WorldWideScience

Sample records for canadian oil sands

  1. Policy Analysis of the Canadian Oil Sands Experience

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  2. Microstructural characterization of a Canadian oil sand

    CERN Document Server

    Dinh, Hong Doan; Nauroy, Jean-François; Tang, Anh-Minh; Souhail, Youssef; 10.1139/T2012-072

    2013-01-01

    The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation (Alberta, Canada) has been investigated by using high resolution 3D X-Ray microtomography ($\\mu$CT) and Cryo Scanning Electron Microscopy (CryoSEM). $\\mu$CT images evidenced some dense areas composed of highly angular grains surrounded by fluids that are separated by larger pores full of gas. 3D Image analysis provided in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. $\\mu$CT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in th...

  3. Engaging Canadians: national oil sands dialogues - A background paper

    International Nuclear Information System (INIS)

    It is expected that the world's energy demand will grow significantly between now and the year 2050. Hydrocarbons will have an important role to play in meeting this increasing demand and unconventional sources such as oil sands will become more and more important. The Canadian Association of Petroleum Producers (CAPP) has been engaged in a dialogue process to examine the environmental, economic and social impacts of the oil sands industry and the aim of this background paper is to provide stakeholders with some context. The paper highlights the fact that although the oil sands industry gives rise to environmental issues such as greenhouse gas emissions, air pollutants, land disturbance and water use, the environmental performance of the industry has been improving in recent years thanks to new technologies.

  4. Monitoring of the Canadian Oil Sands from the Aura Satellite

    Science.gov (United States)

    McLinden, C. A.; Shephard, M. W.; Fioletov, V.; Cady-Pereira, K. E.; Krotkov, N. A.; Boersma, K. F.; Li, C.; Luo, M.; Joiner, J.; Bhartia, P. K.

    2014-12-01

    Two instruments on-board the NASA Aura satellite, the Ozone Monitoring Instrument (OMI) and Tropospheric Emission Spectrometer (TES), have been used to monitor air pollution over the Canadian oil sands region. Between them they provide a unique perspective on the distributions, evolution, and sources of several key pollutants. This presentation will detail some highlights from these Aura-based oil sands studies: (i) the evolution of OMI-measured nitrogen dioxide and sulfur dioxide enhancements over the past decade, including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from TES special-observation transects, and (iii) preliminary insights into emissions derived from these observations.

  5. Nuclear Technology and Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    International Nuclear Information System (INIS)

    This report analyzes the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed for a Canadian oil sands extraction facility using Steam-Assisted Gravity Drainage (SAGD) technology. The energy from the nuclear reactor would replace the energy supplied by natural gas, which is currently burned at these facilities. There are a number of concerns surrounding the continued use of natural gas, including carbon dioxide emissions and increasing gas prices. Three scenarios for the use of the reactor are analyzed:(1) using the reactor to produce only the steam needed for the SAGD process; (2) using the reactor to produce steam as well as electricity for the oil sands facility; and (3) using the reactor to produce steam, electricity, and hydrogen for upgrading the bitumen from the oil sands to syncrude, a material similar to conventional crude oil. Three reactor designs were down-selected from available options to meet the expected mission demands and siting requirements. These include the Canadian ACR- 700, Westinghouse's AP 600 and the Pebble Bed Modular Reactor (PBMR). The report shows that nuclear energy would be feasible, practical, and economical for use at an oil sands facility. Nuclear energy is two to three times cheaper than natural gas for each of the three scenarios analyzed. Also, by using nuclear energy instead of natural gas, a plant producing 100,000 barrels of bitumen per day would prevent up to 100 mega-tonnes of CO2 per year from being released into the atmosphere. (authors)

  6. Understanding the Canadian oil sands industry's greenhouse gas emissions

    International Nuclear Information System (INIS)

    The magnitude of Canada's oil sands reserves, their rapidly expanding and energy intensive production, combined with existing and upcoming greenhouse gas (GHG) emissions regulations motivate an evaluation of oil sands-derived fuel production from a life cycle perspective. Thirteen studies of GHG emissions associated with oil sands operations are reviewed. The production of synthetic crude oil (SCO) through surface mining and upgrading (SM and Up) or in situ and upgrading (IS and Up) processes is reported to result in emissions ranging from 62 to 164 and 99 to 176 kgCO2eq/bbl SCO, respectively (or 9.2-26.5 and 16.2-28.7 gCO2eq MJ-1 SCO, respectively), compared to 27-58 kgCO2eq/bbl (4.5-9.6 gCO2eq MJ-1) of crude for conventional oil production. The difference in emissions intensity between SCO and conventional crude production is primarily due to higher energy requirements for extracting bitumen and upgrading it into SCO. On a 'well-to-wheel' basis, GHG emissions associated with producing reformulated gasoline from oil sands with current SM and Up, IS and Up, and in situ (without upgrading) technologies are 260-320, 320-350, and 270-340 gCO2eq km-1, respectively, compared to 250-280 gCO2eq km-1 for production from conventional oil. Some variation between studies is expected due to differences in methods, technologies studied, and operating choices. However, the magnitude of the differences presented suggests that a consensus on the characterization of life cycle emissions of the oil sands industry has yet to be reached in the public literature. Recommendations are given for future studies for informing industry and government decision making.

  7. Markets for Canadian oil

    International Nuclear Information System (INIS)

    This conference presentation presented charts and graphs on the market for Canadian oil. Graphs included crude oil and natural gas prices and heavy oil discount differential. Graphs depicting heavy oil economics such as bitumen blending with condensate were also included along with global crude oil reserves by country. Information on oil sands projects in the Athabasca, Peace River, and Cold Lake deposits was presented along with graphs on oil sands supply costs by recovery type; Canadian production for conventional, oil sands and offshore oil; new emerging oil sands crude types; and 2003 market demand by crude type in the United States and Canada. Maps included Canada and United States crude oil pipelines; western Canadian crude oil markets; long term oil pipeline expansion projects; Canadian and United States crude oil pipeline alternatives; and potential tanker markets for Canadian oil sands production. Lastly, the presentation provided graphs on 2003 refinery crude demand and California market demand. tabs., figs

  8. Processing of tailings in Canadian oil sands industry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vast amounts of tailings are produced daily in bitumen extraction from the Athabasca oil sands. The coarse sand from the tailings stream is used to build dykes around the containment basin. The run-off slurry arrives at the water's edge in the tailings pond at a solids concentration of about 3%~8% by mass. Settling of the solids takes place "relatively fast", over several days, creating a "free water zone" that contains little solids. When the fine mineral solids concentration has reached about 15% by mass, the suspension develops non-Newtonian properties. After 2~3 years, the suspension concentration reaches a value of about 30% by mass at which the settling rate becomes extremely slow. Methods to handle the already created tailings ponds and new approaches to eliminate the creation of new ones will be discussed both from the industrial and fundamental prospective.

  9. Satellite Monitoring Over the Canadian Oil Sands: Highlights from Aura OMI and TES

    Science.gov (United States)

    Shephard, Mark W.; McLinden, Chris; Fioletov, Vitali; Cady-Pereira, Karen E.; Krotkov, Nick A.; Boersma, Folkert; Li, Can; Luo, Ming; Bhartia, P. K.; Joiner, Joanna

    2014-01-01

    Satellite remote sensing provides a unique perspective for air quality monitoring in and around the Canadian Oil Sands as a result of its spatial and temporal coverage. Presented are Aura satellite observations of key pollutants including nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ammonia (NH3), methanol (CH3OH), and formic acid (HCOOH) over the Canadian Oil Sands. Some of the highlights include: (i) the evolution of NO2 and SO2 from the Ozone Monitoring Instrument (OMI), including comparisons with other nearby sources, (ii) two years of ammonia, carbon monoxide, methanol, and formic acid observations from 240 km North-South Tropospheric Emission Spectrometer (TES) transects through the oils sands, and (iii) preliminary insights into emissions derived from these observations.

  10. Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry.

    Science.gov (United States)

    Bois, G; Piché, Y; Fung, M Y P; Khasa, D P

    2005-05-01

    Recent improvements in the management of oil sand tailings used by the Canadian oil sand industry have resulted in the production of composite tailing sands (CT): a new challenging material for reclamation work. Jack pine (Pinus banksiana Lamb.), hybrid poplar (Populus deltoides Bartr. ex Marsh. xPopulus nigra L.) and red clover (Trifolium pratense L.) plants were used in an 8-week greenhouse bioassay to evaluate the mycorrhizal inoculum potential of CT. This inoculum potential was compared with that of three other reclamation materials [common tailing sands (TS), deep overburden (OB) and muskeg peat (MK)], and with three sites reclaimed in 1982 (R82), 1988 (R88) and 1999 (R99). CT was devoid of active mycorrhizal propagules while all other materials showed some level of inoculum potential. Arbuscular mycorrhizal fungi were observed on roots of clover or poplar grown in TS, OB, and all substrates containing peat (MK, R82, R88 and R99). Pine roots were also colonized by vesicle-forming hyphae of an unidentified fine endophyte and by dark septate fungi. Ectomycorrhizas (ECM) were observed on pine and poplar grown in OB, MK, and in soils from the two older reclaimed sites (R82 and R88). Using morpho- and molecular typing, six ECM fungi were identified to the genus or species level: Laccaria sp., Thelephora americana, Wilcoxina sp. (E-strain), Tuber sp. (I-type), a Sebacinoid, and a Pezizales species. Laccaria sp. and Wilcoxina sp. were the most frequently observed ECM species. PMID:15883852

  11. A First Assessment of the Elemental Composition of Atmospheric Aerosols in the Canadian Oil Sands Region

    Directory of Open Access Journals (Sweden)

    Dabek-Zlotorzynska E.

    2013-04-01

    Full Text Available Canadian Oil Sands, which comprise 97% of Canada’s 176 billion barrels of proven oil reserves, are located beneath 140,200 km2 of boreal forests, prairies and wetlands, and are the second largest known deposit of crude oil in the world. As such, this region has experienced rapid industrial development, which resulted also in increasing industrial air emissions, primarily from bitumen upgrading and mine vehicle fleet operations. This rapid development has led to concerns regarding health risk to humans, and other terrestrial and aquatic wildlife associated with exposure to toxic contaminants, especially metals and polycyclic aromatic compounds (PACs particularly along the Athabasca River and its watershed. Canada’s Minister of the Environment announced that Environment Canada (EC will jointly lead, in collaboration with Government of Alberta and relevant stakeholders, the development and implementation of an enhanced monitoring system in the Oil Sands region to provide information on the state of the air, water, land andbiodiversity. This work presents preliminary data on the first assessment of elemental composition of fine particulate matter (particles<2.5 mm in diameter; PM2.5 at 3 air quality sites in close proximity to Oil Sands processing activities. Since December 2010, integrated 24 hour air samples were collected every sixth day on a 47-mm Teflon filters using Thermo Fisher Partisol 2000-FRM samplers operated by the National Air Pollution Surveillance (NAPS network that involves EC and the Canadian provinces and territories. All samples including laboratory, travel and field blanks were subjected to gravimetric determination of PM2.5 mass and energy dispersive X-ray fluorescence (ED-XRF analysis for 46 elements. Since ED-XRF is a non-destructive technique, PM2.5 samples were subsequently analyzed for 37 trace elements including rare earth elements using inductively-coupled plasma mass spectrometry (ICP-MS combined with microwave

  12. US phosphate fertilizer outlook and its impact on Canadian oil sands sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Chasez, K. [Potash Co. of Saskatchewan, New Brunswick Div., Saint John, NB (Canada)

    2009-07-01

    As of 2009, the world population was more than 6.8 billion people and growing by approximately 75 million people annually. At the same time, arable land per person is decreasing, meaning that crop productivity must increase in order to meet the rising food demand. Increased fertilizer use, particularly in areas that under apply, is necessary to meet the growing populations' caloric needs. As a result, the demand for sulphur, a key ingredient for phosphate fertilizer production from the fertilizer industry is expected to increase over the next 5 years. This paper provided an overview of the United States phosphate fertilizer industry and its outlook through 2014. It discussed the impact of the United States phosphate industry on demand for sulphur processed in Canadian refineries and exported to the United States. Other issues that were discussed included world phosphoric acid uses; the rise and fall of global sulphur prices in 2009; world DAP and MAP shipments; world phosphate production curtailments; global phosphoric acid consumption growth; global sulphur production versus consumption; United States sulphur production versus consumption; United States recovered sulphur production; United States sulphur consumption; and major United States sulphur expansions. Sulphur transportation costs were also discussed. It was concluded that refinery capacity in the United States is expected to increase in the next 5 years, which means that oil produced in the Alberta oil sands would be shipped to the United States and refined there. Therefore, United States sulphur production would increase at the expense of sulphur imports from Canada.

  13. Air quality monitoring in the Canadian oil sands. Tests of new technology

    Energy Technology Data Exchange (ETDEWEB)

    Platt, Ulrich; Seitz, Katja; Buxmann, Joelle [Heidelberg Univ. (Germany). Inst. of Environmental Physics; Thimm, Harald F. [Thimm Petroleum Technologies Inc., Calgary (Canada)

    2012-12-15

    Modern bitumen recovery processes, such as Steam Assisted Gravity Drainage (SAGD), minimize the environmental footprint of oil recovery in terms of land disturbance and water demands. However, as a corollary, air monitoring becomes more difficult. In particular air quality monitoring for sulphur and nitrogen oxides, as currently practiced, suffers from significant limitations in remote regions, such as the Canadian Oil Sands Areas. Current techniques require the placement of monitoring trailers in accessible locations, but the electrical power or even access for optimal location for trailers is not always given. In addition, the trailers are capable of monitoring air quality only at the location of their deployment. There would be an advantage in deploying monitoring techniques that require minimal power (e.g. car battery, solar cell) and are capable of measuring air quality at a distance from the place of deployment. In the autumn of 2008, a trial of DOAS (Differential Optical Absorption Spectroscopy) was undertaken in Northern Alberta and Northern Saskatchewan, at four SAGD plants in various stages of development. Results of this study, and a discussion of the technology, will be given. Advantages and limitations of DOAS for deployment in Athabasca will be discussed. In general it was found that SO{sub 2} results showed remarkably low degrees of contamination, while NO{sub 2} concentrations were more noticeable. (orig.)

  14. Air Quality Over the Canadian Oil Sands: A First Assessment Using Satellite Observations

    Science.gov (United States)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-01-01

    Results from the first assessment of air quality over the Canadian oil sands -- one ofthe largest industrial undertakings in human history -- using satellite remote sensing observations of two pollutants, nitrogen dioxide (N0O) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km x 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 +/- 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  15. Sulfur dioxide (SO2) vertical column density measurements by Pandora spectrometer over the Canadian oil sands

    Science.gov (United States)

    Fioletov, Vitali E.; McLinden, Chris A.; Cede, Alexander; Davies, Jonathan; Mihele, Cristian; Netcheva, Stoyka; Li, Shao-Meng; O'Brien, Jason

    2016-07-01

    Vertical column densities (VCDs) of SO2 retrieved by a Pandora spectral sun photometer at Fort McKay, Alberta, Canada, from 2013 to 2015 were analysed. The Fort McKay site is located in the Canadian oil sands region, approximately 20 km north of two major SO2 sources (upgraders), with total emission of about 45 kt yr-1. Elevated SO2 VCD values were frequently recorded by the instrument, with the highest values of about 9 Dobson Units (DU; DU = 2.69 × 1016 molecules cm-2). Comparisons with co-located in situ measurements demonstrated that there was a very good correlation between VCDs and surface concentrations in some cases, while in other cases, elevated VCDs did not correspond to high surface concentrations, suggesting the plume was above the ground. Elevated VCDs and surface concentrations were observed when the wind direction was from south to southeast, i.e. from the direction of the two local SO2 sources. The precision of the SO2 measurements, estimated from parallel measurements by two Pandora instruments at Toronto, is 0.17 DU. The total uncertainty of Pandora SO2 VCD, estimated using measurements when the wind direction was away from the sources, is less than 0.26 DU (1σ). Comparisons with integrated SO2 profiles from concurrent aircraft measurements support these estimates.

  16. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  17. A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space

    Science.gov (United States)

    Mclinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, K. Folkert; Adams, Cristen

    2015-01-01

    A decade (20052014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide(NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10year, with the location of the largest trends in a newly developing NO2 lobe well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to5yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.

  18. Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery

    International Nuclear Information System (INIS)

    High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs of supplying synthetic crude oil. The sensitivity analysis shows that before 2035, the most influential parameters are the learning parameter in the case of in-situ bitumen and the depletion parameter in the case of mined bitumen. After 2035, depletion dominates in both cases. The results show that the social cost of CO2 has a large impact on the total costs of synthetic crude oil, in particular in the case of synthetic crude oil from in-situ bitumen, due to the carbon intensity of the recovery techniques: taking into account the social cost of CO2 adds more than half to the cost of producing synthetic crude oil from mined bitumen in 2050 (mean value), while the cost of producing synthetic crude oil from in-situ bitumen more than doubles. - Highlights: • We model the cost of Canadian synthetic crude oil (SCO) using Monte-Carlo techniques. • We reveal the uncertainty associated with each input parameter. • We quantify the effect of learning, depletion and CO2 using sensitivity analyses. • Accounting for the social cost of CO2 doubles the cost of SCO from in-situ bitumen. • CO2 pricing could have a large effect on the economics of the oil sands

  19. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  20. 加拿大油砂行业的发展现状与挑战%Status and challenges of Canadian oil sands industry

    Institute of Scientific and Technical Information of China (English)

    王科; 熊苡; William X.Wei; Michael Henry; 冯连勇

    2015-01-01

    油砂作为世界非常规石油资源中的重要组成部分 ,近年来正在受到越来越多的关注.由于加拿大油砂行业形势变化速度很快 ,我们有必要清楚地了解其行业的最新动态.本文以油砂行业最新的信息和数据为基础 ,介绍了加拿大油砂资源的开发现状和油砂行业生产商现状 ;通过对加拿大油砂行业绩效的定量分析 ,发现了虽然加拿大油砂产量和收入近年来呈逐年上升趋势,其财务绩效和股市绩效却双双呈现下滑趋势;结合以上分析和相关机构的评价结果总结了加拿大油砂行业发展面临的五大挑战 ,分别是油砂实现价格处于劣势、行业成本居高不下、外输通道严重受限、原住民问题困难重重、行业监管日益严苛.%Oil sand ,as an important type of unconventional oil resource in the world ,is attracting more and more attentions in recent years .Since the Canadian oil sands industry is changing fast ,it is necessary to know the latest dynamics of it .Based on the latest information and data ,this paper introduces the status of Canadian oil sands development and the status of major Canadian oil sands producers .Through quantitative analysis of the Canadian oil sands industry performance ,the author find that although the production and sales revenue of Canadian oil sands industry are growing ,the financial performance and stock market performance are both declining in recent years .Furthermore ,this paper summarizes five major challenges that Canadian oil sands industry faces based on both the analysis above and evaluation results of related agencies .The five challenges are:weak oil sands price ,high industry cost ,limited export channels ,objection of aborigines and the stricter and stricter industry regulations .

  1. The future of the Canadian oil sands: Engineering and project management advances

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Peter; Morawski, Jacek

    2010-09-15

    Production technology and project management developments in Canada's oil sands industry, in the context of AMEC's experience as EPCM service provider, are discussed. Effective project management systems and workfront planning are critical to achieve cost and schedule targets and optimum construction execution. Construction Work Packages divide work into discrete pieces and Construction Work Execution Plans influence scheduling of engineering and procurement deliverables. AMEC's Engineering Data Warehouse works with intelligent engineering design tools to ensure information related to a piece of equipment is consistent across all systems. HSSE systems are proactively developed and AMEC's progressive improvement in safety performance is demonstrated.

  2. Tropospheric Emission Spectrometer (TES) Satellite Validations of Ammonia, Methanol, Formic Acid, and Carbon Monoxide over the Canadian Oil Sands

    Data.gov (United States)

    U.S. Environmental Protection Agency — The URLs link to the data archive of the Troposphere Emission Spectrometer (TES) retrievals. These include the transects included in the Canadian Tar Sands study. A...

  3. Oil sands development update

    International Nuclear Information System (INIS)

    A detailed review and update of oil sands development in Alberta are provided covering every aspect of the production and economic aspects of the industry. It is pointed out that at present oil sands account for 28 per cent of Canadian crude oil production, expected to reach 50 per cent by 2005. Based on recent announcements, a total of 26 billion dollars worth of projects are in progress or planned; 20 billion dollars worth of this development is in the Athabasca area, the remainder in Cold Lake and other areas. The current update envisages up to 1,800,000 barrels per day by 2008, creating 47,000 new jobs and total government revenues through direct and indirect taxes of 118 billion dollars. Provinces other than Alberta also benefit from these development, since 60 per cent of all employment and income created by oil sands production is in other parts of Canada. Up to 60 per cent of the expansion is for goods and services and of this, 50 to 55 per cent will be purchased from Canadian sources. The remaining 40 per cent of the new investment is for engineering and construction of which 95 per cent is Canadian content. Aboriginal workforce by common consent of existing operators matches regional representation (about 13 per cent), and new developers are expected to match these standards. Planned or ongoing development in environmental protection through improved technologies and optimization, energy efficiency and improved tailings management, and active support of flexibility mechanisms such as emission credits trading, joint implementation and carbon sinks are very high on the industry's agenda. The importance of offsets are discussed extensively along with key considerations for international negotiations, as well as further research of other options such as sequestration, environmentally benign disposal of waste, and enhanced voluntary action

  4. A numerical/empirical technique for history matching and predicting cyclic steam performance in Canadian oil sands reservoirs

    Science.gov (United States)

    Leshchyshyn, Theodore Henry

    correlation curves. The key reservoir property used to develop a specific curve was to vary the initial mobile water saturation. Individual pilot wells were then history-matched using these correlation curves, adjusting for thermal net pay using perforation height and a fundamentally derived "net pay factor". Operating days (injection plus production) were required to complete the history matching calculations. Subsequent cycles were then history-matched by applying an Efficiency Multiplication Factor (EMF) to the original first cycle prediction method as well as selecting the proper correlation curve for the specific cycle under analysis by using the appropriate steam injection rates and slug sizes. History matches were performed on eight PHOP wells (two back-to-back, five-spot patterns) completed in the Wabiskaw and, three single-well tests completed just below in the McMurray Formation. Predictions for the PHOP Wabiskaw Formation first cycle bitumen production averaged within 1% of the actual pilot total. Bitumen recovery from individual wells for second cycle onwards, was within 20% of actual values. For testing the correlations, matching was also performed on cyclic steam data from British Petroleum's Wolf Lake Project, the Esso Cold Lake Project, and the PCEJ Fort McMurray Pilot, a joint venture of Petro-Canada, Cities Services (Canadian Occidental), Esso, and Japan-Canada Oil Sands with reasonable results.

  5. Performance of ectomycorrhizal alders exposed to specific Canadian oil sands tailing stressors under in vivo bipartite symbiotic conditions.

    Science.gov (United States)

    Beaudoin-Nadeau, Martin; Gagné, André; Bissonnette, Cyntia; Bélanger, Pier-Anne; Fortin, J André; Roy, Sébastien; Greer, Charles W; Khasa, Damase P

    2016-07-01

    Canadian oil sands tailings are predominately sodic residues contaminated by hydrocarbons such as naphthenic acids. These conditions are harsh for plant development. In this study, we evaluated the effect of inoculating roots of Alnus viridis ssp. crispa and Alnus incana ssp. rugosa with ectomycorrhizal fungi in the presence of tailings compounds. Seedlings were inoculated with 7 different strains of Paxillus involutus and Alpova diplophloeus and were grown under different treatments of NaCl, Na2SO4, and naphthenic acids in a growth chamber. Afterwards, seedling survival, height, dry biomass, leaf necrosis, and root mycorrhization rate were measured. Paxillus involutus Mai was the most successful strain in enhancing alder survival, health, and growth. Seedlings inoculated with this strain displayed a 25% increase in survival rate, 2-fold greater biomass, and 2-fold less leaf necrosis compared with controls. Contrary to our expectations, A. diplophloeus was not as effective as P. involutus in improving seedling fitness, likely because it did not form ectomycorrhizae on roots of either alder species. High intraspecific variation characterized strains of P. involutus in their ability to stimulate alder height and growth and to minimize leaf necrosis. We conclude that in vivo selection under bipartite symbiotic conditions is essential to select effective strains that will be of use for the revegetation and reclamation of derelict lands. PMID:27170470

  6. Developing new markets for oil sands products

    International Nuclear Information System (INIS)

    This paper presents a review by Purvin and Gertz of western Canadian crude oil supply. This energy consulting firm provides advise to the energy sector. It suggests that oil sands production will surpass declining conventional production. Oil sands supply includes bitumen, synthetic crude oil (SCO), and diluent. It is forecasted that oil sands will increase from 42 per cent of western supply in 2002 to 78 per cent in 2015. The potential of Alberta's oil sands was discussed along with a recent study of refined products and petrochemicals from bitumen. Upgrading, refining and petrochemical case studies were presented. The author examined if a Canadian oil sands upgrading project with high capital costs can be competitive with competing projects in the United States and internationally. In addition to supply and demand issues, the presentation examined infrastructure capability and market potential in the United States. The economic potential and risks of preferred business cases compared to upgrading to SCO were also evaluated. 15 figs

  7. Chinese Oil Giants Eye Canadian Oil Fields

    Institute of Scientific and Technical Information of China (English)

    Miao Bin

    2005-01-01

    @@ SinoCanada, a subsidiary of Sinopec International Petroleum Exploration and Development Corporation, and Canada-based Synenco Energy Inc announced on May 31 that they have inked a series of agreements to launch a joint venture for common development of the oil sand project located in Athabasca region of Northeast Canada's Alberta Province. Based on the agreements, Sinopec will pay 105 million Canadian dollars (US$84 million) for a stake in Canada's Northern Lights oil sands project while Synenco owns the remaining 60 percent share,and will operate the project as the managing partner.

  8. The bituminous sands : a Canadian mirage?

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, D.R. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees; Nasr, G.J. [Lebanese Univ., Roumieh (Lebanon). Faculty of Engineering; Turcotte, S.F. [Quebec Univ., Montreal, PQ (Canada). Centre d' Etudes Internationales et Mondialisation; Salah, N.B. [Ecole Superieure des Sciences et Techniques De Tunis, Tunis (Tunisia). LMMP

    2009-07-01

    This paper examined the controversy about the potential role of a significant increase in Canadian oil sands production in order to bridge the upcoming gap between the world's increasing energy demand and the total recoverable oil supply. The paper presented the actual potential of different scenarios and considered the prediction cost forecasts. A brief overview of environmental impacts and the real return on investments were also provided. Environmental impacts that were considered included land degradation; water contamination; ecosystem damage; and air pollution. Nuclear energy was also presented as a possible solution. The paper demonstrated that even in a very optimistic scenario, Canada's oil sands accelerated production has a negligible effect on the aforementioned gap, has a considerable impact on environment that has yet to be accounted for. Energy ratios that were presented included energy return on energy investment; energy available on energy used; and energy payback. It was concluded that enhanced recovery techniques are clearly needed for future sustainable exploitation of these bituminous sands. 32 refs., 1 fig.

  9. Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements

    Science.gov (United States)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Kharol, S. K.; Krotkov, N.; Lamsal, L.; Makar, P. A.; Martin, R. V.; Veefkind, J. P.; Yang, K.

    2014-01-01

    Satellite remote sensing is increasingly being used to monitor air quality over localized sources such as the Canadian oil sands. Following an initial study, significantly low biases have been identified in current NO2 and SO2 retrieval products from the Ozone Monitoring Instrument (OMI) satellite sensor over this location resulting from a combination of its rapid development and small spatial scale. Air mass factors (AMFs) used to convert line-of-sight "slant" columns to vertical columns were re-calculated for this region based on updated and higher resolution input information including absorber profiles from a regional-scale (15 km × 15 km resolution) air quality model, higher spatial and temporal resolution surface reflectivity, and an improved treatment of snow. The overall impact of these new Environment Canada (EC) AMFs led to substantial increases in the peak NO2 and SO2 average vertical column density (VCD), occurring over an area of intensive surface mining, by factors of 2 and 1.4, respectively, relative to estimates made with previous AMFs. Comparisons are made with long-term averages of NO2 and SO2 (2005-2011) from in situ surface monitors by using the air quality model to map the OMI VCDs to surface concentrations. This new OMI-EC product is able to capture the spatial distribution of the in situ instruments (slopes of 0.65 to 1.0, correlation coefficients of greater than 0.9). The concentration absolute values from surface network observations were in reasonable agreement, with OMI-EC NO2 and SO2 biased low by roughly 30%. Several complications were addressed including correction for the interference effect in the surface NO2 instruments and smoothing and clear-sky biases in the OMI measurements. Overall these results highlight the importance of using input information that accounts for the spatial and temporal variability of the location of interest when performing retrievals.

  10. Canadian entrepreneur looks to Utah oil sands : possible hurdles include gaining acceptance for a new technology, funding and regulatory approval

    Energy Technology Data Exchange (ETDEWEB)

    Diekmeyer, P.

    2010-09-15

    Alberta-based Earth Energy Resources has chosen Utah for its first major oilsand development project. Utah has excellent oil sands resources, but most cannot be economically extracted using conventional methods. The president of Earth Energy Resources has proposed to use new technologies, processes and workflow methods to make resource extraction economically viable. The company currently holds a 100 percent interest in 3,170 hectares under lease from the State of Utah School and Institutional Trust Lands Administration (SITLA) in the PR Spring deposit. The recoverable high-quality bitumen is estimated at 250 million barrels. The oil sands in Utah are disaggregated and spread out over a relatively wide area. The bitumen quality is very similar to that found in the Athabasca deposit, but it has a much lower sulphur content. Earth Energy Resources plans on using the Ophus Process which involves a series of small 2,000 barrel per day production facilities that can be easily set up, and moved as the resources in one particular area are recovered. Production could be expanded as needed by the addition of more facilities. An environmentally sound citrus-based extraction chemical will replace much of the mechanical energy and caustic soda mixture used in the Clark Process. The new energy and water efficient process will significantly reduce the quantity of middlings produced in the process, thereby eliminating the need for tailings ponds and reducing environmental impacts. 1 fig.

  11. Extracting Oil From Tar Sands

    Science.gov (United States)

    Ford, L. B.; Daly, D.

    1984-01-01

    Recovery of oil from tar sands possible by batch process, using steam produced by solar heater. In extraction process, solar heater provides steam for heating solvent boiler. Boiling solvent removes oil from tar sands in Soxhlet extractor.

  12. Nuclear energy in the oils sands

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2014-09-15

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  13. Whither Chinese involvement in the Canadian oil industry

    International Nuclear Information System (INIS)

    Chinese oil companies have become increasingly focused on securing Canadian oil. However, most of the oil sands leases with good geological and economic prospects are owned by Canadian or Canadian subsidiary companies that have proven unwilling to sell future revenue and reserves bases to the Chinese. The opportunity for a trade of Canadian oil assets for improved Chinese market entry has been limited to Husky, which has existing Chinese connections, as well as to global companies such as Exxon, Shell and BP. In May 2005, the Chinese company Sinopec completed a $105 million deal with Calgary-based Synenco and formed a joint venture for oil sands production and an upgrader. Chinese interests are also involved in the Calgary-based Value Creation Group of Companies as well as in BA Energy. Enbridge has recently invested $25 million in the Heartland upgrader project, presumably with the aim of building pipelines to move new products to Asia. The most significant problem for Canadian oil sands companies and the greatest opportunity for Chinese companies involves the utilization of trained Chinese workers for the $100 billion in oil sands construction planned for the next decade. Significant immigration barriers exist for Chinese workers in Canada, and there is a legitimate concern that Chinese workers may want to stay in Canada. It was concluded that while there may be mutual opportunities for collaboration between Chinese and Canadian energy companies, the Alberta government currently faces challenges in work shortages, immigration, and pressures from unions and environmental lobbyists. 1 fig

  14. Transportation of Western Canadian oil production to market

    International Nuclear Information System (INIS)

    Oil sands production is expected to increase from 43 per cent of Western Canadian production in 2003 to 61 per cent in 2010. Twenty-eight billion dollars have been invested to date, with a forecast of $36 billion over the next 10 years. There are 174 billion barrels of established oil. This paper provided details of Enbridge core infrastructure businesses in relation to Western Canadian production of oil sands. A chart of production forecast by crude type was presented, as well as a light to heavy crude differential. Details of North American refining oil pipelines and existing markets were provided, along with maps of market access solutions. Mid-continent, eastern and phased southern access details were presented. A regional oil sands pipeline infrastructure was also presented. West coast access was reviewed, with details of gateway pipelines and export pipeline alternatives. Target markets were also examined in relation to Canadian access to new markets. tabs., figs

  15. Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation

    Science.gov (United States)

    Shephard, M. W.; McLinden, C. A.; Cady-Pereira, K. E.; Luo, M.; Moussa, S. G.; Leithead, A.; Liggio, J.; Staebler, R. M.; Akingunola, A.; Makar, P.; Lehr, P.; Zhang, J.; Henze, D. K.; Millet, D. B.; Bash, J. O.; Zhu, L.; Wells, K. C.; Capps, S. L.; Chaliyakunnel, S.; Gordon, M.; Hayden, K.; Brook, J. R.; Wolde, M.; Li, S.-M.

    2015-12-01

    The wealth of air quality information provided by satellite infrared observations of ammonia (NH3), carbon monoxide (CO), formic acid (HCOOH), and methanol (CH3OH) is currently being explored and used for a number of applications, especially at regional or global scales. These applications include air quality monitoring, trend analysis, emissions, and model evaluation. This study provides one of the first direct validations of Tropospheric Emission Spectrometer (TES) satellite-retrieved profiles of NH3, CH3OH, and HCOOH through comparisons with coincident aircraft profiles. The comparisons are performed over the Canadian oil sands region during the intensive field campaign (August-September, 2013) in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring (JOSM). The satellite/aircraft comparisons over this region during this period produced errors of (i) +0.08 ± 0.25 ppbv for NH3, (ii) +7.5 ± 23 ppbv for CO, (iii) +0.19 ± 0.46 ppbv for HCOOH, and (iv) -1.1 ± 0.39 ppbv for CH3OH. These values mostly agree with previously estimated retrieval errors; however, the relatively large negative bias in CH3OH and the significantly greater positive bias for larger HCOOH and CO values observed during this study warrant further investigation. Satellite and aircraft ammonia observations during the field campaign are also used in an initial effort to perform preliminary evaluations of Environment Canada's Global Environmental Multi-scale - Modelling Air quality and CHemistry (GEM-MACH) air quality modelling system at high resolution (2.5 × 2.5 km2). These initial results indicate a model underprediction of ~ 0.6 ppbv (~ 60 %) for NH3, during the field campaign period. The TES/model CO comparison differences are ~ +20 ppbv (~ +20 %), but given that under these conditions the TES/aircraft comparisons also show a small positive TES CO bias indicates that the overall model underprediction of CO is closer to ~ 10 % at 681 hPa (~ 3 km) during this period.

  16. US refining capacity for Canadian heavy oil : current overview and future potential

    International Nuclear Information System (INIS)

    This presentation provided an overview of the Canadian oil sands industry and investigated the potential heavy oil refining capacity of the United States. An outline of the first commercial developments of steam assisted gravity drainage (SAGD) in Alberta's oil sands was provided. Canada's reserves were compared with oil shale and heavy oil reserves in the United States and Venezuela. Influences of Canadian developments from western Canadian conventional crude oil were reviewed, and an oil sands production forecast was provided. Recent refining developments in the United States include delayed coking; catalytic cracking; fluid coking; flexicoking; and LC-fining. However, many oil sand producers are now choosing to upgrade oil, and producers are currently saturating United States markets with heavy crude oil. Canadian crude prices reached $90 per barrel in 2006. Heavy oil pipelines are now being constructed and existing heavy oil pipelines are being expanded. ConocoPhillips is planning to invest $1 billion for a new heavy oil coker, while BP is investing $3 billion for a heavy oil refinery in Indiana which plans to refine Canadian crude oil supplies. However, bitumens from Alberta are volatile in price, and excess Canadian production must be exported. Less than 10 per cent of western Canadian crude has tidewater access, and capital providers are concerned about cost over-runs. In order for the Canadian oil sands industry to succeed, refining capacity in the United States must be expanded, and open access must be provided to the Gulf coast as well as to the Pacific Ocean. tabs., figs

  17. Canadian oil and gas survey 1998

    Energy Technology Data Exchange (ETDEWEB)

    Roberge, R.B. [ed.

    1998-11-01

    The year 1997 brought record levels of financing for the Canadian oil and gas industry which led to record levels of capital spending and unprecedented merger and acquisition activity. Production records were achieved, but soft commodity prices in the fourth quarter resulted in a significant downturn in the equity markets. El Nino reduced demand for natural gas and heating oil, resulting in increased storage levels for both commodities. Record drilling and capital spending fueled the Canadian oilfield service industry as total market capitalization rose to $10 billion. As for the 1998 outlook, the industry has turned to natural gas as the favoured commodity, as indicated by the conclusion of the Alliance pipeline hearings and the Nova/TCPL merger. This survey presents a review of crude oil and natural gas production, prices, and capital spending for development and exploratory wells, and the financial and operating results for fiscal year 1997 of selected oil and gas companies and income trusts. All listed companies are Canadian public companies, or publicly traded income trusts, traded on one of the country`s four major stock exchanges. They are ranked according to gross oil and gas production revenue only (before royalties). Syncrude and oil sands production is also included. The remaining data in the financial statistics tables includes all business segments of each company included. The survey excluded companies that were wholly-owned subsidiaries, divisions or U.S. subsidiaries and private companies. tabs., figs.

  18. The dirty oil card and Canadian foreign policy

    Energy Technology Data Exchange (ETDEWEB)

    Chastko, P. [Calgary Univ., AB (Canada). International Relations Program

    2010-10-15

    This paper discussed Canada's oil sands industry in relation to its international reputation as the source of an unacceptable amount of pollution. Environmental lobbyists and awareness groups have targeted Canada's oil sands industry as an example of how the oil industry contributes to pollution during the production phase. Media attention has focused on the oil sands as a heavy grade of crude oil that requires significant upgrading and refining before it can be produced as a barrel of usable oil. Canadian exports of oil sands to the United States have been the target of consumer boycotts and proposed legislation. A lack of available alternative energy sources and infrastructure for the transportation sector, and the continued global demand for petroleum mean that oil sands will continue to be exported to the United States as well as to other export markets such as China and India. The United States is likely to remain the largest importer of Canadian crude oils. However, policy-makers must ensure that the discourse about oil sands does not devolve into an argument in which energy security is pitted against the need for increased environmental protection. 49 refs.

  19. 2010 oil sands performance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    With the depletion of traditional energy resources and the rising demand for energy, oil sands have become an important energy resource for meeting energy needs. Oil sands are a mixture of water, sand, clay and bitumen which is recovered either through open pit mining or in situ drilling techniques. The bitumen is then converted into syncrude or sold to refineries for the production of gasoline, diesel or other products. Shell has oil sands operations in Alberta and the aim of this report is to present its 2010 performance in terms of CO2, water, tailings, land, and reclamation and engagement. This document covers several of Shell's operations in the Muskeg River and Jackpine mines, Scotford upgrader, Peace River, Orion, Seal, Cliffdale and Chipmunk. It provides useful information on Shell's oil sands performance to governments, environmental groups, First Nations, local communities and the public.

  20. Alberta oil sands royalty regime

    International Nuclear Information System (INIS)

    The long term objective of the Oil Sands Business Unit of Alberta Energy is to pave the way for Alberta's bitumen production to reach 3 million barrels per day by 2020. This presentation described the national government's role in resource development. It was emphasized that since the Crown is the owner of the oil sands resource, it would benefit by providing strategic leadership and by generating a larger royalty base. The oil sands fiscal regime was described with reference to generic royalty, risk sharing, investment, and project economics. Business rule principles were also outlined along with criteria for project expansions. Both upstream and downstream challenges and opportunities were listed. 4 figs

  1. Sustainable water management in Alberta's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Bill; Usher, Robyn; Roach, Andrea [CH2M HILL, Englewood, CO (United States); Lambert, Gord; Kotecha, Prit [Suncor Energy Inc., Calgary (Canada)

    2012-07-01

    The Canadian Association of Petroleum Producers forecast published in 2011 predicts that oil production from oil sands will increase by 50% in the next 3 years and double by 2020. This rate of growth will result in significant pressure on water resources; water use per barrel of oil sands production is comparable to other energy resources - about 2.5 barrels of fresh water per barrel of oil produced are used by mining operations and 0.5 barrels by in-situ operations. Suncor Energy Inc. (Suncor) was the first company to develop the oil sands in northern Alberta and holds one of the largest oil sands positions in Canada. In 2010, Suncor announced plans to increase production to more than 1 million barrels of oil equivalent per day by 2020, which it plans to achieve through oil sands production growth of approximately 10% per year. Because water supply and potential impacts to water quality are critical to its future growth, in 2010-2011 Suncor conducted a risk assessment to identify water-related business risks related to its northern Alberta operations. The assessment identified more than 20 high level business risks in strategic water risk areas including water supply, water reuse, storm water management, groundwater, waste management and river water return. The risk assessment results prompted development of a strategic roadmap to guide water stewardship across Suncor's regional operations. The roadmap describes goals, objectives, and specific activities for each of six key water risk areas, and informs prioritization and selection of prospective water management activities. Suncor is not only exploring water within its own boundaries, but is also collaborating with other oil sands producers to explore ways of integrating its water systems through industry consortia; Suncor is a member of the Oil Sands Leadership Initiative and of the recently formed Canadian Oil Sands Innovation Alliance, among others. (author)

  2. Oil sands tailings management project

    International Nuclear Information System (INIS)

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  3. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  4. Oil sands mining water use and management

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Long, D.; Fitch, M. [Golder Associates Ltd., Calgary, AB (Canada)

    2010-07-01

    There are currently 4 bitumen mining operations operating along the Athabasca River in northern Alberta. This paper presented details of the water licences, historical water use, present water use, and future plans for water management in relation to oil sands mining operations. The study was based on work currently conducted for the Oil Sands Developers Group (OSDG) and Canadian Association of Petroleum Producers (CAPP), as well as on mine site water balance analyses for proposed mines in the region. Typical mine site water balances were discussed, and water use rates for the mining operations were reviewed. The new Athabasca River water management framework may require that mines provide additional water storage or delayed reclamation of mine areas in order to offset water losses during winter low-flow periods. New regulations may also reduce the requirement for make-up water. The study also noted that release criteria are still being developed for on-site water within closed-loop mine operations. The oil sands industry will need to balance various factors related to water use in the future. 5 refs., 3 figs.

  5. Marketing opportunities and challenges for Canada's oil sands industry

    International Nuclear Information System (INIS)

    This report demonstrated that effective marketing of Canadian oil sands products has been vital to the success of the industry in the past. Future success was expected to depend on having efficient transportation systems for the industry's products, unrestricted access to markets, and a range of products can competitively meet the needs of specific markets and customs. 9 ills

  6. Economic impacts of Alberta's oil sands, volume 1

    International Nuclear Information System (INIS)

    In 2004, the international media recognized Alberta's oil sands as part of the global oil reserves, thereby establishing Canada as second to Saudi Arabia as potential oil producing nations. The economic impacts of Alberta's oil sands industry on economies were assessed at regional, provincial and international levels for the 2000 to 2020 period. A customized input-output model was used to assess economic impacts, which were measured in terms of changes in gross domestic product; employment and labour income; and, government revenues. Cumulative impacts on employment by sector and by jurisdiction were also presented. An investment of $100 billion is expected through 2020, resulting in production of crude bitumen and synthetic crude oil outputs valued at about $531 billion. The impact of the oil sands industry on local employment was also evaluated. It was shown that activities in the oil sands industry will lead to significant economic impact in Alberta, Ontario, Quebec and the rest of Canada. Alberta's local economy would be the main beneficiary of oil sands activities with nearly 3.6 million person years employment created in Alberta during the 2000 to 2020. Another 3 million person years employment would be created in other Canadian provinces and outside Canada during the same time period. A sensitivity analysis on the responsiveness to oil prices and the removal of various constraints incorporated in the main analysis was also presented. The federal government will be the largest recipient of revenues generated to to oil sands activities. The results of the study were compared with that of the National Task Force on Oil Sands Strategies. This first volume revealed the results of the study while the second volume includes the data and detailed results. 48 refs., 57 tabs., 28 figs

  7. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  8. Nuclear energy for oil sands

    International Nuclear Information System (INIS)

    In 1980, Atomic Energy of Canada Limited, working with a number of Alberta-based companies, assessed the technical and economic feasibility of using a CANDU nuclear reactor to raise the production steam for the recovery of bitumen. The study followed several years of analysis which identified oil sands projects as the most appropriate single users of thermal energy of the amount and quality available from reactors. Over the life of an oil sands project a steam supply system based on a nuclear reactor is expected to offer a substantial cost advantage (25 - 50%) over the alternative system based on coal as the make-up fuel. Steam from natural gas is marginally more expensive than that from coal because the cost of natural gas is expected to escalate at a rate higher than inflation. For shallow deposits (150 - 250 metres) using intermediate pressure steam, the commercially proven Pressurized Heavy Water (PHW) reactor is most suitable. For deeper deposits (250 - 650 metres), the PHW reactor can provide the higher pressure steam using a compressor, but only with a reduction in thermal efficiency that substantially reduces its cost advantage. The CANDU Organic Cooled Reactor (OCR), however, can provide the high presure steam required with the large cost advantage. The economic benefit of nuclear steam supply systems, a saving of $2-4 per barrel of product, is large enough to justify a more detailed study

  9. Opportunities for CANDU for the Alberta oil sands

    International Nuclear Information System (INIS)

    ), have converged so that a practical, economical match of nuclear energy to the oil sands is now available. This paper describes recent studies by AECL and by CERI (the Canadian Energy Research Institute) to look at the adaptation of the ACR design for use in the oil sands, in particular with regard to economic viability. Issues raised in these studies are discussed, along with priorities for further work. (author)

  10. Macro-economic benefits of an expanded oil sands industry

    International Nuclear Information System (INIS)

    Probable impact of benefits of expanded oil sands development on employment and government revenues were analyzed. Investment in proposed oil sands facilities was forecast to create about 1 million person-years of direct and indirect employment. Forty percent of employment gains would be created in Alberta, with remaining positions mostly in Ontario and Quebec. Government taxes, royalties, reduced debts interest costs and revenues to municipalities, hospitals and pension plans would increase by $97 billion (1994 dollars) between 1995 and 2025. Additional benefits would include increases in average Canadian disposable incomes, substitution of imported with domestic oil, and expansion of gross domestic product in Alberta by 5%. Some variation may be expected because of accuracy of assumptions that were made in the analysis, but the character of the results were not expected to change

  11. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR. PMID:21853326

  12. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  13. Geochemical evidence for a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria

    Science.gov (United States)

    Bata, Timothy; Parnell, John; Samaila, Nuhu K.; Abubakar, M. B.; Maigari, A. S.

    2015-11-01

    Paleogeographic studies have shown that Earth was covered with more water during the Cretaceous than it is today, as the global sea level was significantly higher. The Cretaceous witnessed one of the greatest marine transgressions in Earth's history, represented by widespread deposition of sands directly on underlying basement. These sand bodies hold much of the world's heavy oil. Here, we present for the first time, geochemical evidence of a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria. Bima oil sand is similar to other Cretaceous oil sands, predominantly occurring at shallow depths on basin flanks and generally lacking a seal cover, making the oil susceptible to biodegradation. The bulk properties and distribution of molecular features in oils from the Bima oil sand suggest that they are biodegraded. Sterane maturity parameters and the trisnorhopane thermal indicator for the oils suggest thermal maturities consistent with oils generated as conventional light oils, which later degraded into heavy oils. These oils also show no evidence of 25-norhopane, strongly suggesting that biodegradation occurred at shallow depths, consistent with the shallow depth of occurrence of the Bima Formation at the study locality. Low diasterane/sterane ratios and C29H/C30H ratios greater than 1 suggest a carbonate source rock for the studied oil. The Sterane distribution further suggests that the oils were sourced from marine carbonate rocks. The C32 homohopane isomerization ratios for the Bima oil sand are 0.59-0.60, implying that the source rock has surpassed the main oil generation phase, consistent with burial depths of the Fika and Gongila Formations, which are both possible petroleum source rocks in the basin.

  14. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  15. Mine Drainage and Oil Sand Water.

    Science.gov (United States)

    Wei, Xinchao; Wolfe, F Andrew; Li, Yanjun

    2015-10-01

    Mine drainage from the mining of mineral resources (coal, metals, oil sand, or industrial minerals) remains as a persistent environmental problem. This review summarizes the scientific literature published in 2014 on the technical issues related to mine drainage or mine water in active and abandoned coal/hard rock mining sites or waste spoil piles. Also included in this review is the water from oil sand operations. This review is divided into the four sections: 1) mine drainage characterization, 2) prediction and environmental impact, 3) treatment technologies, 4) oil sand water. Many papers presented in this review address more than one aspect and different sections should not be regarded as being mutuallyexclusive or all-inclusive.

  16. An integrated oil sands environment monitoring plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    This oil sands monitoring plan was published by Environment Canada, which coordinated the work of several independent scientists in a process intended to deliver a world class environmental monitoring program. The plan was created in keeping with the core principles laid out by the federal oil sands advisory panel. These are that the plan should be comprehensive, scientifically rigorous, adaptive and robust, collaborative, transparent and accessible. The proposed oil Sands monitoring program framework conforms to these principles. The approach used was ecosystem-based and took into account several essential components of the system such as hydrology, water quality and quantity, and climatology and it also incorporated the relationships between these components. The best available science-based approach was used. The implementation of the plan is expected to result in standardized reporting, including peer-reviewed and plain language publications.

  17. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  18. Oil sands operations as a large source of secondary organic aerosols

    Science.gov (United States)

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M.; Stroud, Craig; Darlington, Andrea; Drollette, Brian D.; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G.; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L.; Brook, Jeffrey R.; Lu, Gang; Staebler, Ralf M.; Han, Yuemei; Tokarek, Travis W.; Osthoff, Hans D.; Makar, Paul A.; Zhang, Junhua; L. Plata, Desiree; Gentner, Drew R.

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  19. Oil sands operations as a large source of secondary organic aerosols

    Science.gov (United States)

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M.; Stroud, Craig; Darlington, Andrea; Drollette, Brian D.; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G.; Wang, Danny; O’Brien, Jason; Mittermeier, Richard L.; Brook, Jeffrey R.; Lu, Gang; Staebler, Ralf M.; Han, Yuemei; Tokarek, Travis W.; Osthoff, Hans D.; Makar, Paul A.; Zhang, Junhua; L. Plata, Desiree; Gentner, Drew R.

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45–84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  20. Extraction of oil from oil sands using thermoresponsive polymeric surfactants.

