitute a "zeitgeber", or time giver, for both the circadian cycle and the metabolic cycle. We discuss these findings in the context of a unifying theme underlying the circadian and metabolic cycles, and explore the relevance of cell cycle gating to human diseases including cancer.

  1. Re-thinking cell cycle regulators : the cross-talk with metabolism.

    Directory of Open Access Journals (Sweden)

    Lluis eFajas

    2013-01-01

    Full Text Available Analyses of genetically engineered mice deficient for cell cycle regulators, including E2F1, cdk4, or, pRB showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism and it has been shown how deregulation of those pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also proved that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples illustrate the growing notion that cell cycle regulatory proteins can also modulate metabolic processes. Cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative, and increased glycolytic metabolism. In summary, cell cycle regulators are essential in the control of anabolic, biosynthetic processes, and block at the same time oxidative and catabolic pathways, which are the metabolic hallmarks of cancer.

  2. Stem cells in normal mammary gland and breast cancer.

    Science.gov (United States)

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  3. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  4. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State

    Directory of Open Access Journals (Sweden)

    Simone Cardaci

    2012-01-01

    Full Text Available Inborn defects of the tricarboxylic acid (TCA cycle enzymes have been known for more than twenty years. Until recently, only recessive mutations were described which, although resulted in severe multisystem syndromes, did not predispose to cancer onset. In the last ten years, a causal role in carcinogenesis has been documented for inherited and acquired alterations in three TCA cycle enzymes, succinate dehydrogenase (SDH, fumarate hydratase (FH, and isocitrate dehydrogenase (IDH, pointing towards metabolic alterations as the underlying hallmark of cancer. This paper summarizes the neoplastic alterations of the TCA cycle enzymes focusing on the generation of pseudohypoxic phenotype and the alteration of epigenetic homeostasis as the main tumor-promoting effects of the TCA cycle affecting defects. Moreover, we debate on the ability of these mutations to affect cellular redox state and to promote carcinogenesis by impacting on redox biology.

  5. Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone

    OpenAIRE

    Gonçalves, António Pedro; Máximo, Valdemar; Lima, Jorge; Keshav K Singh; Soares, Paula; Videira, Arnaldo

    2011-01-01

    In order to investigate the cell death-inducing effects of rotenone, a plant extract commonly used as a mitochondrial complex I inhibitor, we studied cancer cell lines with different genetic backgrounds. Rotenone inhibits cell growth through the induction of cell death and cell cycle arrest, associated with the development of mitotic catastrophe. The cell death inducer staurosporine potentiates the inhibition of cell growth by rotenone in a dose-dependent synergistic manner. The tumor suppres...

  6. Laryngeal cancer stem cells

    Directory of Open Access Journals (Sweden)

    Antonio Greco

    2016-03-01

    Full Text Available Laryngeal squamous cell carcinoma (LSCC is one of the most commonly diagnosed malignancies in the head and neck region with an increased incidence rate worldwide. Cancer stem cells (CSCs are a group of cells with eternal life or infinite self-renewal ability, which have high migrating, infiltrative, and metastatic abilities. Though CSCs only account for a small proportion in tumors, the high resistance to traditional therapy exempts them from therapy killing and thus they can reconstruct tumors. Our current knowledge, about CSCs in the LSCC, largely depends on head and neck studies with a lack of systematic data about the evidences of CSCs in tumorigenesis of LSCC. Certainly, the combination of therapies aimed at debulking the tumour (e.g. surgery, conventional chemotherapy, radiotherapy together with targeted therapies aimed at the elimination of the CSCs might have a positive impact on the long-term outcome of patients with laryngeal cancer (LC in the future and may cast a new light on the cancer treatment.

  7. Induction of Apoptosis and Cell Cycle Arrest in Human Colorectal Carcinoma by Litchi Seed Extract

    Directory of Open Access Journals (Sweden)

    Chih-Ping Hsu

    2012-01-01

    Full Text Available The Litchi (Litchi chinensis fruit products possess rich amounts of flavanoids and proanthocyanidins. Its pericarp has been shown to inhibit breast and liver cancer cell growth. However, the anticolorectal cancer effect of Litchi seed extract has not yet been reported. In this study, the effects of polyphenol-rich Litchi seed ethanol extract (LCSP on the proliferation, cell cycle, and apoptosis of two colorectal cancer cell lines Colo320DM and SW480 were examined. The results demonstrated that LCSP significantly induced apoptotic cell death in a dose-dependent manner and arrested cell cycle in G2/M in colorectal carcinoma cells. LCSP also suppressed cyclins and elevated the Bax : Bcl-2 ratio and caspase 3 activity. This study provides in vitro evidence that LCSP serves as a potential chemopreventive agent for colorectal cancer.

  8. Autophagy and the Cell Cycle: A Complex Landscape

    Science.gov (United States)

    Mathiassen, Søs Grønbæk; De Zio, Daniela; Cecconi, Francesco

    2017-01-01

    Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.

