WorldWideScience

Sample records for cancer biomarker proteins

  1. Fusion peptides from oncogenic chimeric proteins as putative specific biomarkers of cancer.

    Science.gov (United States)

    Conlon, Kevin P; Basrur, Venkatesha; Rolland, Delphine; Wolfe, Thomas; Nesvizhskii, Alexey I; MacCoss, Michael J; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2013-10-01

    Chromosomal translocations encoding chimeric fusion proteins constitute one of the most common mechanisms underlying oncogenic transformation in human cancer. Fusion peptides resulting from such oncogenic chimeric fusions, though unique to specific cancer subtypes, are unexplored as cancer biomarkers. Here we show, using an approach termed fusion peptide multiple reaction monitoring mass spectrometry, the direct identification of different cancer-specific fusion peptides arising from protein chimeras that are generated from the juxtaposition of heterologous genes fused by recurrent chromosomal translocations. Using fusion peptide multiple reaction monitoring mass spectrometry in a clinically relevant scenario, we demonstrate the specific, sensitive, and unambiguous detection of a specific diagnostic fusion peptide in clinical samples of anaplastic large cell lymphoma, but not in a diverse array of benign lymph nodes or other forms of primary malignant lymphomas and cancer-derived cell lines. Our studies highlight the utility of fusion peptides as cancer biomarkers and carry broad implications for the use of protein biomarkers in cancer detection and monitoring.

  2. Exosomal Proteins as a Diagnostic Biomarkers in Lung Cancer

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, B; Jakobsen, K R; Bæk, R

    2016-01-01

    INTRODUCTION: Exosomes have been suggested as promising biomarkers in NSCLC because they contain proteins from their originating cells and are readily available in plasma. In this study, we explored the potential of exosome protein profiling in diagnosing lung cancers of all stages and various...

  3. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, B; Aggerholm-Pedersen, N; Bæk, R

    2016-01-01

    BACKGROUND: Use of exosomes as biomarkers in non-small cell lung cancer (NSCLC) is an intriguing approach in the liquid-biopsy era. Exosomes are nano-sized vesicles with membrane-bound proteins that reflect their originating cell. Prognostic biomarkers are needed to improve patient selection...... Bonferroni correction. Results were adjusted for clinico-pathological characteristics, stage, histology, age, sex and performance status. CONCLUSION: We illustrate the promising aspects associated with the use of exosomal membrane-bound proteins as a biomarker and demonstrate that they are a strong...

  4. Resolving breast cancer heterogeneity by searching reliable protein cancer biomarkers in the breast fluid secretome

    International Nuclear Information System (INIS)

    Mannello, Ferdinando; Ligi, Daniela

    2013-01-01

    One of the major goals in cancer research is to find and evaluate the early presence of biomarkers in human fluids and tissues. To resolve the complex cell heterogeneity of a tumor mass, it will be useful to characterize the intricate biomolecular composition of tumor microenvironment (the so called cancer secretome), validating secreted proteins as early biomarkers of cancer initiation and progression. This approach is not broadly applicable because of the paucity of well validated and FDA-approved biomarkers and because most of the candidate biomarkers are mainly organ-specific rather than tumor-specific. For these reasons, there is an urgent need to identify and validate a panel of biomarker combinations for early detection of human tumors. This is especially important for breast cancer, the cancer spread most worldwide among women. It is well known that patients with early diagnosed breast cancer live longer, require less extensive treatment and fare better than patients with more aggressive and/or advanced disease. In the frame of searching breast cancer biomarkers (especially using nipple aspirate fluid mirroring breast microenvironment), studies have highlighted an optimal combination of well-known biomarkers: uPA + PAI-1 + TF. When individually investigated they did not show perfect accuracy in predicting the presence of breast cancer, whereas the triple combination has been demonstrated to be highly predictive of pre-cancer and/or cancerous conditions, approaching 97-100% accuracy. Despite the heterogeneous composition of breast cancer and the difficulties to find specific breast cancer biomolecules, the noninvasive analysis of the nipple aspirate fluid secretome may significantly improve the discovery of promising biomarkers, helping also the differentiation among benign and invasive breast diseases, opening new frontiers in early oncoproteomics

  5. Oncofetal protein IMP3, a new cancer biomarker.

    Science.gov (United States)

    Gong, Yuna; Woda, Bruce A; Jiang, Zhong

    2014-05-01

    IMP3 is a member of a family of RNA-binding proteins that consists of IMP1, IMP2 and IMP3. These proteins contain 2 RNA recognition motifs and 4 K-homology domains that allow them to bind RNAs strongly and specifically. IMP3 is an oncofetal protein involved in embryogenesis and its expression is associated with a number of malignant neoplasms. IMP3 is associated with aggressive and advanced cancers and is specifically expressed in malignant tumors but is not found in adjacent benign tissues. Moreover, in vitro studies have shown that IMP3 promotes tumor cell proliferation, adhesion, and invasion. This review focuses on the studies of IMP3 expression in different cancers and emphasizes the potential utility of IMP3 in routine surgical pathology practice. We also discuss IMP3 as a prognostic biomarker for cancer patients' outcomes.

  6. Search for Breast Cancer Biomarkers in Fractionated Serum Samples by Protein Profiling With SELDI-TOF MS

    NARCIS (Netherlands)

    Opstal - van Winden, A.W.J.; Beijnen, J.H.; de Loof, A.; van Heerde, W.L.; Vermeulen, R.; Peeters, P.H.M.; van Gils, C.H.

    2012-01-01

    BackgroundMany high-abundant acute phase reactants have been previously detected as potential breast cancer biomar-kers. However, they are unlikely to be specific for breast cancer. Cancer-specific biomarkers are thought to be among the lower abundant proteins.MethodsWe aimed to detect lower

  7. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.

    Science.gov (United States)

    Nassar, Ala F; Williams, Brad J; Yaworksy, Dustin C; Patel, Vyomesh; Rusling, James F

    2016-03-01

    It has become quite clear that single cancer biomarkers cannot in general provide high sensitivity and specificity for reliable clinical cancer diagnostics. This paper explores the feasibility of rapid detection of multiple biomarker proteins in model oral cancer samples using label-free protein relative quantitation. MS-based label-free quantitative proteomics offer a rapid alternative that bypasses the need for stable isotope containing compounds to chemically bind and label proteins. Total protein content in oral cancer cell culture conditioned media was precipitated, subjected to proteolytic digestion, and then analyzed using a nano-UPLC (where UPLC is ultra-performance liquid chromatography) coupled to a hybrid Q-Tof ion-mobility mass spectrometry (MS). Rapid, simultaneous identification and quantification of multiple possible cancer biomarker proteins was achieved. In a comparative study between cancer and noncancer samples, approximately 952 proteins were identified using a high-throughput 1D ion mobility assisted data independent acquisition (IM-DIA) approach. As we previously demonstrated that interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A) were readily detected in oral cancer cell conditioned media(1), we targeted these biomarker proteins to validate our approach. Target biomarker protein IL-8 was found between 3.5 and 8.8 fmol, while VEGF-A was found at 1.45 fmol in the cancer cell media. Overall, our data suggest that the nano-UPLC-IM-DIA bioassay is a feasible approach to identify and quantify proteins in complex samples without the need for stable isotope labeling. These results have significant implications for rapid tumor diagnostics and prognostics by monitoring proteins such as IL-8 and VEGF-A implicated in cancer development and progression. The analysis in tissue or plasma is not possible at this time, but the subsequent work would be needed for validation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomarkers of HIV-associated Cancer

    OpenAIRE

    Flepisi, Brian Thabile; Bouic, Patrick; Sissolak, Gerhard; Rosenkranz, Bernd

    2014-01-01

    Cancer biomarkers have provided great opportunities for improving the management of cancer patients by enhancing the efficiency of early detection, diagnosis, and efficacy of treatment. Every cell type has a unique molecular signature, referred to as biomarkers, which are identifiable characteristics such as levels or activities of a myriad of genes, proteins, or other molecular features. Biomarkers can facilitate the molecular definition of cancer, provide information about the course of can...

  9. Identification of cancer protein biomarkers using proteomic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  10. Inflammatory biomarkers and cancer

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Schultz, Martin; Gaardsting, Anne

    2017-01-01

    and previous cancer diagnoses compared to patients who were not diagnosed with cancer. Previous cancer, C-reactive protein (CRP) and suPAR were significantly associated with newly diagnosed cancer during follow-up in multiple logistic regression analyses adjusted for age, sex and CRP. Neither any of the PRRs......In Denmark, patients with serious nonspecific symptoms and signs of cancer (NSSC) are referred to the diagnostic outpatient clinics (DOCs) where an accelerated cancer diagnostic program is initiated. Various immunological and inflammatory biomarkers have been associated with cancer, including...... soluble urokinase plasminogen activator receptor (suPAR) and the pattern recognition receptors (PRRs) pentraxin-3, mannose-binding lectin, ficolin-1, ficolin-2 and ficolin-3. We aimed to evaluate these biomarkers and compare their diagnostic ability to classical biomarkers for diagnosing cancer...

  11. The endothelial lipase protein is promising urinary biomarker for diagnosis of gastric cancer.

    Science.gov (United States)

    Dong, Xueyan; Wang, Guoqing; Zhang, Guoqing; Ni, Zhaohui; Suo, Jian; Cui, Juan; Cui, Ai; Yang, Qing; Xu, Ying; Li, Fan

    2013-03-19

    Gastric cancer is one of the most common malignant tumors in the world. Finding effective diagnostic biomarkers in urine or serum would represent the most ideal solution to detecting gastric cancer during annual physical examination. This study was to evaluate the potential of endothelial lipase (EL) as a urinary biomarker for diagnosis of gastric cancer. The expression levels of EL was measured using Western blotting and immunohistochemical staining experiments on (tissue, serum, and urine) samples of gastric cancer patients versus healthy people. We also checked the EL levels in the urine samples of other cancer types (lung, colon and rectum cancers) and benign lesions (gastritis and gastric leiomyoma) to check if EL was specific to gastric cancer. We observed a clear separation between the EL expression levels in the urine samples of 90 gastric cancer patients and of 57 healthy volunteers. It was approximately 9.9 fold average decrease of the EL expression levels in the urine samples of gastric cancer compared to the healthy controls (P cancer. Interestingly, the expression levels of EL in tissue and serum samples were not nearly as discriminative as in urine samples (P = 0.90 and P = 0.79). In immunohistochemical experiments, positive expression of the EL protein was found in 67% (8/12) of gastric adjacent noncancerous and in 58% (7/12) of gastric cancer samples. There was no significant statistical in the expression levels of this protein between the gastric cancer and the matching noncancerous tissues (P =0.67). The urinary EL as a highly accurate gastric cancer biomarker that is potentially applicable to the general screening with high sensitivity and specificity. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4527331618757552.

  12. Early diagnostic protein biomarkers for breast cancer: how far have we come?

    NARCIS (Netherlands)

    Opstal - van Winden, A.W.J.; Vermeulen, R.C.H.; Peeters, P.H.M.; Beijnen, J.H.; van Gils, C.H.

    2012-01-01

    Many studies have used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to search for blood-based proteins that are related to the presence of breast cancer. We review the biomarkers

  13. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.

    Science.gov (United States)

    Borrebaeck, Carl A K

    2017-03-01

    Interest in precision diagnostics has been fuelled by the concept that early detection of cancer would benefit patients; that is, if detected early, more tumours should be resectable and treatment more efficacious. Serum contains massive amounts of potentially diagnostic information, and affinity proteomics has risen as an accurate approach to decipher this, to generate actionable information that should result in more precise and evidence-based options to manage cancer. To achieve this, we need to move from single to multiplex biomarkers, a so-called signature, that can provide significantly increased diagnostic accuracy. This Opinion article focuses on the progress being made in identifying protein biomarker signatures of clinical utility, using blood-based proteomics.

  14. Nanomaterials based biosensors for cancer biomarker detection

    International Nuclear Information System (INIS)

    Malhotra, Bansi D; Kumar, Saurabh; Pandey, Chandra Mouli

    2016-01-01

    Biosensors have enormous potential to contribute to the evolution of new molecular diagnostic techniques for patients suffering with cancerous diseases. A major obstacle preventing faster development of biosensors pertains to the fact that cancer is a highly complex set of diseases. The oncologists currently rely on a few biomarkers and histological characterization of tumors. Some of the signatures include epigenetic and genetic markers, protein profiles, changes in gene expression, and post-translational modifications of proteins. These molecular signatures offer new opportunities for development of biosensors for cancer detection. In this context, conducting paper has recently been found to play an important role towards the fabrication of a biosensor for cancer biomarker detection. In this paper we will focus on results of some of the recent studies obtained in our laboratories relating to fabrication and application of nanomaterial modified paper based biosensors for cancer biomarker detection. (paper)

  15. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2011-01-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. Methods In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Results Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs. In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. Conclusions A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.

  16. Novel Stool-Based Protein Biomarkers for Improved Colorectal Cancer Screening: A Case-Control Study.

    Science.gov (United States)

    Bosch, Linda J W; de Wit, Meike; Pham, Thang V; Coupé, Veerle M H; Hiemstra, Annemieke C; Piersma, Sander R; Oudgenoeg, Gideon; Scheffer, George L; Mongera, Sandra; Sive Droste, Jochim Terhaar; Oort, Frank A; van Turenhout, Sietze T; Larbi, Ilhame Ben; Louwagie, Joost; van Criekinge, Wim; van der Hulst, Rene W M; Mulder, Chris J J; Carvalho, Beatriz; Fijneman, Remond J A; Jimenez, Connie R; Meijer, Gerrit A

    2017-12-19

    The fecal immunochemical test (FIT) for detecting hemoglobin is used widely for noninvasive colorectal cancer (CRC) screening, but its sensitivity leaves room for improvement. To identify novel protein biomarkers in stool that outperform or complement hemoglobin in detecting CRC and advanced adenomas. Case-control study. Colonoscopy-controlled referral population from several centers. 315 stool samples from one series of 12 patients with CRC and 10 persons without colorectal neoplasia (control samples) and a second series of 81 patients with CRC, 40 with advanced adenomas, and 43 with nonadvanced adenomas, as well as 129 persons without colorectal neoplasia (control samples); 72 FIT samples from a third independent series of 14 patients with CRC, 16 with advanced adenomas, and 18 with nonadvanced adenomas, as well as 24 persons without colorectal neoplasia (control samples). Stool samples were analyzed by mass spectrometry. Classification and regression tree (CART) analysis and logistic regression analyses were performed to identify protein combinations that differentiated CRC or advanced adenoma from control samples. Antibody-based assays for 4 selected proteins were done on FIT samples. In total, 834 human proteins were identified, 29 of which were statistically significantly enriched in CRC versus control stool samples in both series. Combinations of 4 proteins reached sensitivities of 80% and 45% for detecting CRC and advanced adenomas, respectively, at 95% specificity, which was higher than that of hemoglobin alone (P control samples (P control samples. Proof of concept that such proteins can be detected with antibody-based assays in small sample volumes indicates the potential of these biomarkers to be applied in population screening. Center for Translational Molecular Medicine, International Translational Cancer Research Dream Team, Stand Up to Cancer (American Association for Cancer Research and the Dutch Cancer Society), Dutch Digestive Foundation, and VU

  17. Dithiothreitol-based protein equalization technology to unravel biomarkers for bladder cancer.

    Science.gov (United States)

    Araújo, J E; López-Fernández, H; Diniz, M S; Baltazar, Pedro M; Pinheiro, Luís Campos; da Silva, Fernando Calais; Carrascal, Mylène; Videira, Paula; Santos, H M; Capelo, J L

    2018-04-01

    This study aimed to assess the benefits of dithiothreitol (DTT)-based sample treatment for protein equalization to assess potential biomarkers for bladder cancer. The proteome of plasma samples of patients with bladder carcinoma, patients with lower urinary tract symptoms (LUTS) and healthy volunteers, was equalized with dithiothreitol (DTT) and compared. The equalized proteomes were interrogated using two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry. Six proteins, namely serum albumin, gelsolin, fibrinogen gamma chain, Ig alpha-1 chain C region, Ig alpha-2 chain C region and haptoglobin, were found dysregulated in at least 70% of bladder cancer patients when compared with a pool of healthy individuals. One protein, serum albumin, was found overexpressed in 70% of the patients when the equalized proteome of the healthy pool was compared with the equalized proteome of the LUTS patients. The pathways modified by the proteins differentially expressed were analyzed using Cytoscape. The method here presented is fast, cheap, of easy application and it matches the analytical minimalism rules as outlined by Halls. Orthogonal validation was done using western-blot. Overall, DTT-based protein equalization is a promising methodology in bladder cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prostate-Specific G-Protein Coupled Receptor, an Emerging Biomarker Regulating Inflammation and Prostate Cancer Invasion.

    Science.gov (United States)

    Rodriguez, M; Siwko, S; Liu, M

    2016-01-01

    Prostate cancer is highly prevalent among men in developed countries, but a significant proportion of detected cancers remain indolent, never progressing into aggressive carcinomas. This highlights the need to develop refined biomarkers that can distinguish between indolent and potentially dangerous cases. The prostate-specific G-protein coupled receptor (PSGR, or OR51E2) is an olfactory receptor family member with highly specific expression in human prostate epithelium that is highly overexpressed in PIN and prostate cancer. PSGR has been functionally implicated in prostate cancer cell invasiveness, suggesting a potential role in the transition to metastatic PCa. Recently, transgenic mice overexpressing PSGR in the prostate were reported to develop an acute inflammatory response followed by emergence of low grade PIN, whereas mice with compound PSGR overexpression and loss of PTEN exhibited accelerated formation of invasive prostate adenocarcinoma. This article will review recent PSGR findings with a focus on its role as a potential prostate cancer biomarker and regulator of prostate cancer invasion and inflammation.

  19. Evaluation of a Serum Lung Cancer Biomarker Panel.

    Science.gov (United States)

    Mazzone, Peter J; Wang, Xiao-Feng; Han, Xiaozhen; Choi, Humberto; Seeley, Meredith; Scherer, Richard; Doseeva, Victoria

    2018-01-01

    A panel of 3 serum proteins and 1 autoantibody has been developed to assist with the detection of lung cancer. We aimed to validate the accuracy of the biomarker panel in an independent test set and explore the impact of adding a fourth serum protein to the panel, as well as the impact of combining molecular and clinical variables. The training set of serum samples was purchased from commercially available biorepositories. The testing set was from a biorepository at the Cleveland Clinic. All lung cancer and control subjects were >50 years old and had smoked a minimum of 20 pack-years. A panel of biomarkers including CEA (carcinoembryonic antigen), CYFRA21-1 (cytokeratin-19 fragment 21-1), CA125 (carbohydrate antigen 125), HGF (hepatocyte growth factor), and NY-ESO-1 (New York esophageal cancer-1 antibody) was measured using immunoassay techniques. The multiple of the median method, multivariate logistic regression, and random forest modeling was used to analyze the results. The training set consisted of 604 patient samples (268 with lung cancer and 336 controls) and the testing set of 400 patient samples (155 with lung cancer and 245 controls). With a threshold established from the training set, the sensitivity and specificity of both the 4- and 5-biomarker panels on the testing set was 49% and 96%, respectively. Models built on the testing set using only clinical variables had an area under the receiver operating characteristic curve of 0.68, using the biomarker panel 0.81 and by combining clinical and biomarker variables 0.86. This study validates the accuracy of a panel of proteins and an autoantibody in a population relevant to lung cancer detection and suggests a benefit to combining clinical features with the biomarker results.

  20. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    Science.gov (United States)

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  1. Identification of biomarkers for radiation-induced acute intestinal symptoms (RIAISs) in cervical cancer patients by serum protein profiling

    International Nuclear Information System (INIS)

    Chai Yanlan; Wang Juan; Gao Ying

    2015-01-01

    Radiation-induced acute intestinal symptoms (RIAISs) are the most frequent complication of radiotherapy that causes great pain and limits the treatment efficacy. The aim of this study was to identify serum biomarkers of RIAISs in cervical cancer patients by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). Serum samples were collected from 66 cervical cancer patients prior to pelvic radiotherapy. In our study, RIAISs occurred in 11 patients. An additional 11 patients without RIAISs were selected as controls, whose age, stage, histological type and treatment methods were matched to RIAISs patients. The 22 sera were subsequently analyzed by SELDI-TOF MS, and the resulting protein profiles were evaluated to identify biomarkers using appropriate bioinformatics tools. Comparing the protein profiles of serum samples from the RIAIS group and the control group, it was found that 22 protein peaks were significantly different (P < 0.05), and six of these peaks with mass-to-charge (m/z) ratios of 7514.9, 4603.94, 6887.41, 2769.21, 3839.72 and 4215.7 were successfully identified. A decision tree model of biomarkers was constructed based on three biomarkers (m/z 1270.88, 1503.23 and 7514.90), which separated RIAIS-affected patients from the control group with an accuracy of 81%. This study suggests that serum proteomic analysis by SELDI-TOF MS can identify cervical cancer patients that are susceptible to RIAISs prior to pelvic radiotherapy. (author)

  2. Identification of prostate cancer biomarkers in urinary exosomes.

    Science.gov (United States)

    Øverbye, Anders; Skotland, Tore; Koehler, Christian J; Thiede, Bernd; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2015-10-06

    Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumour-specific molecules can be found in exosomes isolated from biological fluids. We have here investigated the proteome of urinary exosomes by using mass spectrometry to identify proteins differentially expressed in prostate cancer patients compared to healthy male controls. In total, 15 control and 16 prostate cancer samples of urinary exosomes were analyzed. Importantly, 246 proteins were differentially expressed in the two groups. The majority of these proteins (221) were up-regulated in exosomes from prostate cancer patients. These proteins were analyzed according to specific criteria to create a focus list that contained 37 proteins. At 100% specificity, 17 of these proteins displayed individual sensitivities above 60%. Even though several of these proteins showed high sensitivity and specificity for prostate cancer as individual biomarkers, combining them in a multi-panel test has the potential for full differentiation of prostate cancer from non-disease controls. The highest sensitivity, 94%, was observed for transmembrane protein 256 (TM256; chromosome 17 open reading frame 61). LAMTOR proteins were also distinctly enriched with very high specificity for patient samples. TM256 and LAMTOR1 could be used to augment the sensitivity to 100%. Other prominent proteins were V-type proton ATPase 16 kDa proteolipid subunit (VATL), adipogenesis regulatory factor (ADIRF), and several Rab-class members and proteasomal proteins. In conclusion, this study clearly shows the potential of using urinary exosomes in the diagnosis and clinical management of prostate cancer.

  3. Predictive Biomarkers of Radiation Sensitivity in Rectal Cancer

    Science.gov (United States)

    Tut, Thein Ga

    Colorectal cancer (CRC) is the third most common cancer in the world. Australia, New Zealand, Canada, the United States, and parts of Europe have the highest incidence rates of CRC. China, India, South America and parts of Africa have the lowest risk of CRC. CRC is the second most common cancer in both sexes in Australia. Even though the death rates from CRC involving the colon have diminished, those arising from the rectum have revealed no improvement. The greatest obstacle in attaining a complete surgical resection of large rectal cancers is the close anatomical relation to surrounding structures, as opposed to the free serosal surfaces enfolding the colon. To assist complete resection, pre-operative radiotherapy (DXT) can be applied, but the efficacy of ionising radiation (IR) is extremely variable between individual tumours. Reliable predictive marker/s that enable patient stratification in the application of this otherwise toxic therapy is still not available. Current therapeutic management of rectal cancer can be improved with the availability of better predictive and prognostic biomarkers. Proteins such as Plk1, gammaH2AX and MMR proteins (MSH2, MSH6, MLH1 and PMS2), involved in DNA damage response (DDR) pathway may be possible biomarkers for radiation response prediction and prognostication of rectal cancer. Serine/threonine protein kinase Plk1 is overexpressed in most of cancers including CRC. Plk1 functional activity is essential in the restoration of DNA damage following IR, which causes DNA double strand break (DSB). The earliest manifestation of this reparative process is histone H2AX phosphorylation at serine 139, leading to gammaH2AX. Colorectal normal mucosa showed the lowest level of gammaH2AX with gradually increasing levels in early adenoma and then in advanced malignant colorectal tissues, leading to the possibility that gammaH2AX may be a prospective biomarker in rectal cancer management. There are numerous publications regarding DNA mismatch

  4. Lung Cancer Serum Biomarker Discovery Using Label Free LC-MS/MS

    Science.gov (United States)

    Zeng, Xuemei; Hood, Brian L.; Zhao, Ting; Conrads, Thomas P.; Sun, Mai; Gopalakrishnan, Vanathi; Grover, Himanshu; Day, Roger S.; Weissfeld, Joel L.; Wilson, David O.; Siegfried, Jill M.; Bigbee, William L.

    2011-01-01

    Introduction Lung cancer remains the leading cause of cancer-related death with poor survival due to the late stage at which lung cancer is typically diagnosed. Given the clinical burden from lung cancer, and the relatively favorable survival associated with early stage lung cancer, biomarkers for early detection of lung cancer are of important potential clinical benefit. Methods We performed a global lung cancer serum biomarker discovery study using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a set of pooled non-small cell lung cancer (NSCLC) case sera and matched controls. Immunoaffinity subtraction was used to deplete the top most abundant serum proteins; the remaining serum proteins were subjected to trypsin digestion and analyzed in triplicate by LC-MS/MS. The tandem mass spectrum data were searched against the human proteome database and the resultant spectral counting data were used to estimate the relative abundance of proteins across the case/control serum pools. The spectral counting derived abundances of some candidate biomarker proteins were confirmed with multiple reaction monitoring MS assays. Results A list of 49 differentially abundant candidate proteins was compiled by applying a negative binomial regression model to the spectral counting data (pbiomarkers with statistically significant differential abundance across the lung cancer case/control pools which, when validated, could improve lung cancer early detection. PMID:21304412

  5. Proteomic Approaches in Biomarker Discovery: New Perspectives in Cancer Diagnostics

    Science.gov (United States)

    Kocevar, Nina; Komel, Radovan

    2014-01-01

    Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies. PMID:24550697

  6. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients...... occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients...... as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential....

  7. A New Serum Biomarker for Lung Cancer - Transthyretin

    Directory of Open Access Journals (Sweden)

    Liyun LIU

    2009-04-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer death worldwide and very few specific biomarkers could be used in clinical diagnosis at present. The aim of this study is to find novel potential serum biomarkers for lung cancer using Surface Enhanced Laser Desorption/Ionization (SELDI technique. Methods Serumsample of 227 cases including 146 lung cancer, 13 pneumonia, 28 tuberculous pleurisy and 40 normal individuals were analyzed by CM10 chips. The candidate biomarkers were identified by ESI/MS-MS and database searching, and further confirmed by immunoprecipitation. The same sets of serum sample from all groups were re-measured by ELISA assay. Results Three protein peaks with the molecular weight 13.78 kDa, 13.90 kDa and 14.07 kDa were found significantlydecreased in lung cancer serum compared to the other groups and were all automatically selected as specific biomarkers by Biomarker Wizard software. The candidate biomarkers obtained from 1-D SDS gel bands by matching the molecular weight with peaks on CM10 chips were identified by Mass spectrometry as the native transthyretin (nativeTTR, cysTTR and glutTTR, and the identity was further validated by immunoprecipitation using commercial TTR antibodies. Downregulated of TTR was found in both ELISA and SELDI analysis. Conclusion TTRs acted as the potentially useful biomarkers for lung cancer by SELDI technique.

  8. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  9. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    Science.gov (United States)

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers.

    Science.gov (United States)

    Wu, Hua-Hsi; Lin, Wen-chang; Tsai, Kuo-Wang

    2014-01-23

    Carcinoma of the stomach is one of the most prevalent cancer types in the world. Although the incidence of gastric cancer is declining, the outcomes of gastric cancer patients remain dismal because of the lack of effective biomarkers to detect early gastric cancer. Modern biomedical research has explored many potential gastric cancer biomarker genes by utilising serum protein antigens, oncogenic genes or gene families through improving molecular biological technologies, such as microarray, RNA-Seq and the like. Recently, the small noncoding microRNAs (miRNAs) have been suggested to be critical regulators in the oncogenesis pathways and to serve as useful clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for cancer diagnosis and prognosis, including gastric cancer. By translational suppression of target genes, miRNAs play a significant role in the gastric cancer cell physiology and tumour progression. There are potential implications of previously discovered gastric cancer molecular biomarkers and their expression modulations by respective miRNAs. Therefore, many miRNAs are found to play oncogenic roles or tumour-suppressing functions in human cancers. With the surprising stability of miRNAs in tissues, serum or other body fluids, miRNAs have emerged as a new type of cancer biomarker with immeasurable clinical potential.

  11. Exosomal miRNAs as biomarkers for prostate cancer

    Directory of Open Access Journals (Sweden)

    Nina Pettersen Hessvik

    2013-03-01

    Full Text Available miRNAs are small non-coding RNAs that finely regulate gene expression in cells. Alterations in miRNA expression have been associated with development of cancer, and miRNAs are now being investigated as biomarkers for cancer as well as other diseases. Recently, miRNAs have been found outside cells in body fluids. Extracellular miRNAs exist in different forms - associated with Ago2 proteins, loaded into extracellular vesicles (exosomes, microvesicles or apoptotic bodies or into high density lipoprotein particles. These extracellular miRNAs are probably products of distinct cellular processes, and might therefore play different roles. However, their functions in vivo are currently unknown. In spite of this, they are considered as promising, noninvasive diagnostic and prognostic tools. Prostate cancer is the most common cancer in men in the Western world, but the currently used biomarker (prostate specific antigen has low specificity. Therefore, novel biomarkers are highly needed. In this review we will discuss possible biological functions of extracellular miRNAs, as well as the potential use of miRNAs from extracellular vesicles as biomarkers for prostate cancer.

  12. Biomarkers in Prostate Cancer Epidemiology

    Directory of Open Access Journals (Sweden)

    Mudit Verma

    2011-09-01

    Full Text Available Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person’s genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.

  13. A Systematic Review of the Diagnostic and Prognostic Value of Urinary Protein Biomarkers in Urothelial Bladder Cancer

    Science.gov (United States)

    D’Costa, Jamie J.; Goldsmith, James C.; Wilson, Jayne S.; Bryan, Richard T.; Ward, Douglas G.

    2016-01-01

    For over 80 years, cystoscopy has remained the gold-standard for detecting tumours of the urinary bladder. Since bladder tumours have a tendency to recur and progress, many patients are subjected to repeated cystoscopies during long-term surveillance, with the procedure being both unpleasant for the patient and expensive for healthcare providers. The identification and validation of bladder tumour specific molecular markers in urine could enable tumour detection and reduce reliance on cystoscopy, and numerous classes of biomarkers have been studied. Proteins represent the most intensively studied class of biomolecule in this setting. As an aid to researchers searching for better urinary biomarkers, we report a comprehensive systematic review of the literature and a searchable database of proteins that have been investigated to date. Our objective was to classify these proteins as: 1) those with robustly characterised sensitivity and specificity for bladder cancer detection; 2) those that show potential but further investigation is required; 3) those unlikely to warrant further investigation; and 4) those investigated as prognostic markers. This work should help to prioritise certain biomarkers for rigorous validation, whilst preventing wasted effort on proteins that have shown no association whatsoever with the disease, or only modest biomarker performance despite large-scale efforts at validation. PMID:27500198

  14. Quantitative proteomic analysis by iTRAQ® for the identification of candidate biomarkers in ovarian cancer serum

    Directory of Open Access Journals (Sweden)

    Higgins LeeAnn

    2010-06-01

    Full Text Available Abstract Background Ovarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ®. Results Medium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ® to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified. Conclusions This study provides the first analysis of immunodepleted serum in combination with iTRAQ® to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.

  15. Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer.

    Science.gov (United States)

    Husi, Holger; Skipworth, Richard J E; Cronshaw, Andrew; Stephens, Nathan A; Wackerhage, Henning; Greig, Carolyn; Fearon, Kenneth C H; Ross, James A

    2015-06-01

    Cancer of the upper digestive tract (uGI) is a major contributor to cancer-related death worldwide. Due to a rise in occurrence, together with poor survival rates and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish molecular biomarkers. Initial assessment was performed on urine samples from 60 control and 60 uGI cancer patients using MS to establish a peak pattern or fingerprint model, which was validated by a further set of 59 samples. We detected 86 cluster peaks by MS above frequency and detection thresholds. Statistical testing and model building resulted in a peak profiling model of five relevant peaks with 88% overall sensitivity and 91% specificity, and overall correctness of 90%. High-resolution MS of 40 samples in the 2-10 kDa range resulted in 646 identified proteins, and pattern matching identified four of the five model peaks within significant parameters, namely programmed cell death 6 interacting protein (PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), protein S100A8, and protein S100A9, of which the first two were validated by Western blotting. We demonstrate that MS analysis of human urine can identify lead biomarker candidates in uGI cancers, which makes this technique potentially useful in defining and consolidating biomarker patterns for uGI cancer screening. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    Science.gov (United States)

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  17. Automated 3D-Printed Unibody Immunoarray for Chemiluminescence Detection of Cancer Biomarker Proteins

    Science.gov (United States)

    Tang, C. K.; Vaze, A.; Rusling, J. F.

    2017-01-01

    A low cost three-dimensional (3D) printed clear plastic microfluidic device was fabricated for fast, low cost automated protein detection. The unibody device features three reagent reservoirs, an efficient 3D network for passive mixing, and an optically transparent detection chamber housing a glass capture antibody array for measuring chemiluminescence output with a CCD camera. Sandwich type assays were built onto the glass arrays using a multi-labeled detection antibody-polyHRP (HRP = horseradish peroxidase). Total assay time was ~30 min in a complete automated assay employing a programmable syringe pump so that the protocol required minimal operator intervention. The device was used for multiplexed detection of prostate cancer biomarker proteins prostate specific antigen (PSA) and platelet factor 4 (PF-4). Detection limits of 0.5 pg mL−1 were achieved for these proteins in diluted serum with log dynamic ranges of four orders of magnitude. Good accuracy vs ELISA was validated by analyzing human serum samples. This prototype device holds good promise for further development as a point-of-care cancer diagnostics tool. PMID:28067370

  18. Role of Protein Biomarkers in the Detection of High-Grade Disease in Cervical Cancer Screening Programs

    Directory of Open Access Journals (Sweden)

    Charlotte A. Brown

    2012-01-01

    Full Text Available Since the Pap test was introduced in the 1940s, there has been an approximately 70% reduction in the incidence of squamous cell cervical cancers in many developed countries by the application of organized and opportunistic screening programs. The efficacy of the Pap test, however, is hampered by high interobserver variability and high false-negative and false-positive rates. The use of biomarkers has demonstrated the ability to overcome these issues, leading to improved positive predictive value of cervical screening results. In addition, the introduction of HPV primary screening programs will necessitate the use of a follow-up test with high specificity to triage the high number of HPV-positive tests. This paper will focus on protein biomarkers currently available for use in cervical cancer screening, which appear to improve the detection of women at greatest risk for developing cervical cancer, including Ki-67, p16INK4a, BD ProEx C, and Cytoactiv HPV L1.

  19. Oral Microbiome: A New Biomarker Reservoir for Oral and Oropharyngeal Cancers

    OpenAIRE

    Lim, Yenkai; Totsika, Makrina; Morrison, Mark; Punyadeera, Chamindie

    2017-01-01

    Current biomarkers (DNA, RNA and protein) for oral cavity and oropharyngeal cancers demonstrate biological variations between individuals, rendering them impractical for clinical translation. Whilst these biomarkers originate from the host, there is not much information in the literature about the influence of oral microbiota on cancer pathogenesis, especially in oral cancers. Oral microbiotas are known to participate in disease initiation and progression not only limited to the oral cavity, ...

  20. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... of the biomarker test, and regulatory approval. In addition to these 4 steps, all biomarker studies should be reported in a detailed and transparent manner, using previously published checklists and guidelines. Finally, all biomarker studies relating to demonstration of clinical value should be registered before...

  1. Aberrantly methylated DNA as a biomarker in breast cancer.

    Science.gov (United States)

    Kristiansen, Søren; Jørgensen, Lars M; Guldberg, Per; Sölétormos, György

    2013-01-01

    Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into subgroups based on DNA biomarkers may improve prognosis. Serial monitoring of DNA-methylation markers in blood during treatment may be useful, particularly when the cancer burden is below the detection level for standard imaging techniques. Overall, aberrant DNA methylation has a great potential as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.

  2. Proteomics for discovery of candidate colorectal cancer biomarkers

    Science.gov (United States)

    Álvarez-Chaver, Paula; Otero-Estévez, Olalla; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers. PMID:24744574

  3. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes

    DEFF Research Database (Denmark)

    Wandall, Hans H; Blixt, Ola; Tarp, Mads A

    2010-01-01

    Autoantibodies to cancer antigens hold promise as biomarkers for early detection of cancer. Proteins that are aberrantly processed in cancer cells are likely to present autoantibody targets. The extracellular mucin MUC1 is overexpressed and aberrantly glycosylated in many cancers; thus, we evalua...

  4. Evaluation of Multimodal Imaging Biomarkers of Prostate Cancer

    Science.gov (United States)

    2016-11-01

    relationship prostate cancer growth, androgen receptor (AR) levels, hypoxia, and translocator protein (TSPO) levels. As described in the statement of work... bladder uptake) that enable robust detection of small prostate cancers . In contrast, high background and variable uptake of FDHT and FMISO confounded the...Award Number: W81XWH-12-1-0245 TITLE: Evaluation of Multimodal Imaging Biomarkers of Prostate Cancer PRINCIPAL INVESTIGATOR: Christopher Chad

  5. Putative Biomarkers and Targets of Estrogen Receptor Negative Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stephen W. Byers

    2011-07-01

    Full Text Available Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER, progesterone receptor (PR, and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.

  6. Exosome: emerging biomarker in breast cancer

    Science.gov (United States)

    Jia, Yunlu; Chen, Yongxia; Wang, Qinchuan; Jayasinghe, Ushani; Luo, Xiao; Wei, Qun; Wang, Ji; Xiong, Hanchu; Chen, Cong; Xu, Bin; Hu, Wenxian; Wang, Linbo; Zhao, Wenhe; Zhou, Jichun

    2017-01-01

    Exosomes are nano-sized membrane vesicles released by a variety of cell types, and are thought to play important roles in intercellular communications. In breast cancer, through horizontal transfer of various bioactive molecules, such as proteins and mRNAs, exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information and play an important role on cancer progression. This review outlines the current knowledge and concepts concerning the exosomes involvement in breast cancer pathogenesis (including tumor initiation, invasion and metastasis, angiogenesis, immune system modulation and tumor microenvironment) and cancer therapy resistance. Moreover, the potential use of exosomes as promising diagnostic and therapeutic biomarkers in breast cancer are also discussed. PMID:28402944

  7. Comparative Tissue Proteomics of Microdissected Specimens Reveals Novel Candidate Biomarkers of Bladder Cancer*

    Science.gov (United States)

    Chen, Chien-Lun; Chung, Ting; Wu, Chih-Ching; Ng, Kwai-Fong; Yu, Jau-Song; Tsai, Cheng-Han; Chang, Yu-Sun; Liang, Ying; Tsui, Ke-Hung; Chen, Yi-Ting

    2015-01-01

    More than 380,000 new cases of bladder cancer are diagnosed worldwide, accounting for ∼150,200 deaths each year. To discover potential biomarkers of bladder cancer, we employed a strategy combining laser microdissection, isobaric tags for relative and absolute quantitation labeling, and liquid chromatography-tandem MS (LC-MS/MS) analysis to profile proteomic changes in fresh-frozen bladder tumor specimens. Cellular proteins from four pairs of surgically resected primary bladder cancer tumor and adjacent nontumorous tissue were extracted for use in two batches of isobaric tags for relative and absolute quantitation experiments, which identified a total of 3220 proteins. A DAVID (database for annotation, visualization and integrated discovery) analysis of dysregulated proteins revealed that the three top-ranking biological processes were extracellular matrix organization, extracellular structure organization, and oxidation-reduction. Biological processes including response to organic substances, response to metal ions, and response to inorganic substances were highlighted by up-expressed proteins in bladder cancer. Seven differentially expressed proteins were selected as potential bladder cancer biomarkers for further verification. Immunohistochemical analyses showed significantly elevated levels of three proteins—SLC3A2, STMN1, and TAGLN2—in tumor cells compared with noncancerous bladder epithelial cells, and suggested that TAGLN2 could be a useful tumor tissue marker for diagnosis (AUC = 0.999) and evaluating lymph node metastasis in bladder cancer patients. ELISA results revealed significantly increased urinary levels of both STMN1 and TAGLN2 in bladder cancer subgroups compared with control groups. In comparisons with age-matched hernia urine specimens, urinary TAGLN2 in bladder cancer samples showed the largest fold change (7.13-fold), with an area-under-the-curve value of 0.70 (p < 0.001, n = 205). Overall, TAGLN2 showed the most significant

  8. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis

    Science.gov (United States)

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P.; Goodlett, David R.; Aebersold, Ruedi; Brentnall, Teresa A.

    2008-01-01

    Objectives Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. Methods In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. Results In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Conclusions Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer. PMID:17198186

  9. Prostate-specific antigen (PSA) as a possible biomarker in non-prostatic cancer: A review.

    Science.gov (United States)

    Pérez-Ibave, Diana Cristina; Burciaga-Flores, Carlos Horacio; Elizondo-Riojas, Miguel-Ángel

    2018-06-01

    Prostate-specific antigen (PSA) is a serine protease produced by epithelial prostatic cells and its main function is to liquefy seminal coagulum. Currently, PSA is a biomarker for the diagnosis and screening of prostate cancer and it was the first cancer biomarker approved by the FDA. The quantity and serum isoforms of male PSA, allows distinguishing between carcinoma and benign inflammatory disease of the prostate. Initially, it was thought that PSA was produced only by the prostate, and thus, a protein that was expressed exclusively in men. However, several authors report that PSA is a protein that is expressed by multiple non-prostatic tissues not only in men but also in women. Some authors also report that in women, the expression of this protein is highly related to breast and colon cancer and therefore can act as a possible biomarker for early detection, diagnosis and prognosis of these cancers in women. In this review, we will focus on the characteristics of the PSA at a molecular level, its current clinical implications, the expression of this protein in non-prostatic tissues, and its relationship with cancer, especially in women. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Biomarkers of cancer cachexia.

    Science.gov (United States)

    Loumaye, Audrey; Thissen, Jean-Paul

    2017-12-01

    Cachexia is a complex multifactorial syndrome, characterized by loss of skeletal muscle and fat mass, which affects the majority of advanced cancer patients and is associated with poor prognosis. Interestingly, reversing muscle loss in animal models of cancer cachexia leads to prolong survival. Therefore, detecting cachexia and maintaining muscle mass represent a major goal in the care of cancer patients. However, early diagnosis of cancer cachexia is currently limited for several reasons. Indeed, cachexia development is variable according to tumor and host characteristics. In addition, safe, accessible and non-invasive tools to detect skeletal muscle atrophy are desperately lacking in clinical practice. Finally, the precise molecular mechanisms and the key players involved in cancer cachexia remain poorly characterized. The need for an early diagnosis of cancer cachexia supports therefore the quest for a biomarker that might reflect skeletal muscle atrophy process. Current research offers different promising ways to identify such a biomarker. Initially, the quest for a biomarker of cancer cachexia has mostly focused on mediators of muscle atrophy, produced by both tumor and host, in an attempt to define new therapeutic approaches. In another hand, molecules released by the muscle into the circulation during the atrophy process have been also considered as potential biomarkers. More recently, several "omics" studies are emerging to identify new muscular or circulating markers of cancer cachexia. Some genetic markers could also contribute to identify patients more susceptible to develop cachexia. This article reviews our current knowledge regarding potential biomarkers of cancer cachexia. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. MicroRNA: a new and promising potential biomarker for diagnosis and prognosis of ovarian cancer

    International Nuclear Information System (INIS)

    Pal, Manish K.; Jaiswar, Shyam P.; Dwivedi, Vinaya N.; Tripathi, Amit K.; Dwivedi, Ashish; Sankhwar, Pushplata

    2015-01-01

    Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers (mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as microRNAs (miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish miRNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers

  12. Differential profiling of breast cancer plasma proteome by isotope-coded affinity tagging method reveals biotinidase as a breast cancer biomarker

    International Nuclear Information System (INIS)

    Kang, Un-Beom; Ahn, Younghee; Lee, Jong Won; Kim, Yong-Hak; Kim, Joon; Yu, Myeong-Hee; Noh, Dong-Young; Lee, Cheolju

    2010-01-01

    Breast cancer is one of the leading causes of women's death worldwide. It is important to discover a reliable biomarker for the detection of breast cancer. Plasma is the most ideal source for cancer biomarker discovery since many cells cross-communicate through the secretion of soluble proteins into blood. Plasma proteomes obtained from 6 breast cancer patients and 6 normal healthy women were analyzed by using the isotope-coded affinity tag (ICAT) labeling approach and tandem mass spectrometry. All the plasma samples used were depleted of highly abundant 6 plasma proteins by immune-affinity column chromatography before ICAT labeling. Several proteins showing differential abundance level were selected based on literature searches and their specificity to the commercially available antibodies, and then verified by immunoblot assays. A total of 155 proteins were identified and quantified by ICAT method. Among them, 33 proteins showed abundance changes by more than 1.5-fold between the plasmas of breast cancer patients and healthy women. We chose 5 proteins for the follow-up confirmation in the individual plasma samples using immunoblot assay. Four proteins, α1-acid glycoprotein 2, monocyte differentiation antigen CD14, biotinidase (BTD), and glutathione peroxidase 3, showed similar abundance ratio to ICAT result. Using a blind set of plasmas obtained from 21 breast cancer patients and 21 normal healthy controls, we confirmed that BTD was significantly down-regulated in breast cancer plasma (Wilcoxon rank-sum test, p = 0.002). BTD levels were lowered in all cancer grades (I-IV) except cancer grade zero. The area under the receiver operating characteristic curve of BTD was 0.78. Estrogen receptor status (p = 0.940) and progesterone receptor status (p = 0.440) were not associated with the plasma BTD levels. Our study suggests that BTD is a potential serological biomarker for the detection of breast cancer

  13. Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays.

    Science.gov (United States)

    Parker, Carol E; Borchers, Christoph H

    2014-06-01

    In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer.

    Science.gov (United States)

    Nedaeinia, R; Manian, M; Jazayeri, M H; Ranjbar, M; Salehi, R; Sharifi, M; Mohaghegh, F; Goli, M; Jahednia, S H; Avan, A; Ghayour-Mobarhan, M

    2017-02-01

    The most important biological function of exosomes is their possible use as biomarkers in clinical diagnosis. Compared with biomarkers identified in conventional specimens such as serum or urine, exosomal biomarkers provide the highest amount of sensitivity and specificity, which can be attributed to their excellent stability. Exosomes, which harbor different types of proteins, nucleic acids and lipids, are present in almost all bodily fluids. The molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), are promising as biomarkers in clinical diagnosis. This discovery that exosomes also contain messenger RNAs and miRNAs shows that they could be carriers of genetic information. Although the majority of RNAs found in exosomes are degraded RNA fragments with a length of exosomal miRNAs have been found to be associated with certain diseases. Several studies have pointed out miRNA contents of circulating exosomes that are similar to those of originating cancer cells. In this review, the recent advances in circulating exosomal miRNAs as biomarkers in gastrointestinal cancers are discussed. These studies indicated that miRNAs can be detected in exosomes isolated from body fluids such as saliva, which suggests potential advantages of using exosomal miRNAs as noninvasive novel biomarkers.

  15. PET Metabolic Biomarkers for Cancer

    Directory of Open Access Journals (Sweden)

    Etienne Croteau

    2016-01-01

    Full Text Available The body's main fuel sources are fats, carbohydrates (glucose, proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET imaging using the glucose analog 18 F-fluorodeoxyglucose ( 18 F-FDG has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication–-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.

  16. Diagnostic and prognostic epigenetic biomarkers in cancer.

    Science.gov (United States)

    Costa-Pinheiro, Pedro; Montezuma, Diana; Henrique, Rui; Jerónimo, Carmen

    2015-01-01

    Growing cancer incidence and mortality worldwide demands development of accurate biomarkers to perfect detection, diagnosis, prognostication and monitoring. Urologic (prostate, bladder, kidney), lung, breast and colorectal cancers are the most common and despite major advances in their characterization, this has seldom translated into biomarkers amenable for clinical practice. Epigenetic alterations are innovative cancer biomarkers owing to stability, frequency, reversibility and accessibility in body fluids, entailing great potential of assay development to assist in patient management. Several studies identified putative epigenetic cancer biomarkers, some of which have been commercialized. However, large multicenter validation studies are required to foster translation to the clinics. Herein we review the most promising epigenetic detection, diagnostic, prognostic and predictive biomarkers for the most common cancers.

  17. Novel Biomarker Proteins in Chronic Lymphocytic Leukemia: Impact on Diagnosis, Prognosis and Treatment.

    Directory of Open Access Journals (Sweden)

    Lee Admoni-Elisha

    Full Text Available In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1, regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in

  18. Discovery of dachshund 2 protein as a novel biomarker of poor prognosis in epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Nodin Björn

    2012-01-01

    Full Text Available Abstract Background The Dachshund homolog 2 (DACH2 gene has been implicated in development of the female genital tract in mouse models and premature ovarian failure syndrome, but to date, its expression in human normal and cancerous tissue remains unexplored. Using the Human Protein Atlas as a tool for cancer biomarker discovery, DACH2 protein was found to be differentially expressed in epithelial ovarian cancer (EOC. Here, the expression and prognostic significance of DACH2 was further evaluated in ovarian cancer cell lines and human EOC samples. Methods Immunohistochemical expression of DACH2 was examined in tissue microarrays with 143 incident EOC cases from two prospective, population-based cohorts, including a subset of benign-appearing fallopian tubes (n = 32. A nuclear score (NS, i.e. multiplier of staining fraction and intensity, was calculated. For survival analyses, cases were dichotomized into low (NS 3 using classification and regression tree analysis. Kaplan Meier analysis and Cox proportional hazards modelling were used to assess the impact of DACH2 expression on survival. DACH2 expression was analysed in the cisplatin sensitive ovarian cancer cell line A2780 and its cisplatin resistant derivative A2780-Cp70. The specificity of the DACH2 antibody was tested using siRNA-mediated silencing of DACH2 in A2780-Cp70 cells. Results DACH2 expression was considerably higher in the cisplatin resistant A2780-Cp70 cells compared to the cisplatin-sensitive A2780 cells. While present in all sampled fallopian tubes, DACH2 expression ranged from negative to strong in EOC. In EOC, DACH2 expression correlated with several proteins involved in DNA integrity and repair, and proliferation. DACH2 expression was significantly higher in carcinoma of the serous subtype compared to non-serous carcinoma. In the full cohort, high DACH2 expression was significantly associated with poor prognosis in univariable analysis, and in carcinoma of the serous subtype

  19. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection.

    Science.gov (United States)

    Yee, John; Sadar, Marianne D; Sin, Don D; Kuzyk, Michael; Xing, Li; Kondra, Jennifer; McWilliams, Annette; Man, S F Paul; Lam, Stephen

    2009-06-10

    There are no reliable blood biomarkers to detect early lung cancer. We used a novel strategy that allows discovery of differentially present proteins against a complex and variable background. Mass spectrometry analyses of paired pulmonary venous-radial arterial blood from 16 lung cancer patients were applied to identify plasma proteins potentially derived from the tumor microenvironment. Two differentially expressed proteins were confirmed in 64 paired venous-arterial blood samples using an immunoassay. Twenty-eight pre- and postsurgical resection peripheral blood samples and two independent, blinded sets of plasma from 149 participants in a lung cancer screening study (49 lung cancers and 100 controls) and 266 participants from the National Heart Lung and Blood Institute Lung Health Study (45 lung cancer and 221 matched controls) determined the accuracy of the two protein markers to detect subclinical lung cancer. Connective tissue-activating peptide III (CTAP III)/ neutrophil activating protein-2 (NAP-2) and haptoglobin were identified to be significantly higher in venous than in arterial blood. CTAP III/NAP-2 levels decreased after tumor resection (P = .01). In two independent population cohorts, CTAP III/NAP-2 was significantly associated with lung cancer and improved the accuracy of a lung cancer risk prediction model that included age, smoking, lung function (FEV(1)), and an interaction term between FEV(1) and CTAP III/NAP-2 (area under the curve, 0.84; 95% CI, 0.77 to 0.91) compared to CAPIII/NAP-2 alone. We identified CTAP III/NAP-2 as a novel biomarker to detect preclinical lung cancer. The study underscores the importance of applying blood biomarkers as part of a multimodal lung cancer risk prediction model instead of as stand-alone tests.

