WorldWideScience

Sample records for canadian oil sands

  1. Policy Analysis of the Canadian Oil Sands Experience

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  2. Value of Canadian oil sands... to the United States

    International Nuclear Information System (INIS)

    Pugliaresi, Lucian

    2011-01-01

    Since the beginning of the recession in late 2007, the American economy has been subject to great change, affecting the way energy is produced and consumed. The structure of oil imports and exports has changed significantly and U.S. imports are now primarily from Canada. The current study shows how and why the U.S. has become dependent on imports of oil from the Canadian oil sands. Oil from Canadian oil sands is transported to different Petroleum Administration for Defense Districts (PADD) via the Keystone pipeline. As imports from Canada increased, the U.S. refinery sector was restructured. Small refineries were closed while larger refineries were expanded and investment was made to increase their processing capacity. The increased import and processing of oil from the Canadian oil sands led to an advantageous decrease in oil prices. If the Keystone XL project were to be approved, the pipeline would increase the area with access to the means of transporting oil, allowing the increasing demand for oil to be met and, potentially, stabilizing world oil prices.

  3. Canadian oil sands : supply and potential for market growth

    International Nuclear Information System (INIS)

    Crandall, G.

    2004-01-01

    Canadian oil sands recoverable reserves rank second only to Saudi Arabia and present enormous potential, particularly through technological gains. This paper discussed the market potential for oil sands both globally and in North America. It was estimated that oil sands production would eventually surpass declining conventional production, increasing from 42 per cent of Western supply in 2002 to 78 per cent in 2015. Recoverable reserves were an estimated 174 billion barrels, with cumulative production at 4 billion barrels between 1967 to 2003. Statistics of U.S. and Canadian markets for crude oil were presented to the year 2020. A flow chart of oil sands products and market outlets was presented, as well as details of existing and potential markets for Canadian crude oil. Oil sands product dispositions were outlined, with the prediction that Asia may emerge as an incremental market. World crude oil production statistics were presented by type. World residual supply and demand estimates were presented, including details of conversion capacity and requirements for residual processing capacity in refineries and field upgraders. American refinery feedstocks were presented by type, with the identification of an increase in heavy crude runs. It was noted that recent pricing provided a strong incentive to add refining conversion capacity to process heavy oil. An outline of a study completed for the Alberta government and industry was presented, in which upgrading to light synthetic crude was determined as a base case. The value added to process bitumen beyond upgrading was discussed in relation to the upgrading of American refineries to process bitumen blends and synthetic crude. Potential cases for upgrading bitumen were presented, along with a comparison of capital costs. An overall economic comparison of projects was provided. Various measures to maximize markets for oil sands products in Alberta were presented. It was suggested that U.S. markets should absorb more new

  4. Saskatchewan's place in the Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Kramers, J.W. [Owl Ventures Inc., Edmonton, AB (Canada); Isaacs, E.E. [Alberta Energy Research Inst., Calgary, AB (Canada)

    2009-07-01

    This paper provided a detailed description of the oil sands geology and physical properties and highlighted some of the novel recovery technologies that are being developed for shallow in-situ reservoirs in Alberta and Saskatchewan. Canada's oil sands are well known around the world, with Alberta's mined and in-situ oil sands reservoirs being well developed with mature commercial technologies. Shallow in-situ oil sands located in both Saskatchewan and Alberta will be the next frontier in Canadian petroleum development. Shallow reservoirs will need to be developed with new environmentally sound in-situ technologies that will reduce the use of steam and fresh water, and also reduce greenhouse gas emissions. Research and development programs are currently underway to develop and demonstrate such new technologies. It was concluded that innovation has been the key to developing the immense and complex technology oil contained in Canada's heavy oil reservoirs and also in its shallow and deep in-situ oil sands reservoirs. Promising technologies include the solvent vapour extraction and hybrid thermal solvent extraction processes that are being developed and demonstrated in large-scale three-dimensional scaled physical models and associated numerical simulation models. Electrical heating and gravity stable combustion are other examples of technologies that could play a significant role in developing these resources. 88 refs., 3 tabs., 8 figs.

  5. Engaging Canadians: national oil sands dialogues - A background paper

    International Nuclear Information System (INIS)

    Carson, Bruce

    2010-01-01

    It is expected that the world's energy demand will grow significantly between now and the year 2050. Hydrocarbons will have an important role to play in meeting this increasing demand and unconventional sources such as oil sands will become more and more important. The Canadian Association of Petroleum Producers (CAPP) has been engaged in a dialogue process to examine the environmental, economic and social impacts of the oil sands industry and the aim of this background paper is to provide stakeholders with some context. The paper highlights the fact that although the oil sands industry gives rise to environmental issues such as greenhouse gas emissions, air pollutants, land disturbance and water use, the environmental performance of the industry has been improving in recent years thanks to new technologies.

  6. The Canadian oil sands--a sticky future

    Energy Technology Data Exchange (ETDEWEB)

    Cowtan, S A

    1977-01-01

    The oil sands have been known for 200 yr but only over the last decade have they been recognized as a potential major energy source for Canada. The study looks at the present GCOS plant, and briefly discusses Canada's future energy requirements and how she might fill those requirements from conventional and nonconventional sources, such as the Frontier areas, oil sands mining, oil sands in situ, and heavy oil. The economics and the future of these sources and the environment necessary for their development are analyzed.

  7. Proceedings of the Canadian oil sands forum 2007 : creating excellence through innovation

    International Nuclear Information System (INIS)

    2007-01-01

    The supply from Canada's oil sands industry is growing at an accelerated pace. This conference was intended for professionals in the oil sands industry seeking updated information on oil sands developments, transportation issues and future market challenges and opportunities. It was attended by a broad range of industry participants who addressed some of the critical issues involved in developing oil sands projects. Despite market opportunities which have resulted in a fast pace of development and continually evolving project plans, there are challenges and uncertainties that must be overcome in order to achieve projected levels of supply growth. It was noted that the business environment in the oil sands industry is continually changing in terms of current supply/market/refining situations and new market developments. The conference also addressed how capital cost and mega-project management issues are being addressed. Expanding market opportunities for Canada's growing oil sands supply were highlighted along with latest developments related to upgrading strategies. Market experts also discussed issues related to synthetic crude, heavy oil markets and the supply and demand of diluents. The sessions were entitled: challenges and opportunities in oil sands; oil sands business outlook; latest project development updates; integration of Canadian oil sands with U.S. refining; and, technology and oil sands innovations.The conference featured 16 presentations, of which 6 have been catalogued separately for inclusion in this database. tabs., figs

  8. Saskatchewan's place in Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Regina, SK (Canada); Kramers, J.W. [Owl Ventures Inc., Edmonton, AB (Canada); Isaacs, E.E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2010-11-15

    The current daily bitumen and synthetic crude production from the Western Canada Sedimentary Basin is 180,000 m{sup 3}, which represents approximately 40 percent of crude oil produced in Canada. In a time of peaking conventional oil production, the search for new oil reserves has led to unconventional in-situ bitumen and heavy oil resources, including shallow in-situ resources. The great difficulty in producing bitumen and managing water flows in such reservoirs will require innovative approaches and increasingly environmentally sustainable practices. This paper presented an overview of shallow in-situ oil sands and the novel recovery technologies that are being developed that will reduce the use of steam and fresh water, and also reduce greenhouse gas emissions. Research and development programs are currently underway to develop and demonstrate such new technologies. Promising technologies include the solvent vapour extraction and hybrid thermal solvent extraction processes that are being developed and demonstrated in large-scale three-dimensional scaled physical models and associated numerical simulation models. Electrical heating and gravity stable combustion are other examples of technologies that could play a significant role in developing these resources. 81 refs., 3 tabs., 8 figs.

  9. A Canadian perspective on the supply costs, production and economic impacts from oil sands development

    International Nuclear Information System (INIS)

    McColl, D.; Masri, M.

    2008-01-01

    This article provided a synopsis of oil sands research recently conducted at the Canadian Energy Research Institute (CERI). The production profiles and capital expenditures that CERI has projected for oil sands projects were explored along with the macroeconomic benefits associated with oil sands development. In addition to rising capital and operating costs, bitumen producers are challenged by labour shortages and environmental concerns. However, CERI warrants continued growth in production from the oil sands industry, given the current high price state of the global oil market and security of supply concerns from oil importing countries. This article also provided background information and analysis to assess the implications of future development. The projected growth in the oil sands industry creates demands for infrastructure, housing, health care, education, and business services. The economic impacts were measured at the local, provincial, national and global levels in terms of changes in gross domestic product; changes in employment; and, changes in government revenues. It was concluded that with continued investment and development, Alberta's oil sands resource is expected to continue to produce oil for decades, and would eventually achieve 6 MMbpd production. 8 refs., 3 tabs., 10 figs

  10. Siemens fuel gasification technology for the Canadian oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Siemens Energy Inc., Orlando, FL (United States). IGCC and Gasification Sales and Marketing

    2010-07-01

    The Siemens fuel gasification (SFG) technology can be used to gasify a range of feedstocks, including petcoke, hard coal, lignite, and low-ranking fuels such as biomass and refinery residuals. The technology has recently been applied to a number of projects over the last 3 years. This paper discussed some of the issues related to the technology and it's use at a start-up facility in China. Five entrained-flow gasifiers with a thermal capacity of 500 MW are being installed at a coal gasification plant in northwestern China. The technology's use in hydrogen, steam and power production applications for the oil sands industry was also discussed. Issues related to feedstock quality, process characteristics, and equipment requirements for commercial gasifier systems were reviewed. The paper concluded by observing that improvements in gasification technology will make coal and petcoke gasification feasible options for power generation. IGCC is the most advanced and cost-effective technology for reducing emissions from coal-fired power plants. Gasification-based plants are also able to capture carbon dioxide (CO{sub 2}) for storage and sequestration. Details of the Siemens gasification test center in Germany were also included. 1 tab., 4 figs.

  11. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  12. A First Assessment of the Elemental Composition of Atmospheric Aerosols in the Canadian Oil Sands Region

    Directory of Open Access Journals (Sweden)

    Dabek-Zlotorzynska E.