    Science.gov (United States)

    Yang, Bingqing; Duhamel, Jean

    2015-03-18

    Several thermoresponsive block copolymers constituted of a poly(ethylene glycol) (PEG) and a poly(2-(2-methoxyethoxy) ethyl methacrylate) (PMEO2MA) block were prepared by atom transfer radical polymerization (ATRP) and their ability to extract oil from oil sands was evaluated. The chemical composition of the PEG113-b-PMEO2MAX block copolymers was determined by (1)H NMR and gel permeation chromatography (GPC) with X-values ranging between 48 and 80. Aqueous solutions of block copolymers showed a cloud point of 34 ± 1 °C as determined by turbidimetry and dynamic light scattering (DLS) measurements. DLS experiments indicated that these polymers formed stable block copolymer micelles due to association of the PMEO2MA blocks at temperatures greater than 45 °C with a unimodal distribution of hydrodynamic diameters. Since characterization of the block copolymer solutions as a function of temperature indicated the formation of hydrophobic domains in water for T > 45 °C, extractions of oil from oil sands with the block copolymers were conducted at T = 45 and 50 °C. At these temperatures, 15 mL of a 1 mg/mL PEG113-b-PMEO2MA77 aqueous solution extracted 100% of the oil trapped in 1 g of oil sand if 60 mg of toluene was added to the mixture. When the extraction was conducted under the same experimental conditions without block copolymer, a poor oil recovery of less than 30% was achieved. Starting with a 1 mg/mL block copolymer concentration, the block copolymer aqueous solution could be recycled up to five successive extractions while maintaining satisfying oil recovery. Each extraction cycle led to a 22% mass loss of block copolymer, certainly due to association with the toluene, oil, and sand particles. Together these experiments demonstrate that thermoresponsive block copolymers can be powerful aids to enhance the oil recovery of oil sands. PMID:25719623

  1. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    The technological and economic significance of the Canadian petroleum industry to the national economy and to Canada's standing in the world are reviewed. The six key ways in which the oil and gas industry affects Canada, namely employment, balance of trade, products, government revenues, international technology trade and community support are stressed within the context of describing present and future oil and gas resources, Canada's petroleum and natural gas trade balance, and capital spending and product sales. Attention is also drawn to the role of the Canadian petroleum and natural gas industry as a producer and exporter of world class technology, especially in the areas of high tech exploration methods, cold-climate and offshore operations, enhanced recovery techniques, heavy oil production and and processing, mining and upgrading of oil sands bitumen, oil well firefighting, and environmental protection technology. maps, figs

  2. Tar sands showdown : Canada and the new politics of oil in an age of climate change

    International Nuclear Information System (INIS)

    This book outlined the social and environmental issues facing the oil sands industry in Canada, including economic sovereignty, energy security, water rights and free trade. The tar sands have become vital to the Canadian economy, as they have the potential to increase Canada's foreign oil output by 4 to 5 times in the next 15 years. The author discussed the ecological and social impact of the Alberta tar sands and the real cost of development to Albertans and Canadians. Tar sands oil production generates more than 3 times the amount of greenhouse gas emissions than conventional oil production. The industry is also becoming a prime example of the abuse of water sources. The author emphasized the need to build an alternative energy future in an age of global warming. The main objective of this book was to help stimulate a nation-wide public debate about the tar sands and the critical issues at stake regarding Canada's energy future and an environmental strategy for more sustainable development. refs., tabs., figs.

  3. Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs

    OpenAIRE

    Sunday Isehunwa,; Andrew Farotade

    2010-01-01

    Sand production is a major issue during oil and gas production from unconsolidated reservoirs. In predicting the onset of sand production, it is important to accurately determine the failure mechanism and the contributing parameters. The aim of this study was to determine sand failure mechanism in the Niger-Delta, identify themajor contributing parameters and evaluate their effects on sanding.Completion and production data from 78 strings completed on 22 reservoirs in a Niger Delta oil Field ...

  4. Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Sunday Isehunwa,

    2010-05-01

    Full Text Available Sand production is a major issue during oil and gas production from unconsolidated reservoirs. In predicting the onset of sand production, it is important to accurately determine the failure mechanism and the contributing parameters. The aim of this study was to determine sand failure mechanism in the Niger-Delta, identify themajor contributing parameters and evaluate their effects on sanding.Completion and production data from 78 strings completed on 22 reservoirs in a Niger Delta oil Field were evaluated. Sand failure mechanisms and contributing parameters were identified and compared with published profiles. The results showed that cohesive stress is the predominant sand failure mechanism. Water cut, bean size and gas oil ratio (GOR impact sand production in the Niger Delta.

  5. Oil sands tailings leachability and toxicity evaluation

    International Nuclear Information System (INIS)

    Fine tailings disposal and reclamation is a major issue facing the oil sands mining and extraction industry. Government regulations dictate that reclamation must return the site to a level of self-sustaining biological capability which approximates the natural condition. A two-phase laboratory program has been completed to investigate the suitability of alternative reclamation materials. For the first phase of the study, chemical and toxicological analyses were carried out on 13 different reclamation and reference materials (solid phase and extractions). Seedling emergence, nematode maturation, algal growth and bacterial luminescence for leachate samples showed a range of sensitivities in response to the tested materials, although phytotoxicity tests were generally the most sensitive. With the exception of one test material, high toxicity ratings were consistent with that expected from the chemical data. The second phase of the study focused on the evaluation of chemical and toxicological conditions in leachate water generated using bench-scale column percolation tests. Leachate water equivalent to 10 pore volume replacements was generated and temporal variations in toxicity and chemistry monitored. Similar to phase 1 findings, phytotoxicity tests were the most sensitive tests to leachate waters. For most materials tested, most toxicity was removed after 2--3 porewater replacements. More persistent toxicity was noted for samples containing bitumen (e.g., fine tails and oil sands). No clear correspondence was noted between chemical concentrations and toxicity in leachate waters

  6. Enabling technologies for oil sands development

    International Nuclear Information System (INIS)

    A review of oil sands production and expansion possibilities in Alberta were presented. The enabling technologies for oil sands projects include mining (bucketwheels, draglines, trucks, shovels conveyors, slurry hydrotransport); extraction (conditioning tumblers, pipelines, tanks, hot water, caustic, cold water, frothers); froth cleaning (centrifuges, solvent treatment); tailings (tailings ponds, consolidated tailings); and upgrading (coking, hydrotreating for SCO, hydrocracking and multiple products). The enabling technologies for in situ production include cyclic steam stimulation for vertical wells, steam assisted gravity drainage (SAGD) for dual horizontal wells, and cold production with wormholes. This paper described the recovery potentials of each of these processes. It also discussed the role of government and industry in research and cooperative research involving both the private and public sectors. Examples of each of these were described such as SAGD, the OSLO cold water extraction process, The consolidated tailings (CT) project, the low energy extraction process (slurry production, hydrotransport, pipeline conditioning and warm water extraction), and research in fine tailings, to demonstrate that although objectives may differ, government and industry research objectives are complementary

  7. Consolidation testing of oil sand fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Znidarcic, Dobroslav; Miller, Robert [University of Colorado (United States); Zyl, Dirk van [Mining Engineering, University of British Columbia (Canada); Fredlund, Murray [SoilVision Systems Ltd. (Canada); Wells, Sean [Suncor Energy Inc. (Canada)

    2011-07-01

    The most fundamentally challenging issue facing the geo-environmental community is containment, long-term storage, and volume reduction of oil sands fine tailings produced by the extraction process. This paper presents the results of a testing program in which the seepage induced consolidation test (SICT) is used to determine consolidation properties, i.e. the compressibility and permeability characteristics, of a mature fine tailings (MFT) sample. The obtained properties are verified independently by increased gravity in a geotechnical centrifuge. It is shown that MFT behave like other slurries and undergo a consolidation process when subjected to loading, seepage forces or increased self-weight stresses in a centrifuge. The void ratio (solids content) within each sample is variable and no restrictive assumptions are made on the variability of the consolidation properties of the sample. The results confirm that the SICT is applicable to the testing of oil sand MFT, and produces repeatable datasets under controlled laboratory conditions; nevertheless, more detailed field studies are recommended.

  8. A New Type of Exposed Oil Sand Mine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With several means of analysis, the unique organic compound component and distribution of exposed oil sand existing in Qinghai, north-west China, is revealed. Qinghhai oil sand has great content of light components with high saturated hydrocarbon content up to approximately 50%, while its heavy components of colloid and asphaltene is rather low (<38%); straight-chain alkane has a regular distribution concentrating mainly around C28; it has a very high atom ratio of H/C. The physical parameters of the oil sand mine are within the range of common heavy oils. Such chemical composition and distribution obviously differs from that of other known exposed oil sand mines. This particular property of the oil sand is formed due to the unique geographical and geological environment. Therefore, it is intended to exploit the mine with a new combined method, i.e., first drill horizontal wells and then opencut.

  9. Supercritical-Fluid Extraction of Oil From Tar Sands

    Science.gov (United States)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  10. Sand Production during Improved Oil Recovery in Unconsolidated Cores

    OpenAIRE

    Mohammad A. J. Ali.; S. M. Kholosy; A. A. Al-Haddad; K. K. Al-Hamad

    2012-01-01

    Steam injection is a mechanisms used for improved oil recovery (IOR) in heavy oil reservoirs. Heating the reservoir reduces the oil viscosity and causes the velocity of the moving oil to increase; and thus, the heated zone around the injection well will have high velocity. The increase of velocity in an unconsolidated formation is usually accompanied with sand movement in the reservoir creating a potential problem. Core samples from different wells in Kuwait were used to examine sand producti...

  11. Big picture thinking in oil sands tailings disposal

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, J. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of disposing oil sands tailings. Oil sands operators are currently challenged by a variety of legislative and environmental factors concerning the creation and disposal of oil sands tailings. The media has focused on the negative ecological impact of oil sands production, and technical issues are reducing the effect of some mitigation processes. Operators must learn to manage the interface between tailings production and removal, the environment, and public opinion. The successful management of oil sand tailings will include procedures designed to improve reclamation processes, understand environmental laws and regulations, and ensure that the cumulative impacts of tailings are mitigated. Geotechnical investigations, engineering designs and various auditing procedures can be used to develop tailings management plans. Environmental screening and impact assessments can be used to develop sustainable solutions. Public participation and environmental mediation is needed to integrate the public, environmental and technical tailings management strategies. Operators must ensure public accountability for all stakeholders. tabs., figs.

  12. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  13. Effects of oil sands sediments on fish

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, J.; Colavecchia, M.; Hewitt, L.; Sherry, J.; Headley, J. [Environment Canada, Ottawa, ON (Canada); Turcotte, D.; Liber, K. [Saskatchewan Univ., Regina, SK (Canada)

    2010-07-01

    This paper described a collaborative project organized by Natural Resources Canada (NRCan) Panel of Energy Research and Development (PERD) with researchers from Environment Canada and the University of Saskatchewan. The 4-year study was conducted to assess the toxicity of oil sands sediments and river waters, and reclamation ponds and sediments on laboratory-raised fish. Three sediments from rivers were evaluated for their potential to cause adverse impacts on fathead minnow eggs and larvae for a period of 18 days. The study monitored hatching, larval survival, development, and growth. Naphthenic acids (NA), polycyclic aromatic hydrocarbons (PAHs) and metals were measured in the sediments to determine if the compounds can be correlated with observed toxicity. The study will also assess walleye eggs exposed to sediments, and in situ fish exposures. Toxicity identification and evaluation (TIE) studies will be conducted to isolate the fractions that may affect fish development and growth.

  14. The state of oil sands wetland reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The state of oil sand and wetlands reclamation was the subject of this presentation. Wildlife habitat and response, plant community and production, and microbial biology were examples of research areas surrounding this body of knowledge. Hydrological research and landscape ecology were discussed along with peatlands and marshes such as the Corvette and the Kia. A few examples of what has been learned in the area of wetlands reclamation was presented. Other topics were also discussed, such as timeframes, pragmatic policy approaches, reclamation costs, research needs and some ideas on maturing the field. It was concluded that environmental conditions change with time and area because of time, chemistry, physics, stoichiometry, as well as biotic mediation and facilitation. figs.

  15. Effects of oil sands sediments on fish

    International Nuclear Information System (INIS)

    This paper described a collaborative project organized by Natural Resources Canada (NRCan) Panel of Energy Research and Development (PERD) with researchers from Environment Canada and the University of Saskatchewan. The 4-year study was conducted to assess the toxicity of oil sands sediments and river waters, and reclamation ponds and sediments on laboratory-raised fish. Three sediments from rivers were evaluated for their potential to cause adverse impacts on fathead minnow eggs and larvae for a period of 18 days. The study monitored hatching, larval survival, development, and growth. Naphthenic acids (NA), polycyclic aromatic hydrocarbons (PAHs) and metals were measured in the sediments to determine if the compounds can be correlated with observed toxicity. The study will also assess walleye eggs exposed to sediments, and in situ fish exposures. Toxicity identification and evaluation (TIE) studies will be conducted to isolate the fractions that may affect fish development and growth.

  16. A new approach to the management of cumulative environmental impacts, the Alberta Oil Sands area

    International Nuclear Information System (INIS)

    Resource development in the oil sand industry of Northeastern Alberta is enjoying a wave of renewed interest fuelled in part by changes made in the tax and royalty structure for oil sands developments in the province, the development of new technology and the price of oil. Announcements were made of investments totalling approximately 51 billion dollars in the oil sand industry over the next ten years in all deposits. The issue of cumulative environmental effects has been amplified accordingly. In June 2000, an association was formed, the Cumulative Environmental Management Association (CEMA), consisting of stakeholders and based on consensus, with a mandate to address 72 issues related to potential cumulative impacts in the expanded development of the Wood Buffalo Region. Five working groups were formed, as well as three standing committees. To mitigate the cumulative effects, the working groups and standing committees are working on management objectives, management systems and research recommendations. The regulatory bodies receive the recommendations, and the implementation process involves the issuance of permits and licenses. Research and monitoring activities play a vital role in the environmental management system and are part of other current environmental initiatives. Some of the initiatives are managed by the Wood Buffalo Environmental Association, Regional Aquatics Monitoring Program, and the Canadian Oil Sands Network for Research and Development. These organizations touch on topics including air quality monitoring, aquatics monitoring and environmental research. 1 fig

  17. Evaluating the oil sands reclamation process: Assessing policy capacity and stakeholder access for government and non-governmental organizations operating in Alberta's oil sands

    Science.gov (United States)

    Patterson, Tyler

    . In an effort to discern the overall status of reclamation in the oil sands this study explores several factors essential to policy capacity: work environment, training, employee attitudes, perceived capacity, policy tools, evidence based work, and networking. Data was collected through key informant interviews with senior policy professionals in government and non-government agencies in Alberta. The following are agencies of interest in this research: Canadian Association of Petroleum Producers (CAPP); Alberta Environment and Sustainable Resource Development (AESRD); Alberta Energy Regulator (AER); Cumulative Environmental Management Association (CEMA); Alberta Environment Monitoring, Evaluation, and Reporting Agency (AEMERA); Wood Buffalo Environmental Association (WBEA). The aim of this research is to explain how and why reclamation policy is conducted in Alberta's oil sands. This will illuminate government capacity, NGO capacity, and the interaction of these two agency typologies. In addition to answering research questions, another goal of this project is to show interpretive analysis of policy capacity can be used to measure and predict policy effectiveness. The oil sands of Alberta will be the focus of this project, however, future projects could focus on any government policy scenario utilizing evidence-based approaches.

  18. Frozen lump generation of oil sands : climatic challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cyr, D.J.; Tannant, D.D.; Sego, D.C. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering]|[Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Del Valle, V. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2004-07-01

    A study was conducted to quantify the significance of frozen lumps on oil sand production at the North Mine in the Fort McMurray area. A model was also developed to predict frost depth in an actively mined bench. Proactive and reactive mitigative measures were presented to reduce or eliminate the challenges posed by frost penetration. Climate has a strong influence on the properties of Athabasca oil sands and the ease or difficulty with which they are excavated. Frost enters into the exposed oil sand surface during the winter, thereby freezing the in situ water. Large frozen lumps are created when shovels excavate the benches. These lumps are sent to a lump dump where increased costs are incurred due to rehandling, or they are sent to the primary crushers where they can cause significant downtimes by jamming the crusher. Data from two consecutive winters in Syncrude Canada's North Mine indicates a high correlation between climate and the generation of frozen oil sand lumps. Temperature, ground cover, traffic, bench exposure time, oil sand grade and moisture content all contribute to this problem. A one-dimensional frost penetration model was developed to predict the depth of frost expected in oil sands and the corresponding likelihood of frozen oil sands lumps. The proactive and reactive measures that can be taken to mitigate the challenge of frozen lump generation include artificial snow, shallow ponds, blasting and ripping. 8 refs., 2 tabs., 5 figs.

  19. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700TM (Advanced CANDU Reactor-700TM) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  20. Oil sands: Strategies for future development - An overview

    International Nuclear Information System (INIS)

    The Alberta Chamber of Resources developed a Task Force in 1993 to promote oil sands development, and to identify and publicize the social and economic benefits of oil sands operations. Formation, mission of the National Task Force, impediments and opportunities for development were summarized. Attributes of oil sands, benefits of their development, impediments to development, strategic development and potential growth scenarios were discussed. Cooperation between government and industry was deemed essential. Recommendations included development of a bitumen pipeline network, provision of incentives to encourage development, encouragement of risk and reward sharing between bitumen producers and up graders, and diversification of products and by-products. 7 figs., 12 refs

  1. Geophysical surveys for oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J.; Henderson, J. [Associated Geosciences Ltd., Calgary, AB (Canada)

    2010-07-01

    This article discussed two electromagnetic methods used in aerial geophysical surveys for addressing geotechnical issues related to resource extraction, namely Airborne Time Domain Electromagnetics (TEM) and Airborne Frequency Domain Electromagnetics. Electromagnetic methods identify contrasts in electrical conductivity, and the resulting data are interpreted according to how the measured electrical properties relate to the geologic units of interest. It is necessary to understand the limitations of the data to avoid misinterpreting the geophysical results. Both methods resolve the resistivity of the earth's subsurface but use different operations to do so, and both rely on the degree of contrast in the electrical characteristics of successive lithologies, target thickness, and the depth of occurrence for success. Inverse modelling is used to convert the results into a map of resistivity. The techniques can be used for economically mapping the location and thickness of cap rock, covering more area at less cost than drilling, creating maps of potential aquifers and paleo-channels that may control water flow, identifying local supplies of aggregates for road requirements, and mapping the location and depth of muskeg. It was concluded that these geophysical survey methods can cost-effectively provide useful information for oil sands development. 2 refs., 1 tab., 5 figs.

  2. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    The impact of the oil and natural gas industry on the Canadian economy is explained in terms of employment, balance of trade, products, government revenues, international technology trade and industry support to the community. It is reported that the industry employs almost one half million people in Canada; is the second largest contributor to Canada's balance of trade; generate billions of dollars for the economy and pays hundreds of millions of dollars in taxes and its employees contribute millions of dollars and thousands of hours of time to charitable and community organizations. The industry is also one of the major contributors to Canada's technology export through its leadership in high technology exploration methods, cold climate and offshore operations, enhanced recovery technologies, producing and processing heavy oil; mining and upgrading oil sands bitumen, oil-well firefighting techniques and environmental protection technologies, among others. Citing Canada's cold climate and energy-intensive industries, hence the need for large quantities of energy, the booklet offers a rationale for the industry's need to continue to be profitable in order to develop new sources of oil and gas production and invest in energy-efficient technologies. Assuming continued profitability, combined with more efficient use of oil and gas, the Foundation remains confident that the industry will provide energy security and export revenues for the benefit of all Canadians. 12 refs., photos

  3. A Sand Control System for Light Oil Reservoir

    Institute of Scientific and Technical Information of China (English)

    Xiang Yuzhang

    1996-01-01

    @@ Over 30-year water flooding in light oil sandstone reservoirs with loose argillaceous cement in Karamay oilfield results in severe sand production, varying from well to well with the different date of well completion.

  4. University of Utah Oil Sand Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-12-31

    An overview of the Oil Sand Research and Development Program at the University of Utah will be presented. It will include resource characterization of the Uinta Basin oils and deposits and bitumens and bitumen-derived liquid recovery and upgrading technology and product utilization. The characterization studies will include the Whiterocks and Asphalt Ridge oil sands. The discussion of recovery and upgrading technologies will include aqueous separation, thermal recovery processes; solvent extraction, and thermal and catalytic upgrading of bitumen and bitumen-derived heavy oils. Product evaluation studies will include jet fuels, diesel fuel, asphalt and specialty chemicals. Plans for the future of the project will be discussed.

  5. Under-mining the environment : the oil sands report card

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, S.; Moorhouse, J.; Laufenberg, K.; Powell, R.; Chandler, M. (ed.)

    2008-01-15

    This environmental performance survey is a report to the public on the comparative environmental management and performance of proposed and active oil sands mining projects in Alberta. The report card revealed that the proposed and actual environmental performance of the oil sands mining industry is generally poor, with an average score of 33 per cent. The overall scores for projects ranged from 56 per cent for the Albian Sands Muskeg River Mine to 18 per cent for the Synenco Northern Lights and Syncrude projects. The report indicated that there is much room for improvement in oil sand mining environmental management. Currently, there are many feasible strategies and best practices that could improve performance, but they are inconsistently applied in the oil sands region. The environmental performance of this industry could improve significantly if all operations improved their performance to match industry leaders. Although nearly all companies have environmental policies that commit to improvement, voluntary targets are rare for oil sands companies. Few have publicly committed to reduce greenhouse gas pollution, water intensity or air emissions. Very few have adopted targets to improve their intensity-based environmental performance. The report also indicated a lack of readily available information on environmental performance. The Pembina Institute and the World Wildlife Fund-Canada made the following recommendations to improve environmental management of oil sands mining operations in Alberta: (1) government should enforce acceptable standards of environmental performance, (2) government should report on environmental impacts to public lands, (3) government should request segregated information to enable comparison of environmental performance, (4) companies should implement best available practices, and (5) companies should make project-specific oil sands environmental performance information more widely available. 84 refs., 12 tabs., 8 figs.

  6. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit

    OpenAIRE

    Warren, Lesley A.; Kendra, Kathryn E.; Brady, Allyson L.; Slater, Greg F.

    2016-01-01

    Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m3 FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 108 m3 of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyros...

  7. The extraction of bitumen from western oil sands

    International Nuclear Information System (INIS)

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report

  8. Food web structure in oil sands reclaimed wetlands.

    Science.gov (United States)

    Kovalenko, K E; Ciborowski, J J H; Daly, C; Dixon, D G; Farwell, A J; Foote, A L; Frederick, K R; Costa, J M Gardner; Kennedy, K; Liber, K; Roy, M C; Slama, C A; Smits, J E G

    2013-07-01

    Boreal wetlands play an important role in global carbon balance. However, their ecosystem function is threatened by direct anthropogenic disturbance and climate change. Oil sands surface mining in the boreal regions of Western Canada denudes tracts of land of organic materials, leaves large areas in need of reclamation, and generates considerable quantities of extraction process-affected materials. Knowledge and validation of reclamation techniques that lead to self-sustaining wetlands has lagged behind development of protocols for reclaiming terrestrial systems. It is important to know whether wetlands reclaimed with oil sands process materials can be restored to levels equivalent to their original ecosystem function. We approached this question by assessing carbon flows and food web structure in naturally formed and oil sands-affected wetlands constructed in 1970-2004 in the postmining landscape. We evaluated whether a prescribed reclamation strategy, involving organic matter amendment, accelerated reclaimed wetland development, leading to wetlands that were more similar to their natural marsh counterparts than wetlands that were not supplemented with organic matter. We measured compartment standing stocks for bacterioplankton, microbial biofilm, macrophytes, detritus, and zoobenthos; concentrations of dissolved organic carbon and residual naphthenic acids; and microbial production, gas fluxes, and aquatic-terrestrial exports (i.e., aquatic insect emergence). The total biomass of several biotic compartments differed significantly between oil sands and reference wetlands. Submerged macrophyte biomass, macroinvertebrate trophic diversity, and predator biomass and richness were lower in oil sands-affected wetlands than in reference wetlands. There was insufficient evidence to conclude that wetland age and wetland amendment with peat-mineral mix mitigate effects of oil sands waste materials on the fully aquatic biota. Although high variability was observed within

  9. Canadian R&D on oil-fired integrated systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A.C.S.; Entchev, E. [CCRL/ERL/CANMET, Ottawa (Canada)

    1995-04-01

    This presentation will describe research and development presently being conducted on oil-fired space and water heating systems at the Combustion & Carbonization Research Laboratory (CCRL) in Ottawa, Canada. It will focus on R& D activities at CCRL in support of the Canadian Oil Heat Association (COHA); in particular, progress will be reported on activities to develop suitable oil-fired integrated systems to satisfy the low energy demands of new homes and to define outstanding issues and recommend solutions relating to sidewall venting, particularly in cold climates. Additional activities to be discussed relate to the development of appropriate seasonal efficiency standards for oil-fired combustion systems, in support of Canadian federal and provincial policy initiatives. The first activity in this standards area is a determination of the most appropriate measure of seasonal efficiency of complex integrated space/water heating systems. Performance of a range of existing and prototype integrated systems will be examined and their overall performances defined, using heat loss, heat balance and combined methods, for a wide range of cyclic operations and demands. The draft standard may be either a (slight or detailed) modification of the existing ASHRAE standard, or may be a new more appropriate test and analysis procedure, for the range of present and future systems suitable for Canadian applications in both new, low energy housing and in existing housing. The second standards activity is the development of an appropriate measure for the seasonal efficiency of sidewall vented oil-fired appliances.

  10. Origin of Unliberated Bitumen in Athabasca Oil Sands

    Institute of Scientific and Technical Information of China (English)

    TuYun; J.B.O'Carroll; B.D.Sparks; L.S.Kotlyar; S.Ng; K.H.Chung; G.Cuddy

    2005-01-01

    Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM.It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is """"""""unliberated"""""""", and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU).Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.

  11. The use of stable isotopes to trace oil sands constituents

    Energy Technology Data Exchange (ETDEWEB)

    Farwell, A.J.; Nero, V.; Dixon, D.G. [Waterloo Univ., ON (Canada). Dept. of Biology

    2002-07-01

    A study was conducted to determine the biological effects of oil sands mining operations on aquatic ecosystems. The study focused on the Athabasca oil sand deposit, the largest of 4 deposits in northern Alberta. In particular, the study examined the cycling of oil sand constituents in Benthic invertebrates collected from test pits at Syncrude Canada Ltd.. The invertebrates were similar in size, but different in the quantity of process-affected water or mature fine tailings containing residual bitumen. Dragonflies and damselflies in particular, showed trends of depletion for the carbon 13 isotope and enrichment in nitrogen 15 isotope in pits where levels of process affected water was high. The depletion of carbon 13 isotope suggests that oil sand constituents assimilate into the benthic food chain. The greatest carbon 13 depletion, which was approximately 27 per cent, was found to be in test pits with high turbidity. This implies that oil sands constituents degrade microbially instead of by photosynthetic production. All benthic invertebrate group demonstrated an incremental enrichment in nitrogen 15 isotope from the control pit to the pit with greatest levels of mature fine tailings.

  12. Modeling of Sand and Crude Oil Flow in Horizontal Pipes during Crude Oil Transportation

    OpenAIRE

    Samuel Eshorame Sanni; Olawale, A. S.; Adefila, S. S.

    2015-01-01

    Some oil and gas reservoirs are often weakly consolidated making them liable to sand intrusion. During upstream petroleum production operations, crude oil and sand eroded from formation zones are often transported as a mixture through horizontal pipes up to the well heads and between well heads and flow stations. The sand transported through the pipes poses serious problems ranging from blockage, corrosion, abrasion, and reduction in pipe efficiency to loss of pipe integrity. A mathematical d...

  13. Water availability in peat-mineral mixes and sands in oil sands reclamation, NE Alberta

    International Nuclear Information System (INIS)

    Soil productivity is a function of the soil's ability to provide moisture to plants. This study was initiated by Suncor and Syncrude to determine the water holding capacity of peat-mineral mixtures in the oil sands region. Other concepts dealt with in this presentation include soil drainage classification, soil moisture regime classification, soil permeability, the hydrological regime and the interactions of these phenomena. A further objective was to incorporate this information in a publication entitled 'Land capability classification for forest ecosystems in the oil sands region', scheduled to be released in November 1997

  14. Oil sands tailings dewatering - can it be done?

    Energy Technology Data Exchange (ETDEWEB)

    Longo, S.; Francoeur, R.; Labelle, M. [Golder Paste Technology Ltd (Canada); Wislesky, I. [Golder Associates Ltd (Canada)

    2011-07-01

    The depletion of conventional energy resources and the rising energy demand are driving development of the oil sands industry. Oil sands operations generate large amounts of tailings and a new directive has been put in place by the Energy Resources Conservation Board to manage those tailings. The aim of this paper is to present research that has been carried out on dewatering the oil sands' multiple tailings streams. Laboratory and field experiments have been conducted on several tailings streams using different dewatering methods. Different dewatering technologies such as thickening, in-line flocculation, centrifuge, and co-mingling are presented herein as well as several deposition strategies such as thick lift, thin lift, cell structure, single end point discharge, and multiple spigot discharge. This paper provided useful information on the different dewatering and deposition methods available and demonstrated that each site has its unique solution and that all tailings streams can be dewatered to some extent.

  15. Canadian Occidental joins Hunt as Yemen oil producer

    International Nuclear Information System (INIS)

    On 23 September 1993, the Canadian Occidental Petroleum Company initiated the export of 120,000 b/d (barrels a day) of low sulphur, medium gravity crude oil from its Masila Block concession in Yemen. The oil is transported from Masila via a pipeline built by CanOxy and its partners to a new terminal at Ash Shihr, near Mukalla, in the Gulf of Aden. CanOxy is the third operator oil company to produce oil commercially in Yemen. The first, the Hunt Oil Company, began production in December 1987 and its output now totals about 187,000 b/d. The second, Nimir Petroleum, a Saudi venture which took over the facilities developed in the 1980s by two Soviet companies, is currently producing about 10,000 b/d and expects to increase its output to 25,000 b/d during this year. (Author)

  16. SAND & FINES IN MULTIPHASE OIL AND GAS PRODUCTION

    OpenAIRE

    Richard, Udoh Richard

    2013-01-01

    This thesis work focuses on multiphase flow in the oil and gas industry. As differences in temperatures and pressures come to play from the reservoir to the surface, in tubing and in pipelines, gas tend to dissolve and evolve out from oil, with water and solid particles making their way into the production flow stream, giving rise to a multiphase gas-liquid-solid production and transportation. A review of sand and fines production worldwide was carried out and concluded that sand production i...

  17. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment

    OpenAIRE

    Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R.; Pardue, John H.

    2014-01-01

    Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratid...

  18. Treatment of oil spill water by ozonation and sand filtration.

    Science.gov (United States)

    Hong, P K Andy; Xiao, Ting

    2013-04-01

    Increasing volumes of crude oil being produced and transported throughout the world in recent decades have resulted in increased risks of spill and high-profile spill incidents of significant environmental and ecological impacts over extended periods of time. While immediate in situ and ex situ responses have been implemented, none are available for onsite treatment of contaminated water for immediate release of the treated water. We demonstrate here a potential treatment scheme involving ozonation and sand filtration intended for immediate treatment and discharge of the impacted water. Waters of tap, Utah Lake, and Great Salt Lake sources were spiked with crude oil of the Great Natural Butte of Utah at 2.5% and 0.025% oil (v/v) and tested for treatment. The results showed near complete removal (100%) of both Chemical Oxygen Demand (COD) and oil and grease (O&G) from initially 20000 and 11000 mg L(-1), respectively, via flotation pretreatment, ozonation in pressure cycles, and sand filtration. At lower oil level of 0.025%, complete removal of COD and O&G from waters were achieved without floatation. The treated waters showed reduction of turbidity to oil removal when two well practiced methods, namely ozonation and sand filtration that either alone seems ineffective, are combined sequentially. It indicates a potential on-site treatment response for oil spill incidents where the collection and transport of a large amount of contaminated water may be avoided.

  19. FCC Study of Canadian Heavy Gas Oils Comparisons of Product Yields and Qualities between Reactors

    Institute of Scientific and Technical Information of China (English)

    SiauwH.Ng; AdrianHumphries; CraigFairbridge; ZhuYuxia; SokYui

    2005-01-01

    Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel capability.VGOs were cracked in fixed- and/or fluid-bed microactivity test (MAT) units, in an Advanced Cracking Evaluation (ACE)unit, and in a modified ARCO riser reactor. Individual yields of gas, liquid, and coke from the MATs at 55, 65, 70, and 81 wt% conversion levels were compared with their respective pilot plant data. Good linear correlations could be established between MAT and riser yields except for liquefied petroleum gas (LPG) and light cycle oil (LCO). At a given conversion,correlations existed among the fixed- and fluid-bed MAT units and the ACE for each product yield. Liquid products from the fixed or fluid-bed MAT were analyzed for hydrocarbon types, sulfur, nitrogen and density, most of which showed good agreement with those obtained from the riser study. When cracking Canadian oil-sands-derived VGOs, the bottomscracking catalyst containing a large-pore active matrix was found to be more suitable than the octane-barrel catalyst with smaller pores to produce higher yields of valuable distillates, but with less superior qualities (in terms of sulfur and nitrogen contents). The advantages of hydrotreating some poor feeds to improve product yields and qualities were demonstrated and discussed.

  20. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems.

    Science.gov (United States)

    Kurek, Joshua; Kirk, Jane L; Muir, Derek C G; Wang, Xiaowa; Evans, Marlene S; Smol, John P

    2013-01-29

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth's largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4-alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5-23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  1. Sulfur concrete haul roads at Suncor oil sands mines

    Energy Technology Data Exchange (ETDEWEB)

    Abraha, D.; Sego, D.; Donahue, R.; Biggar, K. [Alberta Univ., Edmonton, AB (Canada). Geotechnical Center

    2004-07-01

    Well constructed haul roads are necessary to ensure the efficient use of ultra large haul trucks used at oil sand mining operations in northern Alberta. Haul roads at Suncor are presently constructed with crushed limestone, gravel, lean oil sand and till, but they deteriorate severely during the summer due to material softening. Suncor conducted a study to determine the feasibility of building mine haul roads at their oil sand mines using concrete prepared from by-products and mine wastes such as sulfur, fly ash, coke and tailings sand. The physical and mechanical properties of different mixes of sulfur concrete were characterized in laboratory studies that involved compression measuring and split tensile and freeze thaw durability tests. The geochemical interaction of sulfur concrete with the near surface environment was also studied with reference to the operational life of the haul road and interaction of sulfur concrete with ground water. A haul road test section was designed based on the resilient modulus design method. A finite element analysis was used to calculate the stress and strain distributions in the road caused by truck tires. The pavement thickness was determined based on the truck loads, the resilient modulus and the strength of the sulfur concrete and subgrade material. It was concluded that sulfur concrete produced from mine wastes is much stronger and stiffer than the existing haul road material. Therefore, better haul roads can be constructed with reduced pavement thicknesses using tailing sand sulfur concrete. 8 refs., 4 tabs., 14 figs.

  2. Risk factors in stock returns of Canadian oil and gas companies

    International Nuclear Information System (INIS)

    This paper uses a multifactor market model to estimate the expected returns to Canadian oil and gas industry stock prices. Results are presented to show that exchange rates, crude oil prices and interest rates each have large and significant impacts on stock price returns in the Canadian oil and gas industry. In particular, an increase in the market or oil price factor increases the return to Canadian oil and gas stock prices while an increase in exchange rates or the term premium decreases the return to Canadian oil and gas stock prices. Furthermore, the oil and gas sector is less risky than the market and its moves are pro-cyclical. This suggests that Canadian oil and gas stocks may not be a good hedge against inflation

  3. Drilling deeper : the in situ oil sands report card

    Energy Technology Data Exchange (ETDEWEB)

    Moorhouse, J.; Huot, M.; Dyer, S. [Pembina Institute, Drayton Valley, AB (Canada)

    2010-03-15

    In situ extraction techniques are increasingly being used to develop deep oil sands deposits in Alberta despite the fact that little is currently known about the potential impacts of the technology on the surrounding environment. This report presented an initial attempt to evaluate and compare the environmental performance of various in situ oil sands operations. Oil sands companies responded to surveys with questions related to the following 5 main categories: (1) general environmental management, (2) land, (3) air emissions, (4) water, and (5) climate change. The study showed that few projects have established reduction targets for air emissions, water use, and greenhouse gas (GHG) emissions that exceed government requirements. In situ projects emitted more GHGs and sulphur dioxide (SO{sub 2}) than other mining technologies. Very few companies have invested in biodiversity offsets to compensate for the impacts of in situ developments. Only 2 companies have third party accredited environmental management systems for in site projects. The study also demonstrated that there is little publicly available data related to in site environmental performance. Companies must be encouraged to establish public reduction targets. Policies must be developed to mitigate the terrestrial impacts of in situ oil sands development. 124 refs., 18 tabs., 16 figs.

  4. Modular Helium Reactor (MHR) for oil sands extraction

    International Nuclear Information System (INIS)

    Oil sands extraction is a very important industry for Canada, which continues to grow. It has been estimated that Athabasca region in northern Alberta has at least 1.6 trillion barrels of oil contained in oil sands, while the world liquid oil reserves are estimated as less than 1.0 trillion barrels. Strip mining can access only about 10% of the oil sand reserves, thus accessing most reserves involves in-situ technologies such as Steam Assisted Gravity Draining (SAGD). However, the SAGD process requires large amounts of high-temperature, high-pressure steam, which is currently being produced by burning natural gas. High-temperature nuclear reactors such as Modular Helium Reactor (MHR) present an alternative viable source of this steam, which can avoid the consumption of large amounts of natural gas and eliminate CO2 emissions. MHR technology has been under development in the US since the middle 1950s. It is the only nuclear technology demonstrated so far which is capable of achieving coolant outlet temperatures in the range of 700 - 1000oC. Several gas-cooled reactor plants have been built and operated to-date worldwide. The Modular Helium Reactor (MHR) has improved safety features, such as passive cooling. Coated fuel particles, annular core geometry with prismatic graphite elements used for the core structure material and as a moderator, along with helium as a coolant, distinguish the MHR from other gas cooled reactors and provide for its unique high-temperature and passive safety capabilities. Modularity is another important feature of the MHR. The 350 MW(t) MHR has been developed for electricity generation using a steam cycle, and has a net plant efficiency of 38.4%. One reactor module is capable of producing about 13,000 tons of steam per day. Such a reactor plant is therefore directly applicable to the oil sands extraction using the SAGD process. In this paper we present a flow diagram of a reactor plant co-producing electricity and steam for the SAGD process

  5. Canadian R&D on oil-fired combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A.C.S.; Entchev, E. [CCRL/ERL/CANMET, Ottawa (Canada)

    1996-07-01

    This paper describes research and development presently being conducted on oil-fired space and tap water heating systems by the Advanced Combustion Technology Group, CCRL/ERL/CANMET, in Ottawa, Canada. The presentation will focus on R&D activities at CCRL in support of the Canadian Oil Heat Association (COHA) and of the energy policy initiatives of Natural Resources Canada. Progress will be reported on activities to develop suitable oil-fired integrated systems to satisfy the low energy demands of new homes. The utilization of fuzzy logic-based control heating systems including fan coils for a complete range of old and new North American housing will be discussed. Additional activities to be discussed in the presentation will relate to the development of appropriate seasonal efficiency standards for complex integrated space/water heating systems, as well as an evaluation of alternative sidewall venting technologies and their implications for seasonal energy efficiency.

  6. Oil-sands giants leaving smaller environmental footprints

    Energy Technology Data Exchange (ETDEWEB)

    Stonehouse, D

    1999-08-01

    Suncor Energy and Syncrude Canada are both investing billions of dollars to increase production at their mining facilities near Fort McMurray, Alberta. The two oil-sand giants will be spending a good portion of their investment (almost $1 billion) to improve their environmental performance. Both companies are focusing on reducing their energy use to cut production costs and to reduce carbon dioxide (CO{sub 2}) emissions. Currently, oil-sand mining accounts for the largest industrial use of electricity in Alberta. This produces tremendous amounts of greenhouse gases such as CO{sub 2} which has been linked to global warming. Byyear 2006, all of Syncrude's processing equipment will be replaced by energy-efficient equipment. Shovel/truck/hydrotransport will replace the dragline/bucket-wheel/conveyor system used in the past. New technology designed to improve bitumen recovery and increase upgrading processing yields is also expected to decrease emissions by 5 million tonnes per year. Syncrude will also construct a $60 million gas turbine generator for its Aurora project. Sulphur dioxide (SO{sub 2}) emissions which cause acid rain, are also on the decline at both Syncrude and Suncor. Suncor will reduce its energy use through the construction of a $315 million cogeneration plant which will generate 220 MV of electricity for its operations, along with waste heat that will be used to separate the heavy oil from the sand. The cogeneration plant will be 45 per cent more efficient that current operations. Both companies have planted millions of trees and shrubs to reclaim nearly 3,000 hectares of land. The tailings from oil-sand mining are currently being captured in settling basins. Both companies have long range plans for dealing with tailings. The first is called water capping which involves layering fresh water over tailing deposits to create a lake. The second is called composite tails, which involves mixing the tailings with gypsum and sand to make them settle

  7. Oil-sands giants leaving smaller environmental footprints

    Energy Technology Data Exchange (ETDEWEB)

    Stonehouse, D.

    1999-08-01

    Suncor Energy and Syncrude Canada are both investing billions of dollars to increase production at their mining facilities near Fort McMurray, Alberta. The two oil-sand giants will be spending a good portion of their investment (almost $1 billion) to improve their environmental performance. Both companies are focusing on reducing their energy use to cut production costs and to reduce carbon dioxide (CO{sub 2}) emissions. Currently, oil-sand mining accounts for the largest industrial use of electricity in Alberta. This produces tremendous amounts of greenhouse gases such as CO{sub 2} which has been linked to global warming. By year 2006, all of Syncrude`s processing equipment will be replaced by energy-efficient equipment. Shovel/truck/hydrotransport will replace the dragline/bucket-wheel/conveyor system used in the past. New technology designed to improve bitumen recovery and increase upgrading processing yields is also expected to decrease emissions by 5 million tonnes per year. Syncrude will also construct a $60 million gas turbine generator for its Aurora project. Sulphur dioxide (SO{sub 2}) emissions which cause acid rain, are also on the decline at both Syncrude and Suncor. Suncor will reduce its energy use through the construction of a $315 million cogeneration plant which will generate 220 MV of electricity for its operations, along with waste heat that will be used to separate the heavy oil from the sand. The cogeneration plant will be 45 per cent more efficient that current operations. Both companies have planted millions of trees and shrubs to reclaim nearly 3,000 hectares of land. The tailings from oil-sand mining are currently being captured in settling basins. Both companies have long range plans for dealing with tailings. The first is called water capping which involves layering fresh water over tailing deposits to create a lake. The second is called composite tails, which involves mixing the tailings with gypsum and sand to make them settle faster.

  8. Oil sand process-affected water treatment using coke adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Gamal El-Din, M.; Pourrezaei, P.; Chelme-Ayala, P.; Zubot, W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Oil sands operations generate an array of oil sands process-affected water (OSPW) that will eventually be released to the environment. This water must be evaluated within conventional and advanced water treatment technologies. Water management strategies propose options for increased reuse and recycling of water from settling ponds, as well as safe discharge. This presentation outlined the typical composition of OSPW. Constituents of concern in OSPW include suspended solids, hydrocarbons, salts, ammonia, trace metals, and dissolved organics such as naphthenic acids (NAs). Petroleum coke is one of the by-products generated from bitumen extraction in the oil sands industry and can be used as one of the possible treatment processes for the removal of organic compounds found in OSPW. Activated carbon adsorption is an effective process, able to adsorb organic substances such as oils, radioactive compounds, petroleum hydrocarbons, poly aromatic hydrocarbons and various halogenated compounds. The objectives of this study were to evaluate the production of activated carbon from petroleum coke using steam as the activation media; to determine the factors affecting the absorption of NAs; and to evaluate the activated coke adsorption capacity for the reduction of NAs and dissolved organic carbons present in OSPW. It was concluded that petroleum non-activated coke has the ability to decrease COD, alkalinity, and NA concentration. tabs., figs.

  9. The influence of diagenetic microfabric on oil sands behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D.J. (Thurber Consultants, Ltd., Edmonton, Alberta, Canada); Dusseault, M.B.

    1982-04-01

    The diagenetic processes of pressure solution and authigenic crystal overgrowth have altered the arenaceous oil sand materials of northeastern Alberta, creating sands with a decreased porosity and interlocking grain contacts. Examination of specimens in the scanning electron microscope indicates that a large number of the grain contacts in the materials have been altered from tangential to long and concavo-convex. Except for infrequent isolated bands, the materials are free from true grain-to-grain mineral cement. Strength, compressibility, and index tests (density, grain size) were performed in the laboratory on oil-free samples of the McMurray and Grand Rapids Formations, two of the Alberta oil-bearing strata. Results indicate that increased grain contact area and grain interlock cause a reduction in the compressibility and an increase in the shear strength of the materials. The influence of porosity, mineralogy, grain size, and degree of diagenetic alteration on the behaviour of granular materials is discussed, and a qualitative classification for degree of diagenetic alteration and its influence on shear strength is presented. The recognition of the geological processes responsible for the unusual engineering behaviour of oil sands will provide a valuable predictive capacity for all friable sandstone behaviour. On the other hand, the relatively straightforward properties of relative density and compressibility can serve as effective measures of geological diagenetic history for future process quantification.

  10. Reclamation and closure of an oil sands tailings facility

    Energy Technology Data Exchange (ETDEWEB)

    Sobkowicz, J. [Thurber Engineering Ltd., Calgary, AB (Canada); Morgenstern, N. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of ensuring the successful reclamation of oil sands tailings facilities. Tailings should be reclaimed as mining proceeds in order to avoid an excessive accumulation of fluid fine tailings (FFT). The volume of mature fine tailings (MFT) in ponds should be limited in order to ensure effective tailings management. The reclaimed landforms should have good geotechnical stability and be comprised of self-sustaining native vegetation. Strength is needed to allow for timely capping and initial reclamation, and stiffness is required to minimize future settlement and to allow for the construction of a closure landscape. Reclamation strategies were presented for fines-dominated tailings; sand-depleted tailings; and sand-dominated tailings. Energy Resources Conservation Board (ERCB) criteria for tailings reclamation were discussed, and various monitoring and performance assessment strategies were presented. tabs., figs.

  11. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010

    International Nuclear Information System (INIS)

    It has been argued that the oil sands industry is not energy efficient: comparatively large energy inputs are required per unit of energy output from oil sands operations. Unfortunately, quantitative work to date in this area has suffered from poor data availability and uncertain methods. We apply a new methodology and new dataset to compute ERRs (energy return ratios) for the oil sands industry. We collected monthly oil sands energy consumption and output data from 1970 to 2010. Current oil sands operations have mine mouth NERs (net energy returns) of about 6 GJ output per GJ of energy consumed and point of use energy returns of about 3 GJ/GJ. Long-term trends show oil sands operations becoming significantly more efficient: point of use NER increased from about 1 GJ/GJ in 1970 to 3 GJ/GJ in 2010. These energy returns are lower than those observed in historical conventional oil operations, but low energy returns are not likely to hinder development of oil sands operations due to the large resource in place and the ability for largely self-fueled pathways to return significant amounts of energy to society for every unit of external energy supplied. - Highlights: • Oil sands operations have become significantly more energy efficient over the history of the industry. • Oil sands production is largely fueled with energy from the bitumen resource itself, making external energy returns high. • Oil sands production is still significantly less efficient than conventional oil production

  12. Surface and groundwater management in the oil sands industry

    International Nuclear Information System (INIS)

    A study was conducted to examine the sublethal effects of oil sands constituents on gill and liver histopathology and fish reproduction. Field studies of food web dynamics were conducted using stable isotopes, including oil sands constituents degradation isotope studies. The objective was to determine changes in food web dynamics associated with reclamation methods and maturity using stable isotopes. The study related changes in toxicity to changes in ground and surface naphthenic acids concentration and composition. It also demonstrated the natural attenuation of toxic chemicals as they travel through groundwater to potential surface water receptors. A methodology was developed to assess the natural attenuation capacity for future situations involving process-affected groundwater of different chemistry with different critical potential contaminants such as sulphides, metals, and specific organics. The mobility and natural attenuation of process water chemicals migrating in groundwater was also assessed. tabs., figs

  13. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  14. A science and technology strategy for Canada's oil sands industry

    International Nuclear Information System (INIS)

    This report showed that science and technology are the basis for all current oil sands operations. Study proved that technological breakthroughs were essential for future grassroots investment. Assuming that the price of oil would remain in the range of 15 to 20 dollars a barrel, new technologies would be the key lever to economically sound commercial development. Technologies should reduce capital, operating as well as transportation costs. It was urged that, in the development of new technologies, emphasis should be put on technologies that eliminate or bypass entire sections of the current cost structure

  15. Proceedings of the 2010 oil sands and heavy oil technologies conference and exhibition

    International Nuclear Information System (INIS)

    Heavy oil and oil sands resources are being considered as a principal energy source for the future as a result of depleting conventional resources. This oil sands and heavy oil technologies conference provided a forum for industry members and other stakeholders to discuss new technologies and developments in heavy oil and oil sands operations. Attendants from over 20 different countries presented details of recent innovations and addressed some of the current challenges facing the industry. Geophysical and seismic survey equipment and methodologies were presented, and new separation processes for oil sands and heavy oil were reviewed. Issues related to combustion, air pollution abatement, and the storage and sale of sulphur by-products were discussed. Management and modelling techniques were also presented. The conference was divided into 6 sessions with separate tracks that included presentations related to project management and economics; in situ methods; geophysical techniques; sulphur; regulatory and handling issues; global projects; and carbon capture and sequestration (CCS) projects. The conference featured 63 presentations, of which 50 have been catalogued separately for inclusion in this database

  16. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    Science.gov (United States)

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment.

  17. Allowing sand into high-rate oil wells: how heavy oil experience is helping elsewhere

    Energy Technology Data Exchange (ETDEWEB)

    Dusseault, M. [Waterloo Univ., Porous Media Research Institute, Waterloo, ON (Canada)

    1998-10-01

    {sup S}and management` principles were reviewed in an effort to show how rather than operating liquid-dominated wells at a reduced sand-free rate, operating the wells at a rate that is above the maximum sand-free rate, yet below the rate that would lead to massive sand influx, has led to average light oil production increases of greater than 40 per cent in deep, poorly consolidated, sanding-prone reservoirs in the North Sea. The mechanism of `self clean-up` of wells was described wherein wells under `sand management` generate periodic bursts of sand which decay to normal background rates in a matter of minutes to hours, resulting in well skin changes from typical values of +5 to +10 per cent to values of -4 to -5. The end result is elimination of various impediments between the production face and the wellhead which reduces completion costs, eliminates workovers and treatment of blockages and allows the reservoir to produce unimpeded at increased oil rates. However, the procedure which grew out of heavy oil experience in Canada, is not without some risks. A number of design concepts and protocols covering geomechanics analysis, perforating strategy, monitoring and well-operating procedures have been developed and implemented to manage the risk. General principles underlying these procedures are briefly described.

  18. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata

    International Nuclear Information System (INIS)

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF = 66 and 12, respectively), aluminum (EF = 64 and 15, respectively), iron (EF = 52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72 h-IC 50% 37.5%, v/v). OSLW was 4.4 times less toxic (IC 50% = 8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (<−0.7) with the increase of arsenic, beryllium, chromium, copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae.

  19. Coagulation-flocculation pretreatment of oil sands process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Pourrezaei, P.; El-Din, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    This presentation addressed the issue of water use in the oil sands industry and efforts to use this limited resource more efficiently. Three wastewater treatment schemes for oil sands tailings ponds were proposed, notably primary, secondary and tertiary treatment. Primary treatment involves the removal of suspended solids using physical-chemical treatments. Secondary treatment involves the removal of dissolved solids and organics using chemical oxidation, ultrafiltration or nanofiltration. Tertiary treatment involves removal of residual organics/solids using biological activated carbon filtration, sand filtration or reverse osmosis. The composition of oil sands process water (OSPW) was also discussed with reference to suspended solids, salts, hydrocarbons, other dissolved organics (such as naphthenic acids and phenols), ammonia, inorganic compounds and trace elements. The conventional coagulation/flocculation process is essential in industrial wastewater treatment. It is cost effective, easy to operate and energy efficient. The process is used because small suspended and colloidal particles and dissolved constituents cannot be removed quickly by sedimentation. A chemical method must be used. Coagulation/flocculation brings small suspended and colloidal particles into contact so that they collide, stick and grow to a size that settles readily. Alum is the predominant and least expensive water treatment coagulant used for the coagulation/flocculation process. It provides positively charged ions to neutralize the negative charge of colloidal particles resulting in aggregation. It creates big settling flocs that enmesh colloids as it settles. The factors affecting the process include pH, chemical type, chemical concentration, rapid mixing intensity, slow mixing intensity and time. tabs., figs.