  20. Protein biomarker enrichment by biomarker antibody complex elution for immunoassay biosensing

    NARCIS (Netherlands)

    Sabatté, G.S.; Feitsma, H.; Evers, T.H.; Prins, M.W.J.

    2011-01-01

    It is very challenging to perform sample enrichment for protein biomarkers because proteins can easily change conformation and denature. In this paper we demonstrate protein enrichment suited for high-sensitivity integrated immuno-biosensing. The method enhances the concentration of the biomarkers

  1. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer.

    LENUS (Irish Health Repository)

    Tonry, Claire L

    2016-07-18

    Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit from existing treatments; or (iii) those who are likely to succumb to disease recurrence and\\/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii) address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.

  2. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Claire L. Tonry

    2016-07-01

    Full Text Available Prostate Cancer (PCa is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i might best receive no treatment (active surveillance of the disease; (ii would benefit from existing treatments; or (iii those who are likely to succumb to disease recurrence and/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.

  3. Emerging Concepts and Methodologies in Cancer Biomarker Discovery.

    Science.gov (United States)

    Lu, Meixia; Zhang, Jinxiang; Zhang, Lanjing

    2017-01-01

    Cancer biomarker discovery is a critical part of cancer prevention and treatment. Despite the decades of effort, only a small number of cancer biomarkers have been identified for and validated in clinical settings. Conceptual and methodological breakthroughs may help accelerate the discovery of additional cancer biomarkers, particularly their use for diagnostics. In this review, we have attempted to review the emerging concepts in cancer biomarker discovery, including real-world evidence, open access data, and data paucity in rare or uncommon cancers. We have also summarized the recent methodological progress in cancer biomarker discovery, such as high-throughput sequencing, liquid biopsy, big data, artificial intelligence (AI), and deep learning and neural networks. Much attention has been given to the methodological details and comparison of the methodologies. Notably, these concepts and methodologies interact with each other and will likely lead to synergistic effects when carefully combined. Newer, more innovative concepts and methodologies are emerging as the current emerging ones became mainstream and widely applied to the field. Some future challenges are also discussed. This review contributes to the development of future theoretical frameworks and technologies in cancer biomarker discovery and will contribute to the discovery of more useful cancer biomarkers.

  4. Unique protein expression signatures of survival time in kidney renal clear cell carcinoma through a pan-cancer screening.

    Science.gov (United States)

    Han, Guangchun; Zhao, Wei; Song, Xiaofeng; Kwok-Shing Ng, Patrick; Karam, Jose A; Jonasch, Eric; Mills, Gordon B; Zhao, Zhongming; Ding, Zhiyong; Jia, Peilin

    2017-10-03

    In 2016, it is estimated that there will be 62,700 new cases of kidney cancer in the United States, and 14,240 patients will die from the disease. Because the incidence of kidney renal clear cell carcinoma (KIRC), the most common type of kidney cancer, is expected to continue to increase in the US, there is an urgent need to find effective diagnostic biomarkers for KIRC that could help earlier detection of and customized treatment strategies for the disease. Accordingly, in this study we systematically investigated KIRC's prognostic biomarkers for survival using the reverse phase protein array (RPPA) data and the high throughput sequencing data from The Cancer Genome Atlas (TCGA). With comprehensive data available in TCGA, we systematically screened protein expression based survival biomarkers in 10 major cancer types, among which KIRC presented many protein prognostic biomarkers of survival time. This is in agreement with a previous report that expression level changes (mRNAs, microRNA and protein) may have a better performance for prognosis of KIRC. In this study, we also identified 52 prognostic genes for KIRC, many of which are involved in cell-cycle and cancer signaling, as well as 15 tumor-stage-specific prognostic biomarkers. Notably, we found fewer prognostic biomarkers for early-stage than for late-stage KIRC. Four biomarkers (the RPPA protein IDs: FASN, ACC1, Cyclin_B1 and Rad51) were found to be prognostic for survival based on both protein and mRNA expression data. Through pan-cancer screening, we found that many protein biomarkers were prognostic for patients' survival in KIRC. Stage-specific survival biomarkers in KIRC were also identified. Our study indicated that these protein biomarkers might have potential clinical value in terms of predicting survival in KIRC patients and developing individualized treatment strategies. Importantly, we found many biomarkers in KIRC at both the mRNA expression level and the protein expression level. These

  5. Other biomarkers for detecting prostate cancer.

    Science.gov (United States)

    Nogueira, Lucas; Corradi, Renato; Eastham, James A

    2010-01-01

    Prostate-specific antigen (PSA) has been used for detecting prostate cancer since 1994. Although it is the best cancer biomarker available, PSA is not perfect. It lacks both the sensitivity and specificity to accurately detect the presence of prostate cancer. None of the PSA thresholds currently in use consistently identify patients with prostate cancer and exclude patients without cancer. Novel approaches to improve our ability to detect prostate cancer and predict the course of the disease are needed. Additional methods for detecting prostate cancer have been evaluated. Despite the discovery of many new biomarkers, only a few have shown some clinical value. These markers include human kallikrein 2, urokinase-type plasminogen activator receptor, prostate-specific membrane antigen, early prostate cancer antigen, PCA3, alpha-methylacyl-CoA racemase and glutathione S-transferase pi hypermethylation. We review the reports on biomarkers for prostate cancer detection, and their possible role in the clinical practice.

  6. Biomarker in Cisplatin-Based Chemotherapy for Urinary Bladder Cancer.

    Science.gov (United States)

    Ecke, Thorsten H

    2015-01-01

    The treatment of metastasized bladder cancer has been evolving during recent years. Cisplatin based chemotherapy combinations are still gold standard in the treatment of advanced and metastasized bladder cancer. But new therapies are approaching. Based to this fact biological markers will become more important for decisions in bladder cancer treatment. A systematic MEDLINE search of the key words "cisplatin", "bladder cancer", "DNA marker", "protein marker", "methylation biomarker", "predictive marker", "prognostic marker" has been made. This review aims to highlight the most relevant clinical and experimental studies investigating markers for metastasized transitional carcinoma of the urothelium treated by cisplatin based regimens.

  7. Comprehensive serum profiling for the discovery of epithelial ovarian cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Ping Yip

    Full Text Available FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC=0.933 and CA-125 (AUC=0.907 were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800. To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912. Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the

  8. Imaging biomarker roadmap for cancer studies

    NARCIS (Netherlands)

    O'Connor, James P. B.; Aboagye, Eric O.; Adams, Judith E.; Aerts, Hugo J. W. L.; Barrington, Sally F.; Beer, Ambros J.; Boellaard, Ronald; Bohndiek, Sarah E.; Brady, Michael; Brown, Gina; Buckley, David L.; Chenevert, Thomas L.; Clarke, Laurence P.; Collette, Sandra; Cook, Gary J.; Desouza, Nandita M.; Dickson, John C.; Dive, Caroline; Evelhoch, Jeffrey L.; Faivre-Finn, Corinne; Gallagher, Ferdia A.; Gilbert, Fiona J.; Gillies, Robert J.; Goh, Vicky; Griffiths, J. R.; Groves, Ashley M.; Halligan, Steve; Harris, Adrian L.; Hawkes, David J.; Hoekstra, Otto S.; Huang, Erich P.; Hutton, Brian F.; Jackson, Edward F.; Jayson, Gordon C.; Jones, Andrew; Koh, Dow-Mu; Lacombe, Denis; Lambin, Philippe; Lassau, Nathalie; Leach, Martin O.; Lee, Ting-Yim; Leen, Edward L.; Lewis, Jason S.; Liu, Yan; Lythgoe, Mark F.; Manoharan, Prakash; Maxwell, Ross J.; Miles, Kenneth A.; Morgan, Bruno; Morris, Steve; Ng, Tony; Padhani, Anwar R.; Parker, Geoff J. M.; Partridge, Mike; Pathak, Arvind P.; Peet, Andrew C.; Punwani, Shonit; Reynolds, Andrew R.; Robinson, Simon P.; Shankar, Lalitha K.; Sharma, Ricky A.; Soloviev, Dmitry; Stroobants, Sigrid G.; Sullivan, Daniel C.; Taylor, Stuart A.; Tofts, Paul S.; Tozer, Gillian M.; van Herk, Marcel B.; Walker-Samuel, Simon; Wason, James; Williams, Kaye J.; Workman, Paul; Yankeelov, Thomas E.; Brindle, Kevin M.; McShane, Lisa M.; Jackson, Alan; Waterton, John C.

    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and

  9. Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma.

    Science.gov (United States)

    Fujii, Kiyonaga; Nakamura, Haruhiko; Nishimura, Toshihide

    2017-04-01

    Lung cancer and related diseases have been one of the most common causes of deaths worldwide. Genomic-based biomarkers may hardly reflect the underlying dynamic molecular mechanism of functional protein interactions, which is the center of a disease. Recent developments in mass spectrometry (MS) have made it possible to analyze disease-relevant proteins expressed in clinical specimens by proteomic challenges. Areas covered: To understand the molecular mechanisms of lung cancer and its subtypes, chronic obstructive pulmonary disease (COPD), asthma and others, great efforts have been taken to identify numerous relevant proteins by MS-based clinical proteomic approaches. Since lung cancer is a multifactorial disease that is biologically associated with asthma and COPD among various lung diseases, this study focused on proteomic studies on biomarker discovery using various clinical specimens for lung cancer, COPD, and asthma. Expert commentary: MS-based exploratory proteomics utilizing clinical specimens, which can incorporate both experimental and bioinformatic analysis of protein-protein interaction and also can adopt proteogenomic approaches, makes it possible to reveal molecular networks that are relevant to a disease subgroup and that could differentiate between drug responders and non-responders, good and poor prognoses, drug resistance, and so on.

  10. Identification of Oxidative Stress Related Proteins as Biomarkers for Lung Cancer and Chronic Obstructive Pulmonary Disease in Bronchoalveolar Lavage

    Directory of Open Access Journals (Sweden)

    Amancio Carnero

    2013-02-01

    Full Text Available Lung cancer (LC and chronic obstructive pulmonary disease (COPD commonly coexist in smokers, and the presence of COPD increases the risk of developing LC. Cigarette smoke causes oxidative stress and an inflammatory response in lung cells, which in turn may be involved in COPD and lung cancer development. The aim of this study was to identify differential proteomic profiles related to oxidative stress response that were potentially involved in these two pathological entities. Protein content was assessed in the bronchoalveolar lavage (BAL of 60 patients classified in four groups: COPD, COPD and LC, LC, and control (neither COPD nor LC. Proteins were separated into spots by two dimensional polyacrylamide gel electrophoresis (2D-PAGE and examined by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF. A total of 16 oxidative stress regulatory proteins were differentially expressed in BAL samples from LC and/or COPD patients as compared with the control group. A distinct proteomic reactive oxygen species (ROS protein signature emerged that characterized lung cancer and COPD. In conclusion, our findings highlight the role of the oxidative stress response proteins in the pathogenic pathways of both diseases, and provide new candidate biomarkers and predictive tools for LC and COPD diagnosis.

  11. Investigation of human cationic antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as potential biomarkers for ovarian cancer

    DEFF Research Database (Denmark)

    Lim, Ratana; Lappas, Martha; Riley, Clyde

    2013-01-01

    controls, including 28 women with benign pelvic masses; 91 cancer, including 21 women with borderline tumours). Localisation of each antigen within the ovary was assessed by immunohistochemistry and serum concentrations determined by ELISA assays. RESULTS: Immunoreactive (ir) hCAP-18 and lactoferrin were......BACKGROUND: Epithelial ovarian cancer is one of the leading causes of gynaecological cancer morbidity and mortality in women. Early stage ovarian cancer is usually asymptomatic, therefore, is often first diagnosed when it is widely disseminated. Currently available diagnostics lack the requisite...... and plasma concentrations of three putative ovarian cancer biomarkers: human cationic antimicrobial protein-18 (hCAP-18); lactoferrin; and CD163 in normal healthy women and women with ovarian cancer. METHODS: In this case-control cohort study, ovarian tissue and blood samples were obtained from 164 women (73...

  12. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  13. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  14. Biomarker Identification for Prostate Cancer and Lymph Node Metastasis from Microarray Data and Protein Interaction Network Using Gene Prioritization Method

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Arias

    2012-01-01

    Full Text Available Finding a genetic disease-related gene is not a trivial task. Therefore, computational methods are needed to present clues to the biomedical community to explore genes that are more likely to be related to a specific disease as biomarker. We present biomarker identification problem using gene prioritization method called gene prioritization from microarray data based on shortest paths, extended with structural and biological properties and edge flux using voting scheme (GP-MIDAS-VXEF. The method is based on finding relevant interactions on protein interaction networks, then scoring the genes using shortest paths and topological analysis, integrating the results using a voting scheme and a biological boosting. We applied two experiments, one is prostate primary and normal samples and the other is prostate primary tumor with and without lymph nodes metastasis. We used 137 truly prostate cancer genes as benchmark. In the first experiment, GP-MIDAS-VXEF outperforms all the other state-of-the-art methods in the benchmark by retrieving the truest related genes from the candidate set in the top 50 scores found. We applied the same technique to infer the significant biomarkers in prostate cancer with lymph nodes metastasis which is not established well.

  15. Identification of Tetranectin as a Potential Biomarker for Metastatic Oral Cancer

    Directory of Open Access Journals (Sweden)

    Shen Hu

    2010-09-01

    Full Text Available Lymph node involvement is the most important predictor of survival rates in patients with oral squamous cell carcinoma (OSCC. A biomarker that can indicate lymph node metastasis would be valuable to classify patients with OSCC for optimal treatment. In this study, we have performed a serum proteomic analysis of OSCC using 2-D gel electrophoresis and liquid chromatography/tandem mass spectrometry. One of the down-regulated proteins in OSCC was identified as tetranectin, which is a protein encoded by the CLEC3B gene (C-type lectin domain family 3, member B. We further tested the protein level in serum and saliva from patients with lymph-node metastatic and primary OSCC. Tetranectin was found significantly under-expressed in both serum and saliva of metastatic OSCC compared to primary OSCC. Our results suggest that serum or saliva tetranectin may serve as a potential biomarker for metastatic OSCC. Other candidate serum biomarkers for OSCC included superoxide dismutase, ficolin 2, CD-5 antigen-like protein, RalA binding protein 1, plasma retinol-binding protein and transthyretin. Their clinical utility for OSCC detection remains to be further tested in cancer patients.

  16. Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer

    International Nuclear Information System (INIS)

    Willumsen, Nicholas; Bager, Cecilie L; Leeming, Diana J; Smith, Victoria; Christiansen, Claus; Karsdal, Morten A; Dornan, David; Bay-Jensen, Anne-Christine

    2014-01-01

    Extracellular matrix (ECM) proteins, such as collagen type I and elastin, and intermediate filament (IMF) proteins, such as vimentin are modified and dysregulated as part of the malignant changes leading to disruption of tissue homeostasis. Noninvasive biomarkers that reflect such changes may have a great potential for cancer. Levels of matrix metalloproteinase (MMP) generated fragments of type I collagen (C1M), of elastin (ELM), and of citrullinated vimentin (VICM) were measured in serum from patients with lung cancer (n = 40), gastrointestinal cancer (n = 25), prostate cancer (n = 14), malignant melanoma (n = 7), chronic obstructive pulmonary disease (COPD) (n = 13), and idiopathic pulmonary fibrosis (IPF) (n = 10), as well as in age-matched controls (n = 33). The area under the receiver operating characteristics (AUROC) was calculated and a diagnostic decision tree generated from specific cutoff values. C1M and VICM were significantly elevated in lung cancer patients as compared with healthy controls (AUROC = 0.98, P < 0.0001) and other cancers (AUROC = 0.83 P < 0.0001). A trend was detected when comparing lung cancer with COPD+IPF. No difference could be seen for ELM. Interestingly, C1M and VICM were able to identify patients with lung cancer with a positive predictive value of 0.9 and an odds ratio of 40 (95% CI = 8.7–186, P < 0.0001). Biomarkers specifically reflecting degradation of collagen type I and citrullinated vimentin are applicable for lung cancer patients. Our data indicate that biomarkers reflecting ECM and IMF protein dysregulation are highly applicable in the lung cancer setting. We speculate that these markers may aid in diagnosing and characterizing patients with lung cancer

  17. Analytical Pipeline for Discovery and Verification of Glycoproteins from Plasma-Derived Extracellular Vesicles as Breast Cancer Biomarkers.

    Science.gov (United States)

    Chen, I-Hsuan; Aguilar, Hillary Andaluz; Paez Paez, J Sebastian; Wu, Xiaofeng; Pan, Li; Wendt, Michael K; Iliuk, Anton B; Zhang, Ying; Tao, W Andy

    2018-05-15

    Glycoproteins comprise more than half of current FDA-approved protein cancer markers, but the development of new glycoproteins as disease biomarkers has been stagnant. Here we present a pipeline to develop glycoproteins from extracellular vesicles (EVs) through integrating quantitative glycoproteomics with a novel reverse phase glycoprotein array and then apply it to identify novel biomarkers for breast cancer. EV glycoproteomics show promise in circumventing the problems plaguing current serum/plasma glycoproteomics and allowed us to identify hundreds of glycoproteins that have not been identified in blood. We identified 1,453 unique glycopeptides representing 556 glycoproteins in EVs, among which 20 were verified significantly higher in individual breast cancer patients. We further applied a novel glyco-specific reverse phase protein array to quantify a subset of the candidates. Together, this study demonstrates the great potential of this integrated pipeline for biomarker discovery.

  18. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding.

    Directory of Open Access Journals (Sweden)

    Allison R Sirois

    Full Text Available Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3 non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.

  19. Immunohistochemistry for predictive biomarkers in non-small cell lung cancer.

    Science.gov (United States)

    Mino-Kenudson, Mari

    2017-10-01

    In the era of targeted therapy, predictive biomarker testing has become increasingly important for non-small cell lung cancer. Of multiple predictive biomarker testing methods, immunohistochemistry (IHC) is widely available and technically less challenging, can provide clinically meaningful results with a rapid turn-around-time and is more cost efficient than molecular platforms. In fact, several IHC assays for predictive biomarkers have already been implemented in routine pathology practice. In this review, we will discuss: (I) the details of anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) IHC assays including the performance of multiple antibody clones, pros and cons of IHC platforms and various scoring systems to design an optimal algorithm for predictive biomarker testing; (II) issues associated with programmed death-ligand 1 (PD-L1) IHC assays; (III) appropriate pre-analytical tissue handling and selection of optimal tissue samples for predictive biomarker IHC.

  20. Biomarkers in cancer screening: a public health perspective.

    Science.gov (United States)

    Srivastava, Sudhir; Gopal-Srivastava, Rashmi

    2002-08-01

    The last three decades have witnessed a rapid advancement and diffusion of technology in health services. Technological innovations have given health service providers the means to diagnose and treat an increasing number of illnesses, including cancer. In this effort, research on biomarkers for cancer detection and risk assessment has taken a center stage in our effort to reduce cancer deaths. For the first time, scientists have the technologies to decipher and understand these biomarkers and to apply them to earlier cancer detection. By identifying people at high risk of developing cancer, it would be possible to develop intervention efforts on prevention rather than treatment. Once fully developed and validated, then the regular clinical use of biomarkers in early detection and risk assessment will meet nationally recognized health care needs: detection of cancer at its earliest stage. The dramatic rise in health care costs in the past three decades is partly related to the proliferation of new technologies. More recent analysis indicates that technological change, such as new procedures, products and capabilities, is the primary explanation of the historical increase in expenditure. Biomarkers are the new entrants in this competing environment. Biomarkers are considered as a competing, halfway or add-on technology. Technology such as laboratory tests of biomarkers will cost less compared with computed tomography (CT) scans and other radiographs. However, biomarkers for earlier detection and risk assessment have not achieved the level of confidence required for clinical applications. This paper discusses some issues related to biomarker development, validation and quality assurance. Some data on the trends of diagnostic technologies, proteomics and genomics are presented and discussed in terms of the market share. Eventually, the use of biomarkers in health care could reduce cost by providing noninvasive, sensitive and reliable assays at a fraction of the cost of

  1. Potential Biomarker of L type Amino Acid Transporter 1 in Breast Cancer Progression

    International Nuclear Information System (INIS)

    Liang, Zhongxing; Cho, Heidi T.; Williams, Larry; Zhu, Aizhi; Liang, Ke; Huang, Ke; Wu, Hui; Jiang, Chunsu; Hong, Samuel; Crowe, Ronald; Goodman, Mark M.; Shim, Hyunsuk

    2011-01-01

    L type amino acid transporter 1 (LAT1) is essential for the transport of large neutral amino acids. However, its role in breast cancer growth remains largely unknown. The purpose of the study is to investigate whether LAT1 is a potential biomarker for the diagnosis and treatment of breast cancer. LAT1 mRNA and protein levels in breast cancer cell lines and tissues were analyzed. In addition, the effects of targeting LAT1 for the inhibition of breast cancer cell tumorigenesis were assessed with soft agar assay. The imaging of xenograft with 1 amino 3 [ 18F ]fluorocyclo butane 1 carboxylic acid ([ 18F ]FACBC) PET was assessed for its diagnostic biomarker potential. Normal breast tissue or low malignant cell lines expressed low levels of LAT1 mRNA and protein, while highly malignant cancer cell lines and high grade breast cancer tissue expressed high levels of LAT1. In addition, higher expression levels of LAT1 in breast cancer tissues were consistent with advanced stage breast cancer. Furtermore, the blockade of LAT1 with its inhibitor, 2 amino bicyclo[2.2.1]heptane 2 carboxylic acid (BCH), or the knockdown of LAT1 with siRNA, inhibited proliferation and tumorigenesis of breast cancer cells. A leucine analog, [ 18F ]FACBC, has been demonstrated to be an excellent PET tracer for the non invasive imaging og malignant breast cancer using an orthotopic animal model. The overexpression of LAT1 is required for the progression of breast cancer. LAT1 represents a potential biomarker for therapy and diagnosis of breast cancer. [ 18F ]FACBC that correlates with LAT1 function is a potential PET tracer for malignant breast tumor imaging

  2. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  3. Quantitative imaging as cancer biomarker

    Science.gov (United States)

    Mankoff, David A.

    2015-03-01

    The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient's cancer. Thus far assays to identify cancer therapeutic targets or anticancer drug pharmacodynamics have been based upon in vitro assay of tissue or blood samples. Advances in molecular imaging, particularly PET, have led to the ability to perform quantitative non-invasive molecular assays. Imaging has traditionally relied on structural and anatomic features to detect cancer and determine its extent. More recently, imaging has expanded to include the ability to image regional biochemistry and molecular biology, often termed molecular imaging. Molecular imaging can be considered an in vivo assay technique, capable of measuring regional tumor biology without perturbing it. This makes molecular imaging a unique tool for cancer drug development, complementary to traditional assay methods, and a potentially powerful method for guiding targeted therapy in clinical trials and clinical practice. The ability to quantify, in absolute measures, regional in vivo biologic parameters strongly supports the use of molecular imaging as a tool to guide therapy. This review summarizes current and future applications of quantitative molecular imaging as a biomarker for cancer therapy, including the use of imaging to (1) identify patients whose tumors express a specific therapeutic target; (2) determine

  4. IL-8 as a urinary biomarker for the detection of bladder cancer

    Directory of Open Access Journals (Sweden)

    Urquidi Virginia

    2012-05-01

    Full Text Available Abstract Background Current urine-based assays for bladder cancer (BCa diagnosis lack accuracy, so the search for improved biomarkers continues. Through genomic and proteomic profiling of urine, we have identified a panel of biomarkers associated with the presence of BCa. In this study, we evaluated the utility of three of these biomarkers, interleukin 8 (IL-8, Matrix metallopeptidase 9 (MMP-9 and Syndecan in the diagnosis of BCa through urinalysis. Methods Voided urines from 127 subjects, cancer subjects (n = 64, non-cancer subjects (n = 63 were analyzed. The protein concentrations of IL-8, MMP-9, and Syndecan were assessed by enzyme-linked immunosorbent assay (ELISA. Data were also compared to a commercial ELISA-based BCa detection assay (BTA-Trak© and urinary cytology. We used the area under the curve of a receiver operating characteristic (AUROC to compare the performance of each biomarker. Results Urinary protein concentrations of IL-8, MMP-9 and BTA were significantly elevated in BCa subjects. Of the experimental markers compared to BTA-Trak©, IL-8 was the most prominent marker (AUC; 0.79; 95% confidence interval [CI], 0.72-0.86. Multivariate regression analysis revealed that only IL-8 (OR; 1.51; 95% CI, 1.16-1.97, p = 0.002 was an independent factor for the detection of BCa. Conclusions These results suggest that the measurement of IL-8 in voided urinary samples may have utility for urine-based detection of BCa. These findings need to be confirmed in a larger, prospective cohort.

  5. Exosomal microRNA Biomarkers: Emerging Frontiers in Colorectal and Other Human Cancers

    Science.gov (United States)

    Goel, Ajay; Tovar-Camargo, Oscar A; Toden, Shusuke

    2016-01-01

    Diagnostic strategies, particularly non-invasive blood-based screening approaches, are gaining increased attention for the early detection and attenuation of mortality associated with colorectal cancer (CRC). However, the majority of current screening approaches are inadequate at replacing the conventional CRC diagnostic procedures. Yet, due to technological advances and a better understanding of molecular events underlying human cancer, a new category of biomarkers are on the horizon. Recent evidence indicates that cells release a distinct class of small vesicles called ‘exosomes’, which contain nucleic acids and proteins that reflect and typify host-cell molecular architecture. Intriguingly, exosomes released from cancer cells have a distinct genetic and epigenetic makeup, which allows them to undertake their tumorigenic function. From a clinical standpoint, these unique cancer-specific fingerprints present in exosomes appear to be detectable in a small amount of blood, making them very attractive substrates for developing cancer biomarkers, particularly noninvasive diagnostic approaches. PMID:26892862

  6. Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry

    Science.gov (United States)

    Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini

    We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.

  7. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  8. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    Science.gov (United States)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  9. Serum protein profile at remission can accurately assess therapeutic outcomes and survival for serous ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Jinhua Wang

    Full Text Available BACKGROUND: Biomarkers play critical roles in early detection, diagnosis and monitoring of therapeutic outcome and recurrence of cancer. Previous biomarker research on ovarian cancer (OC has mostly focused on the discovery and validation of diagnostic biomarkers. The primary purpose of this study is to identify serum biomarkers for prognosis and therapeutic outcomes of ovarian cancer. EXPERIMENTAL DESIGN: Forty serum proteins were analyzed in 70 serum samples from healthy controls (HC and 101 serum samples from serous OC patients at three different disease phases: post diagnosis (PD, remission (RM and recurrence (RC. The utility of serum proteins as OC biomarkers was evaluated using a variety of statistical methods including survival analysis. RESULTS: Ten serum proteins (PDGF-AB/BB, PDGF-AA, CRP, sFas, CA125, SAA, sTNFRII, sIL-6R, IGFBP6 and MDC have individually good area-under-the-curve (AUC values (AUC = 0.69-0.86 and more than 10 three-marker combinations have excellent AUC values (0.91-0.93 in distinguishing active cancer samples (PD & RC from HC. The mean serum protein levels for RM samples are usually intermediate between HC and OC patients with active cancer (PD & RC. Most importantly, five proteins (sICAM1, RANTES, sgp130, sTNFR-II and sVCAM1 measured at remission can classify, individually and in combination, serous OC patients into two subsets with significantly different overall survival (best HR = 17, p<10(-3. CONCLUSION: We identified five serum proteins which, when measured at remission, can accurately predict the overall survival of serous OC patients, suggesting that they may be useful for monitoring the therapeutic outcomes for ovarian cancer.

  10. Biomarker-driven trial in metastatic pancreas cancer: feasibility in a multicenter study of saracatinib, an oral Src inhibitor, in previously treated pancreatic cancer

    International Nuclear Information System (INIS)

    Arcaroli, John; Quackenbush, Kevin; Dasari, Arvind; Powell, Rebecca; McManus, Martine; Tan, Aik-Choon; Foster, Nathan R; Picus, Joel; Wright, John; Nallapareddy, Sujatha; Erlichman, Charles; Hidalgo, Manuel; Messersmith, Wells A

    2012-01-01

    Src tyrosine kinases are overexpressed in pancreatic cancers, and the oral Src inhibitor saracatinib has shown antitumor activity in preclinical models of pancreas cancer. We performed a CTEP-sponsored Phase II clinical trial of saracatinib in previously treated pancreas cancer patients, with a primary endpoint of 6-month survival. A Simon MinMax two-stage phase II design was used. Saracatinib (175 mg/day) was administered orally continuously in 28-day cycles. In the unselected portion of the study, 18 patients were evaluable. Only two (11%) patients survived for at least 6 months, and three 6-month survivors were required to move to second stage of study as originally designed. The study was amended as a biomarker-driven trial (leucine rich repeat containing protein 19 [LRRC19] > insulin-like growth factor-binding protein 2 [IGFBP2] “top scoring pairs” polymerase chain reaction [PCR] assay, and PIK3CA mutant) based on preclinical data in a human pancreas tumor explant model. In the biomarker study, archival tumor tissue or fresh tumor biopsies were tested. Biomarker-positive patients were eligible for the study. Only one patient was PIK3CA mutant in a 3′ untranslated region (UTR) portion of the gene. This patient was enrolled in the study and failed to meet the 6-month survival endpoint. As the frequency of biomarker-positive patients was very low (<3%), the study was closed. Although we were unable to conclude whether enriching for a subset of second/third line pancreatic cancer patients treated with a Src inhibitor based on a biomarker would improve 6-month survival, we demonstrate that testing pancreatic tumor samples for a biomarker-driven, multicenter study in metastatic pancreas cancer is feasible

  11. Heat Shock Proteins as Danger Signals for Cancer Detection

    International Nuclear Information System (INIS)

    Seigneuric, Renaud; Mjahed, Hajare; Gobbo, Jessica; Joly, Anne-Laure; Berthenet, Kevin; Shirley, Sarah; Garrido, Carmen

    2011-01-01

    First discovered in 1962, heat shock proteins (HSPs) are highly studied with about 35,500 publications on the subject to date. HSPs are highly conserved, function as molecular chaperones for a large panel of “client” proteins and have strong cytoprotective properties. Induced by many different stress signals, they promote cell survival in adverse conditions. Therefore, their roles have been investigated in several conditions and pathologies where HSPs accumulate, such as in cancer. Among the diverse mammalian HSPs, some members share several features that may qualify them as cancer biomarkers. This review focuses mainly on three inducible HSPs: HSP27, HPS70, and HSP90. Our survey of recent literature highlights some recurring weaknesses in studies of the HSPs, but also identifies findings that indicate that some HSPs have potential as cancer biomarkers for successful clinical applications.

  12. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances

    Science.gov (United States)

    Lech, Gustaw; Słotwiński, Robert; Słodkowski, Maciej; Krasnodębski, Ireneusz Wojciech

    2016-01-01

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments. PMID:26855534

  13. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances.

    Science.gov (United States)

    Lech, Gustaw; Słotwiński, Robert; Słodkowski, Maciej; Krasnodębski, Ireneusz Wojciech

    2016-02-07

    Colorectal cancer (CRC) is the second most commonly diagnosed cancer among females and third among males worldwide. It also contributes significantly to cancer-related deaths, despite the continuous progress in diagnostic and therapeutic methods. Biomarkers currently play an important role in the detection and treatment of patients with colorectal cancer. Risk stratification for screening might be augmented by finding new biomarkers which alone or as a complement of existing tests might recognize either the predisposition or early stage of the disease. Biomarkers have also the potential to change diagnostic and treatment algorithms by selecting the proper chemotherapeutic drugs across a broad spectrum of patients. There are attempts to personalise chemotherapy based on presence or absence of specific biomarkers. In this review, we update review published last year and describe our understanding of tumour markers and biomarkers role in CRC screening, diagnosis, treatment and follow-up. Goal of future research is to identify those biomarkers that could allow a non-invasive and cost-effective diagnosis, as well as to recognise the best prognostic panel and define the predictive biomarkers for available treatments.

  14. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer.

    Science.gov (United States)

    Shukla, Hem D

    2017-10-25

    During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics

  15. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers.

    Science.gov (United States)

    Borges, Álvaro H; Silverberg, Michael J; Wentworth, Deborah; Grulich, Andrew E; Fätkenheuer, Gerd; Mitsuyasu, Ronald; Tambussi, Giuseppe; Sabin, Caroline A; Neaton, James D; Lundgren, Jens D

    2013-06-01

    To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection. A prospective cohort. HIV-infected patients on continuous antiretroviral therapy (ART) in the control arms of three randomized trials (N=5023) were included in an analysis of predictors of cancer (any type, infection-related or infection-unrelated). Hazard ratios for IL-6, CRP and D-dimer levels (log2-transformed) were calculated using Cox models stratified by trial and adjusted for demographics and CD4+ cell counts and adjusted also for all biomarkers simultaneously. To assess the possibility that biomarker levels were elevated at entry due to undiagnosed cancer, analyses were repeated excluding early cancer events (i.e. diagnosed during first 2 years of follow-up). During approximately 24,000 person-years of follow-up (PYFU), 172 patients developed cancer (70 infection-related; 102 infection-unrelated). The risk of developing cancer was associated with higher levels (per doubling) of IL-6 (hazard ratio 1.38, Passociated with cancer risk when all biomarkers were considered simultaneously. Results for infection-related and infection-unrelated cancers were similar to results for any cancer. Hazard ratios excluding 69 early cancer events were 1.31 (P=0.007), 1.14 (P=0.02) and 1.07 (P=0.49) for IL-6, CRP and D-dimer, respectively. Activated inflammation and coagulation pathways are associated with increased cancer risk during HIV infection. This association was stronger for IL-6 and persisted after excluding early cancer. Trials of interventions may be warranted to assess whether cancer risk can be reduced by lowering IL-6 levels in HIV-positive individuals.

  16. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.

    Science.gov (United States)

    Petricoin, Emanuel F; Ornstein, David K; Liotta, Lance A

    2004-01-01

    The science of proteomics comprises much more than simply generating lists of proteins that change in expression as a cause of or consequence of pathophysiology. The goal of proteomics should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. Serum proteomic pattern diagnostics is a new type of proteomic concept in which patterns of ion signatures generated from high dimensional mass spectrometry data are used as diagnostic classifiers. This recent approach has exciting potential for clinical utility of diagnostic patterns because low molecular weight metabolites, peptides, and protein fragments may have higher accuracy than traditional biomarkers of cancer detection. Intriguingly, we now have discovered that this diagnostic information exists in a bound state, complexed with circulating highly abundant carrier proteins. These diagnostic fragments may one day be harvested by circulating nanoparticles, designed to absorb, enrich, and amplify the repertoire of diagnostic biomarkers generated-even at the critical, initial stages of carcinogenesis. Copyright 2004 Elsevier Inc.

  17. Identification of new cancer biomarkers based on aberrant mucin glycoforms by in situ proximity ligation

    DEFF Research Database (Denmark)

    Pinto, Rita; Carvalho, Ana S; Conze, Tim

    2012-01-01

    Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these b......Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification...... of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA......) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a) ) and Sialyl-Le(x) (SLe(x) ) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla...

  18. PLAC1 as a serum biomarker for breast cancer.

    Directory of Open Access Journals (Sweden)

    Hongyan Yuan

    Full Text Available Placental-specific protein 1 (PLAC1 is an X-linked trophoblast gene that is re-expressed in several malignancies, including breast cancer, and is therefore a potential biomarker to follow disease onset and progression. Sera from 117 preoperative/pretreatment breast cancer patients and 51 control subjects, including those with fibrocystic disease, were analyzed for the presence of PLAC1 protein as well as its expression by IHC in tumor biopsies in a subset of subjects. Serum PLAC1 levels exceeded the mean plus one standard deviation (mean+SD of the level in control subjects in 67% of subjects with ductal carcinoma in situ (DCIS, 67% with HER2+ tumors, 73% with triple-negative cancer and 73% with ER+/PR+ tumors. Greater sensitivity was achieved using the mean+2 SD of control PLAC1 serum values, where the false positive rate was 3% and was exceeded by 38%, 40%, 60% and 43% of subjects with DCIS, HER2+, TNBC and ER+/PR+/HER2- tumors. PLAC1 was detected in 97% of tumor biopsies, but did not correlate quantitatively with serum levels. There was no significant correlation of serum PLAC1 levels with race, age at diagnosis, body mass index (BMI or the presence of metastatic disease. It remains to be determined whether PLAC1 serum levels can serve as a diagnostic biomarker for the presence or recurrence of disease post-surgery and/or therapy.

  19. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rachel M Ostroff

    Full Text Available BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery. Here we present a comprehensive clinical biomarker study of lung cancer and the first large-scale clinical application of a new aptamer-based proteomic technology to discover blood protein biomarkers in disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a multi-center case-control study in archived serum samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC in long-term tobacco-exposed populations. Sera were collected and processed under uniform protocols. Case sera were collected from 291 patients within 8 weeks of the first biopsy-proven lung cancer and prior to tumor removal by surgery. Control sera were collected from 1,035 asymptomatic study participants with ≥ 10 pack-years of cigarette smoking. We measured 813 proteins in each sample with a new aptamer-based proteomic technology, identified 44 candidate biomarkers, and developed a 12-protein panel (cadherin-1, CD30 ligand, endostatin, HSP90α, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES that discriminates NSCLC from controls with 91% sensitivity and 84% specificity in cross-validated training and 89% sensitivity and 83% specificity in a separate verification set, with similar performance for early and late stage NSCLC. CONCLUSIONS/SIGNIFICANCE: This study is a significant advance in clinical proteomics in an area of high unmet clinical need. Our analysis exceeds the breadth and dynamic range of proteome interrogated of previously published clinical studies of broad serum proteome profiling platforms including mass spectrometry, antibody arrays, and autoantibody arrays. The sensitivity and specificity of our 12-biomarker panel improves upon published protein and gene expression panels

  20. Three-Dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation.

    Science.gov (United States)

    Pan, Li; Aguilar, Hillary Andaluz; Wang, Linna; Iliuk, Anton; Tao, W Andy

    2016-11-30

    Glycoproteins have vast structural diversity that plays an important role in many biological processes and have great potential as disease biomarkers. Here, we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase glycoprotein array (polyGPA), to capture and profile glycoproteomes specifically, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture preoxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous α-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

  1. Large-scale proteomic identification of S100 proteins in breast cancer tissues

    International Nuclear Information System (INIS)

    Cancemi, Patrizia; Di Cara, Gianluca; Albanese, Nadia Ninfa; Costantini, Francesca; Marabeti, Maria Rita; Musso, Rosa; Lupo, Carmelo; Roz, Elena; Pucci-Minafra, Ida

    2010-01-01

    Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression. Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing. The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group. This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is

  2. Soy Food Intake and Biomarkers of Breast Cancer Risk: Possible Difference in Asian Women?

    Science.gov (United States)

    Maskarinec, Gertraud; Ju, Dan; Morimoto, Yukiko; Franke, Adrian A; Stanczyk, Frank Z

    2017-01-01

    Soy foods may protect against breast cancer in Asian but not in Western populations. We examined if the levels of various markers of breast cancer risk and inflammation, as well as the effects of soy food consumption on these markers, differ between Asian and non-Asian premenopausal women in two soy intervention trials. One study randomized 220 women to a 2-yr intervention and the other one randomized 96 women in a crossover design to examine the effects of consumption of 2 daily soy servings on nipple aspirate fluid (NAF) volume; estrogens in serum, NAF, and urine; insulin-like growth factor-1 (IGF-1), IGF-binding protein 3, and inflammatory markers in serum; and mammographic densities. Mixed linear models were applied to assess ethnic differences in biomarkers and response to the soy diet. Serum C-reactive protein, serum leptin, NAF volume, and NAF estrone sulfate were lower, while urinary isoflavones were higher in Asian than in non-Asian women. A significant interaction (p interaction = 0.05) between ethnicity and soy diet was observed for IGF-1 but not for other biomarkers. The current findings suggest possible ethnic differences in levels of biomarkers for breast cancer risk but little evidence that Asian women respond differently to soy foods than non-Asian women.

  3. Cancer3D: understanding cancer mutations through protein structures.

    Science.gov (United States)

    Porta-Pardo, Eduard; Hrabe, Thomas; Godzik, Adam

    2015-01-01

    The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Protein signature of lung cancer tissues.

    Directory of Open Access Journals (Sweden)

    Michael R Mehan

    Full Text Available Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan to compare protein expression signatures of non small-cell lung cancer (NSCLC tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment.

  5. The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Shi, Tujin; Qian, Wei-Jun; Liu, Tao; Kagan, Jacob; Srivastava, Sudhir; Smith, Richard D.; Rodland, Karin D.; Camp, David G.

    2015-12-04

    Mass spectrometry-based proteomics has become an indispensable tool in biomedical research with broad applications ranging from fundamental biology, systems biology, and biomarker discovery. Recent advances in LC-MS have made it become a major technology in clinical applications, especially in cancer biomarker discovery and verification. To overcome the challenges associated with the analysis of clinical samples, such as extremely wide dynamic range of protein concentrations in biofluids and the need to perform high throughput and accurate quantification, significant efforts have been devoted to improve the overall performance of LC-MS bases clinical proteomics. In this review, we summarize the recent advances in LC-MS in the aspect of cancer biomarker discovery and quantification, and discuss its potentials, limitations, and future perspectives.

  6. Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: Progress and Challenges.

    Science.gov (United States)

    Root, Alex; Allen, Peter; Tempst, Paul; Yu, Kenneth

    2018-03-07

    Approximately 75% of patients with pancreatic ductal adenocarcinoma are diagnosed with advanced cancer, which cannot be safely resected. The most commonly used biomarker CA19-9 has inadequate sensitivity and specificity for early detection, which we define as Stage I/II cancers. Therefore, progress in next-generation biomarkers is greatly needed. Recent reports have validated a number of biomarkers, including combination assays of proteins and DNA mutations; however, the history of translating promising biomarkers to clinical utility suggests that several major hurdles require careful consideration by the medical community. The first set of challenges involves nominating and verifying biomarkers. Candidate biomarkers need to discriminate disease from benign controls with high sensitivity and specificity for an intended use, which we describe as a two-tiered strategy of identifying and screening high-risk patients. Community-wide efforts to share samples, data, and analysis methods have been beneficial and progress meeting this challenge has been achieved. The second set of challenges is assay optimization and validating biomarkers. After initial candidate validation, assays need to be refined into accurate, cost-effective, highly reproducible, and multiplexed targeted panels and then validated in large cohorts. To move the most promising candidates forward, ideally, biomarker panels, head-to-head comparisons, meta-analysis, and assessment in independent data sets might mitigate risk of failure. Much more investment is needed to overcome these challenges. The third challenge is achieving clinical translation. To moonshot an early detection test to the clinic requires a large clinical trial and organizational, regulatory, and entrepreneurial know-how. Additional factors, such as imaging technologies, will likely need to improve concomitant with molecular biomarker development. The magnitude of the clinical translational challenge is uncertain, but interdisciplinary

  7. Protein Biomarkers for Early Detection of Pancreatic Ductal Adenocarcinoma: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Alex Root

    2018-03-01

    Full Text Available Approximately 75% of patients with pancreatic ductal adenocarcinoma are diagnosed with advanced cancer, which cannot be safely resected. The most commonly used biomarker CA19-9 has inadequate sensitivity and specificity for early detection, which we define as Stage I/II cancers. Therefore, progress in next-generation biomarkers is greatly needed. Recent reports have validated a number of biomarkers, including combination assays of proteins and DNA mutations; however, the history of translating promising biomarkers to clinical utility suggests that several major hurdles require careful consideration by the medical community. The first set of challenges involves nominating and verifying biomarkers. Candidate biomarkers need to discriminate disease from benign controls with high sensitivity and specificity for an intended use, which we describe as a two-tiered strategy of identifying and screening high-risk patients. Community-wide efforts to share samples, data, and analysis methods have been beneficial and progress meeting this challenge has been achieved. The second set of challenges is assay optimization and validating biomarkers. After initial candidate validation, assays need to be refined into accurate, cost-effective, highly reproducible, and multiplexed targeted panels and then validated in large cohorts. To move the most promising candidates forward, ideally, biomarker panels, head-to-head comparisons, meta-analysis, and assessment in independent data sets might mitigate risk of failure. Much more investment is needed to overcome these challenges. The third challenge is achieving clinical translation. To moonshot an early detection test to the clinic requires a large clinical trial and organizational, regulatory, and entrepreneurial know-how. Additional factors, such as imaging technologies, will likely need to improve concomitant with molecular biomarker development. The magnitude of the clinical translational challenge is uncertain, but

  8. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics.

    Science.gov (United States)

    Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F

    2016-01-21

    Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.

  9. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error

    OpenAIRE

    Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M

    2014-01-01

    Background: Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Methods: Prostatectom...

  10. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection......, and a novel protein, C7orf24, was identified as being upregulated in cancer cells. Protein expression levels of C7orf24 were evaluated by immunohistochemical assays to qualify deregulation of this protein. Analysis of C7orf24 expression showed up-regulation in 36.4 and 23.4% of cases present in the discovery...

  11. The extracellular domain of Her2 in serum as a biomarker of breast cancer.

    Science.gov (United States)

    Perrier, Alexandre; Gligorov, Joseph; Lefèvre, Guillaume; Boissan, Mathieu

    2018-02-28

    Breast cancer is a major health problem worldwide. In ~15% of breast cancers, the epidermal growth factor receptor HER2, a transmembrane protein, is overexpressed. This HER2 overexpression is associated with an aggressive form of the disease and a poor clinical prognosis. The extracellular domain (ECD) of HER2 is released into the blood by a proteolytic mechanism known as "ECD shedding". This proteolytic shedding leaves a constitutively active truncated receptor in the membrane that is 10-100-fold more oncogenic than the full-length receptor and promotes the growth and survival of cancer cells. Shedding of the HER2 ECD is increased during metastasis: whereas 15% of primary breast cancer patients have elevated levels of serum HER2 ECD (sHER2 ECD), the levels reach 45% in patients with metastatic disease. Thus, sHER2 ECD has been proposed as a promising biomarker for cancer recurrence and for monitoring the disease status of patients overexpressing HER2. Nevertheless, in 2016, the American Society of Clinical Oncology advises clinicians not to use soluble HER2 levels to guide their choice of adjuvant therapy for patients with HER2-positive breast cancer, because the evidence was considered not strong enough. Currently, biomarkers such as carcinoembryonic antigen and cancer antigen 15-3 are widely used to monitor metastatic breast cancer disease even if the level of evidence of clinical impact of this monitoring is poor. In this article, we review the evidence that sHER2 ECD might be used in some situations as a biomarker for breast cancer. Although this serum biomarker will not replace the direct measurement of tumor HER2 status for diagnosis of early-stage tumors; it might be especially useful in metastatic disease for prognosis, as an indicator of cancer progression and of therapy response, particularly to anti-HER2 therapies. Owing to these data, sHER2 ECD should be considered as a promising biomarker to detect cancer recurrence and metastasis.

  12. Tumor interstitial fluid - a treasure trove of cancer biomarkers.

    Science.gov (United States)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J; Timmermans-Wielenga, Vera; Talman, Mai-Lis; Serizawa, Reza R; Moreira, José M A

    2013-11-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets for therapeutic intervention. Here we provide an overview of the features of tumor-associated interstitial fluids, based on recent and updated information obtained mainly from our studies of breast cancer. Data from the study of interstitial fluids recovered from several other types of cancer are also discussed. This article is a part of a Special Issue entitled: The Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Translational database selection and multiplexed sequence capture for up front filtering of reliable breast cancer biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Patrik L Ståhl

    Full Text Available Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples.

  14. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  15. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria.

    Science.gov (United States)

    González-Díaz, Humberto; Munteanu, Cristian R; Postelnicu, Lucian; Prado-Prado, Francisco; Gestal, Marcos; Pazos, Alejandro

    2012-03-01

    Lipid-Binding Proteins (LIBPs) or Fatty Acid-Binding Proteins (FABPs) play an important role in many diseases such as different types of cancer, kidney injury, atherosclerosis, diabetes, intestinal ischemia and parasitic infections. Thus, the computational methods that can predict LIBPs based on 3D structure parameters became a goal of major importance for drug-target discovery, vaccine design and biomarker selection. In addition, the Protein Data Bank (PDB) contains 3000+ protein 3D structures with unknown function. This list, as well as new experimental outcomes in proteomics research, is a very interesting source to discover relevant proteins, including LIBPs. However, to the best of our knowledge, there are no general models to predict new LIBPs based on 3D structures. We developed new Quantitative Structure-Activity Relationship (QSAR) models based on 3D electrostatic parameters of 1801 different proteins, including 801 LIBPs. We calculated these electrostatic parameters with the MARCH-INSIDE software and they correspond to the entire protein or to specific protein regions named core, inner, middle, and surface. We used these parameters as inputs to develop a simple Linear Discriminant Analysis (LDA) classifier to discriminate 3D structure of LIBPs from other proteins. We implemented this predictor in the web server named LIBP-Pred, freely available at , along with other important web servers of the Bio-AIMS portal. The users can carry out an automatic retrieval of protein structures from PDB or upload their custom protein structural models from their disk created with LOMETS server. We demonstrated the PDB mining option performing a predictive study of 2000+ proteins with unknown function. Interesting results regarding the discovery of new Cancer Biomarkers in humans or drug targets in parasites have been discussed here in this sense.

  16. Plasma YKL-40: a potential new cancer biomarker?

    DEFF Research Database (Denmark)

    Johansen, Julia S; Schultz, Nicolai A; Jensen, Benny V

    2009-01-01

    tissue remodeling. Plasma levels of YKL-40 are elevated in a subgroup of patients with primary or advanced cancer compared with age-matched healthy subjects, but also in patients with many different diseases characterized by inflammation. Elevated plasma YKL-40 levels are an independent prognostic...... by inflammation. Large prospective, longitudinal clinical cancer studies are needed to determine if plasma YKL-40 is a new cancer biomarker, or is mainly a biomarker of inflammation....

  17. Biomarker Identification and Pathway Analysis by Serum Metabolomics of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yingrong Chen

    2015-01-01

    Full Text Available Lung cancer is one of the most common causes of cancer death, for which no validated tumor biomarker is sufficiently accurate to be useful for diagnosis. Additionally, the metabolic alterations associated with the disease are unclear. In this study, we investigated the construction, interaction, and pathways of potential lung cancer biomarkers using metabolomics pathway analysis based on the Kyoto Encyclopedia of Genes and Genomes database and the Human Metabolome Database to identify the top altered pathways for analysis and visualization. We constructed a diagnostic model using potential serum biomarkers from patients with lung cancer. We assessed their specificity and sensitivity according to the area under the curve of the receiver operator characteristic (ROC curves, which could be used to distinguish patients with lung cancer from normal subjects. The pathway analysis indicated that sphingolipid metabolism was the top altered pathway in lung cancer. ROC curve analysis indicated that glycerophospho-N-arachidonoyl ethanolamine (GpAEA and sphingosine were potential sensitive and specific biomarkers for lung cancer diagnosis and prognosis. Compared with the traditional lung cancer diagnostic biomarkers carcinoembryonic antigen and cytokeratin 19 fragment, GpAEA and sphingosine were as good or more appropriate for detecting lung cancer. We report our identification of potential metabolic diagnostic and prognostic biomarkers of lung cancer and clarify the metabolic alterations in lung cancer.