  9. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  10. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  11. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  12. Patterns of expression of cell cycle/apoptosis genes along the spectrum of thyroid carcinoma progression

    NARCIS (Netherlands)

    B. Saltman; B. Singh; C.V. Hedvat; V.B. Wreesmann; R. Ghossein

    2006-01-01

    Background. Genetic screening studies suggest that genetic changes underlie progression from well differentiated, to anoplastic thyroid cancers. The aim of this study is to determine to what extent cell cycle/apoptosis regulators contribute to cancer progression. Methods. Tissue microarrarys (TMAs)

  13. 125I seed irradiation induces up-regulation of the genes associated with apoptosis and cell cycle arrest and inhibits growth of gastric cancer xenografts

    OpenAIRE

    2012-01-01

    Abstract Background Iodine 125 (125I) seed irradiation can be used as an important supplementary treatment for unresectable advanced gastric cancer. Here, we aim to comprehensively elucidate the biological effects induced by 125I seed irradiation in human gastric cancer xenograft model by using global expression and DNA methylation analyses. Methods The 48 mice bearing NCI-N87 gastric cancer xenografts were randomly separated into 2 groups: sham seeds (O mCi) were implanted into the control g...

  14. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Sha Chen; An-Xin Wang; Bing Dong; Ke-Feng Pu; Li-Hua Yuan; Yi-Min Zhu

    2012-01-01

    According to the cancer stem cell theory,cancers can be initiated by cancer stem cells.This makes cancer stem cells prime targets for therapeutic intervention.Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer.In this review,we summarize recent breakthroughs that have improved our understanding of cancer stem cells,and we discuss the therapeutic strategy of targeting cancer stem cells,a promising future direction for cancer stem cell research.

  15. Treatment Options for Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  16. General Information about Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  17. Treatment Option Overview (Renal Cell Cancer)

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  18. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  19. MiRNA-362-3p induces cell cycle arrest through targeting of E2F1, USF2 and PTPN1 and is associated with recurrence of colorectal cancer.

    Science.gov (United States)

    Christensen, Lise Lotte; Tobiasen, Heidi; Holm, Anja; Schepeler, Troels; Ostenfeld, Marie S; Thorsen, Kasper; Rasmussen, Mads H; Birkenkamp-Demtroeder, Karin; Sieber, Oliver M; Gibbs, Peter; Lubinski, Jan; Lamy, Philippe; Laurberg, Søren; Oster, Bodil; Hansen, Kristian Q; Hagemann-Madsen, Rikke; Byskov, Kristina; Ørntoft, Torben F; Andersen, Claus L

    2013-07-01

    Colorectal cancer (CRC) is one of the leading causes of cancer deaths in Western countries. A significant number of CRC patients undergoing curatively intended surgery subsequently develop recurrence and die from the disease. MicroRNAs (miRNAs) are aberrantly expressed in cancers and appear to have both diagnostic and prognostic significance. In this study, we identified novel miRNAs associated with recurrence of CRC, and their possible mechanism of action. TaqMan(®) Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosas and 46 microsatellite stable CRC tumors. Four miRNAs (miR-362-3p, miR-570, miR-148 a* and miR-944) were expressed at a higher level in tumors from patients with no recurrence (p<0.015), compared with tumors from patients with recurrence. A significant association with increased disease free survival was confirmed for miR-362-3p in a second independent cohort of 43 CRC patients, using single TaqMan(®) microRNA assays. In vitro functional analysis showed that over-expression of miR-362-3p in colon cancer cell lines reduced cell viability, and proliferation mainly due to cell cycle arrest. E2F1, USF2 and PTPN1 were identified as potential miR-362-3p targets by mRNA profiling of HCT116 cells over-expressing miR-362-3p. Subsequently, these genes were confirmed as direct targets by Luciferase reporter assays and their knockdown in vitro phenocopied the effects of miR-362-3p over-expression. We conclude that miR-362-3p may be a novel prognostic marker in CRC, and hypothesize that the positive effects of augmented miR-362-3p expression may in part be mediated through the targets E2F1, USF2 and PTPN1.

  20. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  1. Skin Cancer, Irradiation, and Sunspots: The Solar Cycle Effect

    Directory of Open Access Journals (Sweden)

    Edward Valachovic

    2014-01-01

    Full Text Available Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise.

  2. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    Science.gov (United States)

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  3. A thermodynamic cycle for the solar cell

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Jenkins, Alejandro

    2017-03-01

    A solar cell is a heat engine, but textbook treatments are not wholly satisfactory from a thermodynamic standpoint, since they present solar cells as directly converting the energy of light into electricity, and the current in the circuit as maintained by an electrostatic potential. We propose a thermodynamic cycle in which the gas of electrons in the p phase serves as the working substance. The interface between the p and n phases acts as a self-oscillating piston that modulates the absorption of heat from the photons so that it may perform a net positive work during a complete cycle of its motion, in accordance with the laws of thermodynamics. We draw a simple hydrodynamical analogy between this model and the ;putt-putt; engine of toy boats, in which the interface between the water's liquid and gas phases serves as the piston. We point out some testable consequences of this model.

  4. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  5. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  6. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  7. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2015-01-01

    Full Text Available The cell cycle (or cell-division cycle is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH terms "tumor suppressor′s genes," "skin," and "cell cycle regulatory checkpoints." We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses.

  8. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  9. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 a