  20. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics.

    Science.gov (United States)

    Ruffell, Sarah E; Frank, Richard A; Woodworth, Adam P; Bragg, Leslie M; Bauer, Anthony E; Deeth, Lorna E; Müller, Kirsten M; Farwell, Andrea J; Dixon, D George; Servos, Mark R; McConkey, Brendan J

    2016-11-01

    Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies. PMID:27497784

  1. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics.

    Science.gov (United States)

    Ruffell, Sarah E; Frank, Richard A; Woodworth, Adam P; Bragg, Leslie M; Bauer, Anthony E; Deeth, Lorna E; Müller, Kirsten M; Farwell, Andrea J; Dixon, D George; Servos, Mark R; McConkey, Brendan J

    2016-11-01

    Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies.

  2. Alberta's economic development of the Athabasca oil sands

    Science.gov (United States)

    Steinmann, Michael

    This dissertation examines the 61-year evolution of public policies pertaining to development of Alberta's non-conventional source of crude oil. The Athabasca oil sands contain an estimated 1.5 trillion barrels and provide for a safe continental supply. The Provincial Government first sponsored this undertaking in 1943. The period from then to 1971 was one of a transition from a wheat economy to a natural-resource economic base. A stable government emerged and was able to negotiate viable development policies. A second period, 1971 to 1986, was marked by unstable world conditions that afforded the Alberta government the ability to set terms of development with multi-national oil firms. A 50% profit-sharing plan was implemented, and basic 1973 terms lasted until 1996. However, 1986 was a critical year because the Organization of Petroleum Exporting Countries (OPEC) reduced prices, causing the Alberta economy to lapse into recession. During a third period, 1986 to 1996, the Alberta Government was unable to adapt quickly to world conditions. A new leadership structure in 1996 made major changes to create ongoing fiscal and development policies. That history provides answers to two primary research questions: How do public policies affect the behaviors of the modern corporation and visa versa? What are the implications for development theory? Two sources of information were used for this study. First, it was possible to review the Premier's files located in the Provincial Archives. Materials from various government libraries were also examined. Some 7,000 documents were used to show the evolution of government policymaking. Second, interviews with leaders of oil companies and federal research facilities were important. Findings support the thesis that, to facilitate oil sands development, government and the private sector have closely collaborated. In particular, revenue policies have allowed for effective R&D organization. Relying on intensive technological

  3. Oil sands tailings : reclamation goals and the state of technology

    Energy Technology Data Exchange (ETDEWEB)

    Hyndman, A. [Magnus Ltd., Calgary, AB (Canada); Sobkowicz, J. [Thurber Engineering, Calgary, AB (Canada)

    2010-07-01

    This paper discussed the challenges facing the oil sands industry regarding the management of fluid fine tails (FFT). Three main FFT treatment methods are being scaled up to commercial implementation, notably sand-mature fine tailings (MFT) mixture or consolidated tailings (CT); water-capped, in-pit lake disposal; and sand-capping and surface reclamation. Additional fines-dewatering methods are needed for MFT to gain sufficient geotechnical strength. MFT accumulation incurs substantial construction, technical-monitoring, and maintenance costs. The goals are to avoid the need for ongoing maintenance, to attain geotechnically stable landforms, and to establish self-sustaining land and water features. The challenges related to achieving geotechnical stability in the reclaimed landscape with respect to both in-pit and out-of-pit deposits were discussed. De-watering should allow MFT to develop strength at a rate sufficient to allow for timely capping and low compressibility to minimize post-closure settlement. The time frame for achieving sufficient de-watering is a critical parameter. The 3 fundamental approaches to remediating fine tailings include enriching sand with fines; separately treating MFT or Thickened Tailings (TT) to attain sufficient dewatering; and sequestering fines under water in a geotechnically secure pit. It was concluded that mine reclamation and closure plans will require a suite of reclamation methods that can be tailored to specific site conditions. 5 refs., 2 tabs., 8 figs.

  4. The extraction of bitumen from western oil sands: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  5. The extraction of bitumen from western oil sands: Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  6. Buying versus exploring for reserves in the Canadian oil industry

    International Nuclear Information System (INIS)

    The issue of a business strategy for Canadian oil companies focussed on either buying reserves or on exploration is examined. A measurement of the amount of merger and acquisition (M ampersand A) transactions vs the amount of exploration activity shows that the number of M ampersand A transactions has risen from 262 in 1989 to an estimated 1,500 in 1992. This sales activity has partly resulted from major companies selling assets to pay down debt. In the same period, the number of licensed exploration wells has decreased from 2,800 to 1,500. An analysis of statistics on the costs of acquisitions vs cost of finding and development shows acquisitions costs are lower in all cases. In addition, the median acquisition price has been falling steadily. Buying reserves has other advantages, including the fact that reserves can be added more quickly, lower risk, and readily available financing. Exploration, however, has its advantages, including the potential for very large reserve additions, higher tax deductions and incentives available, less competition from the industry, and low input costs. The acquisition vs exploration strategies are illustrated using the stock performance of two companies. If the acquisitions trend continues, there will be increases in the profitability of existing reserves, the number of companies, and tax receipts, However, in the long term there will be a drop in Canadian reserves and a significant reduction in the size of the industry. 14 figs., 2 tabs

  7. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  8. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Alostaz, M.; Ulrich, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2009-07-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants.

  9. Effects of beach sand properties, temperature and rainfall on the degradation rates of oil in buried oil/beach sand mixtures.

    Science.gov (United States)

    Rowland, A P; Lindley, D K; Hall, G H; Rossall, M J; Wilson, D R; Benham, D G; Harrison, A F; Daniels, R E

    2000-07-01

    Lysimeters located outdoors have been used to evaluate the decomposition of buried oily beach sand waste (OBS) prepared using Forties light crude oil and sand from different locations around the British coast. The OBS (5% oil by weight) was buried as a 12-cm layer over dune pasture sub-sand and overlain by 20 cm of dune pasture topsoil. Decomposition rates of oil residues averaged 2300 kg ha(-1) in the first year and the pattern of oil decomposition may be represented by a power curve. Oil decomposition was strongly related to the temperature in the OBS layer, but was also significantly affected by rainfall in the previous 12 h. The CO(2) flux at the surface of the treatment lysimeters followed the relationship [log(10) CO(2) (mg C m(-2) h(-1))=0.93+0.058x OBS temp. (degrees C)-0.042x12 h rain (mm)]. There was considerable variation in the rate of oil decomposition in sands collected from different sites. Sand from Askernish supported most microbial activity whilst sand from Tain was relatively inactive. The decomposition process appeared to cease when the sand became saturated with water, i.e. temporarily anaerobic. However, decomposition recommenced when the soil dried out. The fastest rate of decomposition occurred in sand from one of the two sites predicted to have high populations of hydrocarbon-degrading bacteria. Larger particle size and higher Ca content may also be significant factors governing the rate of decomposition. PMID:15092918

  10. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  11. Quantifying Sources of Methane in the Alberta Oil Sands

    Science.gov (United States)

    Baray, S.; Darlington, A. L.; Gordon, M.; Hayden, K.; Li, S. M.; Mittermeier, R. L.; O'brien, J.; Staebler, R. M.; McLaren, R.

    2015-12-01

    In the summer of 2013, an aircraft measurement campaign led by Environment Canada with participation from university researchers took place to investigate the sources and transformations of gas pollutants in the Alberta oil sands region close to Fort McMurray, Alberta. Apart from its ability to change the radiative forcing of the atmosphere, methane is also a significant precursor to the formation of formaldehyde, an important radical source. Thus, emissions of methane from facilities need to be understood since they can have air quality implications through alteration of the radical budget and hence, the oxidation capacity of the air mass. Methane was measured, along with other gases, via a cavity ring-down spectroscopy instrument installed on the Convair-580 aircraft. In total, there were 22 flights with 82 hours of measurements in the vicinity of oil sands facilities between August 13 and September 7, 2013. Various tools have been used to visualize the spatial and temporal variation in mixing ratios of methane and other trace gases in order to identify possible sources of methane. Enhancements of methane from background levels of 1.9 ppm up to ~4 ppm were observed close to energy mining facilities in the oil sands region. Sources of methane identified include open pit mining, tailings ponds, upgrader stacks and in-situ mining operations. Quantification of the emission rates of methane from distinct sources has been accomplished from box flights and downwind screen flights by identifying the ratios of trace gases emitted and through use of the Top-down Emission Rate Retrieval Algorithm (TERRA). Methane emission rates for some of these sources will be presented.

  12. Stabilization of sand dunes with oil residue:Application to civil engineering construction and environmental implications

    Institute of Scientific and Technical Information of China (English)

    Esmail Aflaki; Alborz Hajiannia

    2015-01-01

    The present work ascertains the feasibility of oil residue treatment for stabilizing wind-blown sand dunes. Various combinations of natural collapsible saline from the Jandaq desert of Iran and oil residue from distillation towers of Iranian refineries were tested in laboratory experiments. Stabilized sands were evaluated in terms of geotechnical properties, permeability, and oil retention characteristics (i.e. bonding mechanisms, leaching and migrating behaviour of oil residue from the stabilized sands). Since the presence of oil residue in soils can pose an environmental threat, the optimum retention capacity of the stabilized sands is of critical concern. Relative to sand that was not augmented with oil residue, specimens made of 7% oil residues had the highest compressive strength, significantly higher cohesion and load bearing capacity, and considerably lower permeability. The effect of distilled water, saline water and municipal sewage on prepared specimens were also evaluated.

  13. Bringing Context to the Oil Sands Debate: understanding the role of nature versus man

    Science.gov (United States)

    Fennell, J.; Gibson, J. J.; Birks, S. J.; YI, Y.; Jasechko, S.; Moncur, M. C.

    2013-12-01

    The Canadian oil sands represent an important resource to the national economy, and a strategic supply-line to the United States of America. These hydrocarbon deposits reside beneath a vast area in northern Alberta, and have been exposed to the environment for millennia as a result of erosion by the Athabasca River and its tributaries. Further complexity to the geochemical setting occurs due to the existence of faulted pathways extending from deeper, highly saline, Devonian intervals to surface. Situated within this natural setting are large waste management structures used to contain mine tailings and oil sands produced water. Many of these structures are situated in close proximity to aquatic receptors and have the potential to affect local water quality due to seepage losses. As such, these structures are coming under increasing scrutiny as a potential source of environmental impact. Discharge of oil sands contaminants to the rivers, and the accumulation of these materials in the Peace-Athabasca Delta, has been cited as a factor leading to adverse health effects at downstream communities. However, the role that natural discharge of contaminants plays has never been fully acknowledged. To address this critical gap, a reconnaissance of the Athabasca River was conducted. Areas of elevated terrain conductivity (detected by EM31 survey) were identified both in background locations and areas suspected of industrial releases. Water samples were collected from various sites and from multiple depth intervals (up to 3 m) within the hyporheic zone of the river sediments. This was achieved using drive-point wells. Each sample was then analyzed for a comprehensive suite of parameters including: i) major ions; ii) dissolved trace elements; iii) dissolved organics; and iv) selected stable and radiogenic isotopes. Results of the investigation identified large areas (in excess of 10km) of groundwater discharge to the Athabasca River well outside the influence of oil sands

  14. Small mammals as sentinels of oil sands related contaminants and health effects in northeastern Alberta, Canada.

    Science.gov (United States)

    Rodríguez-Estival, Jaime; Smits, Judit E G

    2016-02-01

    The extraction of bitumen in areas of northeastern Alberta (Canada) has been associated with the release of complex mixtures of metals, metalloids, and polycyclic aromatic compounds (PACs) to the environment. To mitigate effects on ecosystems, Canadian legislation mandates that disturbed areas be reclaimed to an ecologically sustainable state after active operations. However, as part of reclamation activities, exposure to, and effects on wildlife living in these areas is not generally assessed. To support successful reclamation, the development of efficient methods to assess exposure and health effects in potentially exposed wildlife is required. In the present study, we investigated the usefulness of two native mammalian species (deer mouse Peromyscus maniculatus, and meadow vole Microtus pennsylvanicus) as sentinels of oil sands related contaminants by examining biomarkers of exposure and indicators of biological costs. Tissue residues of 31 metals and metalloids in kidneys and muscle, activity of the hepatic detoxification enzyme EROD (as a biomarker of exposure to organic contaminants), body condition, and the relative mass of liver, kidney, spleen, and testes were compared in animals from one reclaimed area and a reference site. Deer mice from the reclaimed site had higher renal levels of Co, Se and Tl compared to animals from the reference site, which was associated with reduced body condition. Lower testis mass was another feature that distinguished mice from the reclaimed site in comparison to those from the reference site. One mouse and one vole from the reclaimed site also showed increased hepatic EROD activity. In marked contrast, no changes were evident for these variables in meadow voles. Our results show that deer mouse is a sensitive sentinel species and that the biomarkers and indicators used here are efficient means to detect local contamination and associated biological effects in native mammals inhabiting reclaimed areas on active oil sands mine

  15. Nuclear energy for oil sands production: Providing security of energy and hydrogen supply at economic cost

    International Nuclear Information System (INIS)

    -gas to supply steam and generate H2. The results show very encouraging potential for CANDU-based energy supply. Based on today's economic and environmental considerations, CANDU energy supply offers the lowest-cost oil production. CANDU energy supply features zero emissions of climate change gases, NOx and SO2, and is based on an essentially unlimited, Canadian-based fuel supply. This achieves the fullest potential for business growth in the oil sands, without the potentially severe restrictions arising from emissions limits or from uncertainties in long-term natural gas supply. Further, the study identified potential cost saving opportunities associated with hydrogen supply for bitumen upgrading, via electrolytic hydrogen production. Specific results are as follows: 1. The CANDU reactor and associated equipment is straightforward to site, with modest design changes and cost impacts relative to a standard CANDU installation. CANDU steam supply conditions meet oil sands production requirements, for multiple stages, together with efficient cogeneration of electricity. 2. A CANDU energy supply represents a substantial financial gain for the energy customer, while maintaining an attractive return on investment for the CANDU owner. Project profitability is assured while delivering steam, with, for a reference case scenario based on $4/Mscuf natural gas, the CANDU unit would deliver an IRR of 14 - 17% before taxes and royalties, for an NPV of approximately $350 M - $700 M (based on 11% discount rate). Price sensitivity analysis shows positive NPV even for a worst-case scenario, while returns increase dramatically for scenarios with higher natural gas prices. 3. As a low-operating cost, capital-intensive technology, the CANDU reactor is most cost effective if all the steam supply can be accepted by the oil sand production from the outset of commercial operation. Based on current planning, this suits a schedule with a CANDU commercial operations date of 2010. This can be readily

  16. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit

    Directory of Open Access Journals (Sweden)

    Lesley A Warren

    2016-02-01

    Full Text Available Composite tailings (CT, an engineered, alkaline, saline mixture of oil sands tailings (FFT, processed sand and gypsum (CaSO4; 1 kg CaSO4 per m3 FFT are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR. It is estimated that 9.6 x 108 m3 of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyrosequencing and lipid analyses identified high aqueous concentrations of ∑H2S (> 300 uM and highly altered sulfur compounds composition; low cell biomass (3.3 x106 to 6.0 x106 cells g-1 and modest bacterial diversity (H’ range between 1.4 to 1.9 across 5 depths spanning 34 meters of an in situ CT deposit. Pyrosequence results identified a total of 29,719 bacterial 16S rRNA gene sequences, representing 131 OTUs spanning19 phyla including 7 candidate divisions, not reported in oil sands tailings pond studies to date. Legacy FFT common phyla, notably, gamma and beta Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi were represented. However, overall CT microbial diversity and PLFA values were low relative to other contexts. The identified known sulfate/sulfur reducing bacteria constituted at most 2% of the abundance; however, over 90% of the 131 OTUs identified are capable of sulfur metabolism. While PCR biases caution against overinterpretation of pyrosequence surveys, bacterial sequence results identified here, align with phospholipid fatty acid (PLFA and geochemical results. The highest bacterial diversities were associated with the depth of highest porewater [∑H2S] (22-24 m and joint porewater co-occurrence of Fe2+ and ∑H2S (6-8 m. Three distinct bacterial community structure depths corresponded to CT porewater regions of (1 shallow evident Fe(II (< 6 m, (2 co-occurring Fe(II and ∑H2S (6-8 m and (3 extensive ∑H2S (6-34 m (UniFrac. Candidate

  17. Mass and heat balance approach for oil sand flowsheets

    Energy Technology Data Exchange (ETDEWEB)

    Salama, A.I.A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2009-07-01

    Plant flowsheet mass balance is carried out in many industrial applications to evaluate overall plant performance and to optimize plant recoveries. This information is necessary for improving the economics of the operation and improving profitability. Flowsheet mass balance begins with the collection of plant stream samples using well-known sampling schemes. Stream samples collected using ASTM sampling standards are then analyzed using ASTM analytical techniques to characterize stream components which often contain sampling and analytical errors. The paper presented an approach for oil sands flowsheet mass and heat balance where different objective functions were presented depending on the nature of the stream error distributions. Hot water or steam is used to heat plant streams in oil sands extraction and froth treatment plants. As such, an approach is needed to integrate mass and heat balance. The mass and heat balance approach proposed in this paper integrated mass and heat balance and optimized the deviations/errors between the raw/observed and estimated data sets. The estimated data set was constrained to satisfy mass and heat balance conditions around the flowsheet internal nodes. Stream normalization and stream normalization conditions were forced. The relationship between the flowsheet independent, dependent, and reference streams were identified. The number of the independent stream mass splits was expressed in terms of the number of streams, number of nodes, and number of reference streams. 9 refs., 3 tabs., 2 figs.

  18. Predicting wear of hydrotransport pipelines in oil sand slurries

    Energy Technology Data Exchange (ETDEWEB)

    Been, J.; Lu, B.; Wolodko, J. [Alberta Research Council, Edmonton, AB (Canada); Kiel, D. [Coanda Research and Development Corp., Burnaby, BC (Canada)

    2008-07-01

    An overview of erosion and corrosion methods and techniques was presented. Wear to pipelines is influenced by slurry flow and chemistry; solids loading; and electrochemical interactions. While several experimental techniques have been developed to rank the performance of different pipeline materials, experiments do not currently provide accurate quantitative prediction of pipeline wear in the field. Rotating cylinder electrodes (RCE) and jet impingement methods are used to study the effect of flow velocity on corrosion rate. Slurry pot erosion-corrosion testers are used to rank materials for use in more dilute, less turbulent slurries. Coriolois slurry erosion testers are used to rank the erosion resistance of different pipeline materials. A pilot-scale flow loop is now being constructed by the Alberta Research Council (ARC) in order to replicate wet erosion phenomena in oil sands applications. The flow loop will be used to simulate the field conditions of oil sands pipelines and develop predictive wear data and models. Coulombic shear stress and characteristic wall velocities have been determined using a 2-layer model designed to represent flow as 2 distinct layers. To date, the flow loop pilot study has demonstrated that wear rates in smaller diameter flow loops are not significantly different than larger diameter field installations. Preliminary calculations have demonstrated that the flow loop can be used to accurately simulate the hydrodynamics and wear typically experienced in field slurry flows. 67 refs., 2 tabs., 7 figs.

  19. Identification of causes of oil sands coke leachate toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, N.; Liber, K. [Saskatchewan Univ., Regina, SK (Canada)

    2010-07-01

    The potential causes of oil sands coke leachate toxicity were investigated. Chronic 7-day toxicity tests were conducted to demonstrate that oil sands coke leachates (CL) are acutely toxic to Ceriodaphnia dubia (C. dubia). CLs were generated in a laboratory to perform toxicity identification evaluation (TIE) tests in order to investigate the causes of the CL toxicity. The coke was subjected to a 15-day batch leaching process at 5.5 and 9.5 pH values. The leachates were then filtered and used for chemical and toxicological characterization. The 7-day estimates for the C. dubia survival were 6.3 for a pH of 5.5 and 28.7 per cent for the 9.5 CLs. The addition of EDTA significantly improved survival and reproduction in a pH of 5.5 CL, but not in a pH of 9.5 CL. The toxicity of the pH 5.5 CL was removed with a cationic resin treatment. The toxicity of the 9.5 pH LC was removed using an anion resin treatment. Toxicity re-appeared when nickel (Ni) and vanadium (V) were added back to the resin-treated CLs. Results of the study suggested that Ni and V were acting as primary toxicants in the pH 5.5 CL, while V was the primary cause of toxicity in the pH 9.5 CL.

  20. Conducting SAGD in shoreface oil sands with associated basal water

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.A.; Riva, D.T.; Connelly, M.E.; Solanki, S.C.; Edmunds, N.R. [Laricina Energy Ltd., Calgary, AB (Canada)

    2009-07-01

    The use of steam assisted gravity drainage (SAGD) processes has been concentrated around the McMurray Formation in the eastern Athabasca deposit. This paper discussed a SAGD scheme configured to maximize bitumen recovery from shoreface oil sands in the Grand Rapids formation in the Wabasca area. The region features clean sand with a homogenous and continuous reservoir pay. Producer wells were placed within the basal water zone at the base of the porosity region. A scaled 2-D physical model with an active aquifer system was used to examine well configurations in relation to oil-water content and their impacts on resource recovery. Simulations were conducted to compare the well placements. Results of the study showed that fluids flowed towards the producer in a radial pattern. Bitumen was drawn down towards the bottom water leg regardless of whether the chamber pressure was above that of the aquifer. Thirty-eight per cent more bitumen was produced as a result of increased reservoir sweep. It was concluded that placement of the producer well at the base of the porous interval improved the overall economics of the project. 2 refs., 3 tabs., 10 figs.

  1. Membrane technology to improve water management in oil sands operations

    International Nuclear Information System (INIS)

    This paper presents the results of a bench-scale experiment designed to improve water management in oil sands processing using a membrane technology. The study addressed the following two aspects of water management: (1) reducing the hardness of water used in technological processes, and (2) reducing the toxicity in effluent streams caused by the presence of naphthenic acids. Both issues were also addressed through the evaluation of a membrane separation process called nanofiltration. The primary focus of this study was to choose an appropriate membrane and to determine its subsequent ability to reduce the hardness from groundwater and remove naphthenic acids from discharge water. The study revealed that nanofiltration technology is a good water management tool in oil sands operations. Membrane filtration managed to reduce water hardness significantly. A high napthenic acid removal efficiency (up to 94 per cent) was noted for both synthetic solutions and actual water samples. Permeate flux was also maintained at a high level of 15 litres per square metre per hour or more. A 90 per cent water recovery was obtained by reducing the feed volume by 10 fold. 14 refs., 6 tabs., 7 figs

  2. Influence of Oil Saturation Upon Spectral Induced Polarization of Oil Bearing Sands

    Science.gov (United States)

    The presence of oil in an unconsolidated granular porous material such as sand changes both the resistivity of the material and the value of the phase shift between the low-frequency current and the voltage. The resistivity and the phase angle can be written as a complex-valued r...

  3. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    Science.gov (United States)

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.

  4. Properties Correlations and Characterization of Athabasca Oil Sands-derived Synthetic Crude Oil

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Zhao Suoqi; Xu Chunming; Chung Keng H.

    2007-01-01

    Narrow fractions of Athabasca oil sands-derived synthetic crude oil (SCO) from Canada were obtained by distillation at 20 ℃ to 500 ℃ and characterized. The yield and properties, such as density, refractive index, viscosity,freezing point, sulfur and nitrogen content and UOP K-index, were correlated as a function of boiling temperature (Tb).The properties of naphtha fractions, jet fuel and diesel fractions could be predicted accurately with the correlations, which are useful for process design considerations, such as optimizing operating conditions of refinery processing units. The other key properties and characteristics of naphtha fractions, jet fuel, diesel and vacuum gas oil were also determined.

  5. Draft Genome Sequences of Campylobacterales (Epsilonproteobacteria) Obtained from Methanogenic Oil Sands Tailings Pond Metagenomes

    Science.gov (United States)

    Tan, BoonFei

    2014-01-01

    Draft genome sequences of two Campylobacterales (Sulfurospirillum sp. strain SCADC and Sulfuricurvum sp. strain MLSB [Mildred Lake Settling Basin]) were obtained by taxonomic binning of metagenomes originating from an oil sands tailings pond. Both genomes contain soxABXYZ genes involved in sulfur oxidation, highlighting their potential roles in sulfur cycling in oil sands tailings ponds. PMID:25323712

  6. NUMERICAL SIMULATION OF PARTICLE SEPARATION IN AN OIL-SAND SEPARATOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gathering systems of crude oil are greatly endangered by thefine sand and soil in oil. Up to now, how to separate sand from the viscid oil is still a technical problem for oil production home or abroad. Recently, Institute of Mechanics in Chinese Academy of Sciences hasdeveloped a new type of oil-sand separator, which has been applied successfully in oil field in situ. In this paper, the numerical method of vortex-stream function is used to predict the liquid-solid separating course and the efficiency for this oil-sand separator. Results show that the viscosity and particle diameter have much influence on the particle motion. The calculating separating efficiency is compared with that of experiment and indicates that this method can be used to model the complex two-phase flow in the separator.

  7. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    Directory of Open Access Journals (Sweden)

    Reza Masoomi

    2015-10-01

    Full Text Available Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite have been considered as proppant type. Also the various types of resin-coated sand and resin-coated ceramic have been considered. Then the various scenarios have been designed to optimize the size and type of proppant used in hydraulic fracturing in a sand oil reservoir in southwest of Iran. Also in this study increasing the cumulative oil recovery in fractured and Non-fractured wells in a sand oil reservoir in southwest of Iran have been investigated.

  8. Nearshore dynamics of artificial sand and oil agglomerates.

    Science.gov (United States)

    Dalyander, P Soupy; Plant, Nathaniel G; Long, Joseph W; McLaughlin, Molly

    2015-07-15

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  9. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, J. F.; Costa, Rita; Coutinho, João A. P.; J.A. Teixeira; L. R. Rodrigues

    2013-01-01

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of resi...

  10. Pond 1 : closure of the first oil sands tailings pond

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.B.; Wells, P.S.; Cox, L [Suncor Energy, Fort McMurray, AB (Canada)

    2010-10-01

    This article discussed the closure and reclamation of the first oilsands tailings pond in the Athabasca Oil Sands region. Pond 1 began construction in 1966, received tailings until 1995, and was released for reclamation in 2007. Infilling was completed in 2009, and surface land forming and revegetation were finished in the fall of 2010. The challenges associated with closing a tailings pond were unknown. Environmental goals evolved over the life of the pond, from initial absence to grass cover to prevent wind erosion, tree plantings for wildlife habitat, and finally to reclamation to viable ecosystems compatible with pre-development. The final stage involved infilling and reclamation of the pond interior. The Mature Fine Tailings were removed to a different location for storage and treatment. Infilling with course tailings sand established a trafficable surface on which to perform reclamation activities. The landform design involved a sand pile that had become bird habitat; a small marsh wetland; swales to collect and control surface runoff water; and hummocks for topographical diversity and increased biodiversity. The reclamation soil cover was a peat/mineral mix. Micro-topographical enhancements created locally diverse conditions for wildlife habitat. An excavated area was lined with a geosynthetic material for water retention, amended with peat/mineral mix, and planted with wetland species to create the marsh. The revegetation involved 33 different species of trees, shrubs, grasses, and aquatic plants. The pond closure is taking place in a highly regulated environment with a substantial knowledge base of reclamation techniques and clearly defined reclamation goals. 8 figs.

  11. Determination of Heat Accumulation Coefficient for Oil Bonded Moulding Sands

    Directory of Open Access Journals (Sweden)

    M. Łągiewka

    2013-04-01

    Full Text Available The possibility of controlling the solidification and cooling time of castings creates prospects of improving their structure and by the same their properties. Thermal properties of the mould constitute therefore an important factor which is necessary to consider while seeking for the mentioned improvement. The presented work illustrates the method of determining some basic thermal coefficients of moulding material, i.e. the coefficient of temperature equalisation a2, known also as the temperature diffusivity, and the heat accumulation coefficient b2, which characterises the ability of moulding material to draw away the heat from a casting. The method consists in experimental determining the temperature field within the mould during the processes of pouring, solidification and cooling of the casting. The performed measurements allow for convenient and exact calculations of the sought-after coefficients. Examinations were performed for the oil bonded moulding sand of trade name OBB SAND ‘E’. The experiment showed that the obtained value of b2 coefficient differs from the value calculated on the basis of theoretical considerations available in publications. Therefore it can be stated that theoretical calculations of the heat accumulation coefficient are thus far not sufficient and not quite reliable, so that these calculations should be verified experimentally.

  12. Bitumen recovery from surface mined oil sands recycle water ponds

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.J.; Munoz, V.A.; Elliott, G. L. [Natural Resources Canada, CanmetENERGY, Devon, Alberta (Canada)

    2011-07-01

    In surface mined oil sands, high bitumen recovery can be achieved but tailings have accumulated over the years. Several technologies have been proposed for recovering bitumen from tailings, but because this bitumen carries high surfactant concentrations there have been processing problems. This paper presents the application of oxidized ore characterization and processing methods to process tailings pond bitumen. Laboratory tests were carried out to characterize bitumen samples coming from four different tailings sources and tests were run with caustic additive. Results showed that high caustic additions can be applied to surfactant rich tailings pond bitumen to avoid downstream froth treatment emulsion problems; the oxidation degree should be carefully monitored. This study demonstrated that the use of caustic additive, already used for oxidized ores, can be applied to treat the bitumen recovered from tailings streams.

  13. Creating oil sands wetlands : some review and discussion

    International Nuclear Information System (INIS)

    This presentation described the limiting factors for wetland reclamation with particular reference to consolidated tailings (CT) wetlands in areas of oil sand mining activity. The cumulative effects in Alberta's boreal plain were discussed. The indicators for successful reclamation include sediment properties, vegetation, and food for zooplankton. This study examined 3 types of wetlands, including natural, opportunistic, and experimental. Preliminary results indicate that plants can grow in all types to some degree. The different levels of plant diversity are linked to the soil, seed banks and time. A greenhouse study was conducted on 12 wetlands located on Suncor and Syncrude leases in an effort to address a range of wetland types. It was concluded that the richness of plant species increased when CT was introduced into a natural wetland setting. Natural wetlands also had more cover when transplanted into the CT wetland. tabs., figs

  14. Biological marker and conventional organic geochemistry of oil sands/heavy oils, Western Canada Basin

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, P.W.; Fowler, M.G.; Macqueen, R.W. (Institute of Sedimentary and Petroleum Geology, Alberta (Canada))

    1988-01-01

    Forty-three samples of oil sands/heavy oils from most of the major Cretaceous deposits and the Upper Devonian Grosmont Formation of the underlying carbonate trend, have been examined by gas chromatography and gas chromatography-mass spectrometry. Major organic geochemical differences observed between samples/deposits include the presence or absence on n-alkanes and isoprenoid alkanes, together with changes in the distributions of biological marker compounds. These differences reflect the degree of biodegradation suffered by the deposits. Three geochemical factors demonstrate that at least the Cretaceous samples are strikingly similar to one another, once the effects of biodegradation are discounted. These factors are the carbon number distribution of steroidal alkanes (C{sub 27}, C{sub 28}, and C{sub 29} diasteranes); the presence of 28,30-bisnorhopanes; and the relative abundance of 28,30-bisnorhopanes and gammacerane as compared with the ubiquitous 17{alpha}(H)-hopanes. These distinctive biomarker compositions and ratios indicate that the same or very similar sources generated the Cretaceous oil sands/heavy oils, despite the enormous volumes and their widespread geographic and stratigraphic distribution. The extent of isomerization of regular steranes and hopanes indicates that the bitumens show the same general level of maturity. All these data suggest that the Cretaceous bitumens were derived from a mature, conventional oil which was in turn derived from a presently unknown source facies. This oil must have migrated over large distances, suffering extensive biodegradation in place and possibly during migration.

  15. Strategic marketing opportunities for Suncor OSG [Oil Sands Group

    International Nuclear Information System (INIS)

    Suncor's Oil Sands Group (OSG) is in a unique position to provide advantages to its customers, producing a light, sweet resid-free crude at a time when North American production of this valuable type of oil is in decline. While the per-barrel production cost of synthetic crude has been high historically, the OSG has recently committed to over US$300 million in capital investments which will reduce unit costs to conventional levels. Adding to this, the plant is located on a reserve that, even with existing technology, could feed the plant virtually indefinitely. Three aggressive strategic initiatives which will enhance the value of the products are being undertaken. The product slate diversification initiative involves significantly expanding the production slate to include premium products that are customized to meet customer needs. The product quality initiative will address product characteristics that are unattractive to some end users. The transportation initiative will ensure reliable and timely delivery of a wide variety of OSG products to an expanded customer base. 1 fig

  16. Estimating Erosion in Oil and Gas Pipe Line Due to Sand Presence

    OpenAIRE

    Abdulla, Akar

    2011-01-01

    Transporting solid particles in oil and gas flow cause erosion damage to the pipeline and fittings. The aim of this thesis is to study the effect of impact velocity on the erosion damage in 90 degree long elbow by using two different erosion models namely, Oka model and E/CRC model. Those correlation applied at air-borne sand eroding, methane-borne sand eroding, mixed gas-borne sand eroding, and multiphase (gas- oil) borne sand eroding Inconel 625. The commercial computational fluid dynamics ...

  17. Toxicity of Athabasca River and oil sands sediments to larval fish

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, J.; Turcotte, D.; Headley, J.; Hewitt, M. [Environment Canada, Ottawa, ON (Canada)

    2010-07-01

    This presentation reported on a study that evaluated oil sands tailings pond sediments and sediments from the Athabasca River for embryo-larval toxicity in fathead minnows and walleye. Following 20 days of exposure to 5 sediments from the Athabasca River at concentrations up to 25 g/L, there were no observed effects in fathead minnow eggs and larvae. However, at concentrations as low as 0.2 to 1 g wet wt/L, two of three tailings pond sediments were toxic to fathead minnows. Larvae growth was reduced in all three tailings pond sediments. Nine of 18 polycyclic aromatic hydrocarbons (PAHs) measured in tailing pond sediments were found to be above the Freshwater Sediment Quality Guidelines set by the Canadian Council of Ministers of the Environment (CCME), with phenanthrene being the highest. The values for total dry weight PAHs and total naphthenic acids in tailings pond sediment and river sediment were discussed. The cause for the observed toxicity in fathead minnow larvae could not be determined based on the preliminary study results. As part of the ongoing study, walleye eggs and larvae are being exposed to the sediments to compare their relative sensitivity and to determine possible causative compounds.

  18. Toxicity of Athabasca River and oil sands sediments to larval fish

    International Nuclear Information System (INIS)

    This presentation reported on a study that evaluated oil sands tailings pond sediments and sediments from the Athabasca River for embryo-larval toxicity in fathead minnows and walleye. Following 20 days of exposure to 5 sediments from the Athabasca River at concentrations up to 25 g/L, there were no observed effects in fathead minnow eggs and larvae. However, at concentrations as low as 0.2 to 1 g wet wt/L, two of three tailings pond sediments were toxic to fathead minnows. Larvae growth was reduced in all three tailings pond sediments. Nine of 18 polycyclic aromatic hydrocarbons (PAHs) measured in tailing pond sediments were found to be above the Freshwater Sediment Quality Guidelines set by the Canadian Council of Ministers of the Environment (CCME), with phenanthrene being the highest. The values for total dry weight PAHs and total naphthenic acids in tailings pond sediment and river sediment were discussed. The cause for the observed toxicity in fathead minnow larvae could not be determined based on the preliminary study results. As part of the ongoing study, walleye eggs and larvae are being exposed to the sediments to compare their relative sensitivity and to determine possible causative compounds.

  19. Marrying project deliverability models and labour supply for the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Albright, R.; Whitaker, C.A. [Fluor Canada Ltd., Calgary, AB (Canada)

    2005-07-01

    Alberta is predicting a labour shortage to support the construction and operation of planned oil sands projects in the region. This paper provided a framework of options available to stakeholders in addressing resource constraints from the viewpoint of Fluor Canada Ltd. A background of previous projects was presented, which highlighted various strategies used in the management of human resources issues. Strategies included local hiring through the Alberta-based trade unions; recruitment from other Canadian provinces; a higher ratio of apprentices; extremely high utilization crew schedules; and extended use of overtime. It was noted that these strategies resulted in some cost overruns and lower productivity levels. A productivity analysis was used to determine and resolve productivity issues. Various regulations in Alberta were discussed in relation to training programs and skilled immigrants. Various international training facilities operated by Fluor were reviewed. A factor model of human resources issues was presented. Summaries of supply chain management, systems, and technologies were presented. Issues concerning prefabrication, pre-assembly, modularization and offsite fabrication were discussed. It was concluded that by taking advantage of lessons learned in previous projects a solid foundation is set from which to plan for future requirements. Successful project execution is achieved by taking advantage of current technology; enhancing modular construction standards; and using supply chain management techniques and enhanced labour supply solutions. tabs., figs.

  20. Nerves of steel: Canadians devised formula for international oil ventures behind enemy lines in the Cold War

    International Nuclear Information System (INIS)

    The Canadian formula for international success in oil, natural gas and associated services and equipment is described as a blend of stamina in extreme natural environments, an open mind, a sharp eye for technical opportunity, technical creativity, a sharp eye for fitting into foreign communities, and willingness to chart an independent course through global political conflict. By way of background, little known early western ventures into the then-touchiest international arena, the Soviet Union, are described. >From these early ventures in the 1970s resulted some pioneering ideas which, with Canadian refinements, became the cornerstones of today's oilfield technology: mud motors to drive bits with speed and precision, and SAGD or steam-assisted gravity drainage to tap the oil sands. It is well to remember that the industrial intelligence that gave us these fundamental tools was gathered at a time when it was common practice to disparage Russian industry for its shortcomings and inefficiency. Other examples cited are Nexen Inc.,'s successful exploitation of the Masila Block which has been producing an average of 118,300 barrels per day since 1993, which yielded $636 million in corporate cash flow in 2001. Nexen's 'Yemenization' program achieved 65 per cent employment of local hires and set an 80 per cent target for 2009, with scholarships and technology transfer plans serving the goal. This example of attention to community benefits such as employment, civic and health services, goes far towards making up for the Canadian drawback of small size by global industry standards. The independent streak in Canadian international oil and gas enterprise also continues to show most clearly at Talisman Energy, with its globally controversial role in Sudan. Despite continuous wrangling with missionary groups and advocates of U.S. sanctions against Sudan, Talisman Energy was able to persuade the government to make public the government's share in proceeds from the oil

  1. Tracing biogeochemical and microbial variability over a complete oil sand mining and recultivation process.

    Science.gov (United States)

    Noah, Mareike; Lappé, Michael; Schneider, Beate; Vieth-Hillebrand, Andrea; Wilkes, Heinz; Kallmeyer, Jens

    2014-11-15

    Recultivation of disturbed oil sand mining areas is an issue of increasing importance. Nevertheless only little is known about the fate of organic matter, cell abundances and microbial community structures during oil sand processing, tailings management and initial soil development on reclamation sites. Thus the focus of this work is on biogeochemical changes of mined oil sands through the entire process chain until its use as substratum for newly developing soils on reclamation sites. Therefore, oil sand, mature fine tailings (MFTs) from tailings ponds and drying cells and tailings sand covered with peat-mineral mix (PMM) as part of land reclamation were analyzed. The sample set was selected to address the question whether changes in the above-mentioned biogeochemical parameters can be related to oil sand processing or biological processes and how these changes influence microbial activities and soil development. GC-MS analyses of oil-derived biomarkers reveal that these compounds remain unaffected by oil sand processing and biological activity. In contrast, changes in polycyclic aromatic hydrocarbon (PAH) abundance and pattern can be observed along the process chain. Especially naphthalenes, phenanthrenes and chrysenes are altered or absent on reclamation sites. Furthermore, root-bearing horizons on reclamation sites exhibit cell abundances at least ten times higher (10(8) to 10(9) cells g(-1)) than in oil sand and MFT samples (10(7) cells g(-1)) and show a higher diversity in their microbial community structure. Nitrate in the pore water and roots derived from the PMM seem to be the most important stimulants for microbial growth. The combined data show that the observed compositional changes are mostly related to biological activity and the addition of exogenous organic components (PMM), whereas oil extraction, tailings dewatering and compaction do not have significant influences on the evaluated compounds. Microbial community composition remains relatively

  2. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    Science.gov (United States)

    Middleton, Richard S; Brandt, Adam R

    2013-02-01

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  3. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    Science.gov (United States)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that

  4. Co-gasification of oil sand coke with coal

    Energy Technology Data Exchange (ETDEWEB)

    Vejahati, Farshid; Gupta, Rajender [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2013-07-01

    Gasification of oil sand delayed coke with sub-bituminous and lignite coals was performed in an atmospheric entrained flow gasifier using steam and oxygen as gasifying agents. The underlying objective of this work was to assess the effects of the operating variables (i.e. temperature, oxygen and steam concentrations) and coal/coke blending ratio on gasification performance in a high-temperature in order to find the possible synergies in co-gasification of the fuels. Experiments were conducted at 1,400 C, using steam and oxygen to carbon weight ratios of (0.36-1.08) and (0.07-0.2), respectively in N{sub 2} carrier gas. The coke to coal weight ratios of 1/3, 1/2, and 2/3 were used for the blending tests. Particle size of 53-90 {mu}m with d{sub 50} = 75 {mu}m were used. In terms of char reactivity, blending did not show any significant positive effect. Slight deviations from linear additive line are in the order of experiment error. Gasification efficiency was also following a linear additive trend once more pointing out the lack of synergy in entrained flow gasification systems. The results however, showed that higher coke content clearly favored the H{sub 2} production.

  5. Effect of biological gas generation on oil sand fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.; Chalaturnyk, R.J.; Scott, J.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; MacKinnon, M. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    A field study was conducted to examine the effect of microbial activity on densification of mature fine tailings (MFT) found at the Mildred Lake Settling Basin (MLSB). The MLSB has accumulated 216,000 cubic meters of MFT since Syncrude Canada Limited started production in 1978. Since 1997, there has been a significant change in the consolidation behaviour of the MFT. Methane-producing microorganisms have become very active and large amounts of biogas have been produced. In some regions, gas bubbles are released to the water surface of the tailings pond. Field monitoring of the MLSB has shown evidence of rapid water drainage from the tailings. This phenomenon contradicts the consolidation models for MFT developed over the past 20 years. Although this rapid water draining (or densification) can cause pumping challenges, it can also accelerate the reclamation of the oil sands fine tailings. This study examined the mechanism leading to the rapid densification phenomenon. Systematic field studies were conducted to determine the distribution and characteristics of the rapidly densified MFT. Gas bubble distribution on the water surface was mapped to identify zones of different biological activities in the pond. Several small-scale column tests were carried out to observe the gas evolution and to measure the changes of some geotechnical parameters under different microbial activity. 4 refs., 6 tabs., 12 figs.

  6. The extraction of bitumen from western oil sands. Quarterly report, July--September, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-11-01

    This report cites task number followed by a brief statement of each task and the action taken this quarter. The tasks are: NEPA environmental information statement; coupled fluidized-bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels, and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost estimation study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; development studies of disposal of sand by conveying or pumping of high solids concentration sand-water slurries; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  7. Method for Extraction and Multielement Analysis of Hypogymnia Physodes Samples from the Athabasca Oil Sands Region

    Science.gov (United States)

    A microwave-assisted digestion technique followed by ICPMS (inductively coupled plasma-mass spectrometry) analysis was used to measure concentrations of 43 elements in Hypogymnia physodes samples collected in the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canad...

  8. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment.

    Science.gov (United States)

    Elango, Vijaikrishnah; Urbano, Marilany; Lemelle, Kendall R; Pardue, John H

    2014-01-01

    Unique oil:sand aggregates, termed surface residue balls (SRBs), were formed on coastal headland beaches along the northern Gulf of Mexico as emulsified MC252 crude oil mixed with sand following the Deepwater Horizon spill event. The objective of this study is to assess the biodegradation potential of crude oil components in these aggregates using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 19-month period on the supratidal beach environment with reasonable control over and knowledge of the residence time of the aggregates on the beach surface. Polycyclic aromatic hydrocarbons (PAHs) and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat samples from the intertidal did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and nutrient-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents oil mat samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e.g., moisture, salinity, terminal electron acceptors, nutrient, and oil composition) due, in part, to their location on the landscape.

  9. 油砂研究概述%A Review of Oil Sands

    Institute of Scientific and Technical Information of China (English)

    曹鹏; 邹伟宏; 戴传瑞; 常少英; 胡方; 莫健珍

    2012-01-01

    The global energy shortage today makes the unconventional energy resources development be more and more focused, the oil sands development is one of them. In this paper, the oil sands researches in the world are reviewed in terms of the definition, origin, distri- bution, development history, mining technology, extraction and separation technologies of oil sands, oil sands mining and related environ- ment problem, as well as oil sands prospects, etc, dominated by introduction of the distribution and mining technologies of oil sands. It is advocated that the development of oil sands should follow the ideas of "green" and "low carbon" so as to provide useful and valuable expe- riences for near-future oil-sand development in China.%全球能源紧缺,非常规能源的开发研究趋热,油砂矿资源即为其中之一。从油砂分布、开采与萃取分离技术、油砂开采与环境问题以及油砂开采前景等方面,综述了世界油砂研究概况,重点介绍了油砂资源的分布与开采技术研究现状,提倡将“绿色”与“低碳”相结合来开发油砂矿,以期为中国即将开始的油砂矿开采提供经验。

  10. Experimental Investigation on Dilation Mechanisms of Land-Facies Karamay Oil Sand Reservoirs under Water Injection

    Science.gov (United States)

    Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.

    2016-04-01

    The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.

  11. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    OpenAIRE

    Reza Masoomi; Iniko Bassey; Dolgow Sergie Viktorovich; Hosein Dehghani

    2015-01-01

    Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite) have been considered as proppant type. Also the various ...

  12. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    OpenAIRE

    TariqSiddique

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper ...

  13. Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete

    OpenAIRE

    K. Muthusamy; N.A. Zulkepli; F. Mat Yahaya

    2013-01-01

    Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (...

  14. Impact of edible oil injection on the permeability of aquifer sands

    Science.gov (United States)

    Coulibaly, Kapo M.; Borden, Robert C.

    2004-07-01

    Recent laboratory and field studies have shown that food-grade edible oils can be injected into the subsurface for installation of in-situ permeable reactive barriers. However to be effective, the oil must be distributed out away from the oil injection points without excessive permeability loss. In this work, we examine the distribution of soybean oil in representative aquifer sediments as non-aqueous phase liquid oil (NAPL oil) or as an oil-in-water emulsion. Laboratory columns packed with sands or clayey sands were flushed with either NAPL oil or a soybean emulsion followed by plain water, while monitoring permeability loss and the final oil residual saturation. NAPL oil can be injected into coarse-grained sands. However NAPL injection into finer grained sediments requires high injection pressures which may not be feasible at some sites. In addition, NAPL injection results in high oil residual saturations and moderate permeability losses. In contrast, properly prepared emulsions can be distributed through sands with varying clay content without excessive pressure buildup, low oil retention and very low to moderate permeability loss. For effective transport, the emulsion must be stable, the oil droplets must be significantly smaller than the mean pore size of the sediment and the oil droplets should have a low to moderate tendency to stick to each other and the aquifer sediments. In our work, oil retention and associated permeability loss increased with sediment clay content and with the ratio of droplet size to pore size. For sandy sediments, the permeability loss is modest (0-40% loss) and is proportional to the oil residual saturation.

  15. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment

    OpenAIRE

    JohnHPardue

    2014-01-01

    Biodegradation potential of MC252 in oil:sand aggregates, termed surface residue balls (SRBs), was examined using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 16-month period on the supratidal beach environment where reasonable control existed on the residence time of the aggregates on the beach surface. PAH and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes...

  16. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  17. Application of oxy-fuel CO2 capture for In-situ bitumen extraction from Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Mark; Goold, Scott; Laux, Stefan; Sharma, Apoorva; Aasen, Knut; Neu, Ben

    2010-09-15

    The CO2 Capture Project, along with Praxair, Devon Canada, Cenovus Energy and Statoil are executing a project to demonstrate oxy-fuel combustion as a practical and economic method for CO2 capture from once-through steam generators used in the in-situ production of bitumen in the Canadian Oil Sands. The goal of the project is to develop a reliable, lower cost solution for capturing CO2 that will eliminate up to 90% of the GHG emissions from in-situ operations. The participants will present results of Phase I of this project, and will also outline the future Phases to pilot this technology.

  18. Methods to reduce production of oil sands mature fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Ozum, B. [Apex Engineering Inc., Edmonton, AB (Canada); Scott, J.D. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    This paper discussed experimental findings regarding the use of alternative extraction additives in the Clark Hot Water Bitumen Extraction (CHWBE) process to improve the geotechnical characteristics of the tailings and the salinity of the recycled release water. It also discussed results regarding the production of non-segregating tailings (NST) from the blend of cyclone underflow and thickener underflow using either calcium oxide (CaO) or CaO and carbon dioxide (CO{sub 2}) as additives. Sodium hydroxide (NaOH) is currently used in CHWBE to increase extraction efficiency, but this additive also creates tailings with poor settling and consolidation properties and high salinity in the recycled release water. The use of CaO for adjusting pH, ozone (O{sub 3}) for producing surfactants from bitumen asphaltenes, and biodiesel as surfactant additives were found to increase the efficiency of the extraction process, produce tailings with friendlier geotechnical properties, and eliminate saline concentrations in the recycled release water. The use of the described alternative extraction additives and the NST production processes has the potential to reduce the environmental impacts of oil sands plants, potentially providing a solution to the problems associated with Low Temperature Extraction and Consolidated Tailings processes. The solubility of CaO and O{sub 3} as a function of temperature could potentially allow the extraction temperature to be reduced. O{sub 3} was found to work better as an oxidant to produce surfactants from bitumen when the ore-slurry is first treated with CaO. Study on a larger scale is required. 23 refs., 7 tabs., 7 figs.

  19. Creating peatlands in the oil sand region of Alberta : challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, M.; Rochefort, L. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytologie, Peatland Ecology Research Group; Price, J. [Waterloo Univ., ON (Canada). Dept. of Geography

    2010-07-01

    A research project was launched to study the physiological effects that oil sands process affected water have on peatland plants. Modeling indicates that peatlands can be recreated in post-tar sand mined landscapes, although this is untested. Processing oil sands creates large volumes of tailings, a wet material that contains organic compounds and base cations that have a toxic effect on plants in the region. This toxicity is a significant barrier to peatland creation in post-mined landscapes. The research targets mosses, a keystone species in peatlands. The research focused on determining the contaminant thresholds for typical fen species and identifying the most tolerant species. The conclusions will be useful in addressing the future outcomes of oil sand affected landscapes, allowing reclaimed landscape designs to position peatlands in landscapes according to the tolerable level of contamination.

  20. Wettability testing of unconsolidated oil sands using low field NMR technology

    Energy Technology Data Exchange (ETDEWEB)

    Ji, X.; Kantzas, A.; Bryan, J. [University of Calgary/TIPM Laboratory (Canada)

    2011-07-01

    In an oil field it is important to understand wettability within the reservoir as it has an important impact on several parameters. However it is difficult to measure wettability in oil sands since conventional Amott/USBM testing cannot be applied. The aim of this paper is to develop protocols to assess wettability from NMR spectra in heavy oil reservoirs. Research was conducted on water wet and oil wet conditions; 3 sets of experiments were carried out with oil phases of different viscosity. Results showed that the signal from oil is insensitive to the location of the oil when viscosity increases but that water relaxation times are linked to the presence of water so water peak shifts can be used to determine different wettability states. This study determined that using water phase NMR relaxation presents several advantages to extract wettability information in unconsolidated sand systems and a technique was developed to interpret wettability.