    2013-04-01

    Full Text Available Canadian Oil Sands, which comprise 97% of Canada’s 176 billion barrels of proven oil reserves, are located beneath 140,200 km2 of boreal forests, prairies and wetlands, and are the second largest known deposit of crude oil in the world. As such, this region has experienced rapid industrial development, which resulted also in increasing industrial air emissions, primarily from bitumen upgrading and mine vehicle fleet operations. This rapid development has led to concerns regarding health risk to humans, and other terrestrial and aquatic wildlife associated with exposure to toxic contaminants, especially metals and polycyclic aromatic compounds (PACs particularly along the Athabasca River and its watershed. Canada’s Minister of the Environment announced that Environment Canada (EC will jointly lead, in collaboration with Government of Alberta and relevant stakeholders, the development and implementation of an enhanced monitoring system in the Oil Sands region to provide information on the state of the air, water, land andbiodiversity. This work presents preliminary data on the first assessment of elemental composition of fine particulate matter (particles<2.5 mm in diameter; PM2.5 at 3 air quality sites in close proximity to Oil Sands processing activities. Since December 2010, integrated 24 hour air samples were collected every sixth day on a 47-mm Teflon filters using Thermo Fisher Partisol 2000-FRM samplers operated by the National Air Pollution Surveillance (NAPS network that involves EC and the Canadian provinces and territories. All samples including laboratory, travel and field blanks were subjected to gravimetric determination of PM2.5 mass and energy dispersive X-ray fluorescence (ED-XRF analysis for 46 elements. Since ED-XRF is a non-destructive technique, PM2.5 samples were subsequently analyzed for 37 trace elements including rare earth elements using inductively-coupled plasma mass spectrometry (ICP-MS combined with microwave

  13. Air quality monitoring in the Canadian oil sands. Tests of new technology

    Energy Technology Data Exchange (ETDEWEB)

    Platt, Ulrich; Seitz, Katja; Buxmann, Joelle [Heidelberg Univ. (Germany). Inst. of Environmental Physics; Thimm, Harald F. [Thimm Petroleum Technologies Inc., Calgary (Canada)

    2012-12-15

    Modern bitumen recovery processes, such as Steam Assisted Gravity Drainage (SAGD), minimize the environmental footprint of oil recovery in terms of land disturbance and water demands. However, as a corollary, air monitoring becomes more difficult. In particular air quality monitoring for sulphur and nitrogen oxides, as currently practiced, suffers from significant limitations in remote regions, such as the Canadian Oil Sands Areas. Current techniques require the placement of monitoring trailers in accessible locations, but the electrical power or even access for optimal location for trailers is not always given. In addition, the trailers are capable of monitoring air quality only at the location of their deployment. There would be an advantage in deploying monitoring techniques that require minimal power (e.g. car battery, solar cell) and are capable of measuring air quality at a distance from the place of deployment. In the autumn of 2008, a trial of DOAS (Differential Optical Absorption Spectroscopy) was undertaken in Northern Alberta and Northern Saskatchewan, at four SAGD plants in various stages of development. Results of this study, and a discussion of the technology, will be given. Advantages and limitations of DOAS for deployment in Athabasca will be discussed. In general it was found that SO{sub 2} results showed remarkably low degrees of contamination, while NO{sub 2} concentrations were more noticeable. (orig.)

  14. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  15. Air Quality Over the Canadian Oil Sands: A First Assessment Using Satellite Observations

    Science.gov (United States)

    McLinden, C. A.; Fioletov, V.; Boersma, K. F.; Krotkov, N.; Sioris, C. E.; Veefkind, J. P.; Yang, K.

    2012-01-01

    Results from the first assessment of air quality over the Canadian oil sands -- one ofthe largest industrial undertakings in human history -- using satellite remote sensing observations of two pollutants, nitrogen dioxide (N0O) and sulfur dioxide (SO2), are presented. High-resolution maps were created that revealed distinct enhancements in both species over an area (roughly 30 km x 50 km) of intensive surface mining at scales of a few kilometers. The magnitude of these enhancements, quantified in terms of total mass, are comparable to the largest seen in Canada from individual sources. The rate of increase in NO2 between 2005 and 2010 was assessed at 10.4 +/- 3.5%/year and resulted from increases both in local values as well as the spatial extent of the enhancement. This is broadly consistent with both surface-measurement trends and increases in annual bitumen production. An increase in SO2 was also found, but given larger uncertainties, it is not statistically significant.

  16. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.

    2001-01-01

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  17. Oil sands supply outlook

    International Nuclear Information System (INIS)

    Dunbar, R.

    2004-01-01

    In March 2004, The Canadian Energy Research Institute released a report on the expected future supply from Alberta's oil sands. The report indicates that the future for the already well-established oil sands industry is promising, particularly given the outlook for oil prices. The challenges facing the industry include higher industry supply costs and the need for innovative commercial and technological solutions to address the risks of irregularities and changes in crude oil prices. In 2003, the industry produced 874 thousand barrels per day of synthetic crude oil and unprocessed crude bitumen. This represents 35 per cent of Canada's total oil production. Current production capacity has increased to 1.0 million barrels per day (mbpd) due to new projects. This number may increase to 3.5 mbpd by 2017. Some new projects may be deferred due to the higher raw bitumen and synthetic crude oil supply costs. This presentation provided supply costs for a range of oil sands recovery technologies and production projections under various business scenarios. tabs., figs

  18. Oil sands development update

    International Nuclear Information System (INIS)

    1999-01-01

    A detailed review and update of oil sands development in Alberta are provided covering every aspect of the production and economic aspects of the industry. It is pointed out that at present oil sands account for 28 per cent of Canadian crude oil production, expected to reach 50 per cent by 2005. Based on recent announcements, a total of 26 billion dollars worth of projects are in progress or planned; 20 billion dollars worth of this development is in the Athabasca area, the remainder in Cold Lake and other areas. The current update envisages up to 1,800,000 barrels per day by 2008, creating 47,000 new jobs and total government revenues through direct and indirect taxes of 118 billion dollars. Provinces other than Alberta also benefit from these development, since 60 per cent of all employment and income created by oil sands production is in other parts of Canada. Up to 60 per cent of the expansion is for goods and services and of this, 50 to 55 per cent will be purchased from Canadian sources. The remaining 40 per cent of the new investment is for engineering and construction of which 95 per cent is Canadian content. Aboriginal workforce by common consent of existing operators matches regional representation (about 13 per cent), and new developers are expected to match these standards. Planned or ongoing development in environmental protection through improved technologies and optimization, energy efficiency and improved tailings management, and active support of flexibility mechanisms such as emission credits trading, joint implementation and carbon sinks are very high on the industry's agenda. The importance of offsets are discussed extensively along with key considerations for international negotiations, as well as further research of other options such as sequestration, environmentally benign disposal of waste, and enhanced voluntary action

  19. Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery

    International Nuclear Information System (INIS)

    Méjean, Aurélie; Hope, Chris

    2013-01-01

    High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs of supplying synthetic crude oil. The sensitivity analysis shows that before 2035, the most influential parameters are the learning parameter in the case of in-situ bitumen and the depletion parameter in the case of mined bitumen. After 2035, depletion dominates in both cases. The results show that the social cost of CO 2 has a large impact on the total costs of synthetic crude oil, in particular in the case of synthetic crude oil from in-situ bitumen, due to the carbon intensity of the recovery techniques: taking into account the social cost of CO 2 adds more than half to the cost of producing synthetic crude oil from mined bitumen in 2050 (mean value), while the cost of producing synthetic crude oil from in-situ bitumen more than doubles. - Highlights: • We model the cost of Canadian synthetic crude oil (SCO) using Monte-Carlo techniques. • We reveal the uncertainty associated with each input parameter. • We quantify the effect of learning, depletion and CO 2 using sensitivity analyses. • Accounting for the social cost of CO 2 doubles the cost of SCO from in-situ bitumen. • CO 2 pricing could have a large effect on the economics of the oil sands

  20. The future of the Canadian oil sands: Engineering and project management advances

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Peter; Morawski, Jacek

    2010-09-15

    Production technology and project management developments in Canada's oil sands industry, in the context of AMEC's experience as EPCM service provider, are discussed. Effective project management systems and workfront planning are critical to achieve cost and schedule targets and optimum construction execution. Construction Work Packages divide work into discrete pieces and Construction Work Execution Plans influence scheduling of engineering and procurement deliverables. AMEC's Engineering Data Warehouse works with intelligent engineering design tools to ensure information related to a piece of equipment is consistent across all systems. HSSE systems are proactively developed and AMEC's progressive improvement in safety performance is demonstrated.

  1. Tropospheric Emission Spectrometer (TES) Satellite Validations of Ammonia, Methanol, Formic Acid, and Carbon Monoxide over the Canadian Oil Sands

    Data.gov (United States)

    U.S. Environmental Protection Agency — The URLs link to the data archive of the Troposphere Emission Spectrometer (TES) retrievals. These include the transects included in the Canadian Tar Sands study. A...

  2. Proceedings of the Canadian Institute conference on maximizing oil sands growth : improving transportation logistics, labour supply and pipeline availability

    International Nuclear Information System (INIS)

    2005-01-01

    This conference focused on the development of a transportation infrastructure to accommodate oil sands growth, with particular reference to building a pipeline infrastructure to meet the delivery and supply requirements of oil sands producers. The need for transmission system upgrades and additions to meet the electric power requirements of the oil sands industry was also discussed. The transportation options and new proposed pipeline construction projects that will alleviate the current transportation challenges in the oil sands region were identified. These include the implementation of new infrastructure strategies based on current pipeline availability, Kyoto requirements and downstream market demands. The impact of labour shortages on the oil sands industry was reviewed along with solutions to prevent and overcome these shortages. The conference featured 15 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs

  3. Developing new markets for oil sands products

    International Nuclear Information System (INIS)

    Crandall, G.

    2004-01-01

    This paper presents a review by Purvin and Gertz of western Canadian crude oil supply. This energy consulting firm provides advise to the energy sector. It suggests that oil sands production will surpass declining conventional production. Oil sands supply includes bitumen, synthetic crude oil (SCO), and diluent. It is forecasted that oil sands will increase from 42 per cent of western supply in 2002 to 78 per cent in 2015. The potential of Alberta's oil sands was discussed along with a recent study of refined products and petrochemicals from bitumen. Upgrading, refining and petrochemical case studies were presented. The author examined if a Canadian oil sands upgrading project with high capital costs can be competitive with competing projects in the United States and internationally. In addition to supply and demand issues, the presentation examined infrastructure capability and market potential in the United States. The economic potential and risks of preferred business cases compared to upgrading to SCO were also evaluated. 15 figs

  4. Papers of the Canadian Institute's 3. annual conference : oil sands supply and infrastructure : labour supply, upgraders, transportation, pipelines

    International Nuclear Information System (INIS)

    2005-01-01

    The focus of this conference was on the development of the oil sands industry, with specific reference to issues concerning supply and infrastructure. Energy source development and transmission issues were discussed, as well as transportation systems. The impact of increased oil sands development on pipelines was also examined. Various fuel options were discussed, including the use of hydrogen, natural gas and alternate fuels in manufacturing and processing plants. Economic drivers and the creation of new markets were examined, and various export opportunities were reviewed. The environmental impact of increased oil sands activity was discussed, with specific reference to the Boreal regions. Management challenges in the oil sands industry were also discussed along with issues concerning human resources, labour supply, training and education. The conference featured 15 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  5. The use of small modular nuclear reactors for Canadian Oil Sands applications: a proposal and way forward

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, D., E-mail: ergo.applications@gmail.com [Human Factors Applications, Toronto, Ontario (Canada); Moledina, M., E-mail: mohamedmoledina@rogers.com [Consultant, Toronto, Ontario (Canada)

    2013-07-01

    It has been estimated that Canada's Oil Sands contain between 160 and 200 billion barrels of oil reserves - the second largest accumulation of oil in the world after Saudi Arabia. It is also estimated that by 2015, output from the oil sands should increase from about 1 million barrels per day (mbbl/day) to approximately 4 mbbl/day. However, Canada and the world have to pay a price for oil extraction from the sands.It is estimated that about 40 cubic metres of natural gas as fuel must be burned for each barrel of synthetic crude produced. Therefore, if oil sands production did reach 4 mbbl/day, natural gas use for oil production could seriously limit exports of natural gas to the US. It has also been estimated that every barrel of synthetic oil pollutes about 950 liters of fresh water and emits about 100 Kg of Carbon Dioxide (CO{sub 2}) along with other pollutants. Clearly an alternate source of energy is required for oil sands production that will allow our natural gas to be put to better use while simultaneously sustaining our environment. The energy must be continuously obtainable and not be subject to the intermittent availability of wind or sunlight. Nuclear energy is the obvious choice. Nuclear energy for power generation has been prevalently used around the world since the 1950's. Today, there are more than 440 Nuclear Power Plants(NPPs) operating safely worldwide. Each has different characteristics that would make them comparatively acceptable for operation in Northern Canada. This paper will briefly review the various types of nuclear plants that are currently in operation or are being licensed worldwide,as well as those that are proposed for operation in the near future including small nuclear power reactors (< 300 me). Moreover, it will propose a list of the NPP characteristics that are best suited to oil sands operation. This will lead to a proposal to encourage the development of small modular reactors (SMRs) for installation in oil sands

  6. Japan's involvement in oil sands development

    International Nuclear Information System (INIS)

    Sugiura, T.