  18. Proteomic Profiling of Exosomes Leads to the Identification of Novel Biomarkers for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Duijvesz, Diederick; Burnum-Johnson, Kristin E.; Gritsenko, Marina A.; Hoogland, Marije; Vredenbregt-van den Berg, Mirella S.; Willemsen, Rob; Luider, Theo N.; Pasa-Tolic, Ljiljana; Jenster, Guido

    2013-12-31

    Introduction: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, biomarker discovery from body fluids is often hampered by the high abundance of many proteins unrelated to disease. An attractive alternative biomarker discovery approach is the isolation of small vesicles (exosomes, ~100 nm). They contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific marker discovery. Profiling prostate cancer-derived exosomes could reveal new markers for this malignancy. Materials and Methods: Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. Proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode, followed by the Accurate Mass and Time (AMT) tag approach. Exosomal proteins were validated by Western blotting. A Tissue Micro Array, containing 481 different PCa samples (radical prostatectomy), was used to correlate candidate markers with several clinical-pathological parameters such as PSA, Gleason score, biochemical recurrence, and (PCa-related) death. Results: Proteomic characterization resulted in the identification of 263 proteins by at least 2 peptides. Specifically analysis of exosomes from PNT2C2, RWPE-1, PC346C, and VCaP identified 248, 233, 169, and 216 proteins, respectively. Statistical analyses revealed 52 proteins differently expressed between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes. The Tissue Micro 4 Array showed strong correlation of higher Gleason scores and local recurrence with increased cytoplasmic XPO1 (P<0.001). Conclusions: Differentially abundant proteins of cell line-derived exosomes make a clear subdivision between

  19. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    Directory of Open Access Journals (Sweden)

    David Clark

    2012-01-01

    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  20. Integrative analysis to select cancer candidate biomarkers to targeted validation

    Science.gov (United States)

    Heberle, Henry; Domingues, Romênia R.; Granato, Daniela C.; Yokoo, Sami; Canevarolo, Rafael R.; Winck, Flavia V.; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Filgueiras, Paulo R.; Cruz, Karen S. P.; Barbuto, José Alexandre; Poppi, Ronei J.; Minghim, Rosane; Telles, Guilherme P.; Fonseca, Felipe Paiva; Fox, Jay W.; Santos-Silva, Alan R.; Coletta, Ricardo D.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2015-01-01

    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. PMID:26540631

  1. Phase II cancer clinical trials for biomarker-guided treatments.

    Science.gov (United States)

    Jung, Sin-Ho

    2018-01-01

    The design and analysis of cancer clinical trials with biomarker depend on various factors, such as the phase of trials, the type of biomarker, whether the used biomarker is validated or not, and the study objectives. In this article, we demonstrate the design and analysis of two Phase II cancer clinical trials, one with a predictive biomarker and the other with an imaging prognostic biomarker. Statistical testing methods and their sample size calculation methods are presented for each trial. We assume that the primary endpoint of these trials is a time to event variable, but this concept can be used for any type of endpoint.

  2. Detection of biomarker MNK expression semi quantitatively and quantitatively in cervical cancer response before chemoradiotherapy

    International Nuclear Information System (INIS)

    Teja Kisnanto; Elisabeth Novianti Simatupang; Budiningsih Siregar; Mellova Amir; Setiawan Soetopo; Irwan Ramli; Tjahya Kurjana; Andrijono; Bethy S Hernowo; Maringan DL Tobing; Devita Tetriana

    2016-01-01

    Cervical cancer is a cancer that common in women caused by HPV (Human Papilova Virus). The purpose of this study is to determine the relationship MNK protein expression (Mitogen-Activated Protein Kinase) in patients with cervical cancer before chemoradiotherapy treatment. Sample used was the preparation of microscopic cancer tissue biopsies from patients with advanced cervical cancer (IIB-IIIB) is 20 samples. The method used is immunohistochemistry using MNK biomarkers in cervical cancer tissue biopsies. MNK positive protein expression marked with dark brown color that is contained in the cell nucleus. Chemoradiotherapy response obtained from RSUPN Dr. Cipto Mangunkusumo and Hasan Sadikin Hospital in Bandung. The results show the value of the IRS (Immuno Reactive Score) MNK protein in response to chemoradiotherapy group either higher than the response to chemoradiotherapy group was bad and did not find any relationship IRS MNK protein with chemoradiotherapy response. While the relationship MNK expression responses show a correlation chemoradiotherapy group differences in chemoradiotherapy response between MNK expression negative and MNK expression positive. (author)

  3. Methylated genes as new cancer biomarkers.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2 for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene methylation need to be standardised, simplified and evaluated in external quality assurance programmes. It is concluded that methylated genes have the potential to provide a new generation of cancer biomarkers.

  4. Serum and Plasma Metabolomic Biomarkers for Lung Cancer.

    Science.gov (United States)

    Kumar, Nishith; Shahjaman, Md; Mollah, Md Nurul Haque; Islam, S M Shahinul; Hoque, Md Aminul

    2017-01-01

    In drug invention and early disease prediction of lung cancer, metabolomic biomarker detection is very important. Mortality rate can be decreased, if cancer is predicted at the earlier stage. Recent diagnostic techniques for lung cancer are not prognosis diagnostic techniques. However, if we know the name of the metabolites, whose intensity levels are considerably changing between cancer subject and control subject, then it will be easy to early diagnosis the disease as well as to discover the drug. Therefore, in this paper we have identified the influential plasma and serum blood sample metabolites for lung cancer and also identified the biomarkers that will be helpful for early disease prediction as well as for drug invention. To identify the influential metabolites, we considered a parametric and a nonparametric test namely student׳s t-test as parametric and Kruskal-Wallis test as non-parametric test. We also categorized the up-regulated and down-regulated metabolites by the heatmap plot and identified the biomarkers by support vector machine (SVM) classifier and pathway analysis. From our analysis, we got 27 influential (p-value<0.05) metabolites from plasma sample and 13 influential (p-value<0.05) metabolites from serum sample. According to the importance plot through SVM classifier, pathway analysis and correlation network analysis, we declared 4 metabolites (taurine, aspertic acid, glutamine and pyruvic acid) as plasma biomarker and 3 metabolites (aspartic acid, taurine and inosine) as serum biomarker.

  5. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error.

    Science.gov (United States)

    Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M; Berman, D M; Blume-Jensen, P

    2014-09-09

    Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error, a core from a high- and a low-Gleason area from each patient sample was used to generate a 'high' and a 'low' tumour microarray, respectively. Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas. Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform under circumstances of maximal sampling error. Our results have important implications for cancer biomarker discovery in general and development of a sampling error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.

  6. Biomarker assessment and molecular testing for prognostication in breast cancer.

    Science.gov (United States)

    Kos, Zuzana; Dabbs, David J

    2016-01-01

    Current treatment of breast cancer incorporates clinical, pathological and molecular data. Oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) define prognosis and identify tumours for targeted therapy, and remain the sole established single-molecule biomarkers defining the minimum breast cancer pathology data set. Ki67 remains one of the most promising yet controversial biomarkers in breast cancer, implemented routinely in some, but not all, pathology departments. Beyond the single-molecule biomarkers, a host of multigene expression tests have been developed to interrogate the driver pathways and biology of individual breast cancers to predict clinical outcome more accurately. A minority of these assays have entered into clinical practice. This review focuses on the established biomarkers of ER, PR and HER2, the controversial but clinically implemented biomarker Ki67 and the currently marketed gene expression signatures. © 2015 John Wiley & Sons Ltd.

  7. Oncoprotein DEK as a tissue and urinary biomarker for bladder cancer

    International Nuclear Information System (INIS)

    Datta, Antara; Adelson, Martin E; Mogilevkin, Yakov; Mordechai, Eli; Sidi, Abraham A; Trama, Jason P

    2011-01-01

    Bladder cancer is a significant healthcare problem in the United States of America with a high recurrence rate. Early detection of bladder cancer is essential for removing the tumor with preservation of the bladder, avoiding metastasis and hence improving prognosis and long-term survival. The objective of this study was to analyze the presence of DEK protein in voided urine of bladder cancer patients as a urine-based bladder cancer diagnostic test. We examined the expression of DEK protein by western blot in 38 paired transitional cell carcinoma (TCC) bladder tumor tissues and adjacent normal tissue. The presence of DEK protein in voided urine was analyzed by western blot in 42 urine samples collected from patients with active TCC, other malignant urogenital disease and healthy individuals. The DEK protein is expressed in 33 of 38 bladder tumor tissues with no expression in adjacent normal tissue. Based on our sample size, DEK protein is expressed in 100% of tumors of low malignant potential, 92% of tumors of low grade and in 71% of tumors of high grade. Next, we analyzed 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals for DEK protein expression by western blot analysis. We are the first to show that the DEK protein is present in the urine of bladder cancer patients. Approximately 84% of TCC patient urine specimens were positive for urine DEK. Based on our pilot study of 38 bladder tumor tissue and 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals; DEK protein is expressed in bladder tumor tissue and voided urine of bladder cancer patients. The presence of DEK protein in voided urine is potentially a suitable biomarker for bladder cancer and that the screening for the presence of DEK protein in urine can be explored as a noninvasive diagnostic test for bladder cancer

  8. Towards an animal model of ovarian cancer: cataloging chicken blood proteins using combinatorial peptide ligand libraries coupled with shotgun proteomic analysis for translational research.

    Science.gov (United States)

    Ma, Yingying; Sun, Zeyu; de Matos, Ricardo; Zhang, Jing; Odunsi, Kunle; Lin, Biaoyang

    2014-05-01

    Epithelial ovarian cancer is the most deadly gynecological cancer around the world, with high morbidity in industrialized countries. Early diagnosis is key in reducing its morbidity rate. Yet, robust biomarkers, diagnostics, and animal models are still limited for ovarian cancer. This calls for broader omics and systems science oriented diagnostics strategies. In this vein, the domestic chicken has been used as an ovarian cancer animal model, owing to its high rate of developing spontaneous epithelial ovarian tumors. Chicken blood has thus been considered a surrogate reservoir from which cancer biomarkers can be identified. However, the presence of highly abundant proteins in chicken blood has compromised the applicability of proteomics tools to study chicken blood owing to a lack of immunodepletion methods. Here, we demonstrate that a combinatorial peptide ligand library (CPLL) can efficiently remove highly abundant proteins from chicken blood samples, consequently doubling the number of identified proteins. Using an integrated CPLL-1DGE-LC-MSMS workflow, we identified a catalog of 264 unique proteins. Functional analyses further suggested that most proteins were coagulation and complement factors, blood transport and binding proteins, immune- and defense-related proteins, proteases, protease inhibitors, cellular enzymes, or cell structure and adhesion proteins. Semiquantitative spectral counting analysis identified 10 potential biomarkers from the present chicken ovarian cancer model. Additionally, many human homologs of chicken blood proteins we have identified have been independently suggested as diagnostic biomarkers for ovarian cancer, further triangulating our novel observations reported here. In conclusion, the CPLL-assisted proteomic workflow using the chicken ovarian cancer model provides a feasible platform for translational research to identify ovarian cancer biomarkers and understand ovarian cancer biology. To the best of our knowledge, we report here

  9. Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification

    Science.gov (United States)

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  10. Protein shedding in urothelial bladder cancer: prognostic implications of soluble urinary EGFR and EpCAM.

    Science.gov (United States)

    Bryan, R T; Regan, H L; Pirrie, S J; Devall, A J; Cheng, K K; Zeegers, M P; James, N D; Knowles, M A; Ward, D G

    2015-03-17

    Better biomarkers must be found to develop clinically useful urine tests for bladder cancer. Proteomics can be used to identify the proteins released by cancer cell lines and generate candidate markers for developing such tests. We used shotgun proteomics to identify proteins released into culture media by eight bladder cancer cell lines. These data were compared with protein expression data from the Human Protein Atlas. Epidermal growth factor receptor (EGFR) was identified as a candidate biomarker and measured by ELISA in urine from 60 noncancer control subjects and from 436 patients with bladder cancer and long-term clinical follow-up. Bladder cancer cell lines shed soluble EGFR ectodomain. Soluble EGFR is also detectable in urine and is highly elevated in some patients with high-grade bladder cancer. Urinary EGFR is an independent indicator of poor bladder cancer-specific survival with a hazard ratio of 2.89 (95% CI 1.81-4.62, Pbladder cancer-specific survival and have prognostic value over and above that provided by standard clinical observations. Measuring urinary EGFR and EpCAM may represent a simple and useful approach for fast-tracking the investigation and treatment of patients with the most aggressive bladder cancers.

  11. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer.

    Science.gov (United States)

    Song, Yimeng; Zhong, Lijun; Zhou, Juntuo; Lu, Min; Xing, Tianying; Ma, Lulin; Shen, Jing

    2017-12-01

    Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer.

    Science.gov (United States)

    Kumar, Dhruv; Gupta, Dwijendra; Shankar, Sharmila; Srivastava, Rakesh K

    2015-02-20

    Cancer recognized as one of the leading irrepressible health issues is contributing to increasing mortality-rate day-by-day. The tumor microenvironment is an important field of cancer to understand the detection, treatment and prevention of cancer. Recently, cancer stem cell (CSC) research has shown promising results aiming towards cancer diagnostics and treatment. Here, we found that prostate and breast cancer stem cells secreted vesicles of endosomal origin, called exosomes showed strong connection between autophagy and exosomes released from CSCs. Exosomes may serve as vesicles to communicate with neoplastic cells (autocrine and paracrine manner) and normal cells (paracrine and endocrine manner) and thereby suppress immune systems and regulate neoplastic growth, and metastasis. They can also be used as biomarkers for various cancers. We detected tetraspanin proteins (CD9, CD63, CD81), Alix and tumor susceptibility gene-101 (TSG101) of exosomal markers from rotenone treated CSCs. We have also detected the induction of autophagy genes, Atg7 and conversion of autophagy marker (LC3-I to LC3-II), and tetraspanin proteins (CD9, CD63, CD81) in rotenone treated CSCs by western blotting. The mRNA expression of CD9, CD63, CD81 and TSG101 analyzed by qRT-PCR showed that the rotenone induced the expression of CD9, CD63, CD81 and TSG101 in CSCs. Electron microscopy of rotenone treated CSCs showed the mitochondrial damage of CSCs as confirmed by the release of exosomes from CSCs. The constituents of exosomes may be useful to understand the mechanism of exosomes formation, release and function, and also serve as a useful biomarker and provide novel therapeutic strategies for the treatment and prevention of cancer.

  13. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  14. Tissue microarrays for testing basal biomarkers in familial breast cancer cases

    Directory of Open Access Journals (Sweden)

    Rozany Mucha Dufloth

    Full Text Available CONTEXT AND OBJECTIVE: The proteins p63, p-cadherin and CK5 are consistently expressed by the basal and myoepithelial cells of the breast, although their expression in sporadic and familial breast cancer cases has yet to be fully defined. The aim here was to study the basal immunopro-file of a breast cancer case series using tissue microarray technology. DESIGN AND SETTING: This was a cross-sectional study at Universidade Estadual de Campinas, Brazil, and the Institute of Pathology and Mo-lecular Immunology, Porto, Portugal. METHODS: Immunohistochemistry using the antibodies p63, CK5 and p-cadherin, and also estrogen receptor (ER and Human Epidermal Receptor Growth Factor 2 (HER2, was per-formed on 168 samples from a breast cancer case series. The criteria for identifying women at high risk were based on those of the Breast Cancer Linkage Consortium. RESULTS: Familial tumors were more frequently positive for the p-cadherin (p = 0.0004, p63 (p < 0.0001 and CK5 (p < 0.0001 than was sporadic cancer. Moreover, familial tumors had coexpression of the basal biomarkers CK5+/ p63+, grouped two by two (OR = 34.34, while absence of coexpression (OR = 0.13 was associ-ated with the sporadic cancer phenotype. CONCLUSION: Familial breast cancer was found to be associated with basal biomarkers, using tissue microarray technology. Therefore, characterization of the familial breast cancer phenotype will improve the understanding of breast carcinogenesis.

  15. Biomarkers and Targeted Therapy in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Fataneh Karandish

    2016-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  16. Biomarkers and Targeted Therapy in Pancreatic Cancer.

    Science.gov (United States)

    Karandish, Fataneh; Mallik, Sanku

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%-3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  17. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array.

    Science.gov (United States)

    Vathipadiekal, Vinod; Wang, Victoria; Wei, Wei; Waldron, Levi; Drapkin, Ronny; Gillette, Michael; Skates, Steven; Birrer, Michael

    2015-11-01

    To generate a comprehensive "Secretome" of proteins potentially found in the blood and derive a virtual Affymetrix array. To validate the utility of this database for the discovery of novel serum-based biomarkers using ovarian cancer transcriptomic data. The secretome was constructed by aggregating the data from databases of known secreted proteins, transmembrane or membrane proteins, signal peptides, G-protein coupled receptors, or proteins existing in the extracellular region, and the virtual array was generated by mapping them to Affymetrix probeset identifiers. Whole-genome microarray data from ovarian cancer, normal ovarian surface epithelium, and fallopian tube epithelium were used to identify transcripts upregulated in ovarian cancer. We established the secretome from eight public databases and a virtual array consisting of 16,521 Affymetrix U133 Plus 2.0 probesets. Using ovarian cancer transcriptomic data, we identified candidate blood-based biomarkers for ovarian cancer and performed bioinformatic validation by demonstrating rediscovery of known biomarkers including CA125 and HE4. Two novel top biomarkers (FGF18 and GPR172A) were validated in serum samples from an independent patient cohort. We present the secretome, comprising the most comprehensive resource available for protein products that are potentially found in the blood. The associated virtual array can be used to translate gene-expression data into cancer biomarker discovery. A list of blood-based biomarkers for ovarian cancer detection is reported and includes CA125 and HE4. FGF18 and GPR172A were identified and validated by ELISA as being differentially expressed in the serum of ovarian cancer patients compared with controls. ©2015 American Association for Cancer Research.

  18. CEACAM6 is upregulated by Helicobacter pylori CagA and is a biomarker for early gastric cancer

    Science.gov (United States)

    Srivastava, Supriya; Samanta, Animesh; Sharma, Neel; Tan, Kar Tong; Yang, Henry; Voon, Dominic C.; Pang, Brendan; Teh, Ming; Murata-Kamiya, Naoko; Hatakeyama, Masanori; Chang, Young-Tae; Yong, Wei Peng; Ito, Yoshiaki; Ho, Khek Yu; Tan, Patrick; Soong, Richie; Koeffler, Phillip H.; Yeoh, Khay Guan; Jeyasekharan, Anand D.

    2016-01-01

    Early detection of gastric cancers saves lives, but remains a diagnostic challenge. In this study, we aimed to identify cell-surface biomarkers of early gastric cancer. We hypothesized that a subset of plasma membrane proteins induced by the Helicobacter pylori oncoprotein CagA will be retained in early gastric cancers through non-oncogene addiction. An inducible system for expression of CagA was used to identify differentially upregulated membrane protein transcripts in vitro. The top hits were then analyzed in gene expression datasets comparing transcriptome of gastric cancer with normal tissue, to focus on markers retained in cancer. Among the transcripts enriched upon CagA induction in vitro, a significant elevation of CEACAM6 was noted in gene expression datasets of gastric cancer. We used quantitative digital immunohistochemistry to measure CEACAM6 protein levels in tissue microarrays of gastric cancer. We demonstrate an increase in CEACAM6 in early gastric cancers, when compared to matched normal tissue, with an AUC of 0.83 for diagnostic validity. Finally, we show that a fluorescently conjugated CEACAM6 antibody binds avidly to freshly resected gastric cancer xenograft samples and can be detected by endoscopy in real time. Together, these results suggest that CEACAM6 upregulation is a cell surface response to H. pylori CagA, and is retained in early gastric cancers. They highlight a novel link between CEACAM6 expression and CagA in gastric cancer, and suggest CEACAM6 to be a promising biomarker to aid with the fluorescent endoscopic diagnosis of early neoplastic lesions in the stomach. PMID:27421133

  19. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review.

    Science.gov (United States)

    Lamy, Pierre-Jean; Allory, Yves; Gauchez, Anne-Sophie; Asselain, Bernard; Beuzeboc, Philippe; de Cremoux, Patricia; Fontugne, Jacqueline; Georges, Agnès; Hennequin, Christophe; Lehmann-Che, Jacqueline; Massard, Christophe; Millet, Ingrid; Murez, Thibaut; Schlageter, Marie-Hélène; Rouvière, Olivier; Kassab-Chahmi, Diana; Rozet, François; Descotes, Jean-Luc; Rébillard, Xavier

    2017-03-07

    Prostate cancer stratification is based on tumour size, pretreatment PSA level, and Gleason score, but it remains imperfect. Current research focuses on the discovery and validation of novel prognostic biomarkers to improve the identification of patients at risk of aggressive cancer or of tumour relapse. This systematic review by the Intergroupe Coopérateur Francophone de Recherche en Onco-urologie (ICFuro) analysed new evidence on the analytical validity and clinical validity and utility of six prognostic biomarkers (PHI, 4Kscore, MiPS, GPS, Prolaris, Decipher). All available data for the six biomarkers published between January 2002 and April 2015 were systematically searched and reviewed. The main endpoints were aggressive prostate cancer prediction, additional value compared to classical prognostic parameters, and clinical benefit for patients with localised prostate cancer. The preanalytical and analytical validations were heterogeneous for all tests and often not adequate for the molecular signatures. Each biomarker was studied for specific indications (candidates for a first or second biopsy, and potential candidates for active surveillance, radical prostatectomy, or adjuvant treatment) for which the level of evidence (LOE) was variable. PHI and 4Kscore were the biomarkers with the highest LOE for discriminating aggressive and indolent tumours in different indications. Blood biomarkers (PHI and 4Kscore) have the highest LOE for the prediction of more aggressive prostate cancer and could help clinicians to manage patients with localised prostate cancer. The other biomarkers show a potential prognostic value; however, they should be evaluated in additional studies to confirm their clinical validity. We reviewed studies assessing the value of six prognostic biomarkers for prostate cancer. On the basis of the available evidence, some biomarkers could help in discriminating between aggressive and non-aggressive tumours with an additional value compared to the

  20. A Novel Electrochemical Microfluidic Chip Combined with Multiple Biomarkers for Early Diagnosis of Gastric Cancer

    Science.gov (United States)

    Xie, Yao; Zhi, Xiao; Su, Haichuan; Wang, Kan; Yan, Zhen; He, Nongyue; Zhang, Jingpu; Chen, Di; Cui, Daxiang

    2015-12-01

    Early diagnosis is very important to improve the survival rate of patients with gastric cancer and to understand the biology of cancer. In order to meet the clinical demands for early diagnosis of gastric cancer, we developed a disposable easy-to-use electrochemical microfluidic chip combined with multiple antibodies against six kinds of biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), Helicobacter pylori CagA protein (H.P.), P53oncoprotein (P53), pepsinogen I (PG I), and PG-II). The six kinds of biomarkers related to gastric cancer can be detected sensitively and synchronously in a short time. The specially designed three electrodes system enables cross-contamination to be avoided effectively. The linear ranges of detection of the electrochemical microfluidic chip were as follows: 0.37-90 ng mL-1 for CEA, 10.75-172 U mL-1 for CA19-9, 10-160 U L-1 for H.P., 35-560 ng mL-1 for P53, 37.5-600 ng mL-1 for PG I, and 2.5-80 ng mL-1for PG II. This method owns better sensitivity compared with enzyme-linked immunosorbent assay (ELISA) results of 394 specimens of gastric cancer sera. Furthermore, we established a multi-index prediction model based on the six kinds of biomarkers for predicting risk of gastric cancer. In conclusion, the electrochemical microfluidic chip for detecting multiple biomarkers has great potential in applications such as early screening of gastric cancer patients, and therapeutic evaluation, and real-time dynamic monitoring the progress of gastric cancer in near future.

  1. Epithelial membrane protein-1 is a biomarker of gefitinib resistance.

    Science.gov (United States)

    Jain, Anjali; Tindell, Charles A; Laux, Isett; Hunter, Jacob B; Curran, John; Galkin, Anna; Afar, Daniel E; Aronson, Nina; Shak, Steven; Natale, Ronald B; Agus, David B

    2005-08-16

    We describe a molecular resistance biomarker to gefitinib, epithelial membrane protein-1 (EMP-1). Gefitinib is a small-molecule inhibitor that competes for the ATP-binding site on EGF receptor (EGFR) and has been approved for patients with advanced lung cancers. Treatment with gefitinib has resulted in clinical benefit in patients, and, recently, heterozygous somatic mutations within the EGFR catalytic domain have been identified as a clinical correlate to objective response to gefitinib. However, clinical resistance to gefitinib limits the utility of this therapeutic to a fraction of patients, and objective clinical responses are rare. We aimed to assess the molecular phenotype and mechanism of in vivo gefitinib resistance in xenograft models and in patient samples. We generated in vivo gefitinib-resistance models in an adenocarcinoma xenograft model by serially passaging tumors in nude mice in presence of gefitinib until resistance was acquired. EMP-1 was identified as a surface biomarker whose expression correlated with acquisition of gefitinib resistance. EMP-1 expression was further correlated with lack of complete or partial response to gefitinib in lung cancer patient samples as well as clinical progression to secondary gefitinib resistance. EMP-1 expression and acquisition of gefitinib clinical resistance was independent of gefitinib-sensitizing EGFR somatic mutations. This report suggests the role of the adhesion molecule, EMP-1, as a biomarker of gefitinib clinical resistance, and further suggests a probable cross-talk between this molecule and the EGFR signaling pathway.

  2. Discovery of protein profiles for differentiated thyroid cancer using SELDI TOF MS

    International Nuclear Information System (INIS)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Soh, Eui Young

    2003-01-01

    Low sensitivity of diagnostic whole body iodine scintigraphy and intermediate range of serum thyroglobulin (Tg) with or without anti-Tg antibody make it difficult to select the patients with differentiated thyroid cancer who need further treatment. Surfaced Enhanced Laser Desorption /Ionization - Time of Flight - Mass Spectrometry (SELDI TOF MS) is a useful method to evaluate cancer proteome, biomarkers and patterns of biomarkers. In this preliminary study, we evaluated and developed protein profiles for the discrimination between patients with differentiated thyroid cancer and non-cancer controls using SELDI technology. Serum samples from 10 healthy controls and from 14 patients with papillary thyroid cancer before thyroidectomy were analyzed by SELDI MS. Multiple protein peaks detected were analyzed by the computer software to develop a classifier for separating cancer patients form controls. The classifier was then challenged to 24 serum samples to determine the validity and accuracy of the classification system. All patients with papillary thyroid cancer had no other concomitant cancer or thyroiditis. Their serum Tg concentration was 55.8 (1.5 - 249.7) and 2 patients had extra-thyroidal extension. According to the SELDI analysis, protein peaks at 3696 Da, 4178 Da, and 8149 Da were more prominent in cancer patients than controls in various degrees. Among those, protein peak at 4178 Da was determined as classifier by computer software, and the sensitivity, specificity and accuracy for discrimination of cancer patients from controls was 92.9% (13/14), 90% (9/10) and 91.7% respectively. This preliminary study suggests that serum protein profiles of differentiated thyroid cancer can be used for differentiation between cancer patients and non-cancer controls. And further clinical studies in various test sets will offer useful information in selecting patients who require treatment

  3. Discovery of protein profiles for differentiated thyroid cancer using SELDI TOF MS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; Lee, Myung Hoon; Joh, Chul Woo; Yoon, Seok Nam; Soh, Eui Young [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    Low sensitivity of diagnostic whole body iodine scintigraphy and intermediate range of serum thyroglobulin (Tg) with or without anti-Tg antibody make it difficult to select the patients with differentiated thyroid cancer who need further treatment. Surfaced Enhanced Laser Desorption /Ionization - Time of Flight - Mass Spectrometry (SELDI TOF MS) is a useful method to evaluate cancer proteome, biomarkers and patterns of biomarkers. In this preliminary study, we evaluated and developed protein profiles for the discrimination between patients with differentiated thyroid cancer and non-cancer controls using SELDI technology. Serum samples from 10 healthy controls and from 14 patients with papillary thyroid cancer before thyroidectomy were analyzed by SELDI MS. Multiple protein peaks detected were analyzed by the computer software to develop a classifier for separating cancer patients form controls. The classifier was then challenged to 24 serum samples to determine the validity and accuracy of the classification system. All patients with papillary thyroid cancer had no other concomitant cancer or thyroiditis. Their serum Tg concentration was 55.8 (1.5 - 249.7) and 2 patients had extra-thyroidal extension. According to the SELDI analysis, protein peaks at 3696 Da, 4178 Da, and 8149 Da were more prominent in cancer patients than controls in various degrees. Among those, protein peak at 4178 Da was determined as classifier by computer software, and the sensitivity, specificity and accuracy for discrimination of cancer patients from controls was 92.9% (13/14), 90% (9/10) and 91.7% respectively. This preliminary study suggests that serum protein profiles of differentiated thyroid cancer can be used for differentiation between cancer patients and non-cancer controls. And further clinical studies in various test sets will offer useful information in selecting patients who require treatment.

  4. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    Science.gov (United States)

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  5. Biomarkers for predicting complete debulking in ovarian cancer

    DEFF Research Database (Denmark)

    Fagö-Olsen, Carsten Lindberg; Ottesen, Bent; Christensen, Ib Jarle

    2014-01-01

    AIM: We aimed to construct and validate a model based on biomarkers to predict complete primary debulking surgery for ovarian cancer patients. PATIENTS AND METHODS: The study consisted of three parts: Part I: Biomarker data obtained from mass spectrometry, baseline data and, surgical outcome were...... used to construct predictive indices for complete tumour resection; Part II: sera from randomly selected patients from part I were analyzed using enzyme-linked immunosorbent assay (ELISA) to investigate the correlation to mass spectrometry; Part III: the indices from part I were validated in a new.......64. CONCLUSION: Our validated model based on biomarkers was unable to predict surgical outcome for patients with ovarian cancer....

  6. Database-augmented Mass Spectrometry Analysis of Exosomes Identifies Claudin 3 as a Putative Prostate Cancer Biomarker.

    Science.gov (United States)

    Worst, Thomas Stefan; von Hardenberg, Jost; Gross, Julia Christina; Erben, Philipp; Schnölzer, Martina; Hausser, Ingrid; Bugert, Peter; Michel, Maurice Stephan; Boutros, Michael

    2017-06-01

    In prostate cancer and other malignancies sensitive and robust biomarkers are lacking or have relevant limitations. Prostate specific antigen (PSA), the only biomarker widely used in prostate cancer, is suffering from low specificity. Exosomes offer new perspectives in the discovery of blood-based biomarkers. Here we present a proof-of principle study for a proteomics-based identification pipeline, implementing existing data sources, to exemplarily identify exosome-based biomarker candidates in prostate cancer.Exosomes from malignant PC3 and benign PNT1A cells and from FBS-containing medium were isolated using sequential ultracentrifugation. Exosome and control samples were analyzed on an LTQ-Orbitrap XL mass spectrometer. Proteomic data is available via ProteomeXchange with identifier PXD003651. We developed a scoring scheme to rank 64 proteins exclusively found in PC3 exosomes, integrating data from four public databases and published mass spectrometry data sets. Among the top candidates, we focused on the tight junction protein claudin 3. Retests under serum-free conditions using immunoblotting and immunogold labeling confirmed the presence of claudin 3 on PC3 exosomes. Claudin 3 levels were determined in the blood plasma of patients with localized ( n = 58; 42 with Gleason score 6-7, 16 with Gleason score ≥8) and metastatic prostate cancer ( n = 11) compared with patients with benign prostatic hyperplasia ( n = 15) and healthy individuals ( n = 15) using ELISA, without prior laborious exosome isolation. ANOVA showed different CLDN3 plasma levels in these groups ( p = 0.004). CLDN3 levels were higher in patients with Gleason ≥8 tumors compared with patients with benign prostatic hyperplasia ( p = 0.012) and Gleason 6-7 tumors ( p = 0.029). In patients with localized tumors CLDN3 levels predicted a Gleason score ≥ 8 (AUC = 0.705; p = 0.016) and did not correlate with serum PSA.By using the described workflow claudin 3 was identified and validated as a

  7. Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Friis, Esbern

    2010-01-01

    Breast cancer is the leading cause of cancer deaths in women today and is the most common cancer (excluding skin cancers) among women in the Western world. Although cancers detected by screening mammography are significantly smaller than nonscreening ones, noninvasive biomarkers for detection...... in different types of cancer suggests deregulation of C7orf24 to be a general event in epithelial carcinogenesis, indicating that this protein may play an important role in cancer cell biology and thus constitute a novel therapeutic target. Furthermore, as C7orf24 is externalized to the tissue extracellular...... fluid and can be detected in serum, this protein also represents a potential serological marker....

  8. Biomarkers for bladder cancer management: present and future

    Science.gov (United States)

    Ye, Fei; Wang, Li; Castillo-Martin, Mireia; McBride, Russell; Galsky, Matthew D; Zhu, Jun; Boffetta, Paolo; Zhang, David Y; Cordon-Cardo, Carlos

    2014-01-01

    Accurate and sensitive detection of bladder cancer is critical to diagnose this deadly disease at an early stage, estimate prognosis, predict response to treatment, and monitor recurrence. In past years, laboratory diagnosis and surveillance of urinary bladder cancer have improved significantly. Although urine cytology remains the gold standard test, many new urinary biomarkers have been identified. Furthermore, recent advances in genomic studies of bladder cancer have helped to refine our understanding of the pathogenesis of the disease, the biological basis for outcome disparities, and to inform more efficient treatment and surveillance strategies. In this article, the established diagnostic tests, newly identified biomarkers and genomic landscape of bladder cancer will be reviewed. PMID:25374904

  9. Characterization of KIF11 as a novel prognostic biomarker and therapeutic target for oral cancer.

    Science.gov (United States)

    Daigo, Kayo; Takano, Atsushi; Thang, Phung Manh; Yoshitake, Yoshihiro; Shinohara, Masanori; Tohnai, Iwau; Murakami, Yoshinori; Maegawa, Jiro; Daigo, Yataro

    2018-01-01

    Oral cancer has a high mortality rate, and its incidence is increasing gradually worldwide. As the effectiveness of standard treatments is still limited, the development of new therapeutic strategies is eagerly awaited. Kinesin family member 11 (KIF11) is a motor protein required for establishing a bipolar spindle in cell division. The role of KIF11 in oral cancer is unclear. Therefore, the present study aimed to assess the role of KIF11 in oral cancer and evaluate its role as a prognostic biomarker and therapeutic target for treating oral cancer. Immunohistochemical analysis demonstrated that KIF11 was expressed in 64 of 99 (64.6%) oral cancer tissues but not in healthy oral epithelia. Strong KIF11 expression was significantly associated with poor prognosis among oral cancer patients (P=0.034), and multivariate analysis confirmed its independent prognostic value. In addition, inhibition of KIF11 expression by transfection of siRNAs into oral cancer cells or treatment of cells with a KIF11 inhibitor significantly suppressed cell proliferation, probably through G2/M arrest and subsequent induction of apoptosis. These results suggest that KIF11 could be a potential prognostic biomarker and therapeutic target for oral cancer.

  10. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics.

    Science.gov (United States)

    Hyun, Kyung-A; Kim, Junmoo; Gwak, Hogyeong; Jung, Hyo-Il

    2016-01-21

    Much research has been performed over the past several decades in an attempt to conquer cancer. Tissue biopsy is the conventional method for gathering biological materials to analyze cancer and has contributed greatly to the understanding of cancer. However, this method is limited because it is time-consuming (requires tissue sectioning, staining, and pathological analysis), costly, provides scarce starting materials for multiple tests, and is painful. A liquid biopsy, which analyzes cancer-derived materials from various body fluids using a minimally invasive procedure, is more practical for real-time monitoring of disease progression than tissue biopsy. Biomarkers analyzable through liquid biopsy include circulating tumor cells (CTCs), exosomes, circulating cell-free DNA (cfDNA), miRNA, and proteins. Research on CTCs has been actively conducted because CTCs provide information on the whole cell, unlike the other biomarkers mentioned above. However, owing to the rarity and heterogeneity of CTCs, CTC research faces many critical concerns. Although exosomes and cfDNA have some technical challenges, they are being highlighted as new target materials. That is because they also have genetic information on cancers. Even though the number of exosomes and cfDNA from early stage cancer patients are similar to healthy individuals, they are present in high concentrations after metastasis. In this article, we review several technologies for material analyses of cancer, discuss the critical concerns based on hands-on experience, and describe future directions for cancer screening, detection, and diagnostics.

  11. Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer

    Directory of Open Access Journals (Sweden)

    Hem D. Shukla

    2017-10-01

    Full Text Available During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA, and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein–protein interaction

  12. Molecular biomarkers to guide precision medicine in localized prostate cancer.

    Science.gov (United States)

    Smits, Minke; Mehra, Niven; Sedelaar, Michiel; Gerritsen, Winald; Schalken, Jack A

    2017-08-01

    Major advances through tumor profiling technologies, that include next-generation sequencing, epigenetic, proteomic and transcriptomic methods, have been made in primary prostate cancer, providing novel biomarkers that may guide precision medicine in the near future. Areas covered: The authors provided an overview of novel molecular biomarkers in tissue, blood and urine that may be used as clinical tools to assess prognosis, improve selection criteria for active surveillance programs, and detect disease relapse early in localized prostate cancer. Expert commentary: Active surveillance (AS) in localized prostate cancer is an accepted strategy in patients with very low-risk prostate cancer. Many more patients may benefit from watchful waiting, and include patients of higher clinical stage and grade, however selection criteria have to be optimized and early recognition of transformation from localized to lethal disease has to be improved by addition of molecular biomarkers. The role of non-invasive biomarkers is challenging the need for repeat biopsies, commonly performed at 1 and 4 years in men under AS programs.

  13. Biomarkers in prostate cancer - Current clinical utility and future perspectives.

    Science.gov (United States)

    Kretschmer, Alexander; Tilki, Derya

    2017-12-01

    Current tendencies in the treatment course of prostate cancer patients increase the need for reliable biomarkers that help in decision-making in a challenging clinical setting. Within the last decade, several novel biomarkers have been introduced. In the following comprehensive review article, we focus on diagnostic (PHI ® , 4K score, SelectMDx ® , ConfirmMDx ® , PCA3, MiPS, ExoDX ® , mpMRI) and prognostic (OncotypeDX GPS ® , Prolaris ® , ProMark ® , DNA-ploidy, Decipher ® ) biomarkers that are in widespread clinical use and are supported by evidence. Hereby, we focus on multiple clinical situations in which innovative biomarkers may guide decision-making in prostate cancer therapy. In addition, we describe novel liquid biopsy approaches (circulating tumor cells, cell-free DNA) that have been described as predictive biomarkers in metastatic castration-resistant prostate cancer and might support an individual patient-centred oncological approach in the nearer future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Haptoglobin is a serological biomarker for adenocarcinoma lung cancer by using the ProteomeLab PF2D combined with mass spectrometry.

    Science.gov (United States)

    Chang, You-Kang; Lai, Yu-Heng; Chu, Yen; Lee, Ming-Cheng; Huang, Chun-Yao; Wu, Semon

    2016-01-01

    Identification of serological biomarker is urgently needed for cancer screening, monitoring cancer progression, treatment response, and surveillance for recurrence in lung cancer. Therefore, we try to find new serological biomarker that has more specificity and sensitivity for lung cancer diagnostics. In this study, the 2-D liquid phase fractionation system (PF2D) and mass spectrometry approach has been used for comparison the serum profiles between lung cancer patients and healthy individuals. Eight proteins were identified form PF2D and subsequently by mass spectrometry. Among these proteins, haptoglobin (HP) and apolipoprotein AI (APOA1) were chosen and validated with turbidimetric assay. We found that HP levels were significantly higher and APOA1 levels were significantly lower in lung cancer patients. However, after the participants were stratified by gender, the expression trends of HP and APOA1 in lung cancer patients existed only in men, which is gender specific phenomenon. HP, APOA1 and carcinoembryonic antigen (CEA), used for distinguishing lung adenocarcinoma, had a sensitivity of 64%, 64% and 79%, respectively. Area under the ROC curve (AUC) of HP, APOA1 and CEA were 0.768, 0.761 and 0.884, respectively. When restricted to male subjects, HP, APOA1 and CEA showed sensitivity of 89%, 73% and 100%, respectively. AUC of HP, APOA1 and CEA were 0.929, 0.840 and 0.877, respectively. Therefore, our results showed that combined with PF2D system and mass spectrometry, this is a promising novel approach to identify new serological biomarkers for lung cancer research. In addition, HP may be a potential serological biomarker for lung adenocarcinoma diagnostics, especially in male subjects.

  15. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies

    Directory of Open Access Journals (Sweden)

    Ana Rita Lima

    2016-08-01

    Full Text Available Prostate cancer (PCa is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.

  16. The role of pancreatic cancer-derived exosomes in cancer progress and their potential application as biomarkers.

    Science.gov (United States)

    Jin, H; Wu, Y; Tan, X

    2017-08-01

    Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.

  17. DNA Repair Biomarkers Predict Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer

    International Nuclear Information System (INIS)

    Alexander, Brian M.; Wang Xiaozhe; Niemierko, Andrzej; Weaver, David T.; Mak, Raymond H.; Roof, Kevin S.; Fidias, Panagiotis; Wain, John; Choi, Noah C.

    2012-01-01

    Purpose: The addition of neoadjuvant chemoradiotherapy prior to surgical resection for esophageal cancer has improved clinical outcomes in some trials. Pathologic complete response (pCR) following neoadjuvant therapy is associated with better clinical outcome in these patients, but only 22% to 40% of patients achieve pCR. Because both chemotherapy and radiotherapy act by inducing DNA damage, we analyzed proteins selected from multiple DNA repair pathways, using quantitative immunohistochemistry coupled with a digital pathology platform, as possible biomarkers of treatment response and clinical outcome. Methods and Materials: We identified 79 patients diagnosed with esophageal cancer between October 1994 and September 2002, with biopsy tissue available, who underwent neoadjuvant chemoradiotherapy prior to surgery at the Massachusetts General Hospital and used their archived, formalin-fixed, paraffin-embedded biopsy samples to create tissue microarrays (TMA). TMA sections were stained using antibodies against proteins in various DNA repair pathways including XPF, FANCD2, PAR, MLH1, PARP1, and phosphorylated MAPKAP kinase 2 (pMK2). Stained TMA slides were evaluated using machine-based image analysis, and scoring incorporated both the intensity and the quantity of positive tumor nuclei. Biomarker scores and clinical data were assessed for correlations with clinical outcome. Results: Higher scores for MLH1 (p = 0.018) and lower scores for FANCD2 (p = 0.037) were associated with pathologic response to neoadjuvant chemoradiation on multivariable analysis. Staining of MLH1, PARP1, XPF, and PAR was associated with recurrence-free survival, and staining of PARP1 and FANCD2 was associated with overall survival on multivariable analysis. Conclusions: DNA repair proteins analyzed by immunohistochemistry may be useful as predictive markers for response to neoadjuvant chemoradiotherapy in patients with esophageal cancer. These results are hypothesis generating and need

  18. Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment

    Science.gov (United States)

    Phan, John H.; Moffitt, Richard A.; Stokes, Todd H.; Liu, Jian; Young, Andrew N.; Nie, Shuming; Wang, May D.

    2013-01-01

    Recent advances in biomarker discovery, biocomputing, and nanotechnology have raised new opportunities for the emerging field of personalized medicine in which disease detection, diagnosis, and therapy are tailored to each individual’s molecular profile, and also for predictive medicine that uses genetic/molecular information to predict disease development, progression, and clinical outcome. Here we discuss advanced biocomputing tools for cancer biomarker discovery and multiplexed nanoparticle probes for cancer biomarker profiling, together with prospects and challenges in correlating biomolecular signatures with clinical outcome. This bio-nano-info convergence holds great promise for molecular diagnosis and individualized therapy of cancer and other human diseases. PMID:19409634

  19. Sputum-Based Molecular Biomarkers for the Early Detection of Lung Cancer: Limitations and Promise

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Connie E. [Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine. 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine. 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-07-19

    Lung cancer is the leading cause of cancer deaths, with an overall survival of 15% at five years. Biomarkers that can sensitively and specifically detect lung cancer at early stage are crucial for improving this poor survival rate. Sputum has been the target for the discovery of non-invasive biomarkers for lung cancer because it contains airway epithelial cells, and molecular alterations identified in sputum are most likely to reflect tumor-associated changes or field cancerization caused by smoking in the lung. Sputum-based molecular biomarkers include morphology, allelic imbalance, promoter hypermethylation, gene mutations and, recently, differential miRNA expression. To improve the sensitivity and reproducibility of sputum-based biomarkers, we recommend standardization of processing protocols, bronchial epithelial cell enrichment, and identification of field cancerization biomarkers.

  20. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer?

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2011-06-09

    Abstract The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER\\/EGFR ligands. The released ligands activate HER\\/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer.

  1. Mining novel biomarkers for prognosis of gastric cancer with serum proteomics

    Directory of Open Access Journals (Sweden)

    Sui Mei-Hua

    2009-09-01

    Full Text Available Abstract Background Although gastric caner (GC remains the second cause of cancer-related death, useful biomarkers for prognosis are still unavailable. We present here the attempt of mining novel biomarkers for GC prognosis by using serum proteomics. Methods Sera from 43 GC patients and 41 controls with gastritis as Group 1 and 11 GC patients as Group 2 was successively detected by Surface Enhanced Laser Desorption/ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS with Q10 chip. Peaks were acquired by Ciphergen ProteinChip Software 3.2.0 and analyzed by Zhejiang University-ProteinChip Data Analysis System (ZJU-PDAS. CEA level were evaluated by chemiluminescence immunoassay. Results After median follow-up periods of 33 months, Group 1 with 4 GC patients lost was divided into 20 good-prognosis GC patients (overall survival more than 24 months and 19 poor-prognosis GC patients (no more than 24 months. The established prognosis pattern consisted of 5 novel prognosis biomarkers with 84.2% sensitivity and 85.0% specificity, which were significantly higher than those of carcinoembryonic antigen (CEA and TNM stage. We also tested prognosis pattern blindly in Group 2 with 66.7% sensitivity and 80.0% specificity. Moreover, we found that 4474-Da peak elevated significantly in GC and was associated with advanced stage (III+IV and short survival (p Conclusion We have identified a number of novel biomarkers for prognosis prediction of GC by using SELDI-TOF-MS combined with sophisticated bioinformatics. Particularly, elevated expression of 4474-Da peak showed very promising to be developed into a novel biomarker associated with biologically aggressive features of GC.

  2. Validation of podocalyxin-like protein as a biomarker of poor prognosis in colorectal cancer

    International Nuclear Information System (INIS)

    Larsson, Anna; Fridberg, Marie; Gaber, Alexander; Nodin, Björn; Levéen, Per; Jönsson, Göran; Uhlén, Mathias; Birgisson, Helgi; Jirström, Karin

    2012-01-01

    Podocalyxin-like 1 (PODXL) is a cell-adhesion glycoprotein and stem cell marker that has been associated with an aggressive tumour phenotype and adverse outcome in several cancer types. We recently demonstrated that overexpression of PODXL is an independent factor of poor prognosis in colorectal cancer (CRC). The aim of this study was to validate these results in two additional independent patient cohorts and to examine the correlation between PODXL mRNA and protein levels in a subset of tumours. PODXL protein expression was analyzed by immunohistochemistry in tissue microarrays with tumour samples from a consecutive, retrospective cohort of 270 CRC patients (cohort 1) and a prospective cohort of 337 CRC patients (cohort 2). The expression of PODXL mRNA was measured by real-time quantitative PCR in a subgroup of 62 patients from cohort 2. Spearman´;s Rho and Chi-Square tests were used for analysis of correlations between PODXL expression and clinicopathological parameters. Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between PODXL expression and time to recurrence (TTR), disease free survival (DFS) and overall survival (OS). High PODXL protein expression was significantly associated with unfavourable clinicopathological characteristics in both cohorts. In cohort 1, high PODXL expression was associated with a significantly shorter 5-year OS in both univariable (HR = 2.28; 95% CI 1.43-3.63, p = 0.001) and multivariable analysis (HR = 2.07; 95% CI 1.25-3.43, p = 0.005). In cohort 2, high PODXL expression was associated with a shorter TTR (HR = 2.93; 95% CI 1.26-6.82, p = 0.013) and DFS (HR = 2.44; 95% CI 1.32-4.54, p = 0.005), remaining significant in multivariable analysis, HR = 2.50; 95% CI 1.05-5.96, p = 0.038 for TTR and HR = 2.11; 95% CI 1.13-3.94, p = 0.019 for DFS. No significant correlation could be found between mRNA levels and protein expression of PODXL and there was no association between mRNA levels

  3. Identification and prognostic value of anterior gradient protein 2 expression in breast cancer based on tissue microarray.

    Science.gov (United States)

    Guo, Jilong; Gong, Guohua; Zhang, Bin

    2017-07-01

    Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall survival in patients with grade 1 and 2 tumours. Cox multivariate analysis revealed anterior gradient protein 2 as a putative independent indicator of unfavourable outcomes (p = 0.031). All these data clearly showed that anterior gradient protein 2 is highly expressed in breast cancer and can be regarded as a putative biomarker for

  4. microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer

    Science.gov (United States)

    2017-09-01

    CYP17A1 inhibition with abiraterone in castration- resistant prostate cancer : induction of steroidogenesis and androgen receptor splice variants...AWARD NUMBER: W81XWH-15-1-0353 TITLE: microRNA Biomarkers to Generate Sensitivity to Abiraterone-Resistant Prostate Cancer PRINCIPAL...TITLE AND SUBTITLE microRNA Biomarkers to Generate Sensitivity to Abiraterone- Resistant Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. De Novo Identification of Biomarker Proteins Using Tandem Mass Spectrometry

    Science.gov (United States)

    Many studies have shown that biological fluids contain an important number of biomarkers associated with various pathologies. For instance, there has been extensive research to identify effective biomarkers as prognostic indicators of breast cancer. An effective approach for biom...

  6. Molecular alterations and biomarkers in colorectal cancer

    Science.gov (United States)

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  7. Validation of Candidate Serum Ovarian Cancer Biomarkers for Early Detection

    Directory of Open Access Journals (Sweden)

    Feng Su

    2007-01-01

    Full Text Available Objective: We have previously analyzed protein profi les using Surface Enhanced Laser Desorption and Ionization Time-Of-Flight Mass Spectroscopy (SELDI-TOF-MS [Kozak et al. 2003, Proc. Natl. Acad. Sci. U.S.A. 100:12343–8] and identified 3 differentially expressed serum proteins for the diagnosis of ovarian cancer (OC [Kozak et al. 2005, Proteomics, 5:4589–96], namely, apolipoprotein A-I (apoA-I, transthyretin (TTR and transferin (TF. The objective of the present study is to determine the efficacy of the three OC biomarkers for the detection of early stage (ES OC, in direct comparison to CA125.Methods: The levels of CA125, apoA-I, TTR and TF were measured in 392 serum samples [82 women with normal ovaries (N, 24 women with benign ovarian tumors (B, 85 women with ovarian tumors of low malignant potential (LMP, 126 women with early stage ovarian cancer (ESOC, and 75 women with late stage ovarian cancer (LSOC], obtained through the GOG and Cooperative Human Tissue Network. Following statistical analysis, multivariate regression models were built to evaluate the utility of the three OC markers in early detection.Results: Multiple logistic regression models (MLRM utilizing all biomarker values (CA125, TTR, TF and apoA-I from all histological subtypes (serous, mucinous, and endometrioid adenocarcinoma distinguished normal samples from LMP with 91% sensitivity (specifi city 92%, and normal samples from ESOC with a sensitivity of 89% (specifi city 92%. MLRM, utilizing values of all four markers from only the mucinous histological subtype showed that collectively, CA125, TTR, TF and apoA-I, were able to distinguish normal samples from mucinous LMP with 90% sensitivity, and further distinguished normal samples from early stage mucinous ovarian cancer with a sensitivity of 95%. In contrast, in serum samples from patients with mucinous tumors, CA125 alone was able to distinguish normal samples from LMP and early stage ovarian cancer with a sensitivity of

  8. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1

    DEFF Research Database (Denmark)

    Schmitt, Manfred; Harbeck, Nadia; Brünner, Nils

    2011-01-01

    Clinical research on cancer biomarkers is essential in understanding recent discoveries in cancer biology and heterogeneity of the cancer disease. However, there are only a few examples of clinically useful studies that have identified cancer biomarkers with clinical benefit. Urokinase-type plasm...

  9. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study

    International Nuclear Information System (INIS)

    Albrethsen, Jakob; Bøgebo, Rikke; Gammeltoft, Steen; Olsen, Jesper; Winther, Benny; Raskov, Hans

    2005-01-01

    Molecular markers for localized colon tumours and for prognosis following therapy are needed. Proteomics research is currently producing numerous biomarker studies with clinical potential. We investigate the protein composition of plasma and of tumour extracts with the aim of identifying biomarkers for colon cancer. By Surface Enhanced Laser Desorption/Ionisation – Time Of Flight / Mass spectrometry (SELDI-TOF/MS) we compare the protein profiles of colon cancer serum with serum from healthy individuals and the protein profiles of colon tumours with normal colon tissue. By size exclusion chromatography, we investigate the binding of HNP 1-3 to high mass plasma proteins. By microflow we investigate the effect of HNP 1-3 on mammalian cells. Human Neutrophil Peptides -1, -2 and -3 (HNP 1-3), also known as alfa-defensin-1, -2 and -3, are present in elevated concentrations in serum from colon cancer patients and in protein extracts from colon tumours. A fraction of HNP 1-3 in serum is bound to unidentified high mass plasma proteins. HNP 1-3 purified from colon tumours are lethal to mammalian cells. HNP 1-3 may serve as blood markers for colon cancer in combination with other diagnostic tools. We propose that HNP 1-3 are carried into the bloodstream by attaching to high mass plasma proteins in the tumour microenvironment. We discuss the effect of HNP 1-3 on tumour progression

  10. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    International Nuclear Information System (INIS)

    Yang, Xu; Lazar, Iulia M

    2009-01-01

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have

  11. [The Functional Role of Exosomes in Cancer Biology and Their Potential as Biomarkers and Therapeutic Targets of Cancer].