  1. Sino-Canadian Cooperation on Tar Sands Projects and China's Energy Strategy

    Institute of Scientific and Technical Information of China (English)

    Cui Shoujun

    2012-01-01

    The shortage of energy is causing a bottleneck that is constraining China's economic development. China's steadily increasing dependence on foreign oil means that securing a safe oil supply has become a top priority. Since launching its "going abroad" energy strategy, China's search to acquire foreign energy assets is proving an effective way for it to secure upstream oil and gas resources and protect its energy supply.

  2. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  3. Integration of nuclear energy into oil sands projects - HTR2008-58239

    International Nuclear Information System (INIS)

    Energy security and greenhouse gas reductions are thought to be two of the most urgent priorities for sustaining and improving the human condition in the future. Few places pit the two goals so directly in opposition to one another as the Alberta oil sands. Here, Canadian natural gas is burned in massive quantities to extract oil from one of North America's largest native sources of carbon-intensive heavy oil. This conflict need not continue, however; non-emitting nuclear energy can replace natural gas as a fuel source in an economical and more environmentally sound way. This would allow for the continued extraction of transportation fuels without greenhouse gas emissions, while freeing up the natural gas supply for hydrogen feedstock and other valuable applications. Bitumen production in Alberta has expanded dramatically in the past five years as the price of oil has risen to record levels. This paper explores the feasibility and economics of using nuclear energy to power future oil sands production and upgrading activities, and puts forth several nuclear energy application scenarios for providing steam and electricity to in-situ and surface mining operations. This review includes the Enhanced CANDU 6, the Advanced CANDU Reactor (ACR) and the Pebble Bed Modular Reactor (PBMR). Based on reasonable projections of available cost information, nuclear energy used for steam production is expected to be less expensive than steam produced by natural gas at current natural gas prices and under $7/MMBtu (CAD). For electricity production, nuclear becomes competitive with natural gas plants at natural gas prices of $10-13/MMBtu (CAD). Costs of constructing nuclear plants in Alberta are affected by higher local labor costs, which this paper took into account in making these estimates. Although more definitive analysis of construction costs and project economics will be required to confirm these findings, there appears to be sufficient merit in the potential economics to

  4. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1982-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  5. Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    Western Canadian oil sands contain over 170 billion barrels of proven unconventional petroleum reserves currently extracted at 1.8 million barrels per day by either surface mining, or by in situ techniques that require subsurface injection of steam and hydrocarbon solvents. Natural high-salinity springs are known to add water and entrained inorganic and organic constituents to the Athabasca River and its tributaries in the region of ongoing bitumen production. However, the magnitude and synoptic distribution of these saline inputs has remained unquantified. Here, a chloride mass balance is used to estimate saline groundwater discharge to the Athabasca River from 1987 to 2010. Results show that the highest saline water discharge rate to the Athabasca River occurs between Ft. McMurray and the Peace-Athabasca Delta, supported by subcrop exposure of lower Cretaceous- and Devonian-aged formations bearing saline waters. Further, the input of saline groundwater is found to be an important control on the chemistry of the lower Athabasca River, despite comprising 10−1 to 3% of the Athabasca River’s discharge. The flux of natural saline groundwater entering the Athabasca does not appear to have increased or decreased from 1987 to 2010. The origin of seep salinity is interpreted as relict subglacial meltwater that has dissolved Devonian-aged evaporites, supported by saline Na-Cl type waters with low 18O/16O and 2H/1H ratios relative to modern precipitation. The magnitude of groundwater discharge and its impact on the Athabasca River’s chemistry in the area of ongoing bitumen development warrants the incorporation of natural groundwater seepages into surface water quality monitoring networks.

  6. Extraction of phenanthrene and fluoranthene from contaminated sand using palm kernel and soybean oils.

    Science.gov (United States)

    Von Lau, Ee; Gan, Suyin; Ng, Hoon Kiat

    2012-09-30

    Experimental extraction tests are conducted to investigate feasibility of saturated palm kernel oil (PKO) and unsaturated soybean oil (SO) to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sand. The extraction rates and efficiencies for lowly contaminated (LC) and highly contaminated (HC) sands at temperatures of 30 °C and 70 °C are evaluated using empirical first order kinetic dissolution models. In LC sand, the extraction is dominated by the diffusion of PAHs adsorbed onto particle surfaces and the direct dissolution of PAH phase. In HC sand, a rapid diffusion of PAHs adsorbed onto particle surfaces and a direct dissolution of PAH phase occur followed by a slower diffusion of PAHs entrapped within the pores and micropores. Larger diffusion resistance during HC sand extractions results in an average 10.8% reduction in extraction efficiencies compared to LC sand. Increased temperature generally increases the mass transfer rates and extraction efficiencies. Additionally, the physicochemical properties of both oils and PAHs also determine the extent of PAH extraction into oil.

  7. Historical trends in greenhouse gas emissions of the Alberta oil sands (1970–2010)

    International Nuclear Information System (INIS)

    There has been increased scrutiny of the Alberta oil sands due to their high carbon intensity (CI) relative to conventional crude oil. Relying entirely on public and peer-reviewed data sources, we examine historical trends in the CI of oil sands extraction, upgrading, and refining. Monthly data were collected and interpolated from 1970 to 2010 (inclusive) for each oil sands project. Results show a reduction in oil sands CI over time, with industry-average full-fuel cycle (well-to-wheels, WTW) CI declining from 165 gCO2e MJ−1 higher heating value (HHV) of reformulated gasoline (RFG) to 105 (−12, +9) gCO2e MJ−1 HHV RFG. 2010 averages by production pathways are 102 gCO2e MJ−1 for Mining and 111 gCO2e MJ−1 for in situ. The CI of mining-based projects has declined due to upgrader efficiency improvements and a shift away from coke to natural gas as a process fuel. In situ projects have benefitted from substantial reductions in fugitive emissions from bitumen batteries. Both mining and in situ projects have benefitted from improved refining efficiencies. However, despite these improvements, the CI of oil sands production (on a pathway-average basis) ranges from 12 to 24% higher than CI values from conventional oil production. Due to growing output, total emissions from the oil sands continue to increase despite improved efficiency: total upstream emissions were roughly 65 MtCO2e in 2010, or 9% of Canada’s emissions. (letter)

  8. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?

    Science.gov (United States)

    Roy, Marie-Claude; Mollard, Federico P O; Foote, A Lee

    2014-06-15

    The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region.

  9. 3D Finite Element Analysis of PWA-Oil Sand Terrain System Interaction

    Directory of Open Access Journals (Sweden)

    Y. Li

    2012-01-01

    Full Text Available A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA method and von Mises yield criterion using the Algor mechanical event simulation (MES software. The three-dimensional (3D distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to 3.6+7 N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.

  10. Condensation induced water hammer and steam assisted gravity drainage in the Athabasca oil sands

    International Nuclear Information System (INIS)

    Most people will have been exposed to some aspect of the debate about the Athabasca Oil Sands in North-Eastern Alberta and the significant role that the oil sands are expected to play in supplying conventional fossil fuels. Part of the bitumen is recovered from mines and part is recovered from in situ projects utilizing the Steam Assisted Gravity Drainage Process (SAGD). SAGD utilizes a considerable amount of steam, that is injected into geological formations. Hot water, bitumen and some vapour are recovered from the production wells. With significant steam generation, transmission and injection, there is the very real possibility of condensation induced water hammers. There have been a number of catastrophic failures to date. The intent of the paper is to provide interesting background information on the in situ oil sands industry. More importantly, to show some interesting and broader applications of thermalhydraulics developed in the nuclear industry. The expertise developed may have potential markets, with some adaptation, to the oil sands industry. Finally, there has been some discussion about using nuclear power for steam generation in the oil sands. (orig.)

  11. Stable carbon and nitrogen isotopes of tree swallows influenced by oil sands aquatic reclamation

    International Nuclear Information System (INIS)

    This presentation reported on a study in which tree swallows (Tachycineta bicolor) were studied to evaluate reclamation strategies used by oil sand operators in Alberta. Wetland reclamation involves the transformation of tailings water and solids into functioning aquatic ecosystems. Naphthenic acids (NAs) and polycyclic aromatic compounds (PACs) in tailing/reclamation material are toxic constituents that pose concern for growth rate, reproductive function and immune function in tree swallows. Exposure to xenobiotics from these tailings-based sites was determined by increased detoxification enzyme (EROD) activity. The dietary exposure of tree swallows to oil sands constituents was determined through stable isotope analysis. Previous studies revealed trends of 13C depletion and 15N enrichment in benthic invertebrates from reclaimed wetlands on the oil sands. Since most food consumed by tree swallow nestlings is aquatic, the isotope signatures in tree swallows should provide evidence of exposure to oil sands constituents. Tree swallow feather and muscle tissues were examined in this study to determine if stable isotopes could be used to identify dietary contributions from oil sands reclamation sites versus reference sites containing no tailings materials.

  12. The mechanisms of electrical heating for the recovery of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W. [McMillan-McGee Corp., Edmonton, AB (Canada); Vermeulen, F.E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    This paper described the Electro-Thermal Dynamic Stripping Process (ET-DSP), a thermal recovery process in which oil sands are electrically heated. This technology has evolved since the 1970s as an alternative to steam assisted gravity drainage (SAGD) and surface mining of Alberta's oil sands. The heat and mass transfer mechanisms associated with electrical heating were examined along with the gravity forces to better understand how the heated bitumen is recovered from the oil sand. Initially, all fluids are immobile. Heat is created in the oil sand as a current flows through the connate water. This results in a pressure and temperature distribution that is characteristic to an electrical heating process. The electrical heating process changes as the temperature of the oil sand increases and as the bitumen is produced. The heat, mass and electromagnetic fields are strongly coupled and are in a transient state throughout the recovery process. This paper presented the main mechanism for electrical heating in terms of equations. A 3-dimensional quasi-harmonic finite element electromagnetic model was coupled to a mass and energy equation and solved in time. A thermal recovery strategy was then presented in terms of electrode spacing, duration of heating, energy supply and ideal operating conditions.

  13. Comparison of CO{sub 2} fixation in spent oil sand between experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dure; Jang, Dongha; Jeon, Yeongshin; Kim, Hyungtaek [Ajou Univ., Yeongtong-gu (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Global Warming caused by the Greenhouse gas has become a serious global issue due to the increasing in the use of fossil fuel and it is being exhausted. Recently, a great deal of research is being carried out to develop alternatives to fossil fuels. The oil sands have become one of the alternative energy sources. However, it is composed of about 10% bitumen and the rest becomes waste. Moreover, oil sands need a large amount of natural gas to provide heat and steam for bitumen extraction. In this study, it has been focused on the satisfaction both CO{sub 2} reduction and waste disposal by using spent oil sand after extraction bitumen from oil sand. Additionally, Aspen Plus was used to simulate to know about its carbonation reactivity. First, we analyzed the analysis of spent oil sand and discovered that it is of mostly composed of SiO{sub 2}, so it needs pretreatment with CaO aqueous solution. After the pretreatment, it is performed by changes in temperature and pressure. The optimum is decided 500 C, 25 atm and reduced rate of mass was calculated 21.92% about carbonation reactivity by using simulation.

  14. Determination of water storage and permeability functions for oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Fredlund, Delwyn G.; Stone, Jeff; Stianson, Jason [Golder Associates Ltd. (Canada); Sedgwick, Andrea [Total EandP Canada (Canada)

    2011-07-01

    Mining projects in the Alberta oil sands produce tailings in a slurry form with high water content and that makes it difficult to characterize the unsaturated soil property functions. This paper discusses the determination of water storage and permeability functions for oil sands tailings. The objective is to describe a way to conduct a conventional soil-water characteristic curve test and use it with an independently measured shrinkage curve to determine the proper unsaturated soil property functions for numerically modeling the drying process. A lab procedure for measuring and interpreting shrinkage behavior of oil sands tailings is given with the results. To obtain a closed-form equation for the shrinkage curve, a regression curve-fitting analysis was used. The saturated coefficient of permeability is combined with the soil-water characteristic curve (SWCC) to compute hydraulic properties for the oil sands tailings. From the results it can be concluded that the volumetric water content is essential to computing the water storage characteristics of oil sands tailings.

  15. High capacity cast-in-place concrete pile load tests at CNRL's oil sand plant near Fort McMurray, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Clementino, R.; Tweedie, R.; Sobkowicz, J.; Workman, C. [Thurber Engineering Ltd., Calgary, AB (Canada); Sisson, R. [Canadian Natural Resources Ltd., Calgary, AB (Canada)

    2006-07-01

    In order to assess capacities for design of foundation piles, a thorough pile load test program was conducted in 2003 and 2004 at Canadian Natural Resources Limited's (CNRL) Horizon Oil Sands Plant site, located near Fort McMurray, Alberta. One of its major components is a large plant for the extraction and upgrading of bitumen from oil sand. The program consisted of five piles tested in a static frame to vertical loads of up to 10 MN, four piles tested using the statnamic method to loads of up to 16 MN, and two piles tested using Osterberg Cells at equivalent top-down loads of up to 22 MN. This paper described the installation and instrumentation of the piles and presented the test results. It also compared these results to historical design values and discussed the results. It was concluded that the pile load test program demonstrated that high capacity can be achieved with straight shaft piles that extend 6 metres or more into oil sands, with small settlements. Piles may be designed using a combination of shaft friction and end bearing capacity. In many instances, end bearing capacity can be ignored, requiring less base preparation and inspection. 6 refs., 2 tabs., 11 figs.

  16. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  17. Oil sands geologists in an industry-school partnership : a resource and teaching opportunity

    International Nuclear Information System (INIS)

    The province of Alberta has developed a credit course within their Career and Technology Studies Program on the earth science of oil sands for senior high school science students. The course helps students learn to apply basic sciences to earth science through workplace site visits, resource material and team work. This paper described the increasing demand for, and success of, industry-high school partnerships, and provided special emphasis on the Bowness Senior High School-Imperial Oil partnership in Calgary, Alberta. Imperial Oil Resources is a major producer of oil sands and an employer of earth scientists in a variety of careers in which a wide range of technologies is applied. Students enrolled in the credit study program visit the Imperial Oil Resources Research Centre on five different occasions to gain skills and qualities sought by the workplace including communication, adaptability, team work, and science literacy and its application. 9 refs., 1 tab., 2 figs

  18. Oil sands geologists in an industry-school partnership: a resource and teaching opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, J.S. [Imperial Oil Resources, Calgary, AB (Canada); Doram, T. [Bowness Senior High School, Calgary, AB (Canada)

    1999-03-01

    The province of Alberta has developed a credit course within their Career and Technology Studies Program on the earth science of oil sands for senior high school science students. The course helps students learn to apply basic sciences to earth science through workplace site visits, resource material and team work. This paper described the increasing demand for, and success of, industry-high school partnerships, and provided special emphasis on the Bowness Senior High School-Imperial Oil partnership in Calgary, Alberta. Imperial Oil Resources is a major producer of oil sands and an employer of earth scientists in a variety of careers in which a wide range of technologies is applied. Students enrolled in the credit study program visit the Imperial Oil Resources Research Centre on five different occasions to gain skills and qualities sought by the workplace including communication, adaptability, team work, and science literacy and its application. 9 refs., 1 tab., 2 figs.

  19. Oil sands geologists in an industry-school partnership : a resource and teaching opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, J.S. [Imperial Oil Resources, Calgary, AB (Canada); Doram, T. [Bowness Senior High School, Calgary, AB (Canada)

    1999-03-01

    The province of Alberta has developed a credit course within their Career and Technology Studies Program on the earth science of oil sands for senior high school science students. The course helps students learn to apply basic sciences to earth science through workplace site visits, resource material and team work. This paper described the increasing demand for, and success of, industry-high school partnerships, and provided special emphasis on the Bowness Senior High School-Imperial Oil partnership in Calgary, Alberta. Imperial Oil Resources is a major producer of oil sands and an employer of earth scientists in a variety of careers in which a wide range of technologies is applied. Students enrolled in the credit study program visit the Imperial Oil Resources Research Centre on five different occasions to gain skills and qualities sought by the workplace including communication, adaptability, team work, and science literacy and its application. 9 refs., 1 tab., 2 figs.

  20. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  1. Applications in the oil sands industry for Particlear{sup R} silica microgel

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, B. [DuPont Chemical Solutions Enterprise, Wilmington, DE (United States)

    2009-07-01

    This presentation demonstrated the use of Particlear{sup R} silica microgel in the oil sands industry. The silica-based coagulant is an amorphous silicon dioxide microgel solution. The surface area of a football field can be obtained using 2.7 grams of the substance. The coagulation mechanism is achieved by charge neutralization and inter-particle bridging. The microgel is manufactured at the point of use from commodity chemicals, water, and carbon dioxide (CO{sub 2}). Applications for the microgel include potable water treatment, paper retention, and animal processing wastewater. In the oil sands industry, Particlear{sup R} can be used in tailings flocculation, thickened tailings drying, steam assisted gravity drainage (SAGD) water treatment, and enhanced bitumen recovery. It was concluded that the microgel can be used in many oil sands processing and liquid-solid separation processes in order to remove dissolved solids and organics and increase the rate of solids dewatering. tabs., figs.

  2. Effect of bioremediation agents on oil biodegradation in medium-fine sand

    International Nuclear Information System (INIS)

    A spill of weathered Arabian light crude oil on an intertidal sand zone was simulated in the laboratory. Respirometry, chemical, and microbiological methods were employed to assess the effectiveness of two bioremediation agents: a slow-release inorganic (Max Bac) and an oleophilic organic fertilizer (Inipol EAP22). Inipol EAP22 stimulated additional CO2 evolution, and significantly increased both the total chemoheterotrophic population and the number of hydrocarbon-degrading microorganisms. At the end of the experiment, the residual oil extracted from the Inipol-treated sand was significantly more biodegraded, based on the application of the conserved biomarkers (phytane and 17α, 21β hopane), than that removed from the other sand columns, albeit by a relatively small amount. The results suggested that Inipol EAP22 stimulated the chemoheterotrophic and hydrocarbon-degrading microbial population and, after a lag phase, encouraged oil biodegradation in fine sandy sediments subjected to a vertical tidal cycle

  3. Monitoring degradation of oil sands constituents and foodweb dynamics in aquatic reclamation using stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Farwell, A.J.; Butler, B.J.; Dixon, D.G. [Waterloo Univ., ON (Canada). Dept. of Biology; Mackinnon, M.D. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2003-07-01

    The process of extracting bitumen from the Athabasca oil sands deposits in northern Alberta generates large volumes of process-affected water with highly toxic constituents such as naphthenic acids. Napthenic acids can biodegrade and become less toxic in reclaimed aquatic systems. This study used stable isotopes to examine the cycling of oil sands constituents in aquatic systems. Benthic invertebrates were collected from test pits at Syncrude Canada Ltd. Dragonflies and damselflies showed trends in carbon 13 depletion and nitrogen 15 enrichment in pits with high levels of process-affected water. Chironomids and amphipods showed only nitrogen 15 enrichment. Carbon 13 depletion suggests invertebrate assimilation and incorporation of oil sands constituents through the microbial foodweb. It is important to define the isotope pathway of naphthenic acid degradation because naphthenic acids could represent a major source of carbon in reclaimed systems.

  4. Ore types impact on flocculation and the treatment strategies for different types of oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, X.S. [Syncrude Canada Ltd. (Canada)

    2011-07-01

    The depletion of conventional energy resources and the rising energy demand are driving development of the oil sands industry. In Alberta, oil sand ores are classified by depositional environment and exhibit different behaviors during the bitumen extraction process and in terms of flocculation and thickening according to the depositional environment. This study aims at providing additional information on the impact of ore type on flocculation and what the appropriate treatment strategies are. Experiments were performed on a Syncrude Aurora transition ore tailings sample with the injection of flocculants and/or coagulants. Results showed that the use of a single flocculant is efficient is lowering total solid concentration for fluvial and estuarine oil sand ores but ineffective for fine transition and marine ore tailings. This research provided useful information on the flocculation behavior of the different Albertan ore types and was able to identify appropriate treatment methods.

  5. Oil and gas fiscal regimes of the western Canadian provinces

    International Nuclear Information System (INIS)

    This report compares the fiscal regimes in British Columbia, Alberta, Saskatchewan and Manitoba. During 1985-1988, federal and provincial governments have made numerous fiscal changes, many in response to the drop in world oil prices. The new fiscal policies generally have reflected governments' willingness to forego revenues in an effort to aid the oil and gas industry, with certain exemptions. Since 1988, changes have reflected trends of consolidation and less government willingness to forego revenues. A federal large corporations capital tax has been introduced, the natural gas exploration holiday in Alberta expired, new oil royalties were introduced, and changes were made in fiscal regimes to accomodate horizontal drilling in Saskatchewan and Manitoba. In this document, the existing corporate tax regime is described. A comparison of fiscal regimes must recognize the differing scale and nature of oil and gas operations among the 4 provinces, with Alberta accounting for 80-90% of Canada's oil and gas productions, while British Columbia, Saskatchewan and Manitoba are much smaller producers. The document describes Crown royalties and incentives and freehold taxes for each type of fuel (crude oil, natural gas, natural gas byproducts, nonconventional oil). 8 figs

  6. Instantaneous stabilization of floating oils by surface application of natural granular materials (beach sand and limestone).

    Science.gov (United States)

    Boglaienko, Daria; Tansel, Berrin

    2015-02-15

    When granular materials are applied to hydrophobic liquids floating over another liquid (i.e., water), particles form aggregates which can be separated from the floating phase. This concept can be used for controlling mobility of floating oils, especially after oil spills near coastal areas. The objectives of this research were to characterize oil capture efficiency and determine effectiveness of particles for converting the floating phase to a heavier phase for effective separation. Experiments were conducted with South Louisiana crude oil contaminated salt water, limestone and quartz sand. Although the oil removal efficiency increased with the increasing amount of granular material applied, it did not increase linearly. About 50% of the floating oil was removed by aggregates, regardless of the material used, when granular material to floating oil ratio was about 1 g/g. The aggregates separated had higher amounts of oil content when smaller amounts of granular materials were added.

  7. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada.

    Science.gov (United States)

    Lynam, Mary M; Dvonch, J Timothy; Barres, James A; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-11-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010-2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10(-5) - 0.79 and exhibited the trend Hg oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems. PMID:26277649

  8. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  9. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  10. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  11. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    International Nuclear Information System (INIS)

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  12. An Overview of the Summer 2014 Airborne Study of Oil Sands Air Pollutants in Support of the Joint Oil Sands Monitoring Plan

    Science.gov (United States)

    Li, S. M.; Hayden, K. L.; Cober, S.; Wolde, M.; Liggio, J.; Liu, P.; Leithead, A.; O'brien, J.; Wang, D. K.; Moussa, S. G.; Gordon, M.; Darlington, A. L.; McLaren, R.; Makar, P.; Stroud, C.; Wentzell, J. J. B.; Brook, J.; Narayan, J.; Elford, A.; Sung, K.; Sheppard, A.

    2014-12-01

    A short term airborne study of oil sands air pollutants was carried out in August and September 2013. The study had three objectives: 1. to validate emissions of criteria air contaminants (CACs) and other air pollutants from surface mining facilities in the Athabasca oil sands region, using airborne ambient air measurements; 2. to understand the transport and transformation of primary pollutants; and 3. to provide data for model and satellite retrieval validation. The data will be used for the evaluation and improvement of high-resolution air quality models for eventual application in determining the fates of these pollutants and their deposition to the downwind ecosystems. Various chemical species were measured from the National Research Council of Canada Convair-580 aircraft at high time resolution of 1-10 seconds. A total of 22 flights were flown, with 14 flights dedicated to emission validation, 5 flights to transport and transformation of oil sands pollutants, and 5 flights to satellite data validation. An algorithm will be shown to demonstrate how the data from the emission flights can be used to derive a top-down estimate of SO2 emission rates.

  13. CANDU nuclear plant configured for multiple oil sands and power applications

    International Nuclear Information System (INIS)

    There is a need to meet expanding demand in Alberta for electricity for an expanding economy, high-pressure steam for oil sands recovery, and hydrogen for bitumen upgrading. This demand must be satisfied in a sustainable, environmentally acceptable and economic manner. Nuclear technology, and in particular AECL's new ACR-1000 reactor, is emerging as the best way to meet these multiple demands. The ACR-1000 can be configured to supply both high-pressure steam and electricity with the steam / electricity ratio optimized to standard turbine-generator sizing and oil sands requirements - thereby affording more options for nuclear plant siting and deployment. Energy for oil sands applications can be supplied in several ways by a centralized nuclear plant with a uniquely configured Balance of Plant (BOP). Steam could be piped to one or several in-situ oil Steam Assisted Gravity Drainage (SAGD) operations within 15 km of the plant boundary. Electricity could be transmitted to more remote facilities including an electrolytic hydrogen plant for bitumen upgraders, resistance-heating devices used for extraction of oil from shale, and electric boilers that generate steam for small in-situ oil sands recovery facilities. The various product streams from the 1200 MWe Class ACR-1000 could be sold by the plant owner through a combination of long-term power purchase agreements and flexible contracts that respond to variable grid prices and demand. In addition the electrolytic hydrogen plant to also serve as an energy storage facility at times of low power demand. These flexible nuclear power plant configurations increase the potential to use clean nuclear energy for more environmentally benign oil sands recovery while still meeting future energy demands economic constraints. (author)

  14. Investing for the future : Athabasca Oil Sands Trust 1998 annual report

    International Nuclear Information System (INIS)

    The Athabasca Oil Sand Trust was created in 1995 when a subsidiary of the Trust, Athabasca Oil Sands Investment Inc., acquired Alberta's 11.74 per cent working interest in the Syncrude Project, which is a joint venture involved in the mining and upgrading of bitumen from the Athabasca oil sands. The Trust is a closed-end investment trust which was created to provide an opportunity for direct public investment in Syncrude and oil sands development in northern Alberta. Syncrude, produced a record 76.7 million barrels of Syncrude Sweet Blend (SSB), and shipped its one billionth barrel on April 16, 1998. Another key achievement in 1998 was the investment the Syncrude Joint Venture Partners of almost half a billion dollars to maintain Syncrude's operations and pursue the Business Plan growth targets outlined in last year's report. By aggressively pursuing this capital investment program despite the current low oil prices, the Syncrude Joint Venture Partners expect to double SSB production to 155 million barrels per year by 2007. The Athabasca Trust's share of these capital expenditures to fuel the projected growth in production is about $ 70 million this year and the next. The report provides operating statistics on production, financial highlights and consolidated balance sheets for 1998, including operating expenditures, capital expenditures, and the usual notes to the consolidated financial statement. 10 tabs., 2 figs

  15. Exploratory Study of Oil Palm Shell as Partial Sand Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2013-03-01

    Full Text Available Malaysia being one of the world largest palm oil producers has been disposing oil palm shell, which is a by-product from palm oil mill thus causing negative impact to the environment. At the same time, extensive mining of natural river sand in large amount to meet the increasing demand of concrete production for the use in rapidly developing construction industry has posed the risk of natural aggregate depletion and ecological imbalance in future. The effect of finely Crushed Oil Palm Shell (COPS as partial sand replacement material in concrete mix towards density and compressive strength was investigated in this study. Total of five mixes consisting various content of crushed oil palm shell as partial sand replacement ranging from 0, 25, 50, 75 and 100% were prepared in form of cubes. All the specimens were water cured before tested at 7, 14 and 28 days. Compressive strength was conducted in accordance to BSEN 12390. Generally, the compressive strength and density decrease with the increase in the crushed oil palm shell replacement level. Between 50 to 75% replacement, the mix produced possess lower density enabling it to be categorized as lightweight concrete and has the potential to be used as non-load bearing structure. The application in structural concrete material is suited for mix consisting around 25% of crushed oil palm shell.

  16. Developing Sand-Gravel Viscous Oil Reservoir in Le'an Oilfield

    Institute of Scientific and Technical Information of China (English)

    He Shenghou

    1995-01-01

    @@ The main oil-bearing series of Le'an Oilfield, Shengli Oil Province, which was discovered in 1970s are sand-gravel bodies on the base of the Eocene Guantao Formation. It is difficult to produce crude oil with conventional method from this thin reservoir due to its complicated lithology, extra viscous oil and edge water. We have conducted integrated study on geology, reservoir engineering, thermal production technology, horizontal drilling technology and comprehensive study. By five years' field experiment and operation, a prominent effect of development and good economic benefit have been achieved and an example has been set up for thermal recovery from extra viscous reservoir.

  17. Steam producing plant concept of 4S for oil sand extraction

    International Nuclear Information System (INIS)

    Plant concept of small fast reactor '4S' applying to continuous steam production for recovery of crude oil from oil sands was investigated. Assuming typical steam assisted gravity drainage (SAGD) plant whose production scale is 120,000 barrels per day of a crude oil, concept of nuclear steam supply system consisting of eight reactor modules for steam production and three reactor modules for electric generation of the 4S with a thermal rating of 135 MWt was established without any essential or significant design change from the preceding 4S with a thermal rating of 30 MWt. The 4S, provided for an oil sand extraction, will reduce greenhouse gas emission significantly, and has not much burden for development and licensing and has economic competitiveness. (author)

  18. The effect of sand composition on the degradation of buried oil.

    Science.gov (United States)

    Fernández-Fernández, Sandra; Bernabeu, Ana M; Rey, Daniel; Mucha, Ana P; Almeida, C Marisa R; Bouchette, Frédéric

    2014-09-15

    The potential effects of the mineralogical composition of sediment on the degradation of oil buried on sandy beaches were investigated. Toward that purpose, a laboratory experiment was carried out with sandy sediment collected along NW Iberian Peninsula beaches, tar-balls from the Prestige oil spill (NW Spain) and seawater. The results indicate that the mineralogical composition is important for the physical appearance of the oil (tar-balls or oil coatings). This finding prompted a reassessment of the current sequence of degradation for buried oil based on compositional factors. Moreover, the halo development of the oil coatings might be enhanced by the carbonate concentration of the sand. These findings open new prospects for future monitoring and management programs for oiled sandy beaches.

  19. Sulfur concrete for haul road construction at Suncor oil sands mines

    Energy Technology Data Exchange (ETDEWEB)

    Abraha, D.G. [Thurber Engineering Ltd., Calgary, AB (Canada); Sego, D.C.; Biggar, K.W.; Donahue, R. [Alberta Univ., Edmonton, AB (Canada). Geotechnical Center; Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2007-05-15

    Properly constructed haul roads are needed to ensure the efficient use of ultra large haul trucks used at oil sand mining operations in northern Alberta. The haul roads at Suncor are presently constructed with crushed limestone, gravel, lean oil sand and till. The roads deteriorate significantly during the summer months due to material softening. A study was therefore conducted to determine the feasibility of building mine haul roads at Suncor oil sand mines using concrete prepared from by-products and mine wastes such as sulfur, fly ash, coke and tailings sand. The physical and mechanical properties of various mixes of sulfur concrete were characterized in laboratory studies involving compression measuring and split tensile and freeze thaw durability tests. The geochemical interaction of sulfur concrete with the near surface environment was also investigated with reference to the operational life of the haul road and interaction of sulfur concrete with ground water. A haul road test section was designed based on the resilient modulus design method. A finite element analysis was used to calculate the stress and strain distributions in the road caused by truck tires. The pavement thickness was determined based on the truck loads, the resilient modulus and the strength of the sulfur concrete and subgrade material. It was concluded that sulfur concrete produced from mine wastes is significantly stronger and stiffer than the existing haul road material. Therefore, better haul roads can be constructed with reduced pavement thicknesses using tailing sand sulfur concrete. 8 refs., 4 tabs., 14 figs.

  20. 内蒙古油砂油脱泥、脱砂工艺研究%The Experiment on Desliming and Sand-Out from Oil Sand Oil in Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    赵蕊; 曹祖宾; 韩冬云; 李丹东; 刘音; 张敏; 孟宪革

    2013-01-01

    以内蒙古扎赉特旗油砂水洗分离生成油为研究对象,采用有机溶剂萃取和水洗后处理相结合的方法,对油砂油进行脱泥、脱砂工艺研究.考察了有机溶剂种类、剂油质量比、温度、时间、水洗试剂质量分数等条件对油砂油脱泥、脱砂工艺研究的影响.结果表明,在剂油质量比为1∶1,水洗温度90℃,水洗试剂质量分数8%,分离时间为25 min的条件下,采用1号溶剂油处理后的油砂油萃取率可达到94%以上.%With oil sand oil washing separation from oil sand of Inner Mongolia Zalaiteqi as the research object,using method of combining organic solvent extraction and water washing to research desliming sand-out technology of oil sand oil from Inner Mongolia.The influences of the organic solvent types,agent oil ratio,temperature,time,water reagent concentration and other conditions on the process of the oil sand oil desliming sand-out technology were investigated.The results show that using 1 # solvent oil processing oil sand oil can make the 94 % yield,under the condition of the organic solvent and oil sand oil quality ratio of 1 ∶ 1,water temperature 90 ℃,water reagent concentration 8%,separating time 25 min.

  1. Biodegradation of MC252 oil in oil:sand aggregates in a coastal headland beach environment

    Directory of Open Access Journals (Sweden)

    Vijaikrishnah eElango

    2014-04-01

    Full Text Available Biodegradation potential of MC252 in oil:sand aggregates, termed surface residue balls (SRBs, was examined using multiple lines of evidence on a heavily-impacted coastal headland beach in Louisiana, USA. SRBs were sampled over a 16-month period on the supratidal beach environment where reasonable control existed on the residence time of the aggregates on the beach surface. PAH and alkane concentration ratios were measured including PAH/C30-hopane, C2/C3 phenanthrenes, C2/C3 dibenzothiophenes and alkane/C30-hopane and demonstrated unequivocally that biodegradation was occurring in SRBs in the supratidal. These biodegradation reactions occurred over time frames relevant to the coastal processes moving SRBs off the beach. In contrast, submerged oil mat (SOM samples did not demonstrate chemical changes consistent with biodegradation. Review and analysis of additional biogeochemical parameters suggested the existence of a moisture and N-limited biodegradation regime on the supratidal beach environment. At this location, SRBs possess moisture contents < 2% and molar C:N ratios from 131-323, well outside of optimal values for biodegradation in the literature. Despite these limitations, biodegradation of PAHs and alkanes proceeded at relevant rates (2-8 year-1 due in part to the presence of degrading populations, i.e., Mycobacterium sp., adapted to these conditions. For SOM samples in the intertidal, an oxygen and salinity-impacted regime is proposed that severely limits biodegradation of alkanes and PAHs in this environment. These results support the hypothesis that SRBs deposited at different locations on the beach have different biogeochemical characteristics (e.g., moisture; salinity; terminal electron acceptors; nutrient; and oil composition due, in part, to their location on the landscape.

  2. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.

    Science.gov (United States)

    Sohrabi, V; Ross, M S; Martin, J W; Barker, J F

    2013-11-01

    The process of bitumen extraction from oil sands in Alberta, Canada leads to an accumulation of toxic acid-extractable organics (AEOs) in oil sands process water (OSPW). Infiltration of OSPW from tailings ponds and from their retaining sand dykes and subsequent transport towards surface water has occurred. Given the apparent lack of significant natural attenuation of AEOs in groundwater, remediation may be required. This laboratory study evaluates the potential use of unactivated persulfate and permanganate as in situ oxidation agents for remediation of AEOs in groundwater. Naphthenic acids (NAs; CnH2n+zO2), which are a component of the acutely toxic AEOs, were degraded by both oxidants in OSPW samples. Permanganate oxidation yielded some residual dissolved organic carbon (DOC) whereas persulfate mineralized the AEO compounds with less residual DOC. Acid-extractable organics from oxidized OSPW had essentially no Microtox toxicity.

  3. An update to the construction of the Suncor oil sands tailings pond 5 cover

    Energy Technology Data Exchange (ETDEWEB)

    Abusaid, Ayman; Pollock, Gord; Fear, Catherine; McRoberts, Ed [AMEC Earth and Environmental (Canada); Wells, Sean [Suncor Energy Inc. (Canada)

    2011-07-01

    Tailings, produced during the extraction process that separates bitumen from oil sand, are pumped into holding ponds. The heaviest material - mostly sand - settles to the bottom, while water rises to the top, creating a middle layer, the mature fine tailings (MFT), made up of fine clay particles suspended in water. Suncor is using consolidated tailings technology to speed up the consolidation of MFT. To facilitate reclamation of its pond 5 oil sands tailings pond and make a trafficable surface, Suncor began construction of a full-scale floating cover over the fluid tailings in the pond in January, 2010. A road and infill approach was taken which involved constructing a network of roads as the first stage, followed by constructing the area between the roads (or cells) in the following stage, using geosynthetics overlain by petroleum coke. The results from a series of field trials conducted during this year and from other novel aspects of construction are presented and discussed in this paper.

  4. Uptake of Organic Contaminants by Plants from Oil Sands Fine Tailings

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The objectives of this experiment were to evaluate the performance of different plant species growing in different kinds of oil sands fine tailings,and to estimate the uptake of organic contaminants by plants from the oil sands fine tailings.In general,total hydrocarbon in the plant could be ranked(beginning with the highest)as:unweathered plant 4 tailings (UWT),Freeze-Thawtailings(FT),weathered plant 4 tailings(WT),and consolidated tailings(CT) for the willow,poplar and cattails.For grass,CT amended with tailings sand and muskeg had the highest hydrocarbon level in the field treatment,however,other three kinds of tailings(FT,WT and UWT) had lower but similar to each other hydrocarbon levels.

  5. Wear behavior of high velocity arc sprayed 3Cr13 steel coating in oil containing sand

    Institute of Scientific and Technical Information of China (English)

    DU Ling-zhong; XU Bin-shi; DONG Shi-yun; YANG Hua; WU Yi-xiong

    2004-01-01

    To improve the wear resistance of the machine components serving in desert areas, the 3Cr13 stainless steel coating was produced by the high velocity arc spraying technique. The microstructure and phase constitute of the coating were analyzed by SEM and XRD. The effects of sand content on the friction and wear behaviors of the coating under the lubrication of oil containing sand were investigated on a ball-on-disk tester. SEM was used to reveal the wear mechanisms of the coating. The results show that the wear volume increases with increasing the sand content in the oil, and the sprayed coating exhibits better triobological properties compared with the 1045 steel. The predominant wear mechanisms of the sprayed coating are micro-cutting, brittle fracture and delamination.

  6. Sand-wear resistance of brush electroplated nanocomposite coating in oil and its application to remanufacturing

    Institute of Scientific and Technical Information of China (English)

    DONG Shi-yun; XU Bin-shi; DU Ling-zhong; YANG Hua

    2005-01-01

    Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/ Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant,comparing with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn volume of the three materials, and also coating surface roughness on worn volume of the brush electroplated coatings were accessed. Results show that the worn volume of all the three materials increases with increasing of testing load, sand content and sand size. In the same conditions, n-Al2 O3/Ni composite coating has the smallest worn volume while AISI1045 steel has the largest because of the n-Al2 O3 particle effects. As to n-Al2 O3/Ni and Ni coatings, the surface-polished coatings have obviously lower worn volume than the as-plated coatings. The brush electroplated n-Als O3/Ni composite coating was employed to remanufacture the sand-worn bearing seats of a heavy vehicle and good results were gained.

  7. Productivity of chironomid larvae exposed to oil sands process water : in situ vs. lab bioassay results

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, K.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Oil sands process water (OSPW) contains toxic concentrations of salts and napthenic acids that may compromise wetland reclamation efforts. The productivity of wetland biota is one of the criteria used by the Alberta government to determine if land leased to oil sands mining companies is restored. This study determined how chironomid productivity is influenced by the water from oil sands process material (OSPM) affected wetland. In this study, 26 10-day in situ and laboratory bioassays from water of three oil sands process material (OSPM) were compared with water from 3 reference wetlands to determine the influence of water from OSPM affected wetlands on chironomid productivity. Parallel studies were conducted with Chironomus riparius lab-cultured larvae and Chironomus sp larvae cultured from egg masses collected from an OSPW-affected wetland. In situ, chironomids were housed in small cylinders with fine-mesh netting to allow water exchange and contact with the sediment. Preliminary estimates of chironomids emerging from study wetlands indicated that native and lab cultured chironomids are not uniformly responsive to OSPW.

  8. Post-Secondary Learning Priorities of Workers in an Oil Sands Camp in Northern Alberta

    Science.gov (United States)

    Fahy, Patrick J.; Steel, Nancy

    2008-01-01

    This paper reports results to date of a three-year project by Athabasca University, intended to determine the education and training needs and interests of employees in a work camp in northern Alberta's oil sands. (Future reports will address results of efforts to provide programming suiting the needs identified, and the uptake, satisfaction,…

  9. Physiological and biochemical responses of small fish exposed to Athabasca oil sands sediment

    International Nuclear Information System (INIS)

    A study was conducted to determine the influence of naturally occurring oil sands related compounds on the reproductive function and hepatic responses of fish. Wild fish, both exposed and unexposed to the compounds in question, were collected along with sediments for laboratory testing. The study showed that in vitro gonadal incubation levels of steroid production were lower at the tributary sites within the oil sands deposits. One indicator of exposure to oil sands related compounds (hepatic 7-ethoxyresorufin-O-deethylase activity) was shown to be 5 times higher at the same sites. In addition, slimy sculpin were exposed to sediment samples from the Steepbank River site for 4 to 8 days to evaluate the absorption of the indicator. The indicator in exposed fish was found to be comparable to that measured in fish native to the oil sands area. The study was not capable of predicting an altered ability of gonadal tissue of exposed fish to produce steroid hormones in vitro. It was concluded that future development could compromise the reproductive health of fish in the area

  10. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns.

    Science.gov (United States)

    Gudiña, Eduardo J; Pereira, Jorge F B; Costa, Rita; Coutinho, João A P; Teixeira, José A; Rodrigues, Lígia R

    2013-10-15

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of residual oil by the selected microorganisms. Four different hydrocarbon mixtures and three Bacillus subtilis strains isolated from crude oil samples were used. Additional oil recoveries ranged from 6 to 24% depending on the hydrocarbon mixture and microorganism used. Biosurfactant production was observed with all the microorganisms and hydrocarbon mixtures studied. The oils recovered after incubation with B. subtilis isolates showed a reduction in the percentage of long-chain n-alkanes and lower viscosity when compared with the original oils. The results obtained suggest that stimulation of the selected B. subtilis strains in situ can contribute to mobilize entrapped oil in mature reservoirs. PMID:23911831

  11. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns.

    Science.gov (United States)

    Gudiña, Eduardo J; Pereira, Jorge F B; Costa, Rita; Coutinho, João A P; Teixeira, José A; Rodrigues, Lígia R

    2013-10-15

    Microbial Enhanced Oil Recovery (MEOR) technology uses microorganisms and their metabolites to retrieve unrecoverable oil from mature reservoirs. In situ stimulation of biosurfactant-producing and oil-degrading microorganisms reduces the capillary forces retaining the oil inside the reservoir and decreases its viscosity, thus promoting oil flow and consequently production. In this work, a sand-pack column model was designed to simulate oil recovery operations and evaluate mobilization of residual oil by the selected microorganisms. Four different hydrocarbon mixtures and three Bacillus subtilis strains isolated from crude oil samples were used. Additional oil recoveries ranged from 6 to 24% depending on the hydrocarbon mixture and microorganism used. Biosurfactant production was observed with all the microorganisms and hydrocarbon mixtures studied. The oils recovered after incubation with B. subtilis isolates showed a reduction in the percentage of long-chain n-alkanes and lower viscosity when compared with the original oils. The results obtained suggest that stimulation of the selected B. subtilis strains in situ can contribute to mobilize entrapped oil in mature reservoirs.

  12. Fueling war : the impact of Canadian oil investment on the conflict in Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, S.

    2002-11-15

    Canadian oil companies have become increasingly involved in oil exploration and development in Columbia over the last 2 years. This paper examined the impact of Canadian oil investment on armed conflict in Columbia, and suggested that there is a strong correlation between regions of mineral wealth and regions of political conflict. The role of Canadian companies in contributing to the escalation of political violence was explored, and the economics of civil war from a theoretical perspective were examined with regards to the financing of rebellion and the role of international investment. The origins and evolution of the civil war in Colombia were outlined. Possibilities for ethical oil investment in Colombia were also explored. The paper supported recent assertions that in order to understand the political economy of civil war, the role of the international private sector must be evaluated. The significance of primary resources as a funding source for armed groups was confirmed, as well as the tendency for conflict to centre on areas of resource wealth in the country. A case study of Talisman Energy's activities in Sudan was also presented. It was suggested that oil companies operating in Colombia must become involved in local development projects to improve education and health, and should also design security measures from a corporate social responsibility perspective. It was concluded that in order to work towards the resolution of armed conflict there the root causes of the conflict, issues such as land reform, social inequality, and the terms of foreign investment must be addressed in addition to the means by which illegal armed actors finance themselves. 73 figs.

  13. Simulation of oil sands in-line thickened tailings disposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeeravipoolvarn, S.; Scott, J.D.; Chalaturnyk, R.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    A finite strain consolidation theory was used to simulate field deposition of in-line thickened tailings (ILTT), sheared in-line thickened tailings, cyclone overflow fine tailings and composite tailings made from ILTT (ILTT-CT). The paper discussed tailings constitutive relationships and tailings placement schemes as well as simulation results. Six scenarios were selected for this investigation. Scenarios 1 to 4 were depositions of cyclone overflow tailings, in-line thickened tailings, sheared in-line thickened tailings and ILTT-CT by depositing the materials for 3 months in a disposal area and allowing them to settle under self-weight for 9 months. This method enabled consolidation by an upward single drainage condition. Scenarios 5 and 6 used a double drainage condition, notably sand sandwiching and sand columns. In Scenario 5, the same amount of the fine tailings was divided into three ponds, in which each pond was filled for 2 months then 20 kPa of sand cap was applied during the third month. At the start of the fourth month a new tailings layer was deposited and the process was repeated. For Scenario 6, ILTT-CT was deposited in a single pond with the same filling strategy as that of Scenario 5. It was concluded that even though the in-line thickened tailings provided a significant improvement in sedimentation and consolidation characteristics of the fine tails, the possibility of reclaiming the land could only come by combining good deposition techniques, external stresses, environmental conditions and good strategy. 6 refs., 2 tabs., 7 figs.

  14. An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands

    Directory of Open Access Journals (Sweden)

    S. G. Howell

    2013-08-01

    Full Text Available During the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign, two NASA research aircraft, a DC-8 and a P-3B, were outfitted with extensive trace gas (the DC-8 and aerosol (both aircraft instrumentation. Each aircraft spent about a half hour sampling air around the oil sands mining and upgrading facilities near Ft. McMurray, Alberta, Canada. The DC-8 circled the area, while the P-3B flew directly over the upgrading plants, sampling close to the exhaust stacks, then headed downwind to monitor the aerosol as it aged. At short range, the plume from the oil sands is a complex mosaic of freshly nucleated ultrafine particles from a SO2 and NO2-rich plume, fly ash and soot from industrial processes, and dust from dirt roads and mining operations. Shortly downwind, organic aerosol appears in quantities that rival SO4=, either as volatile organic vapors condense or as they react with the H2SO4. The DC-8 pattern allowed us to integrate total flux from the oil sands facilities within about a factor of two uncertainty that spanned values consistent with 2008 estimates from reported SO2 and NO2 emissions. In contrast, CO fluxes exceeded reported regional emissions, due either to variability in production or sources missing from the emissions inventory. The conversion rate of SO2 to aerosol SO4= of ~6% per hour is consistent with earlier reports, though OH concentrations are insufficient to accomplish this. Other oxidation pathways must be active. Altogether, organic aerosol and black carbon emissions from the oil sands operations are small compared with the forest fires present in the region during the summer. The oil sands do contribute significant sulfate and exceed fire production of SO2 by an order of magnitude.

  15. Ethoxyresorufin-O-deethylase (EROD) induction in rainbow trout exposed to diluted oil sand wastewater

    International Nuclear Information System (INIS)

    Toxic industrial wastewaters, such as those from oil sands extraction, must be assessed for their potential sublethal effects before they can be safely disposed in the environment. The induction of ethoxyresorufin-O-deethylase activity was assessed as a potential bioindicator of sublethal stress in rainbow trout exposed to sublethal concentrations of oil sands tailings water. The mixed-function oxygenase system in rainbow trout responded rapidly following a definable concentration-response relationship; however, it proved to be a relatively insensitive indicator of sublethal exposure to oil sands tailings water. Increased activity and maximal induction, as a result of exposure to 0.3 and 0.6 times the LC50 (Toxic Units), occurred rapidly within 24 hours of exposure. The linearity of the relationship between the concentration of oil sands tailings pond water and ethoxyresorufin-O-deethylase activity, expressed by the following regression equation, In EROD = 3.68 (conc.) + 3.20, had an r2 value of 0.593. Maximal induction required 0.4--0.8 Toxic Units. The absolute level of maximal induction was only one-fifth to one-sixth of the potential induction as found in response to the positive control, 0.5 mg/kg β-naphthoflavone (i.p.). The authors also present data that suggests that the different levels of induction observed in trout exposed to tailings pond water vs those injected with 0.5 mg/kg β-naphthoflavone (i.p.) may be indicative of two different P450 isoforms, the CYP4Al isoform responding to the organic acidic surfactants in oil sands tailings pond water and the CYP1A1 isoform, the isoform generally associated with most xenobiotic transformation in fish, responding to β-naphthoflavone

  16. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    Science.gov (United States)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high

  17. Research on the technology of cold production with limited sanding in heavy oil reservoir with bottom and edge water

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Zhang, Y.; Gao, C.; Li, X. [Research Inst. of Petroleum Exploration and Development, Beijing (China)

    2006-07-01

    This paper discussed a new method for selectively controlling sand discharges in cold heavy oil production (CHOP) wells in the Fula region in China. The critical sanding rate was developed by determining the cohesion strength of the sand and modelling it with reservoir data. The effect of limiting sand on the near wellbore region was examined using 4-phase simulation software. The influence of sanding on nearby wellbores was also examined. The simulation was history-matched with a well from the field. Results showed that the method had good connectivity with the oil layer. Subsequent production data showed that the limited sanding technique was successful. The technique also improved formation conditions. The simulation demonstrated that the application of CHOP with limited sanding improved productivity rates. 1 ref.

  18. Canadian upstream oil and gas industry profitability: Historical review and future perspectives [with executive summary

    International Nuclear Information System (INIS)

    The profitability of the Canadian upstream oil and gas industry is examined by analyzing return on equity and return on capital invested. By all measures and interpretations, the upstream industry has been unprofitable since the mid-1980s; returns generated are far below the industry's own historical cost of capital, and are inadequate relative to other sectors of the Canadian economy and to international oil and gas companies. This poor profitability is attributed to such factors as: overly optimistic price forecasts and healthy cash flows generated in the early 1980s, which led to excess capital spending; poor returns on capital reflective of the physical limitations of the Western Canadian Sedimentary Basin; high capital and operating costs; and a high royalty burden imposed by provincial governments. The consequences of low profitability include inadequate returns to equity investors, a drop in spending on upstream services such as drilling and exploration, a reduced ability of the industry to generate employment, and an adverse effect on the economy of Alberta. Forecasts indicate that the upstream sector is extremely vulnerable to a scenario of relatively flat prices due to high and increasing operating costs and depletion charges, and the significant royalty payments that still are in effect. Little scope is foreseen for industry profitability to return to acceptable levels over the first half of the 1990s. Reduced royalties have the potential to make a significant contribution to improved profitability. 52 figs., 40 tabs

  19. Impact of the climate change issue on Canadian oil and gas development

    International Nuclear Information System (INIS)

    Canadian policy regarding climate change and the Kyoto Protocol was outlined with reference to what actions must be taken to secure energy supplies and to stabilize greenhouse gas (GHG) emissions. The author presented an economic model projection of global carbon dioxide emissions without the Kyoto agreement and noted the implications for oil and gas. The likely path of global action on climate change would include increased efficiency to slow the growth in demand for energy. However, oil and gas demand is likely to grow for the next two decades or more because of the growing population worldwide and because developing countries should not forgo economic growth to avoid higher energy use. The author argued that Canadian climate change policies are out of line with the global climate change effort because they focus on short-term reductions rather than developing technologies. The policies also divert investment to competing suppliers that do not impose GHG costs, with no global GHG benefit. The author describes, in particular, why Alberta climate change policy rejects the Kyoto target. Natural Resource Canada's approach to large industrial emitters was also discussed along with a proposed policy framework by the Canadian Association of Petroleum Producers (CAPP) for post 2012 and long term certainty. 3 figs

  20. Transfer prices and the excess cost of Canadian oil imports: New evidence on Bertrand versus Rugman

    International Nuclear Information System (INIS)

    Transfer pricing can be a source for contention between governments and multinational corporations, with suspicion that transfer prices are set so as to report higher income in countries where corporations are taxed more lightly. The first systematic empirical evidence on transfer pricing in multinational corporations is presented, through examination of the Canadian petroleum industry, which is dominated by foreign multinationals. The data cover the period 1974-84 and allow analysis of the allegation of excess cost paid by Canada for crude oil imports. After taking into account crude oil quality indicators, transaction characteristics, and countries of export, the merging of a comparable set of U.S. and Canadian data demonstrates evidence of transfer-price setting at levels significantly different from arm's-length prices for crude oil imports to Canada from 1974-84. However, the evidence runs contrary to Bertrand's assessment: the crude oil prices for affiliate transactions were found to be, in general, lower than comparable prices for third-party transactions. As to transport costs, the converse was found to be the case, however, the effect is much less important than transfer pricing. The overall result is that transfer prices have worked in Canada's favour. 15 refs., 7 tabs

  1. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone.