    1994-01-01

    According to Japanese national policy, exploration and development by Japanese companies in overseas countries are promoted in order to ensure stable oil supplies. Japan Canada Oil Sands Limited (JACOS), part of the JAPEX group, was established during the 1978 world oil crisis to explore and develop Canadian oil sand resources in accordance with Japan's national policy. The JAPEX group, including JACOS, has invested $123 million in oil sands projects in Alberta. JAPEX's first involvement in oil sands was in the Primrose Project operated by Norcen in the Cold Lake area. Five years of cyclic steam stimulation pilot tests did not produce sufficiently good results to justify further operation. The second involvement was the PCEJ Project, a joint effort by four companies that are participating in a bitumen recovery test project in the Athabasca Deposit. JACOS holds 2,452 km 2 of oil sands leases in Alberta. Tests conducted since 1978 in the PCEJ Project include multiwell steam injection pilot tests, some of which showed promise. JACOS is also participating in steam assisted gravity drainage projects and in federal/provincial research programs. Obstacles identified in developing Alberta oil sands are the lack of a bitumen pipeline to Edmonton and the insufficient length of oil sands leases (currently 10 years), given the difficulties of oil sand development. 10 figs

  7. Oil sands market and transportation solutions

    International Nuclear Information System (INIS)

    Sandahl, R.

    2004-01-01

    This presentation outlined the immense potential of the western Canadian oil sands reserves. Recoverable reserves have been estimated at 180 billion barrels, with production forecasts estimated at 5 million barrels per day by 2030. Resource development is occurring at a time when the world's largest oil importer is increasing supplies through concern for security of supply. The second and third largest oil importers in the world are experiencing economic and energy demand growth. These factors underscore the motivation for rapid growth of the Western Canadian Oil Sands reserves. One of the challenges that must be addressed is to ensure that incremental markets for the increased production are accessed. Another challenge is to ensure adequate infrastructure in terms of pipeline capacity to ensure deliverability of the product. tabs., figs

  8. Nuclear energy in the oils sands

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2014-01-01

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  9. Nuclear energy in the oils sands

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2014-09-15

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  10. Growing markets to sustain oil sands development

    International Nuclear Information System (INIS)

    Wise, T.H.

    2003-01-01

    The utilization of Alberta bitumen for the clean fuels market depends on upgrading, transportation, and refining processes. Forecasts show that oil sands production, which includes synthetic crude oil (SCO), will surpass declining conventional production in Western Canada. Several issues pose a challenge to the oil sands processing industry. The producers' market is affected by crude oil prices, market expansion options, diluent availability/cost, supply cost competitiveness, and regional processing. The common market issues include light/heavy crude prices, oil sands crude qualities, prices of oil sands crudes, pipeline infrastructure, and competitive supplies. The issues facing the refiners are: refining margins, security of crude supply, refined product quality, and competitive product supply. A brief review of markets for Canadian crude oil, including synthetic crude, was provided. The share of the Midwest market by Alberta must be retained and increased. The market expansion options were reviewed for both downstream (refining) and upstream (upgrading) operations. To reach more distant markets such as Southern Midwest, Washington, and California, new pipeline capacity would be required. The market is nearly saturated for Canada's heavy oil supply. More upgrading will be required as bitumen production increases. Market growth is still possible for Canada's SCO but according to forecasts, the market could also become saturated. To increase demand and allow supplies to grow, SCO prices may fall below light crude prices. It was noted that a balance must be achieved in order for producers to increase production and for refiner/upgraders to expand their conversion capacity. tabs., figs

  11. Asian interests in Alberta oil sands

    International Nuclear Information System (INIS)

    Du Plessis, D.; Laureshen, C.

    2004-01-01

    The growing Asian interest in Alberta's oil sands and import opportunities was discussed along with the feasibility of marketing bitumen to Asia. Asia is an obvious new market for Canadian heavy oil and bitumen due to an increasing demand for petroleum products in Japan, Korea, Taiwan and China. This paper examined the following three criteria that will determine the success of any initiative to move Canadian crude oil to Asian-Pacific markets: (1) a sustainable supply from Alberta; a pipeline to transport the crude to a deepwater port on the west coast; and, a guaranteed market at the other end. The basis for Asian interest in Alberta's oil sands is the sustainable secure supply of oil for growing Asian markets; heavy dependence on supplies from the Middle East; the desire to diversify supply sources; and, opportunities to invest in oil sands developments. Examples of Asian (Japan, Korea, Taiwan and China) missions to Alberta were presented along with the challenges of getting products to market with reference to Enbridge's new market access plan, Terasen's staged capacity expansion for heavy crudes and refined products, and sea transport from Prince Rupert. The paper also included graphs depicting world GDP; incremental increase in world primary energy demand by fuel for 2000 to 2020; world oil demand by region; oil demand by region in Asia; oil demand and supply in northeast Asia (Japan, China, Korea) and dependence level on Middle Eastern oil; oil demand and supply in China; China's petroleum production and consumption; refined products market forecast for 2000 to 2020; 2002 crude oil imports to Asia; 2004 refining capacity; product quality comparisons; cost competitive study; and energy policy objectives for China, Japan, Korea and Taiwan. 19 figs

  12. The Alberta oil sands story

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This report serves as a detailed introduction to the Alberta oil sands and their development. It includes a description of the oil sands deposits, an outline of crude bitumen recovery and upgrading processes, the role of Alberta Energy Company in oil sands development, environmental aspects, manpower requirements for oil sands development, research needs, and further oil sands projects. Presently proven recoverable reserves in the oil sands amount to 26.5 billion bbl of synthetic crude. Production from the Syncrude plant (125,000 bbl/d capacity) is expected to begin in 1977, followed by a Shell Canada operation around 1980. The provincial government will participate in the oil sand industry through its joint venture participation in Syncrude and its 50% share in Alberta Energy Company; the latter company participates in related aspects of the Syncrude project, such as pipelines. The result of Alberta's participation in the industry will mean that, directly or indirectly, the province will realize 60% of the total profits. The job creation potential of oil sands projects is estimated to be extensive, with a direct and indirect work force supported by oil sands activities possibly reaching 180,000 persons by the year 2000. Research needs have been identified, particularly in the area of in-situ thermal recovery technology, and the creation of the Alberta Oil Sands Technology and Research Authority has been authorized in order to meet these needs. Although current reserves are sufficient to support 20-30 synthetic crude plants, a number of factors will limit expansion of the industry. 8 figs., 5 tabs.

  13. Oil sands and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    2004-07-01

    Oil sands are a significant resource for Alberta and Canada with continuing growth opportunity. There is a need to ensure sustainable development of the oil sands resources from a social, economic and environmental perspective. The industry has succeeded in terms of proven reserves, technology advancements, reduced operating costs, reliability and market accessibility. Some of the major challenges facing the industry include high capital cost, infrastructure, social services and keeping pace with growth. This presentation outlined the proactive measures that the oil sands industry has taken to manage environmental issues such as sulphur dioxide and nitrogen oxide emissions, greenhouse gases, water management and land reclamation. tabs., figs.

  14. Alberta oil sands royalty regime

    International Nuclear Information System (INIS)

    Asgarpour, S.

    2004-01-01

    The long term objective of the Oil Sands Business Unit of Alberta Energy is to pave the way for Alberta's bitumen production to reach 3 million barrels per day by 2020. This presentation described the national government's role in resource development. It was emphasized that since the Crown is the owner of the oil sands resource, it would benefit by providing strategic leadership and by generating a larger royalty base. The oil sands fiscal regime was described with reference to generic royalty, risk sharing, investment, and project economics. Business rule principles were also outlined along with criteria for project expansions. Both upstream and downstream challenges and opportunities were listed. 4 figs

  15. Proceedings of the Canadian Institute's 4. annual oil sands supply and infrastructure conference : maximizing opportunity and mitigating risks in a rapidly growing market

    International Nuclear Information System (INIS)

    2006-01-01

    This conference addressed the challenges facing oil sands development, with particular reference to supply and infrastructure issues. Updates on oil sands markets and opportunities were presented along with strategies for mitigating risks in a rapidly growing market. The best practices for supplying a demanding market through supply shortages and high prices were identified along with policies that should be implemented to help overcome labour shortages. Some presentations expressed how commodities pricing and trends can impact business. Others showed how markets in China and the United States are prepared for oilsands products. The views of other international companies on oil sands was also discussed along with proposed plans to eliminate the infrastructure congestion and risks caused by expanding oil sands development. The challenges and benefits of investing in Alberta's oil sands were reviewed along with strategies to enhance upgrading and refining capacity in the province. Economic drivers and the creation of new markets were examined, and various export opportunities were reviewed along with industry management challenges concerning human resources, labour supply, training and education. The conference featured 10 presentations, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. Papers of a Canadian Institute conference : Tapping into new opportunities in oil sands supply and infrastructure : natural gas, diluent, pipelines, cogeneration

    International Nuclear Information System (INIS)

    2003-01-01

    Participants at this conference were provided the opportunity to hear various views of several industry leaders on topics related to oil sands supply and infrastructure. Some of the issues addressed were: the latest project developments and pipeline infrastructure expansion initiatives in the oil sands industry; the growing natural gas supply requirements for oil sands production; how to effectively manage stakeholder issues in the context of rapid growth; an update on the supply and demand balance for diluent; demand for cogeneration and the implications of transmission system congestion; and, market development prospects for heavy crude and the need for additional refinery capacity. The Minister of Alberta Economic Development also made a special presentation. There were fifteen presentations made at the conference, of which nine were indexed separately for inclusion in this database. refs., tabs., figs

  17. Canadian operators boost heavy oil production

    International Nuclear Information System (INIS)

    Perdue, J.M.

    1996-01-01

    Recent technological advances in slurry pipelining, horizontal wells, and thermal recovery techniques have made recovery of Canadian heavy oil resources more economical. In addition, reduced government royalties have made investment in these difficult reservoirs more attractive. As a result, activity has increased in heavy-oil fields in Alberta and Saskatchewan. This paper review the various oil sand recovery projects under development in the area and the current government policies which are helping to develop them. The paper also provides brief descriptions of the equipment and technologies that have allowed a reduced cost in the development. Items discussed include surface mining techniques, horizontal drilling, reservoir engineering techniques, separation processes, and thermal recovery

  18. Whither Chinese involvement in the Canadian oil industry

    International Nuclear Information System (INIS)

    Schulz, B.