    Science.gov (United States)

    Naito, Yutaka; Yoshioka, Yusuke; Ochiya, Takahiro

    2015-06-01

    Intercellular communication plays an important role in the regulation of various cellular events. In particular, cancer cells and the surrounding cells communicate with each other, and this intercellular communication triggers cancer initiation and progression through the secretion of molecules, including growth factors and cytokines. Recent advances in cancer biology have indicated that small membrane vesicles, termed exosomes, also serve as regulatory agents in intercellular communications. Exosomes contain functional cellular components, including proteins and microRNAs (miRNAs), and they transfer these components to recipient cells. This exosome-mediated intercellular communication leads to increased growth, invasion, and metastasis of cancer. Thus, researchers regard exosomes as important cues to understanding the molecular mechanisms of cancer biology. Indeed, several lines of evidence have demonstrated that exosomes can explain multiple aspects of cancer biology. In addition, increasing evidence suggests that exosomes and their specific molecules are also attractive for use as biomarkers and therapeutic targets in cancer. Recent reports showed the efficacy of a novel diagnosis by detecting component molecules of cancer-derived exosomes, including miRNAs and membrane proteins. Furthermore, clinical trials that test the application of exosomes for cancer therapy have already been reported. From these points of view, we will summarize experimental data that support the role of exosomes in cancer progression and the potential of exosomes for use in novel diagnostic and therapeutic approaches for cancer.

  12. Engineered gold nanoparticles for identification of novel ovarian biomarkers

    Science.gov (United States)

    Giri, Karuna

    Ovarian cancer is a leading cause of cancer related death among women in the US and worldwide. The disease has a high mortality rate due to limited tools available that can diagnose ovarian cancer at an early stage and the lack of effective treatments for disease free survival at late stages. Identification of proteins specifically expressed/overexpressed in ovarian cancer could lead to identification of novel diagnostic biomarkers and therapeutic targets that improve patient outcomes. In this regard, mass spectrometry is a powerful tool to probe the proteome of a cancer cell. It can aid discovery of proteins important for the pathophysiology of ovarian cancer. These proteins in turn could serve as diagnostic and treatment biomarkers of the disease. However, a limitation of mass spectrometry based proteomic analyses is that the technique lacks sensitivity and is biased against detection of low abundance proteins. With current approaches to biomarker discovery, we may therefore be overlooking candidate proteins that are important for ovarian cancer. This study presents a new approach to enrich low abundance proteins and subsequently detect them with mass spectrometry. Gold nanoparticles (AuNPs) and functionalization of their surfaces provide an excellent opportunity to capture and enrich low abundance proteins. First, the study focused on conducting an extensive investigation of the time evolution of nanoparticle-protein interaction and understanding drivers of protein attachment on nanoparticle surface. The adsorption of proteins to AuNPs was found to be highly dynamic with multiple attachment and detachment events which decreased over time. Initially, electrostatic forces played an important role in protein binding and structurally flexible proteins such as those involved in RNA processing were more likely to bind to AuNPs. More importantly, the feasibility and success of protein enrichment by AuNPs was evaluated. The AuNPs based approach was able to detect

  13. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  14. The application of mass-spectrometry-based protein biomarker discovery to theragnostics

    OpenAIRE

    Street, Jonathan M; Dear, James W

    2010-01-01

    Over the last decade rapid developments in mass spectrometry have allowed the identification of multiple proteins in complex biological samples. This proteomic approach has been applied to biomarker discovery in the context of clinical pharmacology (the combination of biomarker and drug now being termed ‘theragnostics’). In this review we provide a roadmap for early protein biomarker discovery studies, focusing on some key questions that regularly confront researchers.

  15. Physical Activity, Biomarkers, and Disease Outcomes in Cancer Survivors: A Systematic Review

    Science.gov (United States)

    Friedenreich, Christine M.; Courneya, Kerry S.; Siddiqi, Sameer M.; McTiernan, Anne; Alfano, Catherine M.

    2012-01-01

    Background Cancer survivors often seek information about how lifestyle factors, such as physical activity, may influence their prognosis. We systematically reviewed studies that examined relationships between physical activity and mortality (cancer-specific and all-cause) and/or cancer biomarkers. Methods We identified 45 articles published from January 1950 to August 2011 through MEDLINE database searches that were related to physical activity, cancer survival, and biomarkers potentially relevant to cancer survival. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement to guide this review. Study characteristics, mortality outcomes, and biomarker-relevant and subgroup results were abstracted for each article that met the inclusion criteria (ie, research articles that included participants with a cancer diagnosis, mortality outcomes, and an assessment of physical activity). Results There was consistent evidence from 27 observational studies that physical activity is associated with reduced all-cause, breast cancer–specific, and colon cancer–specific mortality. There is currently insufficient evidence regarding the association between physical activity and mortality for survivors of other cancers. Randomized controlled trials of exercise that included biomarker endpoints suggest that exercise may result in beneficial changes in the circulating level of insulin, insulin-related pathways, inflammation, and, possibly, immunity; however, the evidence is still preliminary. Conclusions Future research directions identified include the need for more observational studies on additional types of cancer with larger sample sizes; the need to examine whether the association between physical activity and mortality varies by tumor, clinical, or risk factor characteristics; and the need for research on the biological mechanisms involved in the association between physical activity and survival after a cancer diagnosis. Future randomized

  16. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination

    Directory of Open Access Journals (Sweden)

    Giulia Selvolini

    2017-03-01

    Full Text Available Detecting cancer disease at an early stage is one of the most important issues for increasing the survival rate of patients. Cancer biomarker detection helps to provide a diagnosis before the disease becomes incurable in later stages. Biomarkers can also be used to evaluate the progression of therapies and surgery treatments. In recent years, molecularly imprinted polymer (MIP based sensors have been intensely investigated as promising analytical devices in several fields, including clinical analysis, offering desired portability, fast response, specificity, and low cost. The aim of this review is to provide readers with an overview on recent important achievements in MIP-based sensors coupled to various transducers (e.g., electrochemical, optical, and piezoelectric for the determination of cancer biomarkers by selected publications from 2012 to 2016.

  17. Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Harsha, H C; Grønborg, Mads

    2008-01-01

    Quantitative proteomic methodologies allow profiling of hundreds to thousands of proteins in a high-throughput fashion. This approach is increasingly applied to cancer biomarker discovery to identify proteins that are differentially regulated in cancers. Fractionation of protein samples based...

  18. A pilot study to evaluate the application of a generic protein standard panel for quality control of biomarker detection technologies

    Directory of Open Access Journals (Sweden)

    Valdivia Hernan J

    2011-08-01

    Full Text Available Abstract Background Protein biomarker studies are currently hampered by a lack of measurement standards to demonstrate quality, reliability and comparability across multiple assay platforms. This is especially pertinent for immunoassays where multiple formats for detecting target analytes are commonly used. Findings In this pilot study a generic panel of six non-human protein standards (50 - 10^7 pg/mL of varying abundance was prepared as a quality control (QC material. Simulated "normal" and "diseased" panels of proteins were prepared in pooled human plasma and incorporated into immunoassays using the Meso Scale Discovery® (MSD® platform to illustrate reliable detection of the component proteins. The protein panel was also evaluated as a spike-in material for a model immunoassay involving detection of ovarian cancer biomarkers within individual human plasma samples. Our selected platform could discriminate between two panels of the proteins exhibiting small differences in abundance. Across distinct experiments, all component proteins exhibited reproducible signal outputs in pooled human plasma. When individual donor samples were used, half the proteins produced signals independent of matrix effects. These proteins may serve as a generic indicator of platform reliability. Each of the remaining proteins exhibit differential signals across the distinct samples, indicative of sample matrix effects, with the three proteins following the same trend. This subset of proteins may be useful for characterising the degree of matrix effects associated with the sample which may impact on the reliability of quantifying target diagnostic biomarkers. Conclusions We have demonstrated the potential utility of this panel of standards to act as a generic QC tool for evaluating the reproducibility of the platform for protein biomarker detection independent of serum matrix effects.

  19. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone

    Science.gov (United States)

    Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  20. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone.

    Directory of Open Access Journals (Sweden)

    Susann K J Ludwig

    Full Text Available Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1. Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this 'protein microarray on a smartphone'-concept for on-site testing, e.g., in food safety, environment and health monitoring.

  1. Emerging biomarkers in the diagnosis of prostate cancer

    Directory of Open Access Journals (Sweden)

    Filella X

    2018-05-01

    Full Text Available Xavier Filella, Esther Fernández-Galan, Rosa Fernández Bonifacio, Laura Foj Department of Biochemistry and Molecular Genetics (CDB, Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain Abstract: Prostate cancer (PCa is the second most common cancer in men worldwide. A large proportion of PCa are latent, never destined to progress or affect the patients’ life. It is of utmost importance to identify which PCa are destined to progress and which would benefit from an early radical treatment. Prostate-specific antigen (PSA remains the most used test to detect PCa. Its limited specificity and an elevated rate of overdiagnosis are the main problems associated with PSA testing. New PCa biomarkers have been proposed to improve the accuracy of PSA in the management of early PCa. Commercially available biomarkers such as PCA3 score, Prostate Health Index (PHI, and the four-kallikrein panel are used with the purpose of reducing the number of unnecessary biopsies and providing information related to the aggressiveness of the tumor. The relationship with PCa aggressiveness seems to be confirmed by PHI and the four-kallikrein panel, but not by the PCA3 score. In this review, we also summarize new promising biomarkers, such as PSA glycoforms, TMPRSS2:ERG fusion gene, microRNAs, circulating tumor cells, androgen receptor variants, and PTEN gene. All these emerging biomarkers could change the management of early PCa, offering more accurate results than PSA. Nonetheless, large prospective studies comparing these new biomarkers among them are required to know their real value in PCa detection and prognosis. Keywords: prostate cancer, PSA, PHI, four-kallikrein panel, PCA3, miRNAs

  2. Single-walled carbon nanotube based transparent immunosensor for detection of a prostate cancer biomarker osteopontin

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Abhinav; Hong, Seongkyeol; Singh, Renu [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-04-15

    Highlights: • A transparent CNT immunosensor is presented for detection of a prostate cancer biomarker osteopontin. • This immunosensor showed a highly linear and reproducible behavior from 1 pg mL{sup −1} to 1 μg mL{sup −1}. • The limit of detection of the immunosensor was 0.3 pg mL{sup −1}. • This immunosensor demonstrated high selectivity against bovine serum albumin and human serum. - Abstract: Osteopontin (OPN) is involved in almost all steps of cancer development, and it is being investigated as a potential biomarker for a diagnosis and prognosis of prostate cancer. Here, we report a label-free, highly sensitive and transparent immunosensor based on single-walled carbon nanotubes (SWCNTs) for detection of OPN. A high density of −COOH functionalized SWCNTs was deposited between two gold/indium tin oxide electrodes on a glass substrate by dielectrophoresis. Monoclonal antibodies specific to OPN were covalently immobilized on the SWCNTs. Relative resistance change of the immunosensors was measured as the concentration of OPN in phosphate buffer saline (PBS) and human serum was varied from 1 pg mL{sup −1} to 1 μg mL{sup −1} for different channel lengths of 2, 5, and 10 μm, showing a highly linear and reproducible behavior (R{sup 2} > 97%). These immunosensors were also specific to OPN against another test protein, bovine serum albumin, PBS and human serum, showing that a limit of detection for OPN was 0.3 pg mL{sup −1}. This highly sensitive and transparent immunosensor has a great potential as a simple point-of-care test kit for various protein biomarkers.

  3. Detection of cervical cancer biomarker patterns in blood plasma and urine by differential scanning calorimetry and mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Nichola C Garbett

    Full Text Available Improved methods for the accurate identification of both the presence and severity of cervical intraepithelial neoplasia (CIN and extent of spread of invasive carcinomas of the cervix (IC are needed. Differential scanning calorimetry (DSC has recently been shown to detect specific changes in the thermal behavior of blood plasma proteins in several diseases. This methodology is being explored to provide a complementary approach for screening of cervical disease. The present study evaluated the utility of DSC in differentiating between healthy controls, increasing severity of CIN and early and advanced IC. Significant discrimination was apparent relative to the extent of disease with no clear effect of demographic factors such as age, ethnicity, smoking status and parity. Of most clinical relevance, there was strong differentiation of CIN from healthy controls and IC, and amongst patients with IC between FIGO Stage I and advanced cancer. The observed disease-specific changes in DSC profiles (thermograms were hypothesized to reflect differential expression of disease biomarkers that subsequently bound to and affected the thermal behavior of the most abundant plasma proteins. The effect of interacting biomarkers can be inferred from the modulation of thermograms but cannot be directly identified by DSC. To investigate the nature of the proposed interactions, mass spectrometry (MS analyses were employed. Quantitative assessment of the low molecular weight protein fragments of plasma and urine samples revealed a small list of peptides whose abundance was correlated with the extent of cervical disease, with the most striking plasma peptidome data supporting the interactome theory of peptide portioning to abundant plasma proteins. The combined DSC and MS approach in this study was successful in identifying unique biomarker signatures for cervical cancer and demonstrated the utility of DSC plasma profiles as a complementary diagnostic tool to evaluate

  4. Detection of cervical cancer biomarker patterns in blood plasma and urine by differential scanning calorimetry and mass spectrometry.

    Science.gov (United States)

    Garbett, Nichola C; Merchant, Michael L; Helm, C William; Jenson, Alfred B; Klein, Jon B; Chaires, Jonathan B

    2014-01-01

    Improved methods for the accurate identification of both the presence and severity of cervical intraepithelial neoplasia (CIN) and extent of spread of invasive carcinomas of the cervix (IC) are needed. Differential scanning calorimetry (DSC) has recently been shown to detect specific changes in the thermal behavior of blood plasma proteins in several diseases. This methodology is being explored to provide a complementary approach for screening of cervical disease. The present study evaluated the utility of DSC in differentiating between healthy controls, increasing severity of CIN and early and advanced IC. Significant discrimination was apparent relative to the extent of disease with no clear effect of demographic factors such as age, ethnicity, smoking status and parity. Of most clinical relevance, there was strong differentiation of CIN from healthy controls and IC, and amongst patients with IC between FIGO Stage I and advanced cancer. The observed disease-specific changes in DSC profiles (thermograms) were hypothesized to reflect differential expression of disease biomarkers that subsequently bound to and affected the thermal behavior of the most abundant plasma proteins. The effect of interacting biomarkers can be inferred from the modulation of thermograms but cannot be directly identified by DSC. To investigate the nature of the proposed interactions, mass spectrometry (MS) analyses were employed. Quantitative assessment of the low molecular weight protein fragments of plasma and urine samples revealed a small list of peptides whose abundance was correlated with the extent of cervical disease, with the most striking plasma peptidome data supporting the interactome theory of peptide portioning to abundant plasma proteins. The combined DSC and MS approach in this study was successful in identifying unique biomarker signatures for cervical cancer and demonstrated the utility of DSC plasma profiles as a complementary diagnostic tool to evaluate cervical cancer

  5. Averaged differential expression for the discovery of biomarkers in the blood of patients with prostate cancer.

    Directory of Open Access Journals (Sweden)

    V Uma Bai

    Full Text Available The identification of a blood-based diagnostic marker is a goal in many areas of medicine, including the early diagnosis of prostate cancer. We describe the use of averaged differential display as an efficient mechanism for biomarker discovery in whole blood RNA. The process of averaging reduces the problem of clinical heterogeneity while simultaneously minimizing sample handling.RNA was isolated from the blood of prostate cancer patients and healthy controls. Samples were pooled and subjected to the averaged differential display process. Transcripts present at different levels between patients and controls were purified and sequenced for identification. Transcript levels in the blood of prostate cancer patients and controls were verified by quantitative RT-PCR. Means were compared using a t-test and a receiver-operating curve was generated. The Ring finger protein 19A (RNF19A transcript was identified as having higher levels in prostate cancer patients compared to healthy men through the averaged differential display process. Quantitative RT-PCR analysis confirmed a more than 2-fold higher level of RNF19A mRNA levels in the blood of patients with prostate cancer than in healthy controls (p = 0.0066. The accuracy of distinguishing cancer patients from healthy men using RNF19A mRNA levels in blood as determined by the area under the receiving operator curve was 0.727.Averaged differential display offers a simplified approach for the comprehensive screening of body fluids, such as blood, to identify biomarkers in patients with prostate cancer. Furthermore, this proof-of-concept study warrants further analysis of RNF19A as a clinically relevant biomarker for prostate cancer detection.

  6. Validated biomarkers: The key to precision treatment in patients with breast cancer.

    Science.gov (United States)

    Duffy, Michael J; O'Donovan, Norma; McDermott, Enda; Crown, John

    2016-10-01

    Recent DNA sequencing and gene expression studies have shown that at a molecular level, almost every case of breast cancer is unique and different from other breast cancers. For optimum management therefore, every patient should receive treatment that is guided by the molecular composition of their tumor, i.e., precision treatment. While such a scenario is still some distance into the future, biomarkers are beginning to play an important role in preparing the way for precision treatment. In particular, biomarkers are increasingly being used for predicting patient outcome and informing as to the most appropriate type of systemic therapy to be administered. Mandatory biomarkers for every newly diagnosed case of breast cancer are estrogen receptors and progesterone receptors in selecting patients for endocrine treatment and HER2 for identifying patients likely to benefit from anti-HER2 therapy. Amongst the best validated prognostic biomarker tests are uPA/PAI-1, MammaPrint and Oncotype DX. Although currently, there are no biomarkers available for predicting response to specific forms of chemotherapy, uPA/PAI-1 and Oncotype DX can aid the identification of lymph node-negative patients that are most likely to benefit from adjuvant chemotherapy, in general. In order to accelerate progress towards precision treatment for women with breast cancer, we need additional predictive biomarkers, especially for enhancing the positive predictive value for endocrine and anti-HER2 therapies, as well as biomarkers for predicting response to specific forms of chemotherapy. The ultimate biomarker test for achieving the goal of precision treatment for patients with breast cancer will likely require a combination of gene sequencing and transcriptomic analysis of every patient's tumor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DWI as an Imaging Biomarker for Bladder Cancer

    NARCIS (Netherlands)

    Yoshida, Soichiro; Takahara, Taro; Kwee, Thomas C.; Waseda, Yuma; Kobayashi, Shuichiro; Fujii, Yasuhisa

    OBJECTIVE. DWI has been increasingly applied in the management of bladder cancer. In this article, we discuss the role of DWI as an imaging biomarker for bladder cancer. CONCLUSION. The DWI signal is derived from the motion of water molecules, which represents the physiologic characteristics of the

  8. Cerebral microdialysis for protein biomarker monitoring in the neurointensive care setting

    Directory of Open Access Journals (Sweden)

    Lars Tomas Hillered

    2014-12-01

    Full Text Available Cerebral microdialysis (MD was introduced as a neurochemical monitoring tool in the early 1990s and is currently well established for the sampling of low molecular weight biomarkers of energy metabolic perturbation and cellular distress in the neurointensive care (NIC setting. There is now a growing interest in MD for intracerebral sampling of protein biomarkers of secondary injury mechanisms in acute traumatic and neurovascular brain injury in the NIC community. The initial enthusiasm over the opportunity to sample protein biomarkers with high molecular weight cut-off (MWCO MD catheters has dampened somewhat with the emerging realization of inherent problems with this methodology including protein adhesion, protein-protein interaction and biofouling, leading to unstable MD catheter performance (i.e. fluid recovery and extraction efficiency. This review will focus on the results of a multidisciplinary collaborative effort, within the Uppsala Berzelii Centre for Neurodiagnostics during the past several years, to study the features of the complex process of high MWCO MD for protein biomarkers. This research has led to new methodology showing robust in vivo performance with optimized fluid recovery and improved extraction efficiency, allowing for more accurate biomarker monitoring. In combination with evolving analytical methodology allowing for multiplex biomarker analysis in ultra-small MD samples a new opportunity opens up for high-resolution temporal mapping of secondary injury cascades, such as neuroinflammation and other cell injury reactions directly in the injured human brain. Such data may provide an important basis for improved characterization of complex injuries, e.g. traumatic and neurovascular brain injury, and help in defining targets and treatment windows for neuroprotective drug development

  9. Potential hydrophobic protein markers of breast cancer in Malaysian Chinese, Malay and Indian patients.

    Science.gov (United States)

    Liang, Seng; Singh, Manjit; Gam, Lay-Harn

    Breast cancer is a leading cause of worldwide mortality in females. In Malaysia, breast cancer is the most commonly diagnosed cancer in women. Of these, the Chinese had the most number of breast cancer cases, followed by the Indian and the Malay. The most common type of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was used to identify protein profile changes in cancerous tissues compared with the normal tissues, the tissues were collected from patients of three different ethnicities, i.e. Chinese, Malay and Indian. Ten differentially expressed hydrophobic proteins were identified. We had evaluated the potential of these proteins as biomarker for infiltrating ducal carcinoma (IDC) and the ethnic-specific expression of these proteins was also determined. The data showed that peroxiredoxin-2, heat shock protein 60, protein disulfide isomerase and calreticulin may serve as ethnic-related potential markers for either one or combination of Chinese, Malay and Indian cohorts as their expression levels were significantly high in the cancerous tissues compared to the normal tissues in the ethnic group tested.

  10. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy

    DEFF Research Database (Denmark)

    Stenvang, Jan; Kümler, Iben; Nygård, Sune Boris

    2013-01-01

    -standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I (Top1...

  11. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration.

    Science.gov (United States)

    Galazis, Nicolas; Olaleye, Olalekan; Haoula, Zeina; Layfield, Robert; Atiomo, William

    2012-12-01

    To review and identify possible biomarkers for ovarian cancer (OC) in women with polycystic ovary syndrome (PCOS). Systematic literature searches of MEDLINE, EMBASE, and Cochrane using the search terms "proteomics," "proteomic," and "ovarian cancer" or "ovarian carcinoma." Proteomic biomarkers for OC were then integrated with an updated previously published database of all proteomic biomarkers identified to date in patients with PCOS. Academic department of obstetrics and gynecology in the United Kingdom. A total of 180 women identified in the six studies. Tissue samples from women with OC vs. tissue samples from women without OC. Proteomic biomarkers, proteomic technique used, and methodologic quality score. A panel of six biomarkers was overexpressed both in women with OC and in women with PCOS. These biomarkers include calreticulin, fibrinogen-γ, superoxide dismutase, vimentin, malate dehydrogenase, and lamin B2. These biomarkers could help improve our understanding of the links between PCOS and OC and could potentially be used to identify subgroups of women with PCOS at increased risk of OC. More studies are required to further evaluate the role these biomarkers play in women with PCOS and OC. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Bone remodeling and regulating biomarkers in women at the time of breast cancer diagnosis.

    Science.gov (United States)

    Yao, Song; Zhang, Yali; Tang, Li; Roh, Janise M; Laurent, Cecile A; Hong, Chi-Chen; Hahn, Theresa; Lo, Joan C; Ambrosone, Christine B; Kushi, Lawrence H; Kwan, Marilyn L

    2017-02-01

    The majority of breast cancer patients receive endocrine therapy, including aromatase inhibitors known to cause increased bone resorption. Bone-related biomarkers at the time of breast cancer diagnosis may predict future risk of osteoporosis and fracture after endocrine therapy. In a large population of 2,401 female breast cancer patients who later underwent endocrine therapy, we measured two bone remodeling biomarkers, TRAP5b and BAP, and two bone regulating biomarkers, RANKL and OPG, in serum samples collected at the time of breast cancer diagnosis. We analyzed these biomarkers and their ratios with patients' demographic, lifestyle, clinical tumor characteristics, as well as bone health history. The presence of bone metastases, prior bisphosphonate (BP) treatment, and blood collection after chemotherapy had a significant impact on biomarker levels. After excluding these cases and controlling for blood collection time, several factors, including age, race/ethnicity, body mass index, physical activity, alcohol consumption, smoking, and hormonal replacement therapy, were significantly associated with bone biomarkers, while vitamin D or calcium supplements and tumor characteristics were not. When prior BP users were included in, recent history of osteoporosis and fracture was also associated. Our findings support further investigation of these biomarkers with bone health outcomes after endocrine therapy initiation in women with breast cancer.

  13. Clinical investigation of TROP-2 as an independent biomarker and potential therapeutic target in colon cancer.

    Science.gov (United States)

    Zhao, Peng; Yu, Hai-Zheng; Cai, Jian-Hui

    2015-09-01

    Colon cancer is associated with a severe demographic and economic burden worldwide. The pathogenesis of colon cancer is highly complex and involves sequential genetic and epigenetic mechanisms. Despite extensive investigation, the pathogenesis of colon cancer remains to be elucidated. As the third most common type of cancer worldwide, the treatment options for colon cancer are currently limited. Human trophoblast cell‑surface marker (TROP‑2), is a cell‑surface transmembrane glycoprotein overexpressed by several types of epithelial carcinoma. In addition, TROP‑2 has been demonstrated to be associated with tumorigenesis and invasiveness in solid types of tumor. The aim of the present study was to investigate the protein expression of TROP‑2 in colon cancer tissues, and further explore the association between the expression of TROP‑2 and clinicopathological features of patients with colon cancer. The expression and localization of the TROP‑2 protein was examined using western blot analysis and immunofluorescence staining. Finally, the expression of TROP‑2 expression was correlated to conventional clinicopathological features of colon cancer using a χ2 test. The results revealed that TROP‑2 protein was expressed at high levels in the colon cancer tissues, which was associated with the development and pathological process of colon cancer. Therefore, TROP‑2 may be used as a biomarker to determine the clinical prognosis, and as a potential therapeutic target in colon cancer.

  14. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma.

    Science.gov (United States)

    Devillers, Marion; Ahmad, Lama; Korri-Youssoufi, Hafsa; Salmon, Laurent

    2017-10-15

    Autocrine motility factor (AMF) is a tumor-secreted cytokine that stimulates tumor cell motility in vitro and metastasis in vivo. AMF could be detected in serum or urine of cancer patients with worse prognosis. Reported as a cancer biomarker, AMF secretion into body fluids might be closely related to metastases formation. In this study, a sensitive and specific carbohydrate-based electrochemical biosensor was designed for the detection and quantification of a protein model of AMF, namely phosphoglucose isomerase from rabbit muscle (RmPGI). Indeed, RmPGI displays high homology with AMF and has been shown to have AMF activity. The biosensor was constructed by covalent binding of the enzyme substrate d-fructose 6-phosphate (F6P). Immobilization was achieved on a gold surface electrode following a bottom-up approach through an aminated surface obtained by electrochemical patterning of ethylene diamine and terminal amine polyethylene glycol chain to prevent non-specific interactions. Carbohydrate-protein interactions were quantified in a range of 10 fM to 100nM. Complex formation was analyzed through monitoring of the redox couple Fe 2+ /Fe 3+ by electrochemical impedance spectroscopy and square wave voltammetry. The F6P-biosensor demonstrates a detection limit of 6.6 fM and high selectivity when compared to other non-specific glycolytic proteins such as d-glucose-6-phosphate dehydrogenase. Detection of protein in spiked plasma was demonstrated and accuracy of 95% is obtained compared to result obtained in PBS (phosphate buffered saline). F6P-biosensor is a very promising proof of concept required for the design of a carbohydrate-based electrochemical biosensor using the enzyme substrate as bioreceptor. Such biosensor could be generalized to detect other protein biomarkers of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Metabolomics in cancer biomarker discovery: current trends and future perspectives.

    Science.gov (United States)

    Armitage, Emily G; Barbas, Coral

    2014-01-01

    Cancer is one of the most devastating human diseases that causes a vast number of mortalities worldwide each year. Cancer research is one of the largest fields in the life sciences and despite many astounding breakthroughs and contributions over the past few decades, there is still a considerable amount to unveil on the function of cancer. It is well known that cancer metabolism differs from that of normal tissue and an important hypothesis published in the 1950s by Otto Warburg proposed that cancer cells rely on anaerobic metabolism as the source for energy, even under physiological oxygen levels. Following this, cancer central carbon metabolism has been researched extensively and beyond respiration, cancer has been found to involve a wide range of metabolic processes, and many more are still to be unveiled. Studying cancer through metabolomics could reveal new biomarkers for cancer that could be useful for its future prognosis, diagnosis and therapy. Metabolomics is becoming an increasingly popular tool in the life sciences since it is a relatively fast and accurate technique that can be applied with either a particular focus or in a global manner to reveal new knowledge about biological systems. There have been many examples of its application to reveal potential biomarkers in different cancers that have employed a range of different analytical platforms. In this review, approaches in metabolomics that have been employed in cancer biomarker discovery are discussed and some of the most noteworthy research in the field is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Magnetic resonance imaging and biomarkers of serum and urine wile diagnostics of kidney cancer

    Directory of Open Access Journals (Sweden)

    Nickolsky Yu.Ye.

    2016-03-01

    Full Text Available Purpose: improvement of differential diagnostics of benign and malignant renal tumors basing on complex estimation of the results of MRTand the level of such biomarkers as vascular endothelial growth factor, monocyte chemotactic protein-1 and matrix metalloproteinase-9 in blood serum and urine. Material and Methods. A total of 106 patients including the main group of 60 patients with renal cancer (RC, the group of comparison of 16 patients with benign renal tumors and the control group of 30 practically healthy persons were examined. ELISA was employed for detection of the biomarkers in blood serum and urine. The tumors were diagnosed by MRT Results. The increase of the level of the biomarkers in blood serum and urine was registered independently of the character of neoplastic process; more significant increase was observed in patients with RC, especially at the early stages of the disease. Some peculiarities of changing of the level of the biomarkers depending on the dimensions of malignant tumors were found. Conclusion. At the early stages of RC complex detection of the abovementioned biomarkers in blood serum and urine can serve an additional clinical diagnostic and prognostic criterion.

  17. Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Feng, Jiayu; He, Weifeng; Song, Yajun; Wang, Ying; Simpson, Richard J; Zhang, Xiaorong; Luo, Gaoxing; Wu, Jun; Huang, Chibing

    2014-01-01

    Non-muscle-invasive bladder cancer (NMIBC) is one of the most common malignant tumors in the urological system with a high risk of recurrence, and effective non-invasive biomarkers for NMIBC relapse are still needed. The human urinary proteome can reflect the status of the microenvironment of the urinary system and is an ideal source for clinical diagnosis of urinary system diseases. Our previous work used proteomics to identify 1643 high-confidence urinary proteins in the urine from a healthy population. Here, we used bioinformatics to construct a cancer-associated protein-protein interaction (PPI) network comprising 16 high-abundance urinary proteins based on the urinary proteome database. As a result, platelet-derived growth factor receptor beta (PDGFRB) was selected for further validation as a candidate biomarker for NMIBC diagnosis and prognosis. Although the levels of urinary PDGFRB showed no significant difference between patients pre- and post-surgery (n = 185, P>0.05), over 3 years of follow-up, urinary PDGFRB was shown to be significantly higher in relapsed patients (n = 68) than in relapse-free patients (n = 117, P<0.001). The levels of urinary PDGFRB were significantly correlated with the risk of 3-year recurrence of NMIBC, and these levels improved the accuracy of a NMIBC recurrence risk prediction model that included age, tumor size, and tumor number (area under the curve, 0.862; 95% CI, 0.809 to 0.914) compared to PDGFR alone. Therefore, we surmise that urinary PDGFRB could serve as a non-invasive biomarker for predicting NMIBC recurrence.

  18. Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.

    Science.gov (United States)

    Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W

    2016-08-18

    A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed

  19. RNA Biomarkers: Frontier of Precision Medicine for Cancer

    Directory of Open Access Journals (Sweden)

    Xiaochen Xi

    2017-02-01

    Full Text Available As an essential part of central dogma, RNA delivers genetic and regulatory information and reflects cellular states. Based on high‐throughput sequencing technologies, cumulating data show that various RNA molecules are able to serve as biomarkers for the diagnosis and prognosis of various diseases, for instance, cancer. In particular, detectable in various bio‐fluids, such as serum, saliva and urine, extracellular RNAs (exRNAs are emerging as non‐invasive biomarkers for earlier cancer diagnosis, tumor progression monitor, and prediction of therapy response. In this review, we summarize the latest studies on various types of RNA biomarkers, especially extracellular RNAs, in cancer diagnosis and prognosis, and illustrate several well‐known RNA biomarkers of clinical utility. In addition, we describe and discuss general procedures and issues in investigating exRNA biomarkers, and perspectives on utility of exRNAs in precision medicine.

  20. Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers.

    Science.gov (United States)

    Rantalainen, Mattias; Klevebring, Daniel; Lindberg, Johan; Ivansson, Emma; Rosin, Gustaf; Kis, Lorand; Celebioglu, Fuat; Fredriksson, Irma; Czene, Kamila; Frisell, Jan; Hartman, Johan; Bergh, Jonas; Grönberg, Henrik

    2016-11-30

    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkers.

  1. Interactomic approach for evaluating nucleophosmin-binding proteins as biomarkers for Ewing's sarcoma.

    Science.gov (United States)

    Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi

    2013-06-01

    Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Blood-based biomarkers of aggressive prostate cancer.

    Directory of Open Access Journals (Sweden)

    Men Long Liong

    Full Text Available PURPOSE: Prostate cancer is a bimodal disease with aggressive and indolent forms. Current prostate-specific-antigen testing and digital rectal examination screening provide ambiguous results leading to both under-and over-treatment. Accurate, consistent diagnosis is crucial to risk-stratify patients and facilitate clinical decision making as to treatment versus active surveillance. Diagnosis is currently achieved by needle biopsy, a painful procedure. Thus, there is a clinical need for a minimally-invasive test to determine prostate cancer aggressiveness. A blood sample to predict Gleason score, which is known to reflect aggressiveness of the cancer, could serve as such a test. MATERIALS AND METHODS: Blood mRNA was isolated from North American and Malaysian prostate cancer patients/controls. Microarray analysis was conducted utilizing the Affymetrix U133 plus 2·0 platform. Expression profiles from 255 patients/controls generated 85 candidate biomarkers. Following quantitative real-time PCR (qRT-PCR analysis, ten disease-associated biomarkers remained for paired statistical analysis and normalization. RESULTS: Microarray analysis was conducted to identify 85 genes differentially expressed between aggressive prostate cancer (Gleason score ≥8 and controls. Expression of these genes was qRT-PCR verified. Statistical analysis yielded a final seven-gene panel evaluated as six gene-ratio duplexes. This molecular signature predicted as aggressive (ie, Gleason score ≥8 55% of G6 samples, 49% of G7(3+4, 79% of G7(4+3 and 83% of G8-10, while rejecting 98% of controls. CONCLUSION: In this study, we have developed a novel, blood-based biomarker panel which can be used as the basis of a simple blood test to identify men with aggressive prostate cancer and thereby reduce the overdiagnosis and overtreatment that currently results from diagnosis using PSA alone. We discuss possible clinical uses of the panel to identify men more likely to benefit from

  3. Molecular Biomarkers in the Clinical Management of Prostate Cancer.

    Science.gov (United States)

    Udager, Aaron M; Tomlins, Scott A

    2018-01-08

    Prostate cancer, one of the most common noncutaneous malignancies in men, is a heterogeneous disease with variable clinical outcome. Although the majority of patients harbor indolent tumors that are essentially cured by local therapy, subsets of patients present with aggressive disease or recur/progress after primary treatment. With this in mind, modern clinical approaches to prostate cancer emphasize the need to reduce overdiagnosis and overtreatment via personalized medicine. Advances in our understanding of prostate cancer pathogenesis, coupled with recent technologic innovations, have facilitated the development and validation of numerous molecular biomarkers, representing a range of macromolecules assayed from a variety of patient sample types, to help guide the clinical management of prostate cancer, including early detection, diagnosis, prognostication, and targeted therapeutic selection. Herein, we review the current state of the art regarding prostate cancer molecular biomarkers, emphasizing those with demonstrated utility in clinical practice. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. A novel proteomic biomarker panel as a diagnostic tool for patients with ovarian cancer

    DEFF Research Database (Denmark)

    Høgdall, Claus; Fung, Eric T; Christensen, Ib J

    2011-01-01

    Previous reports have shown that the proteomic markers apolipoprotein A1, hepcidin, transferrin, inter-alpha trypsin IV internal fragment, transthyretin, connective-tissue activating protein 3 and beta-2 microglobulin may discriminate between a benign pelvic mass and ovarian cancer (OC). The aim...... was to determine if these serum proteomic biomarkers alone as well as in combination with age and serum CA125, could be helpful in triage of women with a pelvic mass....

  5. Potentials of plasma NGAL and MIC-1 as biomarker(s in the diagnosis of lethal pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Sukhwinder Kaur

    Full Text Available Pancreatic cancer (PC is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1 are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91 and compared it with those in healthy control (HC individuals (n = 24 and patients with chronic pancreatitis (CP, n = 23. The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (± standard deviation, SD plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2, 219.2 U/mL (7.8 and 4.5 ng/mL (4.1, respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81% but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively. For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively. CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2 pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml. Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029. Overall, MIC-1 in combination with CA19-9 improved the diagnostic

  6. Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection.

    Science.gov (United States)

    Parra-Cabrera, C; Samitier, J; Homs-Corbera, A

    2016-03-15

    We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10 ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A tool to facilitate clinical biomarker studies - a tissue dictionary based on the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Kampf Caroline

    2012-09-01

    Full Text Available Abstract The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.

  8. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer

    DEFF Research Database (Denmark)

    Allin, Kristine H; Nordestgaard, Børge G

    2011-01-01

    The aim of this review is to summarize present evidence of an association between circulating levels of C-reactive protein (CRP) and cancer risk, and to evaluate whether elevated circulating CRP levels cause cancer. Additionally, the review provides background information on the acute......-phase response, chronic inflammation, the molecular biology, function and measurement of CRP, circulating levels of CRP in health and disease, the principle of Mendelian randomization, the association between circulating levels of CRP and cancer prognosis, and cancer biomarkers. In the Copenhagen General...... increased risk of death from breast cancer compared to patients with CRP levels...

  9. Urinary metalloproteinases: noninvasive biomarkers for breast cancer risk assessment

    DEFF Research Database (Denmark)

    Pories, Susan E; Zurakowski, David; Roy, Roopali

    2008-01-01

    Matrix metalloproteinases (MMP) and a disintegrin and metalloprotease 12 (ADAM 12) can be detected in the urine of breast cancer patients and provide independent prediction of disease status. To evaluate the potential of urinary metalloproteinases as biomarkers to predict breast cancer risk statu...

  10. Cancer biomarker discovery: the entropic hallmark.

    Science.gov (United States)

    Berretta, Regina; Moscato, Pablo

    2010-08-18

    It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles

  11. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    Science.gov (United States)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  12. Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Barbieri, Christopher E.; He, Jintang; Gao, Yuqian; Shi, Tujin; Wu, Chaochao; Schepmoes, Athena A.; Fillmore, Thomas L.; Chae, Sung-Suk; Huang, Dennis; Mosquera, Juan Miguel; Qian, Wei-Jun; Smith, Richard D.; Srivastava, Sudhir; Kagan, Jacob; Camp, David G.; Rodland, Karin D.; Rubin, Mark A.; Liu, Tao

    2017-08-15

    Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region where multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification range from 0.1 to 1 fmol/μg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present it is unknown if this also affects the activity of the SPOP protein. In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, which holds great potential in biomarker development for prostate cancer.

  13. Protease Expression Levels in Prostate Cancer Tissue Can Explain Prostate Cancer-Associated Seminal Biomarkers-An Explorative Concept Study.

    Science.gov (United States)

    Neuhaus, Jochen; Schiffer, Eric; Mannello, Ferdinando; Horn, Lars-Christian; Ganzer, Roman; Stolzenburg, Jens-Uwe

    2017-05-04

    Previously, we described prostate cancer (PCa) detection (83% sensitivity; 67% specificity) in seminal plasma by CE-MS/MS. Moreover, advanced disease was distinguished from organ-confined tumors with 80% sensitivity and 82% specificity. The discovered biomarkers were naturally occurring fragments of larger seminal proteins, predominantly semenogelin 1 and 2, representing endpoints of the ejaculate liquefaction. Here we identified proteases putatively involved in PCa specific protein cleavage, and examined gene expression and tissue protein levels, jointly with cell localization in normal prostate (nP), benign prostate hyperplasia (BPH), seminal vesicles and PCa using qPCR, Western blotting and confocal laser scanning microscopy. We found differential gene expression of chymase (CMA1), matrix metalloproteinases (MMP3, MMP7), and upregulation of MMP14 and tissue inhibitors (TIMP1 and TIMP2) in BPH. In contrast tissue protein levels of MMP14 were downregulated in PCa. MMP3/TIMP1 and MMP7/TIMP1 ratios were decreased in BPH. In seminal vesicles, we found low-level expression of most proteases and, interestingly, we also detected TIMP1 and low levels of TIMP2. We conclude that MMP3 and MMP7 activity is different in PCa compared to BPH due to fine regulation by their inhibitor TIMP1. Our findings support the concept of seminal plasma biomarkers as non-invasive tool for PCa detection and risk stratification.

  14. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect

    Science.gov (United States)

    Teotia, Pradeep Kumar; Kaler, R. S.

    2018-01-01

    Grating based surface plasmon resonance waveguide biosensor have been reported for the detection of lung cancer biomarkers using Vroman effect. The proposed grating based multilayered biosensor is designed with high detection accuracy for Epidermal growth factor receptor (EGFR) and also analysed to show high detection accuracy with acceptable sensitivity for both cancer biomarkers. The introduction of periodic grating with multilayer metals generates a good resonance that make it possible for early detection of cancerous cells. Using finite difference time domain method, it is observed wavelength of biosensor get red-shifted on variations of the refractive index due to the presence of both the cancerous bio-markers. The reported detection accuracy and sensitivity of proposed biosensor is quite acceptable for both lung cancer biomarkers i.e. Carcinoembryonic antigen (CEA) and Epidermal growth factor receptor (EGFR) which further offer us label free early detection of lung cancer using these biomarkers.

  15. Attachment of a Genetically Engineered Antibody to a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers

    Science.gov (United States)

    Lerner, Mitchell; Dailey, Jennifer; Goldsmith, Brett; Robinson, Matthew; Johnson, A. T. Charlie

    2011-03-01

    We have developed a novel detection method for osteopontin (OPN) by attaching an engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube transistor. Osteopontin is a potential new biomarker for prostate cancer; its presence in humans is already associated with several forms of cancer, arthritis, osteoporosis and stress. Prostate cancer is the most commonly diagnosed cancer and second leading cause of cancer deaths among American men and as such represents a major public health issue. Detection of early-stage cancer often results in successful treatment, with long term disease-free survival in 60-90% of patients. Electronic transport measurements are used to detect the presence of OPN in solution at clinically relevant concentrations.

  16. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    International Nuclear Information System (INIS)

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan; Avery, Vicky M.

    2012-01-01

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and α6 integrin expression and an up-regulation of N-cadherin, Vimentin and β1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: ► We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. ► We investigated biomarker expression in 2D versus 3D culture techniques. ► Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. ► Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures

  17. REG4 Is Highly Expressed in Mucinous Ovarian Cancer: A Potential Novel Serum Biomarker.

    Directory of Open Access Journals (Sweden)

    Laura Lehtinen

    Full Text Available Preoperative diagnostics of ovarian neoplasms rely on ultrasound imaging and the serum biomarkers CA125 and HE4. However, these markers may be elevated in non-neoplastic conditions and may fail to identify most non-serous epithelial cancer subtypes. The objective of this study was to identify histotype-specific serum biomarkers for mucinous ovarian cancer. The candidate genes with mucinous histotype specific expression profile were identified from publicly available gene-expression databases and further in silico data mining was performed utilizing the MediSapiens database. Candidate biomarker validation was done using qRT-PCR, western blotting and immunohistochemical staining of tumor tissue microarrays. The expression level of the candidate gene in serum was compared to the serum CA125 and HE4 levels in a patient cohort of prospectively collected advanced ovarian cancer. Database searches identified REG4 as a potential biomarker with specificity for the mucinous ovarian cancer subtype. The specific expression within epithelial ovarian tumors was further confirmed by mRNA analysis. Immunohistochemical staining of ovarian tumor tissue arrays showed distinctive cytoplasmic expression pattern only in mucinous carcinomas and suggested differential expression between benign and malignant mucinous neoplasms. Finally, an ELISA based serum biomarker assay demonstrated increased expression only in patients with mucinous ovarian cancer. This study identifies REG4 as a potential serum biomarker for histotype-specific detection of mucinous ovarian cancer and suggests serum REG4 measurement as a non-invasive diagnostic tool for postoperative follow-up of patients with mucinous ovarian cancer.

  18. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers.

    Science.gov (United States)

    Skotland, Tore; Ekroos, Kim; Kauhanen, Dimple; Simolin, Helena; Seierstad, Therese; Berge, Viktor; Sandvig, Kirsten; Llorente, Alicia

    2017-01-01

    Exosomes have recently appeared as a novel source of noninvasive cancer biomarkers, since these nanovesicles contain molecules from cancer cells and can be detected in biofluids. We have here investigated the potential use of lipids in urinary exosomes as prostate cancer biomarkers. A high-throughput mass spectrometry quantitative lipidomic analysis was performed to reveal the lipid composition of urinary exosomes in prostate cancer patients and healthy controls. Control samples were first analysed to characterise the lipidome of urinary exosomes and test the reproducibility of the method. In total, 107 lipid species were quantified in urinary exosomes. Several differences, for example, in cholesterol and phosphatidylcholine, were found between urinary exosomes and exosomes derived from cell lines, thus showing the importance of in vivo studies for biomarker analysis. The 36 most abundant lipid species in urinary exosomes were then quantified in 15 prostate cancer patients and 13 healthy controls. Interestingly, the levels of nine lipids species were found to be significantly different when the two groups were compared. The highest significance was shown for phosphatidylserine (PS) 18:1/18:1 and lactosylceramide (d18:1/16:0), the latter also showed the highest patient-to-control ratio. Furthermore, combinations of these lipid species and PS 18:0-18:2 distinguished the two groups with 93% sensitivity and 100% specificity. Finally, in agreement with the reported dysregulation of sphingolipid metabolism in cancer cells, alteration in specific sphingolipid lipid classes were observed. This study shows for the first time the potential use of exosomal lipid species in urine as prostate cancer biomarkers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms.

    Directory of Open Access Journals (Sweden)

    Michael Phillips

    Full Text Available BACKGROUND: Previous studies have reported volatile organic compounds (VOCs in breath as biomarkers of breast cancer and abnormal mammograms, apparently resulting from increased oxidative stress and cytochrome p450 induction. We evaluated a six-minute point-of-care breath test for VOC biomarkers in women screened for breast cancer at centers in the USA and the Netherlands. METHODS: 244 women had a screening mammogram (93/37 normal/abnormal or a breast biopsy (cancer/no cancer 35/79. A mobile point-of-care system collected and concentrated breath and air VOCs for analysis with gas chromatography and surface acoustic wave detection. Chromatograms were segmented into a time series of alveolar gradients (breath minus room air. Segmental alveolar gradients were ranked as candidate biomarkers by C-statistic value (area under curve [AUC] of receiver operating characteristic [ROC] curve. Multivariate predictive algorithms were constructed employing significant biomarkers identified with multiple Monte Carlo simulations and cross validated with a leave-one-out (LOO procedure. RESULTS: Performance of breath biomarker algorithms was determined in three groups: breast cancer on biopsy versus normal screening mammograms (81.8% sensitivity, 70.0% specificity, accuracy 79% (73% on LOO [C-statistic value], negative predictive value 99.9%; normal versus abnormal screening mammograms (86.5% sensitivity, 66.7% specificity, accuracy 83%, 62% on LOO; and cancer versus no cancer on breast biopsy (75.8% sensitivity, 74.0% specificity, accuracy 78%, 67% on LOO. CONCLUSIONS: A pilot study of a six-minute point-of-care breath test for volatile biomarkers accurately identified women with breast cancer and with abnormal mammograms. Breath testing could potentially reduce the number of needless mammograms without loss of diagnostic sensitivity.

  20. Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0328 TITLE: Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk PRINCIPAL INVESTIGATOR: Dr...4. TITLE AND SUBTITLE Further Development of an Exhaled microRNA Biomarker of Lung Cancer Risk 5b. GRANT NUMBER W81XWH 16-1-0328 5c. PROGRAM...devise a non-invasive airway based exhaled microRNA metric for lung cancer risk, initial work to be tested in a case control study. We expanded the

  1. The Role of Epigenomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools.

    Science.gov (United States)

    Verma, Mukesh

    2015-01-01

    Epigenetics plays a key role in cancer development. Genetics alone cannot explain sporadic cancer and cancer development in individuals with no family history or a weak family history of cancer. Epigenetics provides a mechanism to explain the development of cancer in such situations. Alterations in epigenetic profiling may provide important insights into the etiology and natural history of cancer. Because several epigenetic changes occur before histopathological changes, they can serve as biomarkers for cancer diagnosis and risk assessment. Many cancers may remain asymptomatic until relatively late stages; in managing the disease, efforts should be focused on early detection, accurate prediction of disease progression, and frequent monitoring. This chapter describes epigenetic biomarkers as they are expressed during cancer development and their potential use in cancer diagnosis and prognosis. Based on epigenomic information, biomarkers have been identified that may serve as diagnostic tools; some such biomarkers also may be useful in identifying individuals who will respond to therapy and survive longer. The importance of analytical and clinical validation of biomarkers is discussed, along with challenges and opportunities in this field.

  2. Development of decision tree software and protein profiling using surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) in papillary thyroid cancer

    International Nuclear Information System (INIS)

    Yoon, Joon Kee; An, Young Sil; Park, Bok Nam; Yoon, Seok Nam; Lee, Jun

    2007-01-01

    The aim of this study was to develop a bioinformatics software and to test it in serum samples of papillary thyroid cancer using mass spectrometry (SELDI-TOF-MS). Development of 'Protein analysis' software performing decision tree analysis was done by customizing C4.5. Sixty-one serum samples from 27 papillary thyroid cancer, 17 autoimmune thyroiditis, 17 controls were applied to 2 types of protein chips, CM10 (weak cation exchange) and IMAC3 (metal binding - Cu). Mass spectrometry was performed to reveal the protein expression profiles. Decision trees were generated using 'Protein analysis' software, and automatically detected biomarker candidates. Validation analysis was performed for CM10 chip by random sampling. Decision tree software, which can perform training and validation from profiling data, was developed. For CM10 and IMAC3 chips, 23 of 113 and 8 of 41 protein peaks were significantly different among 3 groups (ρ < 0.05), respectively. Decision tree correctly classified 3 groups with an error rate of 3.3% for CM10 and 2.0% for IMAC3, and 4 and 7 biomarker candidates were detected respectively. In 2 group comparisons, all cancer samples were correctly discriminated from non-cancer samples (error rate = 0%) for CM10 by single node and for IMAC3 by multiple nodes. Validation results from 5 test sets revealed SELDI-TOF-MS and decision tree correctly differentiated cancers from non-cancers (54/55, 98%), while predictability was moderate in 3 group classification (36/55, 65%). Our in-house software was able to successfully build decision trees and detect biomarker candidates, therefore it could be useful for biomarker discovery and clinical follow up of papillary thyroid cancer

  3. Circulating microRNAs as specific biomarkers for breast cancer detection.

    Directory of Open Access Journals (Sweden)

    Enders K O Ng

    Full Text Available We previously showed microRNAs (miRNAs in plasma are potential biomarkers for colorectal cancer detection. Here, we aimed to develop specific blood-based miRNA assay for breast cancer detection.TaqMan-based miRNA profiling was performed in tumor, adjacent non-tumor, corresponding plasma from breast cancer patients, and plasma from matched healthy controls. All putative markers identified were verified in a training set of breast cancer patients. Selected markers were validated in a case-control cohort of 170 breast cancer patients, 100 controls, and 95 other types of cancers and then blindly validated in an independent set of 70 breast cancer patients and 50 healthy controls. Profiling results showed 8 miRNAs were concordantly up-regulated and 1 miRNA was concordantly down-regulated in both plasma and tumor tissue of breast cancer patients. Of the 8 up-regulated miRNAs, only 3 were significantly elevated (p<0.0001 before surgery and reduced after surgery in the training set. Results from the validation cohort showed that a combination of miR-145 and miR-451 was the best biomarker (p<0.0001 in discriminating breast cancer from healthy controls and all other types of cancers. In the blind validation, these plasma markers yielded Receiver Operating Characteristic (ROC curve area of 0.931. The positive predictive value was 88% and the negative predictive value was 92%. Altered levels of these miRNAs in plasma have been detected not only in advanced stages but also early stages of tumors. The positive predictive value for ductal carcinoma in situ (DCIS cases was 96%.These results suggested that these circulating miRNAs could be a potential specific biomarker for breast cancer screening.