    Science.gov (United States)

    Dalyander, P Soupy; Long, Joseph W; Plant, Nathaniel G; Thompson, David M

    2014-03-15

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these "surface residual balls" (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results.

  2. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone.

    Science.gov (United States)

    Dalyander, P Soupy; Long, Joseph W; Plant, Nathaniel G; Thompson, David M

    2014-03-15

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these "surface residual balls" (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results. PMID:24503377

  3. Canadian firm contains huge oil spill in Northern Russia

    International Nuclear Information System (INIS)

    The Kharyaga-Usink pipeline, 1400 km northeast of Moscow, suffered a major failure in the fall of 1994, releasing some 100,000 tonnes of oil (three times more than the Exxon Valdez) into the frozen tundra. It was considered by environmental groups as one of the worst disasters of its kind. The oil threatened to seep into the nearby rivers and eventually into the Barents Sea. After a delay of some three months AGRA Earth and Environmental of Calgary, an engineering consulting firm, was called in to inspect the damage and to make recommendations for a successful cleanup operation. A multi-disciplinary emergency response team was formed to assess the environmental and socio-economic impacts of the spill, the state of the existing pipeline, and the Russian plans for spill containment and recovery. Community consultation, probably the first in Russia, was part of the evaluation, culminating in a three-volume appraisal report containing detailed recommendation on how to properly contain the spill. On the strength of the report the World Bank and the European Bank for Reconstruction and Development approved loans to the Russian Federation totaling 145 million dollars to undertake the work of pipeline restoration. Construction of the uniquely-designed dams as well as the Russian-pioneered siphon-dams was done by international contractors and maintained throughout the breakup period. A new pipeline is also being constructed to prevent future leaks

  4. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  5. Institutionalizing environmental due diligence as part of the organization's culture: The Suncor Oil Sands Group experience

    International Nuclear Information System (INIS)

    The Suncor Oil Sands Group produces ca 22 million bbl/y of synthetic crude oil from oil sands in northern Alberta. Initiatives taken by the Group to install environmental due diligence as an integral part of Suncor culture are reviewed. Environmental due diligence means taking all reasonable care to safeguard the environment. To practice environmental due diligence, the organization and its members must have an environmental consciousness that can be observed, measured, and monitored through daily practices. In the period from startup of the oil sands plant in 1967 to the mid-1970s, Suncor culture could be described as research oriented, oriented toward examination of the viability of extracting oil from the oil sands and the development of new extraction processes. Management then moved toward a more production-based culture, in which environmental issues were sometimes perceived to be in conflict with production goals. External factors toward the end of the 1980s created a culture shift to an integration of production culture with social entities including environmental consciousness. A corporate push toward a new environmental culture was first concretized when the management's Health and Safety Policy was changed in 1990 to the Health, Safety and Environment Policy. A new Environmental Diligence Program was implemented in three phases, including planning, development of a comprehensive environmental management system, and implementation. Installation of the Program in the first phase is described, focusing on employee and management training, and results of the installation process are presented. Modifications of Suncor's loss control management program to integrate with the environmental diligence program are also noted. 2 refs

  6. Oil sand production and processing. Technology, economy, environmental aspects. 2. ed.

    International Nuclear Information System (INIS)

    The nearing decline in global oil production with all its consequences gives rise to the question as to possible alternative technologies, both on the application and the supply side. What contribution can come from a more efficient use of oil? What other liquid fuels can replace today's supply of crude oil? What role will unconventional oil resources play in the future? What quantities of oil can be made available from these reserves and over which time horizons? What restrictions exist on their exploitation? The purpose of the present study was to examine these questions for the example of one of the most significant alternative technologies on the supply side, namely that of unconventional oil resources. Since unconventional oil resources are very heterogeneous in terms of deposit characteristics, oil quality and exploitation technologies, the present study was restricted to a single type, namely that of oil sand extraction. This is currently the furthest developed unconventional oil resource both technically and economically, making it an ideal choice for a case study on the opportunities and risks of unconventional oil resources.

  7. Structural Control of Sand Bodies and Deep Exploration for Oil and Gas

    Institute of Scientific and Technical Information of China (English)

    Cheng Rihui; Lin Changsong; Zheng Herong

    2002-01-01

    The structural styles can be used to analyses and predict developments and distributions of sand bodies in a rift basin. The dynamic process of faulting and sedimentation can be expressed as follow: the basin topography controlled by fault activity can control water dynamics; which in turn affect the transport and sedimentation of sediments. The corresponding analysis between structural styles and sand depositional types includes the following aspects: (1) in section, the corresponding between development of fault terraces and sand depositional types; (2) in plane, the relationship between faults' association and distributions of sand bodies. There are four types of terrace styles to be identified. They are Steep Slope Single Fault Terrace (SSSFT), Steep Slope Multiple Fault Terrace (SSMFT), Gentle Slope (GS) and Gentle Slope Multiple Fault Terrace (GSMFT), which also can be divided into six subtypes by the timing of the faults activities and the directions of their activity migrations (basinward and landward or marginward). They correspond to the following sand depositions such as alluvial fan, fan delta and turbidite fan etc.. The analysis of structure-sedimentation is a discussion on the rank Ⅲ sequence evolution under the condition of pulsing or episodic fault activities. It has been recognized four plane fault associations such as the comb, the broom, the fork and the fault-fold association as well as the corresponding sand distributions. Structural-sedimentary models above mentioned are significant for the deep oil and gas exploration when lacking of the drill data. It may reduce multiple resolutions in the interpretation of seismic-sedimentary facies and promote sand predictions through the constraints of the structural styles of the basin units. The structural-sedimentary pattern can be used as a geological model in oil and gas exploration in the rift basins.

  8. Changes in algal stable isotopes following nutrient and peat amendments in oil sands aquatic reclamation

    International Nuclear Information System (INIS)

    The processing of oil sands in Alberta generates large volumes of processed material that must be reclaimed. Processed water and solids (PW/S) contain higher levels of naturally occurring compounds such as naphthenic acids (NAs) and polycyclic aromatic compounds (PACs). Organic carbon and nitrogen are some of the constituents in PW/S that may provide nutrient sources for aquatic reclamation sites as they develop into viable ecosystems. This study was conducted to assess the modifying factors that may affect the stable carbon and nitrogen isotope values of primary production in oil sands aquatic reclamation. Both field-based microcosm studies and laboratory studies were used to evaluate the changes in the growth and stable isotope values of phytoplankton, periphyton and/or filamentous algae along gradients of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrogen and phosphorus. Various types of reclamation substrates were used in the study, including various combinations of sand, mature fine tailings, peat and process water. Results showed different levels of growth depending on both the water and substrate type. Typically, periphyton from oil sands reclamation sites were more enriched in 15N than the reference site. Periphyton from one site known as the MP site was more enriched in 13C than periphyton from another site know as the Shallow Wetland South Ditch (SWSD). However, periphyton in the demonstration pond (DP) was more 13C depleted than the reference site. Findings from this study indicate that carbon isotopes are influenced by other factors, such as nutrients.

  9. Sea sand disruption method (SSDM) as a valuable tool for isolating essential oil components from conifers.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B

    2011-11-01

    Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components. PMID:22083917

  10. Sea sand disruption method (SSDM) as a valuable tool for isolating essential oil components from conifers.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B

    2011-11-01

    Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components.

  11. Proceedings of the Infonex oil sands 2005 conference : an industry summit on emerging trends in exploration, production and resource management

    International Nuclear Information System (INIS)

    This conference provided a forum to discuss the opportunities and challenges facing the oil sands industry with particular reference to resource characterization and supply and market outlooks to 2015. The driving forces behind oil sands development were also identified. The conference featured 12 presentations that dealt with a range of issues including resource management; operations management; price and cost sharing; emerging transmission pipeline challenges and opportunities; the fiscal regime for oil sands; minimizing the environmental impact of oil sands development; cumulative effects management and the regulatory approval process. An overview of a joint venture by Alberta Environment Northern Region and the Alberta Geological Survey to update existing maps of buried bedrock and drift channels in the oil sands mining and in-situ recoverable areas was included along with an overview of economic and environmental benefits of gasification. A new technology known as multiphase superfine atomized residue (MSAR) as an alternate fuel in oil sands production was discussed along with the issue of bridging the gap between the oil sand industry and First Nations partners. Three of the 12 presentations were catalogued separately for inclusion in this database. tabs., figs

  12. Creating value from waste: remediation of froth treatment tailings from oil sands mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Kevin [Titanium Corporation (Canada); Burdenie, B. [SNC-LAVALIN (Canada)

    2011-07-01

    As the world reserves of oil are depleting, most of the remaining oil is heavy oil from oil sands. Several methods based on water and solvent usage are used to recover this oil but they lead to the rejection of valuable compounds into tailings: heavy minerals, residual bitumen, water and solvent. The aim of this paper is to present the research and development program carried out by Titanium Corporation Inc., of Canada, to recover these compounds in Alberta. Pilot projects were conducted to test the developed technologies. Results showed performance meeting or exceeding expectations as well as a numerous environmental benefits including a significant reduction in water imports and emissions of CO2, NOx and volatile organic compounds. .

  13. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh; Miller, Jan

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  14. Native bitumens in surficial soils of the Athabasca oil sands region : preliminary characterization and assessment of contaminant mobility

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, M.; Fleming, I. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Civil and Geological Engineering; Headley, J. [Environment Canada, Saskatoon, SK (Canada). National Hydrology Research Centre

    2009-07-01

    A study was conducted on bitumen tarballs located in surficial soils in Alberta's Athabasca region. The tarballs occur in every soil type in the region, and pose a challenge to oil sands operators who hope to use the soils for reclamation activities. Chromatographic analyses have shown that the tarballs contain variable petroleum hydrocarbon concentrations and possess a characteristic chromatographic footprint. The Canadian Council of Ministers of the Environment has characterized the hydrocarbons according to various fractions. A soil-column leaching study is also being conducted by the University of Saskatchewan on heavily-impacted tarball soil under unsaturated conditions. Results of the study have indicated that the soil has low levels of contaminant mobility and degradation. Hydrocarbon concentrations in leachate water are less than 20 per cent of ground water guidelines for Alberta. It was concluded that after respiration over 9 months, the most active soil column in the study degraded only 2.7 g of an estimated 650 g.

  15. Case study : Syncrude Canada Ltd. optimizing waste heat recovery at an oil sands operation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Syncrude Canada Ltd., the world's largest producer of crude oil from oil sands, has made upgrades over a seven-year period to its water recycling process, resulting in more heat recovered at the preheaters in its oil sands operations. The preheaters are the key to the recycling process water system. The incentive to optimize heat recovery at the preheaters was to reduce the amount of natural gas required to heat the water used to extract bitumen from the oil sands. The second objective was to lower costs spent on new equipment to heat the water. Syncrude operators attended workshops offered by the Office of Energy Efficiency at Natural Resources Canada to learn the value of monitoring and cleaning the process-water system to recover as much lost heat as possible. This paper presented a project profile and the approach used to optimize the system, beginning with the installation of twisted-tube heat exchangers in 1997, followed by the installation of a larger pump impeller in 1998 which increased the pumping capacity. In 2003, the target outlet temperature for the preheaters was set at 20 degrees C. This paper also described the challenges regarding water temperature, water pressure and maintenance issues. The innovative solutions used to overcome them have lead to energy costs savings of about $60,000 per month. Syncrude is currently exploring whether water can be preheated higher than 20 degrees C. 2 figs.

  16. Canadian oil and gas industry competitiveness and financial performance update 2002

    International Nuclear Information System (INIS)

    This report presents an independent assessment of profitability in the upstream Canadian petroleum industry. The upstream sector includes exploration and production of oil and gas reserves. This report offers a historical and a forward looking perspective on the financial performance of the industry in 2001. The performance of the industry is compared with other industries in Canada and around the world. The report is divided into the following 4 sections: (1) how capital flows in the Canadian upstream oil and gas economy, (2) the analysis of sector profitability based on the efficiency of capital flow in section 1, (3) how the profitability of the Canadian upstream oil and gas sector stands up compared to other industries, and (4) appendices and other supplementary information. It was noted that as geologic basins are developed, non-renewable resources continue to become more capital intense, a phenomenon that is very evident in the Western Canada Sedimentary Basin. The industry must provide financial incentives for investors to participate in exploration and development. The return on capital must exceed the cost of capital in order to maintain that incentive. The principal findings of this report include: (1) a higher than average uncertainty and volatility expected in 2003, (2) operating costs vary with production, but finding and developing costs are still increasing, (3) declining conventional reserves, (4) growing non-conventional expenditures, (5) current taxes cut into margins, (6) cost of capital only achievable with firm commodity prices, (7) in comparison to other industries, years 2000 and 2001 are exceptional for the industry with high commodity prices catalyzing returns greater than other countries. tabs., figs

  17. Sedimentological sand grain orientation in oil-producing U1 layer Kazan oil-gas-condensate field (Tomsk Oblast)

    Science.gov (United States)

    Krasnoshchekova, L.; Cherdansteva, D.; Vologdina, I.

    2016-03-01

    The paper describes the results in identifying the prevalent directions of elongated quartz grains being the major oil-producing layer component in sand reservoirs. Studying the orientation of quartz to its grain shapes in paleogeographical oriented core samples made it possible to identify the hydrodynamic reservoir regimes and facies type. The spatial confinement of pore spaces and cataclasis fractures in grain material to the prevalent elongated quartz grain directions was defined.

  18. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada.

    Science.gov (United States)

    Lynam, Mary M; Dvonch, J Timothy; Barres, James A; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-11-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010-2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10(-5) - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10(-4) - 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130-2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems.

  19. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive.

  20. Presentations of the CONRAD Research Symposium : oil sands water usage workshop

    International Nuclear Information System (INIS)

    This symposium provided a forum to exchange ideas regarding water use by the oil sands industry in Canada. The topics of discussion addressed timely issues such as corrosion control in pipelines, cumulative discharge modelling in the oil sands area, waste management schemes, the effects of potential limits on water withdrawal for thermal recovery operations and plant operations, the feasibility of geological sequestration of salts, and the impact of process-affected water on bitumen recovery. Other topics of discussion included tailings ponds management, deoxygenation of water, nanofiltration for water management, water quality for wetlands, water reuse, and water supply security. The conference featured 25 presentations, of which 17 have been indexed separately for inclusion in this database. tabs., figs

  1. The development of today's mineable oil sands projects, the key factors influencing economics

    International Nuclear Information System (INIS)

    Many factors influence the perception of economic performance for developing projects. Some of these factors can be controlled by the developer, while some are outside the developer's sphere of influence. Technology selection, management systems, stakeholder involvement, environmental responsiveness and risk management are areas that may be influenced, however interest rates, product prices and currency exchange all have a measurable effect on project economics and are beyond a developer's control. Economic considerations for evaluating mineable oil sand development projects are outlined, focussing on the key factors unique to such developments in general and to the OSLO project in particular. The OSLO project is a proposed $5 billion energy development that entails constructing an open pit oil sands mine and a bitumen extraction facility north of Fort McMurray, Alberta, coupled with a bitumen upgrader in the Redwater area. 7 figs

  2. Applicability of small fast reactor '4S' for oil sands recovery

    International Nuclear Information System (INIS)

    '4S' (Super-Safe, Small and Simple) is a small-sized sodium cooled reactor with a reflector controlled long life core. Concept of steam production plant consisting of the 4S with a thermal rating of 135 MWt for a typical SAGD (Steam Assisted Gravity Drainage) plant was established. The 4S, provided for oil sands recovery, will significantly reduce greenhouse gas emission and has applicability to oil sands plant. The burden for development and licensing will be reduced in tie-ups with development and licensing program for the 4S with a thermal rating of 30MWt which is now in a process of pre-application review by the U.S. Nuclear Regulatory Commission. (author)

  3. An approach to managing cumulative effects to groundwater resources in the Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, J.; Forrest, Francine [WorleyParsons Canada, Infrastructure and Environment (Canada); Klebek, Margaret [Alberta Environment, Clean Energy Policy Branch (Canada)

    2011-07-01

    In the Athabasca region of Northern Alberta, oil sands activity has raised many concerns over how mining and extracting processes might affect groundwater quality and quantity. The groundwater management framework was developed by Alberta Environment to address these concerns by identifying and managing the potential environmental effects of oil sands activity on groundwater in a science-based manner. This paper develops the framework using risk identification and performance monitoring. The decision-making approach was conducted using decision support tools such as modeling, monitoring and management. Results showed the complexity and variability of groundwater conditions in the Athabasca region and pointed out that knowledge in this area is still developing. This paper presented how the groundwater management framework was developed and pointed out that it will have to be updated as new information arrives.

  4. Conservation and reclamation at Alberta's mineable oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, B.; Richens, T. [Alberta Environment, Edmonton, AB (Canada)

    2010-07-01

    The regulatory foundation for oil sands in this region is established by the Energy Resources Conservation Board, Environmental Protection and Enhancement Act (EPEA), as well as the Water Act. This presentation discussed the regulatory foundation for conservation and reclamation in the mineable oil sands region. EPEA requirements and conservation objectives were identified. EPEA conservation and reclamation requirements stipulate that an operator must conserve and reclaim and obtain a reclamation certificate. EPEA approvals that were presented compared prescriptive standards versus meeting outcomes at certification. Operational and management challenges as well as the role of research networks and multi-stakeholder organizations were also addressed. Challenge facing the industry include progressive reclamation; tailings management and process-affected water; reclamation certification; integrated landscapes; soil handling and revegetation and monitoring and research. The presentation demonstrated that reclamation begins with mine planning and ends with certification. figs.

  5. The Caustic Alkali-free Water Extraction Agents for Treating Inner Mongolia Oil Sands

    Institute of Scientific and Technical Information of China (English)

    Shen Zhibing; Zhang Juntao; Zhang Jie; Liang Shengrong

    2014-01-01

    The caustic alkali-free water extraction agents were studied for treating the oil sands excavated from Inner Mon-golia, China. Several kinds of chemical reagents were evaluated, among which sodium carbonate (SC), sodium dodecyl benzene sulfonate (SD) and sodium chloride were conifrmed as composite solutes. Their proportion was optimized by an orthogonal test. The optimum proportion of the composite agent covered 0.03%of SD, 0.50%of sodium chloride, 3.00%of SC, with the rest composed of water. The optimal operating condition was also conifrmed. The oil sands were extracted at the following optimized conditions:a treating time of 15 min, a temperature of 80℃and an extraction agent/feed ratio of 1:1, with the bitumen yield reaching more than 96%. The extraction agent after separation from the bitumen product can be recycled for reuse to carve out a good environmentally friendly route.

  6. Vegetation diversity and biomass : response to oil sand tailings disposal in Fort McMurray, Alberta

    International Nuclear Information System (INIS)

    While covering the bottom of constructed wetlands with a layer of oil sands tailings has been proposed as a means of disposal, the salts and naphthenic acids (NA) in tailings may have negative impacts on wetland vegetation development. This study was conducted to determine if wetlands constructed with oil sands tailings have a lower vegetation diversity and biomass than constructed wetlands that are not amended with tailings. The effects of NA and salinity on the vegetation in natural, constructed, and tailings-impacted wetlands were evaluated in 30 sites in the Fort McMurray region. Results of the study indicate that the presence of tailings negatively impacted both vegetation diversity and biomass. Salinity was identified as the primary causal factor.

  7. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CRFAW)

    International Nuclear Information System (INIS)

    This abstract provided details of the Carbon Dynamics, Food Web Structure and Reclamation Strategies in Athabasca Oil Sands Wetlands (CFRAW) program, a collaboration between oil sands industry partners and university laboratories. CFRAW researchers are investigating the effects of mine tailings and process waters on the development, health, and function of wetland communities in post-mining landscapes. The aim of the program is to accurately predict how quickly the reclaimed wetlands will approach conditions seen in reference wetland systems. The program is also examining the effects of hydrocarbons as a surrogate source of carbon after they are metabolized by bacteria. The biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands are also being studied. Flux estimates will be used to determine if wetlands amended with peat will maintain their productivity. A conceptual model of carbon pathways and budgets is also being developed.

  8. Responses of wheatgrass species to composite/consolidated oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shihong; Wang, Bing [Klohn Crippen Berger (Canada); Sego, Dave [Department of Civil and Environmental Engineering, University of Alberta (Canada); Naeth, Anne [School of Energy and the Environment, University of Alberta (Canada)

    2011-07-01

    Bitumen is one of the contents of the mixture present in the largest petroleum resource found in oil sands located in Northern Alberta. Addition of gypsum to mature fine tailings (MFT) produced from the hot water bitumen extraction process produces non-segregating composite/consolidated tailings (CT). This paper presents the response of wheatgrass to CT. Two species, northern wheatgrass and slender wheatgrass, were studied in a greenhouse experiment to assess their responses to CT discharged from Alberta oil sands mines. 3 seeding techniques were used to monitor plant emergence, early growth, and survival of directly seeded selected species. The results showed that northern and slender wheatgrass were tolerant of the CT mixture and grew reasonably well over 15 weeks, at least in the greenhouse experiment. Moreover, fertilizers added during seeding did not increase plant germination and emergence but they did help plant growth of the slender and northern wheatgrasses.

  9. Evaluation of evaporation in dewatering oil sands tailings in Northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qing; O' Kane, Mike [O' Kane Consultants Inc (Canada); Dhadli, Nav; Matthews, Jonathan [Shell Canada Energy (Canada)

    2011-07-01

    This paper deals with the oil sands mining industry in northern Alberta. The industry is presently addressing recent changes to Alberta government regulations on fine tailings. Shell Canada Ltd. has carried out evaluations of evaporation from fine tailings as a component of the dewatering and strength development processes. The oil sands industry as a whole is trying to develop methodologies for management of fine tailings on a commercial basis. These methodologies aim at developing the potential of evaporation as a tailings dewatering technique. Moreover, Shell is evaluating several technologies for dewatering tailings produced as mature fine tailings (MFT), non-segregated tailings (NST) and thickened tailings (TT) and this document presents field measurements of TT settlement in addition to consolidation in Cell 4 and numerical modeling results with CONDESO. It is noteworthy that evaporative dewatering on tailings consolidation is evaluated on the basis of a 100-year climate time-frame.

  10. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    Directory of Open Access Journals (Sweden)

    Tariq eSiddique

    2014-03-01

    Full Text Available Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT amended with an organic substrate (hydrolyzed canola meal produced methane (CH4 and carbon dioxide (CO2. Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 versus unamended MFT (pH 7.7. About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+ and magnesium (Mg2+ and increasing bicarbonate (HCO3- in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL of clay particles by reducing the surface charge potential (repulsive forces of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  11. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry

    Science.gov (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M.

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca2+) and magnesium (Mg2+) and increasing bicarbonate (HCO−3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics. PMID:24711805

  12. Atmospheric deposition of mercury and methylmercury to landscapes and waterbodies of the Athabasca oil sands region.

    Science.gov (United States)

    Kirk, Jane L; Muir, Derek C G; Gleason, Amber; Wang, Xiaowa; Lawson, Greg; Frank, Richard A; Lehnherr, Igor; Wrona, Fred

    2014-07-01

    Atmospheric deposition of metals originating from a variety of sources, including bitumen upgrading facilities and blowing dusts from landscape disturbances, is of concern in the Athabasca oil sands region of northern Alberta, Canada. Mercury (Hg) is of particular interest as methylmercury (MeHg), a neurotoxin which bioaccumulates through foodwebs, can reach levels in fish and wildlife that may pose health risks to human consumers. We used spring-time sampling of the accumulated snowpack at sites located varying distances from the major developments to estimate winter 2012 Hg loadings to a ∼20 000 km(2) area of the Athabasca oil sands region. Total Hg (THg; all forms of Hg in a sample) loads were predominantly particulate-bound (79 ± 12%) and increased with proximity to major developments, reaching up to 1000 ng m(-2). MeHg loads increased in a similar fashion, reaching up to 19 ng m(-2) and suggesting that oil sands developments are a direct source of MeHg to local landscapes and water bodies. Deposition maps, created by interpolation of measured Hg loads using geostatistical software, demonstrated that deposition resembled a bullseye pattern on the landscape, with areas of maximum THg and MeHg loadings located primarily between the Muskeg and Steepbank rivers. Snowpack concentrations of THg and MeHg were significantly correlated (r = 0.45-0.88, p < 0.01) with numerous parameters, including total suspended solids (TSS), metals known to be emitted in high quantities from the upgraders (vanadium, nickel, and zinc), and crustal elements (aluminum, iron, and lanthanum), which were also elevated in this region. Our results suggest that at snowmelt, a complex mixture of chemicals enters aquatic ecosystems that could impact biological communities of the oil sands region.

  13. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    OpenAIRE

    TariqSiddique; JoselitoMArocena

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significan...

  14. Thermochemical method for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Gorceix, Ouro Preto, MG (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, based on NGS (Nitrogen Generating System) technology, was adapted for cleaning contaminated sand and recovering of spilled oil. NGS is a thermochemical method first developed for removal of paraffin deposits in production and export pipelines. The method is based on a strongly exothermic redox chemical reaction between two salts catalyzed in acidic pH. The reaction products are harmless to the environment and consist of nitrogen, sodium chloride, water and heat. By combining simultaneous effects of the treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand. After treatment, removed oil can be securely returned to refining process. The method has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in place right after a contamination event. (author)

  15. Nine-Lump Kinetic Study of Catalytic Pyrolysis of Gas Oils Derived from Canadian Synthetic Crude Oil

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Catalytic pyrolysis of gas oils derived from Canadian synthetic crude oil on a kind of zeolite catalyst was conducted in a confined fluidized bed reactor for the production of light olefins. The overall reactants and products were classified into nine species, and a nine-lump kinetic model was proposed to describe the reactions based on appropriate assumptions. This kinetic model had 24 rate constants and a catalyst deactivation constant. The kinetic constants at 620°C, 640°C, 660°C, and 680°C were estimated by means of nonlinear least-square regression method. Preexponential factors and apparent activation energies were then calculated according to the Arrhenius equation. The apparent activation energies of the three feed lumps were lower than those of the intermediate product lumps. The nine-lump kinetic model showed good calculation precision and the calculated yields were close to the experimental ones.

  16. Optimization of Hydraulic Fracturing Fluid System in a Sand Oil Reservoir in Southwest of Iran

    Directory of Open Access Journals (Sweden)

    Reza Masoomi

    2015-10-01

    Full Text Available Fracturing fluid is one of the most important components of a hydraulic fracturing operation. Currently a lot of fluids are available for hydraulic fracturing. In order to selecting the most appropriate fracturing fluid for oil and gas wells with special characteristics, should be well understood fluid properties and should be informed about how changes in fluid properties to achieve the desired results. The aim of this study is optimization of viscosity and gel concentration in water base and foam base fluids which are used in hydraulic fracturing process in a sand oil reservoir in southwest of Iran. For this purpose various scenarios have been designed for various kinds of water base fluids and foam base fluids. Then the cumulative oil production has been estimated versus time and fracture half length. In addition the final required fracturing fluid and proppant have been determined for hydraulic fracturing in studied reservoir. Also in this study increasing the cumulative oil recovery in fractured and Non-fractured wells in a sand oil reservoir in southwest of Iran have been investigated.

  17. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  18. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    Science.gov (United States)

    Aggarwal, Monika; Whiteway, James; Seabrook, Jeffrey; Gray, Lawrence; Strawbridge, Kevin B.

    2016-06-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  19. Comparison of polymer applications to treatment of oil sands fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Zhou, J.; Chow, R. [Alberta Research Council, Edmonton, AB (Canada)

    2008-07-01

    Oil sands tailings are disposed of into large ponds where the coarse particles settle out, and fine particles settle down very slowly to form a stable suspension called mature fine tailings (MFTs). Many oil sands projects are not meeting tailings management targets. Polymer applications are being designed to create agglomerated particles. This presentation discussed a study that compared 3 types of polymers in solids dewatering processes: (1) polyacrylamide (PAM); a aluminum PAM hybrid (Al-PAM) and a thermal-sensitive poly(N-isopropyl acrylamide (PNIPAM). The aim of the study was to determine the optimal polymeric facilitation. Oil sands tailings from lab flotation tests were used. The effect on the initial settling rate of the tailings using the polymers was studied. Inter-particle forces were also compared, as well as the effects of temperature on polymer transitions in aqueous solutions. The effects of the polymers on silica settling and consolidation were examined. Dewatering performance was also compared. Multi-function polymers (MFP) were used to enhance water recovery from settling, consolidation and filtration. Synergetic-effect polymers (SEP) were used to enhance bitumen and water recovery. Results of the study showed that PAM effectively induced solids flocculation, but flocculants were irregular in shape. Al-PAM induced stronger flocculation of particles with dense spherical flocculants. PNIPAM enhanced dewatering in both settling and consolidation. It was concluded that PNIPAM manipulated inter-particle forces with the help of external stimuli conditions to obtain solids sediment with less volume. tabs., figs.

  20. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    Directory of Open Access Journals (Sweden)

    Aggarwal Monika

    2016-01-01

    Full Text Available Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL, while the ozone concentration remained at background levels (30-45 ppb downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  1. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    Science.gov (United States)

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-01-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.

  2. Characterization and distribution of metal and nonmetal elements in the Alberta oil sands region of Canada.

    Science.gov (United States)

    Huang, Rongfu; McPhedran, Kerry N; Yang, Lingling; El-Din, Mohamed Gamal

    2016-03-01

    This review covers the characterization and distribution of metals and nonmetals in the Alberta oil sands region (AOSR) of Canada. The development of the oil sands industry has resulted in the release of organic, metal and nonmetal contaminants via air and water to the AOSR. For air, studies have found that atmospheric deposition of metals in the AOSR decreased exponentially with distance from the industrial emission sources. For water, toxic metal concentrations often exceeded safe levels leading to the potential for negative impacts to the receiving aquatic environments. Interestingly, although atmospheric deposition, surface waters, fish tissues, and aquatic bird eggs exhibited increasing level of metals in the AOSR, reported results from river sediments showed no increases over time. This could be attributed to physical and/or chemical dynamics of the river system to transport metals to downstream. The monitoring of the airborne emissions of relevant nonmetals (nitrogen and sulphur species) was also considered over the AOSR. These species were found to be increasing along with the oil sands developments with the resultant depositions contributing to nitrogen and sulphur accumulations resulting in ecosystem acidification and eutrophication impacts. In addition to direct monitoring of metals/nonmetals, tracing of air emissions using isotopes was also discussed. Further investigation and characterization of metals/nonmetals emissions in the AOSR are needed to determine their impacts to the ecosystem and to assess the need for further treatment measures to limit their continued output into the receiving environments. PMID:26766359

  3. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing. PMID:27120634

  4. Development of a bioassay to assess the toxicity of oil sands sediments to pike (Esox lucius)

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, D.; Yuan, H.; Tumber, V.; Parrott, J. [Environment Canada, Ottawa, ON (Canada); Raine, J. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    Pike (Esox lucius) are a commercially sought fish species that inhabit the Athabasca River, which flows through the Athabasca oil sands. The fish are exposed to natural sources of bitumen from the McMurray formation. This study was conducted to design and implement a daily-renewal bioassay to assess the toxicity of oil sands to this fish species and to obtain information regarding the development of pike exposed to bitumen. Eggs were collected and fertilized with milt from spawning wild pike captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish, approximately 15 days post-hatch. For the rest of the experiment, brine shrimp were fed to the walleye embryos every day after hatching. The developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length. The research findings indicated that pike is less sensitive than walleye and fathead minnow to the toxicity of oil sands sediments.

  5. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    Science.gov (United States)

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. PMID:27177137

  6. Development of a bioassay to assess the toxicity of oil sands sediments to pike (Esox lucius)

    International Nuclear Information System (INIS)

    Pike (Esox lucius) are a commercially sought fish species that inhabit the Athabasca River, which flows through the Athabasca oil sands. The fish are exposed to natural sources of bitumen from the McMurray formation. This study was conducted to design and implement a daily-renewal bioassay to assess the toxicity of oil sands to this fish species and to obtain information regarding the development of pike exposed to bitumen. Eggs were collected and fertilized with milt from spawning wild pike captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish, approximately 15 days post-hatch. For the rest of the experiment, brine shrimp were fed to the walleye embryos every day after hatching. The developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length. The research findings indicated that pike is less sensitive than walleye and fathead minnow to the toxicity of oil sands sediments.

  7. Sublethal effects of aged oil sands-affected water on white sucker (Catostomus commersonii).

    Science.gov (United States)

    Arens, Collin J; Hogan, Natacha S; Kavanagh, Richard J; Mercer, Angella G; Kraak, Glen J Van Der; van den Heuvel, Michael R

    2015-03-01

    To investigate impacts of proposed oil sands aquatic reclamation techniques on benthic fish, white sucker (Catostomus commersonii Lacépède, 1803) were stocked in 2 experimental ponds-Demonstration Pond, containing aged fine tailings capped with fresh water, consistent with proposed end-pit lake designs, and South Bison Pond, containing aged unextracted oil sands material-to examine the effects of unmodified hydrocarbons. White sucker were stocked from a nearby reservoir at both sites in May 2010 and sampled 4 mo later to measure indicators of energy storage and utilization. Comparisons were then made with the source population and 2 reference lakes in the region. After exposure to aged tailings, white sucker had smaller testes and ovaries and reduced growth compared with the source population. Fish introduced to aged unextracted oil sands material showed an increase in growth over the same period. Limited available energy, endocrine disruption, and chronic stress likely contributed to the effects observed, corresponding to elevated concentrations of naphthenic acids, aromatic compounds in bile, and increased CYP1A activity. Because of the chemical and biological complexity of these systems, direct cause-effect relationships could not be identified; however, effects were associated with naphthenic acids, polycyclic aromatic hydrocarbons, ammonia, and high pH. Impacts on growth have not been previously observed in pelagic fishes examined in these systems, and may be related to differences in sediment interaction. PMID:25545538

  8. Fish gill responses to pollutants from oil sands mining-associated waters

    International Nuclear Information System (INIS)

    The processing of Athabasca Deposit oil sands results in large amounts of liquid wastes associated with oil sand tailings. In addition to containing polycyclic aromatic hydrocarbons (PAHs), these waste waters are high in salinity and naphthenic acids which may be toxic to aquatic biota and their effects must be clarified. This study presents a suite of tests for in-depth and quick analysis of tailings water toxicity and contributes to the assessment of environmental risk. Yellow perch, fathead minnows, and rainbow trout were exposed to reclamation ponds where both in vivo and in vitro evaluation of crude and individual naphthenic acids and salts were conducted to examine their effect on fish gills which are very susceptible to contaminants. The fish exposed to the reclamation ponds showed higher incidence of gill pathological changes than control fish in Mildred Lake, a reservoir lake whose waters are diverted for use in oil sands extraction. Notable gill histopathological changes were observed when fish were exposed in vivo to sulfate/chloride salts and to abietic acid. Changes in membrane integrity, lysosomal activity and general morphology were observed when fished were exposed in vitro to salts, commercial napthenic acids or crude naphthenic extracts from the reclamation ponds

  9. Should Alberta upgrade oil sands bitumen? An integrated life cycle framework to evaluate energy systems investment tradeoffs

    International Nuclear Information System (INIS)

    The inclusion of greenhouse gas (GHG) emissions costs in energy systems investment decision-making requires the development of a framework that accounts for GHG and economic tradeoffs. This paper develops such a framework by integrating partial cost–benefit analysis with life cycle assessment to explore the question of whether bitumen should be upgraded in the Canadian province of Alberta to produce synthetic crude oil (SCO), or blended with light hydrocarbons to produce lower-quality diluted bitumen (dilbit). The net present value (NPV) of these options is calculated from the stakeholder perspectives of the oil sands industry, the Alberta public, and a climate-concerned Alberta resident. This calculation includes monetized GHG emissions costs stemming from a hypothetical economy-wide GHG price, and a sensitivity analysis explores the effects of variations in technical and economic conditions on stakeholders’ preferences. We find that under most plausible sets of conditions, industry would prefer the dilution option, while the climate-concerned Alberta resident would prefer the upgrading option. In contrast, the preferences of the general Alberta public depend on the values of key variables (e.g., the SCO-dilbit price differential). Key drivers of differences among stakeholders’ preferences include different perceptions of risks and responsibilities for life cycle GHG emissions. - Highlights: • We develop a novel integrated partial cost-benefit analysis/LCA framework. • We consider stakeholder perspectives, and technical and GHG price variations. • Upgrading is typically less GHG-intensive than dilution per barrel of bitumen. • Dilution is typically less GHG-intensive than upgrading per mega joule of gasoline. • Even stringent GHG prices may not align preferences on energy systems investment decisions

  10. Biodegradation and origin of oil sands in the Western Canada Sedimentary Basin

    Institute of Scientific and Technical Information of China (English)

    Zhou Shuqing; Huang Haiping; Liu Yuming

    2008-01-01

    The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil.The major deposits are in three geographic and geologic regions of Alberta: Athabasca,Cold Lake and Peace River.The bitumen reserves have oil gravities ranging from 8 to 12° API,and are hosted in the reservoirs of varying age,ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group).They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny,which was responsible for the uplift of the Rocky Mountains.Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions.The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature,which played the primary role in controlling the biodegradation regime.Once the reservoir was heated to approximately 80 ℃,it was pasteurized and no biodegradation would further occur.However,reservoir temperature could not alone predict the variations of the oil composition and physical properties.Compositional gradients and a wide range of biodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations of biodegradation degree and oil physical properties.Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields.Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field,which opens the

  11. Canadian oil and gas industry competitiveness and financial performance February 2003 update

    International Nuclear Information System (INIS)

    An independent assessment of profitability in the upstream Canadian petroleum industry is presented. The report looks at capital flows in the Canadian upstream oil and gas economy, and analysis of sector profitability based on the efficiency of capital flow. Appendices and other supplementary information are provided along with a commodity price review and forward revisions. It was noted that geopolitical instability is tightening near-term supply expectations. Persistent instability is likely to keep prices high in the first half of 2003. Higher commodity prices implies that industry revenue will increase, particularly for 2003. Structural factors affecting production growth stem from two main issues: basin maturation, and moderating re-investment by oil and gas producers. The report notes that more than 400,000 wells have been drilled in the Western Canada Sedimentary Basin since the early 1950s, and each well, on average, is less productive than its predecessors. Declining productivity is directly related to marginal costs. The report presents a summary of industry cash flow and capital expenditures, including royalties, profitability and amendments to industry taxes. A review of federal resource allowance and royalties is also presented. tabs

  12. 10 m standpipe tests on oil sands tailings: long-term experimental results and prediction

    Energy Technology Data Exchange (ETDEWEB)

    Jeeravipoolvarn, S.; Scott, J.D.; Chalaturnyk, R.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Canadian Natural Resources Ltd., Edmonton, AB (Canada). Natural Resources Engineering Facility

    2009-08-15

    Large volumes of high water content tailings composed of sand, silt, clay, and bitumen are produced during oil sands mining operations in northern Alberta. The tailings segregate during deposition, with the fines settling into tailings ponds. This paper presented the results of long-term, self-weight consolidation tests at the University of Alberta that were conducted to study material behaviour. Three large 10 m high standpipe tests were set up in 1982 to simulate large-scale compression behaviour of oil sands tailings in a controlled environment. Fine tailings and two mixes of fine tailings and sand were used. This paper presented the experimental results of the behaviour of a class of material that compresses with almost no dissipation of excess pore pressure. The fine tailings in standpipe 1 strained more than 30 per cent over the 25 year monitoring period by self-weight with very little to no effective stress developing. The mix of fine tailings and sand in standpipe 3 compressed with a significant effective stress development. The tailings in standpipe 1 can be regarded as a class of material where a reduction in volume is not governed by a unique relationship between effective stress and void ratio, whereas the tailings in standpipe 3 can be categorized as slurry with conventional behaviour. A numerical model with appropriate material constitutive relationships was developed in order to investigate the capability of the finite strain consolidation theory on these tailings. Numerical results, compared with the performance of the standpipe tests, showed that the theory overestimated the compression behaviour of the standpipe 1 material, but it could predict the standpipe 3 consolidation behaviour. It was concluded that the amount of creep depends on time and the state of the fines void ratio. Further study on compressibility- and hydraulic-conductivity-related phenomena would improve the consolidation prediction for this class of material. 18 refs., 1 tab., 27

  13. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  14. The political and policy context shaping Canadian energy

    International Nuclear Information System (INIS)

    Key political and policy issues related to the mining sector were discussed. Issues concerning the Clean Air Act and the Kyoto Protocol were reviewed. New clean energy technologies and international carbon markets were discussed. Policy issues related to oil sands mining were reviewed. Five-fold increases in greenhouse gases (GHG) are expected to accompany the projected growth of the oil sands industry. Issues related to the growing energy market in China were discussed. Declining international reserves and their relevance to the Canadian oil sands mining industry were discussed. Canadian reserves of metals were outlined. Energy use in the metal mining and metal smelting sectors was discussed. Total GHG emissions were presented. 1 tab

  15. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  16. Energy consumption and greenhouse gas emissions in upgrading and refining of Canada's oil sands products

    International Nuclear Information System (INIS)

    A model-FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs- based ModeL for Estimation of GreenHouse Gases in the Oil Sands) based on fundamental engineering principles was developed to estimate the specific energy consumption and GHGs (greenhouse gas emissions) for upgrading bitumen to produce SCO (synthetic crude oil). The model estimates quantity of SCO produced, the consumption of hydrogen, steam, natural gas and power in two different upgrading operations, namely delayed coking and hydroconversion. Hydroconversion upgrading is more energy and GHG (433.4 kgCO2eq/m3 of bitumen) intensive than delayed coker upgrading (240.3 kgCO2eq/m3 of bitumen) but obtains a higher yield of SCO. This research explores bitumen pathways in oil sands – upgrading bitumen to SCO, followed by transporting and refining SCO as compared to transporting and refining dilbit. The energy consumption, GHG emissions and volume of transportation fuels obtained from refining of different oil sands feeds has been investigated. Refining of oil sands products produce 7.9 to 15.72 gCO2eq per MJ of refined product. Refining of SCO to transportation fuels produces 41% and 49% less emissions than dilbit and bitumen respectively. - Highlights: • A model to estimate energy consumption and GHG (greenhouse gas) emissions in the oil sands is presented. • The model is developed from fundamental engineering principles. • Upgrading and refining of bitumen in oil sands is explored. • Upgrading of bitumen produces 240.3 and 433.4 kgCO2eq GHGs per m3 of bitumen. • Refining of oil sand products produces 7.9 to 15.72 gCO2eq per MJ of refined product

  17. APPLICATION OF SAGD (STEAM-ASSISTED GRAVITY DRAINAGE) TECHNOLOGY IN OIL SAND EXTRACTION%蒸汽辅助重力泄油技术在油砂开采中的应用

    Institute of Scientific and Technical Information of China (English)

    袁燕

    2012-01-01

    中国油砂矿储量位居世界前列,如何经济有效地开发和完善配套的技术是面临的难题.对比分析了目前主要的油砂开采方式、特点,重点研究了油砂蒸汽辅助重力泄油技术的开采工艺、原理和布井方式.该技术通过在加拿大Christina Lake油田的成功应用,证明是一种有效的深部埋藏油砂油的开采技术.分析了中国油砂矿的分布范围和储层物性,针对埋深和油质特点,提出了合理的开采建议.油砂蒸汽辅助重力泄油开采技术的研究与成功应用,将促进中国油砂矿资源的开发利用.%The reserves of the oil sand in China is ranked the tops of the world but how to effectively and economically extract it and perfect the matching techniques are the facing issures met today. The main mining methods and characteristics of oil sand at present are compared and analyzed, the mining technologies, principles and patterns of well spacing of steam-assisted gravity drainage ( SAGD) of the oil sand are focused. Through the successful application in Canadian Christina Lake Oilfield, the technique is proven to be an effective way to produce the oil sand in the deep part. The distribution of the oil sand and reservoir characteristics in China are analyzed. In light of the buried depth and the characteristics of the oil quality, the reasonable production recommendations are presented. Researches and successful application of the oil-sand SAGD techniques stated above will promote the development and ultility of oil sand resources in China.

  18. Applying the Analytic Hierarchy Process to Oil Sands Environmental Compliance Risk Management

    Science.gov (United States)

    Roux, Izak Johannes, III

    Oil companies in Alberta, Canada, invested $32 billion on new oil sands projects in 2013. Despite the size of this investment, there is a demonstrable deficiency in the uniformity and understanding of environmental legislation requirements that manifest into increased project compliance risks. This descriptive study developed 2 prioritized lists of environmental regulatory compliance risks and mitigation strategies and used multi-criteria decision theory for its theoretical framework. Information from compiled lists of environmental compliance risks and mitigation strategies was used to generate a specialized pairwise survey, which was piloted by 5 subject matter experts (SMEs). The survey was validated by a sample of 16 SMEs, after which the Analytic Hierarchy Process (AHP) was used to rank a total of 33 compliance risks and 12 mitigation strategy criteria. A key finding was that the AHP is a suitable tool for ranking of compliance risks and mitigation strategies. Several working hypotheses were also tested regarding how SMEs prioritized 1 compliance risk or mitigation strategy compared to another. The AHP showed that regulatory compliance, company reputation, environmental compliance, and economics ranked the highest and that a multi criteria mitigation strategy for environmental compliance ranked the highest. The study results will inform Alberta oil sands industry leaders about the ranking and utility of specific compliance risks and mitigations strategies, enabling them to focus on actions that will generate legislative and public trust. Oil sands leaders implementing a risk management program using the risks and mitigation strategies identified in this study will contribute to environmental conservation, economic growth, and positive social change.

  19. Do Massive Oil Sands Developments in a Northern Watershed Lead to an Impending Crisis?

    Science.gov (United States)

    Kienzle, S. W.; Byrne, J.; Schindler, D.; Komers, P.

    2005-12-01

    Oil sands developments in northern Alberta are land disruptions of massive proportions, with potentially major impacts on watersheds. Alberta has one of the largest known oil reserves in the world, and developments have about 25,000 sqkm of lease areas, and have approvals for plants to develop over half a million ha (or 54 townships). This is 91% the size of Lake Erie covered mainly with tailings dams, open-pit mines and associated massive removal of forests, wetlands, and soils. With rising oil prices and declining conventional reserves, the current production of about 900,000 barrels per day will dramatically increase. There is considerable confusion over how much water is needed to extract and refine the oil. Best estimated by oil companies are 6 to 10 barrels of water for each barrel of oil. Shell Oil is aiming to bring the water to oil ratio down to 3, however, this is not yet achieved. Trend analysis of the Athabasca streamflow shows that the streamflow is declining, particularly the low flow during winter. In order to sustain a minimum flow that ensures a relatively healthy aquatic environment, the only option the oil sands companies have to ensure uninterrupted production during winter is to build large water reservoirs, which would be filled during the high flow period in spring or summer. A disturbing fact is that this need for reservoirs was never considered until a science panel initiated by the Mikesew Cree First Nation participated in two hearings in the fall of 2003, when two major oil companies applied for licenses of a massive scale each. In the Environmental Impact Assessments (EIAs), water was to be extracted throughout the year, consequently threatening in-stream flow needs at some point in the future. Less than 1% has been reclaimed so far, with questionable success, as the new landscape will be a relatively sterile landscape with minimal biological diversity. Reclamation liabilities need to be included in mining leases. The release of

  20. Biogeochemical characterization of MC252 oil:sand aggregates on a coastal headland beach.

    Science.gov (United States)

    Urbano, Marilany; Elango, Vijaikrishnah; Pardue, John H

    2013-12-15

    MC252 oil:sand aggregates, termed surface residue balls (SRBs), were sampled for physical, chemical and microbial characteristics from different tidal zones on a coastal headland beach in Louisiana, USA. Supratidal SRBs were smaller, had low moisture content, and salinities that were oil components were highest in the intertidal "oil mat" SRBs with C1- and C2-phenanthrenes, C2- and C3-dibenzothiophenes comprising the majority of the PAH concentrations. In the other SRB categories, PAHs and alkanes were depleted and profiles were skewed toward higher molecular weight compounds. Oxygen microelectrode measurements demonstrated that saturated O2 is present immediately after wetting, but O2 consumption in the interior of the aggregate occurs after a few days. Microbial populations varied with position on the beach but sequences similar to known PAH-degrading taxa (Mycobacterium sp. and Stenotrophomonas sp.) were observed.

  1. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

    Directory of Open Access Journals (Sweden)

    Jennifer C. Black

    2016-08-01

    Full Text Available Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are

  2. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals.

    Science.gov (United States)

    Black, Jennifer C; Welday, Jennifer N; Buckley, Brian; Ferguson, Alesia; Gurian, Patrick L; Mena, Kristina D; Yang, Ill; McCandlish, Elizabeth; Solo-Gabriele, Helena M

    2016-01-01

    Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency's (EPA's) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10(-6) range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children's beach play habits, which are necessary to more

  3. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals

    Science.gov (United States)

    Black, Jennifer C.; Welday, Jennifer N.; Buckley, Brian; Ferguson, Alesia; Gurian, Patrick L.; Mena, Kristina D.; Yang, Ill; McCandlish, Elizabeth; Solo-Gabriele, Helena M.

    2016-01-01

    Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency’s (EPA’s) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10−6 range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children’s beach play habits, which are necessary to more

  4. Enhanced transport of colloidal oil droplets in saturated and unsaturated sand columns.

    Science.gov (United States)

    Travis, Micheal J; Gross, Amit; Weisbrod, Noam

    2011-11-01

    Colloidal-sized triacylglycerol droplets demonstrated enhanced transport compared to ideal latex colloid spheres in both saturated and unsaturated quartz sand columns. Oil droplets (mean diameter 0.74 ± 0.03 μm, density 0.92 g cm(-3), ζ-potential -34 ± 1 mV) were injected simultaneously with latex microsphere colloids (FluoSpheres; density 1.055 g cm(-3), diameters 0.02, 0.2, and 1.0 μm, ζ-potentials -16 ± 1, -30 ± 2, and -49 ± 1, respectively) and bromide into natural quartz sand (ζ-potential -63 ± 2 mV) via short-pulse column breakthrough experiments. Tests were conducted under both saturated and unsaturated conditions. Breakthrough of oil droplets preceded bromide and FluoSpheres. Recovery of oil droplets was 20% greater than similarly sized FluoSpheres in the saturated column, and 16% greater in the 0.18 ± 0.01 volumetric water content (VWC) unsaturated column. Higher variability was observed in the 0.14 ± 0.01 VWC column experiments with oil droplet recovery only slightly greater than similarly sized FluoSpheres. The research presents for the first time the direct comparison of colloidal oil droplet transport in porous media with that of other colloids, and demonstrates transport under unsaturated conditions. Based on experimental results and theoretical analyses, we discuss possible mechanisms that lead to the observed enhanced mobility of oil droplets compared to FluoSpheres with similar size and electrostatic properties.