    2006-01-01

    Chinese oil companies have become increasingly focused on securing Canadian oil. However, most of the oil sands leases with good geological and economic prospects are owned by Canadian or Canadian subsidiary companies that have proven unwilling to sell future revenue and reserves bases to the Chinese. The opportunity for a trade of Canadian oil assets for improved Chinese market entry has been limited to Husky, which has existing Chinese connections, as well as to global companies such as Exxon, Shell and BP. In May 2005, the Chinese company Sinopec completed a $105 million deal with Calgary-based Synenco and formed a joint venture for oil sands production and an upgrader. Chinese interests are also involved in the Calgary-based Value Creation Group of Companies as well as in BA Energy. Enbridge has recently invested $25 million in the Heartland upgrader project, presumably with the aim of building pipelines to move new products to Asia. The most significant problem for Canadian oil sands companies and the greatest opportunity for Chinese companies involves the utilization of trained Chinese workers for the $100 billion in oil sands construction planned for the next decade. Significant immigration barriers exist for Chinese workers in Canada, and there is a legitimate concern that Chinese workers may want to stay in Canada. It was concluded that while there may be mutual opportunities for collaboration between Chinese and Canadian energy companies, the Alberta government currently faces challenges in work shortages, immigration, and pressures from unions and environmental lobbyists. 1 fig

  19. Whither Chinese involvement in the Canadian oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, B. [Calgary Univ., AB (Canada). Haskayne School of Business

    2006-09-15

    Chinese oil companies have become increasingly focused on securing Canadian oil. However, most of the oil sands leases with good geological and economic prospects are owned by Canadian or Canadian subsidiary companies that have proven unwilling to sell future revenue and reserves bases to the Chinese. The opportunity for a trade of Canadian oil assets for improved Chinese market entry has been limited to Husky, which has existing Chinese connections, as well as to global companies such as Exxon, Shell and BP. In May 2005, the Chinese company Sinopec completed a $105 million deal with Calgary-based Synenco and formed a joint venture for oil sands production and an upgrader. Chinese interests are also involved in the Calgary-based Value Creation Group of Companies as well as in BA Energy. Enbridge has recently invested $25 million in the Heartland upgrader project, presumably with the aim of building pipelines to move new products to Asia. The most significant problem for Canadian oil sands companies and the greatest opportunity for Chinese companies involves the utilization of trained Chinese workers for the $100 billion in oil sands construction planned for the next decade. Significant immigration barriers exist for Chinese workers in Canada, and there is a legitimate concern that Chinese workers may want to stay in Canada. It was concluded that while there may be mutual opportunities for collaboration between Chinese and Canadian energy companies, the Alberta government currently faces challenges in work shortages, immigration, and pressures from unions and environmental lobbyists. 1 fig.

  20. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  1. Oil sands tailings management project

    International Nuclear Information System (INIS)

    Godwalt, C.; Kotecha, P.; Aumann, C.

    2010-11-01

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  2. US refining capacity for Canadian heavy oil : current overview and future potential

    International Nuclear Information System (INIS)

    Paget, S.

    2006-01-01

    This presentation provided an overview of the Canadian oil sands industry and investigated the potential heavy oil refining capacity of the United States. An outline of the first commercial developments of steam assisted gravity drainage (SAGD) in Alberta's oil sands was provided. Canada's reserves were compared with oil shale and heavy oil reserves in the United States and Venezuela. Influences of Canadian developments from western Canadian conventional crude oil were reviewed, and an oil sands production forecast was provided. Recent refining developments in the United States include delayed coking; catalytic cracking; fluid coking; flexicoking; and LC-fining. However, many oil sand producers are now choosing to upgrade oil, and producers are currently saturating United States markets with heavy crude oil. Canadian crude prices reached $90 per barrel in 2006. Heavy oil pipelines are now being constructed and existing heavy oil pipelines are being expanded. ConocoPhillips is planning to invest $1 billion for a new heavy oil coker, while BP is investing $3 billion for a heavy oil refinery in Indiana which plans to refine Canadian crude oil supplies. However, bitumens from Alberta are volatile in price, and excess Canadian production must be exported. Less than 10 per cent of western Canadian crude has tidewater access, and capital providers are concerned about cost over-runs. In order for the Canadian oil sands industry to succeed, refining capacity in the United States must be expanded, and open access must be provided to the Gulf coast as well as to the Pacific Ocean. tabs., figs

  3. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  4. Sustainable water management in Alberta's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Bill; Usher, Robyn; Roach, Andrea [CH2M HILL, Englewood, CO (United States); Lambert, Gord; Kotecha, Prit [Suncor Energy Inc., Calgary (Canada)

    2012-07-01

    The Canadian Association of Petroleum Producers forecast published in 2011 predicts that oil production from oil sands will increase by 50% in the next 3 years and double by 2020. This rate of growth will result in significant pressure on water resources; water use per barrel of oil sands production is comparable to other energy resources - about 2.5 barrels of fresh water per barrel of oil produced are used by mining operations and 0.5 barrels by in-situ operations. Suncor Energy Inc. (Suncor) was the first company to develop the oil sands in northern Alberta and holds one of the largest oil sands positions in Canada. In 2010, Suncor announced plans to increase production to more than 1 million barrels of oil equivalent per day by 2020, which it plans to achieve through oil sands production growth of approximately 10% per year. Because water supply and potential impacts to water quality are critical to its future growth, in 2010-2011 Suncor conducted a risk assessment to identify water-related business risks related to its northern Alberta operations. The assessment identified more than 20 high level business risks in strategic water risk areas including water supply, water reuse, storm water management, groundwater, waste management and river water return. The risk assessment results prompted development of a strategic roadmap to guide water stewardship across Suncor's regional operations. The roadmap describes goals, objectives, and specific activities for each of six key water risk areas, and informs prioritization and selection of prospective water management activities. Suncor is not only exploring water within its own boundaries, but is also collaborating with other oil sands producers to explore ways of integrating its water systems through industry consortia; Suncor is a member of the Oil Sands Leadership Initiative and of the recently formed Canadian Oil Sands Innovation Alliance, among others. (author)

  5. Insight conference reports : Western Canada oil sands

    International Nuclear Information System (INIS)

    2005-01-01

    This conference presented issues of concern to the Canadian oil sands industry. Focal points included supply and the potential for market growth as well as opportunities and challenges faced by the industry in the current market. Various projects were discussed, including the Northern Lights and Fort Hill projects. Reserves and resource booking procedures were examined, as well as issues concerning the streamlining of regulatory barriers and various approaches to the Kyoto Protocol and greenhouse gas (GHG) emissions. Oil sands portfolios were reviewed as well as issues concerning the recovery of titanium and zircon, the economics of Steam Assisted Gravity Drainage (SAGD) options and innovations in technology and sub-surface risk assessment for in-situ projects. Transportation initiatives were examined as well as pipeline issues and storage infrastructure development. Issues concerning financing as well as the economic environment of the oil sands industry were also discussed. The conference featured 20 presentations, of which 5 have been catalogued separately for inclusion in this database. tabs, figs

  6. The dirty oil card and Canadian foreign policy

    International Nuclear Information System (INIS)

    Chastko, P.

    2010-10-01

    This paper discussed Canada's oil sands industry in relation to its international reputation as the source of an unacceptable amount of pollution. Environmental lobbyists and awareness groups have targeted Canada's oil sands industry as an example of how the oil industry contributes to pollution during the production phase. Media attention has focused on the oil sands as a heavy grade of crude oil that requires significant upgrading and refining before it can be produced as a barrel of usable oil. Canadian exports of oil sands to the United States have been the target of consumer boycotts and proposed legislation. A lack of available alternative energy sources and infrastructure for the transportation sector, and the continued global demand for petroleum mean that oil sands will continue to be exported to the United States as well as to other export markets such as China and India. The United States is likely to remain the largest importer of Canadian crude oils. However, policy-makers must ensure that the discourse about oil sands does not devolve into an argument in which energy security is pitted against the need for increased environmental protection. 49 refs.

  7. Canadian oil and gas survey 1998

    International Nuclear Information System (INIS)

    Roberge, R.B.

    1998-01-01

    The year 1997 brought record levels of financing for the Canadian oil and gas industry which led to record levels of capital spending and unprecedented merger and acquisition activity. Production records were achieved, but soft commodity prices in the fourth quarter resulted in a significant downturn in the equity markets. El Nino reduced demand for natural gas and heating oil, resulting in increased storage levels for both commodities. Record drilling and capital spending fueled the Canadian oilfield service industry as total market capitalization rose to $10 billion. As for the 1998 outlook, the industry has turned to natural gas as the favoured commodity, as indicated by the conclusion of the Alliance pipeline hearings and the Nova/TCPL merger. This survey presents a review of crude oil and natural gas production, prices, and capital spending for development and exploratory wells, and the financial and operating results for fiscal year 1997 of selected oil and gas companies and income trusts. All listed companies are Canadian public companies, or publicly traded income trusts, traded on one of the country's four major stock exchanges. They are ranked according to gross oil and gas production revenue only (before royalties). Syncrude and oil sands production is also included. The remaining data in the financial statistics tables includes all business segments of each company included. The survey excluded companies that were wholly-owned subsidiaries, divisions or U.S. subsidiaries and private companies. tabs., figs

  8. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  9. Oil sands and heavy oil development issues and prospects under a Liberal government

    International Nuclear Information System (INIS)

    Shiry, J.

    1993-01-01

    A short review is presented of some of the factors affecting development of the western Canadian oil sands and heavy oil deposits to the year 2000. The Alberta oil sands resource has at least 1 trillion bbl of recoverable oil. At current prices, technology is the key to reducing costs to a more economic level. Cash operating costs have halved to $15/bbl over the past decade and the oil sands companies have programs to halve that figure again. A problem is the rising cost of natural gas as a fuel, which could jeopardize further development of both oil sand and heavy oil resources. In Saskatchewan, over 25 billion bbl of heavy oil are estimated to be in place. The biggest question is what percentage can be recovered; again, technology such as horizontal wells, 3-dimensional seismic, and steam assisted recovery is playing an important role. Concerns are expressed about the intentions of the new Liberal government concerning oil sand/heavy oil development, especially on the issues of foreign investment, exports, and environmental policy. A Liberal energy policy is not likely to allow U.S. direct investment in an oil sands plant to be tied to export of production, and the energy- and emissions-intensive nature of the oil sand/heavy oil industry will tend to make environmental approvals difficult

  10. Marketing opportunities and challenges for Canada's oil sands industry

    International Nuclear Information System (INIS)

    1995-01-01

    This report demonstrated that effective marketing of Canadian oil sands products has been vital to the success of the industry in the past. Future success was expected to depend on having efficient transportation systems for the industry's products, unrestricted access to markets, and a range of products can competitively meet the needs of specific markets and customs. 9 ills

  11. Canadian crude oil production and supply forecast 2006-2020

    International Nuclear Information System (INIS)

    2006-05-01

    In order to enable members to plan for pipeline capacity requirements for transporting Canadian crude oil to markets, the Canadian Association of Petroleum Producers (CAPP) 2006-2020 crude oil production and supply forecast provides a long-range outlook of Canadian crude oil production. It provides a forecast of supply and demand for both western and eastern Canada. Because offshore eastern oil production does not rely on pipeline access to reach markets, the analysis primarily focuses on western Canadian production and supply. Over the next fifteen years, Alberta's oil sands provides the main source of growth in the western Canadian production forecast. A survey of CAPP members encompassing all oil sands projects was conducted. Survey responses reflect both planned and envisioned projects over a fifteen year period, although some of the envisioned projects have been risk adjusted by modifying the potential completion schedules for projects which are deemed more uncertain. Detailed tables are provided on forecast data. Three sets of tables are included to show production, two supply scenarios and a high level assessment of the need for incremental pipeline capacity. The report also discusses delays and risk factors that could slow the pace of oil sands development and the corresponding increase in production being forecast in the base case. 16 tabs