  4. Molecular Characterization of H.pylori Strains and Biomarkers in Gastric Cancer

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0274 TITLE: Molecular Characterization of H.pylori Strains and Biomarkers in Gastric Cancer PRINCIPAL INVESTIGATOR...SUBTITLE Molecular Characterization of H.pylori Strains and Biomarkers in Gastric Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0274 5c...organoid technology via collaboration with Dr. Mary Estes (Baylor College of Medicine ) and her lab, via one-on-one visits, has guided Dr. Alex Peniche with

  5. CBD: a biomarker database for colorectal cancer.

    Science.gov (United States)

    Zhang, Xueli; Sun, Xiao-Feng; Cao, Yang; Ye, Benchen; Peng, Qiliang; Liu, Xingyun; Shen, Bairong; Zhang, Hong

    2018-01-01

    Colorectal cancer (CRC) biomarker database (CBD) was established based on 870 identified CRC biomarkers and their relevant information from 1115 original articles in PubMed published from 1986 to 2017. In this version of the CBD, CRC biomarker data were collected, sorted, displayed and analysed. The CBD with the credible contents as a powerful and time-saving tool provide more comprehensive and accurate information for further CRC biomarker research. The CBD was constructed under MySQL server. HTML, PHP and JavaScript languages have been used to implement the web interface. The Apache was selected as HTTP server. All of these web operations were implemented under the Windows system. The CBD could provide to users the multiple individual biomarker information and categorized into the biological category, source and application of biomarkers; the experiment methods, results, authors and publication resources; the research region, the average age of cohort, gender, race, the number of tumours, tumour location and stage. We only collect data from the articles with clear and credible results to prove the biomarkers are useful in the diagnosis, treatment or prognosis of CRC. The CBD can also provide a professional platform to researchers who are interested in CRC research to communicate, exchange their research ideas and further design high-quality research in CRC. They can submit their new findings to our database via the submission page and communicate with us in the CBD.Database URL: http://sysbio.suda.edu.cn/CBD/.

  6. Combined serum and EPS-urine proteomic analysis using iTRAQ technology for discovery of potential prostate cancer biomarkers.

    Science.gov (United States)

    Zhang, Mo; Chen, Lizhu; Yuan, Zhengwei; Yang, Zeyu; Li, Yue; Shan, Liping; Yin, Bo; Fei, Xiang; Miao, Jianing; Song, Yongsheng

    2016-11-01

    Prostate cancer (PCa) is one of the most common malignant tumors and a major cause of cancer-related death for men worldwide. The aim of our study was to identify potential non-invasive serum and expressed prostatic secretion (EPS)-urine biomarkers for accurate diagnosis of PCa. Here, we performed a combined isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to compare protein profiles using pooled serum and EPS-urine samples from 4 groups of patients: benign prostate hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN), localized PCa and metastatic PCa. The differentially expressed proteins were rigorously selected and further validated in a large and independent cohort using classical ELISA and Western blot assays. Finally, we established a multiplex biomarker panel consisting of 3 proteins (serum PF4V1, PSA, and urinary CRISP3) with an excellent diagnostic capacity to differentiate PCa from BPH [area under the receiver operating characteristic curve (AUC) of 0.941], which showed an evidently greater discriminatory ability than PSA alone (AUC, 0.757) (P<0.001). Importantly, even when PSA level was in the gray zone (4-10 ng/mL), a combination of PF4V1 and CRISP3 could achieve a relatively high diagnostic efficacy (AUC, 0.895). Furthermore, their combination also had the potential to distinguish PCa from HGPIN (AUC, 0.934). Our results demonstrated that the combined application of serum and EPS-urine biomarkers can improve the diagnosis of PCa and provide a new prospect for non-invasive PCa detection.

  7. YKL-40 protein expression is not a prognostic marker in patients with primary breast cancer

    DEFF Research Database (Denmark)

    Roslind, Anne; Knoop, Ann; Jensen, Maj-Britt

    2007-01-01

    in tumor tissue was assessed by immunohistochemistry in a cohort of 630 high-risk breast cancer patients with a median estimated potential follow-up time of 10 and 13 years for disease-free (DFS) and overall survival (OS), respectively. YKL-40 protein expression was found in malignant tumor cells......YKL-40 is a new biomarker in serum with a prognostic value in several localized and metastatic malignancies. The current knowledge regarding the biological functions of YKL-40 in cancer links YKL-40 to increased aggressiveness of the tumor. Utilizing tissue microarrays, YKL-40 protein expression...... and in inflammatory cells. High expression was associated with positive estrogen and progesterone receptor status and high tumor differentiation. Contrary to studies on serum YKL-40 as a prognostic biomarker, a high YKL-40 expression in tumor cells was not significantly associated with DSF and OS in univariate...

  8. A structured proteomic approach identifies 14-3-3Sigma as a novel and reliable protein biomarker in panel based differential diagnostics of liver tumors.

    Science.gov (United States)

    Reis, Henning; Pütter, Carolin; Megger, Dominik A; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-C; Bertram, Stefanie; Wohlschläger, Jeremias; Hagemann, Sascha; Eisenacher, Martin; Scherag, André; Schlaak, Jörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-06-01

    Hepatocellular carcinoma (HCC) is a major lethal cancer worldwide. Despite sophisticated diagnostic algorithms, the differential diagnosis of small liver nodules still is difficult. While imaging techniques have advanced, adjuvant protein-biomarkers as glypican3 (GPC3), glutamine-synthetase (GS) and heat-shock protein 70 (HSP70) have enhanced diagnostic accuracy. The aim was to further detect useful protein-biomarkers of HCC with a structured systematic approach using differential proteome techniques, bring the results to practical application and compare the diagnostic accuracy of the candidates with the established biomarkers. After label-free and gel-based proteomics (n=18 HCC/corresponding non-tumorous liver tissue (NTLT)) biomarker candidates were tested for diagnostic accuracy in immunohistochemical analyses (n=14 HCC/NTLT). Suitable candidates were further tested for consistency in comparison to known protein-biomarkers in HCC (n=78), hepatocellular adenoma (n=25; HCA), focal nodular hyperplasia (n=28; FNH) and cirrhosis (n=28). Of all protein-biomarkers, 14-3-3Sigma (14-3-3S) exhibited the most pronounced up-regulation (58.8×) in proteomics and superior diagnostic accuracy (73.0%) in the differentiation of HCC from non-tumorous hepatocytes also compared to established biomarkers as GPC3 (64.7%) and GS (45.4%). 14-3-3S was part of the best diagnostic three-biomarker panel (GPC3, HSP70, 14-3-3S) for the differentiation of HCC and HCA which is of most important significance. Exclusion of GS and inclusion of 14-3-3S in the panel (>1 marker positive) resulted in a profound increase in specificity (+44.0%) and accuracy (+11.0%) while sensitivity remained stable (96.0%). 14-3-3S is an interesting protein biomarker with the potential to further improve the accuracy of differential diagnostic process of hepatocellular tumors. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative proteomic analysis of human malignant ascitic fluids for the development of gastric cancer biomarkers.

    Science.gov (United States)

    Jin, Jonghwa; Son, Minsoo; Kim, Hyeyoon; Kim, Hyeyeon; Kong, Seong-Ho; Kim, Hark Kyun; Kim, Youngsoo; Han, Dohyun

    2018-04-11

    Malignant ascites is a sign of peritoneal seeding, which is one of the most frequent forms of incurable distant metastasis. Because the development of malignant ascites is associated with an extremely poor prognosis, determining whether it resulted from peritoneal seeding has critical clinical implications in diagnosis, choice of treatment, and active surveillance. At present, the molecular characterizations of malignant ascites are especially limited in case of gastric cancer. We aimed to identify malignant ascites-specific proteins that may contribute to the development of alternative methods for diagnosis and therapeutic monitoring and also increase our understanding of the pathophysiology of peritoneal seeding. First, comprehensive proteomic strategies were employed to construct an in-depth proteome of ascitic fluids. Label-free quantitative proteomic analysis was subsequently performed to identify candidates that can differentiate between malignant ascitic fluilds of gastric cancer patients from benign ascitic fluids. Finally, two candidate proteins were verified by ELISA in 84 samples with gastric cancer or liver cirrhosis. Comprehensive proteome profiling resulted in the identification of 5347 ascites proteins. Using label-free quantification, we identified 299 proteins that were differentially expressed in ascitic fluids between liver cirrhosis and stage IV gastric cancer patients. In addition, we identified 645 proteins that were significantly expressed in ascitic fluids between liver cirrhosis and gastric cancer patients with peritoneal seeding. Finally, Gastriscin and Periostin that can distinguish malignant ascites from benign ascites were verified by ELISA. This study identified and verified protein markers that can distinguish malignant ascites with or without peritoneal seeding from benign ascites. Consequently, our results could be a significant resource for gastric cancer research and biomarker discovery in the diagnosis of malignant ascites

  10. Aberrant O-GlcNAcylated proteins: New perspectives in breast and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Parunya eChaiyawat

    2014-11-01

    Full Text Available Increasing glucose consumption is thought to provide an evolutionary advantage to cancer cells. Alteration of glucose metabolism in cancer influences various important metabolic pathways including the hexosamine biosynthesis pathway (HBP, a relatively minor branch of glycolysis. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc, an end product of HBP, is a sugar substrate used for classical glycosylation and O-GlcNAcylation, a post-translational protein modification implicated in a wide range of effects on cellular functions. Emerging evidence reveals that certain cellular proteins are abnormally O-GlcNAc modified in many kinds of cancers, indicating O-GlcNAcylation is associated with malignancy. Since O-GlcNAc rapidly on and off modifies in a similar time scale as in phosphorylation and these modifications may occur on proteins at either on the same or adjacent sites, it suggests that both modifications can work to regulate the cellular signaling pathways. This review describes the metabolic shifts related to the HBP which are commonly found in most cancers. It also describes O-GlcNAc modified proteins identified in primary breast and colorectal cancer, as well as in the related cancer cell lines. Moreover, we also discuss the potential use of aberrant O-GlcNAcylated proteins as novel biomarkers of cancer. + P. Chaiyawat and P. Netsirisawan contributed equally to this study

  11. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum.

    Science.gov (United States)

    Terry, Mary Beth; McDonald, Jasmine A; Wu, Hui Chen; Eng, Sybil; Santella, Regina M

    2016-01-01

    Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.

  12. The Thoc1 Ribonucleoprotein as a Novel Biomarker for Prostate Cancer Treatment Assignment

    Science.gov (United States)

    2017-10-01

    for prostate cancer , the work may impact development of diagnostic /prognostic products based on pThoc1. The presence of the THO ribonucleoprotin...AWARD NUMBER: W81XWH-14-1-0475 TITLE: The Thoc1 Ribonucleoprotein as a Novel Biomarker for Prostate Cancer Treatment Assignment PRINCIPAL...15Sept 2016 - 14Sep2017 4. TITLE AND SUBTITLE The Thoc1 Ribonucleoprotein as a Novel Biomarker for Prostate 5a. CONTRACT NUMBER Cancer Treatment

  13. Multimodal lung cancer screening using the ITALUNG biomarker panel and low dose computed tomography. Results of the ITALUNG biomarker study.

    Science.gov (United States)

    Carozzi, Francesca Maria; Bisanzi, Simonetta; Carrozzi, Laura; Falaschi, Fabio; Lopes Pegna, Andrea; Mascalchi, Mario; Picozzi, Giulia; Peluso, Marco; Sani, Cristina; Greco, Luana; Ocello, Cristina; Paci, Eugenio

    2017-07-01

    Asymptomatic high-risk subjects, randomized in the intervention arm of the ITALUNG trial (1,406 screened for lung cancer), were enrolled for the ITALUNG biomarker study (n = 1,356), in which samples of blood and sputum were analyzed for plasma DNA quantification (cut off 5 ng/ml), loss of heterozygosity and microsatellite instability. The ITALUNG biomarker panel (IBP) was considered positive if at least one of the two biomarkers included in the panel was positive. Subjects with and without lung cancer diagnosis at the end of the screening cycle with LDCT (n = 517) were evaluated. Out of 18 baseline screen detected lung cancer cases, 17 were IBP positive (94%). Repeat screen-detected lung cancer cases were 18 and 12 of them positive at baseline IBP test (66%). Interval cancer cases (2-years) and biomarker tests after a suspect Non Calcific Nodule follow-up were investigated. The single test versus multimodal screening measures of accuracy were compared in a simulation within the screened ITALUNG intervention arm, considering screen-detected and interval cancer cases. Sensitivity was 90% at baseline screening. Specificity was 71 and 61% for LDCT and IBP as baseline single test, and improved at 89% with multimodal, combined screening. The positive predictive value was 4.3% for LDCT at baseline and 10.6% for multimodal screening. Multimodal screening could improve the screening efficiency at baseline and strategies for future implementation are discussed. If IBP was used as primary screening test, the LDCT burden might decrease of about 60%. © 2017 UICC.

  14. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    Directory of Open Access Journals (Sweden)

    Wang Li

    Full Text Available Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p0.05. In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  15. More Accurate Oral Cancer Screening with Fewer Salivary Biomarkers

    Directory of Open Access Journals (Sweden)

    James Michael Menke

    2017-10-01

    Full Text Available Signal detection and Bayesian inferential tools were applied to salivary biomarkers to improve screening accuracy and efficiency in detecting oral squamous cell carcinoma (OSCC. Potential cancer biomarkers are identified by significant differences in assay concentrations, receiver operating characteristic areas under the curve (AUCs, sensitivity, and specificity. However, the end goal is to report to individual patients their risk of having disease given positive or negative test results. Likelihood ratios (LRs and Bayes factors (BFs estimate evidential support and compile biomarker information to optimize screening accuracy. In total, 26 of 77 biomarkers were mentioned as having been tested at least twice in 137 studies and published in 16 summary papers through 2014. Studies represented 10 212 OSCC and 25 645 healthy patients. The measure of biomarker and panel information value was number of biomarkers needed to approximate 100% positive predictive value (PPV. As few as 5 biomarkers could achieve nearly 100% PPV for a disease prevalence of 0.2% when biomarkers were ordered from highest to lowest LR. When sequentially interpreting biomarker tests, high specificity was more important than test sensitivity in achieving rapid convergence toward a high PPV. Biomarkers ranked from highest to lowest LR were more informative and easier to interpret than AUC or Youden index. The proposed method should be applied to more recently published biomarker data to test its screening value.

  16. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies.

    Science.gov (United States)

    Al Shweiki, Mhd Rami; Oeckl, Patrick; Steinacker, Petra; Hengerer, Bastian; Schönfeldt-Lecuona, Carlos; Otto, Markus

    2017-06-01

    Major Depressive Disorder (MDD) is the leading cause of global disability, and an increasing body of literature suggests different cerebrospinal fluid (CSF) proteins as biomarkers of MDD. The aim of this review is to summarize the suggested CSF biomarkers and to analyze the MDD proteomics studies of CSF and brain tissues for promising biomarker candidates. Areas covered: The review includes the human studies found by a PubMed search using the following terms: 'depression cerebrospinal fluid biomarker', 'major depression biomarker CSF', 'depression CSF biomarker', 'proteomics depression', 'proteomics biomarkers in depression', 'proteomics CSF biomarker in depression', and 'major depressive disorder CSF'. The literature analysis highlights promising biomarker candidates and demonstrates conflicting results on others. It reveals 42 differentially regulated proteins in MDD that were identified in more than one proteomics study. It discusses the diagnostic potential of the biomarker candidates and their association with the suggested pathologies. Expert commentary: One ultimate goal of finding biomarkers for MDD is to improve the diagnostic accuracy to achieve better treatment outcomes; due to the heterogeneous nature of MDD, using bio-signatures could be a good strategy to differentiate MDD from other neuropsychiatric disorders. Notably, further validation studies of the suggested biomarkers are still needed.

  17. Development of decision tree software and protein profiling using surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) in papillary thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; An, Young Sil; Park, Bok Nam; Yoon, Seok Nam [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jun [Konkuk University, Seoul (Korea, Republic of)

    2007-08-15

    The aim of this study was to develop a bioinformatics software and to test it in serum samples of papillary thyroid cancer using mass spectrometry (SELDI-TOF-MS). Development of 'Protein analysis' software performing decision tree analysis was done by customizing C4.5. Sixty-one serum samples from 27 papillary thyroid cancer, 17 autoimmune thyroiditis, 17 controls were applied to 2 types of protein chips, CM10 (weak cation exchange) and IMAC3 (metal binding - Cu). Mass spectrometry was performed to reveal the protein expression profiles. Decision trees were generated using 'Protein analysis' software, and automatically detected biomarker candidates. Validation analysis was performed for CM10 chip by random sampling. Decision tree software, which can perform training and validation from profiling data, was developed. For CM10 and IMAC3 chips, 23 of 113 and 8 of 41 protein peaks were significantly different among 3 groups ({rho} < 0.05), respectively. Decision tree correctly classified 3 groups with an error rate of 3.3% for CM10 and 2.0% for IMAC3, and 4 and 7 biomarker candidates were detected respectively. In 2 group comparisons, all cancer samples were correctly discriminated from non-cancer samples (error rate = 0%) for CM10 by single node and for IMAC3 by multiple nodes. Validation results from 5 test sets revealed SELDI-TOF-MS and decision tree correctly differentiated cancers from non-cancers (54/55, 98%), while predictability was moderate in 3 group classification (36/55, 65%). Our in-house software was able to successfully build decision trees and detect biomarker candidates, therefore it could be useful for biomarker discovery and clinical follow up of papillary thyroid cancer.

  18. CIP2A protein expression in high-grade, high-stage bladder cancer

    International Nuclear Information System (INIS)

    Huang, Lisa P; Savoly, Diana; Sidi, Abraham A; Adelson, Martin E; Mordechai, Eli; Trama, Jason P

    2012-01-01

    Bladder cancer is one of the most common cancers in the United States. Numerous markers have been evaluated for suitability of bladder cancer detection and surveillance. However, few of them are acceptable as a routine tool. Therefore, there exists a continuing need for an assay that detects the presence of bladder cancer in humans. It would be advantageous to develop an assay with a protein that is associated with the development of bladder cancer. We have identified the cancerous inhibitor of PP2A (CIP2A) protein as a novel bladder cancer biomarker. In this study, Western blot analysis was used to assess the expression level of CIP2A protein in bladder cancer cell lines and bladder cancer patient tissues (n = 43). Our studies indicated CIP2A protein was abundantly expressed in bladder cancer cell lines but not in nontumor epithelial cell lines. Furthermore, CIP2A was specifically expressed in transitional cell carcinoma (TCC) of the bladder tumor tissues but not in adjacent nontumor bladder tissue. Our data showed that CIP2A protein detection in high-grade TCC tissues had a sensitivity of 65%, which is 3.4-fold higher than that seen in low-grade TCC tissues (19%). The level of CIP2A protein expression increased with the stage of disease (12%, 27%, 67%, and 100% for pTa, pT1, pT2, and pT3 tumor, respectively). In conclusion, our studies suggest that CIP2A protein is specifically expressed in human bladder tumors. CIP2A is preferentially expressed in high-grade and high-stage TCC tumors, which are high-risk and invasive tumors. Our studies reported here support the role of CIP2A in bladder cancer progression and its usefulness for the surveillance of recurrence or progression of human bladder cancer

  19. Receiver Operating Characteristic (ROC to Determine Cut-Off Points of Biomarkers in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heidi L. Weiss

    2004-01-01

    Full Text Available The role of biomarkers in disease prognosis continues to be an important investigation in many cancer studies. In order for these biomarkers to have practical application in clinical decision making regarding patient treatment and follow-up, it is common to dichotomize patients into those with low vs. high expression levels. In this study, receiver operating characteristic (ROC curves, area under the curve (AUC of the ROC, sensitivity, specificity, as well as likelihood ratios were calculated to determine levels of growth factor biomarkers that best differentiate lung cancer cases versus control subjects. Selected cut-off points for p185erbB-2 and EGFR membrane appear to have good discriminating power to differentiate control tissues versus uninvolved tissues from patients with lung cancer (AUC = 89% and 90%, respectively; while AUC increased to at least 90% for selected cut-off points for p185erbB-2 membrane, EGFR membrane, and FASE when comparing between control versus carcinoma tissues from lung cancer cases. Using data from control subjects compared to patients with lung cancer, we presented a simple and intuitive approach to determine dichotomized levels of biomarkers and validated the value of these biomarkers as surrogate endpoints for cancer outcome.

  20. Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies.

    Science.gov (United States)

    Murray, S; Briasoulis, E; Linardou, H; Bafaloukos, D; Papadimitriou, C

    2012-11-01

    Taxanes are established in the treatment of metastatic breast cancer (MBC) and early breast cancer (EBC) as potent chemotherapy agents. However, their therapeutic usefulness is limited by de-novo refractoriness or acquired resistance, which are common drawbacks to most anti-cancer cytotoxics. Considering that the taxanes will remain principle chemotherapeutic agents for the treatment of breast cancer, we reviewed known mechanisms of resistance in with an outlook of optimizing their clinical use. We searched the PubMed and MEDLINE databases for articles (from inception through to 9th January 2012; last search 10/01/2012) and journals known to publish information relevant to taxane chemotherapy. We imposed no language restrictions. Search terms included: cancer, breast cancer, response, resistance, taxane, paclitaxel, docetaxel, taxol. Due to the possibility of alternative mechanisms of resistance all combination chemotherapy treated data sets were removed from our overview. Over-expression of the MDR-1 gene product Pgp was extensively studied in vitro in association with taxane resistance, but data are conflicting. Similarly, the target components microtubules, which are thought to mediate refractoriness through alterations of the expression pattern of tubulins or microtubule associated proteins and the expression of alternative tubulin isoforms, failed to confirm such associations. Little consensus has been generated for reported associations between taxane-sensitivity and mutated p53, or taxane-resistance and overexpression of Bcl-2, Bcl-xL or NFkB. In contrary sufficient in vitro data support an association of spindle assembly checkpoint (SAC) defects with resistance. Clinical data have been limited and inconsistent, which relate to the variety of methods used, lack of standardization of cut-offs for quantitation, differences in clinical endpoints measured and in methods of tissue collection preparation and storage, and study/patient heterogeneity. The most

  1. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Johansson, Henrik J; Forshed, Jenny; Arslan, Sertaç; Metintas, Muzaffer; Dobra, Katalin; Lehtiö, Janne; Hjerpe, Anders

    2014-03-01

    Malignant mesothelioma is an aggressive asbestos-induced cancer, and affected patients have a median survival of approximately one year after diagnosis. It is often difficult to reach a conclusive diagnosis, and ancillary measurements of soluble biomarkers could increase diagnostic accuracy. Unfortunately, few soluble mesothelioma biomarkers are suitable for clinical application. Here we screened the effusion proteomes of mesothelioma and lung adenocarcinoma patients to identify novel soluble mesothelioma biomarkers. We performed quantitative mass-spectrometry-based proteomics using isobaric tags for quantification and used narrow-range immobilized pH gradient/high-resolution isoelectric focusing (pH 4-4.25) prior to analysis by means of nano liquid chromatography coupled to MS/MS. More than 1,300 proteins were identified in pleural effusions from patients with malignant mesothelioma (n = 6), lung adenocarcinoma (n = 6), or benign mesotheliosis (n = 7). Data are available via ProteomeXchange with identifier PXD000531. The identified proteins included a set of known mesothelioma markers and proteins that regulate hallmarks of cancer such as invasion, angiogenesis, and immune evasion, plus several new candidate proteins. Seven candidates (aldo-keto reductase 1B10, apolipoprotein C-I, galectin 1, myosin-VIIb, superoxide dismutase 2, tenascin C, and thrombospondin 1) were validated by enzyme-linked immunosorbent assays in a larger group of patients with mesothelioma (n = 37) or metastatic carcinomas (n = 25) and in effusions from patients with benign, reactive conditions (n = 16). Galectin 1 was identified as overexpressed in effusions from lung adenocarcinoma relative to mesothelioma and was validated as an excellent predictor for metastatic carcinomas against malignant mesothelioma. Galectin 1, aldo-keto reductase 1B10, and apolipoprotein C-I were all identified as potential prognostic biomarkers for malignant mesothelioma. This analysis of the effusion proteome

  2. New serum biomarkers for prostate cancer diagnosis

    Science.gov (United States)

    Chadha, Kailash C.; Miller, Austin; Nair, Bindukumar B.; Schwartz, Stanley A.; Trump, Donald L.; Underwood, Willie

    2014-01-01

    Background Prostate-specific antigen (PSA) is currently used as a biomarker for diagnosis and management of prostate cancer (CaP). However, PSA typically lacks the sensitivity and specificity desired of a diagnostic marker. Objective The goal of this study was to identify an additional biomarker or a panel of biomarkers that is more sensitive and specific than PSA in differentiating benign versus malignant prostate disease and/or localized CaP versus metastatic CaP. Methods Concurrent measurements of circulating interleukin-8 (IL-8), Tumor necrosis factor-α (TNF-α) and soluble tumor necrosis factor-α receptors 1 (sTNFR1) were obtained from four groups of men: (1) Controls (2) with elevated prostate-specific antigen with a negative prostate biopsy (elPSA_negBx) (3) with clinically localized CaP and (4) with castration resistant prostate cancer. Results TNF-α Area under the receiver operating characteristic curve (AUC = 0.93) and sTNFR1 (AUC = 0.97) were strong predictors of elPSA_negBx (vs. CaP). The best predictor of elPSA_negBx vs CaP was sTNFR1 and IL-8 combined (AUC = 0.997). The strongest single predictors of localized versus metastatic CaP were TNF-α (AUC = 0.992) and PSA (AUC = 0.963) levels. Conclusions The specificity and sensitivity of a PSA-based CaP diagnosis can be significantly enhanced by concurrent serum measurements of IL-8, TNF-α and sTNFR1. In view of the concerns about the ability of PSA to distinguish clinically relevant CaP from indolent disease, assessment of these biomarkers in the larger cohort is warranted. PMID:25593898

  3. Comparison of proteomic biomarker panels in urine and serum for ovarian cancer diagnosis

    DEFF Research Database (Denmark)

    Petri, Anette Lykke; Simonsen, Anja Hviid; Høgdall, Estrid

    2010-01-01

    The purposes of this study were to confirm previously found candidate epithelial ovarian cancer biomarkers in urine and to compare a paired serum biomarker panel and a urine biomarker panel from the same study cohort with regard to the receiver operating characteristic curve (ROC) area under the ...

  4. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection.

    Science.gov (United States)

    Cheng, Shih-Jung; Chang, Chi-Feng; Ko, Hui-Hsin; Lee, Jang-Jaer; Chen, Hsin-Ming; Wang, Huei-Jen; Lin, Hsiao-Shan; Chiang, Chun-Pin

    2018-02-01

    Effective biomarkers for oral cancer screening are important for early diagnosis and treatment of oral cancer. Oral epithelial cell samples collected by mouth rinse were obtained from 65 normal control subjects, 108 patients with oral potentially malignant disorders, and 94 patients with oral squamous cell carcinoma (OSCC). Methylation levels of zinc-finger protein 582 (ZNF582) and paired-box 1 (PAX1) genes were quantified by real-time methylation-specific polymerase chain reaction after bisulfite conversion. An abrupt increase in methylated ZNF582 (ZNF582 m ) and PAX1 (PAX1 m ) levels and positive rates from mild dysplasia to moderate/severe dysplasia, indicating that both ZNF582 m and PAX1 m are effective biomarkers for differentiating moderate dysplasia or worse (MODY+) oral lesions. When ZNF582 m /PAX1 m tests were used for identifying MODY+ oral lesions, the sensitivity, specificity, and odds ratio (OR) were 0.65/0.64, 0.75/0.82, and 5.6/8.0, respectively. Hypermethylated ZNF582 and PAX1 genes in oral epithelial cells collected by mouth rinse are effective biomarkers for the detection of oral dysplasia and oral cancer. © 2017 Wiley Periodicals, Inc.

  5. Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer

    Science.gov (United States)

    MASUDA, TAIKI; ISHIKAWA, TOSHIAKI; MOGUSHI, KAORU; OKAZAKI, SATOSHI; ISHIGURO, MEGUMI; IIDA, SATORU; MIZUSHIMA, HIROSHI; TANAKA, HIROSHI; UETAKE, HIROYUKI; SUGIHARA, KENICHI

    2016-01-01

    We aimed to identify a novel prognostic biomarker related to recurrence in stage II and III colorectal cancer (CRC) patients. Stage II and III CRC tissue mRNA expression was profiled using an Affymetrix Gene Chip, and copy number profiles of 125 patients were generated using an Affymetrix 250K Sty array. Genes showing both upregulated expression and copy number gains in cases involving recurrence were extracted as candidate biomarkers. The protein expression of the candidate gene was assessed using immunohistochemical staining of tissue from 161 patients. The relationship between protein expression and clinicopathological features was also examined. We identified 9 candidate genes related to recurrence of stage II and III CRC, whose mRNA expression was significantly higher in CRC than in normal tissue. Of these proteins, the S100 calcium-binding protein A2 (S100A2) has been observed in several human cancers. S100A2 protein overexpression in CRC cells was associated with significantly worse overall survival and relapse-free survival, indicating that S100A2 is an independent risk factor for stage II and III CRC recurrence. S100A2 overexpression in cancer cells could be a biomarker of poor prognosis in stage II and III CRC recurrence and a target for treatment of this disease. PMID:26783118

  6. A three-protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease

    International Nuclear Information System (INIS)

    Severi, Gianluca; FitzGerald, Liesel M; Muller, David C; Pedersen, John; Longano, Anthony; Southey, Melissa C; Hopper, John L; English, Dallas R; Giles, Graham G; Mills, John

    2014-01-01

    Only a minority of prostate cancers lead to death. Because no tissue biomarkers of aggressiveness other than Gleason score are available at diagnosis, many nonlethal cancers are treated aggressively. We evaluated whether a panel of biomarkers, associated with a range of disease outcomes in previous studies, could predict death from prostate cancer for men with localized disease. Using a case-only design, subjects were identified from three Australian epidemiological studies. Men who had died of their disease, “cases” (N = 83), were matched to “referents” (N = 232), those who had not died of prostate cancer, using incidence density sampling. Diagnostic tissue was retrieved to assess expression of AZGP1, MUC1, NKX3.1, p53, and PTEN by semiquantitative immunohistochemistry (IHC). Poisson regression was used to estimate mortality rate ratios (MRRs) adjusted for age, Gleason score, and stage and to estimate survival probabilities. Expression of MUC1 and p53 was associated with increased mortality (MRR 2.51, 95% CI 1.14–5.54, P = 0.02 and 3.08, 95% CI 1.41–6.95, P = 0.005, respectively), whereas AZGP1 expression was associated with decreased mortality (MRR 0.44, 95% CI 0.20–0.96, P = 0.04). Analyzing all markers under a combined model indicated that the three markers were independent predictors of prostate cancer death and survival. For men with localized disease at diagnosis, assessment of AZGP1, MUC1, and p53 expression in diagnostic tissue by IHC could potentially improve estimates of risk of dying from prostate cancer based only on Gleason score and clinical stage

  7. Reinventing clinical trials: a review of innovative biomarker trial designs in cancer therapies.

    Science.gov (United States)

    Lin, Ja-An; He, Pei

    2015-06-01

    Recently, new clinical trial designs involving biomarkers have been studied and proposed in cancer clinical research, in the hope of incorporating the rapid growing basic research into clinical practices. Journal articles related to various biomarkers and their role in cancer clinical trial, articles and books about statistical issues in trial design, and regulatory website, documents, and guidance for submission of targeted cancer therapies. The drug development process involves four phases. The confirmatory Phase III is essential in regulatory approval of a special treatment. Regulatory agency has restrictions on confirmatory trials 'using adaptive designs'. No rule of thumb to pick the most appropriate design for biomarker-related trials. Statistical issues to solve in new designs. Regulatory acceptance of the 'newly proposed trial designs'. Biomarker-related trial designs that can resolve the statistical issues and satisfy the regulatory requirement. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  9. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  10. LECTINPred: web Server that Uses Complex Networks of Protein Structure for Prediction of Lectins with Potential Use as Cancer Biomarkers or in Parasite Vaccine Design.

    Science.gov (United States)

    Munteanu, Cristian R; Pedreira, Nieves; Dorado, Julián; Pazos, Alejandro; Pérez-Montoto, Lázaro G; Ubeira, Florencio M; González-Díaz, Humberto

    2014-04-01

    Lectins (Ls) play an important role in many diseases such as different types of cancer, parasitic infections and other diseases. Interestingly, the Protein Data Bank (PDB) contains +3000 protein 3D structures with unknown function. Thus, we can in principle, discover new Ls mining non-annotated structures from PDB or other sources. However, there are no general models to predict new biologically relevant Ls based on 3D chemical structures. We used the MARCH-INSIDE software to calculate the Markov-Shannon 3D electrostatic entropy parameters for the complex networks of protein structure of 2200 different protein 3D structures, including 1200 Ls. We have performed a Linear Discriminant Analysis (LDA) using these parameters as inputs in order to seek a new Quantitative Structure-Activity Relationship (QSAR) model, which is able to discriminate 3D structure of Ls from other proteins. We implemented this predictor in the web server named LECTINPred, freely available at http://bio-aims.udc.es/LECTINPred.php. This web server showed the following goodness-of-fit statistics: Sensitivity=96.7 % (for Ls), Specificity=87.6 % (non-active proteins), and Accuracy=92.5 % (for all proteins), considering altogether both the training and external prediction series. In mode 2, users can carry out an automatic retrieval of protein structures from PDB. We illustrated the use of this server, in operation mode 1, performing a data mining of PDB. We predicted Ls scores for +2000 proteins with unknown function and selected the top-scored ones as possible lectins. In operation mode 2, LECTINPred can also upload 3D structural models generated with structure-prediction tools like LOMETS or PHYRE2. The new Ls are expected to be of relevance as cancer biomarkers or useful in parasite vaccine design. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein.

    Science.gov (United States)

    Chen, Jing; He, Qing-hua; Xu, Yang; Fu, Jin-heng; Li, Yan-ping; Tu, Zhui; Wang, Dan; Shu, Mei; Qiu, Yu-lou; Yang, Hong-wei; Liu, Yuan-yuan

    2016-01-15

    Immunoassay for cancer biomarkers plays an important role in cancer prevention and early diagnosis. To the development of immunoassay, the quality and stability of applied antibody is one of the key points to obtain reliability and high sensitivity for immunoassay. The main purpose of this study was to develop a novel immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein (AFP) based on nanobody against AFP. Two nanobodies which bind to AFP were selected from a phage display nanobody library by biopanning strategy. The prepared nanobodies are clonable, thermally stable and applied in both sandwich enzyme linked immunoassay (ELISA) and immuno-PCR assay for ultrasensitive detection of AFP. The limit detection of sandwich ELISA setup with optimized nanobodies was 0.48ng mL(-1), and the half of saturation concentration (SC50) value was 6.68±0.56ng mL(-1). These nanobodies were also used to develop an immuno-PCR assay for ultrasensitive detection of AFP, its limit detection values was 0.005ng mL(-1), and the linear range was 0.01-10,000ng mL(-1). These established immunoassays based on nanobodies were highly specific to AFP and with negligible cross reactivity with other tested caner biomarkers. Furthermore, this novel concept of nanobodies mediated immunoassay may provide potential applications in a general method for the ultrasensitive detection of various cancer biomarkers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. S100A14 is a novel independent prognostic biomarker in the triple-negative breast cancer subtype

    DEFF Research Database (Denmark)

    Ehmsen, Sidse; Hansen, Lea Tykgaard; Bak, Martin

    2015-01-01

    Triple-negative breast cancer (TNBC) represents a heterogeneous subgroup with generally poor outcome and lack of an effective targeted therapy. Prognostic or predictive biomarkers to guide treatment decisions for this group of patients are needed. To evaluate the potential of S100A14 protein...... as a novel biomarker in TNBC, the protein expression of S100A14 was correlated with clinical outcomes in a Pilot Sample set and a Danish cohort of predominantly TNBC patients. Kaplan-Meier analysis identified a prognostic impact of S100A14 on disease-free survival and overall survival, showing that tumors......-), had equally poor outcomes as those with tumor-positive axillary lymph nodes (N+), while TNBC/N- patients with low S100A14 expression had a significantly better disease free survival (p = 0.013). Multivariate analysis revealed that S100A14 is an independent prognostic factor for TNBC patients (p = 0...

  13. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.

    Science.gov (United States)

    Zhang, Fan; Kaufman, Howard L; Deng, Youping; Drabier, Renee

    2013-01-01

    Breast cancer is worldwide the second most common type of cancer after lung cancer. Traditional mammography and Tissue Microarray has been studied for early cancer detection and cancer prediction. However, there is a need for more reliable diagnostic tools for early detection of breast cancer. This can be a challenge due to a number of factors and logistics. First, obtaining tissue biopsies can be difficult. Second, mammography may not detect small tumors, and is often unsatisfactory for younger women who typically have dense breast tissue. Lastly, breast cancer is not a single homogeneous disease but consists of multiple disease states, each arising from a distinct molecular mechanism and having a distinct clinical progression path which makes the disease difficult to detect and predict in early stages. In the paper, we present a Support Vector Machine based on Recursive Feature Elimination and Cross Validation (SVM-RFE-CV) algorithm for early detection of breast cancer in peripheral blood and show how to use SVM-RFE-CV to model the classification and prediction problem of early detection of breast cancer in peripheral blood.The training set which consists of 32 health and 33 cancer samples and the testing set consisting of 31 health and 34 cancer samples were randomly separated from a dataset of peripheral blood of breast cancer that is downloaded from Gene Express Omnibus. First, we identified the 42 differentially expressed biomarkers between "normal" and "cancer". Then, with the SVM-RFE-CV we extracted 15 biomarkers that yield zero cross validation score. Lastly, we compared the classification and prediction performance of SVM-RFE-CV with that of SVM and SVM Recursive Feature Elimination (SVM-RFE). We found that 1) the SVM-RFE-CV is suitable for analyzing noisy high-throughput microarray data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance (Area Under

  14. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics.

    Science.gov (United States)

    Ji, Eoon Hye; Diep, Cynthia; Liu, Tong; Li, Hong; Merrill, Robert; Messadi, Diana; Hu, Shen

    2017-01-01

    Burning mouth syndrome (BMS) is a chronic pain disorder characterized by severe burning sensation in normal looking oral mucosa. Diagnosis of BMS remains to be a challenge to oral healthcare professionals because the method for definite diagnosis is still uncertain. In this study, a quantitative saliva proteomic analysis was performed in order to identify target proteins in BMS patients' saliva that may be used as biomarkers for simple, non-invasive detection of the disease. By using isobaric tags for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry to quantify 1130 saliva proteins between BMS patients and healthy control subjects, we found that 50 proteins were significantly changed in the BMS patients when compared to the healthy control subjects ( p ≤ 0.05, 39 up-regulated and 11 down-regulated). Four candidates, alpha-enolase, interleukin-18 (IL-18), kallikrein-13 (KLK13), and cathepsin G, were selected for further validation. Based on enzyme-linked immunosorbent assay measurements, three potential biomarkers, alpha-enolase, IL-18, and KLK13, were successfully validated. The fold changes for alpha-enolase, IL-18, and KLK13 were determined as 3.6, 2.9, and 2.2 (burning mouth syndrome vs. control), and corresponding receiver operating characteristic values were determined as 0.78, 0.83, and 0.68, respectively. Our findings indicate that testing of the identified protein biomarkers in saliva might be a valuable clinical tool for BMS detection. Further validation studies of the identified biomarkers or additional candidate biomarkers are needed to achieve a multi-marker prediction model for improved detection of BMS with high sensitivity and specificity.

  15. Podoplanin - an emerging cancer biomarker and therapeutic target.

    Science.gov (United States)

    Krishnan, Harini; Rayes, Julie; Miyashita, Tomoyuki; Ishii, Genichiro; Retzbach, Edward P; Sheehan, Stephanie A; Takemoto, Ai; Chang, Yao-Wen; Yoneda, Kazue; Asai, Jun; Jensen, Lasse; Chalise, Lushun; Natsume, Atsushi; Goldberg, Gary S

    2018-03-25

    Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts (CAFs), and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition (EMT), migration, invasion, metastasis, and inflammation. Antibodies, CAR-T cells, biologics, and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer including glioma, squamous cell carcinoma, mesothelioma, and melanoma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Plasma membrane proteomic analysis of human Gastric Cancer tissues: revealing flotillin 1 as a marker for Gastric Cancer

    International Nuclear Information System (INIS)

    Gao, Wen; Xu, Jing; Wang, Fuqiang; Zhang, Long; Peng, Rui; Shu, Yongqian; Wu, Jindao; Tang, Qiyun; Zhu, Yunxia

    2015-01-01

    Gastric cancer remains the second leading cause of cancer-related deaths in the world. Successful early gastric cancer detection is hampered by lack of highly sensitive and specific biomarkers. Plasma membrane proteins participate and/or have a central role in the metastatic process of cancer cells and are potentially useful for cancer therapy due to easy accessibility of the targets. In the present research, TMT method followed by mass spectrometry analysis was used to compare the relative expression levels of plasma membrane proteins between noncancer and gastric cancer tissues. Of a total data set that included 501 identified proteins, about 35% of the identified proteins were found to be plasma membrane and associated proteins. Among them, 82 proteins were at least 1.5-fold up- or down-regulated in gastric cancer compared with the adherent normal tissues. A number of markers (e.g. annexin A6, caveolin 1, epidermal growth factor receptor, integrin beta 4) were previously reported as biomarkers of GC. Additionally, several potential biomarkers participated in endocytosis pathway and integrin signaling pathways were firstly identified as differentially expressed proteins in GC samples. Our findings also supported the notion that flotillin 1 is a potential biomarker that could be exploited for molecular imaging-based detection of gastric cancer. Together, the results show that subcellular proteomics of tumor tissue is a feasible and promising avenue for exploring oncogenesis. The online version of this article (doi:10.1186/s12885-015-1343-5) contains supplementary material, which is available to authorized users

  17. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes.

    Science.gov (United States)

    Raj, Delfin A A; Fiume, Immacolata; Capasso, Giovambattista; Pocsfalvi, Gabriella

    2012-06-01

    Urinary exosomes have received considerable attention as a potential biomarker source for the diagnosis of renal diseases. Notwithstanding, their use in protein biomarker research is hampered by the lack of efficient methods for vesicle isolation, lysis, and protein quantification. Here we report an improved ultracentrifugation-based method that facilitates the solubilization and removal of major impurities associated with urinary exosomes. A double-cushion sucrose/D(2)O centrifugation step was used after a two-step differential centrifugation to separate exosomes from the heavier vesicles. After the removal of uromodulin, 378 and 79 unique proteins were identified, respectively, in low- and high-density fractions. Comparison of our data with two previously published data sets helped to define proteins commonly found in urinary exosomes. Lysis, protein extraction, and in-solution digestion of exosomes were then optimized for MudPIT application. More than a hundred exosomal proteins were quantified by four-plex iTRAQ analysis of single and pooled samples from two different age groups. For healthy men, six proteins (TSN1, PODXL, IDHC, PPAP, ACBP, and ANXA5) showed significant expression differences between exosome pools of those aged 25-50 and 50-70 years old. Thus, exosomes isolated by our method provide the basis for the development of robust quantitative methods for protein biomarker research.

  18. The Janus serum bank and biomarkers of cancer

    Directory of Open Access Journals (Sweden)

    Randi Gislefoss

    2009-10-01

    Full Text Available The Janus serum bank, established in 1973, contains sera stored at –25 degrees collected from 330,000 originally healthy individuals. The number of cancer cases have increased from zero in 1973 to more than 50,000 in 2005, including invasive and non-invasive cancers. Information on cases have been obtained by coupling the Janus file against the Norwegian Cancer Registry. The sera have been used in over 70 different cancers research projects, usually in case-control studies and in collaboration with national and international research groups. The type of biomarker analysed include antibodies against Chlamydia, CMV, Epstein Barr virus, HPV and Helicobacter pylori. Leptin, long chain fatty acids, androgens and other hormones, vitamins as well as environmental toxins such as organochlorines are other types of cancer biomarkers investigated. Mutation analyses (BRCA-1 etc have been possible using PCR and the trace amounts of DNA remaining in the sera.Janus serum bank ble etablert i 1973 og inneholder sera lagret ved –25 grader, innsamlet fra 330.000 opprinnelig friske personer. Antall krefttilfeller har steget fra null i 1973 til over 50.000 i år 2005, inkludert både invasiv og ikke-invasiv kreft. Informasjon om kasus er tilgjengelig ved å koble Janus-filene mot Kreftregisterets databaser. Serumprøvene er blitt benyttet i over 70 forskjellige kreftforskningsprosjekter, som oftest i kasus-kontroll studier og i samarbeide med en rekke nasjonale og internasjonale forskningsgrupper. Mange ulike biomarkører på kreft er blitt analysert, bl.a. antistoffer mot Chlamydia, CMV, Epstein Barr virus, HPV og Helicobacter pylori. Leptin, lange fettsyrer, androgener og andre hormoner, vitaminer såvel som miljøgifter av typen organiske klorforbindelser er eksempler på andre kreftbiomarkører som er undersøkt. Det har også vært mulig å gjøre mutasjonsanalyser (BRCA-1 etc ved å bruke PCR til å amplifisere opp den spormengden DNA som finnes i serum.

  19. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine.

    Science.gov (United States)

    Eckersall, P D; Bell, R

    2010-07-01

    Acute phase proteins (APPs) have been used as biomarkers of inflammation, infection and trauma for decades in human medicine but have been relatively under-utilised in the context of veterinary medicine. However, significant progress has been made in the detection, measurement and application of APPs as biomarkers in both companion and farm animal medicine over recent years. In the dog, C-reactive protein, haptoglobin and serum amyloid A have been identified as significant diagnostic 'markers' of steroid-responsive meningitis-arteritis, while in cats and cattle haptoglobin and alpha(1) acid glycoprotein and haptoglobin and serum amyloid A have proved valuable biomarkers of disease, respectively. In dairy cattle, haptoglobin and a mammary-associated serum amyloid A3 isoform, produced by the inflamed mammary gland during episodes of mastitis, have great potential as biomarkers of this economically important disease. Understanding the use of APP as biomarkers of inflammatory conditions of domestic animals has expanded significantly over recent years, and, with the insights provided by ongoing research, it is likely that these compounds will be increasingly used in the future in the diagnosis and prognosis of both companion and farm animal disease. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Circulating exosomal microRNAs as biomarkers of colon cancer.

    Directory of Open Access Journals (Sweden)

    Hiroko Ogata-Kawata

    Full Text Available PURPOSE: Exosomal microRNAs (miRNAs have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC. To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. EXPERIMENTAL DESIGN: Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. RESULTS: The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. CONCLUSION: Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and

  1. Predicting risk of cancer during HIV infection

    DEFF Research Database (Denmark)

    Borges, Álvaro H; Silverberg, Michael J; Wentworth, Deborah

    2013-01-01

    To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection.......To investigate the relationship between inflammatory [interleukin-6 (IL-6) and C-reactive protein (CRP)] and coagulation (D-dimer) biomarkers and cancer risk during HIV infection....

  2. Methylated genes as new cancer biomarkers

    DEFF Research Database (Denmark)

    Brunner, Nils; Duffy, M.J; Napieralski, R.

    2009-01-01

    Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested that meas......Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of cancer. In at least some situations, these aberrant alterations occur early in the formation of malignancy and appear to be tumour specific. Multiple reports have suggested...... that measurement of the methylation status of the promoter regions of specific genes can aid early detection of cancer, determine prognosis and predict therapy responses. Promising DNA methylation biomarkers include the use of methylated GSTP1 for aiding the early diagnosis of prostate cancer, methylated PITX2...... for predicting outcome in lymph node-negative breast cancer patients and methylated MGMT in predicting benefit from alkylating agents in patients with glioblastomas. However, prior to clinical utilisation, these findings require validation in prospective clinical studies. Furthermore, assays for measuring gene...

  3. Over-expressed Testis-specific Protein Y-encoded 1 as a novel biomarker for male hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available Hepatocellular carcinoma (HCC is a male-predominant cancer. Previous studies have focused on the sex-related disparity in HCC, but the underlying mechanism remains unclear. Here, we aimed to discover characteristic biomarkers for male HCC. Clinical samples were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. Seventy-three differential proteins containing 16 up-regulated and 57 down-regulated proteins were screened out in the male HCC group compared to that in female HCC group. Testis-specific Protein Y-encoded 1(TSPY1 is characteristically present in male HCC and was chosen for further investigation. The data from the functional effects of TSPY1 indicated that over-expression of TSPY1 could potentiate HCC cell proliferation, increase soft agar colonization, induce higher cell invasive ability and correlate with the metastatic potential of the HCC cell lines. In addition, TSPY1 and androgen receptor (AR were co-expressed simultaneously in HCC cell lines as well as in HCC tissue. TSPY1 up- or down-regulation could lead to a high or low level expression of AR. These results implied that TSPY1 may be included in the regulation of AR expression involved in male HCC and it may act as a novel biomarker for male HCC.

  4. Direct detection of cancer biomarkers in blood using a "place n play" modular polydimethylsiloxane pump.

    Science.gov (United States)

    Zhang, Honglian; Li, Gang; Liao, Lingying; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong

    2013-01-01

    Cancer biomarkers have significant potential as reliable tools for the early detection of the disease and for monitoring its recurrence. However, most current methods for biomarker detection have technical difficulties (such as sample preparation and specific detector requirements) which limit their application in point of care diagnostics. We developed an extremely simple, power-free microfluidic system for direct detection of cancer biomarkers in microliter volumes of whole blood. CEA and CYFRA21-1 were chosen as model cancer biomarkers. The system automatically extracted blood plasma from less than 3 μl of whole blood and performed a multiplex sample-to-answer assay (nano-ELISA (enzyme-linked immunosorbent assay) technique) without the use of external power or extra components. By taking advantage of the nano-ELISA technique, this microfluidic system detected CEA at a concentration of 50 pg/ml and CYFRA21-1 at a concentration of 60 pg/ml within 60 min. The combination of PnP polydimethylsiloxane (PDMS) pump and nano-ELISA technique in a single microchip system shows great promise for the detection of cancer biomarkers in a drop of blood.

  5. A review of molecular biomarkers for bladder cancer

    African Journals Online (AJOL)

    McRoy

    Volume 2 Issue 3 September – December 2013 ... methodology were identified but only half of them have shown consistence ... Conclusion: It is envisaged that a combination ... biomarkers for bladder cancer are adopted in the UK standard practice. ... words used for the literature review were ..... Multi centre validation.

  6. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics.

    Science.gov (United States)

    Girotra, Shantanu; Yeghiazaryan, Kristina; Golubnitschaja, Olga

    2016-09-01

    Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.

  7. Some aspects of cancer biomarkers and their clinical application in solid tumors – revisited

    Directory of Open Access Journals (Sweden)

    Isaac D

    2017-07-01

    Full Text Available Cancer biomarkers can be used for a variety of purposes related to screening, prediction, stratification, detection, diagnosis, prognosis, treatment design, and monitoring of a therapeutic response. One of the most important characteristics of a given biomarker includes ease of collection allowing for a non-invasive approach and frequent sampling. Such samples may be obtained from serum or plasma, sputum, bronchoalveolar lavage, saliva, nipple discharge, pleural, or peritoneal effusions. Validation of different biomarkers is considered a mandatory method for useful evaluation. In this review, we highlight the clinical applicability of some cancer biomarkers, as well as future approaches for their development and collection, which may help guide clinicians and researchers. The role of liquid biopsies will also be summarized. Further studies using liquid biopsies are needed to elucidate the significance of various sources of biomarkers suitable for clinical application.