  5. Risk Assessment for Children Exposed to Beach Sands Impacted by Oil Spill Chemicals.

    Science.gov (United States)

    Black, Jennifer C; Welday, Jennifer N; Buckley, Brian; Ferguson, Alesia; Gurian, Patrick L; Mena, Kristina D; Yang, Ill; McCandlish, Elizabeth; Solo-Gabriele, Helena M

    2016-08-27

    Due to changes in the drilling industry, oil spills are impacting large expanses of coastlines, thereby increasing the potential for people to come in contact with oil spill chemicals. The objective of this manuscript was to evaluate the health risk to children who potentially contact beach sands impacted by oil spill chemicals from the Deepwater Horizon disaster. To identify chemicals of concern, the U.S. Environmental Protection Agency's (EPA's) monitoring data collected during and immediately after the spill were evaluated. This dataset was supplemented with measurements from beach sands and tar balls collected five years after the spill. Of interest is that metals in the sediments were observed at similar levels between the two sampling periods; some differences were observed for metals levels in tar balls. Although PAHs were not observed five years later, there is evidence of weathered-oil oxidative by-products. Comparing chemical concentration data to baseline soil risk levels, three metals (As, Ba, and V) and four PAHs (benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, and dibenz[a,h]anthracene) were found to exceed guideline levels prompting a risk assessment. For acute or sub-chronic exposures, hazard quotients, computed by estimating average expected contact behavior, showed no adverse potential health effects. For cancer, computations using 95% upper confidence limits for contaminant concentrations showed extremely low increased risk in the 10(-6) range for oral and dermal exposure from arsenic in sediments and from dermal exposure from benzo[a]pyrene and benz[a]anthracene in weathered oil. Overall, results suggest that health risks are extremely low, given the limitations of available data. Limitations of this study are associated with the lack of toxicological data for dispersants and oil-spill degradation products. We also recommend studies to collect quantitative information about children's beach play habits, which are necessary to more

  6. Simulation of cold heavy oil production using an integrated modular approach with emphasis on foamy oil flow and sand production effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Walters, D.A. [Taurus Reservoir Solutions Ltd., Calgary, AB (Canada); Settari, A.; Wan, R.G. [Calgary Univ., AB (Canada)

    2006-07-01

    Cold heavy oil production with sand (CHOPS) is now a widely-used non-thermal oil recovery process. The process operates by producing sand to create wormholes and foamy oil drive. This paper presented a model that used an integrated modular approach to predict volumetric sand production. The model was based on a mixture theory with erosion mechanics in which multiphase hydrodynamics and geomechanics were coupled to determine saturation, pressure, porosity and formation displacements. Foamy oil was modelled as a dispersion of gas bubbles trapped in the oil. A modular approach was adopted in order to integrate stress-strain codes. The model was then integrated within erosion, reservoir, and geomechanics modules. Stress, flow, and erosion equations were solved within different time increments. Coupling terms were iterated until convergence was achieved on a time step basis. Typical vertical and horizontal wells in northeast Alberta were used to test the coupled model. Results showed that enhanced oil recovery (EOR) and sand production can be predicted by accounting for the effects of sand production and foamy oil flow. It was concluded that the model can be used for wellbore stability analyses and in the design of pumping strategies. 18 refs., 1 tab., 17 figs.

  7. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Barrow, Mark P; Witt, Matthias; Headley, John V; Peru, Kerry M

    2010-05-01

    The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. PMID:20359201

  8. Silica sand for oil and gas production : a technical market overview

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J.C. [BJ Services Company, Calgary, AB (Canada)

    2006-07-01

    In order to meet the growing demand for oil, petroleum production companies have initiated aggressive globally oriented drilling programs. In Canada and the United States, the average monthly rig count has doubled from 1103 rigs in 1990 to 2213 in 2006, with 53 per cent of the growth taking place in the last 3 years. Extensive damage occurs in the hydrocarbon rich formations during the drilling process of new wells. In order to stimulate and reconnect the well to the reservoir, completion processes such as hydraulic fracturing, are needed. In hydraulic fracturing, a viscous fluid is injected into the well at a rate and pressure sufficient to initiate a crack behind the casing perforations. When the fracture attains adequate width and length, silica sand or other proppants are added to the fluid to fill the created fracture. These may include Ottawa Sand, Brady Sand, bauxite, intermediate strength ceramics or resin coated sands. The use of proppants prevents the fracture from healing and provides a super conductive drainage channel for hydrocarbons. The proppant should provide the highest porosity to maximize permeability of the proppant pack. Hydrocarbon production can therefore be increased at relatively low costs. This paper reviewed the stringent industry specifications that various grades of proppant must meet, as defined by the American Petroleum Institute. The technical aspects of proppant testing were outlined with reference to proppant size, sphericity, acid solubility, turbidity, crush resistance, and testing for ceramic proppants. Despite improved logging and advances in well stimulation treatments, market trends indicate that hydraulic fracturing and proppants will continue to be an important aspect of oil and gas production. 22 refs., 3 tabs., 5 figs.

  9. Where Has All the Oil Gone? The use of trace metals as potential indicators of oil contamination in marine sediments and beach sands

    Science.gov (United States)

    Roeder, T. K.; Hastings, D. W.; Holzinger, C.; Playle, E.; Brooks, G.; Huettel, M. H.; Kostka, J. E.; Larson, R. A.; Flower, B. P.

    2011-12-01

    We report initial results to determine if select trace metals are effective indicators for the magnitude and spatial extent of Deep Water Horizon (DWH) oil contamination in Gulf of Mexico marine sediments and beach sands. Since crude oil is known to have elevated concentrations of nickel and vanadium, contamination can be detected even after the degradation of oil by measuring enrichment of these metals within marine sediments and beach sands. A sample of crude oil from the Macondo Prospect, source of the Deepwater Horizon (DWH) oil spill, was fully digested and analyzed by inductively coupled plasma mass spectrometry (ICP-MS) at the College of Marine Science, University of South Florida. Results indicate the crude oil is enriched in nickel, vanadium, and cobalt, with concentrations of 0.86 ppm, 2.76 ppm, and 84 ppb, respectively. With this known trace metal enrichment in DWH oil, Gulf of Mexico marine sediments from 400 and 1100m water depth near DeSoto Canyon and beach sands from Pensacola, FL were examined for enrichment of V, Ni, and Co. Both marine sediment and beach sand samples were partially digested with HNO3 before analysis via ICP-MS. With marine sediments, the visually contaminated layer at or near the surface typically exhibited an enrichment in Ni, V, and Co compared to the pristine control sediments. Vanadium and nickel enrichment in marine sediments varied from 10 to 32% and 0 to 22%, respectively. Visible contamination in beach sands was found between 20-60cm beneath the surface and, likewise, showed Ni, V, and Co enrichment up to 33%, 45%, and 100%. This data shows that enrichment of V, Ni, and Co in marine sediments and beach sands may be an effective proxy for contamination even after the degradation of oil. Marine sediments and beach sands will continue to be monitored for trace metal enrichment in an effort to assess the continuing impacts of the DWH spill on the Gulf of Mexico.

  10. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  11. Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water.

    Science.gov (United States)

    Frankel, Mathew L; Demeter, Marc A; Lemire, Joe A; Turner, Raymond J

    2016-01-01

    Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada's oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings-oil sands process water (OSPW)-are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs) and planktonic minimum inhibitory concentrations (MICs) using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni) were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb). Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment. PMID:26849649

  12. Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water.

    Directory of Open Access Journals (Sweden)

    Mathew L Frankel

    Full Text Available Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada's oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings-oil sands process water (OSPW-are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs and planktonic minimum inhibitory concentrations (MICs using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb. Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment.

  13. Responsible management of peatlands in Canada, from peat industry to oil sands

    Science.gov (United States)

    Rochefort, Line

    2013-04-01

    Canada harbors one third of the peat resources of the world. Peat is an accumulated organic matter composed of dead and partly decomposed plant material, forming huge deposit through time in wetlands like peatlands and boreal coniferous swamps. Peat is a valuable resource as a growing media and soil amendments, an eco-friendly absorbent, also used as biofilters, for body care and for wastewater treatment. Peatlands also offer valuable ecological services : for example, they are the most efficient terrestrial ecosystem to store carbon on a long-term basis. Their ability to "cool off" the planet warrants a good look at their management. The horticultural peat industry of Canada has invested 22 years in R&D in habitat restoration and is now a strong leader in managing industrial peatlands in a sustainable way. The oil sand industry, which is strongly impacting the wetland landscapes of northern Canada, does realize that it has to reduce its ecological footprint, which is heavily criticized around the world. Decommissioned open mines near Fort McMurray have already begun recreating peatland ecosystems, and some restoration attempts of former oil pads are underway in the Peace River region. But the restoration of the largely disturbed wetland landscape of the oil sands is commanding innovative solutions.

  14. Gill histopathology of goldfish exposed to oil sands processed-waters

    International Nuclear Information System (INIS)

    Large volumes of processed wastewater are generated through the oil extraction process at Alberta's Athabasca oil sand deposit. These wastewaters are very toxic to aquatic biota because they are high in salinity and consist of napthenic acids and polycyclic aromatic hydrocarbons (PAH). In this study, goldfish were caged in 3 different experimental ponds in order to evaluate the biological effects of aquatic reclamation alternatives for process-affected waters. The first pond was a control pond, while the other 2 ponds consisted of known and varying chemicals. The fish were exposed to the ponds for 19 days. Those in the pond with elevated levels of napthenic acids and high salinity exhibited severe gill histopathological changes. Alterations included epithelial hyperplasia resulting in severe lamellar fusion, chloride cell hyperplasia, and lamellar edema, all of which were believed to be defense responses of the fish. Additional severe gill alterations were also observed that may indicate the direct negative effects of oil sands processed-water on fish. Exposed goldfish also showed signs of necrosis and degenerative changes resulting in desquamation of the epithelial surfaces of the gill, which are symptoms seen in free-range exposure of yellow perch, a native fish species, at the same sites and exposure times

  15. Western Canadian crude oil supply and markets 2002-2010 : Executive summary

    International Nuclear Information System (INIS)

    The forecast of crude supply developed by the Canadian Association of Petroleum Producers (CAPP) indicates that additional pipeline capacity from western Canada to existing new markets will be required. A crude market study was undertaken to investigate and assess the potential development of the North American crude markets along with expected western Canadian crude supply growth. The results revealed that additional crude export capacity from Alberta will be required by 2006 or 2007. An analysis of three export pipeline scenarios was carried out: (1) Hardisty to Chicago, with a further extension to Cushing, Oklahoma, (2) Edmonton to the west coast of British Columbia, Prince Rupert, and (3) Hardisty to California. The most attractive aggregate benefits to heavy crude producers would result from a western export pipeline to British Columbia or California. A superior alternative is a pipeline to a deepwater tanker terminal on the coast of British Columbia. The Chicago pipeline option would become more attractive if Midwestern refiners were to expand their capacity to process heavy oil. Declining netbacks associated with sustained growth that is introduced into the market place are reflected in all scenarios over the forecast period until 2010. 1 tab., 23 figs

  16. Stuck in the tar sands : how the federal government's proposed climate change strategy lets oil companies off the hook

    International Nuclear Information System (INIS)

    The credibility of any federal climate change strategy must be measured against its ability to reduce emissions from the tar sands. However, the federal government has proposed a climate change strategy that would allow tar sands producers to double their total emissions over the next decade. This report discussed how the federal government's proposed climate change strategy lets oil companies off the hook. The report discussed the problems and harmful effects associated with tar sands development, including greenhouse gas emissions; water depletion and pollution; toxic air emissions; destruction of the boreal forest; violation of native rights; threat to energy security; and negative socio-economic spin-off from an overheated economy. The federal government's proposed strategy was also assessed in terms of its weak greenhouse gas targets; ignoring the recent growth in tar sands emissions; adopting intensity-based targets instead of hard caps on greenhouse gas pollution, allowing total emissions from the tar sands to keep climbing; putting off critical measures until 2018; awarding oil companies hundreds of millions of dollars in credits for meeting targets they have already adopted voluntarily; lowballing the price of oil and downplaying future growth in tar sands emissions; ignoring huge portions of the oil industry's greenhouse gas pollution; letting oil companies buy their way out at rockbottom prices instead of forcing them to reduce their own emissions; and subsidizing increased tar sands production. It was concluded that the federal government's proposed plan to reduce greenhouse gas emissions was inadequate, because it failed to crack down on rising greenhouse gas emissions from the tar sands, one of Canada's most carbon intensive and fastest growing industries. 29 refs., 1 appendix

  17. Predicted water quality of oil sands reclamation wetlands : impact of physical design and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-12

    Although engineered wetlands can be used as treatment systems in the reclamation of oil sands mines, a variety of factors must be considered to improve the biological functioning of many oil sands reclamation landscapes. Key factors in the control of concentrations of dissolved substances include area, depth, shape, surrounding landscape material and contributing water quality and quantity. Seasonal cycles of precipitation and ice cover also require consideration in the planning of wetlands ecosystems. This paper presented details of a model designed to predict constituent concentrations in planned wetlands based on probable inflow and processes. Input variables consisted of key substances and hydrological factors that may be encountered on reclaimed landscapes. The model was constructed to perform sensitivity analyses of wetlands with respect to total dissolved solids (TDS), major ions, and naphthenic acids concentrations. Inputs and assumptions drawn from previous environmental impact assessments completed for proposed and approved oil sands projects were used. Results suggested that wetlands volume is an important factor in the moderation of peak flows and substance decay. The predictions generated by the model suggested that wetlands size, tailings and sandcap placement schedules may be manipulated to achieve desired wetlands salinities. It was observed that the proportion of the watershed covered by specific land types can affect both initial and future concentrations. Long-term climate change that results in 15 per cent more or less runoff was predicted to have little effect on wetlands concentrations, although concentrations may rise during periodic droughts. It was concluded that site-specific modelling and careful planning is needed to achieve desired water quality for the creation of engineered wetlands. 18 refs., 3 tabs., 3 figs.

  18. Petroleum coke adsorption as a water management option for oil sands process-affected water

    Energy Technology Data Exchange (ETDEWEB)

    Zubot, Warren [Syncrude Canada Ltd., Research and Development, Edmonton, Alberta, Canada T6N 1H4 (Canada); MacKinnon, Michael D. [OSPM Solutions Ltd., Hamilton, Ontario, Canada L8H 6X2 (Canada); Chelme-Ayala, Pamela; Smith, Daniel W. [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 2W2 (Canada); Gamal El-Din, Mohamed, E-mail: mgamalel-din@ualberta.ca [University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 2W2 (Canada)

    2012-06-15

    Water is integral to both operational and environmental aspects of the oil sands industry. A water treatment option based on the use of petroleum coke (PC), a by-product of bitumen upgrading, was examined as an opportunity to reduce site oil sands process-affected water (OSPW) inventories and net raw water demand. Changes in OSPW quality when treated with PC included increments in pH levels and concentrations of vanadium, molybdenum, and sulphate. Constituents that decreased in concentration after PC adsorption included total acid-extractable organics (TAO), bicarbonate, calcium, barium, magnesium, and strontium. Changes in naphthenic acids (NAs) speciation were observed after PC adsorption. A battery of bioassays was used to measure the OSPW toxicity. The results indicated that untreated OSPW was toxic towards Vibrio fischeri and rainbow trout. However, OSPW treated with PC at appropriate dosages was not acutely toxic towards these test organisms. Removal of TAO was found to be an adsorption process, fitting the Langmuir and Langmuir-Freundlich isotherm models. For TAO concentrations of 60 mg/L, adsorption capacities ranged between 0.1 and 0.46 mg/g. This study demonstrates that freshly produced PC from fluid cokers provides an effective treatment of OSPW in terms of key constituents' removal and toxicity reduction. - Highlights: Black-Right-Pointing-Pointer Treatment of oil sands process-affected water (OSPW) using petroleum coke (PC) adsorption was investigated. Black-Right-Pointing-Pointer PC was effective at adsorbing naphthenic acids with higher cyclicity. Black-Right-Pointing-Pointer OSPW treated with PC at appropriate dosages was not toxic towards Vibrio fisheri and rainbow trout. Black-Right-Pointing-Pointer The adsorption of organic acids fitted the Langmuir and Langmuir-Freundlich isotherm models. Black-Right-Pointing-Pointer PC has the potential to be an effective adsorbent to treat OSPW either directly or as a pretreatment step.

  19. Performance of wetland forbs transplanted into marshes amended with oil sands processed water.

    Science.gov (United States)

    Mollard, Federico P O; Roy, Marie-Claude; Foote, A Lee

    2015-03-01

    Companies mining oil sands in Alberta (Canada) face the challenge of reclaiming wetlands under water use restrictions. Wetland reclamation after mining will generate marshes characterized by elevated salinity and residual hydrocarbons. Oil sands wetlands are also impoverished in forbs, suggesting that their establishment may be constrained by water chemistry. We transplanted skullcap, mint, and smartweed plants into experimental trenches that simulated two possible reclamation scenarios: wetlands amended with on-site freshwater or with oil sands processed water (OSPW). The main scientific question was is OSPW a suitable water amendment as freshwater for reclaiming wetland forb habitat? As a surrogate of plant health, we studied plant ecophysiology (gas exchange, leaf fluorescence), leaf chemistry, and plant growth. Results showed that there were no differences in skullcap mineral contents under either treatment; however, mint and smartweed plants subjected to OSPW had a significantly higher Na content than those under freshwater. Smartweed dark-adapted leaf fluorescence showed a reduced photochemistry in OSPW relative to plants in freshwater. Mint leaves exhibited lower stomatal conductance in OSPW than in freshwater, a condition that negatively affected transpiration and carboxylation. Skullcap plants grown in OSPW had lower net CO2 assimilation rates than those in freshwater but did not show any other ecophysiological difference between treatments. Mint plants experienced growth reductions (i.e., shoot height) in OSPW. Our results show, for the first time in the literature, that plants photosynthetic capacity was negatively affected by OSPW. Conditions in OSPW proved to be suitable for establishment as transplanted forbs showed 100 % survival after the first growing season. However, impaired physiological functions in plants subjected to OSPW indicated that OSPW amendment created a less hospitable habitat for wetland forbs than freshwater. PMID:25697311

  20. Nuclear energy for oil sands production: Providing security of energy and hydrogen supply at economic cost

    International Nuclear Information System (INIS)

    The development of Canada's 2000 EJ oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has limited availability; and (c) produces significant CO2 emissions. For the now preferred SAGD in-situ method of extracting oil-sands bitumen, nuclear heat can easily supply the steam at the ∼ 2.5 MPa requisite pressure. Studies by AECL and others show that steam from an Advanced CANDUTM Reactor (ACRTM) should produce steam for SAGD at lower cost than natural gas and also give far greater price stability. The large quantity of steam (2 to 2.5 volumes of condensate per volume of bitumen) for a typical project of 100 to 140 million barrels per day of bitumen provides a good match to the output of a 1900 MW(th) reactor, which would also produce about 200 MW of electricity. Electricity would be produced using a back-pressure turbine, yielding a very high overall energy efficiency. AECL work also shows economic competitiveness for electrolytic production of hydrogen, which is needed to upgrade the bitumen. Electrolysis would be interruptible, avoiding the short periods of high electricity prices experienced on the Alberta grid. Competitiveness with conventional steam-methane reforming is achieved by a combination of off-peak power and low-cost electrolytic cells. Using nuclear-generated steam and electricity produces negligible CO2, thus placing synthetic crude from the oil sands on a comparable basis to conventional crude with respect to greenhouse gas emissions. (author)

  1. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  2. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants.

    Science.gov (United States)

    Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo

    2016-09-15

    Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies. PMID:27179318

  3. Transport of Colloid-Size Oil Droplets in Saturated and Unsaturated Sand Columns

    Science.gov (United States)

    Weisbrod, N.; Travis, M.; Gross, A.

    2011-12-01

    Oil in wastewater poses significant treatment and subsequent environmental challenges. Accumulation of oils in soil leads to hydrophobicity, and the transport of colloidal-sized oil droplets may facilitate the co-transport of oil soluble contaminants such as pesticides or pharmaceutical materials. In order to determine transport characteristics of colloidal-sized, edible oil droplets, short-pulse column breakthrough experiments were conducted. Oil droplets (mean diameter 0.7 μm, ζ-potential -34±1, density 0.92 g cm-3) were injected simultaneously with latex microspheres (0.02, 0.2 and 1.0 μm, ζ-potentials -16±1, -30±2, and -49±1, respectively, density 1.055 g cm-3) and bromide in saturated and unsaturated quartz sand (ζ-potential -63±2 mV). Breakthrough of oil droplets was consistently detected first and recovery of oil droplets from the column was 20% greater than similarly sized microspheres in the saturated column, and 16% greater in high (0.18±0.01) volumetric water content (VWC) unsaturated columns. Higher variability was observed in the lower VWC (0.14±0.01) column experiments, and oil droplet recovery was just slightly greater than similarly sized microspheres and statistically higher only compared to the 0.02 μm microspheres. The research demonstrated that oil droplets are able to be transported as colloids in both saturated and unsaturated porous media. An important finding was that transport of oil droplets exceeded that of microspheres within the same size range and similar electrostatic properties. Classical filtration theory indicates that oil droplets in the diameter range of about 0.5 to 2 μm will exhibit reduced deposition due to buoyancy. However, current improvements to the theory do not accommodate prediction of buoyant particle transport and the theory needs review. High recovery of oil droplets in unsaturated porous media is a novel finding. As expected, straining appeared to be an important removal mechanism in unsaturated

  4. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    Energy Technology Data Exchange (ETDEWEB)

    Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

    2003-02-07

    This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

  5. Coprocessing of biooils from biomass pyrolysis and bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Feng, M.; Daruwalla, S.; Daruwalla, D.D. [Southwest Research Inst., San Antonia, TX (United States). Dept. of Chemical Engineering

    2009-07-01

    Liquid biooils can be produced from the thermochemical treatment of biomass by pyrolysis. However, because of their poor volatility, high viscosity, coking, corrosiveness, and cold flow problems, biooils cannot be used directly as transportation fuel. Biooils can be upgraded into a liquid transportation fuel by hydrodeoxygenation with typical hydrotreating procedure with sulfided cobalt and molybdenum (CoMo) or nickel molybdenum (NiMo) as catalysts in the current oil refinery facilities. Coprocessing of biooils and bitumen from oil sand provides an opportunity to process the two feeds at the same time which can be achieved by injection of pyrolytic biooils and vacuum gas oil (VGO) from bitumen into a fluid catalytic cracking (FCC) unit if the acid number of the biooils is below 35. Typically the biooils are diluted to about 1.5 to 5 per cent in the VGO feed to be processed. For the blends of VGO and biooils, the biooils appear to facilitate the cracking of the VGO and shift yields toward light ends, lower light cycle oil. They also clarify slurry oil, which makes the process more cost effective. This paper briefly reviewed the typical methods for bitumen pretreatment and preliminary upgrading. The paper also discussed the current status of coprocessing of biooils and hydrocarbons, and suggested two possible processes for coprocessing bitumen with biooils and biopitches. The impact on the hydrodesulphurization process conversion of dibenzothiophenic compounds was also studied, showing no differences of the inhibiting effect between these molecules. 8 refs., 4 tabs., 6 figs.

  6. Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling

    Science.gov (United States)

    Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.

    2009-01-01

    The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western

  7. Cold production followed by cyclic steam simulation in thin oil sands reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Gates, I.D. [Dept. of Chemical and Petroleum Engineering, University of Calgary (Canada)

    2011-07-01

    In Western Canada, thermal recovery methods are required to extract bitumen and heavy oil from reservoirs, due to their high viscosity. One method is cyclic steam simulation (CSS). Steam is injected into the reservoir through a single well and fluids are produced from the reservoir at different times; a depletion chamber has to be initialized successfully so the process can perform optimally. This paper aimed at understanding how cold production can help with starting CSS. Simulations were undertaken with a heterogeneous reservoir model to explore the impact of cold production on subsequent CSS in the Bluesky oil sands formation. Results showed that a depletion zone grows in the surroundings of the well during cold production and that steam conformance is then better during CCS than without cold production. This paper showed that using cold production before CSS is a good solution when the reservoir is cold producible.

  8. Canadian heavy crude oil and bitumen: Some new and old ideas

    International Nuclear Information System (INIS)

    Canadian conventional heavy oil and bitumen production has been steadily increasing over the last five years. This rise is forecast to continue under modest future crude oil pricing assumptions. During 1990 and 1991, the heavy oil market suffered from wide pricing differentials relative to light crude due to market reductions in Montreal and a feedstock shift at Uno-Ven's Chicago refinery, as well as an increase in the percentage of heavy in the world crude oil supply because of the Iraqi war. These have been offset by price-related bitumen production cuts and minor refinery capacity growth at other locations. The industry is poised for positive change with modest but stable prices and reduced light-heavy differentials caused, in part, by anticipated market expansion due to the June start-up of the Conco coker (50,000 bbl/d) in Montana and the anticipated late fall start up of the Bi-Provincial Upgrader in Saskatchewan (50,000 bbl/d blend). For the future, refinery upgrading and new grass roots refinery additions are suggested for western Canada. Associated transportation savings and condensate blending stock costs are two areas of advantage. Taken together with environmental problems in other densely populated market areas, it makes sense to build new heavy processing capacity near Edmonton but only after all current capacity is debottlenecked and inexpensive additions to current facilities are completed. New capacity will only be built when the heavy/light price differential on feed stock provides economic justification. 11 refs., 2 tabs

  9. Fine study on single sand body and measures for tapping the potential of residual oil during polymer flooding in Pubei reservoir of Daqing

    Science.gov (United States)

    Meng, Y. J.

    2016-08-01

    In order to effectively guide the narrow channel sand body oil fields to exploit, according to the sand body distribution characteristics and geological genesis of narrow channel sand body oil fields, the type of single sand body is clarified. By means of identification of logging curves and correlation of well-tie profile, the internal structure of single sand body is recognized. and then the remaining oil genesis, distribution characteristics and the potential areas for polymer flooding are clarified by combining numerical simulation technology and dynamic analysis technology, and the remaining oil potential tapping method is designed by taking into consideration various factors including the characteristics of the remaining oil, reservoir property and product dynamic character. The result shows that the single sand body is divided into five types including multiphase channel superposition, distributary channel, single channel, sheet sand and lenticular sand. Potential remaining oil mainly are distributed in thick oil layers of multiphase channel superposition type and distributary channel type in which channel sands were developed and sedimentary environment are stable inner front facies and lake regressive inner front facies. The remaining oil is developed by optimizing the parameters of polymer flooding and combining many different measures. The study provides technical support for the efficient exploration for polymer flooding.

  10. Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands

    International Nuclear Information System (INIS)

    Highlights: • A model to estimate energy consumption and GHG emissions in oil sands is presented. • The model is developed from fundamental engineering principles. • Cogeneration in the oil sands has the ability to offset GHG emissions. • The effect of key parameters is investigated through a sensitivity analysis. - Abstract: A model – FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in the Oil Sands) was developed to estimate project-specific energy consumption and greenhouse gas emissions (GHGs) in major recovery and extraction processes in the oil sands, namely surface mining and in situ production. This model estimates consumption of diesel (4.4–7.1 MJ/GJ of bitumen), natural gas (52.7–86.4 MJ/GJ of bitumen) and electricity (1.8–2.1 kW h/GJ of bitumen) as fuels in surface mining. The model also estimates the consumption of natural gas (123–462.7 MJ/GJ of bitumen) and electricity (1.2–3.5 kW h/GJ of bitumen) in steam assisted gravity drainage (SAGD), based on fundamental engineering principles. Cogeneration in the oil sands, with excess electricity exported to Alberta’s grid, was also explored. Natural gas consumption forms a major portion of the total energy consumption in surface mining and SAGD and thus is a main contributor to GHG emissions. Emissions in surface mining and SAGD range from 4.4 to 7.4 gCO2eq/MJ of bitumen and 8.0 to 34.0 gCO2eq/MJ of bitumen, respectively, representing a wide range of variability in oil sands projects. Depending upon the cogeneration technology and the efficiency of the process, emissions in oil sands recovery and extraction can be reduced by 16–25% in surface mining and 33–48% in SAGD. Further, a sensitivity analysis was performed to determine the effects of key parameters on the GHG emissions in surface mining and SAGD. Temperature and the consumption of warm water in surface mining and the steam-to-oil ratio (SOR) in SAGD are major parameters

  11. Power generation and oil sands process-affected water treatment in microbial fuel cells.

    Science.gov (United States)

    Choi, Jeongdong; Liu, Yang

    2014-10-01

    Oil sands process-affected water (OSPW), a product of bitumen isolation in the oil sands industry, is a source of pollution if not properly treated. In present study, OSPW treatment and voltage generation were examined in a single chamber air-cathode microbial fuel cell (MFC) under the effect of inoculated carbon source and temperature. OSPW treatment with an anaerobic sludge-inoculated MFC (AS-MFC) generated 0.55 ± 0.025 V, whereas an MFC inoculated with mature-fine tailings (MFT-MFC) generated 0.41 ± 0.01 V. An additional carbon source (acetate) significantly improved generated voltage. The voltage detected increased to 20-23% in MFCs when the condition was switched from ambient to mesophilic. The mesophilic condition increased OSPW treatment efficiency in terms of lowering the chemical oxygen demand and acid-extractable organics. Pyrosequencing analysis of microbial consortia revealed that Proteobacteria were the most abundant in MFCs and microbial communities in the AS-MFC were more diverse than those in the MFT-MFC.

  12. Effects of oil sands waste water on the wood frog (rana sylvatica)

    International Nuclear Information System (INIS)

    The sustainability of various reclamation strategies can be determined by the growth and health of indigenous amphibians (Wood Frogs). This paper referred to the large quantities of tailings water that are generated by oil sand extraction activities. It presented the results of a study that was conducted in the spring and summer of 2006 and 2007 on reclaimed formation wetlands comprising tailings water. The objective was to understand the impact of these wetlands on native amphibians. Frogs were exposed to wetlands containing oil sands process affected water (OSPW) and reference water (no OSPW). Six experimental trenches were made at one site in the first year. Each trench had 3 enclosures with 50 tadpoles. In the second year, there were 13 sites, including 6 reference and 7 OSPW affected sites, which were classified as old (more than 8 yrs) or young (less than 7 yrs). Four enclosures, with 50 tadpoles each, were placed in each wetland. The study involved the evaluation of growth rate, survival, time to metamorphosis, thyroid hormone concentrations, liver EROD activity, and tissue retinol concentrations. In addition, stable isotopes were used to track carbon flow from primary production plants, through the food chain, to tadpoles and frogs which represent intermediate and higher trophic levels in reclaimed wetlands

  13. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    Science.gov (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806

  14. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    Directory of Open Access Journals (Sweden)

    Tariq eSiddique

    2014-03-01

    Full Text Available Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae and Desulfobulbaceae and Archaea (Methanolinea/Methanoregula and Methanosaeta transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O and goethite (α-FeOOH were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy. These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  15. Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada.

    Science.gov (United States)

    Roy, Marie-Claude; Foote, Lee; Ciborowski, Jan J H

    2016-05-01

    Reclaiming wetlands following open pit mining for industrial oil sand extraction is challenging due to the physical and chemical conditions of the post-mined landscape. The aim of our study was to examine and compare the influence of oil sands process water (OSPW) and material (fine fluid tails or FFT) on the plant community composition of created wetlands. Compared to created-unamended and natural wetlands, the created wetlands amended with OSPW and/or FFT (created-tailings wetlands) had significantly higher water salinity, conductivity, dissolved oxygen concentration and lower oxidative-reductive potential. Water chemistry parameters of created-unamended did not differ significantly from those of natural wetlands. The sediment of created wetlands had significantly less moisture, total nitrogen, and organic content than the natural wetlands. The application of OSPW/FFT in created wetlands will likely lead to initial vegetation composition atypical of natural regional wetlands. For the objective of reclaiming vegetation composition to the status of natural regional wetlands, unamended wetlands were the best reclamation option, based on the physical and chemical parameters measured. Despite being the favored reclamation option, created-unamended wetlands' physical and chemical characteristics remain atypical of natural wetlands. Most significantly, the basin morphometry of created wetlands was significantly different from that of naturally-formed wetlands in the region, and this appears to partly explain difference in vegetation composition. We also demonstrate that species richness alone is not a useful measure in wetland monitoring. Instead, plant community composition is a better indicator of wetland conditions.

  16. Effects of oil sands waste water on the wood frog (rana sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Hersikorn, B.; Smits, J.E. [Saskatchewan Univ., Regina, SK (Canada)

    2007-07-01

    The sustainability of various reclamation strategies can be determined by the growth and health of indigenous amphibians (Wood Frogs). This paper referred to the large quantities of tailings water that are generated by oil sand extraction activities. It presented the results of a study that was conducted in the spring and summer of 2006 and 2007 on reclaimed formation wetlands comprising tailings water. The objective was to understand the impact of these wetlands on native amphibians. Frogs were exposed to wetlands containing oil sands process affected water (OSPW) and reference water (no OSPW). Six experimental trenches were made at one site in the first year. Each trench had 3 enclosures with 50 tadpoles. In the second year, there were 13 sites, including 6 reference and 7 OSPW affected sites, which were classified as old (more than 8 yrs) or young (less than 7 yrs). Four enclosures, with 50 tadpoles each, were placed in each wetland. The study involved the evaluation of growth rate, survival, time to metamorphosis, thyroid hormone concentrations, liver EROD activity, and tissue retinol concentrations. In addition, stable isotopes were used to track carbon flow from primary production plants, through the food chain, to tadpoles and frogs which represent intermediate and higher trophic levels in reclaimed wetlands.

  17. Paste and thickened tailings technology and its applicability in oil sand tailings management

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, X.S.; Lahaie, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2010-07-01

    Tailings management practices can have a significant impact on overall oil sands mining operations. Paste and thickened tailings (P and TT) technology is an integrated engineering system that includes a thickener feed preparation process, type selection, and process; a flocculant selection and technology development; P and TT transport, deposition, and consolidation; and a strategy for re-using thickener overflow water and reducing impacts to the environment. This paper discussed developments of P and TT technology in relation to fine oil sands tailings. Practical applications of P and TT technology in the mineral industry were discussed, as well as recent research and development work conducted by Syncrude. Pilot programs currently being conducted to determine optimal thickener hydraulic and solids loading rates were discussed as well as the results of experiments conducted to determine flocculation and sedimentation processes. Thin-lift dry stacking technologies and containment methods were reviewed. Environmental considerations related to closure, residual bitumen, and warm water return and heat recovery were discussed. The study concluded by suggesting that a suite of technologies is needed to address the varying geographical, surface area, and mine progression challenges related to tailings management. 28 refs., 3 tabs., 10 figs.

  18. Snowpack deposition of trace elements in the Athabasca oil sands region, Canada.

    Science.gov (United States)

    Guéguen, C; Cuss, C W; Cho, S

    2016-06-01

    The total recoverable and dissolved concentrations of 29 metals and metalloids were analyzed in snowpack collected at 91 sites in the Athabasca oil sands region, Canada in winter 2011. Based on deposition pattern from geographical centre, three groups were found: Type-1 metals (i.e. dissolved and total recoverable V; Mo) showed a significant exponential decrease with distance, suggesting oil sands development sources; Type-2 elements (e.g. Al, Sb, As, Ba, Fe, Ni, Tl, and Ti and Zn) showed exponentially decline patterns but with some local point sources; Type-3 elements (e.g. Cd, Cl, Cr, Mn, Sr and Th) deposition pattern represented local sources. A self-organizing map showed that sites with the highest elemental concentrations (Cluster I) were mainly located in the vicinity of upgrading facilities and along the north-south transects. The lowest elemental concentration sites (Cluster III) were the most distal sites or located in the western region of the study area. PMID:27031808

  19. The chemical and biological evolution of mature fine tailings in oil sands end-pit lakes

    International Nuclear Information System (INIS)

    This presentation described an innovative bench-scale technique to characterize oil sand tailings and their impact on sediment oxygen demand (SOD) for future end-pit lake model behaviour. SOD is a dominant contributor to oxygen depletion in wetlands. The function and sustainability of a wetland ecosystem depends on the biochemical processes occurring at the sediment-water interface. The biochemical reactions associated with natural sediment can change with the addition of oil sands processed material (OSPM), which can affect SOD and ecosystem viability. It is important to establishing the biotic and abiotic controls of SOD. In order to evaluate the effectiveness of current wetland reclamation designs, it is important to establish the biotic and abiotic controls of SOD. The REDOX chemistry of fresh tailings sediment (MFT) was measured in this laboratory microcosm to determine the chemical and biological influences, and to study the role of developing microbial communities as new mature fine tailings (MFT) age. The study evaluated the changes in the main chemical, physical and biological populations of the MFT in both aerobic and anaerobic microcosms. A combination of microelectrode arrays and DNA profiling at the tailings water interface was used in the study.

  20. Growth of Chironomus dilutus larvae exposed to ozone-treated and untreated oil sands process water

    International Nuclear Information System (INIS)

    Oil sand processing operations require large quantities of freshwater and produce large volumes of oil sands process water (OSPW) which must be stored on-site. This presentation reviewed various treatment methods for remediating OSPW in order to eliminate downstream toxicity. Naphthenic acids are the most important target fractions for treatment because they are primarily responsible for the acute toxicity of OSPW. Although ozonation has shown promise for reducing OSPW toxicity, the effects of ozonation on aquatic invertebrates remain unknown. This study investigated the effects of exposure to untreated and ozonated OSPW in Chironomus dilutus larvae. OSPW was treated with either a 50 or 80 mg O3/L dose of ozonation. The effects of ozonation levels on C. dilutus survival and growth were examined. The study showed that after a 10-day exposure, there were pronounced effects on survival of larvae exposed to ozone-treated or untreated OSPW. Larvae exposed to OSPW were 64-77 percent smaller than their respective controls, but the mean wet mass of organisms exposed to 50 mg O3/L ozonated OSPW was not much different from that of the controls. Larvae exposed to 80 mg O3/L ozone-treated OSPW were 40 percent smaller than the freshwater controls, and the mean wet mass was also much larger than the untreated OSPW. It was concluded that the toxicity of OSPW to benthic invertebrates may be reduced by ozone treatment.

  1. Metal mining to the aid of the oil sands? Lateral opportunities in industrial cross-breeding

    Energy Technology Data Exchange (ETDEWEB)

    Sabag, S.F. [Dumont Nickel Inc., Toronto, ON (Canada)

    2009-07-01

    This paper demonstrated how oil sands operations can benefit from supporting innovative low cost metal mining to enhance their eco-footprint. Northeast Alberta contains large accumulations of recoverable metals, hosted in metal bearing black shales. Immense low grade polymetallic zones were discovered in 1995 but could not be exploited with existing recovery technologies. However, significant advances in bioleaching of metals from polymetallic black shale deposits have propelled this new deposit type to the forefront over the past 5 years as a long term future source of metals. Compared to traditional smelting and refining, bioleaching has lower Capex/Opex, lower eco-footprint and less energy dependence. Envisaged metal mining in the black shales of northeast Alberta can benefit oil sands operations by consuming large amounts of waste sulfur while also providing collateral opportunities for carbon sinks/offsets. Black shales have the capacity to sequester carbon dioxide (CO{sub 2}). Dumont Nickel Inc. is advancing 6 polymetallic black shale projects in northeast Alberta over 2,500 km{sup 2} with potential for hosting up to 20 billion tons in six 50-100 km{sup 2} deposits. The projects present opportunities to develop low footprint metal mines, to use run-of-river hydro, to harvest waste heat, and to combine local technologies to create a new valuable industry independent of energy markets.

  2. Development of accelerated dewatering technology for managing oil sands fine fluid tailings

    Energy Technology Data Exchange (ETDEWEB)

    Lahaie, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada); Seto, J.T.C. [BGC Engineering Inc., Edmonton, AB (Canada); Chapman, D. [O' Kane Consultants Inc., Saskatoon, SK (Canada); Carrier, W.D. III [Argila Enterprises Inc., Lakeland, FL (United States)

    2010-07-01

    This article discussed an accelerated dewatering technique being applied and tested for managing fine fluid tailings produced from oil sands mining. The process involved rim ditching and a decant system to promote the drainage of surface waters and enhance the drying and densification of mature fine tailings (MFT). To field test the procedure, a deposit containing 60,000 cubic metres of in-line flocculated MFT was constructed and instrumented to monitor consolidation and dewatering response of the MFT deposit over time. Ten months after being filled, the deposit had settled about 1.2 metres, which corresponds to a 19 percent reduction in volume relative to initial filling. The field test will continue for several more years, during which time the deposit will continue to be monitored and sampled. The Florida phosphate industry has used rim ditching for over 20 years, but the process had never before been applied to oil sand tailings. The paper discussed the particular consolidation behaviour of MFT, the rim ditch concept, the layout of the containment pit and instrumentation, the pit filling procedure, and post-filling observations. 6 refs., 12 figs.

  3. Assessing the effects of the oil sands mining industry on wetland plant physiology performance

    Energy Technology Data Exchange (ETDEWEB)

    Mollard, F.; Roy, M.; Frederick, K.; Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The plant species found in the created wetlands of the Fort McMurray post-mined landscape tolerate the salinity and toxicity of the processed materials that have been used for amendment. This study examined the plant mechanisms responsible for the plant's ability to tolerate polluted wetlands. The study proposed that plants growing in wetlands that have been amended with oil sands processed material may show considerable biological stress symptoms even though their physical appearance and performance may appear unaffected. Photosynthesis, transpiration rates, stomatal conductance, and leaf fluorescence of Carex aquatilis was studied in 5 natural and 10 affected wetlands. The study showed that the critical physiological processes such as assimilation and water economy were not much different between treatments. However, processes related to leaf light use efficiency (Fv/Fm, Performance Index) were considerably higher in plants growing in oil sands affected wetlands. The study results were in agreement with previous research, and imply that processed materials can positively affect some plant photosynthetic stages but they are fully compensated and have a negligible impact on the complete carbon assimilation process.

  4. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  5. The adsorption of oil sands naphthenic acids from process-affected tailings water using activated petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Small, C.C.; Hashisho, Z.; Ulrich, A.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    Eighty percent of the organic acids in the Athabasca oil sands region are comprised of naphthenic acids that are toxic to a variety of aquatic life-forms as well as being highly corrosive. This PowerPoint presentation discussed a method of adsorbing naphthenic acids from process-affected water. Activated petroleum coke was studied in order to investigate optimal physical activation conditions for adsorbing oil sands naphthenic acids. Experimental tests were conducted in a centrifuge and analyzed with Fourier transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM) and fluorescence spectrometry. The study demonstrated that delayed and fluid petroleum cokes can be turned into high surface area carbons with increased activation time, temperature, and steam rate. The coke can be used as an adsorbent to remove oil sands naphthenic acids. tabs., figs.

  6. Report and recommendations of the task force on tree and shrub planting on active oil sands tailings dams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    In oil sands reclamation operations in Canada there is a conflict between dam safety and the planting of trees and woody shrubs. Indeed, tree planting is being restricted on the downstream slopes of dams to avoid damage to drains and to ensure the integrity of visual and instrumentation monitoring conflicting thus with progressive reclamation. Alberta Environment hired the Oil Sands Research and Information Network (OSRIN), an independent organization which analyzes and interprets available knowledge on soil and water reclamation in the oil sands mining sector, to address this issue and make recommendations. The organization appointed a Task Force which presented its final report in March 2011. The Task Force recommended that the Engineer of Record should be responsible for determining the tree and shrub planting zones and that he should submit his plans to Alberta Environment for approval.

  7. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  8. Potential for use of methylene blue index testing to enhance geotechnical characterization of oil sands ores and tailings

    Energy Technology Data Exchange (ETDEWEB)

    Boxill, Lois [SRK Consulting (Canada)

    2011-07-01

    At the CONRAD conference held in Edmonton in 2011, clay scientist expressed their concern over the variability of clay structures and its impact both on oil sands ores and on tailings. This paper discusses the potential for using methylene blue index testing to enhance geotechnical understanding of the impact of the cation exchange capacity of clay present in oil sands ores and both solid and fluid components of the tailings stream. A description of the methylene blue index test procedure is provided. This process is most commonly used for characterization in the oil sands industry. The requirements for obtaining consistency in the test results are discussed. The test is often used to enhance geotechnical characterization of clays in other areas. The potential for developing correlations between methylene blue index test results and other geotechnical parameters is also discussed. It can be concluded from the study that geotechnical data on soil indicate the effect of clay minerals on the overall plasticity of the soil.

  9. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  10. Canadian quest : scouring the globe for oil arenas where nice guys finish first

    International Nuclear Information System (INIS)

    This paper described the one time interruption of operations by Nexen Inc., a Canadian senior international company that evolved as Canadian Occidental Petroleum Co. The interruption occurred for a twelve-hour period in 1994 during the civil war in Yemen. Its oil production for the first quarter of 2001 was 217,800 barrels per day, with 62 per cent coming from Yemen, Australia and Nigeria. Almost two-thirds of the operating profits (63 per cent) were derived from outside Canada's borders. The holistic approach to any project is what sets this company apart from the others in the field. The host country benefits from production-sharing contracts as well as community benefits. They can range from contributions to water supplies, health care, education, jobs as is the case in Yemen, as well as a training program set up at the University of Calgary or the Southern Alberta Institute of Technology with paid tuition for nationals of the host country to learn the basics and higher skills. Being a good corporate citizen means extra expenditures and additional work but the whole affair opens doors that might have remained closed for the company. It helped ensure Nexen was granted 93,000 square kilometers of drilling prospects in the Arabian Peninsula, namely in the Empty Quarter. It is a region located along the border between Yemen and Saudi Arabia. Intelligence also plays a big part in the equation. Every day, the marketing department handles 500,000 barrels of oil and three billion cubic feet of gas. It recognized the early signs of the late 1990s oil slump and the managers used the opportunity to get ready for the next phase. This attitude also means the company will not operate in some locations, one of which being Sudan. Talisman is experiencing difficulties related to its involvement in the country despite efforts to help the local communities. The role of Gulfstream, a global venture capital firm based in the United Kingdom was also discussed. It is imperative to

  11. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    Science.gov (United States)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  12. Development of high temperature resistant geomembranes for oil sands secondary containments

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)

    2008-07-01

    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  13. Life cycle assessment of greenhouse gas emissions from Canada's oil sands-derived transportation fuels

    International Nuclear Information System (INIS)

    A comprehensive LCA (life cycle assessment) for transportation fuels (gasoline, diesel, and jet fuel) derived from Canada's oil sands was conducted, and all the current possible pathways from bitumen extraction to use in vehicles were explored. Authors, in earlier studies, have presented the energy consumption and GHG (greenhouse gas) emission results for individual unit operations-recovery, extraction, upgrading and refining. The LC (life cycle) inventory data for the current LCA study were obtained from theoretical model named FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs- based ModeL for Estimation of GreenHouse Gases in the Oil Sands), developed from fundamental engineering principles. The impact of the cogeneration of electricity in oil sands recovery, extraction, and upgrading on the LC GHG emissions of gasoline was explored. LC WTW (well-to-wheel) GHG emissions range from 106.8 to 116 g-CO2equivalent/MJ of gasoline, 100.5 to 115.2 g-CO2equivalent/MJ of diesel, and 96.4 to 109.2 g-CO2equivalent/MJ of jet fuel, depending on the pathway. Combustion emissions (64.7%–70.3%) are the largest constituent of WTW emissions for gasoline production; recovery (through surface mining and steam assisted gravity drainage) forms 7.2%–16% depending on the LC production process of gasoline. - Highlights: • A comprehensive LCA of oil sands-derived transportation fuels is conducted. • The study considers all the unit operations from extraction to combustion. • Six bitumen pathways in oil sands activities are explored. • LC gasoline emissions from the oil sands range from 106.8 to 116 g-CO2equivalent/MJ

  14. Microbial turnover and incorporation of organic compounds in oil sand mining reclamation sites

    Science.gov (United States)

    Lappé, M.; Kallmeyer, J.

    2013-12-01

    Microorganisms play an important role in the development of new soils and in the reclamation of disturbed landscapes. Especially in hydrocarbon-contaminated soils their ability to degrade organic matter and pollutants makes them essential to re-establish full ecosystem functionality. Microbes are also involved in the mobilization of nutrients for plant growth and in the production of greenhouse gases. Reclamation sites from oil sand mining activities in Alberta, Canada, contain residual bitumen as well as other hydrocarbons. So, these areas provide a great opportunity to study microbial degradation of residual contaminants from oil sand. To get an impression of degradation rates as well as metabolic pathways, incubation experiments were performed in the lab. We measured microbial turnover (catabolic metabolism) and incorporation (anabolic metabolism) rates of different common organic compounds in samples from differently treated reclamation sites - with plant cover and without plant cover. About 10 g of sample material was suspended in 10 mL of a solution that mimics the in-situ concentration of dissolved ions. Radioactively labelled 14C-acetate was added as a common substrate, whereas 14C-naphthenic acid was chosen to investigate the microbial community's capability to utilize a typical hydrocarbon pollutant in oil sand tailings as a nutrient source. To test for the influence of fertilizers on microbial activity, phosphate, nitrate and potassium were added to some samples in different combinations. Incubations were run over two different time periods (7 and 14 days). At the end of each incubation experiment, the amount of produced 14CO2, 14C incorporated into the cells and the remaining unreacted 14C in the slurry were measured. First results show that most of the added 14C-acetate is used for respiration as it is mostly released as 14CO2. In upper soil layers only about 3% of 14C is incorporated into cells, whereas in deeper horizons with lower cell abundances

  15. Experimental study on hot water extraction for oil sands in the Oil Sand Hill of Qinghai oilfield%青海油砂山油砂水洗实验研究

    Institute of Scientific and Technical Information of China (English)

    许耀辉; 李云; 曹祖斌; 李丹东

    2012-01-01

    针对青海油砂山所在地水的沸点低、水资源匮乏、油砂为油润性等不利于油砂水洗分离的问题,通过研究影响油砂分离的因素,采用新的水洗试剂配方,对污水进行絮凝处理.现场试验证明,在水洗试剂的质量浓度为1%、水洗温度约为80℃的条件下,油砂油的收率可达到95%以上,且污水可以循环利用.该项研究对油润性油砂的分离和污水处理具有一定的指导意义.%Hot water extraction for oil sands in the Oil Sand Hill of Qinghai oilfield has disadvantages due to low water boiling point, lack of water resources and oil-wet property of the oil sands. Factors affecting oil extraction are studied, and a new washing agent formula is used to conduct flocculation treatment. Field test has verified that when the mass concentration of the washing agent is 1 % and washing temperature is about 80? , the oil recovery percent can be over 95% and waste water can be recycled. This study is of certain guiding significance to oil extraction from oil-wet sands and waste water treatment.

  16. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction.

    Science.gov (United States)

    Reid, Michelle L; Warren, Lesley A

    2016-01-15

    This study is the first to characterize the S stability of a composite tailings (CT) deposit undergoing pilot wetland reclamation in the Athabasca Oil Sands Region (AOSR, Alberta, Canada). As CT is sulfur, organic carbon and bacterially rich, the goal of this study was to characterize the in situ aqueous distribution of sulfur compounds across the wetland, sand cap and underlying CT zones of the deposit, in an effort to establish the potential for microbial sulfur cycling and generation of H2S, an explosive, corrosive and toxicity risk. Porewater samples from three depths spanning the different layers of the deposit, as well as wetland surface ponded water samples were collected for geochemical analyses (July and Sept 2013), and for microbial enrichments (both S reducing and S oxidizing bacteria) in June 2014. While porewater ΣH2S(aq) was detected at all depths across the three zones of the deposit, results identify that the sand cap layer required for construction, acts as a mixing zone generating the highest solution H2S concentrations (>500 uM or 18 mg/L) and H2S gas levels (over 100 and up to 180 ppm) observed. Porewater dissolved sulfate concentrations (0.14-6.97 mM) were orders of magnitude higher and did not correlate to the observed distribution of ΣH2S concentrations throughout the deposit. Unique to the sandcap, dissolved organic carbon positively correlated with the observed maxima of ΣH2S(aq) seen in this layer. The water management of the deposit is a critical factor in the observed S trends. Active dewatering of the CT resulted in migration of S rich water up into the sandcap, while downwelling labile organic carbon from the developing wetland acted in concert to stimulate microbial generation of the H2S in this structural layer to the highest levels observed. Functional enrichments identified that diverse S reducing and oxidizing microbial metabolisms are widespread throughout the deposit, indicating that these waste materials are

  17. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction.