  12. Oil sands economic impacts Canada : CERI report : backgrounder

    International Nuclear Information System (INIS)

    2005-09-01

    Oil sands production now accounts for 1 out of every 2 barrels of supply in Western Canada. It is anticipated that Alberta's oil sands sector will experience significant growth over the next few decades. This paper provided an outline of the challenges and economic impacts resulting from oil sands development in Canada. Alberta's oil sands reserves are estimated at 175 billion barrels that are deemed economically recoverable using current technology. At current production levels, reserves will sustain production of 2.5 million barrels per day for the next 200 years. A study by the Canadian Energy Research Institute (CERI) has forecast $100 billion in investment for the 2000-2020 period. Numerous companies hold leases and are planning new projects. A number of recent advances in oil sands technology are expected to further reduce costs as development matures. A royalty and tax regime that provides long-term fiscal certainty is a key factor that supports current oil sands growth forecasts. The CERI study has indicated that economic spinoffs from oil sands development relate to employment generated outside of Alberta, and that the largest percentage of government revenue accrues to the federal government. However, development may be constrained because the pace of growth in the sector may exceed underlying infrastructure related to roads, housing and municipal services. An adequate workforce of qualified trades and technical and professional people is also crucial. Several pipeline projects have been proposed to deliver oil sands crudes to new markets over the next decade. It was concluded that the billions of dollars invested in oil sands in Alberta will contribute to the economic prosperity of the entire country. 11 figs

  13. Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region - development using current knowledge and evaluation with passive sampling and air dispersion modelling data

    Science.gov (United States)

    Qiu, Xin; Cheng, Irene; Yang, Fuquan; Horb, Erin; Zhang, Leiming; Harner, Tom

    2018-03-01

    Two speciated and spatially resolved emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region (AOSR) were developed. The first database was derived from volatile organic compound (VOC) emissions data provided by the Cumulative Environmental Management Association (CEMA) and the second database was derived from additional data collected within the Joint Canada-Alberta Oil Sands Monitoring (JOSM) program. CALPUFF modelling results for atmospheric polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and dibenzothiophenes (DBTs), obtained using each of the emissions databases, are presented and compared with measurements from a passive air monitoring network. The JOSM-derived emissions resulted in better model-measurement agreement in the total PAH concentrations and for most PAH species concentrations compared to results using CEMA-derived emissions. At local sites near oil sands mines, the percent error of the model compared to observations decreased from 30 % using the CEMA-derived emissions to 17 % using the JOSM-derived emissions. The improvement at local sites was likely attributed to the inclusion of updated tailings pond emissions estimated from JOSM activities. In either the CEMA-derived or JOSM-derived emissions scenario, the model underestimated PAH concentrations by a factor of 3 at remote locations. Potential reasons for the disagreement include forest fire emissions, re-emissions of previously deposited PAHs, and long-range transport not considered in the model. Alkylated PAH and DBT concentrations were also significantly underestimated. The CALPUFF model is expected to predict higher concentrations because of the limited chemistry and deposition modelling. Thus the model underestimation of PACs is likely due to gaps in the emissions database for these compounds and uncertainties in the methodology for estimating the emissions. Future work is required that focuses on improving the PAC emissions estimation and

  14. Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region – development using current knowledge and evaluation with passive sampling and air dispersion modelling data

    Directory of Open Access Journals (Sweden)

    X. Qiu

    2018-03-01

    Full Text Available Two speciated and spatially resolved emissions databases for polycyclic aromatic compounds (PACs in the Athabasca oil sands region (AOSR were developed. The first database was derived from volatile organic compound (VOC emissions data provided by the Cumulative Environmental Management Association (CEMA and the second database was derived from additional data collected within the Joint Canada–Alberta Oil Sands Monitoring (JOSM program. CALPUFF modelling results for atmospheric polycyclic aromatic hydrocarbons (PAHs, alkylated PAHs, and dibenzothiophenes (DBTs, obtained using each of the emissions databases, are presented and compared with measurements from a passive air monitoring network. The JOSM-derived emissions resulted in better model–measurement agreement in the total PAH concentrations and for most PAH species concentrations compared to results using CEMA-derived emissions. At local sites near oil sands mines, the percent error of the model compared to observations decreased from 30 % using the CEMA-derived emissions to 17 % using the JOSM-derived emissions. The improvement at local sites was likely attributed to the inclusion of updated tailings pond emissions estimated from JOSM activities. In either the CEMA-derived or JOSM-derived emissions scenario, the model underestimated PAH concentrations by a factor of 3 at remote locations. Potential reasons for the disagreement include forest fire emissions, re-emissions of previously deposited PAHs, and long-range transport not considered in the model. Alkylated PAH and DBT concentrations were also significantly underestimated. The CALPUFF model is expected to predict higher concentrations because of the limited chemistry and deposition modelling. Thus the model underestimation of PACs is likely due to gaps in the emissions database for these compounds and uncertainties in the methodology for estimating the emissions. Future work is required that focuses on improving the PAC

  15. Economic impacts of Alberta's oil sands, volume 1

    International Nuclear Information System (INIS)

    Timilsina, G.R.; LeBlanc, N.; Walden, T.

    2005-01-01

    In 2004, the international media recognized Alberta's oil sands as part of the global oil reserves, thereby establishing Canada as second to Saudi Arabia as potential oil producing nations. The economic impacts of Alberta's oil sands industry on economies were assessed at regional, provincial and international levels for the 2000 to 2020 period. A customized input-output model was used to assess economic impacts, which were measured in terms of changes in gross domestic product; employment and labour income; and, government revenues. Cumulative impacts on employment by sector and by jurisdiction were also presented. An investment of $100 billion is expected through 2020, resulting in production of crude bitumen and synthetic crude oil outputs valued at about $531 billion. The impact of the oil sands industry on local employment was also evaluated. It was shown that activities in the oil sands industry will lead to significant economic impact in Alberta, Ontario, Quebec and the rest of Canada. Alberta's local economy would be the main beneficiary of oil sands activities with nearly 3.6 million person years employment created in Alberta during the 2000 to 2020. Another 3 million person years employment would be created in other Canadian provinces and outside Canada during the same time period. A sensitivity analysis on the responsiveness to oil prices and the removal of various constraints incorporated in the main analysis was also presented. The federal government will be the largest recipient of revenues generated to to oil sands activities. The results of the study were compared with that of the National Task Force on Oil Sands Strategies. This first volume revealed the results of the study while the second volume includes the data and detailed results. 48 refs., 57 tabs., 28 figs

  16. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Dingle, H. B.

    1999-01-01

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  17. Mobil Oil Canada : Kearl Oil Sands Mine

    International Nuclear Information System (INIS)

    1997-01-01

    The upgrader design at Mobil's Kearl Oil Sands Mine were described. Included were feed characteristics, upgrader products, process schemes and their overall economics and upgrader technologies in use, including coking, deasphalting, hydrocracking, hydrotreating and visbreaking. Advantages and disadvantages of the upgrader technologies were highlighted. As far as the product is concerned, much of it is destined to U.S. refineries that are equipped to process the material. The Kearl Oil Sands Mine upgrading facility will likely use a combination of coker/hydrotreating, which is a well proven process for high value products that has been used in all five of Mobil's refineries in the U.S., and visbreaker/deasphalting, which has shown promise in bench-scale testing, but at present still has some potential commercial difficulties. Foremost among these are the high softening product of asphalt from visbroken products, questionable commercial feasibility of the low yield of pitch, and problems in the disposal of asphalt. Severe visbreaking also yields unstable products. Details of Mobil Canada's oil sands project were also summarized 2 tabs., 9 figs

  18. A new era of opportunity for Canada's oil sands

    International Nuclear Information System (INIS)

    1996-06-01

    The enormous potential for wealth that is offered by Canada's oil sands deposits was discussed. Alberta's oil sands contain more recoverable oil than all the reserves of Saudi Arabia - but they have barely been developed. They are a natural resource of sufficient size, scale and competitive advantage to be of great benefit to the economy. The National Oil Sands Task Force has invested billions of dollars in the project and believes that the industry can triple production over the next 25 years. Benefits to Canadians will include an estimated 44,000 new jobs across the country, $97 billion increase in revenue for all levels of government, and $100 billion increase in consumer disposable incomes. In order to realize these socio-economic benefits, some important improvements were recommended to insure industry efficiency and growth. Some of the recommendations included increased investment in science and technology, as a key component of development. 1 tab., 4 figs

  19. Petro-Canada's oil sands supply outlook

    International Nuclear Information System (INIS)

    Sangster, B.

    2004-01-01

    A report by the Canadian Energy Research Institute suggests that by 2017, production from the Athabasca Oil Sands could reach as high as 3.5 million barrels per day (mbpd), or it could be as low as 1.1 mbpd. This uncertainty in production is due to several variables such as capital costs, project size, reservoir quality, pipeline capacity and workforce productivity. Other factors that influence production include marginal economics, markets and prices, investor confidence, stakeholder concerns and the Kyoto Protocol. The production level that will be achieved by 2017 will depend on how industry address these emerging issues. The author discussed these issues in detail with particular reference to the approach that Petro-Canada has taken to address the challenges. Suggestions to reduce the potential impacts of these challenges were also presented. tabs., figs

  20. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  1. A Primer on Alberta’s Oil sands Royalties

    Directory of Open Access Journals (Sweden)

    Sarah Dobson

    2015-12-01

    price is applied • Gross vs. net revenues and the application of royalties • How the price of oil and the exchange rate between Canadian and U.S. dollars impact royalties • The historical and forecast contribution of oil sands royalties to Alberta’s finances Needless to say, a primer like this should be required reading for policymakers. It should also be required reading, however, for any Albertan who cares about the long-term benefit of the oil sands to Alberta’s revenue, and our financial future as a province.

  2. Chinese refining capacity for Canadian heavy oil

    International Nuclear Information System (INIS)

    Bruce, G.W.

    2006-01-01

    This paper discussed China's refining capacity in relation to exports of Canadian heavy oil. Demand for oil is increasing throughout the world, and China is expected to consume 25 per cent of the projected yearly oil supplies. Alberta currently has an estimated 174 billion barrels of recoverable bitumen, and produces 1.06 million barrels per day. Production is expected to increase to 4.5 million barrels per day by the year 2020. Currently bitumen blends are refined and diluted with naphtha and sweet synthetic crude oil. Bitumen is a challenging feedstock for refineries, and requires thermal production methods or gasification processes. Primary conversion into sour synthetic crude is typically followed by hydrocracking and further refining into finished petroleum products. There are currently 50 refineries in China with a 7.4 million barrel per day capacity. Coastal refineries using imported crude oil have a 4 million barrel per day capacity. New facilities are being constructed and existing plants are being upgraded in order to process heavier and more sour crude oils. However, current refining capabilities in Chinese refineries have a limited ability for resid conversion. It was concluded that while China has a refining infrastructure, only refineries on the coast will use oil sands-derived feedstocks. However, there are currently opportunities to design refineries to match future feedstocks. tabs., figs

  3. Geotechnical properties of crude oil contaminated sand

    International Nuclear Information System (INIS)

    Puri, V.K.; Das, B.M.; Cook, E.E.; Shin, E.C.