  8. Strategies to design clinical studies to identify predictive biomarkers in cancer research.

    Science.gov (United States)

    Perez-Gracia, Jose Luis; Sanmamed, Miguel F; Bosch, Ana; Patiño-Garcia, Ana; Schalper, Kurt A; Segura, Victor; Bellmunt, Joaquim; Tabernero, Josep; Sweeney, Christopher J; Choueiri, Toni K; Martín, Miguel; Fusco, Juan Pablo; Rodriguez-Ruiz, Maria Esperanza; Calvo, Alfonso; Prior, Celia; Paz-Ares, Luis; Pio, Ruben; Gonzalez-Billalabeitia, Enrique; Gonzalez Hernandez, Alvaro; Páez, David; Piulats, Jose María; Gurpide, Alfonso; Andueza, Mapi; de Velasco, Guillermo; Pazo, Roberto; Grande, Enrique; Nicolas, Pilar; Abad-Santos, Francisco; Garcia-Donas, Jesus; Castellano, Daniel; Pajares, María J; Suarez, Cristina; Colomer, Ramon; Montuenga, Luis M; Melero, Ignacio

    2017-02-01

    The discovery of reliable biomarkers to predict efficacy and toxicity of anticancer drugs remains one of the key challenges in cancer research. Despite its relevance, no efficient study designs to identify promising candidate biomarkers have been established. This has led to the proliferation of a myriad of exploratory studies using dissimilar strategies, most of which fail to identify any promising targets and are seldom validated. The lack of a proper methodology also determines that many anti-cancer drugs are developed below their potential, due to failure to identify predictive biomarkers. While some drugs will be systematically administered to many patients who will not benefit from them, leading to unnecessary toxicities and costs, others will never reach registration due to our inability to identify the specific patient population in which they are active. Despite these drawbacks, a limited number of outstanding predictive biomarkers have been successfully identified and validated, and have changed the standard practice of oncology. In this manuscript, a multidisciplinary panel reviews how those key biomarkers were identified and, based on those experiences, proposes a methodological framework-the DESIGN guidelines-to standardize the clinical design of biomarker identification studies and to develop future research in this pivotal field. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.

    Science.gov (United States)

    Doungpan, Narumol; Engchuan, Worrawat; Chan, Jonathan H; Meechai, Asawin

    2016-12-05

    Gene expression has been used to identify disease gene biomarkers, but there are ongoing challenges. Single gene or gene-set biomarkers are inadequate to provide sufficient understanding of complex disease mechanisms and the relationship among those genes. Network-based methods have thus been considered for inferring the interaction within a group of genes to further study the disease mechanism. Recently, the Gene-Network-based Feature Set (GNFS), which is capable of handling case-control and multiclass expression for gene biomarker identification, has been proposed, partly taking into account of network topology. However, its performance relies on a greedy search for building subnetworks and thus requires further improvement. In this work, we establish a new approach named Gene Sub-Network-based Feature Selection (GSNFS) by implementing the GNFS framework with two proposed searching and scoring algorithms, namely gene-set-based (GS) search and parent-node-based (PN) search, to identify subnetworks. An additional dataset is used to validate the results. The two proposed searching algorithms of the GSNFS method for subnetwork expansion are concerned with the degree of connectivity and the scoring scheme for building subnetworks and their topology. For each iteration of expansion, the neighbour genes of a current subnetwork, whose expression data improved the overall subnetwork score, is recruited. While the GS search calculated the subnetwork score using an activity score of a current subnetwork and the gene expression values of its neighbours, the PN search uses the expression value of the corresponding parent of each neighbour gene. Four lung cancer expression datasets were used for subnetwork identification. In addition, using pathway data and protein-protein interaction as network data in order to consider the interaction among significant genes were discussed. Classification was performed to compare the performance of the identified gene subnetworks with three

  10. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  11. Diagnostic and Prognostic MicroRNA Biomarkers for Prostate Cancer in Cell-free Urine

    DEFF Research Database (Denmark)

    Fredsøe, Jacob Christian; Rasmussen, Anne Karin; Thomsen, Anni Rønfeldt

    2017-01-01

    Background: Widespread use of prostate-specific antigen (PSA) testing for prostate cancer (PC) detection has led to extensive overdiagnosis and overtreatment. Urine-based microRNA (miRNA) biomarkers could be useful in PC diagnosis and prognosis. Objective: To train and validate urine-based micro......RNA (miRNA) biomarkers that may assist in PC diagnosis and prognosis. Design, setting, and participants: We profiled the expression levels of 92 miRNAs via reverse transcriptase–poymerase chain reaction in cell-free urine samples from 29 patients with benign prostatic hyperplasia (BPH) and 215 patients...... could help in primary diagnosis of PC and guide treatment decisions. Further validation studies are warranted. Patient summary: Using two large patient cohorts, we searched for novel prostate cancer biomarkers in urine. We found two new sets of microRNA biomarkers in urine that could accurately predict...

  12. Can Biomarker Assessment on Circulating Tumor Cells Help Direct Therapy in Metastatic Breast Cancer?

    Directory of Open Access Journals (Sweden)

    Natalie Turner

    2014-03-01

    Full Text Available Circulating tumor cell (CTC count has prognostic significance in metastatic breast cancer, but the predictive utility of CTCs is uncertain. Molecular studies on CTCs have often been limited by a low number of CTCs isolated from a high background of leukocytes. Improved enrichment techniques are now allowing molecular characterisation of single CTCs, whereby molecular markers on single CTCs may provide a real-time assessment of tumor biomarker status from a blood test or “liquid biopsy”, potentially negating the need for a more invasive tissue biopsy. The predictive ability of CTC biomarker analysis has predominantly been assessed in relation to HER2, with variable and inconclusive results. Limited data exist for other biomarkers, such as the estrogen receptor. In addition to the need to define and validate the most accurate and reproducible method for CTC molecular analysis, the clinical relevance of biomarkers, including gain of HER2 on CTC after HER2 negative primary breast cancer, remains uncertain. This review summarises the currently available data relating to biomarker evaluation on CTCs and its role in directing management in metastatic breast cancer, discusses limitations, and outlines measures that may enable future development of this approach.

  13. Inflammasome Proteins As Biomarkers of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Robert W. Keane

    2018-03-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease that affects the brain and spinal cord. The inflammasome is a multiprotein complex that contributes to the innate immune response in animal models of MS as well as in patients with the disease. Important to the care of patients with MS is the need for biomarkers that can predict disease onset, disease exacerbation, as well as response to treatment. In this study, we analyzed serum samples from 32 patients with MS and 120 age-matched controls, and provide receiver operator characteristic (ROC curves with associated confidence intervals following analyses of serum samples from patients with MS, most of which had the relapsing-remitting form of the disease, and from healthy unaffected donors, and determine the sensitivity and specificity of inflammasome proteins as biomarkers of MS. We report that caspase-1 (1.662 ± 0.6024 difference between means, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC (407.5 ± 35.79, and interleukin (IL-18 (78.53 + 17.86 were elevated in the serum of MS patients when compared to controls. Interestingly, the levels of IL-1β (−0.5961 ± 0.265 were lower in the MS cohort. Importantly, the area under the curve (AUC for ASC and caspase-1 were 0.9448 and 0.848, respectively. Taken together, these data suggest that ASC and caspase-1 could be potential candidate biomarkers for MS onset.

  14. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Hackett James R

    2007-08-01

    Full Text Available Abstract Background Reverse transcription PCR (RT-PCR is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan® RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX™ assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis and the likelihood of tumor response to standard chemotherapy regimens (prediction. We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. Results RNA was extracted from formalin fixed paraffin embedded (FPE tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan® reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. Conclusion We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of

  15. Effects of mindfulness-based interventions on biomarkers in healthy and cancer populations: a systematic review.

    Science.gov (United States)

    Sanada, Kenji; Alda Díez, Marta; Salas Valero, Montserrat; Pérez-Yus, María C; Demarzo, Marcelo M P; Montero-Marín, Jesús; García-Toro, Mauro; García-Campayo, Javier

    2017-02-23

    Only a small number of articles have investigated the relationship between mindfulness-based interventions (MBIs) and biomarkers. The aim of this systematic review was to study the effect of MBIs on specific biomarkers (cytokines, neuropeptides and C-reactive protein (CRP)) in both healthy subjects and cancer patients. A search was conducted using PubMed, EMBASE, PsycINFO and the Cochrane library between 1980 and September 2016. A total of 13 studies with 1110 participants were included. In the healthy population, MBIs had no effect on cytokines, but were found to increase the levels of the neuropeptide insulin-like growth factor 1 (IGF-1). With respect to neuropeptide Y, despite the absence of post-intervention differences, MBIs may enhance recovery from stress. With regard to CRP, MBIs could be effective in lower Body Mass Index (BMI) individuals. In cancer patients, MBIs seem to have some effect on cytokine levels, although it was not possible to determine which specific cytokines were affected. One possibility is that MBIs might aid recovery of the immune system, increasing the production of interleukin (IL)-4 and decreasing interferon gamma (IFN-γ). MBIs may be involved in changes from a depressive/carcinogenic profile to a more normalized one. However, given the complexity and different contexts of the immune system, and the fact that this investigation is still in its preliminary stage, additional randomized controlled trials are needed to further establish the impact of MBI programmes on biomarkers in both clinical and non-clinical populations.

  16. Adiponectin as a routine clinical biomarker.

    Science.gov (United States)

    Kishida, Ken; Funahashi, Tohru; Shimomura, Iichiro

    2014-01-01

    Adiponectin is a protein synthesized and secreted predominantly by adipocytes into the peripheral blood. However, circulating adiponectin level is inversely related with body weight, especially visceral fat accumulation. The mechanism of this paradoxical relation remains obscure. Low circulating adiponectin concentrations (hypoadiponectinemia; osteoporosis, and cancer (endometrial cancer, postmenopausal breast cancer, leukemia, colon cancer, gastric cancer, prostate cancer). On the other hand, hyperadiponectinemia is associated with cardiac, renal and pulmonary diseases. This review article focuses on the significance of adiponectin as a clinical biomarker of obesity-related diseases. Routine measurement of adiponectin in patients with lifestyle-related diseases is highly recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Searching for new biomarkers in ovarian cancer patients

    DEFF Research Database (Denmark)

    Hentze, Julie L.; Høgdall, Claus; Kjær, Susanne K.

    2017-01-01

    , will be examined. Relevant microRNAs and DNA methylation patterns will be investigated using array technology. Patient exomes will be fully sequenced, and identified genetic variations will be validated with Next Generation Sequencing. In all cases, data will be correlated with clinical information on the patient...... of cancer and the discovery of new drugs. Moreover, biomarkers are a prerequisite for the development of precision medicine. This study will attack the ovarian cancer problem from several angles, thereby increasing the chance of successfully contributing to saving lives....

  18. Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools

    Science.gov (United States)

    Zhang, Cathy X. Y.; Brooks, Brian W.; Huang, Hongsheng; Pagotto, Franco

    2016-01-01

    ABSTRACT The Gram-positive bacterium Listeria monocytogenes causes a significant percentage of the fatalities among foodborne illnesses in humans. Surface proteins specifically expressed in a wide range of L. monocytogenes serotypes under selective enrichment culture conditions could serve as potential biomarkers for detection and isolation of this pathogen via antibody-based methods. Our study aimed to identify such biomarkers. Interrogation of the L. monocytogenes serotype 4b strain F2365 genome identified 130 putative or known surface proteins. The homologues of four surface proteins, LMOf2365_0578, LMOf2365_0581, LMOf2365_0639, and LMOf2365_2117, were assessed as biomarkers due to the presence of conserved regions among strains of L. monocytogenes which are variable among other Listeria species. Rabbit polyclonal antibodies against the four recombinant proteins revealed the expression of only LMOf2365_0639 on the surface of serotype 4b strain LI0521 cells despite PCR detection of mRNA transcripts for all four proteins in the organism. Three of 35 monoclonal antibodies (MAbs) to LMOf2365_0639, MAbs M3643, M3644, and M3651, specifically recognized 42 (91.3%) of 46 L. monocytogenes lineage I and II isolates grown in nonselective brain heart infusion medium. While M3644 and M3651 reacted with 14 to 15 (82.4 to 88.2%) of 17 L. monocytogenes lineage I and II isolates, M3643 reacted with 22 (91.7%) of 24 lineage I, II, and III isolates grown in selective enrichment media (UVM1, modified Fraser, Palcam, and UVM2 media). The three MAbs exhibited only weak reactivities (the optical densities at 414 nm were close to the cutoff value) to some other Listeria species grown in selective enrichment media. Collectively, the data indicate the potential of LMOf2365_0639 as a surface biomarker of L. monocytogenes, with the aid of specific MAbs, for pathogen detection, identification, and isolation in clinical, environmental, and food samples. IMPORTANCE L. monocytogenes is

  19. microRNA-371a-3p as informative biomarker for the follow-up of testicular germ cell cancer patients.

    Science.gov (United States)

    van Agthoven, Ton; Eijkenboom, Wil M H; Looijenga, Leendert H J

    2017-08-01

    α-fetoprotein (AFP) and human chorionic gonadotropin subunit beta (B-HCG) are informative serum biomarkers for the primary diagnosis and follow-up of testicular germ cell cancer (TGCC) patients. About 20% of TGCC patients with a non-seminoma (NS) and about 80% with a seminoma (SE) are, however, negative for these biomarkers. Embryonic stem cell microRNAs (miRs) may serve as promising alternative serum biomarkers. Here we investigated a retrospective series of serum samples from selected TGCC patients who developed a relapse in time to test the possible additional value of the serum-based ampTSmiR test compared to the conventional serum-based protein biomarkers for follow-up. We investigated 261 retrospective serum samples of six selected fully evaluated TGCC patients with a proven relapse using the ampTSmiR test for miR-371a-3p, miR-373-3p, and miR-367-3p and compared the results to those of the conventional protein biomarkers. At primary diagnosis, elevated serum B-HCG, AFP and LDH levels were found to be informative in 4/6, 3/6 and 3/6 patients, respectively. At primary diagnosis the levels of miR-371a-3p and miR-373-3p were elevated in 4/4, and miR-367-3p in 3/4 patients. For two cases no starting serum sample was available for retrospective miR analysis. Residual disease (overlooked by histopathological examination) was detected in one case by miR-371a-3p only. The miR-371a-3p level was increased in one patient two months before detection of an intracranial metastasis. B-HCG was informative in 3/4 and the ampTSmiR test in 4/4 patients with a relapse or residual disease. None of the biomarkers were informative for the detection of residual mature teratoma. The ampTSmiR test is more sensitive than the conventional TGCC protein biomarkers for the detection of residual disease and relapse, excluding mature teratoma.

  20. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    Science.gov (United States)

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Prostate cancer biomarker profiles in urinary sediments and exosomes

    NARCIS (Netherlands)

    Dijkstra, Siebren; Birker, Ingrid L.; Smit, Frank P.; Leyten, Gisele H. J. M.; de Reijke, Theo M.; van Oort, Inge M.; Mulders, Peter F. A.; Jannink, Sander A.; Schalken, Jack A.

    2014-01-01

    Urinary biomarker tests for diagnosing prostate cancer have gained considerable interest. Urine is a complex mixture that can be subfractionated. We evaluated 2 urinary fractions that contain nucleic acids, ie cell pellets and exosomes. The influence of digital rectal examination before urine

  2. Prostate cancer biomarker profiles in urinary sediments and exosomes

    NARCIS (Netherlands)

    Dijkstra, S.; Birker, I.L.; Smit, F.P.; Leyten, G.H.J.M.; Reijke, T.M. de; Oort, I.M. van; Mulders, P.F.A.; Jannink, S.A.; Schalken, J.A.

    2014-01-01

    PURPOSE: Urinary biomarker tests for diagnosing prostate cancer have gained considerable interest. Urine is a complex mixture that can be subfractionated. We evaluated 2 urinary fractions that contain nucleic acids, ie cell pellets and exosomes. The influence of digital rectal examination before

  3. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Gaudreau

    2016-01-01

    Full Text Available Prostate cancer (PC is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development.

  4. Breast Cancer Biomarkers Based on Nipple and Fine Needle Aspirates

    National Research Council Canada - National Science Library

    Russo, Irma H

    2005-01-01

    ... of the cytological normal breast epithelium of women at high risk for breast cancer. This signature will serve as an intermediate biomarker for evaluating the response of the breast to novel chemopreventive agents...

  5. Prognostic and predictive potential molecular biomarkers in colon cancer.

    Science.gov (United States)

    Nastase, A; Pâslaru, L; Niculescu, A M; Ionescu, M; Dumitraşcu, T; Herlea, V; Dima, S; Gheorghe, C; Lazar, V; Popescu, I

    2011-01-01

    An important objective in nowadays research is the discovery of new biomarkers that can detect colon tumours in early stages and indicate with accuracy the status of the disease. The aim of our study was to identify potential biomarkers for colon cancer onset and progression. We assessed gene expression profiles of a list of 10 candidate genes (MMP-1, MMP-3, MMP-7, DEFA 1, DEFA-5, DEFA-6, IL-8, CXCL-1, SPP-1, CTHRC-1) by quantitative real time PCR in triplets of colonic mucosa (normal, adenoma, tumoral tissue) collected from the same patient during surgery for a group of 20 patients. Additionally we performed immunohistochemistry for DEFA1-3 and SPP1. We remarked that DEFA5 and DEFA6 are key factors in adenoma formation (p<0.05). MMP7 is important in the transition from a benign to a malignant status (p <0.01) and further in metastasis being a prognostic indicator for tumor transformation and for the metastatic potential of cancer cells. IL8, irrespective of tumor stage, has a high mRNA level in adenocarcinoma (p< 0.05). The level of expression for SPP1 is correlated with tumor level. We suggest that high levels of DEFAS, DEFA6 (key elements in adenoma formation), MMP7 (marker of colon cancer onset and progression to metastasis), SPP1 (marker of progression) and IL8 could be used to diagnose an early stage colon cancer and to evaluate the prognostic of progression for colon tumors. Further, if DEFA5 and DEFA6 level of expression are low but MMP7, SPP1 and IL8 level are high we could point out that the transition from adenoma to adenocarcinoma had already occurred. Thus, DEFA5, DEFA6, MMP7, IL8 and SPP1 consist in a valuable panel of biomarkers, whose detection can be used in early detection and progressive disease and also in prognostic of colon cancer.

  6. Secreted proteins as a fundamental source for biomarker discovery

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Van Eyk, J.E.

    2012-01-01

    Roč. 12, 4-5 (2012), s. 722-735 ISSN 1615-9853 Institutional research plan: CEZ:AV0Z40310501 Keywords : conditioned media * secreted proteins * proteomics * biomarker discovery Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.132, year: 2012

  7. Identification, validation, and clinical implementation of tumor-associated biomarkers to improve therapy concepts, survival, and quality of life of cancer patients: tasks of the Receptor and Biomarker Group of the European Organization for Research and Treatment of Cancer.

    NARCIS (Netherlands)

    Schmitt, M.; Harbeck, N.; Daidone, M.G.; Brynner, N.; Duffy, M.J.; Foekens, J.A.; Sweep, C.G.J.

    2004-01-01

    Guiding principles are provided and discussed on how to inform the physician scientist and cancer researcher about quality control systems to enable a consistent assessment of the clinical value of tumor-associated biomarkers. Next to cancer research itself, the Receptor and Biomarker Group of the

  8. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.

    Science.gov (United States)

    Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S

    2014-10-01

    Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

  9. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways

    OpenAIRE

    Lezhnina, Ksenia; Kovalchuk, Olga; Zhavoronkov, Alexander A.; Korzinkin, Mikhail B.; Zabolotneva, Anastasia A.; Shegay, Peter V.; Sokov, Dmitry G.; Gaifullin, Nurshat M.; Rusakov, Igor G.; Aliper, Alexander M.; Roumiantsev, Sergey A.; Alekseev, Boris Y.; Borisov, Nikolay M.; Buzdin, Anton A.

    2014-01-01

    We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression ...

  10. Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kaile Zhang

    2016-07-01

    Full Text Available Currently there is little effective treatment available for castration resistant prostate cancer, which is responsible for the majority of prostate cancer related deaths. Emerging evidence suggested that cancer stem cells might play an important role in resistance to traditional cancer therapies, and the studies of cancer stem cells (including specific isolation and targeting on those cells might benefit the discovery of novel treatment of prostate cancer, especially castration resistant disease. In this review, we summarized major biomarkers for prostate cancer stem cells, as well as their functional mechanisms and potential application in clinical diagnosis and treatment of patients.

  11. Novel Stromal Biomarkers in Human Breast Cancer Tissues Provide Evidence for the More Malignant Phenotype of Estrogen Receptor-Negative Tumors

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2011-01-01

    Full Text Available Research efforts were focused on genetic alterations in epithelial cancer cells. Epithelial-stromal interactions play a crucial role in cancer initiation, progression, invasion, angiogenesis, and metastasis; however, the active role of stroma in human breast tumorigenesis in relation to estrogen receptor (ER status of epithelial cells has not been explored. Using proteomics and biochemical approaches, we identified two stromal proteins in ER-positive and ER-negative human breast cancer tissues that may affect malignant transformation in breast cancer. Two putative biomarkers, T-cell receptor alpha (TCR-α and zinc finger and BRCA1-interacting protein with a KRAB domain (ZBRK1, were detected in leukocytes of ER-positive and endothelial cells of ER-negative tissues, respectively. Our data suggest an immunosuppressive role of leukocytes in invasive breast tumors, propose a multifunctional nature of ZBRK1 in estrogen receptor regulation and angiogenesis, and demonstrate the aggressiveness of ER-negative human breast carcinomas. This research project may identify new stromal drug targets for the treatment of breast cancer patients.

  12. Analysis of secretome of breast cancer cell line with an optimized semi-shotgun method

    International Nuclear Information System (INIS)

    Tang Xiaorong; Yao Ling; Chen Keying; Hu Xiaofang; Xu Lisa; Fan Chunhai

    2009-01-01

    Secretome, the totality of secreted proteins, is viewed as a promising pool of candidate cancer biomarkers. Simple and reliable methods for identifying secreted proteins are highly desired. We used an optimized semi-shotgun liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) method to analyze the secretome of breast cancer cell line MDA-MB-231. A total of 464 proteins were identified. About 63% of the proteins were classified as secreted proteins, including many promising breast cancer biomarkers, which were thought to be correlated with tumorigenesis, tumor development and metastasis. These results suggest that the optimized method may be a powerful strategy for cell line secretome profiling, and can be used to find potential cancer biomarkers with great clinical significance. (authors)

  13. [Interlaboratory trials for quality assurance of breast cancer biomarkers in Germany].

    Science.gov (United States)

    Krusche, C A; von Wasielewski, R; Rüschoff, J; Fisseler-Eckhoff, A; Kreipe, H H

    2008-07-01

    In the age of personalized medicine, and in addition to typing and grading, breast cancer pathologists are now also involved in determining biomarkers such as steroid hormone receptors and Her-2, which are of the utmost importance in adjuvant therapy. In order to assure quality of these biomarker assays, external proficiency testing has been implemented in Germany. Since 2002 trials have been conducted annually, with up to 180 participating laboratories. More than 85% of all participants achieved good results in clearly negative and positive cases seen in daily practice. If at all, discordant results were observed in the rarer low steroid-hormone receptor expressing tumors and Her-2 borderline cases (2+). Regular participation in interlaboratory testing leads to significantly improved immunohistochemical results, particularly in these problematic cases. Tissue microarrays (TMA) with 20-24 different breast cancer samples including cell lines meant that a huge number of pathologists were challenged with identical samples, providing the prerequisite for comparability. Participation is recommended for pathology departments involved in the service for breast units. The organizational frame work of the trials is described here. The confidence of cooperating disciplines in breast cancer biomarkers assessed by pathologists will be fostered by external proficiency testing as presented here.

  14. Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine.

    Science.gov (United States)

    Koo, Kevin M; Wee, Eugene J H; Mainwaring, Paul N; Wang, Yuling; Trau, Matt

    2016-12-01

    Cancer is a heterogeneous disease which manifests as different molecular subtypes due to the complex nature of tumor initiation, progression, and metastasis. The concept of precision medicine aims to exploit this cancer heterogeneity by incorporating diagnostic technology to characterize each cancer patient's molecular subtype for tailored treatments. To characterize cancer molecular subtypes accurately, a suite of multiplexed bioassays have currently been developed to detect multiple oncogenic biomarkers. Despite the reliability of current multiplexed detection techniques, novel strategies are still needed to resolve limitations such as long assay time, complex protocols, and difficulty in interpreting broad overlapping spectral peaks of conventional fluorescence readouts. Herein a rapid (80 min) multiplexed platform strategy for subtyping prostate cancer tumor and urine samples based on their RNA biomarker profiles is presented. This is achieved by combining rapid multiplexed isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) of target RNA biomarkers with surface-enhanced Raman spectroscopy (SERS) nanotags for "one-pot" readout. This is the first translational application of a RT-RPA/SERS-based platform for multiplexed cancer biomarker detection to address a clinical need. With excellent sensitivity of 200 zmol (100 copies) and specificity, we believed that this platform methodology could be a useful tool for rapid multiplexed subtyping of cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Role of Biomarkers in Decreasing Risk of Cardiac Toxicity after Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Christine Henri

    2016-01-01

    Full Text Available With the improvement of cancer therapy, survival related to malignancy has improved, but the prevalence of long-term cardiotoxicity has also increased. Cancer therapies with known cardiac toxicity include anthracyclines, biologic agents (trastuzumab, and multikinase inhibitors (sunitinib. The most frequent presentation of cardiac toxicity is dilated cardiomyopathy associated with poorest prognosis. Monitoring of cardiac toxicity is commonly performed by assessment of left ventricular (LV ejection fraction, which requires a significant amount of myocardial damage to allow detection of cardiac toxicity. Accordingly, this creates the impetus to search for more sensitive and reproducible biomarkers of cardiac toxicity after cancer therapy. Different biomarkers have been proposed to that end, the most studied ones included troponin release resulting from cardiomyocyte damage and natriuretic peptides reflecting elevation in LV filling pressure and wall stress. Increase in the levels of troponin and natriuretic peptides have been correlated with cumulative dose of anthracycline and the degree of LV dysfunction. Troponin is recognized as a highly efficient predictor of early and chronic cardiac toxicity, but there remains some debate regarding the clinical usefulness of the measurement of natriuretic peptides because of divergent results. Preliminary data are available for other biomarkers targeting inflammation, endothelial dysfunction, myocardial ischemia, and neuregulin-1. The purpose of this article is to review the available data to determine the role of biomarkers in decreasing the risk of cardiac toxicity after cancer therapy.

  16. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  17. Stathmin protein level, a potential predictive marker for taxane treatment response in endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Henrica M J Werner

    Full Text Available Stathmin is a prognostic marker in many cancers, including endometrial cancer. Preclinical studies, predominantly in breast cancer, have suggested that stathmin may additionally be a predictive marker for response to paclitaxel. We first evaluated the response to paclitaxel in endometrial cancer cell lines before and after stathmin knock-down. Subsequently we investigated the clinical response to paclitaxel containing chemotherapy in metastatic endometrial cancer in relation to stathmin protein level in tumors. Stathmin level was also determined in metastatic lesions, analyzing changes in biomarker status on disease progression. Knock-down of stathmin improved sensitivity to paclitaxel in endometrial carcinoma cell lines with both naturally higher and lower sensitivity to paclitaxel. In clinical samples, high stathmin level was demonstrated to be associated with poor response to paclitaxel containing chemotherapy and to reduced disease specific survival only in patients treated with such combination. Stathmin level increased significantly from primary to metastatic lesions. This study suggests, supported by both preclinical and clinical data, that stathmin could be a predictive biomarker for response to paclitaxel treatment in endometrial cancer. Re-assessment of stathmin level in metastatic lesions prior to treatment start may be relevant. Also, validation in a randomized clinical trial will be important.

  18. The Landscape of Protein Biomarkers Proposed for Periodontal Disease: Markers with Functional Meaning

    Directory of Open Access Journals (Sweden)

    Nuno Rosa

    2014-01-01

    Full Text Available Periodontal disease (PD is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response.

  19. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  20. PODCAST: From Lost in Translation to Paradise Found: Enabling Protein Biomarker Method Transfer by Mass Spectrometry | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    Translation of novel biomarkers into clinical care for the evaluation of therapeutic safety and efficacy has been slow, partly attributable to the cost and complexity of immunoassay development.  The potential for liquid chromatography-tandem mass spectrometry (LC-MS/MS) to streamline the translation of novel protein biomarkers is profound.  Drs. Henry Rodriguez and Andrew Hoofnagle discuss what the future may be for clinical proteomics. This is an American Association for Clinical Chemistry (AACC) podcast.

  1. High-Throughput Analysis of Plasma Hybrid Markers for Early Detection of Cancers

    Directory of Open Access Journals (Sweden)

    Jung-hyun Rho

    2014-01-01

    Full Text Available Biomarkers for the early detection of cancer in the general population have to perform with high sensitivity and specificity in order to prevent the costs associated with over-diagnosis. There are only a few current tissue or blood markers that are recommended for generalized cancer screening. Despite the recognition that combinations of multiple biomarkers will likely improve their utility, biomarker panels are usually limited to a single class of molecules. Tissues and body fluids including plasma and serum contain not only proteins, DNA and microRNAs that are differentially expressed in cancers but further cancer specific information might be gleaned by comparing different classes of biomolecules. For example, the level of a certain microRNA might be related to the level of a particular protein in a cancer specific manner. Proteins might have cancer-specific post-translational modifications (e.g., phosphorylation or glycosylation or lead to the generation of autoantibodies. Most currently approved biomarkers are glycoproteins. Autoantibodies can be produced as a host’s early surveillance response to cancer-specific proteins in pre-symptomatic and pre-diagnostic stages of cancer. Thus, measurement of the level of a protein, the level of its glycosylation or phosphorylation and whether autoantibodies are produced to it can yield multi-dimensional information on each protein. We consider specific proteins that show consistent cancer-specific changes in two or three of these measurements to be “hybrid markers”. We hypothesize these markers will suffer less variation between different individuals since one component can act to “standardize” the other measurement. As a proof of principle, a 180 plasma sample set consisting of 120 cases (60 colon cancers and 60 adenomas and 60 controls were analyzed using our high-density antibody array for changes in their protein, IgG-complex and sialyl-Lewis A (SLeA modified proteins. At p < 0

  2. Research Progress in Oncology. Highlighting and Exploiting the Roles of Several Strategic Proteins in Understanding Cancer Biology

    Directory of Open Access Journals (Sweden)

    Odiba Arome S.

    2016-01-01

    Full Text Available Although almost all biological processes are mediated by a variety of proteins, it is important to bring to spotlight recent experimental and clinical research advances that had their focus on highlighting and taking advantage of the roles of several strategic proteins in order to gain more understanding of cancer biology. Proteins have a major stake in the initiation, progression, sustenance and completion of cellular processes, and have also demonstrated their vital roles in cancer processes. The characteristic functions of proteins and modified proteins have been utilized in the understanding and treatment of cancer. Recent insights in such roles and applications include linker histone H1.2 in the compaction of chromatin and gene silencing via the recognition of H3K27me3; c-Jun with Fra-2/c-Fos in the promotion of aggressive tumour phenotypes in tongue cancer; the use of sodium channelinhibiting agents targeting the transmembrane protein in breast, colon and prostate cancer; SET-mediated activities; protein interaction networks in glioma; Gpnmb significance as a biomarker; β-carbolines inhibition on Wnt/β-catenin signaling; p53 mutants co-opt chromatin pathways; Bone morphogenetic protein 4 as regulator of the behaviors of cancer cell; Brain-Expressed X-linked (BEX proteins in human cancers; targeting CDK4/6 including protein kinases to make a reversal of multidrug resistance in sarcoma. In-depth knowledge of Proteomics will go a long way in helping us uncover a lot more strategies that will help us in the long fight against cancer.

  3. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer

    NARCIS (Netherlands)

    D. Duijvesz (Diederick); K.E. Burnum-Johnson (Kristin); M.A. Gritsenko (Marina); A.M. Hoogland (Marije); M.S. Vredenbregt-van den Berg (Mirella); R. Willemsen (Rob); T.M. Luider (Theo); L. Paša-Tolić (Ljiljana); G.W. Jenster (Guido)

    2013-01-01

    textabstractBackground: Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes,

  4. Protein Kinase A in Cancer

    International Nuclear Information System (INIS)

    Caretta, Antonio; Mucignat-Caretta, Carla

    2011-01-01

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors

  5. Protein Kinase A in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Caretta, Antonio; Mucignat-Caretta, Carla, E-mail: carla.mucignat@unipd.it [Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova (Italy)

    2011-02-28

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  6. Investigating the biomarker potential of glycoproteins using comparative glycoprofiling - application to tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Thøgersen, Ida; Lademann, Ulrik Axel

    2008-01-01

    Cancer-induced alterations of protein glycosylations are well-known phenomena. Hence, the glycoprofile of certain glycoproteins can potentially be used as biomarkers for early diagnosis. However, there are a substantial number of candidates and the techniques for measuring their biomarker potential...

  7. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer.

    Science.gov (United States)

    Clarke, Charlotte H; Yip, Christine; Badgwell, Donna; Fung, Eric T; Coombes, Kevin R; Zhang, Zhen; Lu, Karen H; Bast, Robert C

    2011-09-01

    The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P=0.015, McNemar's test). Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. Copyright © 2011. Published by Elsevier Inc.

  8. Enhancement of MS Signal Processing For Improved Cancer Biomarker Discovery

    Science.gov (United States)

    Si, Qian

    Technological advances in proteomics have shown great potential in detecting cancer at the earliest stages. One way is to use the time of flight mass spectroscopy to identify biomarkers, or early disease indicators related to the cancer. Pattern analysis of time of flight mass spectra data from blood and tissue samples gives great hope for the identification of potential biomarkers among the complex mixture of biological and chemical samples for the early cancer detection. One of the keys issues is the pre-processing of raw mass spectra data. A lot of challenges need to be addressed: unknown noise character associated with the large volume of data, high variability in the mass spectroscopy measurements, and poorly understood signal background and so on. This dissertation focuses on developing statistical algorithms and creating data mining tools for computationally improved signal processing for mass spectrometry data. I have introduced an advanced accurate estimate of the noise model and a half-supervised method of mass spectrum data processing which requires little knowledge about the data.

  9. Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Hu, Rongkuan; Huffman, Kenneth E; Chu, Michael; Zhang, Yajie; Minna, John D; Yu, Yonghao

    2016-02-05

    Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.

  10. Biomarkers of intermediate endpoints in environmental and occupational health

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E; Hansen, Ase M

    2007-01-01

    The use of biomarkers in environmental and occupational health is increasing due to increasing demands on information about health risks from unfavourable exposures. Biomarkers provide information about individual loads. Biomarkers of intermediate endpoints benefit in comparison with biomarkers...... of exposure from the fact that they are closer to the adverse outcome in the pathway from exposure to health effects and may provide powerful information for intervention. Some biomarkers are specific, e.g., DNA and protein adducts, while others are unspecific like the cytogenetic biomarkers of chromosomal...... health effect from the result of the measurement has been performed for the cytogenetic biomarkers showing a predictive value of high levels of CA and increased risk of cancer. The use of CA in future studies is, however, limited by the laborious and sensitive procedure of the test and lack of trained...

  11. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring*

    Science.gov (United States)

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-01-01

    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  12. Association between protein C levels and mortality in patients with advanced prostate, lung and pancreatic cancer.

    Science.gov (United States)

    Wilts, I T; Hutten, B A; Meijers, J C M; Spek, C A; Büller, H R; Kamphuisen, P W

    2017-06-01

    Procoagulant factors promote cancer progression and metastasis. Protein C is involved in hemostasis, inflammation and signal transduction, and has a protective effect on the endothelial barrier. In mice, administration of activated protein C reduced experimental metastasis. We assessed the association between protein C and mortality in patients with three types of cancer. The study population consisted of patients with advanced prostate, non-small cell lung or pancreatic cancer, who participated in the INPACT trial (NCT00312013). The trial evaluated the addition of nadroparin to chemotherapy in patients with advanced malignancy. Patients were divided into tertiles based on protein C at baseline. The association between protein C levels and mortality was evaluated with Cox proportional hazard models. We analysed 477 patients (protein C tertiles: C level was 107% (IQR 92-129). In the lowest tertile, 75 patients per 100 patient-years died, as compared to 60 and 54 in the middle and high tertile, respectively. Lower levels of protein C were associated with increased mortality (in tertiles: HR for trend 1.18, 95%CI 1.02-1.36, adjusted for age, sex and nadroparin use; as a continuous variable: HR 1.004, 95%CI 1.00-1.008, p=0.07). Protein C seems inversely associated with mortality in patients with advanced prostate, lung and pancreatic cancer. Further research should validate protein C as a biomarker for mortality, and explore the effects of protein C on progression of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Alterations in inflammatory biomarkers and energy intake in cancer cachexia: a prospective study in patients with inoperable pancreatic cancer.

    Science.gov (United States)

    Bye, Asta; Wesseltoft-Rao, Nima; Iversen, Per Ole; Skjegstad, Grete; Holven, Kirsten B; Ulven, Stine; Hjermstad, Marianne J

    2016-06-01

    Chronic systemic inflammatory response is proposed as an underlying mechanism for development of cancer cachexia. We conducted a prospective study to examine changes in inflammatory biomarkers during the disease course and the relationship between inflammatory biomarkers and cachexia in patients with inoperable pancreatic cancer. Twenty patients, median (range) age 67.5 (35-79) years, 5 females, were followed for median 5.5 (1-12) months. Cachexia was diagnosed according to the 2011 consensus-based classification system (weight loss >5 % past six months, BMI 2 %, or sarcopenia) and the modified Glasgow Prognostic score (mGPS) that combines CRP and albumin levels. Inflammatory biomarkers were measured by enzyme immunoassays. The patients had increased levels of most inflammatory biomarkers, albeit not all statistically significant, both at study entry and close to death, indicating ongoing inflammation. According to the consensus-based classification system, eleven (55 %) patients were classified as cachectic upon inclusion. They did not differ from non-cachectic patients with regard to inflammatory biomarkers or energy intake. According to the mGPS, seven (35 %) were defined as cachectic and had a higher IL-6 (p cachexia.

  14. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism.

    Science.gov (United States)

    Mora, María Isabel; Molina, Manuela; Odriozola, Leticia; Elortza, Félix; Mato, José María; Sitek, Barbara; Zhang, Pumin; He, Fuchu; Latasa, María Uxue; Ávila, Matías Antonio; Corrales, Fernando José

    2017-12-01

    Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl 4 . This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).

  15. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    Science.gov (United States)

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  16. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies.

    Science.gov (United States)

    Aerts, Johannes M F G; Kallemeijn, Wouter W; Wegdam, Wouter; Joao Ferraz, Maria; van Breemen, Marielle J; Dekker, Nick; Kramer, Gertjan; Poorthuis, Ben J; Groener, Johanna E M; Cox-Brinkman, Josanne; Rombach, Saskia M; Hollak, Carla E M; Linthorst, Gabor E; Witte, Martin D; Gold, Henrik; van der Marel, Gijs A; Overkleeft, Herman S; Boot, Rolf G

    2011-06-01

    A biomarker is an analyte indicating the presence of a biological process linked to the clinical manifestations and outcome of a particular disease. In the case of lysosomal storage disorders (LSDs), primary and secondary accumulating metabolites or proteins specifically secreted by storage cells are good candidates for biomarkers. Clinical applications of biomarkers are found in improved diagnosis, monitoring disease progression, and assessing therapeutic correction. These are illustrated by reviewing the discovery and use of biomarkers for Gaucher disease and Fabry disease. In addition, recently developed chemical tools allowing specific visualization of enzymatically active lysosomal glucocerebrosidase are described. Such probes, coined inhibodies, offer entirely new possibilities for more sophisticated molecular diagnosis, enzyme replacement therapy monitoring, and fundamental research.

  17. Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data.

    Science.gov (United States)

    Li, Cheng-Wei; Chen, Bor-Sen

    2016-01-01

    Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene regulatory networks (GRNs), miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal side-effects.

  18. MicroRNAs in prostate cancer: Functional role as biomarkers.

    Science.gov (United States)

    Kanwal, Rajnee; Plaga, Alexis R; Liu, Xiaoqi; Shukla, Girish C; Gupta, Sanjay

    2017-10-28

    MicroRNAs (miRNAs) are small endogenous non-coding molecules that alters gene expression through post-transcriptional regulation of messenger RNA. Compelling evidence suggest the role of miRNA in cancer biology having potential as diagnostic, prognostic and predictive biomarkers. This review summarizes the current knowledge on miRNA deregulated in prostate cancer and their role as oncogene, tumor suppressor and metastasis regulators. The emerging information elucidating the biological function of miRNA is promising and may lead to their potential usefulness as diagnostic/prognostic markers and development as effective therapeutic tools for management of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Biomarkers of the Metabolic Syndrome and Breast Cancer Prognosis

    International Nuclear Information System (INIS)

    Zhu, Qiu-Li; Xu, Wang-Hong; Tao, Meng-Hua

    2010-01-01

    In spite of its public health importance, our understanding of the mechanisms of breast carcinogenesis and progress is still evolving. The metabolic syndrome (MS) is a constellation of biochemical abnormalities including visceral adiposity, hyperglycemia, hyperinsulinemia, dyslipidemia and high blood pressure. The components of the MS have all been related to late-stage disease and even to a poor prognosis of breast cancer through multiple interacting mechanisms. In this review, we aim to present a summary of recent advances in the understanding of the contribution of the MS to breast cancer with the emphasis on the role of biomarkers of the MS in the prognosis of breast cancer

  20. Biomarkers of the Metabolic Syndrome and Breast Cancer Prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qiu-Li; Xu, Wang-Hong [Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032 (China); Tao, Meng-Hua [Department of Social and Preventive Medicine, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 (United States)

    2010-04-28

    In spite of its public health importance, our understanding of the mechanisms of breast carcinogenesis and progress is still evolving. The metabolic syndrome (MS) is a constellation of biochemical abnormalities including visceral adiposity, hyperglycemia, hyperinsulinemia, dyslipidemia and high blood pressure. The components of the MS have all been related to late-stage disease and even to a poor prognosis of breast cancer through multiple interacting mechanisms. In this review, we aim to present a summary of recent advances in the understanding of the contribution of the MS to breast cancer with the emphasis on the role of biomarkers of the MS in the prognosis of breast cancer.

  1. Exosomes carrying immunoinhibitory proteins and their role in cancer.

    Science.gov (United States)

    Whiteside, T L

    2017-09-01

    Recent emergence of exosomes as information carriers between cells has introduced us to a new previously unknown biological communication system. Multi-directional cross-talk mediated by exosomes carrying proteins, lipids and nucleic acids between normal cells, cells harbouring a pathogen or cancer and immune cells has been instrumental in determining outcomes of physiological as well as pathological conditions. Exosomes play a key role in the broad spectrum of human diseases. In cancer, tumour-derived exosomes carry multiple immunoinhibitory signals, disable anti-tumour immune effector cells and promote tumour escape from immune control. Exosomes delivering negative signals to immune cells in cancer, viral infections, autoimmune or other diseases may interfere with therapy and influence outcome. Exosomes can activate tissue cells to produce inhibitory factors and thus can suppress the host immune responses indirectly. Exosomes also promise to be non-invasive disease biomarkers with a dual capability to provide insights into immune dysfunction as well as disease progression and outcome. © 2017 British Society for Immunology.

  2. Stage-specific analysis of plasma protein profiles in ovarian cancer: Difference in-gel electrophoresis analysis of pooled clinical samples

    Directory of Open Access Journals (Sweden)

    Mark J Bailey

    2013-01-01

    Full Text Available Introduction: Ovarian cancer is the leading cause of death from gynecological cancer. Non-specific symptoms early in disease and the lack of specific biomarkers hinder early diagnosis. Multi-marker blood screening tests have shown promise for improving identification of early stage disease; however, available tests lack sensitivity, and specificity. Materials and Methods: In this study, pooled deeply-depleted plasma from women with Stage 1, 2 or 3 ovarian cancer and healthy controls were used to compare the 2-dimensional gel electrophoresis (2-DE protein profiles and identify potential novel markers of ovarian cancer progression. Results/Discussion: Stage-specific variation in biomarker expression was observed. For example, apolipoprotein A1 expression is relatively low in control and Stage 1, but shows a substantial increase in Stage 2 and 3, thus, potential of utility for disease confirmation rather than early detection. A better marker for early stage disease was tropomyosin 4 (TPM4. The expression of TPM4 increased by 2-fold in Stage 2 before returning to "normal" levels in Stage 3 disease. Multiple isoforms were also identified for some proteins and in some cases, displayed stage-specific expression. An interesting example was fibrinogen alpha, for which 8 isoforms were identified. Four displayed a moderate increase at Stage 1 and a substantial increase for Stages 2 and 3 while the other 4 showed only moderate increases. Conclusion: Herein is provided an improved summary of blood protein profiles for women with ovarian cancer stratified by stage.

  3. Proteins Annexin A2 and PSA in Prostate Cancer Biopsies Do Not Predict Biochemical Failure.

    Science.gov (United States)

    Lamb, David S; Sondhauss, Sven; Dunne, Jonathan C; Woods, Lisa; Delahunt, Brett; Ferguson, Peter; Murray, Judith; Nacey, John N; Denham, James W; Jordan, T William

    2017-12-01

    We previously reported the use of mass spectrometry and western blotting to identify proteins from tumour regions of formalin-fixed paraffin-embedded biopsies from 16 men who presented with apparently localized prostate cancer, and found that annexin A2 (ANXA2) appeared to be a better predictor of subsequent biochemical failure than prostate-specific antigen (PSA). In this follow-up study, ANXA2 and PSA were measured using western blotting of proteins extracted from biopsies from 37 men from a subsequent prostate cancer trial. No significant differences in ANXA2 and PSA levels were observed between men with and without biochemical failure. The statistical effect sizes were small, d=0.116 for ANXA2, and 0.266 for PSA. ANXA2 and PSA proteins measured from biopsy tumour regions are unlikely to be good biomarkers for prediction of the clinical outcome of prostate cancer presenting with apparently localized disease. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Have biomarkers made their mark? A brief review of dental biomarkers

    Directory of Open Access Journals (Sweden)

    Mohammed Kaleem Sultan

    2014-01-01

    Full Text Available Biomarkers are substances that are released into the human body by tumor cells or by other cells in response to tumor. A high level of a tumor marker is considered a sign of certain cancer, which makes biomarker the subject of many testing methods for the diagnosis of cancers. In recent times, these biomarkers have been successfully isolated to diagnose dental-related tumors, benign and malignant conditions. This article is a brief review of literature for various biomarkers used in the field of dentistry.

  5. Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Kha Wai Hon

    2017-08-01

    Full Text Available The number of colorectal cancer (CRC cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC.

  6. Adiposity, mediating biomarkers and risk of colon cancer in the european prospective investigation into cancer and nutrition study

    NARCIS (Netherlands)

    Aleksandrova, K.; Drogan, D.; Boeing, H.; Jenab, M.; Bueno de Mesquita, H.B.; Duijnhoven, van F.J.B.

    2014-01-01

    Adiposity is a risk factor for colon cancer, but underlying mechanisms are not well understood. We evaluated the extent to which 11 biomarkers with inflammatory and metabolic actions mediate the association of adiposity measures, waist circumference (WC) and body mass index (BMI), with colon cancer

  7. Elevation in inflammatory serum biomarkers predicts response to trastuzumab-containing therapy.

    Directory of Open Access Journals (Sweden)

    Ahmed A Alkhateeb

    Full Text Available Approximately half of all HER2/neu-overexpressing breast cancer patients do not respond to trastuzumab-containing therapy. Therefore, there remains an urgent and unmet clinical need for the development of predictive biomarkers for trastuzumab response. Recently, several lines of evidence have demonstrated that the inflammatory tumor microenvironment is a major contributor to therapy resistance in breast cancer. In order to explore the predictive value of inflammation in breast cancer patients, we measured the inflammatory biomarkers serum ferritin and C-reactive protein (CRP in 66 patients immediately before undergoing trastuzumab-containing therapy and evaluated their progression-free and overall survival. The elevation in pre-treatment serum ferritin (>250 ng/ml or CRP (>7.25 mg/l was a significant predictor of reduced progression-free survival and shorter overall survival. When patients were stratified based on their serum ferritin and CRP levels, patients with elevation in both inflammatory biomarkers had a markedly poorer response to trastuzumab-containing therapy. Therefore, the elevation in inflammatory serum biomarkers may reflect a pathological state that decreases the clinical efficacy of this therapy. Anti-inflammatory drugs and life-style changes to decrease inflammation in cancer patients should be explored as possible strategies to sensitize patients to anti-cancer therapeutics.

  8. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    Science.gov (United States)

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  9. Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer.

    Science.gov (United States)

    Zhou, Dan-Dan; Liu, Xiu-Fen; Lu, Cheng-Wei; Pant, Om Prakash; Liu, Xiao-Dong

    2017-12-01

    The digestive system cancers are leading cause of cancer-related death worldwide, and have high risks of morbidity and mortality. More and more long non-coding RNAs (lncRNAs) have been studied to be abnormally expressed in cancers and play a key role in the process of digestive system tumour progression. Plasmacytoma variant translocation 1 (PVT1) seems fairly novel. Since 1984, PVT1 was identified to be an activator of MYC in mice. Its role in human tumour initiation and progression has long been a subject of interest. The expression of PVT1 is elevated in digestive system cancers and correlates with poor prognosis. In this review, we illustrate the various functions of PVT1 during the different stages in the complex process of digestive system tumours (including oesophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma and pancreatic cancer). The growing evidence shows the involvement of PVT1 in both proliferation and differentiation process in addition to its involvement in epithelial to mesenchymal transition (EMT). These findings lead us to conclude that PVT1 promotes proliferation, survival, invasion, metastasis and drug resistance in digestive system cancer cells. We will also discuss PVT1's potential in diagnosis and treatment target of digestive system cancer. There was a great probability PVT1 could be a novel biomarker in screening tumours, prognosis biomarkers and future targeted therapy to improve the survival rate in cancer patients. © 2017 John Wiley & Sons Ltd.

  10. Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery.

    Science.gov (United States)

    Quanico, Jusal; Franck, Julien; Wisztorski, Maxence; Salzet, Michel; Fournier, Isabelle

    2017-01-01

    Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a "molecular histology" technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.

  11. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer.

    Science.gov (United States)

    Chen, Jing; Dong, Shuang; Hu, Jiangfeng; Duan, Bensong; Yao, Jian; Zhang, Ruiyun; Zhou, Hongmei; Sheng, Haihui; Gao, Hengjun; Li, Shunlong; Zhang, Xianwen

    2015-01-01

    Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients.

  12. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    Science.gov (United States)

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  13. Amyloid-related biomarkers and axonal damage proteins in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Bech, Sara; Hjermind, Lena E; Salvesen, Lisette

    2012-01-01

    Clinical differentiation between parkinsonian syndromes (PS) remains a challenge despite well-established clinical diagnostic criteria. Specific diagnostic biomarkers have yet to be identified, though in recent years, studies have been published on the aid of certain brain related proteins (BRP) ...

  14. Searching for New Biomarkers and the Use of Multivariate Analysis in Gastric Cancer Diagnostics.

    Science.gov (United States)

    Kucera, Radek; Smid, David; Topolcan, Ondrej; Karlikova, Marie; Fiala, Ondrej; Slouka, David; Skalicky, Tomas; Treska, Vladislav; Kulda, Vlastimil; Simanek, Vaclav; Safanda, Martin; Pesta, Martin

    2016-04-01

    The first aim of this study was to search for new biomarkers to be used in gastric cancer diagnostics. The second aim was to verify the findings presented in literature on a sample of the local population and investigate the risk of gastric cancer in that population using a multivariant statistical analysis. We assessed a group of 36 patients with gastric cancer and 69 healthy individuals. We determined carcinoembryonic antigen, cancer antigen 19-9, cancer antigen 72-4, matrix metalloproteinases (-1, -2, -7, -8 and -9), osteoprotegerin, osteopontin, prothrombin induced by vitamin K absence-II, pepsinogen I, pepsinogen II, gastrin and Helicobacter pylori for each sample. The multivariate stepwise logistic regression identified the following biomarkers as the best gastric cancer predictors: CEA, CA72-4, pepsinogen I, Helicobacter pylori presence and MMP7. CEA and CA72-4 remain the best markers for gastric cancer diagnostics. We suggest a mathematical model for the assessment of risk of gastric cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Immunohistochemistry of colorectal cancer biomarker phosphorylation requires controlled tissue fixation.

    Directory of Open Access Journals (Sweden)

    Abbey P Theiss

    Full Text Available Phosphorylated signaling molecules are biomarkers of cancer pathophysiology and resistance to therapy, but because phosphoprotein analytes are often labile, poorly controlled clinical laboratory practices could prevent translation of research findings in this area from the bench to the bedside. We therefore compared multiple biomarker and phosphoprotein immunohistochemistry (IHC results in 23 clinical colorectal carcinoma samples after either a novel, rapid tissue fixation protocol or a standard tissue fixation protocol employed by clinical laboratories, and we also investigated the effect of a defined post-operative "cold" ischemia period on these IHC results. We found that a one-hour cold ischemia interval, allowed by ASCO/CAP guidelines for certain cancer biomarker assays, is highly deleterious to certain phosphoprotein analytes, specifically the phosphorylated epidermal growth factor receptor (pEGFR, but shorter ischemic intervals (less than 17 minutes facilitate preservation of phosphoproteins. Second, we found that a rapid 4-hour, two temperature, formalin fixation yielded superior staining in several cases with select markers (pEGFR, pBAD, pAKT compared to a standard overnight room temperature fixation protocol, despite taking less time. These findings indicate that the future research and clinical utilities of phosphoprotein IHC for assessing colorectal carcinoma pathophysiology absolutely depend upon attention to preanalytical factors and rigorously controlled tissue fixation protocols.