    Science.gov (United States)

    Reid, Michelle L; Warren, Lesley A

    2016-01-15

    This study is the first to characterize the S stability of a composite tailings (CT) deposit undergoing pilot wetland reclamation in the Athabasca Oil Sands Region (AOSR, Alberta, Canada). As CT is sulfur, organic carbon and bacterially rich, the goal of this study was to characterize the in situ aqueous distribution of sulfur compounds across the wetland, sand cap and underlying CT zones of the deposit, in an effort to establish the potential for microbial sulfur cycling and generation of H2S, an explosive, corrosive and toxicity risk. Porewater samples from three depths spanning the different layers of the deposit, as well as wetland surface ponded water samples were collected for geochemical analyses (July and Sept 2013), and for microbial enrichments (both S reducing and S oxidizing bacteria) in June 2014. While porewater ΣH2S(aq) was detected at all depths across the three zones of the deposit, results identify that the sand cap layer required for construction, acts as a mixing zone generating the highest solution H2S concentrations (>500 uM or 18 mg/L) and H2S gas levels (over 100 and up to 180 ppm) observed. Porewater dissolved sulfate concentrations (0.14-6.97 mM) were orders of magnitude higher and did not correlate to the observed distribution of ΣH2S concentrations throughout the deposit. Unique to the sandcap, dissolved organic carbon positively correlated with the observed maxima of ΣH2S(aq) seen in this layer. The water management of the deposit is a critical factor in the observed S trends. Active dewatering of the CT resulted in migration of S rich water up into the sandcap, while downwelling labile organic carbon from the developing wetland acted in concert to stimulate microbial generation of the H2S in this structural layer to the highest levels observed. Functional enrichments identified that diverse S reducing and oxidizing microbial metabolisms are widespread throughout the deposit, indicating that these waste materials are

  18. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  19. Oil sands terrestrial habitat and risk modeling for disturbance and reclamation - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Welham, C. [FORRx Consulting Inc., Belcarra, BC (Canada)

    2010-11-15

    The main purpose of this study is to build a framework that includes risk management and strategic decision-making to assess the impact of natural and industrial disturbance on ecosystem products and services and on the existence of habitat for terrestrial species in Alberta's Lower Athabasca planning region. This will include an evaluation of the impact of disturbance, conservation and reclamation activities associated with oil sands development both at the lease and regional levels. The basecase scenario, established in Phase I, includes a dendrochronology study of the link between climate and tree growth in the sub boreal region that comprises oil sands mining, an analysis of habitat availability for 10 wildlife species compared with reclamation activities on the Kearl Lake mine, and an examination of the potential for development of high levels of water stress in recent reclamation plantations at the Kearl Lake mine. Four tree species of the subboreal forests of Alberta and Saskatchewan were considered for the dendrochronology study: the white spruce or Picea glauca, the black spruce or Picea mariana, the jack pine or Pinus banksiana, and the trembling aspen or Populus tremuloides. This study shows that the water stress observed during the year has restricted the radial growth of white spruce and a link has been established between radial growth and increasing season precipitation and summer temperatures. The purposes of the habitat suitability analysis were to list habitats suitability models that could be applied to Alberta boreal forests, distinguish the parameters used in those models that can be simulated with an ecosystem simulation model, simulate the reclamation prescriptions detailed in the Kearl Lake EIA documents with the ecosystem simulation model and generate output suitable for populating each habitat suitability model. The establishment of ecologically viable reclamation plans in the oil sands region can be hard to manage regarding the

  20. Wood species affect the degradation of crude oil in beach sand.

    Science.gov (United States)

    Jandl, Gerald; Rodríguez Arranz, Alberto; Baum, Christel; Leinweber, Peter

    2015-01-01

    The addition of wood chips as a co-substrate can promote the degradation of oil in soil. Therefore, in the present study, the tree species-specific impact of wood chips of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Western balsam poplar (Populus trichocarpa L.) on the degradation of crude oil was tested in beach sand in a 4-week incubation experiment. The CO2-C release increased in the order of control without wood chips oil degradation, were determined with gas chromatography-flame ionization detection (GC-FID). The degradation increased for the light fraction (C10 to C22), the heavy fraction (C23 to C40) as well as the whole range (C10 to C40) in the order of control without wood chips (f(degrad.) = 23% vs. 0% vs. 12%) < +poplar (f(degrad.) = 49% vs. 19% vs. 36%) < +spruce (f(degrad.) = 55% vs. 34% vs. 46%) < +pine (f(degrad.) = 60% vs. 44% vs. 53%), whereas the heavy fraction was less degraded in comparison to the light fraction. It can be concluded, that the tree species-specific wood quality is a significant control of the impact on the degradation of hydrocarbons, and pine wood chips might be promising, possibly caused by their lower decomposability and lower substrate replacement than the other wood species.

  1. Electro-thermal pilot in the Athabasca oil sands : theory versus performance

    Energy Technology Data Exchange (ETDEWEB)

    McGee, B.C.W. [E-T Energy, Calgary, AB (Canada)

    2008-07-01

    This paper provided details of a proof of concept test of E-T Energy's electro-thermal dynamic stripping process (ET-DSP). The technology combined features of electro-thermal heating with heat transfer by convection. Water was injected into the ends of an electrode where power density was most intense. Injected water carried heat away from the electrode into the reservoir. The tests were preceded by a mathematical model designed to quantify performance metrics including the amount of water usage for produced oil, energy input requirements, greenhouse gas (GHG) emissions, drilling performance, and operating costs. Field tests included a monitoring phase with new progressive cavity pumps (PCPs). Results of the tests and modelling studies showed that recovery factors were achieved with less energy use than thought possible. An energy oil ratio of 61.52 kWh per barrel was achieved for the production of bitumen from X05 was equivalent to a steam oil ratio of 0.49. Increases in temperature were achieved within 30 days. It was concluded that the ET-DSP process provided an efficient in situ thermal recovery technology for the production of bitumens. Recovery factors were demonstrated at 75 per cent or more. The process also provided rapid and uniform heating without the need for injection and displacing reservoir fluids. The process produced bitumens that were sand-free, with virtually no emulsions. 8 refs., 3 tabs., 10 figs.

  2. Economic and environmental effects of the FQD on crude oil production from tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; De Buck, A.; Afman, M. [CE Delft, Delft (Netherlands); Van den Berg, J.; Otten, G.J. [Carbon Matters, Den Haag (Netherlands)

    2013-05-15

    The production of unconventional crudes in Canada and Venezuela and exports of these crudes to the EU are investigated. In addition the potential economic and environmental impact of the proposed EU FQD measures (Fuel Quality Directive) on the production of crudes from tar sands and on new tar sand exploration projects are examined. CE Delft has analysed the impact by using a dedicated cost model. For existing projects, the model determines the effect on the basis of marginal production costs. For planned projects the model used the net present value (NPV) of proposed investments. The impacts were determined for a range of crude oil prices and FQD price effects. Combined, for existing and new projects together, the maximum effect would be at a price level at 60 USD/bbl, with savings of up to 19 Mt CO2/y at an FQD price differential of 3 euro/bbl. This overall effect would be substantial and come on top of the total emission reduction effect of the FQD of 60 Mt CO2/y, which will be achieved mostly by the blending of low-carbon fuels and reduced flaring and venting. As part of the reduction of transport greenhouse gas (GHG) emissions, the revised FQD obliges fuel suppliers to reduce these emissions by 6% by 2020 on a well-to-wheel basis. The EU is currently developing a methodology to differentiate fossil fuels on the basis of feedstock and GHG emissions. In the proposal, diesel produced from tar sands, has been given a default emission value of 108.5 gCO2 eq/MJ, while diesel from conventional crude was set at 89.1 gCO2 eq/MJ. The Commission's proposal is currently undergoing an impact assessment and is expected to be resubmitted to the Council later this year (2013)

  3. Fifteen-year trends in criteria air pollutants in oil sands communities of Alberta, Canada.

    Science.gov (United States)

    Bari, Md; Kindzierski, Warren B

    2015-01-01

    An investigation of ambient air quality was undertaken at three communities within the Athabasca Oil Sands Region (AOSR) of Alberta, Canada (Fort McKay, Fort McMurray, and Fort Chipewyan). Daily and seasonal patterns and 15-year trends were investigated for several criteria air pollutants over the period of 1998 to 2012. A parametric trend detection method using percentiles from frequency distributions of 1h concentrations for a pollutant during each year was used. Variables representing 50th, 65th, 80th, 90th, 95th and 98th percentile concentrations each year were identified from frequency distributions and used for trend analysis. Small increasing concentration trends were observed for nitrogen dioxide (Air quality in Fort Chipewyan was much better and quite separate in terms of absence of factors influencing criteria air pollutant concentrations at the other community stations.

  4. A relevance vector machine-based approach with application to oil sand pump prognostics.

    Science.gov (United States)

    Hu, Jinfei; Tse, Peter W

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.

  5. Molten salt reactors and the oil sands: odd couple or key to north american energy independence?

    International Nuclear Information System (INIS)

    The use of nuclear power to aid oil sands development has often been proposed largely due to the virtual elimination of natural gas use and thus a large reduction in GHG emissions. Nuclear power can replace natural gas for process steam production (SAGD) and electricity generation but also potentially for hydrogen production to upgrade bitumen for pipeline transit, synthetic crude production and even at the final refinery stage. Prior candidates included CANDU and gas cooled Pebble Bed Reactors. The case for CANDU use can be shown to be marginally economic with a proven technology but with an uncertainty of current construction costs and too large a unit size (~2400 MWth). PBRs offered modest theoretical cost savings, smaller unit size and the ability to offer higher temperatures needed for thermochemical hydrogen production from water. Interest in PBRs however has greatly waned with the cancellation of their major South African development program which highlighted the severe challenges of helium as a coolant and TRISO fuel manufacturing. More recently, Small Modular Reactors based on scaled down light water reactor technology have attracted interest but are unlikely to compete economically outside of niche applications. However, a 'new' reactor option, the Molten Salt Reactor, has been rapidly gaining momentum over the past decade. This 'new' technology was actually developed over 50 years ago as a thorium breeder reactor to compete with the sodium cooled fast breeder reactor (U-Pu cycle). During this time two molten salt test reactors were constructed. A modern version however would likely be a simpler converter design using Low Enriched Uranium but needing only a small fraction the uranium resources of LWRs or CANDUs. Besides resource sustainability, these unique designs offer large potential improvements in the areas of capital costs, safety and nuclear waste. This presentation will explain the unique attributes and advantages of these

  6. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    CERN Document Server

    Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

    2013-01-01

    In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

  7. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    International Nuclear Information System (INIS)

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  8. Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands

    International Nuclear Information System (INIS)

    The wet landscape approach to oil sands tailings reclamation in the Athabasca Oil Sands region involves creating wetlands from fluid tailings in mined-out pits. We measured time to metamorphosis, thyroid hormone status, and detoxification enzyme (EROD) induction in Wood frog (Lithobates sylvaticus) tadpoles raised on reclaimed oil sands wetlands of different ages [young (≤7 yr) vs. old (>7 yr)] and compared data with tadpoles raised on reference (control) wetlands. Metamorphosis was delayed or never occurred in tadpoles raised in young tailings; those exposed to older tailings developed similarly to those in reference wetlands. Thyroid hormone disruption likely played an important role in the metamorphosis delay as the T3:T4 ratio was lowest in tadpoles raised in young, tailings-affected wetlands. Our findings suggest tailings wetlands become less toxic with age, and that these amphibians will be able to complete their life cycle in tailing wetlands that have sufficiently detoxified with age. - This work provides guidance for reclamation of oil sands tailings and shows the usefulness of frogs and caging studies in environmental toxicology.

  9. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    Science.gov (United States)

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.

  10. Thermochemical methods for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Jose Bonifacio, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Nitrogen Generating System (SGN in Portuguese) is a thermochemical method first developed for cleaning and removal of paraffin deposits in production and export pipelines. SGN is based on a redox chemical reaction between two salts which is catalyzed in acidic pH. The reaction is strongly exothermic and its products are nitrogen, sodium chloride, water and heat. All reaction products are harmless to the environment. In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, developed at PETROBRAS Research Center (CENPES), was based on SGN technology which has been adapted for cleaning contaminated sand and recovering of spilled oil. By combining simultaneous effects of the SGN treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand and removed oil can be securely returned to refining process. SGN technology has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in loco right after a contamination event. (author)

  11. Assessment of water removal from oil sands tailings by evaporation and under-drainage, and the impact on tailings consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fernando F.; Sanin, Maria Victoria [Golder Associates Ltd (Canada); Sedgwick, Andrea [Total EandP Canada (Canada); Blum, Jim [JG Blum Consulting Ltd (Canada)

    2011-07-01

    Tailings, left-over material produced during the extraction process that separates bitumen from oil sand, are challenging the oil sands industry. These tailings require large surface areas and contain mature fine tailings, made up of fine clay particles suspended in water, which do not settle within a reasonable timeframe. Consequently, maximizing water removal from oil sands tailings is required to accelerate tailings consolidation. The study described in this paper was developed to measure the water loss from oil sands tailings associated with evaporation and under-drainage, using laboratory drying column tests, and to evaluate the impact of water loss on the process of tailings consolidation and the gain in shear strength for different lift thicknesses. Water removal from the tailings through evaporation occurred at a nearly constant rate, while the rate of under-drainage progressively reduced with time. Additionally, it was found that thinner lifts would have better performance in terms of tailings consolidation and gain in shear strength than thick lifts.

  12. Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Hersikorn, Blair D., E-mail: blair.hersikorn@usask.c [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3 (Canada); Smits, Judit E.G., E-mail: judit.smits@ucalgary.c [Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6 (Canada)

    2011-02-15

    The wet landscape approach to oil sands tailings reclamation in the Athabasca Oil Sands region involves creating wetlands from fluid tailings in mined-out pits. We measured time to metamorphosis, thyroid hormone status, and detoxification enzyme (EROD) induction in Wood frog (Lithobates sylvaticus) tadpoles raised on reclaimed oil sands wetlands of different ages [young ({<=}7 yr) vs. old (>7 yr)] and compared data with tadpoles raised on reference (control) wetlands. Metamorphosis was delayed or never occurred in tadpoles raised in young tailings; those exposed to older tailings developed similarly to those in reference wetlands. Thyroid hormone disruption likely played an important role in the metamorphosis delay as the T3:T4 ratio was lowest in tadpoles raised in young, tailings-affected wetlands. Our findings suggest tailings wetlands become less toxic with age, and that these amphibians will be able to complete their life cycle in tailing wetlands that have sufficiently detoxified with age. - This work provides guidance for reclamation of oil sands tailings and shows the usefulness of frogs and caging studies in environmental toxicology.

  13. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    Science.gov (United States)

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks. PMID:26771587

  14. Royal Society of Canada expert panel report : environmental and health impacts of Canada's oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, P. [Inst. national de sante publique, Quebec, PQ (Canada); Hrudey, S.E. [Alberta Univ., Edmonton, AB (Canada). Faculty of Medicine and Dentistry, Div. of Analytical and Environmental Toxicology; Naeth, M.A. [Alberta Univ., Edmonton, AB (Canada). Faculty of Agricultural, Life, and Environmental Sciences; Plourde, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Economics; Therrien, R. [Natural Sciences and Engineering Research Council of Canada, Ottawa, ON (Canada); Laval Univ., Quebec City, PQ (Canada). Dept. of Geology and Geological Engineering; Van Der Kraak, G. [Guelph Univ., ON (Canada). Dept. of Integrative Biology; Guelph Univ., ON (Canada). College of Biological Science; Xu, Z. [Alberta Univ., Edmonton, AB (Canada). Faculty of Engineering

    2010-12-15

    This expert panel report was commissioned by the Royal Society of Canada to provide a comprehensive evidence-based assessment of the environmental and health impacts of Canada's oil sands industry. The report evaluated the feasibility of land reclamation and the impacts of oil sands contaminants on downstream residents. Health impacts on residents living in the Regional Municipality of Wood Buffalo were assessed, and the impacts on regional water supplies were evaluated. Regional water and ground water quantities were examined, and issues related to tailing pond operations and reclamation were examined. Ambient air quality impacts were assessed, as well as potential impacts of the oil sands industry on greenhouse gas (GHG) emissions. The environmental regulatory performance of operators in the industry was also evaluated. A summary of economic and policy issues related to the industry was also provided. The study identified major gaps in the process of assessment, prevention, and mitigation of the health impacts of oil sands exploitation, as as major indirect health impacts linked to past exploitation activities. 672 refs., 11 tabs., 11 figs. 10 appendices.

  15. The effect of modifying factors on the toxicity of oil sands reclamation sediments to medaka embryo development

    International Nuclear Information System (INIS)

    High levels of alkylated polycyclic aromatic compounds (PACs) and naphthenic acids (NAs) are found in aquatic oilsands reclamation sites in northern Alberta. These compounds have been shown to induce signs of blue sac disease (BSD) in numerous fish species. Slight phytotoxicity was noted in fish embryos exposed to an oil sands derived PAC mixture and ultraviolet (UV) irradiation. Although it is known that NAs are less toxic than PACs for fish embryo development, it is not clear if low levels of NAs affect the toxicity of PACs. This study evaluated the effects of oil sands aquatic reclamation sediments and modifying factors, such as exposure to NA and UV, on the development of Japanese medaka embryos exposed to sediments from a range of oil sands aquatic reclamation strategies and mature fine tailings. Prior to exposure to medaka embryos, oil sands reclamation sediments were mixed with water containing different levels of NAs. For each sediment treatment, replicates were exposed to simulated solar radiation with and without UV. The embryos were checked for deformities and hatch length upon hatching. It was concluded that modifying factors should be considered when choosing reclamation options to reduce toxicity

  16. Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Gillian Z.; Hogan, Natacha S. [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada); Koellner, Bernd [Friedrich Loeffler Institute, Federal Research Institute of Animal Health, Institute of Immunology, Greifswald (Germany); Thorpe, Karen L.; Phalen, Laura J. [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada); Wagner, Brian D. [Department of Chemistry, University of Prince Edward Island, Charlottetown (Canada); Heuvel, Michael R. van den, E-mail: mheuvel@upei.ca [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada)

    2013-01-15

    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5 d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose Multiplication-Sign A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells.

  17. A comparative toxicogenomic investigation of oil sand water and processed water in rainbow trout hepatocytes.

    Science.gov (United States)

    Gagné, F; André, C; Turcotte, P; Gagnon, C; Sherry, J; Talbot, A

    2013-08-01

    The purpose of this study was to compare the expression of gene transcripts involved in toxic stress in rainbow trout hepatocytes exposed to oil sand water (OSW), lixiviate (OSLW), and processed water (OSPW). We pose the hypothesis that the changes in gene expression responses in cells exposed to a simulated oil sand extraction procedure (OSPW) differ from the gene expression responses of OSLW and OS. Rainbow trout hepatocytes were exposed to increasing concentrations of OSW, OSLW, and OSPW for 48 h at 15 °C. Cell viability was assessed by measuring membrane permeability, total RNA levels, and gene expression using an array of 16 genes involved in xenobiotic biotransformation (GST, CYP1A1, CYP3A4, MDR), metal homeostasis and oxidative stress (MT, SOD, and CAT), estrogenicity (VTG, ERβ), DNA repair (LIG, APEX, UNG, and OGG), cell growth (GADD45 and PCNA), and glycolysis (GAPDH). The results showed that the toxicogenomic properties of OSPW differed from those of OSLW and OSW. Gene transcripts that were influenced by OSW and OSLW, and strongly expressed in OSPW, were MT, CAT, GST (induction), CYP1A1, VTG, UNG/OGG, and PCNA. These genes are therefore considered not entirely specific to OSPW but to water in contact with OS. We also found gene transcripts that responded only with OSPW: SOD, GST (inhibition), MDR (inhibition), CYP3A4, GAPDH, GADD45, and APEX. Of these gene transcripts, the ones strongly associated with toxicity (loss of cell viability and RNA levels) were CYP3A4, GST, and GAPDH. Genes involved in DNA repair were also strongly related to the loss of cell viability but responded to both OSLW and OSPW. The observed changes in cell toxicity and gene expression therefore support the hypothesis that OSPW has a distinct toxic fingerprint from OSLW and OSW.

  18. Assessing the potential environmental impact of Athabasca oil sands development in lakes across Northwest Saskatchewan

    Science.gov (United States)

    Ahad, J. M.; Cumming, B. F.; Das, B.; Sanei, H.

    2011-12-01

    The continued development of Canada's Athabasca oil sands poses a significant environmental challenge. Low buffered boreal lakes located downwind of the prevailing eastward wind direction may be threatened by acidification and elevated inputs of airborne contaminants such as polycyclic aromatic hydrocarbons (PAHs). An accurate assessment of the impact that increased levels of bitumen production may have on lakes in the region requires an understanding of the historic variability within these systems prior to at least the past several decades. Here we report concentrations of PAHs, δ13C and δ15N of organic matter (OM), Rock-Eval pyrolysis analyses, and distributions of n-alkanes in dated sediment cores from ten lakes located across NW Saskatchewan. Concentrations of PAHs were relatively low (fires as a principal PAH source. Plots of Hydrogen Index (HI) versus Oxygen Index (OI) fell within a relatively narrow range typical for sediments containing a high content of algal-derived OM. Relatively lower C/N ratios and higher abundances of C17 n-alkane in more recent sediments pointed to an increasingly larger component of algal-derived OM. In all ten lakes δ13C showed gradual upcore depletions that fell within the expected range for fossil fuel combustion (i.e., Suess effect), although this alone may not explain the up to ~3% depletion observed in several of the lakes. In conjunction with the other upcore trends these data may suggest a possible increase in primary productivity over the past several decades in many of the lakes studied. δ15N signatures were more variable, showing upcore increases in some lakes and upcore depletions in others. The increasingly lighter values observed in more recent sediments in some lakes suggest a potential input of depleted bioavailable nitrogen, as might be expected from anthropogenic NOx emissions. This study implies that thus far it appears that oil sands industry related emissions have had only a minor environmental impact on

  19. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    Science.gov (United States)

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-01

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  20. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah

  1. And now for something completely different: condensation induced water hammer and steam assisted gravity drainage in the Athabasca Oil Sands

    International Nuclear Information System (INIS)

    Most people will have been exposed to some aspect of the debate about the Athabasca Oil Sands in North-Eastern Alberta and the significant role that the oil sands are expected to play in supplying conventional fossil fuels. Part of the bitumen is recovered from mines and part is recovered from in situ projects utilizing the Steam Assisted Gravity Drainage Process (SAGD). SAGD utilizes a considerable amount of steam, that is injected into geological formations. Hot water, bitumen and some vapour are recovered from the production wells. With significant steam generation, transmission and injection, there is the very real possibility of condensation induced water hammers. There have been a number of catastrophic failures to date. Two major failures will be highlighted: MEG Energy had a steam distribution line fail at the Christina Lake project. Large parts of the pipe, weighing some 2500 kg, were thrown some 800 meters into the bush during the failure; and, Total had a steam release (blowout) at their Joslyn property due to a loss of caprock containment. A number of causes have been postulated. While it is agreed that there was sufficient downhole pressure to hydraulically fracture the formation, questions have been raised about the contribution that condensation induced water hammer made. The situations that have occurred will be outlined, along with some preliminary thermal hydraulic work. The intent of the paper is to provide interesting background information on the in situ oil sands industry. More importantly, to show some interesting and broader applications of thermalhydraulics developed in the nuclear industry. The expertise developed may have potential markets, with some adaptation, to the oil sands industry. Finally, there has been some discussion about using nuclear power for steam generation in the oil sands. (author)

  2. Electricity/oil substitution

    International Nuclear Information System (INIS)

    The extent to which electricity could substitute for imported oil in Canada is assessed and it is concluded that the bulk of projected oil imports could be displaced. This substitution of electricity for oil could be largely completed within two decades, with existing technology, using Canadian resources. The substitution of electricity for imported oil would result in relatively low energy costs and would stimulate economic growth. Energy self-sufficiency through the substitution of electricity for oil is uniquely a Canadian option; it is not open to other industrial countries. The option exists because of Canada's resources of oil sands for essential liquid fuels, hydraulic and nuclear electrical potential, and natural gas as an interim source of energy. While other countries face an energy crisis due to declining supplies of oil, Canada faces opportunities. The policies of Federal and Provincial governments, as perceived by individual decision makers, will have a major influence on Canada's ability to realize opportunities. (auth)

  3. Energy demand and supply prompts record results for Canadian companies

    International Nuclear Information System (INIS)

    The Canadian energy industry has shown consistent growth in recent years. This trend is expected to continue due high energy prices resulting from concerns regarding energy supply and increased demand for energy. The 2005 annual survey by Pricewaterhouse Coopers states that Canadian energy sectors have seen average revenues grow by 12.4 per cent from $934 million to $1.05 billion for conventional companies and by 30.5 per cent from $285 million to $372 million for income trusts. The survey provides a summary of Canada's energy industry, including crude oil, natural gas, oil and gas services, oil sands and electricity. The financial and operating information of the top 100 Canadian public oil and gas companies is also summarized, along with 31 oil and gas income trusts. The survey found that crude oil prices were influenced by price volatility and record highs in 2004. Price volatility was due to global political tensions, increased demand from China, India and the United States and lower crude supplies in the United States. Production of Canadian crude, including conventional, synthetic crude, heavy crude, natural gas and natural gas from liquids continued to increase in 2004. A strong pricing environment will likely continue, according to industry expectations, due to political instability in the Middle East and OPEC's tight crude supply strategy. Strong pricing is expected to enhance natural gas economics and promote increased capital investment and production. In 2004, the oil and gas service industry drilled a record 21,593 wells in Western Canada and a record 28,630 drilling permits will be issued. In 2004, there was also a strong demand for field services and improvements in many manufacturing firms. Production from Canadian oil sands in 2004 was over 1 million barrels per day. An estimated 174 billion barrels of oil lie within the oil sands, making Canada the second largest country in terms of global proven crude oil reserves. Several oil sands projects have

  4. Innovative well-completion strategy for challenging heavy-oil wells within mature fields requiring sand control in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Huimin, YE; Patarroyo, Mauricio [Mansarovar Energy (Colombia); Lopez, Nicolas; Perez, Carlos [Schlumberger (Colombia)

    2011-07-01

    With the depletion of conventional oil resources and the development of new techniques, exploitation of heavy oil wells has become common in Northern South America. Nevertheless those projects face the great challenge of implementing environment and sand management systems while optimizing the production and reservoir's life. The aim of this paper is to present a completion methodology, its results and impacts on the productivity of the reservoir. Different simulations to select the sand control strategy and sensitivity studies to confirm their decision were carried out in the Moriche field, a heavy-oil mature field located in Colombia. Following the simulation results, stainless steel wool based screens were finally chosen and their implementation led to savings in time and costs and the elimination of downhole issues. The use of the completion methodology presented herein on the Moriche wells led to an overall improvement in productivity.

  5. Potential effects of climate change on hydrology in the oil sands region of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Biftu, G.F.; Beersing, A.; Kalinga, O.A.; Pandit, K.N. [Golder Associates Ltd., Calgary, AB (Canada)

    2007-07-01

    The potential effects of climate change must be incorporated within environmental assessments of oil and gas developments. This paper evaluated the findings of a study examining the potential impacts of climate change on watershed hydrology in the oil sands region of Alberta. Components of the study included a review of trends in climate parameters and their effect on hydrology, as well as statistical analyses of precipitation, temperature and stream flow data of the Athabasca River at both the local and regional scale. The influences of tributary streams were also examined. Results of the study demonstrated that air temperatures have been steadily rising over the past few decades. Recorded annual precipitation also increased during the spring and summer months, and decreased during the winter and fall. Annual mean flows decreased. Results suggested that wet and dry cycles tended to exaggerate trends when only partial segments of the cycles were analyzed. The analysis of flows in the tributary streams indicated a that mean and peak flows were also decreasing. However, an increase in peak winter flows was observed. It was concluded that there is a large degree of uncertainty in the predictions of the hydrologic effects of climate change. 17 refs., 6 tabs.

  6. Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol

    Science.gov (United States)

    Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.

    2015-12-01

    Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi

  7. Exploration and Development and Comprehensive Utilization of World Oil Sands%世界油砂勘探开发和综合利用

    Institute of Scientific and Technical Information of China (English)

    魏旭; 李晶晶

    2012-01-01

    The paper focused on the oil sands as an unconventional energy, had global resources and huge development prospects. Oil sands mining technically had achieved breakthrough, a significant reduction in the mining cost. Through the elaboration of oil sands current development and oil sands geological distribution in several major oil sands reserves rich countries, elaborated the policies of their respective resources and mining. In the simultaneous, analyzed the deficiencies and risks of the oil sands development process, indicated that the future development of the oil sands.%文章重点阐述了油砂作为一种非常规能源,全球资源量丰富,发展前景巨大。目前油砂开采技术上已取得突破,开采成本大幅度降低,通过对油砂的发展现状和全球几个主要油砂储最丰富的国家进行油砂地质分布等阐述,阐明其备自资源量和相关开采等政策,同时分析了油砂发展过程的不足和风险,说明油砂的未来发展趋势。

  8. Sand patties provide evidence for the presence of Deepwater Horizon oil on the beaches of the West Florida Shelf.

    Science.gov (United States)

    McDaniel, L D; Basso, J; Pulster, E; Paul, J H

    2015-08-15

    The ecological consequences of the Deepwater Horizon (DWH) oil spill are both long-term and pervasive. The distribution of toxicity and mutagenicity in the Gulf of Mexico suggests oil from the DWH spill could have contaminated the West Florida Shelf (WFS). We utilized polycyclic aromatic hydrocarbon (PAH) analysis to determine presence and potential origin of oil contaminants in beach sand patty samples. PAH profiles from WFS beaches were statistically significantly similar to DWH contaminated samples from the Northeast Gulf of Mexico (Gulf Shores, AL; Ft. Pickens, FL). Dioctyl sodium sulfosuccinate (DOSS), a major component of Corexit 9500 dispersant was also detected in the sediments. DOSS concentrations ranged from 1.6 to 5.5ngg(-1) dry weight. Additionally, two samples from DWH oil contaminated beaches were acutely toxic and one WFS beach sediment sample was mutagenic. These observations provide support for the theory that DWH oil made its way onto beaches of the WFS.

  9. Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures.

    Science.gov (United States)

    Jautzy, Josué; Ahad, Jason M E; Gobeil, Charles; Savard, Martine M

    2013-06-18

    Evaluating the impact that airborne contamination associated with Athabasca oil sands (AOS) mining operations has on the surrounding boreal forest ecosystem requires a rigorous approach to source discrimination. This study presents a century-long historical record of source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dated sediments from two headwater lakes located approximately 40 and 55 km east from the main area of open pit mining activities. Concentrations of the 16 Environmental Protection Agency (EPA) priority PAHs in addition to retene, dibenzothiophene (DBT), and six alkylated groups were measured, and both PAH molecular diagnostic ratios and carbon isotopic signatures (δ(13)C) of individual PAHs were used to differentiate natural from anthropogenic inputs. Although concentrations of PAHs in these lakes were low and below the Canadian Council of Ministers of the Environment (CCME) guidelines, diagnostic ratios pointed to an increasingly larger input of petroleum-derived (i.e., petrogenic) PAHs over the past 30 years concomitant with δ(13)C values progressively shifting to the value of unprocessed AOS bitumen. This petrogenic source is attributed to the deposition of bitumen in dust particles associated with wind erosion from open pit mines.

  10. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake.

    Science.gov (United States)

    Dompierre, Kathryn A; Lindsay, Matthew B J; Cruz-Hernández, Pablo; Halferdahl, Geoffrey M

    2016-06-15

    Geochemical characteristics of fluid fine tailings (FFT) were examined in Base Mine Lake (BML), which is the first full-scale demonstration oil sands end pit lake (EPL) in northern Alberta, Canada. Approximately 186Mm(3) of FFT was deposited between 1994 and 2012, before BML was established on December 31, 2012. Bulk FFT samples (n=588) were collected in July and August 2013 at various depths at 15 sampling sites. Temperature, solid content, electrical conductivity (EC), pH, Eh and alkalinity were measured for all samples. Detailed geochemical analyses were performed on a subset of samples (n=284). Pore-water pH decreased with depth by approximately 0.5 within the upper 10m of the FFT. Major pore-water constituents included Na (880±96mgL(-1)) and Cl (560±95mgL(-1)); Ca (19±4.1mgL(-1)), Mg (11±2.0mgL(-1)), K (16±2.3mgL(-1)) and NH3 (9.9±4.7mgL(-1)) were consistently observed. Iron and Mn concentrations were low within FFT pore water, whereas SO4 concentrations decreased sharply across the FFT-water interface. Geochemical modeling indicated that FeS(s) precipitation was favoured under SO4-reducing conditions. Pore water was also under-saturated with respect to gypsum [CaSO4·2H2O], and near saturation with respect to calcite [CaCO3], dolomite [CaMg(CO3)2] and siderite [FeCO3]. X-ray diffraction (XRD) suggested that carbonate-mineral dissolution largely depleted calcite and dolomite. X-ray absorption near edge structure (XANES) spectroscopy revealed the presence of FeS(s), pyrite [FeS2], and siderite. Carbonate-mineral dissolution and secondary mineral precipitation have likely contributed to FFT dewatering and settlement. However, the long-term importance of these processes within EPLs remains unknown. These results provide a reference for assessing the long-term geochemical evolution of oil sands EPLs, and offer insight into the chemistry of pore water released from FFT to the overlying water cover. PMID:26974568

  11. Elevated Nitrogen Deposition from Alberta Oil Sands Development Stimulates Phosphatase Activity in Dominant Sphagnum Moss Species

    Science.gov (United States)

    Kashi, N. N.; Wieder, R.; Vile, M. A.

    2013-12-01

    Emissions of NOx associated with Alberta oil sands (AOS) development are leading to locally elevated atmospheric N deposition, in a region where background N deposition has been historically quite low (acid phosphatase activities in living plant capitulum of Sphagnum angustifolium, Sphagnum fuscum, and Sphagnum magellanicum were quantified in June and July using 4-methyumbelliferylphosphate and fluorescence detection of the enzymatically released methylumbelliferone (MUF). Phosphatase activities did not differ with N treatment for S. angustifolium in the bog (p=0.3409) or the poor fen (p=0.0629), or for S. fuscum in the bog (p=0.1950), averaging 35.0 × 0.7, 61.6 × 1.2, and 41.6 × 0.9 μmol MUF/g DWT/hr, respectively. For S. fuscum in the poor fen, phosphatase activities differed between N treatments (p=0.0275), ranging 40.6 × 1.1 μmol MUF/g DWT/hr in the control plots to 73.7 × 2.0 μmol MUF/g DWT/hr in the 5 kg/ha/yr N treatment plots; increasing N deposition did not result in a gradual change in enzyme activity. On the other hand, S. magellanicum phosphatase activities differed between N treatments (p=0.0189) and showed a pattern of generally increasing activity with increasing N deposition (37.4 × 0.5 μmol MUF/g DWT/hr in control plots; 97.9 × 4.5 μmol MUF/g DWT/hr in the 25 kg/ha/yr N treatment plots). The differing phosphatase responses between these dominant Sphagnum species suggest unique differences in nutrient balance and/or microbial activity. Combining the three moss species and weighting by their abundances within each plot (percent cover), phosphatase activities differed between N treatments in the bog (p=0.0388) and the poor fen (p=0.0005), with the latter exhibiting a clear increase in enzyme activity with increasing N deposition, and a doubling of phosphatase activity between the control plots and the 25 kg/kg/yr N deposition treatment. Although the three moss species responded differently, at the plot scale, increasing N deposition

  12. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    Science.gov (United States)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    The Alberta oil sands contain a vast reservoir of fossil hydrocarbons. The extremely viscous bitumen requires significant energy to extract and upgrade to make a fluid product suitable for pipelines and further refinement. The mining and upgrading process constitute a large industrial complex in an otherwise sparsely populated area of Canada. During the ARCTAS project in June/July 2008, while studying forest fire plumes, the NASA DC-8 and P-3B flew through the plume a total of 5 times. Once was a coordinated visit by both aircraft; the other 3 were fortuitous passes downwind. One study has been published about gas emissions from the complex. Here we concentrate on aerosol emissions and aging. As previously reported, there appear to be at least 2 types of plumes produced. One is an industrial-type plume with vast numbers of ultrafine particles, SO2, sulfate, black carbon (BC), CO, and NO2. The other, probably from the mining, has more organic aerosol and BC together with dust-like aerosols at 3 μm and a 1 μm mode of unknown origin. The DC-8 crossed the plume about 10 km downwind of the industrial site, giving time for the boundary layer to mix and enabling a very crude flux calculation suggesting that sulfate and organic aerosols were each produced at about 500 g/s (estimated errors are a factor of 2, chiefly due to concerns about vertical mixing). Since this was a single flight during a project dedicated to other purposes and operating conditions and weather may change fluxes considerably, this may not be a typical flux. As the plume progresses downwind, the ultrafine particles grow to sizes effective as cloud condensation nucei (CCN), SO2 is converted to sulfate, and organic aerosol is produced. During fair weather in the summer, as was the case during these flights, cloud convection pumps aerosol above the mixed layer. While the aerosol plume is difficult to detect from space, NO2 is measured by the OMI instrument an the Aura satellite and the oil sands plume

  13. Dispersants as used in response to the MC252-Spill Lead to higher mobility of polycyclic aromatic hydrocarbons in oil-contaminated Gulf of Mexico sand

    NARCIS (Netherlands)

    Zuijdgeest, A.; Huettel, M.

    2012-01-01

    After the explosion of the Deepwater Horizon oil rig, large volumes of crude oil were washed onto and embedded in the sandy beaches and sublittoral sands of the Northern Gulf of Mexico. Some of this oil was mechanically or chemically dispersed before reaching the shore. With a set of laboratory-colu

  14. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  15. Multicomponent seismic reservoir characterization of a steam-assisted gravity drainage (SAGD) heavy oil project, Athabasca oil sands, Alberta

    Science.gov (United States)

    Schiltz, Kelsey Kristine

    Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a SAGD project in the Athabasca oil sands deposit of Alberta reveals that the SAGD steam chamber has not developed uniformly. Core data confirm the presence of low permeability shale bodies within the reservoir. These shales can act as barriers and baffles to steam and limit production by prohibiting steam from accessing the full extent of the reservoir. Seismic data can be used to identify these shale breaks prior to siting new SAGD well pairs in order to optimize field development. To identify shale breaks in the study area, three types of seismic inversion and a probabilistic neural network prediction were performed. The predictive value of each result was evaluated by comparing the position of interpreted shales with the boundaries of the steam chamber determined through time-lapse analysis. The P-impedance result from post-stack inversion did not contain enough detail to be able to predict the vertical boundaries of the steam chamber but did show some predictive value in a spatial sense. P-impedance from pre-stack inversion exhibited some meaningful correlations with the steam chamber but was misleading in many crucial areas, particularly the lower reservoir. Density estimated through the application of a probabilistic neural network (PNN) trained using both PP and PS attributes identified shales most accurately. The interpreted shales from this result exhibit a strong relationship with the boundaries of the steam chamber, leading to the conclusion that the PNN method can be used to make predictions about steam chamber growth. In this study, reservoir characterization incorporating multicomponent seismic data demonstrated a high predictive value and could be useful in evaluating future well placement.

  16. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  17. Extraction Technology of Oil Sands From Indonesia%印度尼西亚油砂萃取工艺研究

    Institute of Scientific and Technical Information of China (English)

    鲍明福; 肇永辉

    2012-01-01

    From the hot alkali water examination on oil sands - KBK oil sand and LWL oil sand - from the Indonesia PT. Karunia Alam Indonesia industry, the result shows that the separate effect is low, when use "organic solvent extraction + hot water extraction" technology to separate oil from oil sand, the separate effect is high. The percent of oil recovery from oil sand is 96. 9% and 97. 81%, and the tail sand accords with the nation emission standard.%对印尼PT.Karunia Alam Indonesia公司的KBK和LWL两个油砂矿的油砂进行分离研究,实验结果表明:KBK和LWL的油砂热碱水水洗抽提分离效果较差,利用“萃取+水洗”两部分离工艺进行油砂分离试验效果很好,油砂油的收率分别达到96.9%和97.81%,尾砂满足国家排放标准.

  18. Salinity and solvent effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization

    International Nuclear Information System (INIS)

    This study investigated the salinity and solvent effects on the characterization of naphthenic acids (NA) in oil sands. The mass spectra of NA were obtained using an electrospray ionization method combined with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The study showed that while monocarboxylic compounds (CnH2n+zO2) in the z=-4, -6, and -12 of the 2,3 and 6-ring NA in the carbon number range of 13 to 19 were prevalent in the dichloromethane and acetonitrile co-solvent systems, the addition of salt resulted in a reduction of the observed species, the complete elimination of dicarboxylic acids, and an 80 per cent reduction in O3 species with similar carbon number range and z values. The dicarboxylic acids were also less toxic than monocarboxylic acids. Results of the study will be used to refine methods of remediating oil sands and process water contaminated soils.

  19. Flocculation of oil sands tailings using polyacrylamide: influence of hydrolysis degree and pH on settling behavior

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Mark; Bourrel, Maurice [Total Petrochemicals (France); Schaffer, Mark [Total EandP Canada (Canada)

    2011-07-01

    In the oil sands industry, extraction and tailings processes require the use of several chemical additives. Different additives are used in order to reduce the volume of tailings deposits, increase recovery of good quality water and to modify pH. Hydrolyzed polyacrylamides (HPAM) are efficient flocculants for tailings. The aim of this paper is to investigate the impact of pH on dewatering performance of tailings flocculated using HPAM as a function of HPAM hydrolysis degree. Experiments were conducted using HPAM with different hydrolysis degree and four tailing samples; zeta potential measurements were performed to interpret dewatering results. Results showed that hydrolysis degree has an influence on flocculation of tailings when working with different pH values but zeta potential results could not explain the effect of pH and HPAM hydrolysis on flocculation of oil sand tailings.

  20. Environmental, health, safety, and socioeconomic concerns associated with oil recovery from US tar-sand deposits: state-of-knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1982-01-08

    Tar-sand petroleum-extraction procedures undergoing field testing for possible commercial application in the US include both surface (above-ground) and in situ (underground) procedures. The surface tar-sand systems currently being field tested in the US are thermal decomposition processes (retorting), and suspension methods (solvent extraction). Underground bitumen extraction procedures that are also being field tested domestically are in situ combustion and steam-injection. Environmental, health, safety, and socioeconomic concerns associated with construction and operation of 20,000-bbl/d commercial tar-sand surface and in situ facilities have been estimated and are summarized in this report. The principal regulations that commercial tar-sand facilities will need to address are also discussed, and environmental control technologies are summarized and wherever possible, projected costs of emission controls are stated. Finally, the likelihood-of-occurrence of potential environmental, health, and safety problems that have been determined are reviewed, and from this information inference is made as to the environmental acceptability of technologically feasible 20,000-bbl/d commercial tar-sand oil-extraction procedures.

  1. Rapid assessment of toxicity of oil sands process-affected waters using fish cell lines

    International Nuclear Information System (INIS)

    Oil-sand process-affected waters (OSPAW) are being evaluated in acute and chronic toxicity tests with various model organisms to assess the safety of reclamation ponds where OSPAWs are being deposited. Classical toxicity assays typically require large volumes of test waters, take time and are costly. They may also require expensive analytical assays to characterize the contaminants present. Cytotoxicity assays using indigenous and model fish cell lines may prove useful for a prompt comparative toxicity assessment of copious samples retrieved at various temporal and spatial sites at a fraction of cost and time compared to in vivo assays. This presentation reported on a study in which a rapid fluorometric assay using several fish cell lines was used to assess the acute toxicity of 20 water samples including OSPAW. The water samples were mixed with media salts and evaluated directly on cells in culture without prior extraction procedures. The evaluation was done in blind and a consistent pattern of toxicity was observed with the tested cell lines. It was concluded that this approach may minimize the need of using whole organisms for toxicity assessment of OSPAW.

  2. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm.

    Science.gov (United States)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW.

  3. Determination of trace elements in GPC fractions of oil-sand asphaltenes by INAA

    International Nuclear Information System (INIS)

    Asphaltene samples precipitated from Athabasca and Cold Lake oil-sand bitumens were separated into 12 fractions of varying molecular weight by preparative gel permeation chromatography (GPC). Each fraction was then analyzed by analytical GPC and visible spectrometry. Concentrations of As, Ce, Co, Cr, Eu, Ga, Hf, Hg, La, Ni, Sb, Sc, Se, Sm, Tb, Th, U, V, Zn, and Zr in the fractions were determined by neutron activation analysis. Molecular weights of the Athabasca fractions are generally higher than the corresponding Cold Lake fractions. Between 58% and 90% of the metal contents occur in the high molecular weight fractions of both asphaltenes. Except for V and Cr, which show biomodel distributions, all the elements have decreasing concentrations as the molecular weight of the fraction decreases. High molecular weight fractions, constituting about 55% of the whole asphaltenes, contain nonporphyrin bound vanadium compounds. It is estimated that 27% and 31% of V present in Athabasca and Cold Lake asphaltenes respectively occur as porphyrin type compounds, including vanadyl prophyrins released from the asphaltene micelle during the separation and vanadyl porphyrins bearing high-molecular-weight substituents

  4. Pseudomonads biodegradation of aromatic compounds in oil sands process-affected water.

    Science.gov (United States)

    Zhang, Yanyan; McPhedran, Kerry N; Gamal El-Din, Mohamed

    2015-07-15

    Aromatic naphthenic acids (NAs) have been shown to be more toxic than the classical NAs found in oil sands process-affected water (OSPW). To reduce this toxicity, Pseudomonas fluorescens and Pseudomonas putida were used to determine their ability to biodegrade aromatic compounds including treatments considering the impacts of external carbon and iron addition. Results showed that with added carbon P. fluorescens and P. putida have the capability of biodegrading these aromatics. In the presence of external carbon, gene expression of a functional PAH-ring hydroxylating dioxygenase (PAH-RHDα) was determined through reverse transcription real-time PCR, suggesting active degradation of OSPW aromatic compounds. Although no significant classical NAs removal was observed during this process, toxicity was reduced by 49.3% under optimal conditions. OSPW toxicity was eliminated with the combination of ozonation at a dose of 80 mg/L followed by biodegradation, indicating that it is a promising combined OSPW treatment approach for the safe discharge to the aquatic environment.

  5. Development of a bioassay using walleye (Sander vitreus) to assess the toxicity of oil sands sediments

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, D.; Yuan, H.; Tumber, V.; Parrott, J. [Environment Canada, Ottawa, ON (Canada); Raine, J. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    This study examined the effects of sediments from the Athabasca oil sands area on fish development and survival. Walleye (Sander vitreus) which inhabit the Athabasca River are exposed to natural sources of bitumen eroding from the McMurray formation. This study described the design and implementation of a daily-renewal bioassay to evaluate the potential effects of toxicants on walleye development. Eggs were collected and fertilized with milt from spawning wild walleye captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish. The walleye embryos were fed brine shrimp daily after hatching and the developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length between treatments. Organics concentrations in fish tissues and water were measured when possible. Fathead minnows and northern pikes will also be exposed to the same sediments in order to compare the relative sensitivity of the three species.

  6. Preliminary feasibility studies in times of rapid cost escalation. [Oil shale and tar sand industries

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, E.D.; Moll, A.J.

    1976-01-01

    Not the least of the problems delaying the development and commercialization of synthetic fuel processes has been the extraordinary escalation of cost estimates by factors of up to ten in the past eight years. This study identifies and analyzes some of the most important contributing factors that have converged in the last few years. These factors include overoptimism and ill-defined project scope in the early stages, tightening environmental controls, difficulties in obtaining raw materials and fuels, general inflationary trends, ''hyperinflation'' of the costs of critical equipment, local labor shortages, and increased times required for procurement and construction. Cost increases have been particularly dramatic for ''offsites,'' liberally defined as nonprocess related parts of projects. Case histories of oil shale and tar sand developments are analyzed. Learning curves of costs during development and commercial use are studied. The analysis suggests that the worst of the extraordinary increases (above general inflationary trends) are probably over. Criteria to judge the state of development of processes are given, and some procedures to avoid future pitfalls are suggested.

  7. Development of a bioassay using walleye (Sander vitreus) to assess the toxicity of oil sands sediments

    International Nuclear Information System (INIS)

    This study examined the effects of sediments from the Athabasca oil sands area on fish development and survival. Walleye (Sander vitreus) which inhabit the Athabasca River are exposed to natural sources of bitumen eroding from the McMurray formation. This study described the design and implementation of a daily-renewal bioassay to evaluate the potential effects of toxicants on walleye development. Eggs were collected and fertilized with milt from spawning wild walleye captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish. The walleye embryos were fed brine shrimp daily after hatching and the developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length between treatments. Organics concentrations in fish tissues and water were measured when possible. Fathead minnows and northern pikes will also be exposed to the same sediments in order to compare the relative sensitivity of the three species.

  8. Isotopic Evidence for Oil Sands Petroleum Coke in the Peace-Athabasca Delta.

    Science.gov (United States)

    Jautzy, Josué J; Ahad, Jason M E; Gobeil, Charles; Smirnoff, Anna; Barst, Benjamin D; Savard, Martine M

    2015-10-20

    The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region.

  9. A bioassessment of lakes in the Athabasca Oil Sands Region, Alberta, using benthic macroinvertebrates

    Directory of Open Access Journals (Sweden)

    Keith M. SOMERS

    2010-08-01

    Full Text Available Emissions of sulphur oxides, nitrogen oxides and other pollutants have increased in the Athabasca Oil Sands Region (AOSR in Alberta, Canada. Atmospheric pollutants impact aquatic communities through a number of processes, but due to a lack of regional monitoring programs potential biological impacts have not been assessed. In this study, a bioassessment was conducted using approaches borrowed from a variety of protocols to establish a baseline dataset, determine appropriate methodologies, and to assess the current impact of emissions on benthic macroinvertebrate (BMI communities in the AOSR. As a result, 32 lakes, including 5 test lakes located in a modelled high deposition region, were sampled for water chemistry and BMI. The Reference Condition Approach (RCA was used because a baseline dataset does not exist and data were evaluated using three separate statistical techniques. All of the statistical methods used: One Sample T-Tests, Multivariate Analysis of Variance (MANOVA and Test Site Analysis (TSA, showed that BMI assemblages in test lakes differed from BMI assemblages in reference lakes. Traditional statistics classified all 5 test lakes as "significantly impaired" whereas TSA identified 3 of the 5 test lakes as only potentially impaired and 2 lakes were in "reference condition". The variability in lake attributes present challenges in interpreting BMI data and establishing an accurate biomonitoring program in the AOSR which need to be addressed in future assessment studies.