    1994-01-01

    Contamination of soil due to an oil spill influences its subsequent engineering behavior. An investigation was conducted to study the effect of crude oil contamination on compaction characteristics, shear strength, one-dimensional compression, and coefficient of permeability. Water permeability was also determined by using commercial grade motor oils as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. The angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand. One dimensional compression characteristics of sand are significantly influenced by oil contamination resulting in a decrease in the value of constrained modulus with increase in the degree of oil contamination compared to the case of dry sand. Water permeability was observed to be a function of the initial viscosity and the degree of saturation due to the contaminating oil

  4. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  5. Alberta Oil Sands Equity annual report, 1992-93. Partnership and progress in Alberta's oil sands development

    International Nuclear Information System (INIS)

    1993-01-01

    Alberta Oil Sands Equity (AOSE) manages the Alberta government's equity investments in oil sands and heavy oil projects. AOSE is a 16.74% participant in the Syncrude Project, a 10% participant in the OSLO (Other Six Leases Operation) Commercial Project and the OSLO New Ventures project, and a 24.17% participant in the Lloydminster Bi-Provincial Upgrader. Syncrude produces ca 12% of Canadian crude oil requirements, and AOSE's share yielded $44 million profit for 1992/93, slightly higher than the the $43.3 million the previous year. The OSLO Commercial Project is a proposed commercial oil sands plant with a mine site and extraction plant to be located north of Fort McMurray, and an upgrading facility to be situated north of Edmonton. Work on this project was suspended in early 1992. The OSLO New Ventures project will handle the exploration and development of the remaining five oil sands leases plus the southern portion of Lease 31. As of March 31, 1993, the project owners were considering a commercial demonstration project utilizing dredging and cold-water extraction processes. Two of the owners are unable to provide funding and discussions are under way to resolve the matter and move the program forward. The Lloydminster Bi-Provincial Upgrader opened Noveber 20, 1992, and production has reached 41,000 bbl/d, or 89% of design capacity. The upgrader will increase the value of heavy crude oil and thereby increase its demand. 5 figs., 3 tabs

  6. Opportunities for CANDU for the Alberta oil sands

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Hau, K.; Zhou, X.; Dunbar, R.B.

    2003-01-01

    ), have converged so that a practical, economical match of nuclear energy to the oil sands is now available. This paper describes recent studies by AECL and by CERI (the Canadian Energy Research Institute) to look at the adaptation of the ACR design for use in the oil sands, in particular with regard to economic viability. Issues raised in these studies are discussed, along with priorities for further work. (author)

  7. Macro-economic benefits of an expanded oil sands industry

    International Nuclear Information System (INIS)

    1995-01-01

    Probable impact of benefits of expanded oil sands development on employment and government revenues were analyzed. Investment in proposed oil sands facilities was forecast to create about 1 million person-years of direct and indirect employment. Forty percent of employment gains would be created in Alberta, with remaining positions mostly in Ontario and Quebec. Government taxes, royalties, reduced debts interest costs and revenues to municipalities, hospitals and pension plans would increase by $97 billion (1994 dollars) between 1995 and 2025. Additional benefits would include increases in average Canadian disposable incomes, substitution of imported with domestic oil, and expansion of gross domestic product in Alberta by 5%. Some variation may be expected because of accuracy of assumptions that were made in the analysis, but the character of the results were not expected to change

  8. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

  9. Supercritical solvent extraction of oil sand bitumen

    Science.gov (United States)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  10. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  11. Centennial review-forecast--oil sands, shales spar for markets

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1967-09-01

    The relationship between possible developments of tar sands and oil shale deposits to the future of the oil and gas industry is examined. The Athabasca tar sands are estimated to contain 85 billion bbl of synthetic crude oil which can be exploited using currently available mining equipment and proven techniques. Another 240 billion bbl of synthetic crude are potentially available through in-situ extraction methods. Great Canadian Oil Sands Ltd. is using an extraction procedure which involves a surface mining operation, extraction and processing of the bitumen, and product shipments via a 266-mile pipeline. This procedure will be used to produce 45,000 bpd of synthetic crude and 300 ton per day of sulfur. Syncrude Canada Ltd. and Shell Canada Ltd. both have applied to the Alberta government for permission to operate 100,000-bpd operations. Syncrudes is a mining operation and Shell plans to use in-situ extraction. A number of companies have conducted research projects concerning shale oil recovery. The majority of these projects have been aimed at improving mining operations. In-situ retorting of kerogen and extraction of oil has also received consideration.

  12. Market potential for Canadian crude oil

    International Nuclear Information System (INIS)

    Heath, M.; Fisher, L.; Golosinski, D.; Luthin, A.; Gill, L.; Raggett, C.

    1997-01-01

    Future key markets for Canadian crude were evaluated, and probable flow volumes and prices were identified. Key concerns of market participants such as pricing, alternative crude sources, pipeline tariffs and crude quality, were examined. An overview of the competition faced by Canadian crude supply in global markets was presented. World crude oil supply and demand was discussed. US and Canadian crude oil supply (2000 to 2010), refinery demand for light and heavy crudes, existing future crude oil and refined product pipeline infrastructure, and pricing implications of changing crude oil flows were analyzed. The general conclusion was that the US market will continue to provide growing markets for Canadian crude oil, and that the Canadian supply to fulfill increased export requirements will be available due to the combined effects of increasing heavy crude supply, growing production from the east coast offshore, and recent and ongoing pipeline expansions and additions. 20 refs., 64 tabs., 42 figs

  13. Alberta Oil Sands Equity annual report, 1991-92. Partnership and progress in Alberta's oil sands development

    International Nuclear Information System (INIS)

    1992-01-01

    Alberta Oil Sands Equity (AOSE) manages the Alberta government's equity investments in oil sands and heavy oil projects. AOSE is a 16.74% participant in the Syncrude Project, a 10% participant in the OSLO (Other Six Leases Operation) Commercial Project and the OSLO New Ventures project, and a 24.17% participant in the Lloydminster Bi-Provincial Upgrader. Syncrude produces over 11% of Canadian crude oil requirements, and AOSE's share yielded $43.3 million profit for 1991/92, down significantly from the $82.1 million the previous year due to lower oil prices. The OSLO Commercial Project is a proposed commercial oil sands plant with a mine site and extraction plant to be located north of Fort McMurray, and an upgrading facility to be situated north of Edmonton. Work on this project was suspended in early 1992. The OSLO New Ventures project will handle the exploration and development of the remaining five oil sands leases plus the southern portion of Lease 31. As of March 31, 1992, the project owners were considering a commercial demonstration project utilizing dredging and cold-water extraction processes. Two of the owners are unable to provide funding and discussions are under way to resolve the matter and move the program forward. The Lloydminster Bi-Provincial Upgrader was nearly 90% complete in March 1992 and full startup is expected in November 1992; engineering work was completed in March 1991. The upgrader will increase the value of heavy crude oil and thereby increase its demand. 4 figs., 4 tabs

  14. Market opportunities and challenges for oil sands

    International Nuclear Information System (INIS)

    Wise, T.H.

    2004-01-01

    The use of Alberta bitumen as a clean fuel depends on upgrading, transportation, and refining processes. Forecasts show that oil sands production, which includes synthetic crude oil (SCO), will surpass declining conventional production from the Western Canada Sedimentary Basin. The challenges facing the oils sands processing industry include: crude oil prices which affect the producer's market; market expansion options; diluent availability/cost; supply cost competitiveness; and, regional processing. The common market issues include light/heavy crude prices, oil sands crude qualities, prices of oil sands crudes, pipeline infrastructure, and competitive supplies. The issues facing the refiners are: refining margins, security of crude supply, refined product quality, and competitive product supply. It was noted that Alberta must retain or increase its share of the Midwest market. The market expansion options were reviewed for both downstream (refining) and upstream (upgrading) operations. New pipeline capacity is needed to reach more distant markets such as Southern Midwest, Washington, and California. The market is nearly saturated for Canada's heavy oil supply. More upgrading will be required as bitumen production increases. Market growth is still possible for Canada's SCO but according to forecasts, the market could also become saturated. To increase demand and allow supplies to grow, SCO prices may fall below light crude prices. It was noted that a balance must be achieved in order for producers to increase production and for refiner/upgraders to expand their conversion capacity. 13 figs

  15. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  16. More oil sand cooperation between Canada and Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    Venezuela has pioneered the production of heavy oil, according to Dr. A. Guzman-Reyes, director general of hydrocarbons for the Venezuelan government. The first heavy oil production began in Venezuela 60 yr ago and the oil industry has steadily improved methods of producing and handling heavy oil. The country's producing fields are capable of yielding almost one million barrels of heavy oil daily, although actual production, largely because of market limitations, is about 650,000 bpd. Canada's daily heavy oil production, including the 60,000 bbl of synthetic crude produced daily by the Great Canadian Oil Sands plant, is about 200,000 bbl. Dr. Guzman-Reyes stated that Venezuela intends to rapidly develop heavy oil production and upgrade facilities to maintain its export markets. The national oil company, Petroleos de Venezuela, plans to invest 4 times the amount spent on oil development over the last 60 yr during the next 10 yr, a total of $3 billion by 1980.

  17. The eye of the beholder : oil sands calamity or golden opportunity?

    International Nuclear Information System (INIS)

    McColl, D.

    2009-02-01

    Alberta's oil sands deposits are one of the largest hydrocarbon deposits in the world, and the oil sands industry has become a significant driving force in the Canadian economy. However, development in the region has slowed as a result of the recent economic downturn. This paper discussed the future of the oil sands industry, and argued that excess global oil supplies will need to be consumed before the industry fully recovers. Increased liquidity and higher oil prices are also required in order to help the industry recover. Oil sands data were aggregated and classified according to their various stages of development. Projections of bitumen production were based on the summation of all announced projects. Assumptions were adjusted to reflect current and likely near-term future outlooks for oil sands development. Results of the study indicated that the pace of development is expected to slow. Current leases will be developed at a slower pace. Prices in excess of $70 will be required for the industry to continue expanding as well as to generate a rate of return that can be reinvested into the Canadian economy. It was concluded that opportunities for current oil sands operators and new project proponents should take advantage of lower prices to source materials and equipment. 3 figs

  18. Short-term outlook for Canadian crude oil to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-09-01

    The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This report is intended to expand the effectiveness of the Board's monitoring activities by providing an assessment of the current state of the petroleum industry and the potential for growth. It provides an 18-month outlook on international and domestic crude oil prices; drilling and exploration activity; supply projections for Canadian crude oil and petroleum products; Canada's crude oil trade balance and markets for Canadian crude; existing export pipeline networks and project expansion plans; and, the Canadian petroleum products industry and the impact of higher prices. It also identifies the major issues and challenges associated with the development of Canada's crude oil. The 2 major oil producing areas in Canada are the Western Canada Sedimentary Basin (WCSB) including the oil sands, and offshore eastern Canada. While conventional production in the WCSB is declining, development focus has shifted to Alberta's oil sands as well as Hibernia, Terra Nova and White Rose, the 3 major oil fields offshore Newfoundland and Labrador. High energy prices have resulted in record profits for the Canadian oil and gas industry, and has stimulated billions of dollars in investment, with Alberta's oil sands being the main beneficiary. The 19 refineries in Canada have been operating at about 90 per cent capacity for the last several years due to strong demand for transportation fuels. 10 tabs., 37 figs., 2 appendices

  19. Canadian incentives for oil and gas exploration. [Applicability to USA

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    During the 1970s a number of different exploration and production incentive programs were put in place in Canada, in particular in the Province of Alberta, Canada's principal oil- and gas-producing province. The DOE/RA is evaluating Canadian incentives for oil and gas exploration, and this study is intended to provide information that will help guide DOE/RA in determining the applicability of Canadian incentive programs in US energy policy. The study describes and documents the fiscal structure in which the Canadian oil industry operates. The incentive features of pricing policy, taxation policy, and provincial royalty systems are discussed. A principal focus of the study is on one of the most important of Canada's specific incentive programs, the Alberta Exploratory Drilling Incentive Credit Program (EDICP). The study describes and evaluates the effect of the EDICP on increased oil and gas exploration activity. Similarly, the study also reviews and evaluates other specific incentive programs such as the Alberta Geophysical Incentive Program, Frontier Exploration Allowances, and various tar sand and heavy oil development incentives. Finally the study evaluates the applicability of Canadian incentives to US energy policy.