  16. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  17. MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer.

    Directory of Open Access Journals (Sweden)

    Koichiro Saito

    Full Text Available BACKGROUND: MicroRNA (miRNA is an emerging subclass of small non-coding RNAs that regulates gene expression and has a pivotal role for many physiological processes including cancer development. Recent reports revealed the role of miRNAs as ideal biomarkers and therapeutic targets due to their tissue- or disease-specific nature. Head and neck cancer (HNC is a major cause of cancer-related mortality and morbidity, and laryngeal cancer has the highest incidence in it. However, the molecular mechanisms involved in laryngeal cancer development remain to be known and highly sensitive biomarkers and novel promising therapy is necessary. METHODOLOGY/PRINCIPAL FINDINGS: To explore laryngeal cancer-specific miRNAs, RNA from 5 laryngeal surgical specimens including cancer and non-cancer tissues were hybridized to microarray carrying 723 human miRNAs. The resultant differentially expressed miRNAs were further tested by using quantitative real time PCR (qRT-PCR on 43 laryngeal tissue samples including cancers, noncancerous counterparts, benign diseases and precancerous dysplasias. Significant expressional differences between matched pairs were reproduced in miR-133b, miR-455-5p, and miR-196a, among which miR-196a being the most promising cancer biomarker as validated by qRT-PCR analyses on additional 84 tissue samples. Deep sequencing analysis revealed both quantitative and qualitative deviation of miR-196a isomiR expression in laryngeal cancer. In situ hybridization confirmed laryngeal cancer-specific expression of miR-196a in both cancer and cancer stroma cells. Finally, inhibition of miR-196a counteracted cancer cell proliferation in both laryngeal cancer-derived cells and mouse xenograft model. CONCLUSIONS/SIGNIFICANCE: Our study provided the possibilities that miR-196a might be very useful in diagnosing and treating laryngeal cancer.

  18. Exosomes in cancer theranostic: Diamonds in the rough.

    Science.gov (United States)

    Cordonnier, Marine; Chanteloup, Gaëtan; Isambert, Nicolas; Seigneuric, Renaud; Fumoleau, Pierre; Garrido, Carmen; Gobbo, Jessica

    2017-03-04

    During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' content can modify the physiological state of recipient cells. Tumor derived exosomes by interacting with other cells of the tumor microenvironment modulate tumor progression, angiogenic switch, metastasis, and immune escape. Targeting tumor-derived exosomes might be an interesting approach in cancer therapy. Furthermore, because a key issue to improve cancer patients' outcome relies on earlier cancer diagnosis (metastases, as opposed to the primary tumor, are responsible for most cancer deaths) exosomes have been put forward as promising biomarker candidates for cancer diagnosis and prognosis. This review summarizes the roles of exosomes in cancer and clinical interest, focusing on the importance of exosomal heat shock proteins (HSP). The challenges of clinical translation of HSP-exosomes as therapeutic targets and biomarkers for early cancer detection are also discussed.

  19. Plasma levels of the MMP-9:TIMP-1 complex as prognostic biomarker in breast cancer: a retrospective study

    International Nuclear Information System (INIS)

    Thorsen, Stine B; Møller, Susanne; Brünner, Nils; Schrohl, Anne-Sofie; Stenvang, Jan; Christensen, Sarah LT; Würtz, Sidse Ø; Lundberg, Martin; Nielsen, Birgitte S; Vinther, Lena; Knowles, Mick; Gee, Nick; Fredriksson, Simon

    2013-01-01

    Worldwide more than one million women are annually diagnosed with breast cancer. A considerable fraction of these women receive systemic adjuvant therapy; however, some are cured by primary surgery and radiotherapy alone. Prognostic biomarkers guide stratification of patients into different risk groups and hence improve management of breast cancer patients. Plasma levels of Matrix Metalloproteinase-9 (MMP-9) and its natural inhibitor Tissue inhibitor of metalloproteinase-1 (TIMP-1) have previously been associated with poor patient outcome and resistance to certain forms of chemotherapy. To pursue additional prognostic information from MMP-9 and TIMP-1, the level of the MMP-9 and TIMP-1 complex (MMP-9:TIMP-1) was investigated in plasma from breast cancer patients. Detection of protein:protein complexes in plasma was performed using a commercially available ELISA kit and, for the first time, the highly sensitive in-solution proximity ligation assay (PLA). We screened plasma from 465 patients with primary breast cancer for prognostic value of the MMP-9:TIMP-1 complex. Both assays were validated and applied for quantification of MMP-9:TIMP-1 concentration. In this retrospective study, we analyzed the association between the concentration of the MMP-9:TIMP-1 complex and clinicopathological data and disease free survival (DFS) in univariate and multivariate survival analyses. Following successful validation both assays were applied for MMP-9:TIMP-1 measurements. Of the clinicopathological parameters, only menopausal status demonstrated significant association with the MMP-9:TIMP-1 complex; P = 0.03 and P = 0.028 for the ELISA and PLA measurements, respectively. We found no correlation between the MMP-9:TIMP-1 protein complex and DFS neither in univariate nor in multivariate survival analyses. Despite earlier reports linking MMP-9 and TIMP-1 with prognosis in breast cancer patients, we here demonstrate that plasma levels of the MMP-9:TIMP-1 protein complex hold no

  20. Biomarkers and Mechanisms of FANCD2 Function

    Directory of Open Access Journals (Sweden)

    Henning Willers

    2008-01-01

    Full Text Available Genetic or epigenetic inactivation of the pathway formed by the Fanconi anemia (FA and BRCA1 proteins occurs in several cancer types, making the affected tumors potentially hypersensitive to DNA cross-linkers and other chemotherapeutic agents. It has been proposed that the inability of FA/BRCA-defective cells to form subnuclear foci of effector proteins, such as FANCD2, can be used as a biomarker to aid individualization of chemotherapy. We show that FANCD2 inactivation not only renders cells sensitive to cross-links, but also oxidative stress, a common effect of cancer therapeutics. Oxidative stress sensitivity does not correlate with FANCD2 or RAD51 foci formation, but associates with increased γH2AX foci levels and apoptosis. Therefore, FANCD2 may protect cells against cross-links and oxidative stress through distinct mechanisms, consistent with the growing notion that the pathway is not linear. Our data emphasize the need for multiple biomarkers, such as γH2AX, FANCD2, and RAD51, to capture all pathway activities.

  1. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    Science.gov (United States)

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  2. Molecular biomarkers in extrahepatic bile duct cancer patients undergoing chemoradiotherapy for gross residual disease after surgery

    International Nuclear Information System (INIS)

    Koh, Hyeon Kang; Kim, Kyu Bo; Chie, Eui Kyu; Ha, Sung W.; Park, Hae Jin

    2012-01-01

    To analyze the outcomes of chemoradiotherapy for extrahepatic bile duct (EHBD) cancer patients who underwent R2 resection or bypass surgery and to identify prognostic factors affecting clinical outcomes, especially in terms of molecular biomarkers. Medical records of 21 patients with EHBD cancer who underwent R2 resection or bypass surgery followed by chemoradiotherapy from May 2001 to June 2010 were retrospectively reviewed. All surgical specimens were re-evaluated by immunohistochemical staining using phosphorylated protein kinase B (pAKT), CD24, matrix metalloproteinase 9 (MMP9), survivin, and β-catenin antibodies. The relationship between clinical outcomes and immunohistochemical results was investigated. At a median follow-up of 20 months, the actuarial 2-year locoregional progression-free, distant metastasis-free and overall survival were 37%, 56%, and 54%, respectively. On univariate analysis using clinicopathologic factors, there was no significant prognostic factor. In the immunohistochemical staining, cytoplasmic staining, and nuclear staining of pAKT was positive in 10 and 6 patients, respectively. There were positive CD24 in 7 patients, MMP9 in 16 patients, survivin in 8 patients, and β-catenin in 3 patients. On univariate analysis, there was no significant value of immunohistochemical results for clinical outcomes. There was no significant association between clinical outcomes of patients with EHBD cancer who received chemoradiotherapy after R2 resection or bypass surgery and pAKT, CD24, MMP9, survivin, and β-catenin. Future research is needed on a larger data set or with other molecular biomarkers.

  3. Molecular biomarkers in extrahepatic bile duct cancer patients undergoing chemoradiotherapy for gross residual disease after surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Hyeon Kang; Kim, Kyu Bo; Chie, Eui Kyu; Ha, Sung W. [Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Hae Jin [Dept. of Radiation Oncology, Soonchunhyang University Hospital, Seoul (Korea, Republic of)

    2012-12-15

    To analyze the outcomes of chemoradiotherapy for extrahepatic bile duct (EHBD) cancer patients who underwent R2 resection or bypass surgery and to identify prognostic factors affecting clinical outcomes, especially in terms of molecular biomarkers. Medical records of 21 patients with EHBD cancer who underwent R2 resection or bypass surgery followed by chemoradiotherapy from May 2001 to June 2010 were retrospectively reviewed. All surgical specimens were re-evaluated by immunohistochemical staining using phosphorylated protein kinase B (pAKT), CD24, matrix metalloproteinase 9 (MMP9), survivin, and {beta}-catenin antibodies. The relationship between clinical outcomes and immunohistochemical results was investigated. At a median follow-up of 20 months, the actuarial 2-year locoregional progression-free, distant metastasis-free and overall survival were 37%, 56%, and 54%, respectively. On univariate analysis using clinicopathologic factors, there was no significant prognostic factor. In the immunohistochemical staining, cytoplasmic staining, and nuclear staining of pAKT was positive in 10 and 6 patients, respectively. There were positive CD24 in 7 patients, MMP9 in 16 patients, survivin in 8 patients, and {beta}-catenin in 3 patients. On univariate analysis, there was no significant value of immunohistochemical results for clinical outcomes. There was no significant association between clinical outcomes of patients with EHBD cancer who received chemoradiotherapy after R2 resection or bypass surgery and pAKT, CD24, MMP9, survivin, and {beta}-catenin. Future research is needed on a larger data set or with other molecular biomarkers.

  4. Identification of New Serum Biomarkers for Early Breast Cancer Diagnosis and Prognosis Using Lipid Microarrays

    National Research Council Canada - National Science Library

    Du, Guangwei

    2008-01-01

    Breast cancer is the most common form of cancer among women. Compared with other serum polypeptides, autoantibodies have many appealing features as biomarkers including sensitivity, stability, and easy detection...

  5. Proteomic-Based Approaches for the Study of Cytokines in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ángela Marrugal

    2016-01-01

    Full Text Available Proteomic techniques are currently used to understand the biology of different human diseases, including studies of the cell signaling pathways implicated in cancer progression, which is important in knowing the roles of different proteins in tumor development. Due to its poor prognosis, proteomic approaches are focused on the identification of new biomarkers for the early diagnosis, prognosis, and targeted treatment of lung cancer. Cytokines are proteins involved in inflammatory processes and have been proposed as lung cancer biomarkers and therapeutic targets because it has been reported that some cytokines play important roles in tumor development, invasion, and metastasis. In this review, we aim to summarize the different proteomic techniques used to discover new lung cancer biomarkers and therapeutic targets. Several cytokines have been identified as important players in lung cancer using these techniques. We underline the most important cytokines that are useful as biomarkers and therapeutic targets. We also summarize some of the therapeutic strategies targeted for these cytokines in lung cancer.

  6. Protein restriction and cancer.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Huang, Xingguo; Li, Tiejun; Yin, Yulong

    2018-03-26

    Protein restriction without malnutrition is currently an effective nutritional intervention known to prevent diseases and promote health span from yeast to human. Recently, low protein diets are reported to be associated with lowered cancer incidence and mortality risk of cancers in human. In murine models, protein restriction inhibits tumor growth via mTOR signaling pathway. IGF-1, amino acid metabolic programing, FGF21, and autophagy may also serve as potential mechanisms of protein restriction mediated cancer prevention. Together, dietary intervention aimed at reducing protein intake can be beneficial and has the potential to be widely adopted and effective in preventing and treating cancers. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Prognostic and predictive biomarkers in colorectal cancer. Towards precision medicine

    NARCIS (Netherlands)

    Reimers, Marlies Suzanne

    2015-01-01

    The aim of this thesis was to define prognostic and predictive biomarkers in colorectal cancer for improved risk stratification and treatment benefit in the individual patient, with the introduction of precision medicine in the near future as the ultimate goal. By definition, precision medicine is

  8. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    Science.gov (United States)

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  9. Implementation of External Quality Assurance Trials for Immunohistochemically Determined Breast Cancer Biomarkers in Germany

    OpenAIRE

    von Wasielewski, Reinhard; Krusche, Claudia A.; Rüschoff, Joseph; Fisseler-Eckhoff, Anette; Kreipe, Hans

    2008-01-01

    Besides typing and grading of breast cancer, Pathologists are involved in the determination of biomarkers, such as steroid hormone receptors and HER2, which are of utmost importance in adjuvant therapy. There have been concerns with regard to security and reproducibility of the biomarker assays done on tissue sections applying either immunohistochemistry or in-situ hybridisation. In order to assure the quality of these biomarker assays, a number of measures are required, among them external p...

  10. Tissue is alive: New technologies are needed to address the problems of protein biomarker pre-analytical variability.

    Science.gov (United States)

    Espina, Virginia; Mueller, Claudius; Edmiston, Kirsten; Sciro, Manuela; Petricoin, Emanuel F; Liotta, Lance A

    2009-08-01

    Instability of tissue protein biomarkers is a critical issue for molecular profiling. Pre-analytical variables during tissue procurement, such as time delays during which the tissue remains stored at room temperature, can cause significant variability and bias in downstream molecular analysis. Living tissue, ex vivo, goes through a defined stage of reactive changes that begin with oxidative, hypoxic and metabolic stress, and culminate in apoptosis. Depending on the delay time ex vivo, and reactive stage, protein biomarkers, such as signal pathway phosphoproteins will be elevated or suppressed in a manner which does not represent the biomarker levels at the time of excision. Proteomic data documenting reactive tissue protein changes post collection indicate the need to recognize and address tissue stability, preservation of post-translational modifications, and preservation of morphologic features for molecular analysis. Based on the analysis of phosphoproteins, one of the most labile tissue protein biomarkers, we set forth tissue procurement guidelines for clinical research. We propose technical solutions for (i) assessing the state of protein analyte preservation and specimen quality via identification of a panel of natural proteins (surrogate stability markers), and (ii) using multi-purpose fixative solution designed to stabilize, preserve and maintain proteins, nucleic acids, and tissue architecture.

  11. Noncoding Genomics in Gastric Cancer and the Gastric Precancerous Cascade: Pathogenesis and Biomarkers

    Directory of Open Access Journals (Sweden)

    Alejandra Sandoval-Bórquez

    2015-01-01

    Full Text Available Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death, whose patterns vary among geographical regions and ethnicities. It is a multifactorial disease, and its development depends on infection by Helicobacter pylori (H. pylori and Epstein-Barr virus (EBV, host genetic factors, and environmental factors. The heterogeneity of the disease has begun to be unraveled by a comprehensive mutational evaluation of primary tumors. The low-abundance of mutations suggests that other mechanisms participate in the evolution of the disease, such as those found through analyses of noncoding genomics. Noncoding genomics includes single nucleotide polymorphisms (SNPs, regulation of gene expression through DNA methylation of promoter sites, miRNAs, other noncoding RNAs in regulatory regions, and other topics. These processes and molecules ultimately control gene expression. Potential biomarkers are appearing from analyses of noncoding genomics. This review focuses on noncoding genomics and potential biomarkers in the context of gastric cancer and the gastric precancerous cascade.

  12. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    Science.gov (United States)

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  13. The Differential Expression of Aqueous Soluble Proteins in Breast Normal and Cancerous Tissues in Relation to Ethnicity of the Patients; Chinese, Malay and Indian

    Directory of Open Access Journals (Sweden)

    Seng Liang

    2010-01-01

    Full Text Available Female breast cancer is one of the leading causes of female mortality worldwide. In Malaysia, breast cancer is the most commonly diagnosed cancer in women. Of the women in Malaysia, the Chinese have the highest number of breast cancer cases, followed by the Indian and the Malay. The most common type of breast cancer is infiltrating ductal carcinoma (IDC. A proteomic approach was applied in this study to identify changes in the protein profile of cancerous tissues compared with normal tissues from 18 patients; 8 Chinese, 6 Malay and 4 Indian were analysed. Twenty-four differentially expressed hydrophilic proteins were identified. We evaluated the potential of these proteins as biomarkers for infiltrating ductal carcinoma based on their ethnic-specific expressions. Three of the upregulated proteins, calreticulin, 14-3-3 protein zeta and 14-3-3 protein eta, were found to be expressed at a significantly higher level in the cancerous breast tissues when compared with the normal tissues in cases of infiltrating ductal carcinoma. The upregulation in expression was particularly dominant in the Malay cohort.

  14. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas

    Directory of Open Access Journals (Sweden)

    Lind Guro E

    2011-07-01

    Full Text Available Abstract Background The presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas. Methods Candidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC curve analysis was used to evaluate the performance of the biomarker panel. Results Promoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94% and adenomas (35-91%, whereas normal mucosa samples were rarely (0-5% methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa. Conclusions The novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection.

  15. Identification of Gene Biomarkers for Distinguishing Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Using a Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Fei Long

    2015-01-01

    Full Text Available Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC and non-small-cell lung cancer (NSCLC that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.

  16. The potential of pathological protein fragmentation in blood-based biomarker development for dementia – with emphasis on Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Dilek eInekci

    2015-05-01

    Full Text Available The diagnosis of dementia is challenging and early stages are rarely detected limiting the possibilities for early interven-tion. Another challenge is the overlap in the clinical features across the different dementia types leading to difficulties in the differential diagnosis. Identifying biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer’s disease and other dementia treatment candidates.The cerebrospinal fluid (CSF has been the most investigated source of biomarkers and several candidate proteins have been identified. However, looking solely at protein levels is too simplistic to provide enough detailed information to differentiate between dementias, as there is a significant crossover between the proteins involved in the different types of dementia. Additionally, CSF sampling makes these biomarkers challenging for presymptomatic identification. We need to focus on disease-specific protein fragmentation to find a fragment pattern unique for each separate dementia type – a form of protein fragmentology. Targeting protein fragments generated by disease-specific combinations of proteins and proteases opposed to detecting the intact protein could reduce the overlap between diagnostic groups as the extent of processing as well as which proteins and proteases constitute the major hallmark of each dementia type differ. In addition, the fragments could be detectable in blood as they may be able to cross the blood-brain-barrier due to their smaller size. In this review, the potential of the fragment-based biomarker discovery for dementia diagnosis and prognosis is discussed, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development.

  17. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing.

    Science.gov (United States)

    Yang, Haitao; Jaeger, MariaLynn; Walker, Averi; Wei, Daniel; Leiker, Katie; Weitao, Tao

    2018-01-01

    Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.

  18. Plasma low-molecular-weight proteome profiling identified neuropeptide-Y as a prostate cancer biomarker polypeptide.

    Science.gov (United States)

    Ueda, Koji; Tatsuguchi, Ayako; Saichi, Naomi; Toyama, Atsuhiko; Tamura, Kenji; Furihata, Mutsuo; Takata, Ryo; Akamatsu, Shusuke; Igarashi, Masahiro; Nakayama, Masato; Sato, Taka-Aki; Ogawa, Osamu; Fujioka, Tomoaki; Shuin, Taro; Nakamura, Yusuke; Nakagawa, Hidewaki

    2013-10-04

    In prostate cancer diagnosis, PSA test has greatly contributed to the early detection of prostate cancer; however, expanding overdiagnosis and unnecessary biopsies have emerged as serious issues. To explore plasma biomarkers complementing the specificity of PSA test, we developed a unique proteomic technology QUEST-MS (Quick Enrichment of Small Targets for Mass Spectrometry). The QUEST-MS method based on 96-well formatted sequential reversed-phase chromatography allowing efficient enrichment of <20 kDa proteins quickly and reproducibly. Plasma from 24 healthy controls, 19 benign prostate hypertrophy patients, and 73 prostate cancer patients were purified with QUEST-MS and analyzed by LC/MS/MS. Among 153 057 nonredundant peptides, 189 peptides showed prostate cancer specific detection pattern, which included a neurotransmitter polypeptide neuropeptide-Y (NPY). We further validated the screening results by targeted multiple reaction monitoring technology using independent sample set (n = 110). The ROC curve analysis revealed that logistic regression-based combination of NPY, and PSA showed 81.5% sensitivity and 82.2% specificity for prostate cancer diagnosis. Thus QUEST-MS technology allowed comprehensive and high-throughput profiling of plasma polypeptides and had potential to effectively uncover very low abundant tumor-derived small molecules, such as neurotransmitters, peptide hormones, or cytokines.

  19. IGFBP3 methylation is a novel diagnostic and predictive biomarker in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Lucia Perez-Carbonell

    Full Text Available Aberrant hypermethylation of cancer-related genes has emerged as a promising strategy for the development of diagnostic, prognostic and predictive biomarkers in human cancer, including colorectal cancer (CRC. The aim of this study was to perform a systematic and comprehensive analysis of a panel of CRC-specific genes as potential diagnostic, prognostic and predictive biomarkers in a large, population-based CRC cohort.Methylation status of the SEPT9, TWIST1, IGFBP3, GAS7, ALX4 and miR137 genes was studied by quantitative bisulfite pyrosequencing in a population-based cohort of 425 CRC patients.Methylation levels of all genes analyzed were significantly higher in tumor tissues compared to normal mucosa (p<0.0001; however, cancer-associated hypermethylation was most frequently observed for miR137 (86.7% and IGFBP3 (83% in CRC patients. Methylation analysis using the combination of these two genes demonstrated greatest accuracy for the identification of colonic tumors (sensitivity 95.5%; specificity 90.5%. Low levels of IGFBP3 promoter methylation emerged as an independent risk factor for predicting poor disease free survival in stage II and III CRC patients (HR = 0.49, 95% CI: 0.28-0.85, p = 0.01. Our results also suggest that stage II & III CRC patients with high levels of IGFBP3 methylation do not benefit from adjuvant 5FU-based chemotherapy.By analyzing a large, population-based CRC cohort, we demonstrate the potential clinical significance of miR137 and IGFBP3 hypermethylation as promising diagnostic biomarkers in CRC. Our data also revealed that IGFBP3 hypermethylation may serve as an independent prognostic and predictive biomarker in stage II and III CRC patients.

  20. Transmembrane amyloid-related proteins in CSF as potential biomarkers for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Inmaculada eLopez-Font

    2015-06-01

    Full Text Available In the continuing search for new cerebrospinal fluid (CSF biomarkers for Alzheimer’s disease (AD, reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP, as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1 and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.

  1. Evaluation of yolk protein as biomarkers for endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Morthorst, Jane Ebsen; Holbech, Henrik; Kinnberg, Karin Lund

    is also regulated by estrogens in molluscs even though it still remains unknown if and where vertebrate steroids are synthesized in molluscs and regulation of the endocrine system in molluscs is also unknown. By using our newly developed ELISA the present work investigates if yolk protein is a suitable......During recent years invertebrates and especially molluscs have received increasing attention in the field of endocrine disruption and development of OECD test guidelines to assess the effects of endocrine disrupting compounds (EDCs) in molluscs is under development. The development of standardized...... tests to detect effects of EDCs in molluscs has proved cumbersome due to lack of specific biomarkers and endpoints for endocrine effects. Intersex (presence of oocytes in the testis) and induction of vitellogenin (the yolk protein precursor in oviparous vertebrates) have been used as biomarkers for EDCs...

  2. Urinary volatile compounds as biomarkers for lung cancer: a proof of principle study using odor signatures in mouse models of lung cancer.

    Directory of Open Access Journals (Sweden)

    Koichi Matsumura

    2010-01-01

    Full Text Available A potential strategy for diagnosing lung cancer, the leading cause of cancer-related death, is to identify metabolic signatures (biomarkers of the disease. Although data supports the hypothesis that volatile compounds can be detected in the breath of lung cancer patients by the sense of smell or through bioanalytical techniques, analysis of breath samples is cumbersome and technically challenging, thus limiting its applicability. The hypothesis explored here is that variations in small molecular weight volatile organic compounds ("odorants" in urine could be used as biomarkers for lung cancer. To demonstrate the presence and chemical structures of volatile biomarkers, we studied mouse olfactory-guided behavior and metabolomics of volatile constituents of urine. Sensor mice could be trained to discriminate between odors of mice with and without experimental tumors demonstrating that volatile odorants are sufficient to identify tumor-bearing mice. Consistent with this result, chemical analyses of urinary volatiles demonstrated that the amounts of several compounds were dramatically different between tumor and control mice. Using principal component analysis and supervised machine-learning, we accurately discriminated between tumor and control groups, a result that was cross validated with novel test groups. Although there were shared differences between experimental and control animals in the two tumor models, we also found chemical differences between these models, demonstrating tumor-based specificity. The success of these studies provides a novel proof-of-principle demonstration of lung tumor diagnosis through urinary volatile odorants. This work should provide an impetus for similar searches for volatile diagnostic biomarkers in the urine of human lung cancer patients.

  3. TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling

    International Nuclear Information System (INIS)

    Brase, Jan C; Sirma, Hüseyin; Sauter, Guido; Simon, Ronald; Schlomm, Thorsten; Beißbarth, Tim; Korf, Ulrike; Kuner, Ruprecht; Sültmann, Holger; Johannes, Marc; Mannsperger, Heiko; Fälth, Maria; Metzger, Jennifer; Kacprzyk, Lukasz A; Andrasiuk, Tatjana; Gade, Stephan; Meister, Michael

    2011-01-01

    TMPRSS2-ERG gene fusions occur in about 50% of all prostate cancer cases and represent promising markers for molecular subtyping. Although TMPRSS2-ERG fusion seems to be a critical event in prostate cancer, the precise functional role in cancer development and progression is still unclear. We studied large-scale gene expression profiles in 47 prostate tumor tissue samples and in 48 normal prostate tissue samples taken from the non-suspect area of clinical low-risk tumors using Affymetrix GeneChip Exon 1.0 ST microarrays. Comparison of gene expression levels among TMPRSS2-ERG fusion-positive and negative tumors as well as benign samples demonstrated a distinct transcriptional program induced by the gene fusion event. Well-known biomarkers for prostate cancer detection like CRISP3 were found to be associated with the gene fusion status. WNT and TGF-β/BMP signaling pathways were significantly associated with genes upregulated in TMPRSS2-ERG fusion-positive tumors. The TMPRSS2-ERG gene fusion results in the modulation of transcriptional patterns and cellular pathways with potential consequences for prostate cancer progression. Well-known biomarkers for prostate cancer detection were found to be associated with the gene fusion. Our results suggest that the fusion status should be considered in retrospective and future studies to assess biomarkers for prostate cancer detection, progression and targeted therapy

  4. Nanotechnology for Early Cancer Detection

    Directory of Open Access Journals (Sweden)

    Joon Won Park

    2010-01-01

    Full Text Available Vast numbers of studies and developments in the nanotechnology area have been conducted and many nanomaterials have been utilized to detect cancers at early stages. Nanomaterials have unique physical, optical and electrical properties that have proven to be very useful in sensing. Quantum dots, gold nanoparticles, magnetic nanoparticles, carbon nanotubes, gold nanowires and many other materials have been developed over the years, alongside the discovery of a wide range of biomarkers to lower the detection limit of cancer biomarkers. Proteins, antibody fragments, DNA fragments, and RNA fragments are the base of cancer biomarkers and have been used as targets in cancer detection and monitoring. It is highly anticipated that in the near future, we might be able to detect cancer at a very early stage, providing a much higher chance of treatment.

  5. Biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy: a novel strategy in drug development

    Directory of Open Access Journals (Sweden)

    Jan eStenvang

    2013-12-01

    Full Text Available Cancer is a leading cause of mortality worldwide and matters are only set to worsen as its incidence continues to rise. Traditional approaches to combat cancer include improved prevention, early diagnosis, optimized surgery, development of novel drugs and honing regimens of existing anti-cancer drugs. Although discovery and development of novel and effective anti-cancer drugs is a major research area, it is well known that oncology drug development is a lengthy process, extremely costly and with high attrition rates. Furthermore, those drugs that do make it through the drug development mill are often quite expensive, laden with severe side-effects and, unfortunately, to date, have only demonstrated minimal increases in overall survival. Therefore, a strong interest has emerged to identify approved non-cancer drugs that possess anti-cancer activity, thus shortcutting the development process. This research strategy is commonly known as drug repurposing or drug repositioning and provides a faster path to the clinics. We have developed and implemented a modification of the standard drug repurposing strategy that we review here; rather than investigating target-promiscuous non-cancer drugs for possible anti-cancer activity, we focus on the discovery of novel cancer indications for already approved chemotherapeutic anti-cancer drugs. Clinical implementation of this strategy is normally commenced at clinical phase II trials and includes pre-treated patients. As the response rates to any non-standard chemotherapeutic drug will be relatively low in such a patient cohort it is a pre-requisite that such testing is based on predictive biomarkers. This review describes our strategy of biomarker-guided repurposing of chemotherapeutic drugs for cancer therapy, taking the repurposing of topoisomerase I inhibitors and topoisomerase I as a potential predictive biomarker as case in point.

  6. Novel single-chain antibody GD3A10 defines a chondroitin sulfate biomarker for ovarian cancer

    NARCIS (Netherlands)

    Vallen, M.J.E.; Tilborg, A.G. van; Tesselaar, M.H.; Dam, G.B. ten; Bulten, J.; Kuppevelt, T.H. van; Massuger, L.F.A.G.

    2014-01-01

    AIMS: Ovarian cancer has the highest case-to-fatality-index of all gynecological cancers. In this study, tumor-related alterations in the extracellular matrix, especially regarding chondroitin sulfate glycosaminoglycans, are proposed as a novel biomarker in ovarian cancer. MATERIALS & METHODS: Phage

  7. Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis*

    Science.gov (United States)

    Dun, Matthew D.; Chalkley, Robert J.; Faulkner, Sam; Keene, Sheridan; Avery-Kiejda, Kelly A.; Scott, Rodney J.; Falkenby, Lasse G.; Cairns, Murray J.; Larsen, Martin R.; Bradshaw, Ralph A.; Hondermarck, Hubert

    2015-01-01

    Brain metastases are a devastating consequence of cancer and currently there are no specific biomarkers or therapeutic targets for risk prediction, diagnosis, and treatment. Here the proteome of the brain metastatic breast cancer cell line 231-BR has been compared with that of the parental cell line MDA-MB-231, which is also metastatic but has no organ selectivity. Using SILAC and nanoLC-MS/MS, 1957 proteins were identified in reciprocal labeling experiments and 1584 were quantified in the two cell lines. A total of 152 proteins were confidently determined to be up- or down-regulated by more than twofold in 231-BR. Of note, 112/152 proteins were decreased as compared with only 40/152 that were increased, suggesting that down-regulation of specific proteins is an important part of the mechanism underlying the ability of breast cancer cells to metastasize to the brain. When matched against transcriptomic data, 43% of individual protein changes were associated with corresponding changes in mRNA, indicating that the transcript level is a limited predictor of protein level. In addition, differential miRNA analyses showed that most miRNA changes in 231-BR were up- (36/45) as compared with down-regulations (9/45). Pathway analysis revealed that proteome changes were mostly related to cell signaling and cell cycle, metabolism and extracellular matrix remodeling. The major protein changes in 231-BR were confirmed by parallel reaction monitoring mass spectrometry and consisted in increases (by more than fivefold) in the matrix metalloproteinase-1, ephrin-B1, stomatin, myc target-1, and decreases (by more than 10-fold) in transglutaminase-2, the S100 calcium-binding protein A4, and l-plastin. The clinicopathological significance of these major proteomic changes to predict the occurrence of brain metastases, and their potential value as therapeutic targets, warrants further investigation. PMID:26041846

  8. Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease.

    Directory of Open Access Journals (Sweden)

    Shrestha Priyadarsini

    Full Text Available Keratoconus (KC is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36 and KC diagnosed subjects (n = 17. Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF and KC subjects (Human Keratoconus Cells-HKC and stimulated with a Vitamin C (VitC derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15 or prolactin-inducible protein (PIP was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1, a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.

  9. Aberrant expression of PlncRNA-1 and TUG1: potential biomarkers for gastric cancer diagnosis and clinically monitoring cancer progression.

    Science.gov (United States)

    Baratieh, Zohreh; Khalaj, Zahra; Honardoost, Mohammad Amin; Emadi-Baygi, Modjtaba; Khanahmad, Hossein; Salehi, Mansoor; Nikpour, Parvaneh

    2017-12-01

    To evaluate PlncRNA-1, TUG1 and FAM83H-AS1 gene expression and their possible role as a biomarker in gastric cancer (GC) progression. Long noncoding RNA expressions and clinicopathological characteristics were assessed in 70 paired GC tissues. Furthermore, corresponding data from 318 GC patients were downloaded from The Cancer Genome Atlas database. Expression of PlncRNA-1 and TUG1 were significantly upregulated in GC tumoral tissues, and significantly correlated with clinicopathological characters. However, FAM83H-AS1 showed no consistently differential expression. The expression of these three long noncoding RNAs was significantly higher in The Cancer Genome Atlas tumoral tissues. In conclusion, PlncRNA-1 and TUG1 genes may play a critical role in GC progression and may serve as potential diagnostic biomarkers in GC patients.

  10. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction.

    Science.gov (United States)

    Nassar, Farah J; Nasr, Rihab; Talhouk, Rabih

    2017-04-01

    Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry.

    Science.gov (United States)

    Ahmed, Farid E

    2009-03-01

    Sample preparation and fractionation technologies are one of the most crucial processes in proteomic analysis and biomarker discovery in solubilized samples. Chromatographic or electrophoretic proteomic technologies are also available for separation of cellular protein components. There are, however, considerable limitations in currently available proteomic technologies as none of them allows for the analysis of the entire proteome in a simple step because of the large number of peptides, and because of the wide concentration dynamic range of the proteome in clinical blood samples. The results of any undertaken experiment depend on the condition of the starting material. Therefore, proper experimental design and pertinent sample preparation is essential to obtain meaningful results, particularly in comparative clinical proteomics in which one is looking for minor differences between experimental (diseased) and control (nondiseased) samples. This review discusses problems associated with general and specialized strategies of sample preparation and fractionation, dealing with samples that are solution or suspension, in a frozen tissue state, or formalin-preserved tissue archival samples, and illustrates how sample processing might influence detection with mass spectrometric techniques. Strategies that dramatically improve the potential for cancer biomarker discovery in minimally invasive, blood-collected human samples are also presented.

  12. Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Dowling, P.; Hughes, D. J.; Larkin, A.M.; Meiller, J.; Henry, M.; Meleady, P.; Lynch, V.; Pardini, B.; Naccarati, A.; Levý, M.; Vodička, Pavel; Neary, P.; Clynes, M.

    2015-01-01

    Roč. 441, feb. (2015), s. 133-141 ISSN 0009-8981 Institutional support: RVO:68378041 Keywords : biomarkers * colorectal cancer * proteomics * mass spectrometry * 14-3-3 proteins * pyruvate kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.799, year: 2015

  13. Electrochemical Sandwich Immunoassay for the Ultrasensitive Detection of Human MUC1 Cancer Biomarker

    Directory of Open Access Journals (Sweden)

    Zahra Taleat

    2013-01-01

    Full Text Available A new electrochemical sandwich immunoassay for the ultrasensitive detection of human MUC1 cancer biomarker using protein G-functionalized magnetic beads (MBs and graphite-based screen-printed electrodes (SPEs was developed. Magnetic beads were employed as the platforms for the immobilization and immunoreaction process. A pair of primary and secondary antibodies was used to capture the MUC1 protein. After labeling with a third antibody conjugated with horseradish peroxidase (HRP, the resulting conjugate was trapped at the surface of the graphite-based SPEs and MUC1 determination was carried out by differential pulse voltammetry (DPV at 0.4 V upon H2O2 addition using acetaminophen (APAP as the redox mediator. A linear relationship was obtained for the detection of human MUC1 over a range of 0–25 ppb with the lowest detection limit of 1.34 ppb when HRP was applied as a label. Preliminary experiments were performed using disposable electrochemical sensors in order to optimize some parameters (i.e., incubation times, concentrations, and blocking agent.

  14. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment.

    Science.gov (United States)

    Atkinson, Stuart P; Andreu, Zoraida; Vicent, María J

    2018-01-23

    Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.

  15. Pocket Proteins Suppress Head and Neck Cancer

    Science.gov (United States)

    Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2012-01-01

    Head and neck squamous cell carcinomas (HNSCC) is a common cancer in humans long known to be caused by tobacco and alcohol use, but now an increasing percentage of HNSCC is recognized to be caused by the same human papillomaviruses (HPVs) that cause cervical and other anogenital cancers. HPV-positive HNSCCs differ remarkably from HPV-negative HNSCCs in their clinical response and molecular properties. From studies in mice, we know that E7 is the dominant HPV oncoprotein in head and neck cancer. E7 is best known for its ability to inactivate pRb, the product of the retinoblastoma tumor susceptibility gene. However loss of pRb function does not fully account for E7’s potency in causing head and neck cancer. In this study, we characterized the cancer susceptibility of mice deficient in the expression of pRb and either of two related “pocket” proteins, p107 and p130, that are also inactivated by E7. pRb/p107 deficient mice developed head and neck cancer as frequently as do HPV16 E7 transgenic mice. The head and neck epithelia of the pRb/p107 deficient mice also displayed the same acute phenotypes and biomarker readouts as observed in the epithelia of E7 transgenic mice. Mice deficient for pRb and p130 in their head and neck epithelia showed intermediate acute and tumor phenotypes. We conclude that pRb and p107 act together to efficiently suppress head and neck cancer, and are therefore highly relevant targets of HPV16 E7 in its contribution to HPV-positive HNSCC. PMID:22237625

  16. Differentially expressed proteins in ER+ MCF7 and ER- MDA- MB-231 human breast cancer cells by RhoGDI-α silencing and overexpression.

    Science.gov (United States)

    Hooshmand, Somayeh; Ghaderi, Abbas; Yusoff, Khatijah; Thilakavathy, Karuppiah; Rosli, Rozita; Mojtahedi, Zahra

    2014-01-01

    The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα. The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

  17. Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients.

    Science.gov (United States)

    Wang, Jieru; Zhu, Xiaojie; Xiong, Xuekai; Ge, Pan; Liu, Han; Ren, Ningning; Khan, Farhan Anwar; Zhou, Xia; Zhang, Li; Yuan, Xu; Chen, Xi; Chen, Yingyu; Hu, Changmin; Robertson, Ian D; Chen, Huanchun; Guo, Aizhen

    2018-04-11

    This study identified urinary biomarkers for tuberculosis (TB) diagnosis. The urine proteomic profiles of 45 pulmonary tuberculosis patients prior to anti-TB treatment and 45 healthy controls were analyzed and compared using two-dimensional electrophoresis with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Nineteen differentially expressed proteins were identified preliminarily, and western blotting and qRT-PCR were performed to confirm these changes at the translational and transcriptional levels, respectively, using samples from 122 additional pulmonary tuberculosis patients and 73 additional healthy controls. Two proteins, mannose-binding lectin 2 and a 35-kDa fragment of inter-α-trypsin inhibitor H4, exhibited the highest differential expression. We constructed a protein-microRNA interaction network that primarily involved complement and inflammatory responses. Eleven microRNAs from microRNA-target protein interactions were screened and validated using qRT-PCR with some of the above samples, including 97 pulmonary tuberculosis patients and 48 healthy controls. Only miR-625-3p exhibited significant differential expression (p tuberculosis diagnosis than individual biomarkers or any two-biomarker combination and generated a diagnostic sensitivity of 85.87% and a specificity of 87.50%. These novel urine biomarkers may significantly improve tuberculosis diagnosis.

  18. Serum prognostic biomarkers in head and neck cancer patients.

    Science.gov (United States)

    Lin, Ho-Sheng; Siddiq, Fauzia; Talwar, Harvinder S; Chen, Wei; Voichita, Calin; Draghici, Sorin; Jeyapalan, Gerald; Chatterjee, Madhumita; Fribley, Andrew; Yoo, George H; Sethi, Seema; Kim, Harold; Sukari, Ammar; Folbe, Adam J; Tainsky, Michael A

    2014-08-01

    A reliable estimate of survival is important as it may impact treatment choice. The objective of this study is to identify serum autoantibody biomarkers that can be used to improve prognostication for patients affected with head and neck squamous cell carcinoma (HNSCC). Prospective cohort study. A panel of 130 serum biomarkers, previously selected for cancer detection using microarray-based serological profiling and specialized bioinformatics, were evaluated for their potential as prognostic biomarkers in a cohort of 119 HNSCC patients followed for up to 12.7 years. A biomarker was considered positive if its reactivity to the particular patient's serum was greater than one standard deviation above the mean reactivity to sera from the other 118 patients, using a leave-one-out cross-validation model. Survival curves were estimated according to the Kaplan-Meier method, and statistically significant differences in survival were examined using the log rank test. Independent prognostic biomarkers were identified following analysis using multivariate Cox proportional hazards models. Poor overall survival was associated with African Americans (hazard ratio [HR] for death = 2.61; 95% confidence interval [CI]: 1.58-4.33; P = .000), advanced stage (HR = 2.79; 95% CI: 1.40-5.57; P = .004), and recurrent disease (HR = 6.66; 95% CI: 2.54-17.44; P = .000). On multivariable Cox analysis adjusted for covariates (race and stage), six of the 130 markers evaluated were found to be independent prognosticators of overall survival. The results shown here are promising and demonstrate the potential use of serum biomarkers for prognostication in HNSCC patients. Further clinical trials to include larger samples of patients across multiple centers may be warranted. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Shannahan, Jonathan H. [Curriculum in Toxicology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Alzate, Oscar [Systems Proteomics Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 (United States); Winnik, Witold M.; Andrews, Debora [Proteomics Core, Research Core Unit, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schladweiler, Mette C. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Ghio, Andrew J. [Clinical Research Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27599 (United States); Gavett, Stephen H. [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Kodavanti, Urmila P., E-mail: Kodavanti.Urmila@epa.gov [Cardiopulmonary and Immunotoxicology Branch, Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  20. Biomarkers for Response to Neoadjuvant Chemoradiation for Rectal Cancer

    International Nuclear Information System (INIS)

    Kuremsky, Jeffrey G.; Tepper, Joel E.; McLeod, Howard L. Phar

    2009-01-01

    Locally advanced rectal cancer (LARC) is currently treated with neoadjuvant chemoradiation. Although approximately 45% of patients respond to neoadjuvant therapy with T-level downstaging, there is no effective method of predicting which patients will respond. Molecular biomarkers have been investigated for their ability to predict outcome in LARC treated with neoadjuvant chemotherapy and radiation. A literature search using PubMed resulted in the initial assessment of 1,204 articles. Articles addressing the ability of a biomarker to predict outcome for LARC treated with neoadjuvant chemotherapy and radiation were included. Six biomarkers met the criteria for review: p53, epidermal growth factor receptor (EGFR), thymidylate synthase, Ki-67, p21, and bcl-2/bax. On the basis of composite data, p53 is unlikely to have utility as a predictor of response. Epidermal growth factor receptor has shown promise as a predictor when quantitatively evaluated in pretreatment biopsies or when EGFR polymorphisms are evaluated in germline DNA. Thymidylate synthase, when evaluated for polymorphisms in germline DNA, is promising as a predictive biomarker. Ki-67 and bcl-2 are not useful in predicting outcome. p21 needs to be further evaluated to determine its usefulness in predicting outcome. Bax requires more investigation to determine its usefulness. Epidermal growth factor receptor, thymidylate synthase, and p21 should be evaluated in larger prospective clinical trials for their ability to guide preoperative therapy choices in LARC.

  1. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  2. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

    Science.gov (United States)

    Retzbach, Edward P; Sheehan, Stephanie A; Nevel, Evan M; Batra, Amber; Phi, Tran; Nguyen, Angels T P; Kato, Yukinari; Baredes, Soly; Fatahzadeh, Mahnaz; Shienbaum, Alan J; Goldberg, Gary S

    2018-03-01

    Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Association of oxidative stress biomarkers with adiposity and clinical staging in women with breast cancer.

    Science.gov (United States)

    Carioca, A A F; Verde, S M M L; Luzia, L A; Rondó, P H C; Latorre, M R D O; Ellery, T H P; Damasceno, N R T

    2015-11-01

    Breast cancer is a disease characterised by both oxidative reactions and inflammation. However, few studies have focused on the oxidative and inflammatory biomarkers. The aim of the present study was to evaluate the association between oxidative stress markers and adiposity and clinical staging, as well as the association between the oxidative and the antioxidant biomarkers of women with breast cancer. A total of 135 cases of breast cancer occurring in 2011 and 2012 were assessed. After exclusions, 101 pre- and post-menopausal women with clinical staging I to IV were eligible to participate in the study. The anthropometric evaluation was performed by collecting data on waist circumference, body mass index and body composition. The socioeconomic and clinical profiles were determined using a standard questionnaire. For the oxidative biomarkers, thiobarbituric acid reactive substances (TBARS), oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)), low-density lipoprotein(-) (LDL(-)), autoantibody anti-LDL(-) and liposoluble antioxidants (α-tocopherol, retinol and β-carotene) were analysed. The data were analysed using differences in the mean values, correlation tests and multiple linear regression. The antioxidant levels were higher in postmenopausal women with clinical staging I and II and negative lymph nodes. The TBARS level was associated with clinical staging. Adiposity was associated with levels of retinol and 8-OHdG, whereas LDL(-), 8-OHdG and TBARS were correlated with liposoluble antioxidants after adjusting for the confounders. The adiposity and clinical staging of patients were associated with oxidative stress. The oxidative and antioxidant biomarkers showed a negative correlation in patients with breast cancer.

  4. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease

    DEFF Research Database (Denmark)

    Johansson, Sofie Lock; Vestbo, J.; Sorensen, G. L.

    2014-01-01

    for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary...

  5. Calling biomarkers in milk using a protein microarray on your smartphone

    NARCIS (Netherlands)

    Ludwig, S.K.J.; Tokarski, Christian; Lang, Stefan N.; Ginkel, Van L.A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, M.W.F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay

  6. Increased serological cancer-associated biomarker levels at large bowel endoscopy and risk of subsequent primary cancer (†)

    DEFF Research Database (Denmark)

    Hvolris, Martin H; Piper, Thomas B; Hammer, Emilie

    2016-01-01

    Background: Frequently, subjects offered colonoscopy due to symptoms of colorectal neoplasia are diagnosed with diverticula. The symptoms may, however, also be related to extra-colonic neoplasia. The present retrospective study evaluated a possible association between increased levels of predefined...... biomarkers in subjects diagnosed with diverticula and risk of developing a primary malignant disease. Methods: During 2004/2005, about 4509 subjects were included in a multicenter study with collection of blood samples before bowel endoscopy. The aim was to evaluate a relation between the protein biomarkers...... was calculated. The relation with the four biomarkers was divided into three groups: 0 = none increased; 1 = one increased and 2 = two or more increased. Results: In the observation period, 148 subjects developed a primary malignant disease. Univariable analyzes of the biomarker levels showed that CEA, TIMP-1...

  7. The potential of pathological protein fragmentation in blood-based biomarker development for dementia - with emphasis on Alzheimer's disease

    DEFF Research Database (Denmark)

    Inekci, Dilek; Svendsen Jonesco, Ditte; Kennard, Sophie

    2015-01-01

    biomarkers that can detect the pre-dementia stage and allow differential diagnosis could provide an opportunity for timely and optimal intervention strategies. Also, such biomarkers could help in selection and inclusion of the right patients in clinical trials of both Alzheimer's disease and other dementia......, especially highlighting how the knowledge from CSF protein biomarkers can be used to guide blood-based biomarker development....

  8. An integrative multi-platform analysis for discovering biomarkers of osteosarcoma

    International Nuclear Information System (INIS)

    Li, Guodong; Zhang, Wenjuan; Zeng, Huazong; Chen, Lei; Wang, Wenjing; Liu, Jilong; Zhang, Zhiyu; Cai, Zhengdong

    2009-01-01

    SELDI-TOF-MS (Surface Enhanced Laser Desorption/Ionization-Time of Flight-Mass Spectrometry) has become an attractive approach for cancer biomarker discovery due to its ability to resolve low mass proteins and high-throughput capability. However, the analytes from mass spectrometry are described only by their mass-to-charge ratio (m/z) values without further identification and annotation. To discover potential biomarkers for early diagnosis of osteosarcoma, we designed an integrative workflow combining data sets from both SELDI-TOF-MS and gene microarray analysis. After extracting the information for potential biomarkers from SELDI data and microarray analysis, their associations were further inferred by link-test to identify biomarkers that could likely be used for diagnosis. Immuno-blot analysis was then performed to examine whether the expression of the putative biomarkers were indeed altered in serum from patients with osteosarcoma. Six differentially expressed protein peaks with strong statistical significances were detected by SELDI-TOF-MS. Four of the proteins were up-regulated and two of them were down-regulated. Microarray analysis showed that, compared with an osteoblastic cell line, the expression of 653 genes was changed more than 2 folds in three osteosarcoma cell lines. While expression of 310 genes was increased, expression of the other 343 genes was decreased. The two sets of biomarkers candidates were combined by the link-test statistics, indicating that 13 genes were potential biomarkers for early diagnosis of osteosarcoma. Among these genes, cytochrome c1 (CYC-1) was selected for further experimental validation. Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis can accelerate the identification of tumor biomarkers. The result confirmed that CYC-1 may be a promising biomarker for early diagnosis of osteosarcoma

  9. Molecular profiling of childhood cancer: Biomarkers and novel therapies.

    Science.gov (United States)

    Saletta, Federica; Wadham, Carol; Ziegler, David S; Marshall, Glenn M; Haber, Michelle; McCowage, Geoffrey; Norris, Murray D; Byrne, Jennifer A

    2014-06-01

    Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.

  10. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer

    International Nuclear Information System (INIS)

    Dong, Yujuan; Yu, Jun; Ng, Simon SM

    2014-01-01

    Colorectal cancer (CRC) is one of the most potentially curable cancers, yet it remains the fourth most common overall cause of cancer death worldwide. The identification of robust molecular prognostic biomarkers can refine the conventional tumor–node–metastasis staging system, avoid understaging of tumor, and help pinpoint patients with early-stage CRC who may benefit from aggressive treatments. Recently, epigenetic studies have provided new molecular evidence to better categorize the CRC subtypes and predict clinical outcomes. In this review, we summarize recent findings concerning the prognostic potential of microRNAs (miRNAs) in CRC. We first discuss the prognostic value of three tissue miRNAs (miR-21-5p, miR-29-3p, miR-148-3p) that have been examined in multiple studies. We also summarize the dysregulation of miRNA processing machinery DICER in CRC and its association with risk for mortality. We also reviewe the potential application of miRNA-associated single-nucleotide polymorphisms as prognostic biomarkers for CRC, especially the miRNA-associated polymorphism in the KRAS gene. Last but not least, we discuss the microsatellite instability-related miRNA candidates. Among all these candidates, miR-21-5p is the most promising prognostic marker, yet further prospective validation studies are required before it can go into clinical usage

  11. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines

    Science.gov (United States)

    Kubota, Eiji; Williamson, Christopher T; Ye, Ruiqiong; Elegbede, Anifat; Peterson, Lars; Lees-Miller, Susan P; Bebb, D Gwyn

    2014-01-01

    Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption. PMID:24841718

  12. IMAC fractionation in combination with LC-MS reveals H2B and NIF-1 peptides as potential bladder cancer biomarkers.

    Science.gov (United States)

    Frantzi, Maria; Zoidakis, Jerome; Papadopoulos, Theofilos; Zürbig, Petra; Katafigiotis, Ioannis; Stravodimos, Konstantinos; Lazaris, Andreas; Giannopoulou, Ioanna; Ploumidis, Achilles; Mischak, Harald; Mullen, William; Vlahou, Antonia

    2013-09-06

    Improvement in bladder cancer (BC) management requires more effective diagnosis and prognosis of disease recurrence and progression. Urinary biomarkers attract special interest because of the noninvasive means of urine collection. Proteomic analysis of urine entails the adoption of a fractionation methodology to reduce sample complexity. In this study, we applied immobilized metal affinity chromatography in combination with high-resolution LC-MS/MS for the discovery of native urinary peptides potentially associated with BC aggressiveness. This approach was employed toward urine samples from patients with invasive BC, noninvasive BC, and benign urogenital diseases. A total of 1845 peptides were identified, corresponding to a total of 638 precursor proteins. Specific enrichment for proteins involved in nucleosome assembly and for zinc-finger transcription factors was observed. The differential expression of two candidate biomarkers, histone H2B and NIF-1 (zinc finger 335) in BC, was verified in independent sets of urine samples by ELISA and by immunohistochemical analysis of BC tissue. The results collectively support changes in the expression of both of these proteins with tumor progression, suggesting their potential role as markers for discriminating BC stages. In addition, the data indicate a possible involvement of NIF-1 in BC progression, likely as a suppressor and through interactions with Sox9 and HoxA1.