  10. The Alberta Oil Sands Community Exposure and Health Effects Assessment Program : methods report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The Alberta Oil Sands Community Exposure and Health Effects Assessment Program involved the development of a holistic approach to the study of personal exposure and the potential health impacts of airborne contaminants including volatile organic compounds (VOCs), sulphur dioxide (SO{sub 2}), nitrogen dioxide (NO{sub 2}), ozone (O{sub 3}) and particulates (both PM10 and PM2.5). Volunteer residents from Fort McMurray, Alberta were recruited to participate in neurocognitive tests and a health and nutrition survey. In addition, the local community identified several priority contaminants which were highlighted during a public hearing of the Alberta Energy and Utilities Board in relation to Syncrude's Mildred Lake Development Project. The approach to the study was based on the direct measurement of all routes of exposure to the contaminants (breathing, ingestion and skin contact), direct measurement of biomarkers, and daily logs of participant's activities. The choice of biomarkers was based on the ability of the laboratory to measure low levels of relevant biological markers, the most appropriate media for measuring the markers, and the burden placed on each volunteer. The final set of biological measures of exposure included trace metals (arsenic, cadmium, lead and uranium) nicotine, and metabolites of the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes). The objective was to determine if chronic or occupational exposure to these contaminants cause structural alterations in the respiratory system that compromise oxygen absorption and lung elasticity. 82 refs., 14 tabs., 15 figs., 3 appendices.

  11. Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Susanjib; Kumar, Amit [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2010-02-15

    In this study, forest residues (limbs, tops, and branches) and straw (from wheat and barley) are considered for producing biohydrogen in Western Canada for upgrading of bitumen from oil sands. Two types of gasifiers, namely, the Battelle Columbus Laboratory (BCL) gasifier and the Gas Technology Institute (GTI) gasifier are considered for biohydrogen production. Production costs of biohydrogen from forest and agricultural residues from a BCL gasification plant with a capacity of 2000 dry tonnes/day are 1.17 and 1.29/kg of H{sub 2}, respectively. For large-scale biohydrogen plant, GTI gasification is the optimum technology. The delivered-biohydrogen costs are 2.19 and 2.31/kg of H{sub 2} at a plant capacity of 2000 dry tonnes/day from forest and agricultural residues, respectively. Optimum capacity for biohydrogen plant is 3000 dry tonnes/day for both residues in a BCL gasifier. In a GTI gasifier, although the theoretical optimum sizes are higher than 3000 dry tonnes/day for both feedstocks, the cost of production of biohydrogen is flat above a plant size of 3000 dry tonnes/day. Hence, a plant at the size of 3000 dry tonnes/day could be built to minimize risk. Carbon credits of 119 and 124/tonne of CO{sub 2} equivalent are required for biohydrogen from forest and agricultural residues, respectively. (author)

  12. Isotopic Evidence for Oil Sands Petroleum Coke in the Peace-Athabasca Delta.

    Science.gov (United States)

    Jautzy, Josué J; Ahad, Jason M E; Gobeil, Charles; Smirnoff, Anna; Barst, Benjamin D; Savard, Martine M

    2015-10-20

    The continued growth of mining and upgrading activities in Canada's Athabasca oil sands (AOS) region has led to concerns about emissions of contaminants such as polycyclic aromatic hydrocarbons (PAHs). Whereas a recent increase in PAH emissions has been demonstrated within around 50 km of the main center of surface mining and upgrading operations, the exact nature of the predominant source(s) and the geographical extent of the deposition are still under debate. Here, we report a century-long source apportionment of PAHs using dual (δ(2)H, δ(13)C) compound-specific isotope analysis on phenanthrene deposited in a lake from the Athabasca sector of the Peace-Athabasca Delta situated ∼150 km downstream (north) of the main center of mining operations. The isotopic signatures in the core were compared to those of the main potential sources in this region (i.e., unprocessed AOS bitumen, upgrader residual coke, forest fires, coal, gasoline and diesel soot). A significant concurrent increase (∼55.0‰) in δ(2)H and decrease (∼1.5‰) in δ(13)C of phenanthrene over the last three decades pointed to an increasingly greater component of petcoke-derived PAHs. This study is the first to quantify long-range (i.e., >100 km) transport of a previously under-considered anthropogenic PAH source in the AOS region. PMID:26404505

  13. A greenhouse study of grass response on composite tailings discharged from Alberta oil sands mine

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shihong; Wang, Bing [Klohn Crippen Berger Ltd (Canada); Sego, David [Department of Civil and Environmental Engineering, University of Alberta (Canada); Naeth, Anne [Department of Renewable Resources, University of Alberta (Canada)

    2011-07-01

    This study presents an evaluation of the survival and growth of five plant species directly seeded using hydro seeding with mulch, modified broadcast seeding and fresh discharged composite tailings (CT) slurry seeding techniques. The study discusses a greenhouse experiment on grass response that was conducted on composite tailings discharged from an Alberta oil sands mine. The five grass species: bluejoint (Calamagrostis canadensis), creeping red fescue (Festuca rubra), hairy wild rye (Elymus innovatus beal), northern wheatgrass (Agropyron dasystachyum) and slender wheatgrass (Agropyron trachycaulum) were selected for the study based on plant growth and site climatic conditions. The CT mixture was paced in a 4L plastic pail with no drainage at the bottom to prevent water loss. The experimental results indicated broadcast seeding and hydro seeding with mulch and discharge of CT slurry containing seeds can be applied for seeding grass on vast CT deposits. The results also showed a substantial benefit from dewatering CT as a first step towards sustainable development and environmental protection.

  14. Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Surf-zone integrated alongshore potential flux for oil-sand balls

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates...

  15. Receptor Modeling of Epiphytic Lichens to Elucidate the Sources and SpatialDistribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    Science.gov (United States)

    The contribution of inorganic air pollutant emissions to atmospheric deposition in the Athabasca Oil Sands Region (AOSR) of Alberta, Canada was investigated in the surrounding boreal forests, using a common epiphytic lichen bio-indicator species (Hypogymnia physodes) and applyi...

  16. Monitoring the Effects of Oil Sands Process-Affected Water (OSPW) on Thecamoebian Assemblages: An Experimental Approach

    Science.gov (United States)

    Christie, D. G.; McCarthy, F. F.; Penner, T.; MacKinnon, M. M.

    2009-05-01

    Thecamoebian (testate amoeba) assemblages have been shown to respond over short time periods to environmental conditions in aquatic reclamation options under development at oil sands operations in northeastern Alberta. This makes them a useful bio-monitoring tool for assessing reclamation success. Thecamoebian responses to Oil Sands Process Water (OSPW) have been monitored in the field at lacustrine and wetland test sites established by Syncrude Canada Ltd. and Suncor Energy Ltd. These field studies have confirmed that the generation times of testate amoebas is sufficiently rapid to permit the construction of a controlled laboratory experiment to be completed within one year, where controlled exposures of a natural assemblage of thecamoebians to OSPW can be undertaken to better understand the community responses to stressors We intend to culture these protists in the lab and monitor their response to different concentrations of OSPW in a controlled environment. Survival and changes in relative community composition (difflugiids vs. centropyxids) will be used to establish the dilution of OSPW in which thecameobians can survive and examine how a natural assemblage changes over time in response to increased concentrations of OSPW. This will assist in reclamation management in the Oil Sands region of Alberta.

  17. 油砂燃烧过程的TG-DSC分析%Investigation of oil sand combustion by simultaneous thermal analyzer

    Institute of Scientific and Technical Information of China (English)

    贾春霞; 刘洪鹏; 柏静儒; 秦宏; 王擎

    2013-01-01

    Experiments on combustion of Indonesian oil sands was conducted on thermogravimetric analyzer. The obtained DTG curves revealed that combustion reactions occurred at four different stages in all the samples:low-temperature,medium-temperature,transitional and high-temperature section. The experimental DSC peaks were effectively separated into multiple Gaussian peaks. At last,the most probable kinetic mechanism functions of oil sand pseudo-components were determined according to the Malek’s method,which provided theoretical foundation for further effective exploitation and economical application of oil sands.%  采用热重分析仪,对印度尼西亚油砂进行了燃烧特性试验。由热重DTG曲线可知,油砂燃烧过程分为4个阶段:燃烧低温、中温、过渡及高温段。采用“非对称高斯多峰拟合法”对油砂燃烧放热峰进行分离拟合,将实验DSC曲线复杂峰分离成为多个高斯函数峰。并结合Malek法确定了油砂燃烧时其伪组分的最概然机理函数。为油砂的有效开发与经济利用提供了理论依据。

  18. Modified biopolymers as sorbents for the removal of naphthenic acids from oil sands process affected water (OSPW).

    Science.gov (United States)

    Arshad, Muhammad; Khosa, M A; Siddique, Tariq; Ullah, Aman

    2016-11-01

    Oil sands operations consume large volumes of water in bitumen extraction process and produce tailings that express pore water to the surface of tailings ponds known as oil sands process-affected water (OSPW). The OSPW is toxic and cannot be released into the environment without treatment. In addition to metals, dissolved solids, dissolved gases, hydrocarbons and polyaromatic compounds etc., OSPW also contains a complex mixture of dissolved organic acids, referred to as naphthenic acids (NAs). The NAs are highly toxic and react with metals to develop highly corrosive functionalities which cause corrosion in the oil sands processing and refining processes. We have chemically modified keratin biopolymer using polyhedral oligomeric silsesquioxanes (POSS) nanocages and goethite dopant to unfold keratinous structure for improving functionality. The untreated neat keratin and two modified sorbents were characterized to investigate structural, morphological, dimensional and thermal properties. These sorbents were then tested for the removal of NAs from OSPW. The NAs were selectively extracted and quantified before and after sorption process. The biosorption capacity (Q), rejection percentage (R%) and isotherm models were studied to investigate NAs removal efficiency of POSS modified keratin biopolymer (PMKB) and goethite modified keratin biopolymer (GMKB) from aliquots of OSPW.

  19. Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand.

    Science.gov (United States)

    Balasubramaniyam, Anuluxshy; Harvey, Patricia J

    2014-11-01

    The choice of plant for phytoremediation success requires knowledge of how plants respond to contaminant exposure, especially their roots which are instrumental in supporting rhizosphere activity. In this study, we investigated the responses of plants with different architectures represented by beetroot (Beta vulgaris), a eudicot with a central taproot and many narrower lateral roots, and tall fescue (Festuca arundinacea), a monocot possessing a mass of threadlike fibrous roots to grow in crude oil-treated sand. In this paper, scanning electron microscopy was used to investigate modifications to plant root structure caused by growth in crude oil-contaminated sand. Root structural disorders were evident and included enhanced thickening in the endodermis, increased width of the root cortical zone and smaller diameter of xylem vessels. Inhibition in the rate of root elongation correlated with the increase in cell wall thickening and was dramatically pronounced in beetroot compared to the roots of treated fescue. The latter possessed significantly fewer (p oil-treated sand than beetroot and, thus, a potential for long-term phytoremediation.

  20. Understanding ozone formation and the radical budget during oil sands plume transport in the Athabasca region of Alberta

    Science.gov (United States)

    Moussa, S. G.; Leithead, A.; Li, S. M.; Wang, D. K.; O'brien, J.; Mittermeier, R. L.; Gordon, M.; Staebler, R. M.; Liu, P.; Liggio, J.

    2015-12-01

    The sources of ozone and hydroxyl radicals (OH) in the Alberta oil sands (OS) region have not previously been well characterized. In the summer of 2013, airborne measurements of various volatile organic compounds (VOCs), nitrogen oxides (NOx = NO2+NO) and ozone were made in the Athabasca OS region between August 13 and September 7, 2013. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) and whole air samples were used to measure VOCs. A box model incorporating the Master Chemical Mechanism (MCM v3.3), was constrained by measured chemical species and meteorological parameters and used to simulate the evolution of an OS plume. In doing so, an improved understanding of the chemical factors controlling the radical budget and the evolution of ozone in oil sands plumes is achieved. Our results indicate that approximately 20% of the in-plume generated OH radicals are derived from primary sources (HCHO, O3 and HONO photolysis). The remaining OH is derived from the recycling of hydroperoxyl radical (HO2). The HO2 and alkyl peroxyl radical (RO2) chemistry leads to 35% of the ozone formation in the plume, while the main sink for ozone in the plume was via reactions with alkenes (anthropogenic and biogenic). The results of this work will help to characterize ozone formation and the factors influencing its atmospheric fate in the oil sands region.

  1. Long term in-situ behaviour of oil sands fine tailings in Suncor's pond 1A

    Energy Technology Data Exchange (ETDEWEB)

    Sean Wells, Patrick [Suncor Energy, Inc (Canada)

    2011-07-01

    Suncor Energy Inc. oil sands operations have been ongoing north of Fort McMurray, Alberta, since 1966. A fluid fine tailings (FFT) storage and flow-through recycle water pond, Pond 1A, became operational in the 1970's. This paper presents the long-term in-situ behavior of oil sands fine tailings in Suncor's Pond 1A. In 1977, the first FFT sampling program was conducted and was followed by periodic programs through to 2010. For over 25 years, volumes of FFT in the form of mature fine tailings (MFT) at significant depths, and in relatively undisturbed conditions, have been stored at this pond. The unique site of the pond has allowed the long-term behavior of FFT in oil sands landscapes to be better understood; study has led to potential storage and material strength gain projections. It can be concluded that further work is needed and this site will be useful in the on-going efforts to improve tailings operations in the industry.

  2. review of distribution and exploitation of oil sands resources%油砂资源分布及开采技术综述

    Institute of Scientific and Technical Information of China (English)

    冯全中

    2015-01-01

    油砂是一种非常规石油资源,其开采开发技术主要有露天开发、稠油提取和油砂干馏等。本文论述了油砂资源的分布、开采和分离方法。%The development technologies used for oil sands,an unconventional oil resources,include surface working,heavy oil extraction and oil sands distillation.This paper describes the distribution,recovery and separation of the resource.

  3. Canada's toxic tar sands : the most destructive project on earth

    International Nuclear Information System (INIS)

    This document addressed the environmental problems associated with tar sands development in Alberta, with particular reference to toxicity problems associated with global warming and the impending destruction of the boreal forest. The authors cautioned that the tar sand projects are highly destructive, leaving downstream toxics equivalent to that of a massive slow motion oil spill that has the potential to poison people. Negligent oversights by the government regarding the impact of tar sands development were also discussed, with reference to toxics on site; toxics downwind; and toxics down the pipe. The report also provided information on the future of tar sands development and global warming in Canada. It included a discussion of reverse alchemy; Canada's failed climate politics; a tar sands tax; and taking responsibility. Last, the report addressed toxic enforcement, including the Fisheries Act; Canadian Environmental Protection Act; Canadian Environmental Assessment Act; and Alberta law. It was concluded that while it is a stretch to believe the tar sands can truly be sustainable, there is a great deal that can be done to clean it up. The authors recommended that new tar sands approvals should wait until certain reform elements are implemented, such as passing a real carbon cap; using dry tailings; requiring wildlife offsets; cleaning up refineries and upgraders; ensuring Aboriginal control and benefit; and having regulation and independent monitoring. 104 refs., 6 figs

  4. The role of the upstream oil and gas industry in the Canadian economy and the macroeconomic impacts of increased taxation

    International Nuclear Information System (INIS)

    The direct, indirect and overall impacts of the upstream oil and gas industry on the Canadian economy and the impact of increased taxation on the industry and the overall economy was assessed. The industry's value of production in 1995 was $25 billion, two-thirds of which were exports that contributed to Canada's trade surplus. In the same year, the industry also spent more than $10 billion in exploration and development. About five per cent of Canadian gross domestic product (GDP) and three per cent of national employment can be traced to the upstream oil and gas industry, therefore, increased taxation on the industry would have significant impacts on overall economic activity. For the purposes of this analysis, three assumptions were made: (1) a one-time $100 million tax increase on the industry, (2) the tax revenue to go toward government debt reduction, and (3) the reduction in industry net revenue to produce an investment impact equal with the average behaviour of the industry in recent years. Given these factors, it was concluded that a one-time $100 million tax increase could reduce national GDP by $250 million and employment by 3000 jobs. The balance of payments impact would be about -$75 million. Once factors related to expectations and capital mobility have been factored in, the negative macroeconomic impacts could be even greater. 6 tabs., 24 figs

  5. Could Poor Fens BE More Sensitive than Bogs to Elevated N Deposition in the Oil Sands Region of Northern Alberta?

    Science.gov (United States)

    Wieder, R. K.; Vile, M. A.; Scott, K. D.

    2015-12-01

    Bogs and fens cover 29% of the 140,000 km2 Oil Sands Administrative Area (OSAA) in northern Alberta, a region characterized by quite low background N deposition (1-2 kg/ha/yr). However, development of the oil sands resource has led to increasing emission of nitrogen oxides, which are then returned to regional ecosystems as elevated atmospheric N deposition. Given the nutrient deficient nature of bogs and poor fens, elevated N deposition from oil sands development could potentially affect peatland ecosystem structure and function. To evaluate the ecosystem-level effects of N deposition, since 2011, we have experimentally applied N to a bog and a poor fen near Mariana Lakes, Alberta, located far enough from the OSAA to be unaffected by oil sands emissions. Treatments include simulated rainfall equivalent to N deposition of 0, 5, 10, 15, 20, and 25 kg/ha/yr, plus control plots receiving no added water (3 replicate plots per site per N treatment). Concentrations of NH4+-N, NO3- N, and DON at the top of the peatland water table did not increase with increasing N deposition, averaging 0.61, 0.09, and 1.07 mg/L, respectively, in the bog, and 0.53, 0.10, and 0.81 mg/L, respectively, in the poor fen. Ericaceous shrub abundance increased with increasing N deposition in both the bog and the poor fen, although plot-scale greenness (hand-held spectral measurement of the Normalized Difference Red Edge (NDRE) index) increased with N deposition in the poor fen, but not in the bog. Segmented regression indicated that in the poor fen, at N deposition above 14-16 kg/ha/yr, total microbial, bacterial, and fungal biomass in the top 5 cm of peat increased with N deposition, with no effect at lower N deposition. No effect of N deposition on microbial, bacterial, or fungal biomass was observed at 5-10 cm in the poor fen, or at either 0-5 or 5-10 cm in the bog. In the poor fen, microbial, bacterial, and fungal biomass increased with NDRE, but the effect was not significant in the bog

  6. Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples.

    Science.gov (United States)

    Headley, J V; Peru, K M; Mohamed, M H; Frank, R A; Martin, J W; Hazewinkel, R R O; Humphries, D; Gurprasad, N P; Hewitt, L M; Muir, D C G; Lindeman, D; Strub, R; Young, R F; Grewer, D M; Whittal, R M; Fedorak, P M; Birkholz, D A; Hindle, R; Reisdorph, R; Wang, X; Kasperski, K L; Hamilton, C; Woudneh, M; Wang, G; Loescher, B; Farwell, A; Dixon, D G; Ross, M; Pereira, A Dos Santos; King, E; Barrow, M P; Fahlman, B; Bailey, J; McMartin, D W; Borchers, C H; Ryan, C H; Toor, N S; Gillis, H M; Zuin, L; Bickerton, G; Mcmaster, M; Sverko, E; Shang, D; Wilson, L D; Wrona, F J

    2013-01-01

    This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on- and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high- and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen- (i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted

  7. Dissolved organic carbon in a constructed and natural fens in the Athabasca oil sands region, Alberta, Canada.

    Science.gov (United States)

    Khadka, Bhupesh; Munir, Tariq M; Strack, Maria

    2016-07-01

    In the Athabasca oil sands region near Fort McMurray, Alberta, Canada, peatlands are disturbed extensively in order to recover bitumen below the surface. Hence, following oil sands mining, landscape reclamation is a part of the mine closure process in order to return functioning ecosystems, including peatlands, to the region. This study was conducted at a pilot fen reclamation project and three other diverse natural (poor, rich and saline) fens in the oil sands region during the growing seasons of 2013 and 2014, the first and second year post-construction. Ecosystem functioning of the constructed fen (CF) was evaluated with reference to natural fens based on pore water dissolved organic carbon (DOC) concentration and chemistry. Significant variation of DOC concentration among the reference fens was observed, varying from an average of 42.0mg/L at the rich fen (RF) to 70.8mg/L at the saline fen (SF). Dissolved organic carbon concentration at CF was significantly lower than at all reference fens, but increased significantly over the first two years. Seasonal variation of DOC concentration was also observed in each site with concentration increasing over the growing season. At CF, DOC was comprised of larger, more humic and complex aromatic compounds than reference fens in the first year post-construction based on its spectrophotometric properties; however, these differences were reduced in the second year. Initial DOC concentration and chemistry at CF was indicative of the source being largely the peat placed during fen construction. Changes in chemistry and increasing concentration of DOC in the second growing season likely resulted from increasing inputs from plants established on site. These results suggest that DOC concentration is likely to increase in future at CF as vascular plant productivity increases and in response to salinity sourced from tailing sand used to construct the catchment. PMID:27037879

  8. Fine root dynamics in lodgepole pine and white spruce stands along productivity gradients in reclaimed oil sands sites.

    Science.gov (United States)

    Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason

    2015-10-01

    Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes. PMID:26668730

  9. Second to none: Brazilian, Mexican oil giants turn to Canadian satellite system for eagle eye on offshore spills

    Energy Technology Data Exchange (ETDEWEB)

    Cramp, B.

    2001-07-02

    The use by Petrobras of Canada's RADARSAT-1 earth observation satellite imaging system to determine the characteristics of the developing environmental disaster when the world's largest oil rig afloat, owned by Petrobras, was sinking of the Brazilian coast following a series of three explosions which seriously damaged the rig. RADARSAT-1 was pressed into service to determine the fate of the oil slick in terms of where it was heading and how soon it would get there, information that is vital to directing clean-up efforts to minimize the damage. RADARSAT-1 was also involved in responding to a tanker oil spill in January 2001 that threatened the Galapagos Islands off the coast of Ecuador. PEMEX, the Mexican state oil company also uses RADARSAT-1 satellite imagery to monitor its nearly 400 marine oil operations in the Gulf of Mexico. RADARSAT-1, launched in 1995 by the Canadian Space Agency, is well known for its reliability, regularity and rapidity. It is equipped with microwave sensors, which can be relied on to produce usable imagery 96 to 97 per cent of the time. It can acquire imagery day or night under any atmospheric conditions through its ability to penetrate darkness, cloud, rain or haze. This is crucial when tracking oil slicks in the ocean where clouds and haze are common, especially near or in the equatorial zones. RADARSAT-1 works by transmitting microwave energy, bouncing it off the earth's surface and back to the satellite. The returning signals are received and stored by the satellite as data. Oil slicks as small as 100 metres long can be detected from space by RADARSAT-1.

  10. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  11. Reclamation of peat-based wetlands affected by Alberta, Canada's oil sands development

    Science.gov (United States)

    Foote, Lee; Ciborowski, Jan; Dixon, D. George; Liber, Karsten; Smits, Judit

    2013-04-01

    The ability to construct or reclaim functional peat-based wetlands as a replacement for those lost to development activity is uncertain. Oil sands development in northern Alberta, Canada will ultimately result in the removal of over 85 km2 of peat-based wetlands. To examine potential replacement of these lost peatlands we compared four treatments assigned to 16 known-age wetlands where we followed plant community, carbon dynamics, water quality, invertebrates and top predators for 5 years. Key questions followed by a synopsis of findings include: (1) Will wetland communities become more natural with age? - Yes, however industrial effluents of salinity and napthenates will slow succession and may truncate development compared to natural systems; (2) Can community succession be accelerated? - Yes, the addition of carbon-rich soils can facilitate development in some zones but cautions are raised about a "green desert" of vigorous plant stands with low insect and vertebrate diversity; (3) Is productivity sustainable? - Maybe, limitations of water chemistry (salinity and napthenates) and hydrologic regime appear to play large roles; (4) Will production support top predators? Sometimes; insectivorous birds, some small fish and a few amphibians persisted under all except the most saline and napthenate-enriched sites; (5) What is the role of the compromised water quality in reclamation? - Reduced diversity of plants, insects and vertebrates, reduced plant physiological efficiency and thus slower rates of reclamation. It is axiomatic and well demonstrated throughout Europe that it is easier and more cost effective to protect peatlands than it is to reclaim or create them. This is complicated, though, where mineral or property values soar to over 1 million per hectare. Industrial planners, governments and the public need to understand the options, possibilities, time frames and costs of peatland replacement to make the best land use decisions possible. Our research provides

  12. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    International Nuclear Information System (INIS)

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo2C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis

  13. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    Science.gov (United States)

    Liu, Xingchen; Salahub, Dennis R.

    2015-12-01

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product - cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo2C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  14. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingchen; Salahub, Dennis R. [Department of Chemistry, Institute for Quantum Science and Technology, and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 (Canada)

    2015-12-31

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  15. Palaeolimnological assessment of lake acidification and environmental change in the Athabasca Oil Sands Region, Alberta

    Directory of Open Access Journals (Sweden)

    Sergi PLA

    2010-08-01

    Full Text Available Exploitation of the Athabasca Oil Sands has expanded hugely over the last 40 years. Regional emissions of oxidised sulphur and nitrogen compounds increased rapidly over this period and similar emissions have been linked to lake acidification in other parts of North America and Europe. To determine whether lakes in the region have undergone acidification, 12 lakes within the Regional Municipality of Wood Buffalo and the Caribou Mountains were selected to cover chemical and spatial gradients and sediment cores were obtained for palaeolimnological analyses including radiometric dating, diatom analysis, isotopic analysis of bulk sediment 13C and 15N, and spheroidal carbonaceous particles (SCPs. All lake sediment cores show evidence of industrial contamination based on SCPs, but there is no clear industrial signal in stable isotopes. Most lakes showed changes in diatom assemblages and sediment C:N ratios consistent with nutrient enrichment over various timescales, with potential drivers including climatic change, forest fires and anthropogenic nitrogen deposition. Only one of the 12 lakes investigated showed strong evidence of acidification with a decline in diatom-inferred pH from 6.3 to 5.6 since 1970 linked to increasing relative abundances of the acidophilous diatom species Actinella punctata, Asterionella ralfsii and Fragilariforma polygonata. Analysis of mercury (Hg in the acidified lake showed increasing sediment fluxes over the last 20 years, a possible indication of industrial contamination. The acidified lake is the smallest of those studied with the shortest residence time, suggesting a limited capacity for neutralisation of acid inputs in catchment soils or by inlake processes.

  16. Influence of In-Situ Oil Sands Development on Caribou (Rangifer tarandus Movement.

    Directory of Open Access Journals (Sweden)

    Tyler Muhly

    Full Text Available In-situ oil sands development (ISD involves a network of facilities, wells, roads and pipelines to extract and transport subsurface bitumen. This technology is rapidly expanding and there is uncertainty whether ISDs restrict animal movement, leading to increased extinction probabilities for some wide-ranging species. Here we test for effects of simulated future (i.e., 50 years from now and current ISDs on simulated movements of woodland caribou (Rangifer tarandus, a threatened species across North America. In simulations of future scenarios, we varied the spacing and permeability of ISDs and the presence/absence of protected areas. Permeability was measured as the number of times simulated caribou crossed ISDs with different levels of modelled permeability. We estimated the effects of these factors on caribou step length and annual home range size, key metrics of small and large spatiotemporal scales of movement, respectively. Current caribou crossings of above-ground pipeline features of ISDs were measured using camera traps and compared to expected caribou crossing rates based on present-day caribou movement simulations. Current crossing rates were evaluated within the context of predicted future crossing success rates necessary to maintain caribou step lengths and home ranges. With few exceptions, permeability across ISDs was the main factor affecting caribou movement, more so than spacing between developments or the presence of protected areas. However, minimal permeability (crossing rates of c. 15% to 60%, relative to an undisturbed site was needed to maintain existing home range size and step lengths. The effect of permeability on home range size and step length was non-linear, suggesting that small increases in permeability would provide a disproportionately greater benefit to caribou movement. Our predictions demonstrate that maintaining permeability across ISDs is more important than spacing between leases or including protected areas

  17. A SIMPLE ANALYTICAL MODEL FOR PREDICTING SAND PRODUCTION IN A NIGER DELTA OIL FIELD

    Directory of Open Access Journals (Sweden)

    Isehunwa S.O

    2010-09-01

    Full Text Available Sand production, which is predominant in the Niger Delta, is a growing concern in the petroleum industry because of the associated technical, operational and economic challenges. The development of sanding predictive tools and effective management strategies has received much attention in literature. However, most of the publishedtheoretical models have been validated with laboratory or data obtained from petroleum provinces other than the Niger Delta. This work developed a simple analytical model for predicting sand production and validated it using 16 wells in a Niger Delta Field. The results confirmed the well-known impact of flow rate, fluid viscosity and grain size and density on sanding rates. It was also observed that at moderate production rates, sanding in the Niger Delta Field has relatively small arch lengths of below 30 feet.

  18. Large-strain consolidation modeling of a perimeter ditched pilot filled with flocculated oil sand fine tailings (FFT)

    Energy Technology Data Exchange (ETDEWEB)

    Fredlund, Murray; Donaldson, Matt [SoilVision Systems Ltd (Canada); Halferdahl, Geoff; Donahue, Robert [Syncrude Canada (Canada)

    2011-07-01

    This paper describes large-strain consolidation modeling used to give a better understanding of the consolidation processes by means of a numerical model. The accumulation of oil sands fluid fine tailings (FFT) results from the segregation of fines from sand during discharge into settling ponds. In the last few years, dewatering of FFT has become an important issue and efforts have focused on field trials of new process, transportation, deposition, and reclamation techniques and strategies. Consolidation is achieved by progressively deepening a perimeter ditch, connected to a drain, in order to remove surface water. This method helps to promote evaporative drying and surface cracking while preventing water infiltration into the underlying solids. At the next stage, the dried surface crust exerts a consolidation load on the underlying solids. The purpose of the work described in the paper is to learn more about consolidation modeling and calibrate a numerical model to the pilot data.

  19. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    Science.gov (United States)

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts.

  20. Long-term reliability of the Athabasca River (Alberta, Canada) as the water source for oil sands mining

    Science.gov (United States)

    St-Jacques, J. M.; Sauchyn, D.; Luckman, B. H.

    2015-12-01

    Exploitation of the Alberta oil sands, the world's third largest crude oil reserve, requires fresh water from the Athabasca River, an allocation of 4.4% of the mean annual flow. This allocation takes into account seasonal fluctuations but not long-term climatic variability and change. This paper examines the decadal-scale variability in river discharge in the Athabasca River Basin (ARB) with 1) a generalized-least-squares (GLS) regression analysis of the trend and variability in gauged flow, and 2) a 900-year tree-ring reconstruction of the water-year flow of the Athabasca River at Athabasca, Alberta. The GLS analysis removes confounding transient trends related to the Pacific Decadal Oscillation (PDO) and Pacific North American mode (PNA). It shows long-term declining flows throughout the ARB. The tree-ring record reveals a larger range of flows and severity of hydrologic deficits than those captured by the instrumental records that are the basis for surface water allocation. It includes periods of sustained low flow of multiple decades in duration, suggesting the influence of the PDO and PNA teleconnections. These results together demonstrate that low-frequency variability must be considered in ARB water allocation, which has not been the case. We show that the current and projected surface water allocations from the Athabasca River for the exploitation of the Alberta oil sands are based on an untenable assumption of the representativeness of the short instrumental record.

  1. National Assessment of Oil and Gas Project - Uinta-Piceance Province (020) Tar Sand Deposits

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Tar sands represent a significant source of hydrocarbons in the United States. Also known by several other names including bitumen-bearing rocks, natural asphalt,...

  2. Growing beyond oil delivering our energy future - a report card on the Canadian renewable fuels industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    The Canadian Renewable Fuels Association (CRFA) has overseen dynamic growth in the domestic biofuels sector. It is guided by the following principles: support for advanced biofuels; building a sustainable industry; building a competitive industry; fiscal responsibility; feedstock neutrality; investment in technology; quality and safety. The development of renewable fuels is also supported by the federal and provincial governments. Some solid results have been achieved in the industry sector: job creation and economic growth; reductions in GHG emissions; agricultural benefits; rural development and forestry benefits; energy security/diversity; and social benefits to Canadians. The federal government has been clear in its commitment to implement the 2% renewable diesel requirement in 2011. The CRFA and member organizations look forward to a continuing dialogue with federal and provincial policy makers to realize our full potential in the clean energy economy of tomorrow.

  3. Measurements of HONO in a Forested Region of Alberta Impacted by Oil Sands Processing Facilities

    Science.gov (United States)

    McLaren, R.; Nikelski, K.; Lobo, A.; Davis, Z.

    2015-12-01

    During the summer of 2013, measurements of NO2, SO2 and HONO were made at a ground site in a rural forested region of Alberta known to be impacted by several oil sands processing facilities. Such sources are known to be the main sources of NOx and SOx emissions in the region. Nitrous acid (HONO) can be emitted directly from combustion sources in addition to being formed from the heterogeneous hydrolysis of NO2 on moist surfaces. The measurements were made both day and night by Differential Optical Absorption Spectroscopy (DOAS) along a 2.304 km optical return path through the forest canopy using a 30-corner cube reflector. Nitrous acid (HONO) is of particular relevance to atmospheric chemistry as it can contribute to photochemical production of the OH radical, the main daytime oxidant in the troposphere, which was estimated to exceed 2•107 molec cm-3 on several days during the study, giving rise to rapid aerosol formation. Typically in urban areas HONO mixing ratios accumulate during the night, and are lost the next morning due to photolysis (HONO + hv→ OH + NO2). During this study however, HONO mixing ratios were found to be quite low with a median nightime mixing ratio of ~ 200 ppt. This is attributed to the very low nighttime NO2 precursor levels, perhaps in combination with a high surface area for deposition on the coniferous canopy. The low nighttime mixing ratios of NO2 and SO2 were driven by limited nocturnal mixing of elevated plumes down to the surface, while high daytime levels of NO2 and SO2 were episodic and frequently driven by daytime fumigation of the elevated plumes to the surface with additional contribution from surface sources of NOx. Daytime mixing ratios of HONO persisted longer than expected with median noontime mixing ratios of >50ppt. While this can imply an additional daytime source of HONO as has been observed by many others, it may also result from reduced photolysis rates below the canopy. This issue is being pursued more

  4. Oil and natural gas strategies for North American energy markets: a submission by the Canadian Association of Petroleum Producers

    International Nuclear Information System (INIS)

    This proposal by the Canadian Association of Petroleum Producers (CAPP) focuses on improving North American energy markets and addressing the challenges involved in meeting continental energy requirements by urging a renewed policy effort to enhance the current market-based policies of free trade and competition that have already proven to respond to market changes better than command-control government policies. The proposal urges new strategies to support development of the oil and natural gas resources of North America, and the development of additional infrastructure to bring oil and natural gas supplies to market. The new strategy should be based on the success of free trade to increase non-discriminatory treatment of energy investment and trade in energy commodities, recognize resource development in North America as a policy priority, and reform regulatory practices to facilitate responsible, market-driven resource activity. The new strategy should also ensure competitive tax and royalty regimes as well as consistent and compatible environmental policies that eliminate layering and duplication and are competitive among the various jurisdictions. It should also recognize the continental and global nature of energy supply and the increasing interdependence of the partner nations' economies, encourage research and development, and ensure co-ordinated action on frontier natural gas development within a framework of inter-jurisdictional cooperation. Overall, the document is a thorough, credible presentation of the first principles of the oil and gas markets and an important first step towards influencing energy policy on a continental scale. 2 maps, 5 figs

  5. Running out of steam? Oil sands development and water use in the Athabasca River watershed : science and market based solutions

    International Nuclear Information System (INIS)

    This paper contained 2 reports conducted to assess the implications of current and planned water withdrawals from the Athabasca River, and options for water management. This first section examined future water flows and human withdrawals from the Athabasca River, and examined forecasted changes in climate in the oil sands region. Issues related to water flow, water quality, and instream flow needs were discussed. The second section examined options available to the industry. Alberta's current water use framework was discussed, and new policy targets and mechanisms were analyzed. 72 refs., 21 figs

  6. Assessment of Canadian Regulations and Remediation Methods for Diesel Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    D. G. Rushton

    2007-01-01

    Full Text Available Diesel fuel released into the environment can contaminate ground water, degrade potable water supplies and cause the collapse of fisheries. They are toxic to both animals and humans and can affect the liver, lungs, kidneys, and nervous system leading to cancer as well as immunological and reproductive effects. The objectives of this study were to review current Canadian regulations pertaining to diesel fuel and to evaluate the current remediation methods using five criteria: efficiency, applicability, cost, time and cleanliness. PAHs are deemed toxic under the Canadian Environmental Protection Act but no standards have been set for PAHs in diesel. The Canadian Council of Ministers of the Environment (CCME has developed Canada-Wide Standards for Petroleum Hydrocarbons in Soil (CWS PHCS while the Atlantic PIRI has implemented a Risk Based Corrective Action (RBCA for the Atlantic region. The remediation methods included soil washing, landfilling, incineration, thermal desorption, radio frequency heating, chemical addition, landfarming, biopiling, composting, bioventing, liquid delivery and bioreactors. The bioreactors studied included: static bed, continuous mix, horizontal drum, fungal compost, slurry-phase, DITS, biofilters and packed bed bioreactors. The results showed that the biological methods were more effective than nonbiological ones and the bioreactors scored the highest among the biological methods. Eight criteria were then used for the evaluation of bioreactors: efficiency, time, cost, maintenance, simplicity, release of VOCs to the atmosphere, containment of contaminants and control of operating parameters The results showed that the continuous mix bioreactor was the most effective system.

  7. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review.

    Science.gov (United States)

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2016-01-01

    There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation

  8. Dispersants as Used in Response to the MC252-Spill Lead to Higher Mobility of Polycyclic Aromatic Hydrocarbons in Oil-Contaminated Gulf of Mexico Sand

    OpenAIRE

    Zuijdgeest, A.; M. Huettel

    2012-01-01

    After the explosion of the Deepwater Horizon oil rig, large volumes of crude oil were washed onto and embedded in the sandy beaches and sublittoral sands of the Northern Gulf of Mexico. Some of this oil was mechanically or chemically dispersed before reaching the shore. With a set of laboratory-column experiments we show that the addition of chemical dispersants (Corexit 9500A) increases the mobility of polycyclic aromatic hydrocarbons (PAHs) in saturated permeable sediments by up to two orde...

  9. Toxicity, Tunneling and Feeding Behavior of the Termite, Coptotermes vastator, in Sand Treated with Oil of the Physic Nut, Jatropha curcas

    OpenAIRE

    Acda, Menandro N.

    2009-01-01

    Oil of the physic nut, Jatropha curcas L. (Malpighiales: Euphorbiaceae), was evaluated in the laboratory for its barrier and repellent activity against the Philippine milk termite Coptotermes vastator Light (Isoptera: Rhinotermitidae). The study showed that J. curcas oil had anti-feeding effect, induced reduction in tunneling activity and increased mortality in C. vastator. Behavior of termites exposed to sand treated with J. curcas oil indicated that it is toxic or repellent to C. vastator. ...

  10. Development of New Type Oil and Sand Tailing Beam Hanger%新型捞油及捞砂悬绳器装置的研制

    Institute of Scientific and Technical Information of China (English)

    高晶

    2013-01-01

    捞砂工艺是适用于低压油水井清砂的一种工艺技术,但在捞油作业过程中往往遇到需要先捞砂的特殊情况,因此研究出新型捞油及捞砂悬绳器将捞砂工艺与捞油工艺融合为一套新工艺技术,用一套工艺设备即可完成捞油、捞砂任务。该技术具有施工周期短、易于操作、节省成本、减少地层污染等诸多优点,大大的提高了作业效率。%Tailing technology is suitable for low pressure oil-water well sand cleaning. The special situation that sand tailing needs to be done first in oil tailing process can happen very often. So a new type oil and sand tailing beam hanger is developed which combines the oil tailing technology and sand tailing technology. The single process can accomplish oil and sand tailing. It has advantages including short construction time, easy operation, low cost, less stratum pollution and so on, greatly improving the working efficiency.

  11. 加拿大Athabasca油砂中部分沥青质油不易分离的原因%Origin of Unliberated Bitumen in Athabasca Oil Sands

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oil sands contain a so-called organic rich solids component (ORS), i.e., solids whose surfaces are strongly associated with toluene insoluble organic matter (TIOM). Typically, humic material is the major component of TIOM.It provides sites for adsorption and chemical fixation of bitumen. This bound bitumen is "unliberated", and considerable mechanical or chemical energy may be required to release it. In order to establish a correlation between bitumen recovery and ORS content, a few selected oil sands were processed in a Batch Extraction Unit (BEU).Analysis of the middlings and coarse tailings streams from these tests indicated a relatively constant bitumen to ORS ratio of 2.8±0.7. This value allows the liberated-unliberated bitumen balance (LUBB) to be calculated for any given oil sands. The amounts of bitumen recovered as primary froth during the BEU experiments are close to the estimated liberated bitumen contents in each case tested. This observation indicates that the liberated-unliberated bitumen calculation is an important quantitative parameter for prediction of bitumen recovery under specific recovery conditions. Preliminary results indicate that the ORS content of an oil sands may be estimated from the carbon content of bitumen free oil sands solids.

  12. Interaction of oil sands tailings particles with polymers and microbial cells: First steps toward reclamation to soil.

    Science.gov (United States)

    Voordouw, Gerrit

    2013-04-01

    Production of bitumen by surface mining of Alberta's oil sands has given rise to tailings ponds, containing large volumes of finely dispersed clays (10(8) m(3)), which settle only slowly. The mature fine tailings (MFT) in these ponds are operationally defined as consisting of particles smaller than 44 μm with a solids content in excess of 30% (w/w). Increasing the rate of densification of MFT is a rate-limiting step in tailings pond reclamation. Accelerated densification has been achieved through mixing of MFT with sand in the presence of calcium sulfate as a binding agent to generate consolidated tailings. Addition of negatively charged polymer, together with either calcium or magnesium ions, is similarly effective. Although toxic to higher aquatic life, tailings ponds harbour a wide variety of mainly anaerobic microbes. These convert residual hydrocarbon, causing methane emissions of up to 10(4) m(3) day(-1). Interestingly, anaerobic microbial activity also accelerates tailings pond densification. Hence, many technologies designed to accelerate densification move tailings, at least conceptually, towards soil in which sand and clay particles are linked by large amounts of humic and fulvic acid polymers supporting large numbers of microbes in a mechanically stable structure.

  13. On Treating Sand--Flowed Wells in Jianghan Oil Field%江汉油区出砂油井治理技术研究

    Institute of Scientific and Technical Information of China (English)

    杨君; 龚兵; 张建国; 刘影

    2012-01-01

    Four decades of exploration has exposed the stratum of Jianghan Oil Field to increasingly severe sand flows which results in more times of well maintenance each year, seriously undermining the regular oil production. This paper demonstrates the studies and infield experiments of sand removal of sand well shafts and lifting by sand carrying techniques according to the geological features of sand production reservoirs and the production status of wells plagued by sand production in Jianghan. The results show that adopting those techniques has achieved some improvement in sand control and mitigate sand flows' impact on oil production, throwing light on future technique development for sand flow wells treatment.%经过40年的开发,江汉油区地层出砂越来越严重,致使作业维护井次逐年上升,严重影响了油井的正常生产。根据江汉油区出砂储层地质特征和出砂井生产现状,有针对性地开展出砂井井筒清砂和携砂举升采油技术研究或矿场试验,使出砂井治理收到了一定效果,缓解了地层出砂对油井生产的影响,为进一步开展出砂油井治理指明了主攻技术方向。

  14. Made in China : the face of logistics in the Canadian oil patch is changing as more supplies are sourced overseas

    International Nuclear Information System (INIS)

    A review of transportation issues relating to the oil and gas industry was presented. In order to reduce costs, many of the components used by the Canadian oil and gas industry are now being manufactured in other countries or regions. The outsourcing of manufactured components has in turn placed a premium on the logistical expertise used to navigate cost-effective routing options by rail, sea or truck. Intermodal traffic of containerized goods has achieved consistent growth in Canada since 2001. In order to safeguard their interests, income funds investing in oil and gas companies are now involved in a series of mergers, acquisitions and consolidations within the transport industry. In eastern Canada, TransForce and Contrans income trusts have bought approximately 150 transportation companies in Canada. The Mullen Group Income Fund has purchased several large trucking companies to become one of the largest service-related income funds in the country. Over the past 7 years, the number of small carriers in Canada has dropped from 8000 to nearly 6000. Shippers are now aiming to reduce their management burden and negotiate better rates by giving shipping volumes to fewer carriers. Ramping technology and regulatory costs are also impacting the transport industry. Mobility technology is considered a critical competitive tool by 75 per cent of fleet operators. By merging with larger companies, smaller trucking companies can access capital for making needed investments in technology. Labour shortages and the high price of fuels has meant that many oil and gas companies have made a number of changes in their transportation plans, including reducing the number of trips to and from wellsites. 2 figs

  15. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    Science.gov (United States)

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments. PMID:26571341

  16. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    Science.gov (United States)

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  17. Thresholds for opportunistic disease in yellow perch (Perca flavescens) exposed to oil sand process-affected waters

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, N.; Van Den Heuvel, M. [Prince Edward Island Univ., Charlottetown, PE (Canada); Van Meer, T.; Mackinnon, M. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    Reclaimed oil sands wetlands will contain process-affected materials with elevated salt, naphthenic acids (NA) and polycyclic aromatic hydrocarbons (PAH). Mature fine tailings may also be placed at the bottom of reclaimed lakes. This study investigated the effects of oil sands-impacted aquatic systems on the health of perch stocked in 2 experimental lakes between 1995 and 1997. A demonstration pond was constructed in 1989 and contained 70,000 m{sup 3} of mature fine tailings capped with 70,000 m{sup 3} of surface water. The South Bison pond was formed in a natural depression in an area where unrecovered bitumen was deposited. The area surrounding the pond was reclaimed for pasture in 1996. Two disease pathologies were observed in perch stocked in both lakes, notably fin erosion caused by an unidentified pathogen, and lymphocystis. The pathologies were initially more prevalent in the South Bison pond. Later studies confirmed that the diseases were substantially more prevalent in the demonstration pond. The study showed that while NA decreased over time in the South Bison pond, NA was doubled in the demonstration pond as a result of tailings densification. The study suggested that temporal changes in NA correlate with the incidence of disease pathologies.

  18. Molecular identification of a yellow perch viral disease associated with exposure to oil sands process affected waters

    International Nuclear Information System (INIS)

    Large volumes of tailings and process affected water are generated as a result of oil sand mining processes. This presentation discussed the safe incorporation of these wastes into the terrestrial and aquatic landscape. A study was conducted in which yellow perch were stocked into experimental ponds, namely Demonstration Pond and South Bison Pond, during the periods of 1995-1997 and 2008-2010. Demonstration Pond was comprised of mature fine tailings capped with natural surface water, while South Bison Pond was formed at a site surrounded by overburden or lean oil sands. Disease surveys were conducted at these experimental ponds and also at Mildred, Sucker, and Kimowin Lakes. External white nodular lesions, characteristic of lymphocystis disease were observed on perch at all sites except Kimowin Lake. The identity of the virus was confirmed by DNA extraction and PCR with genotype generic major capsid protein gene primers. The presence of lymphocystis disease virus in perch was confirmed through sequencing of PCR results. The viral genotype appeared to be different from any previously isolated viral genotype. During the course of the study, there was an increasing incidence of the disease at Demonstration Pond and a decreasing incidence at the South Bison Pond. The intensity of the disease was found to be proportional to the incidence, which was positively correlated with changes in naphthenic acid concentration.

  19. Compromised development and survival in amphibians in reclaimed wetlands' water containing oil sands process-affected material

    International Nuclear Information System (INIS)

    When closing a mine, operators must comply with government regulations to ensure that the sites are ecologically sustainable to support endemic flora and fauna. Creating wetlands in order to age and detoxify oil sands process-affected materials (OSPM) is a common reclamation strategy. In this study, amphibians indigenous to the boreal forest ecosystem were examined to determine if they can complete their lifecycle in water from reclaimed wetlands. Wood frog (Lithobates sylvaticus) eggs were collected from a natural pond 60 km south of an oil sand mining site. Tadpoles were raised in 1 of 6 water treatments refreshed every two days. The 2 reference water treatments included aged tap water and water from natural wetlands. The remaining 4 water treatments were from research wetlands on Syncrude and Suncor lease sites. Of the 120 tadpoles raised per water treatment, there was no significant difference in growth, development, or survival rates between the aged tap water and reference wetland water, but the fastest growth, development, and highest survival rates occurred in the two reference groups. There was a pronounced difference among the 4 treatment groups from Suncor and Syncrude reclamation sites. Survival was high in 3 of the water treatments from Syncrude and Suncor sites, but development rates were considerably reduced. Tadpoles that do not metamorphose before winter do not survive. It was therefore concluded that delayed development in tadpoles poses a serious risk to population stability in OSPM-containing wetlands.

  20. Compromised development and survival in amphibians in reclaimed wetlands' water containing oil sands process-affected material

    Energy Technology Data Exchange (ETDEWEB)

    Smits, J.; Schock, D. [Calgary Univ., AB (Canada). Faculty of Veterinary Medicine

    2010-07-01

    When closing a mine, operators must comply with government regulations to ensure that the sites are ecologically sustainable to support endemic flora and fauna. Creating wetlands in order to age and detoxify oil sands process-affected materials (OSPM) is a common reclamation strategy. In this study, amphibians indigenous to the boreal forest ecosystem were examined to determine if they can complete their lifecycle in water from reclaimed wetlands. Wood frog (Lithobates sylvaticus) eggs were collected from a natural pond 60 km south of an oil sand mining site. Tadpoles were raised in 1 of 6 water treatments refreshed every two days. The 2 reference water treatments included aged tap water and water from natural wetlands. The remaining 4 water treatments were from research wetlands on Syncrude and Suncor lease sites. Of the 120 tadpoles raised per water treatment, there was no significant difference in growth, development, or survival rates between the aged tap water and reference wetland water, but the fastest growth, development, and highest survival rates occurred in the two reference groups. There was a pronounced difference among the 4 treatment groups from Suncor and Syncrude reclamation sites. Survival was high in 3 of the water treatments from Syncrude and Suncor sites, but development rates were considerably reduced. Tadpoles that do not metamorphose before winter do not survive. It was therefore concluded that delayed development in tadpoles poses a serious risk to population stability in OSPM-containing wetlands.

  1. Seasonal and spatial trends in production and stable isotope signatures of primary producers in Alberta oil sands reclamation wetlands

    International Nuclear Information System (INIS)

    Oil sands processing produces large amounts of waste water that contains polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids (NAs). This study investigated the effects of exposure to PAHs and NA in aquatic organisms. The carbon and nitrogen dynamics in primary producers using stable isotopes in process-affected and reference wetlands were studied. Plankton and periphytic samples from artificial wetland substrates were collected and analyzed. Periphyton was collected in 14 to 20 day intervals for 5 different time periods in 2007 and 2008 in order to analyze seasonal trends in isotopic composition. Results of the study showed d15N enriched values for some consolidated tailings (CT) at sites in 2008. Other sites with mature fine tailings (MFT) as well as non-MFT sites did not have enriched d15N values. The study suggested that there are variations in ammonia levels in the CTs of different oil sands operators. Differences in the quality of the CT resulted in differences in d15N values of the periphyton-dominated by algae as well as in the periphyton dominated by microbes.

  2. Emergence, growth, and dispersal of Chironomidae in reclaimed wetlands in the Athabasca oil sands region of Alberta

    International Nuclear Information System (INIS)

    Concerns over the environmental impacts of oil sands extraction in northeastern Alberta has increased as the industry continues to expand. This study examined if the emergence, growth, and dispersal of Chironomidae differ in reclaimed wetlands constructed with oil sands process materials (OSPM) when compared with growth in reference wetlands. Five floating 30 cm diameter halo traps were deployed in various wetlands for a 24 hour period. Exuviae trapped in the surface water film were then collected, identified, and counted. Chironomids grown in laboratories from egg masses collected from 2 OSPM-affected wetlands and 2 reference wetlands were paired according to geographic proximity under controlled conditions for 1 generation. Chironomid larval growth was quantified in situ in the wetlands by reciprocally transferring second instar, second generation culture larva. The dispersal of the larvae was quantified by tabulating the number of adults caught in sticky insect traps located along 3 radially-arranged transects in each wetland. A preliminary analysis has suggested that fewer chironomids emerged from the OSPM-affected wetlands. No differences in dispersal distance between the OSPM-affected and reference wetlands were observed.