  20. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  1. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  2. Canada's oil sands, opportunities and challenges to 2015 : an energy market assessment

    International Nuclear Information System (INIS)

    2004-05-01

    The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This report provides an assessment of the current state of the oil sands industry and the potential for growth. It also identifies the major issues and challenges associated with the development of Canada's oil sands, one of the world's largest hydrocarbon resources. Initial production of Canada's oil sands began in 1967. The resource has become more economic to develop in recent years due to higher energy prices and new technologies. The economic potential of Canada's oil sands has been recognized internationally. Canadian oil sands production in 2004 will surpass 160,000 cubic metres per day. By 2015, production is expected to more than double to meet market demands. The challenges facing the industry include higher natural gas prices, capital cost overruns and environmental impacts. The major factors that affect the rate of oil sands development include natural gas supply, energy demand, oil and gas pricing, markets and pipelines, environmental considerations, emerging technologies, geopolitical issues, and labour. This report includes key findings for the following four key components: economic potential and development of the resource base; markets and pipelines; environmental and socio-economic impacts; and, potential spin-off developments in the electricity and petrochemical industries. 26 tabs., 53 figs

  3. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  4. Fuel alternatives for oil sands development - the nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Donnelly, J K

    1996-12-31

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs.

  5. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Bock, D.; Donnelly, J.K.

    1995-01-01

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  6. Successful water management for the oil sands industry

    International Nuclear Information System (INIS)

    Braun, B.

    2003-01-01

    Water is a key requirement to produce oil from thermal oil sands projects. Historically, water was considered as a renewable resource that could be used when necessary. Water use is currently examined in a wider context. Canadian Natural Resources Limited has used fresh water for thermal projects in the past, including its thermal operations at Primrose and Wolf Lake. However, technical advancements have made it possible to use recycled water. This allows companies to survive within their licenses while increasing production. Other advances include the use of brackish water, and innovations such as using depleted reservoir sections to store water to increase the use of recycled water. It was noted that brackish water resources need to be mapped and understood in greater detail. The objective is to use brackish water at a cost equal to, or less, than fresh water

  7. Oil sands tailings preliminary ecological risk assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Chemical data collected from various oil sands soil-tailings mixtures were used to determine the ecological risk that such tailings would pose to terrestrial wildlife at the surface of a reclaimed site. A methodology that could be used to evaluate the risks posed by various reclamation options (for dry land only) was proposed. Risks associated with other reclamation options, such as wet landscapes or deeper in-pit disposal, were not evaluated. Ten constituents (eight organic and two inorganic) were found to pose a threat to terrestrial biota. The relative contribution of different exposure pathways (water and food ingestion, incidental soil ingestion, inhalation) were studied by probabilistic models. Some physical and chemical reclamation alternatives which involve incorporating oil sands tailings in the landscape to produce a surface that could sustain a productive ecosystem, were described. 53 refs., 15 tabs., 3 figs

  8. Tailings dewatering in the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Longo, S.; Labelle, M. [Golder Paste Technology, Sudbury, ON (Canada); Wislesky, I. [Golder Associates Ltd., Calgary, AB (Canada)

    2010-07-01

    Alberta's Directive 074 was established to reduce fluid tailings produced during oil sands extraction processes. This PowerPoint presentation examined some of the dewatering strategies available for oil sands operators and provided recommendations for implementing a dewatering plan. Sites must be evaluated in order to determine their chemistry, mineralogy, and the total quantity of material to be handled. The availability of potential additives must also be considered. Process technologies must be selected in relation to the operator's depositional strategy. Each site will require its own unique dewatering and depositional strategy. Dewatering technologies include thickening; in-line flocculation; centrifuge; co-mingling; and various new technologies such as electro-osmosis. Laboratory testing programs include index tests, primary stream thickening, and mini-pilot plant testing. The performance of various testing formats was evaluated. Thickening and depositional techniques were reviewed. tabs., figs.

  9. Naphtha evaporation from oil sands tailings ponds

    Energy Technology Data Exchange (ETDEWEB)

    Kasperski, K.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    The environmental impacts of volatile organic compounds (VOCs) from oil sands tailings ponds must be considered when evaluating new oil sands mining and extraction operations. Studies have suggested that only 40 percent of the solvent sent to tailings ponds is available to the environment, while the rest is irreversibly trapped. The recovery of hydrocarbons from oil sands froth process water is low. This PowerPoint presentation discussed a method of distinguishing between water and hydrocarbons at low temperatures. Samples were heated to 246 degrees C at 15 degrees C and held for 10 minutes. Heating was then resumed at 750 degrees C and held for 10 minutes in a pyrolysis phase, then cooled and reheated with an oxygen addition. The method demonstrated that the diluent distribution between the solids and water phases is misinterpreted as diluent that will evaporate, and diluent that will not evaporate. The study concluded by suggesting that the definition of recoverable and unrecoverable hydrocarbon should be re-termed as easily recoverable, and difficult to recover. tabs., figs.

  10. Canada's oil sands: nuclear power in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Alberta (Canada)

    2008-06-15

    At a time of the expansive global growth in energy demand and the peaking of conventional oil, the Canadian Oil Sands have emerged as the largest new reserves to supply oil to world markets. Bitumen production in 2006 averaged 1.25 million barrels per day (an increase of 13% over 2005 and an 88% increase since 2000). If this trend continues Canada will be positioned as one of the world's premier suppliers of oil for many decades to come. The Oil Sands are one of the world's most challenging and complex oil resources. They require considerable amount of energy, water and land area to produce, resulting in contaminated tailings ponds, air emissions of concern and copious greenhouse gas (GHG) emissions. As the need to protect the environment and reduce GHG emissions moves higher on the public agenda Canada's ability to grow the energy supplies from oil sands will be severely tested. This paper focuses on the current and emerging methods and innovations that can be applied to produce these unconventional resources to value-added products with a decreasing impact on the environment. The paper will also describe the benefits and challenges for nuclear energy in the oil sands as a solution to the need for substitutes for natural gas in oil sands production and upgrading and in meeting Canada's GHG emission targets. (author)

  11. Study of greenhouse gases reduction alternatives for the exploitation of non conventional oil sands in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bouchonneau, Deborah [Institut Francais du Petrole (IFP), Paris (France)

    2008-07-01

    High energy prices and greenhouse gases reduction represent the main challenges the current worldwide energetic situation has to face. As a consequence, paradox strategies can be highlighted: oil prices are sufficiently high to exploit non conventional oil resources, like extra heavy oils and oil sands. But the production of these resources emits larger GHG than the conventional oil path and implies other major environmental issues (water management, risks of soil pollution, destruction of the boreal forest), incompatible with the rules validated by the protocol of Kyoto. At the light of the new greenhouse gases reduction regulation framework announced by the Canadian Federal government, this work focuses on the study of greenhouse gases reduction alternatives applied to the non conventional oil sands exploitation in Canada. (author)

  12. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  13. Tar sands showdown : Canada and the new politics of oil in an age of climate change

    International Nuclear Information System (INIS)

    Clarke, T.

    2009-01-01

    This book outlined the social and environmental issues facing the oil sands industry in Canada, including economic sovereignty, energy security, water rights and free trade. The tar sands have become vital to the Canadian economy, as they have the potential to increase Canada's foreign oil output by 4 to 5 times in the next 15 years. The author discussed the ecological and social impact of the Alberta tar sands and the real cost of development to Albertans and Canadians. Tar sands oil production generates more than 3 times the amount of greenhouse gas emissions than conventional oil production. The industry is also becoming a prime example of the abuse of water sources. The author emphasized the need to build an alternative energy future in an age of global warming. The main objective of this book was to help stimulate a nation-wide public debate about the tar sands and the critical issues at stake regarding Canada's energy future and an environmental strategy for more sustainable development. refs., tabs., figs.

  14. Canadian oil and gas survey : 1997

    International Nuclear Information System (INIS)

    Roberge, R.B.

    1997-01-01

    An outlook of the Canadian Petroleum Industry, financial and operating statistics of the top 100 Canadian public oil and gas companies and 15 energy income trusts, were summarized for the fiscal year ending in 1996. In general, 1996 was a good year for the industry. Greater industry financing resulted in increased drilling activity and good stock market returns for investors. However, strong commodity prices also resulted in record levels of hedging activity, which meant lost revenues for the industry. The top 100 companies recorded losses of about $800 million in 1996, largely on crude oil hedges. The fact that volumes hedged forward to 1997 are down from 1996 indicate that many companies are rethinking their commitment to risk management. Details of crude oil and natural gas prices and production levels during 1996 were provided. A list of significant corporate mergers and acquisitions during the year under review rounded out the presentation

  15. Canadian heavy oil supply and demand

    International Nuclear Information System (INIS)

    Eynon, G.

    1997-01-01

    The wealth of business opportunities presented by Canada's vast heavy oil and bitumen resources in the face of declining reserves of light and medium crude were discussed. It was argued that Western Canadian producers, as a group, appear to lack the appreciation of the impacts of midstream and downstream sectors of the heavy oil business. The vertical integration of the heavy oil industry in Venezuela was cited as an example of the direction that Canadian producers should travel to achieve the control over their own destiny through ownership of the means of transportation, refining and marketing that is commensurate with their growing importance in the energy sector. The opportunities are great, but long-term success will require a sophisticated and integrated business approach. 4 figs

  16. Integrated oil sands tailings pond water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2010-07-01

    This PowerPoint presentation discussed research currently being conducted to treat oil sands tailings pond water (TPW). The treatment of TPW is challenged by the high level of naphthenic acids (NAs), the slow settling rate of fine particulate materials, and the complex chemistry of the water. The treatment process consisted of bioflocculation, sludge blanket assisted clarification, ozonation, and oil sands coke assisted hybrid biodegradation. The aggregation and adsorption process bound small particles and cells together while also ensuring the passive uptake of pollutants using microbial masses. The mixed liquor then passed through a sludge blanket to ensure enhanced particle capture. An ozonation process was used to increase the biodegradability of the TPW as well as to increase the biodegradability of the residual NAs after ozonation. The process used a hybrid bioreactor that consisted of both suspended and fixed microbial communities. The coke served as a biofilm carrier for the waste. Further studies are being conducted to investigate the efficiency and capability of the process. tabs., figs.