  13. Mass Spectrometry–based Proteomic Profiling of Lung Cancer

    Science.gov (United States)

    Ocak, Sebahat; Chaurand, Pierre; Massion, Pierre P.

    2009-01-01

    In an effort to further our understanding of lung cancer biology and to identify new candidate biomarkers to be used in the management of lung cancer, we need to probe these tissues and biological fluids with tools that address the biology of lung cancer directly at the protein level. Proteins are responsible of the function and phenotype of cells. Cancer cells express proteins that distinguish them from normal cells. Proteomics is defined as the study of the proteome, the complete set of proteins produced by a species, using the technologies of large-scale protein separation and identification. As a result, new technologies are being developed to allow the rapid and systematic analysis of thousands of proteins. The analytical advantages of mass spectrometry (MS), including sensitivity and high-throughput, promise to make it a mainstay of novel biomarker discovery to differentiate cancer from normal cells and to predict individuals likely to develop or recur with lung cancer. In this review, we summarize the progress made in clinical proteomics as it applies to the management of lung cancer. We will focus our discussion on how MS approaches may advance the areas of early detection, response to therapy, and prognostic evaluation. PMID:19349484

  14. Validations of SCT Methylation as a Hallmark Biomarker for Lung Cancers

    Science.gov (United States)

    Fujimoto, Junya; Wistuba, Ignacio; Lam, Stephen; Yatabe, Yasushi; Wang, Yi-Wei; Stastny, Victor; Gao, Boning; Larsen, Jill E; Girard, Luc; Liu, Xiaoyun; Song, Kai; Behrens, Carmen; Kalhor, Neda; Xie, Yang; Zhang, Michael Q; Minna, John D; Gazdar, Adi F

    2016-01-01

    Background The human secretin (SCT) gene encodes secretin, a hormone with limited tissue distribution. Analysis of The Cancer Genome Atlas (TCGA) 450K methylation array data indicated that the SCT promoter region is differentially hypermethylated in lung cancer. Our purpose was to validate SCT methylation as a potential cancer biomarker for lung cancer. Methods We analyzed TCGA data, and developed and applied SCT-specific bisulfite DNA sequencing and quantitative methylation specific PCR (qMSP) assays. Results The analyses of TCGA 450K data of 801 samples showed that SCT hypermethylation has an area under curve (AUC) value >0.98 to distinguish lung adenocarcinomas or squamous cell carcinomas from non-malignant lung. We confirmed the highly discriminative SCT methylation by bisulfite sequencing of lung cancer cell lines and normal blood cells. By applying qMSP, we found that SCT hypermethylation was frequently detected in all major subtypes of malignant NSCLC (AUC=0.92, n=108) and SCLC cancers (AUC=0.93, n=40) but less frequently present in lung carcinoids (AUC=0.54, n=20). SCT hypermethylation appeared in lung carcinoma in situ samples during multistage pathogenesis and increased in invasive samples. Further analyses of TCGA 450K data showed that SCT hypermethylation is highly discriminative in most types of other malignant tumors but less frequently present in low-grade malignant tumors. The only normal tissue with high methylation was the placenta. Conclusions Our findings demonstrated that SCT methylation is a highly discriminative biomarker for lung and other malignant tumors, and less frequently present in low-grade malignant tumors including lung carcinoids, and appears at the carcinoma in situ stage. PMID:26725182

  15. Exosomes are fingerprints of originating cells: potential biomarkers for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kobayashi M

    2015-03-01

    Full Text Available Miharu Kobayashi, Gregory E Rice, Jorge Tapia, Murray D Mitchell, Carlos Salomon Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. Abstract: The past decade has seen an extraordinary explosion of research in the field of extracellular vesicles, especially in a specific type of extracellular vesicles originating from endosomal compartments, called exosomes. Exosomes are a specific subtype of secreted vesicles that are defined as small (~30–120 nm but very stable membrane vesicles that are released from a wide range of cells, including normal and cancer cells. As the content of exosomes is cell type specific, it is believed that they are a "fingerprint" of the releasing cell and its metabolic status. We hypothesized that the exosomes and their specific exosomal content (eg, microribonucleic acid represent a precious biomedical tool and may be used as biomarkers for the diagnosis and prognosis of malignant tumors. In addition, exosomes may modify the phenotype of the parent and/or target cell by transferring pro-oncogenic molecules to induce cancerous phenotype of recipient cells and contribute to the formation of the premetastatic niche. The mechanism involved in these phenomena remains unclear; however, inclusion of signaling mediators into exosomes or exosome release may reduce their intracellular bioavailability in the parent cell, thereby altering cell phenotype and their metastatic potential. The aim of this review therefore is to analyze the biogenesis and role of exosomes from tumor cells, focusing primarily on ovarian cancer. Ovarian cancer is the most lethal gynecologic cancer, and an effective early diagnosis has the potential to improve patient survival. Ovarian cancer currently lacks a reliable method for early detection, however, exosomes have received great attention as potential biomarkers and mediators

  16. Exhaled breath and oral cavity VOCs as potential biomarkers in oral cancer patients.

    Science.gov (United States)

    Bouza, M; Gonzalez-Soto, J; Pereiro, R; de Vicente, J C; Sanz-Medel, A

    2017-03-01

    Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to use VOCs from exhaled breath and oral cavity air as biomarkers for oral squamous cell carcinoma (OSCC) patients. A total of 52 breath samples were collected (in 3 L Tedlar bags) from 26 OSCC patients and 26 cancer-free controls. The samples were analyzed using solid-phase microextraction followed by gas chromatography-mass spectrometry detection. Different statistical strategies (e.g., Icoshift, SIMCA, LDA, etc) were used to classify the analytical data. Results revealed that compounds such as undecane, dodecane, decanal, benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane had relevance as possible biomarkers for OSCC. LDA classification with these compounds showed well-defined clusters for patients and controls (non-smokers and smokers). In addition to breath analysis, preliminary studies were carried out to evaluate the possibility of lesion-surrounded air (analyzed OSCC tumors are in the oral cavity) as a source of biomarkers. The oral cavity location of the squamous cell carcinoma tumors constitutes an opportunity to non-invasively collect the air surrounding the lesion. Small quantities (20 ml) of air collected in the oral cavity were analyzed using the above methodology. Results showed that aldehydes present in the oral cavity might constitute potential OSCC biomarkers.

  17. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    International Nuclear Information System (INIS)

    Soekmadji, Carolina; Russell, Pamela J.; Nelson, Colleen C.

    2013-01-01

    Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer

  18. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    Directory of Open Access Journals (Sweden)

    Colleen C. Nelson

    2013-11-01

    Full Text Available Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.

  19. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Soekmadji, Carolina, E-mail: carolina.soekmadji@qut.edu.au; Russell, Pamela J.; Nelson, Colleen C. [Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Level 3 West, 37 Kent Street, Brisbane, Queensland 4102 (Australia)

    2013-11-11

    Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.

  20. Association between changes in fat distribution and biomarkers for breast cancer

    NARCIS (Netherlands)

    van Gemert, Willemijn A.M.; Monninkhof, Evelyn M.; May, Anne M.; Elias, Sjoerd G.; Van Der Palen, Job; Veldhuis, Wouter B.; Stapper, Maaike; Stellato, Rebecca K.; Schuit, Jantine A.; Peeters, Petra H.

    2017-01-01

    We assessed the associations between changes in total and abdominal fat and changes in biomarkers for breast cancer risk using data of the SHAPE-2 trial. In the SHAPE-2 trial, 243 postmenopausal overweight women were included. The intervention in this trial consisted of 5-6 kg weight loss either by

  1. Integration of RNA-Seq and RPPA data for survival time prediction in cancer patients.

    Science.gov (United States)

    Isik, Zerrin; Ercan, Muserref Ece

    2017-10-01

    Integration of several types of patient data in a computational framework can accelerate the identification of more reliable biomarkers, especially for prognostic purposes. This study aims to identify biomarkers that can successfully predict the potential survival time of a cancer patient by integrating the transcriptomic (RNA-Seq), proteomic (RPPA), and protein-protein interaction (PPI) data. The proposed method -RPBioNet- employs a random walk-based algorithm that works on a PPI network to identify a limited number of protein biomarkers. Later, the method uses gene expression measurements of the selected biomarkers to train a classifier for the survival time prediction of patients. RPBioNet was applied to classify kidney renal clear cell carcinoma (KIRC), glioblastoma multiforme (GBM), and lung squamous cell carcinoma (LUSC) patients based on their survival time classes (long- or short-term). The RPBioNet method correctly identified the survival time classes of patients with between 66% and 78% average accuracy for three data sets. RPBioNet operates with only 20 to 50 biomarkers and can achieve on average 6% higher accuracy compared to the closest alternative method, which uses only RNA-Seq data in the biomarker selection. Further analysis of the most predictive biomarkers highlighted genes that are common for both cancer types, as they may be driver proteins responsible for cancer progression. The novelty of this study is the integration of a PPI network with mRNA and protein expression data to identify more accurate prognostic biomarkers that can be used for clinical purposes in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Application of serum SELDI proteomic patterns in diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhou Bin

    2005-07-01

    Full Text Available Abstract Background Currently, no satisfactory biomarkers are available to screen for lung cancer. Surface-Enhanced Laser Desorption/ionization Time-of- Flight Mass Spectrometry ProteinChip system (SELDI-TOF-MS is one of the currently used techniques to identify biomarkers for cancers. The aim of this study is to explore the application of serum SELDI proteomic patterns to distinguish lung cancer patients from healthy individuals. Methods A total of 208 serum samples, including 158 lung cancer patients and 50 healthy individuals, were randomly divided into a training set (including 11 sera from patients with stages I/II lung cancer, 63 from patients with stages III/IV lung cancer and 20 from healthy controls and a blinded test set (including 43 sera from patients with stages I/II lung cancer, 41 from patients with stages III/IV lung cancer and 30 from healthy controls. All samples were analyzed by SELDI technology. The spectra were generated on weak cation exchange (WCX2 chips, and protein peaks clustering and classification analyses were made using Ciphergen Biomarker Wizard and Biomarker Pattern software, respectively. We additionally determined Cyfra21-1 and NSE in the 208 serum samples included in this study using an electrochemiluminescent immunoassay. Results Five protein peaks at 11493, 6429, 8245, 5335 and 2538 Da were automatically chosen as a biomarker pattern in the training set. When the SELDI marker pattern was tested with the blinded test set, it yielded a sensitivity of 86.9%, a specificity of 80.0% and a positive predictive value of 92.4%. The sensitivities provided by Cyfra21-1 and NSE used individually or in combination were significantly lower than that of the SELDI marker pattern (P P Conclusion These results suggest that serum SELDI protein profiling can distinguish lung cancer patients, especially NSCLC patients, from normal subjects with relatively high sensitivity and specificity, and the SELDI-TOF-MS is a potential tool

  3. Immunoscreening of the extracellular proteome of colorectal cancer cells

    International Nuclear Information System (INIS)

    Klein-Scory, Susanne; Schwarte-Waldhoff, Irmgard; Kübler, Salwa; Diehl, Hanna; Eilert-Micus, Christina; Reinacher-Schick, Anke; Stühler, Kai; Warscheid, Bettina; Meyer, Helmut E; Schmiegel, Wolff

    2010-01-01

    The release of proteins from tumors can trigger an immune response in cancer patients involving T lymphocytes and B lymphocytes, which results in the generation of antibodies to tumor-derived proteins. Many studies aim to use humoral immune responses, namely autoantibody profiles, directly, as clinical biomarkers. Alternatively, the antibody immune response as an amplification system for tumor associated alterations may be used to indicate putative protein biomarkers with high sensitivity. Aiming at the latter approach we here have implemented an autoantibody profiling strategy which particularly focuses on proteins released by tumor cells in vitro: the so-called secretome. For immunoscreening, the extracellular proteome of five colorectal cancer cell lines was resolved on 2D gels, immobilized on PVDF membranes and used for serological screening with individual sera from 21 colorectal cancer patients and 24 healthy controls. All of the signals from each blot were assigned to a master map, and autoantigen candidates were defined based of the pattern of immunoreactivities. The corresponding proteins were isolated from preparative gels, identified by MALDI-MS and/or by nano-HPLC/ESI-MS/MS and exemplarily confirmed by duplex Western blotting combining the human serum samples with antibodies directed against the protein(s) of interest. From 281 secretome proteins stained with autoantibodies in total we first defined the 'background patterns' of frequently immunoreactive extracellular proteins in healthy and diseased people. An assignment of these proteins, among them many nominally intracellular proteins, to the subset of exosomal proteins within the secretomes revealed a large overlap. On this basis we defined and consequently confirmed novel biomarker candidates such as the extreme C-terminus of the extracellular matrix protein agrin within the set of cancer-enriched immunorectivities. Our findings suggest, first, that autoantibody responses may be due, in

  4. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue

    NARCIS (Netherlands)

    N.Q. Liu (Ning Qing); R.B.H. Braakman (René); C. Stingl (Christoph); T.M. Luider (Theo); J.W.M. Martens (John); J.A. Foekens (John); A. Umar (Arzu)

    2012-01-01

    textabstractMass spectrometry (MS)-based label-free proteomics offers an unbiased approach to screen biomarkers related to disease progression and therapy-resistance of breast cancer on the global scale. However, multi-step sample preparation can introduce large variation in generated data, while

  5. Biomarkers for Early Detection of Clinically Relevant Prostate Cancer: A Multi-Institutional Validation Trial

    Science.gov (United States)

    2015-10-01

    provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently ...biomarker platforms in our multi-center, prospectively accrued prostate cancer active surveillance cohort – the Canary Prostate Active Surveillance...prostate cancers currently diagnosed are low risk tumors for which there is substantial evidence that the cancer will not cause harm if left untreated

  6. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Huarong Xu

    2016-08-01

    Full Text Available Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography—tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50 and liver cancer patients (n = 50 were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer.

  7. Total Protein of Whole Saliva as a Biomarker of Anaerobic Threshold

    Science.gov (United States)

    Bortolini, Miguel Junior Sordi; De Agostini, Guilherme Gularte; Reis, Ismair Teodoro; Lamounier, Romeu Paulo Martins Silva; Blumberg, Jeffrey B.; Espindola, Foued Salmen

    2009-01-01

    Saliva provides a convenient and noninvasive matrix for assessing specific physiological parameters, including some biomarkers of exercise. We investigated whether the total protein concentration of whole saliva (TPWS) would reflect the anaerobic threshold during an incremental exercise test. After a warm-up period, 13 nonsmoking men performed a…

  8. Applying Data-driven Imaging Biomarker in Mammography for Breast Cancer Screening: Preliminary Study

    OpenAIRE

    Kim, Eun-Kyung; Kim, Hyo-Eun; Han, Kyunghwa; Kang, Bong Joo; Sohn, Yu-Mee; Woo, Ok Hee; Lee, Chan Wha

    2018-01-01

    We assessed the feasibility of a data-driven imaging biomarker based on weakly supervised learning (DIB; an imaging biomarker derived from large-scale medical image data with deep learning technology) in mammography (DIB-MG). A total of 29,107 digital mammograms from five institutions (4,339 cancer cases and 24,768 normal cases) were included. After matching patients’ age, breast density, and equipment, 1,238 and 1,238 cases were chosen as validation and test sets, respectively, and the remai...

  9. Volatile organic compounds as biomarkers of bladder cancer: Sensitivity and specificity using trained sniffer dogs.

    Science.gov (United States)

    Willis, Carolyn M; Britton, Lezlie E; Harris, Rob; Wallace, Joshua; Guest, Claire M

    In a previous canine study, we demonstrated that volatile organic compounds specific to bladder cancer are present in urine headspace, subsequently showing that up to 70% of tumours can be correctly classified using an electronic nose. This study aimed to evaluate the sensitivity and specificity which can be achieved by a group of four trained dogs. In a series of 30 double-blind test runs, each consisting of one bladder cancer urine sample placed alongside six controls, the highest sensitivity achieved by the best performing dog was 73% (95% CI 55-86%), with the group as a whole correctly identifying the cancer samples 64% (95% CI 55-73%) of the time. Specificity of the dogs individually ranged from 92% (95% CI 82-97%) for urine samples obtained from healthy, young volunteers down to 56% (95% CI 42-68%) for those taken from older patients with non-cancerous urological disease. Odds ratio comparisons confirmed a significant decrease in performance as the extent of urine dipstick abnormality and/or pathology amongst the control population increased. Importantly, however, statistical analysis indicated that covariates such as smoking, gender and age, as well as blood, protein and /or leucocytes in the urine did not significantly alter the odds of response to the cancer samples. Our results provide further evidence that volatile biomarkers for bladder cancer exist in urine headspace, and that these have the potential to be exploited for diagnosis.

  10. Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications.

    Science.gov (United States)

    Sajic, Tatjana; Liu, Yansheng; Aebersold, Ruedi

    2015-04-01

    In medicine, there is an urgent need for protein biomarkers in a range of applications that includes diagnostics, disease stratification, and therapeutic decisions. One of the main technologies to address this need is MS, used for protein biomarker discovery and, increasingly, also for protein biomarker validation. Currently, data-dependent analysis (also referred to as shotgun proteomics) and targeted MS, exemplified by SRM, are the most frequently used mass spectrometric methods. Recently developed data-independent acquisition techniques combine the strength of shotgun and targeted proteomics, while avoiding some of the limitations of the respective methods. They provide high-throughput, accurate quantification, and reproducible measurements within a single experimental setup. Here, we describe and review data-independent acquisition strategies and their recent use in clinically oriented studies. In addition, we also provide a detailed guide for the implementation of SWATH-MS (where SWATH is sequential window acquisition of all theoretical mass spectra)-one of the data-independent strategies that have gained wide application of late. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Integration of Serum Protein Biomarker and Tumor Associated Autoantibody Expression Data Increases the Ability of a Blood-Based Proteomic Assay to Identify Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Meredith C Henderson

    Full Text Available Despite significant advances in breast imaging, the ability to accurately detect Breast Cancer (BC remains a challenge. With the discovery of key biomarkers and protein signatures for BC, proteomic technologies are currently poised to serve as an ideal diagnostic adjunct to imaging. Research studies have shown that breast tumors are associated with systemic changes in levels of both serum protein biomarkers (SPB and tumor associated autoantibodies (TAAb. However, the independent contribution of SPB and TAAb expression data for identifying BC relative to a combinatorial SPB and TAAb approach has not been fully investigated. This study evaluates these contributions using a retrospective cohort of pre-biopsy serum samples with known clinical outcomes collected from a single site, thus minimizing potential site-to-site variation and enabling direct assessment of SPB and TAAb contributions to identify BC. All serum samples (n = 210 were collected prior to biopsy. These specimens were obtained from 18 participants with no evidence of breast disease (ND, 92 participants diagnosed with Benign Breast Disease (BBD and 100 participants diagnosed with BC, including DCIS. All BBD and BC diagnoses were based on pathology results from biopsy. Statistical models were developed to differentiate BC from non-BC (i.e., BBD and ND using expression data from SPB alone, TAAb alone, and a combination of SPB and TAAb. When SPB data was independently used for modeling, clinical sensitivity and specificity for detection of BC were 74.7% and 77.0%, respectively. When TAAb data was independently used, clinical sensitivity and specificity for detection of BC were 72.2% and 70.8%, respectively. When modeling integrated data from both SPB and TAAb, the clinical sensitivity and specificity for detection of BC improved to 81.0% and 78.8%, respectively. These data demonstrate the benefit of the integration of SPB and TAAb data and strongly support the further development of

  12. Association between changes in fat distribution and biomarkers for breast cancer.

    NARCIS (Netherlands)

    van Gemert, Willemijn A; Monninkhof, Evelyn M; May, Anne M; Elias, Sjoerd G; van der Palen, Job; Veldhuis, Wouter; Stapper, Maaike; Stellato, Rebecca K; Schuit, Jantine A; Peeters, Petra H

    We assessed the associations between changes in total and abdominal fat and changes in biomarkers for breast cancer risk using data of the SHAPE-2 trial. In the SHAPE-2 trial, 243 postmenopausal overweight women were included. The intervention in this trial consisted of 5-6 kg weight loss either by

  13. From the endometrium physiology to a comprehensive strategy for the discovery of ovarian cancer biomarkers

    Directory of Open Access Journals (Sweden)

    Janos L. Tanyi

    2011-12-01

    Full Text Available The development of comprehensive strategies for biomarker discovery of gynecological cancers is needed. The unique physiology of the female genital track revolves around ovulatory cycles ending by the proteolysis of the endometrium triggered by progesterone decline during the last part of the luteal phase. Building on the known link between incessant ovulation and ovarian cancer, we hypothesize that life-long menstruations could damage neighboring organs such as fallopian tubes, ovaries and peritoneum via endometrial secretions, and thus endometrium neighboring structures may have developed highly efficient protective strategies that could, in turn, be hijacked by cancer cells for survival and invasion. After literature review, we could classify the molecules involved in ovulation and menstruation pathways in three main categories: proteases, proteases inhibitors and cell-surface protectors. Strikingly, all validated biomarkers for ovarian cancers belong to at least one of these categories. We thus propose the development of comprehensive methods for identification of early diagnostic markers for gynecological cancers using systematical mapping and characterization of surface or soluble molecules belonging to physiological pathways linked to menstruation and differently expressed during luteal cycles.

  14. Searching for new biomarkers in ovarian cancer patients: Rationale and design of a retrospective study under the Mermaid III project

    Directory of Open Access Journals (Sweden)

    Julie L. Hentze

    2017-12-01

    A thorough investigation of biomarkers in ovarian cancer, including large numbers of different markers, has never been done before. Besides from improving diagnosis and treatment, other outcomes could be markers for screening, knowledge of the molecular aspects of cancer and the discovery of new drugs. Moreover, biomarkers are a prerequisite for the development of precision medicine. This study will attack the ovarian cancer problem from several angles, thereby increasing the chance of successfully contributing to saving lives.

  15. Alpha-fetoprotein, a fascinating protein and biomarker in neurology.

    Science.gov (United States)

    Schieving, J H; de Vries, M; van Vugt, J M G; Weemaes, C; van Deuren, M; Nicolai, J; Wevers, R A; Willemsen, M A

    2014-05-01

    Alpha-fetoprotein (AFP) is present in fetal serum in concentrations up to 5,000,000 μg/l. After birth, AFP gene expression is turned down with a subsequent fall of the serum concentrations of this albumin-like protein to 'adult values' of circa 0.5-15 μg/l from the age of 2 years onwards. Irrespective of its assumed important functions, individuals with AFP deficiency appear fully healthy. The other way around, the presence of AFP in the circulation after the first years of life doesn't seem to harm, since individuals with 'hereditary persistence of AFP' are also without clinical abnormalities. During pregnancy, AFP (in maternal serum) has long been recognized as a marker for congenital anomalies of the fetus. Equally well known is AFP as biomarker for hepatocellular carcinoma and some other malignancies. There are at least four neurodegenerative disorders, all inherited as autosomal recessive traits and characterized by the presence of cerebellar ataxia, abnormal ocular movements, and neuropathy, for which an elevated concentration of serum AFP is an important diagnostic biomarker. The availability of a reliable biomarker is not only important during screening or diagnostic processes, but is also relevant for objective follow-up during (future) therapeutic interventions. Copyright © 2013. Published by Elsevier Ltd.

  16. Use of posttreatment imaging and biomarkers in survivors of early-stage breast cancer: Inappropriate surveillance or necessary care?

    Science.gov (United States)

    Hahn, Erin E; Tang, Tania; Lee, Janet S; Munoz-Plaza, Corrine E; Shen, Ernest; Rowley, Braden; Maeda, Jared L; Mosen, David M; Ruckdeschel, John C; Gould, Michael K

    2016-03-15

    Advanced imaging and serum biomarkers are commonly used for surveillance in patients with early-stage breast cancer, despite recommendations against this practice. Incentives to perform such low-value testing may be less prominent in integrated health care delivery systems. The purpose of the current study was to evaluate and compare the use of these services within 2 integrated systems: Kaiser Permanente (KP) and Intermountain Healthcare (IH). The authors also sought to distinguish the indication for testing: diagnostic purposes or routine surveillance. Patients with American Joint Committee on Cancer stage 0 to II breast cancer diagnosed between 2009 and 2010 were identified and the use of imaging and biomarker tests over an 18-month period were quantified, starting at 1 year after diagnosis. Chart abstraction was performed on a random sample of patients who received testing to identify the indication for testing. Multivariate regression was used to explore associations with the use of nonrecommended care. A total of 6585 patients were identified; 22% had stage 0 disease, 44% had stage I disease, and 34% had stage II disease. Overall, 24% of patients received at least 1 imaging test (25% at KP vs 22% at IH; P = .009) and 28% of patients received at least 1 biomarker (36% at KP vs 13% at IH; Ptests were performed to evaluate symptoms or signs. Virtually all biomarkers were ordered for routine surveillance. Stage of disease, medical center that provided the services, and provider experience were found to be significantly associated with the use of biomarkers. Advanced imaging was most often performed for appropriate indications, but biomarkers were used for nonrecommended surveillance. Distinguishing between inappropriate use for surveillance and appropriate diagnostic testing is essential when evaluating adherence to recommendations. © 2015 American Cancer Society.

  17. The relevance of gastric cancer biomarkers in prognosis and pre- and post- chemotherapy in clinical practice.

    Science.gov (United States)

    Abbas, Muhammad; Habib, Murad; Naveed, Muhammad; Karthik, Kumaragurubaran; Dhama, Kuldeep; Shi, Meiqi; Dingding, Chen

    2017-11-01

    Gastric cancer (GC) is one among the major cancer types, causing human deaths and present noticeable heterogeneity. The incidences and mortality rates are higher in males in comparison to females with a male to female ratio of 2.3:1. A lot of studies have revealed out the molecular basis, pathogenesis, invasion and metastasis related findings of gastric stomach cancer. Present review encompasses the salient information on various biomarkers for the early diagnosis, treatment and prognosis of gastric cancer elaborate the clinical importance of serum tumor markers in patients with this cancer as well as checking the growths, together with epigenetic changes and genetic polymorphisms. A deep and rigorous search was carried out in Pub Med/MEDLINE using specific key words; "gastric cancer", with "tumor marker". Our search yielded 4947 important reports about related topic from books and articles that were published before the end of August 2017. Conclusively, Scientists are utilizing high time and resource to salvage this nemesis which is of global importance and cause health burden. Classical and novel biomarkers are important for treatment as well as pre- and post- diagnosis of GC. Major causes for GC are cigarette smoking, infection by Helicobacter pylori, atrophic gastritis, sex/gender, and high salt intake. Early diagnoses of GC is important for the management, treatment, pathological diagnoses by stage prognosis and metastatic setting; although the treatment outcome proved to be not much fruitful following chemotherapy, and oral medication with oxaliplatin, capecitabine, cisplatin and 5- fluorouracil (5-FU). More research studies and exploring the practical usage of gastric cancer biomarkers in diagnosis, prognosis and pre- and post- chemotherapy in clinical practice for countering gastric cancers would alleviate to some extent the ill health sufferings of humans being caused by this important and common cancerous condition. Copyright © 2017 Elsevier Masson SAS

  18. Protein Kinase CK2 Expression Predicts Relapse Survival in ERα Dependent Breast Cancer, and Modulates ERα Expression in Vitro

    Directory of Open Access Journals (Sweden)

    Marlon D. Williams

    2015-12-01

    Full Text Available The heterotetrameric protein kinase CK2 has been associated with oncogenic transformation, and our previous studies have shown that it may affect estrogenic signaling. Here, we investigate the role of the protein kinase CK2 in regulating ERα (estrogen receptor α signaling in breast cancer. We determined the correlation of CK2α expression with relapse free breast cancer patient survival utilizing Kaplan Meier Plotter (kmplot.com/analysis/ to mine breast cancer microarrays repositories. Patients were stratified according to ERα status, histological grade, and hormonal therapy. Luciferase reporter assays and flow cytometry were implemented to determine the impact of CK2 inhibition on ERE-mediated gene expression and expression of ERα protein. CK2α expression is associated with shorter relapse free survival among ERα (+ patients with grade 1 or 2 tumors, as well as among those patients receiving hormonal therapy. Biochemical inhibition of CK2 activity results in increased ER-transactivation as well as increased expression among ERα (+ and ERα (− breast cancer cell lines. These findings suggest that CK2 may contribute to estrogen-independent cell proliferation and breast tumor progression, and may potentially serve as a biomarker and pharmacological target in breast cancer.

  19. Galectin-3 and Beclin1/Atg6 genes in human cancers: using cDNA tissue panel, qRT-PCR, and logistic regression model to identify cancer cell biomarkers.

    Directory of Open Access Journals (Sweden)

    Halliday A Idikio

    Full Text Available Cancer biomarkers are sought to support cancer diagnosis, predict cancer patient response to treatment and survival. Identifying reliable biomarkers for predicting cancer treatment response needs understanding of all aspects of cancer cell death and survival. Galectin-3 and Beclin1 are involved in two coordinated pathways of programmed cell death, apoptosis and autophagy and are linked to necroptosis/necrosis. The aim of the study was to quantify galectin-3 and Beclin1 mRNA in human cancer tissue cDNA panels and determine their utility as biomarkers of cancer cell survival.A panel of 96 cDNAs from eight (8 different normal and cancer tissue types were used for quantitative real-time polymerase chain reaction (qRT-PCR using ABI7900HT. Miner2.0, a web-based 4- and 3-parameter logistic regression software was used to derive individual well polymerase chain reaction efficiencies (E and cycle threshold (Ct values. Miner software derived formula was used to calculate mRNA levels and then fold changes. The ratios of cancer to normal tissue levels of galectin-3 and Beclin1 were calculated (using the mean for each tissue type. Relative mRNA expressions for galectin-3 were higher than for Beclin1 in all tissue (normal and cancer types. In cancer tissues, breast, kidney, thyroid and prostate had the highest galectin-3 mRNA levels compared to normal tissues. High levels of Beclin1 mRNA levels were in liver and prostate cancers when compared to normal tissues. Breast, kidney and thyroid cancers had high galectin-3 levels and low Beclin1 levels.Galectin-3 expression patterns in normal and cancer tissues support its reported roles in human cancer. Beclin1 expression pattern supports its roles in cancer cell survival and in treatment response. qRT-PCR analysis method used may enable high throughput studies to generate molecular biomarker sets for diagnosis and predicting cancer treatment response.

  20. Exosome: emerging biomarker in breast cancer

    OpenAIRE

    Jia, Yunlu; Chen, Yongxia; Wang, Qinchuan; Jayasinghe, Ushani; Luo, Xiao; Wei, Qun; Wang, Ji; Xiong, Hanchu; Chen, Cong; Xu, Bin; Hu, Wenxian; Wang, Linbo; Zhao, Wenhe; Zhou, Jichun

    2017-01-01

    Exosomes are nano-sized membrane vesicles released by a variety of cell types, and are thought to play important roles in intercellular communications. In breast cancer, through horizontal transfer of various bioactive molecules, such as proteins and mRNAs, exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information and play an important role on cancer progression. This review outlines the current knowledge and concepts concerning the exosomes involvement in br...

  1. European Organisation for Research and Treatment of Cancer (EORTC) Pathobiology Group standard operating procedure for the preparation of human tumour tissue extracts suited for the quantitative analysis of tissue-associated biomarkers.

    Science.gov (United States)

    Schmitt, Manfred; Mengele, Karin; Schueren, Elisabeth; Sweep, Fred C G J; Foekens, John A; Brünner, Nils; Laabs, Juliane; Malik, Abha; Harbeck, Nadia

    2007-03-01

    With the new concept of 'individualized treatment and targeted therapies', tumour tissue-associated biomarkers have been given a new role in selection of cancer patients for treatment and in cancer patient management. Tumour biomarkers can give support to cancer patient stratification and risk assessment, treatment response identification, or to identifying those patients who are expected to respond to certain anticancer drugs. As the field of tumour-associated biomarkers has expanded rapidly over the last years, it has become increasingly apparent that a strong need exists to establish guidelines on how to easily disintegrate the tumour tissue for assessment of the presence of tumour tissue-associated biomarkers. Several mechanical tissue (cell) disruption techniques exist, ranging from bead mill homogenisation and freeze-fracturing through to blade or pestle-type homogenisation, to grinding and ultrasonics. Still, only a few directives have been given on how fresh-frozen tumour tissues should be processed for the extraction and determination of tumour biomarkers. The PathoBiology Group of the European Organisation for Research and Treatment of Cancer therefore has devised a standard operating procedure for the standardised preparation of human tumour tissue extracts which is designed for the quantitative analysis of tumour tissue-associated biomarkers. The easy to follow technical steps involved require 50-300 mg of deep-frozen cancer tissue placed into small size (1.2 ml) cryogenic tubes. These are placed into the shaking flask of a Mikro-Dismembrator S machine (bead mill) to pulverise the tumour tissue in the capped tubes in the deep-frozen state by use of a stainless steel ball, all within 30 s of exposure. RNA is isolated from the pulverised tissue following standard procedures. Proteins are extracted from the still frozen pulverised tissue by addition of Tris-buffered saline to obtain the cytosol fraction of the tumour or by the Tris buffer supplemented with

  2. Detection of lung cancer using plasma protein profiling by matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Shevchenko, Valeriy E; Arnotskaya, Natalia E; Zaridze, David G

    2010-01-01

    There are no satisfactory plasma biomarkers which are available for the early detection and monitoring of lung cancer, one of the most frequent cancers worldwide. The aim of this study is to explore the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) to plasma proteomic patterns to distinguish lung cancer patients from healthy individuals. The EDTA plasma samples have been pre-fractionated using magnetic bead kits functionalized with weak cation exchange coatings. We compiled MS protein profiles for 90 patients with squamous cell carcinomas (SCC) and compared them with profiles from 187 healthy controls. The MALDI-ToF spectra were analyzed statistically using ClinProTools bioinformatics software. Depending on the sample used, up to 441 peaks/spectrum could be detected in a mass range of 1000-20,000 Da; 33 of these proteins had statistically differential expression levels between SCC and control plasma (P 90%) in external validation test. These results suggest that plasma MALDI-ToF MS protein profiling can distinguish patients with SCC and also from healthy individuals with relatively high sensitivity and specificity and that MALDI- ToF MS is a potential tool for the screening of lung cancer.

  3. Discovering biomarkers from gene expression data for predicting cancer subgroups using neural networks and relational fuzzy clustering

    Directory of Open Access Journals (Sweden)

    Sharma Animesh

    2007-01-01

    Full Text Available Abstract Background The four heterogeneous childhood cancers, neuroblastoma, non-Hodgkin lymphoma, rhabdomyosarcoma, and Ewing sarcoma present a similar histology of small round blue cell tumor (SRBCT and thus often leads to misdiagnosis. Identification of biomarkers for distinguishing these cancers is a well studied problem. Existing methods typically evaluate each gene separately and do not take into account the nonlinear interaction between genes and the tools that are used to design the diagnostic prediction system. Consequently, more genes are usually identified as necessary for prediction. We propose a general scheme for finding a small set of biomarkers to design a diagnostic system for accurate classification of the cancer subgroups. We use multilayer networks with online gene selection ability and relational fuzzy clustering to identify a small set of biomarkers for accurate classification of the training and blind test cases of a well studied data set. Results Our method discerned just seven biomarkers that precisely categorized the four subgroups of cancer both in training and blind samples. For the same problem, others suggested 19–94 genes. These seven biomarkers include three novel genes (NAB2, LSP1 and EHD1 – not identified by others with distinct class-specific signatures and important role in cancer biology, including cellular proliferation, transendothelial migration and trafficking of MHC class antigens. Interestingly, NAB2 is downregulated in other tumors including Non-Hodgkin lymphoma and Neuroblastoma but we observed moderate to high upregulation in a few cases of Ewing sarcoma and Rabhdomyosarcoma, suggesting that NAB2 might be mutated in these tumors. These genes can discover the subgroups correctly with unsupervised learning, can differentiate non-SRBCT samples and they perform equally well with other machine learning tools including support vector machines. These biomarkers lead to four simple human interpretable

  4. [Search for potential gastric cancer biomarkers using low molecular weight blood plasma proteome profiling by mass spectrometry].

    Science.gov (United States)

    Shevchenko, V E; Arnotskaia, N E; Ogorodnikova, E V; Davydov, M M; Ibraev, M A; Turkin, I N; Davydov, M I

    2014-01-01

    Gastric cancer, one of the most widespread malignant tumors, still lacks reliable serum/plasma biomarkers of its early detection. In this study we have developed, unified, and tested a new methodology for search of gastric cancer biomarkers based on profiling of low molecular weight proteome (LMWP) (1-17 kDa). This approach included three main components: sample pre-fractionation, matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), data analysis by a bioinformatics software package. Applicability and perspectives of the developed approach for detection of potential gastric cancer markers during LMWP analysis have been demonstrated using 69 plasma samples from patients with gastric cancer (stages I-IV) and 238 control samples. The study revealed peptides/polypeptides, which may be potentially used for detection of this pathology.

  5. Osteopontin is a prognostic biomarker in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Rud, Ane Kongsgaard; Mælandsmo, Gunhild M; Boye, Kjetil; Øijordsbakken, Miriam; Lund-Iversen, Marius; Halvorsen, Ann Rita; Solberg, Steinar K; Berge, Gisle; Helland, Åslaug; Brustugun, Odd Terje

    2013-01-01

    In a previously published report we characterized the expression of the metastasis-associated proteins S100A4, osteopontin (OPN) and ephrin-A1 in a prospectively collected panel of non-small cell lung cancer (NSCLC) tumors. The aim of the present follow-up study was to investigate the prognostic impact of these potential biomarkers in the same patient cohort. In addition, circulating serum levels of OPN were measured and single nucleotide polymorphisms (SNP) in the -443 position of the OPN promoter were analyzed. Associations between immunohistochemical expression of S100A4, OPN and ephrin-A1 and relapse free and overall survival were examined using univariate and multivariate analyses. Serum OPN was measured by ELISA, polymorphisms in the -443 position of the tumor OPN promoter were analyzed by PCR, and associations between OPN levels and promoter polymorphisms and clinicopathological parameters and patient outcome were investigated. High expression of OPN in NSCLC tumors was associated with poor patient outcome, and OPN was a strong, independent prognostic factor for both relapse free and overall survival. Serum OPN levels increased according to tumor pT classification and tumor size, and patients with OPN-expressing tumors had higher serum levels than patients with OPN-negative tumors. S100A4 was a negative prognostic factor in several subgroups of adenocarcinoma patients, but not in the overall patient cohort. There was no association between ephrin-A1 expression and patient outcome. OPN is a promising prognostic biomarker in NSCLC, and should be further explored in the selection of patients for adjuvant treatment following surgical resection

  6. Evaluation of the TRPM2 channel as a biomarker in breast cancer using public databases analysis.

    Science.gov (United States)

    Sumoza-Toledo, Adriana; Espinoza-Gabriel, Mario Iván; Montiel-Condado, Dvorak

    Breast cancer is one of the most common malignancies affecting women. Recent investigations have revealed a major role of ion channels in cancer. The transient receptor potential melastatin-2 (TRPM2) is a plasma membrane and lysosomal channel with important roles in cell migration and cell death in immune cells and tumor cells. In this study, we investigated the prognostic value of TRPM2 channel in breast cancer, analyzing public databases compiled in Oncomine™ (Thermo Fisher, Ann Arbor, MI) and online Kaplan-Meier Plotter platforms. The results revealed that TRPM2 mRNA overexpression is significant in situ and invasive breast carcinoma compared to normal breast tissue. Furthermore, multi-gene validation using Oncomine™ showed that this channel is coexpressed with proteins related to cellular migration, transformation, and apoptosis. On the other hand, Kaplan-Meier analysis exhibited that low expression of TRPM2 could be used to predict poor outcome in ER- and HER2+ breast carcinoma patients. TRPM2 is a promising biomarker for aggressiveness of breast cancer, and a potential target for the development of new therapies. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  7. Plasma Biomarkers for Detecting Hodgkin's Lymphoma in HIV Patients

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Webb-Robertson, Bobbie-Jo M.; Hessol, Nancey; Smith, Richard D.; Zangar, Richard C.

    2011-12-16

    The lifespan of AIDS patients has increased as a result of aggressive antiretroviral therapy, and the incidences of the AIDS-defining cancers, Hodgkin's lymphoma and Kaposi sarcoma, are declining, Still, the increased longevity of AIDS patients is now associated with increased incidence of other cancers, including Hodgkin's lymphoma (HL). In order to determine if we could identify biomarkers for the early detection of HL, we undertook an accurate mass and elution time tag proteomics analysis of individual plasma samples from AIDS patients without HL (n=14) and with HL (n=22). This analysis identified 33 proteins, included C-reactive protein and three serum amyloid proteins, that were statistically (p<0.05) altered by at least 1.5-fold between the two groups. At least three of these proteins have previously been reported to be altered in the blood of HL patients. Ingenuity Pathway Analysis software identified 'inflammatory response' and 'cancer' as the top two, biological functions commonly associated with these proteins. The clear association of these proteins with cancer and inflammation suggests that they are truly associated with HL and that they would be useful in the detection of this disease.

  8. Protein carbonyl content: a novel biomarker for aging in HIV/AIDS patients.

    Science.gov (United States)

    Kolgiri, Vaishali; Patil, Vinayak Wamanrao

    The major complications of "treated" Human Immunodeficiency Virus (HIV) infection are cardiovascular disease, malignancy, renal disease, liver disease, bone disease, and perhaps neurological complications, which are phenomena of the normal aging process occurring at an earlier age in the HIV-infected population. The present study is aimed to explore protein carbonyl content as a biomarker for detecting oxidative DNA damage induced ART toxicity and/or accelerated aging in HIV/AIDS patients. To investigate the potential of carbonyl content as a biomarker for detecting oxidative Deoxyribonucleic acid (DNA) damage induced Antiretroviral Theraphy (ART) toxicity and/or accelerated aging in HIV/AIDS patients. In this case-control study a total 600 subjects were included. All subjects were randomly selected and grouped as HIV-negative (control group) (n=300), HIV-infected ART naive (n=100), HIV-infected on first line ART (n=100), and HIV-infected on second line ART (n=100). Seronegative control subjects were age- and sex-matched with the ART naive patients and the two other groups. Carbonyl protein was determined by the method described in Levine et al. DNA damage marker 8-OH-dG was determined using 8-hydroxy-2-deoxy Guanosine StressXpress ELA Kit by StressMarq Biosciences. Protein carbonyl content levels and oxidative DNA damage were significantly higher (paging in HIV/AIDS patients. Larger studies are warranted to elucidate the role of carbonyl content as a biomarker for premature aging in HIV/AIDS patients. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Using MALDI-IMS and MRM to stablish a pipeline for discovery and validation of tumor neovasculature biomarker candidates. — EDRN Public Portal

    Science.gov (United States)

    In an effort to circumvent the limitations associated with biomarker discovery workflows involving cell lines and cell cultures, histology-directed MALDI protein profiling and imaging mass spectrometry will be used for identification of vascular endothelial biomarkers suitable for early prostate cancer detection by CEUS targeted molecular imaging

  10. Discovery and validation of DNA hypomethylation biomarkers for liver cancer using HRM-specific probes.

    Directory of Open Access Journals (Sweden)

    Barbara Stefanska

    Full Text Available Poor prognosis of hepatocellular carcinoma (HCC associated with late diagnosis necessitates the development of early diagnostic biomarkers. We have previously delineated the landscape of DNA methylation in HCC patients unraveling the importance of promoter hypomethylation in activation of cancer- and metastasis-driving genes. The purpose of the present study was to test the feasibility that genes that are hypomethylated in HCC could serve as candidate diagnostic markers. We use high resolution melting analysis (HRM as a simple translatable PCR-based method to define methylation states in clinical samples. We tested seven regions selected from the shortlist of genes hypomethylated in HCC and showed that HRM analysis of several of them distinguishes methylation states in liver cancer specimens from normal adjacent liver and chronic hepatitis in the Shanghai area. Such regions were identified within promoters of neuronal membrane glycoprotein M6-B (GPM6B and melanoma antigen family A12 (MAGEA12 genes. Differences in HRM in the immunoglobulin superfamily Fc receptor (FCRL1 separated invasive tumors from less invasive HCC. The identified biomarkers differentiated HCC from chronic hepatitis in another set of samples from Dhaka. Although the main thrust in DNA methylation diagnostics in cancer is on hypermethylated genes, our study for the first time illustrates the potential use of hypomethylated genes as markers for solid tumors. After further validation in a larger cohort, the identified DNA hypomethylated regions can become important candidate biomarkers for liver cancer diagnosis and prognosis, especially in populations with high risk for HCC development.

  11. Candidate proteins, metabolites and transcripts in the Biomarkers for Spinal Muscular Atrophy (BforSMA clinical study.

    Directory of Open Access Journals (Sweden)

    Richard S Finkel

    Full Text Available Spinal Muscular Atrophy (SMA is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1 gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of full-length SMN protein. SMN2 copy number inversely correlates with disease severity. Identifying other novel biomarkers could inform clinical trial design and identify novel therapeutic targets.To identify novel candidate biomarkers associated with disease severity in SMA using unbiased proteomic, metabolomic and transcriptomic approaches.A cross-sectional single evaluation was performed in 108 children with genetically confirmed SMA, aged 2-12 years, manifesting a broad range of disease severity and selected to distinguish factors associated with SMA type and present functional ability independent of age. Blood and urine specimens from these and 22 age-matched healthy controls were interrogated using proteomic, metabolomic and transcriptomic discovery platforms. Analyte associations were evaluated against a primary measure of disease severity, the Modified Hammersmith Functional Motor Scale (MHFMS and to a number of secondary clinical measures.A total of 200 candidate biomarkers correlate with MHFMS scores: 97 plasma proteins, 59 plasma metabolites (9 amino acids, 10 free fatty acids, 12 lipids and 28 GC/MS metabolites and 44 urine metabolites. No transcripts correlated with MHFMS.In this cross-sectional study, "BforSMA" (Biomarkers for SMA, candidate protein and metabolite markers were identified. No transcript biomarker candidates were identified. Additional mining of this rich dataset may yield important insights into relevant SMA-related pathophysiology and biological network associations. Additional prospective studies are needed to confirm these findings, demonstrate sensitivity to change with

  12. The Immunome of Colon Cancer: Functional In Silico Analysis of Antigenic Proteins Deduced from IgG Microarray Profiling

    Directory of Open Access Journals (Sweden)

    Johana A. Luna Coronell

    2018-02-01

    Full Text Available Characterization of the colon cancer immunome and its autoantibody signature from differentially-reactive antigens (DIRAGs could provide insights into aberrant cellular mechanisms or enriched networks associated with diseases. The purpose of this study was to characterize the antibody profile of plasma samples from 32 colorectal cancer (CRC patients and 32 controls using proteins isolated from 15,417 human cDNA expression clones on microarrays. 671 unique DIRAGs were identified and 632 were more highly reactive in CRC samples. Bioinformatics analyses reveal that compared to control samples, the immunoproteomic IgG profiling of CRC samples is mainly associated with cell death, survival, and proliferation pathways, especially proteins involved in EIF2 and mTOR signaling. Ribosomal proteins (e.g., RPL7, RPL22, and RPL27A and CRC-related genes such as APC, AXIN1, E2F4, MSH2, PMS2, and TP53 were highly enriched. In addition, differential pathways were observed between the CRC and control samples. Furthermore, 103 DIRAGs were reported in the SEREX antigen database, demonstrating our ability to identify known and new reactive antigens. We also found an overlap of 7 antigens with 48 “CRC genes.” These data indicate that immunomics profiling on protein microarrays is able to reveal the complexity of immune responses in cancerous diseases and faithfully reflects the underlying pathology. Keywords: Autoantibody tumor biomarker, Cancer immunology, Colorectal cancer, Immunomics, Protein microarray

  13. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers

    Directory of Open Access Journals (Sweden)

    Y. Gidron

    2018-01-01

    Full Text Available Background. The vagus nerve may slow tumor progression because it inhibits inflammation. This study examined the relationship between a new vagal neuroimmunomodulation (NIM index and survival in fatal cancers. Method. We retroactively derived markers of vagal nerve activity indexed by heart rate variability (HRV, specifically the root mean square of successive differences (RMSSD, from patients’ electrocardiograms near diagnosis. The NIM index was the ratio of RMSSD to C-reactive protein levels (RMSSD/CRP. Sample 1 included 202 Belgian patients with advanced pancreatic cancer (PC, while sample 2 included 71 Belgian patients with non-small cell lung cancer (NSCLC. In both samples, we examined the overall survival, while in sample 2, we additionally examined the survival time in deceased patients. Results. In PC patients, in a multivariate Cox regression controlling for confounders, the NIM index had a protective relative risk (RR of 0.68 and 95% confidence interval (95% CI of 0.51–0.92. In NSCLC patients, the NIM index also had a protective RR of 0.53 and 95% CI of 0.32–0.88. Finally, in NSCLC, patients with a higher NIM index survived more days (475.2 than those with lower NIM (285.1 (p<0.05. Conclusions. The NIM index, reflecting vagal modulation of inflammation, may be a new independent prognostic biomarker in fatal cancers.

  14. Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hae Dong Woo

    Full Text Available BACKGROUND: Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. METHODS: We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. RESULTS: The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I(2: 80%. Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I(2: 0% and LINE-1 used same target sequence (p = 0.097, I(2: 49%, whereas considerable variance remained in LINE-1 (p<0.001, I(2: 80% and bladder cancer studies (p = 0.016, I(2: 76%. These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI: 1.48 (1.28-1.70]. CONCLUSIONS: Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral

  15. Circulating DNA as Potential Biomarker for Cancer Individualized Therapy

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    2013-09-01

    Full Text Available Cancer individualized therapy often requires for gene mutation analysis of tumor tissue. However, tumor tissue is not always available in clinical practice, particularly from patients with refractory and recurrence disease. Even if patients have sufficient tumor tissue for detection, as development of cancer, the gene status and drug sensitivity of tumor tissues could also change. Hence, screening mutations from primary tumor tissues becomes useless, it’s necessary to find a surrogate tumor tissue for individualized gene screening. Circulating DNA is digested rapidly from blood, which could provide real-time information of the released fragment and make the real-time detection possible. Therefore, it’s expected that circulating DNA could be a potential tumor biomarker for cancer individualized therapy. This review focuses on the biology and clinical utility of circulating DNA mainly on gene mutation detection. Besides, its current status and possible direction in this research area is summarized and discussed objectively.

  16. Mass spectrum analysis of serum biomarker proteins from patients with schizophrenia.

    Science.gov (United States)

    Zhou, Na; Wang, Jie; Yu, Yaqin; Shi, Jieping; Li, Xiaokun; Xu, Bin; Yu, Qiong

    2014-05-01

    Diagnosis of schizophrenia does not have a clear objective test at present, so we aimed to identify the potential biomarkers for the diagnosis of schizophrenia by comparison of serum protein profiling between first-episode schizophrenia patients and healthy controls. The combination of a magnetic bead separation system with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS) was used to analyze the serum protein spectra of 286 first-episode patients with schizophrenia, 41 chronic disease patients and 304 healthy controls. FlexAnlysis 3.0 and ClinProTools(TM) 2.1 software was used to establish a diagnostic model for schizophrenia. The results demonstrated that 10 fragmented peptides demonstrated an optimal discriminatory performance. Among these fragmented peptides, the peptide with m/z 1206.58 was identified as a fragment of fibrinopeptide A. Receiver operating characteristic analysis for m/z 1206.58 showed that the area under the curve was 0.981 for schizophrenia vs healthy controls, and 0.999 for schizophrenia vs other chronic disease controls. From our result, we consider that the analysis of serum protein spectrum using the magnetic bead separation system and MALDI-TOF/TOF-MS is an objective diagnostic tool. We conclude that fibrinopeptide A has the potential to be a biomarker for diagnosis of schizophrenia. This protein may also help to elucidate schizophrenia disease pathogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Immunosignature: Serum Antibody Profiling for Cancer Diagnostics.

    Science.gov (United States)

    Chapoval, Andrei I; Legutki, J Bart; Stafford, Philip; Trebukhov, Andrey V; Johnston, Stephen A; Shoikhet, Yakov N; Lazarev, Alexander F

    2015-01-01

    Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as