  17. Enabling technologies for oil sands development

    International Nuclear Information System (INIS)

    Bailey, R.T.

    1998-01-01

    A review of oil sands production and expansion possibilities in Alberta were presented. The enabling technologies for oil sands projects include mining (bucketwheels, draglines, trucks, shovels conveyors, slurry hydrotransport); extraction (conditioning tumblers, pipelines, tanks, hot water, caustic, cold water, frothers); froth cleaning (centrifuges, solvent treatment); tailings (tailings ponds, consolidated tailings); and upgrading (coking, hydrotreating for SCO, hydrocracking and multiple products). The enabling technologies for in situ production include cyclic steam stimulation for vertical wells, steam assisted gravity drainage (SAGD) for dual horizontal wells, and cold production with wormholes. This paper described the recovery potentials of each of these processes. It also discussed the role of government and industry in research and cooperative research involving both the private and public sectors. Examples of each of these were described such as SAGD, the OSLO cold water extraction process, The consolidated tailings (CT) project, the low energy extraction process (slurry production, hydrotransport, pipeline conditioning and warm water extraction), and research in fine tailings, to demonstrate that although objectives may differ, government and industry research objectives are complementary

  18. Oil sands tailings leachability and toxicity evaluation

    International Nuclear Information System (INIS)

    Gulley, J.R.

    1995-01-01

    Fine tailings disposal and reclamation is a major issue facing the oil sands mining and extraction industry. Government regulations dictate that reclamation must return the site to a level of self-sustaining biological capability which approximates the natural condition. A two-phase laboratory program has been completed to investigate the suitability of alternative reclamation materials. For the first phase of the study, chemical and toxicological analyses were carried out on 13 different reclamation and reference materials (solid phase and extractions). Seedling emergence, nematode maturation, algal growth and bacterial luminescence for leachate samples showed a range of sensitivities in response to the tested materials, although phytotoxicity tests were generally the most sensitive. With the exception of one test material, high toxicity ratings were consistent with that expected from the chemical data. The second phase of the study focused on the evaluation of chemical and toxicological conditions in leachate water generated using bench-scale column percolation tests. Leachate water equivalent to 10 pore volume replacements was generated and temporal variations in toxicity and chemistry monitored. Similar to phase 1 findings, phytotoxicity tests were the most sensitive tests to leachate waters. For most materials tested, most toxicity was removed after 2--3 porewater replacements. More persistent toxicity was noted for samples containing bitumen (e.g., fine tails and oil sands). No clear correspondence was noted between chemical concentrations and toxicity in leachate waters

  19. Non-aqueous heavy oil extraction from oil sand

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George [National Nuclear Security Administration (United States)

    2011-07-01

    The Kansas City plant operated by Honeywell has a long history of working with DOE NNSA on engineering and manufacturing services supporting national security requirements. The plant has developed a non-aqueous method for heavy oil extraction from oil sands. This method is environmentally friendly as it does not use any external body of water, which would normally be contaminated in the conventional method. It is a 2 phase process consisting of terpene, limonene or alpha pinene, and carbon dioxide. The CO2 and terpene phases are both closed loop systems which minimizes material loss. The limonene and alpha pinene are both naturally derived solvents that come from citrus sources or pine trees respectively. Carbon dioxide is an excellent co-solvent with terpene. There is also a possibility for heat loss recovery during the distillation phase. This process produces clean dry sand. Laboratory tests have concluded that this using non-aqueous liquids process works effectively.

  20. Dewatering Behaviour of Fine Oil Sands Tailings : An Experimental Study

    NARCIS (Netherlands)

    Yao, Y.

    2016-01-01

    Oil sands tailings are a warm aqueous suspension of sand, silt, clay, residual bitumen and naphtha. The tailings are hydraulically transported and stored in tailing ponds where they segregate, with the sand settling from suspension forming beaches and the remaining tailings flowing to the middle of

  1. Stakeholder relations in the oil sands : managing uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Alberta's oil sands are now at the crossroads of a series of significant and complex global issues that will require careful negotiation by all stakeholders involved in the oil sands industry. This paper discussed methods of managing uncertainty and risk related to the oil sands industry's agenda for the future. Oil sands developers must continue to secure permission from communities and other key stakeholders in order to develop oil sand projects. Stakeholder relations between oil sands operators, First Nations, and Metis Nation communities must ensure that respect is maintained while environmental impacts are minimized and long-term economic benefits are secured for all parties. Environmental non-governmental organizations (ENGOs) must ensure that oil sands resources are developed responsibly, and that environmental standards are maintained. Seven key shifts in stakeholder relations resulting from the recent economic crisis were identified. These included (1) withdrawal from the multi-stakeholder process, (2) increased focus on government to demonstrate policy leadership, (3) a stronger push from ENGOs to express environmental concerns, (4) global lobby and public relations efforts from ENGOs, (5) companies retreating to local community stakeholders, (6) more active demands from First Nations and Metis Nations groups, and (7) companies challenging ENGO campaigns. The study concluded by suggesting that government leadership is needed to clear policy and regulatory frameworks for Canada's oil sands.

  2. Geophysical mapping of the occurrence of shallow oil sands in ...

    African Journals Online (AJOL)

    Oil sands are known to be an alternate source of energy and of great economic value. To map the occurrence of shallow oil sand deposits in Idiopopo, Okitipupa area in Ondo state southwestern Nigeria, vertical electric sounding (VES) in 11 stations along 3 profiles were carried out using the Schlumberger configuration.

  3. The role of Canadian heavy crude oil in the North American market

    Energy Technology Data Exchange (ETDEWEB)

    Mink, F J; Antonia, H A

    1977-01-01

    Canadian reserves of heavy gravity crude oil are vast and the potential producibility from those reserves is expected to be surplus to Canadian requirements into the 1990s. This study focuses on the impact that market constraints may have on the future supply of heavy gravity crude oils from the W. Canadian basin. It observes that severe export restrictions will not only limit the orderly development of available reserves in the area but also will impair the prospects of additional enhanced recovery of conventional heavy crude reserves and restrict future experimental applications of oil sands recovery in the Cold Lake deposit of Alberta. Since it is expected that export restrictions for heavy gravity crude oil will be lifted in the future, the outlook for expanded development of indigenous reserves is promising.

  4. Alberta oil sands crudes : upgrading and marketing

    International Nuclear Information System (INIS)

    Ashar, M.

    2008-01-01

    Open pit mining and in situ techniques, such as steam stimulation, are used to recover Alberta's bitumen and heavy oil resources, which have higher viscosities than conventional hydrocarbons. The bitumen is typically upgraded to synthetic crude oil (SCO). In the simplest processing scheme, the bitumen is blended with diluent for ease in pipeline transport and then processed at refineries with upgrading facilities. The bitumen is also upgraded to light SCO at world-scale upgraders in Alberta. The SCO is then processed at refineries in downstream markets. The 2 categories of upgrading, notably primary and secondary upgrading, were described in this article along with technology options for both categories. Slurry hydrocracking is regarded as the most interesting emerging residual fuel upgrading technology. It combines special catalyst mixes with the latest slurry reactor designs as well as innovative catalyst capture and recycle schemes to produce very high conversions and potentially superior upgrading economics. The increase in volume and rate of SCO from Alberta provides refiners in the oil sands marketing sector an unprecedented choice of opportunities to improve profitability. Key trends indicate that production will increase substantially from 2008 to 2030. 5 figs

  5. Alberta oil sands crudes : upgrading and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Ashar, M. [Suncor Energy, Fort McMurray, AB (Canada)

    2008-05-15

    Open pit mining and in situ techniques, such as steam stimulation, are used to recover Alberta's bitumen and heavy oil resources, which have higher viscosities than conventional hydrocarbons. The bitumen is typically upgraded to synthetic crude oil (SCO). In the simplest processing scheme, the bitumen is blended with diluent for ease in pipeline transport and then processed at refineries with upgrading facilities. The bitumen is also upgraded to light SCO at world-scale upgraders in Alberta. The SCO is then processed at refineries in downstream markets. The 2 categories of upgrading, notably primary and secondary upgrading, were described in this article along with technology options for both categories. Slurry hydrocracking is regarded as the most interesting emerging residual fuel upgrading technology. It combines special catalyst mixes with the latest slurry reactor designs as well as innovative catalyst capture and recycle schemes to produce very high conversions and potentially superior upgrading economics. The increase in volume and rate of SCO from Alberta provides refiners in the oil sands marketing sector an unprecedented choice of opportunities to improve profitability. Key trends indicate that production will increase substantially from 2008 to 2030. 5 figs.

  6. Big picture thinking in oil sands tailings disposal

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, J. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of disposing oil sands tailings. Oil sands operators are currently challenged by a variety of legislative and environmental factors concerning the creation and disposal of oil sands tailings. The media has focused on the negative ecological impact of oil sands production, and technical issues are reducing the effect of some mitigation processes. Operators must learn to manage the interface between tailings production and removal, the environment, and public opinion. The successful management of oil sand tailings will include procedures designed to improve reclamation processes, understand environmental laws and regulations, and ensure that the cumulative impacts of tailings are mitigated. Geotechnical investigations, engineering designs and various auditing procedures can be used to develop tailings management plans. Environmental screening and impact assessments can be used to develop sustainable solutions. Public participation and environmental mediation is needed to integrate the public, environmental and technical tailings management strategies. Operators must ensure public accountability for all stakeholders. tabs., figs.

  7. Canada's oil sands : opportunities and challenges to 2015 : an update

    International Nuclear Information System (INIS)

    2006-06-01

    This report updated an energy market assessment compiled and published by the National Energy Board (NEB) in 2004. Major changes resulting from recent developments in the oil sands industry were presented. The report was compiled from a series of informal meetings and discussions with a cross-section of oil sands stakeholders. Influences on recent oil sands development and production growth included market development and pipelines; rising capital and labour costs; operating costs; environmental impact management; high crude oil prices; rising global energy demand; technology innovations; and a more stable investment climate. A comparison of key assumptions between the current analysis and the 2004 report was presented, along with estimates of operating and supply costs for various types of oil sands recovery methods. Potential markets for oil sands production were reviewed. Environmental and socio-economic impacts on the industry included the larger than anticipated water withdrawals from the Athabasca River for mining operations; and uncertainties over land reclamation methods. The industry has also been impacted by a limited supply of skilled workers in Alberta. It was observed that the potential for building cogeneration capacity has decreased since the 2004 report. It was concluded that the oil sands industry will continue to grow rapidly, but the rate of development will depend on the balance that is reached between the opposing forces that affect the oil sands. Natural gas costs, high oil prices, air emissions management issues and water usage will continue to be of concern. 6 tabs., 7 figs

  8. 1991 Canadian oil industry directory

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book provides a complete listing of oil companies operating in Canada. Each company is presented to show its entire range of activity in the petroleum industry. Included are exploration and production companies, drilling contractors, service, supply and manufacturing companies, pipeline-operators, refiners and gas processors, petrochemical plants, engineering and construction firms, associations and government agencies. Listings also include a complete description of company activity, address, phone, fax, telex and cable numbers as well as key personnel

  9. Sulfur biogeochemistry of oil sands composite tailings

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Lesley; Stephenson, Kate [Earth Sciences, McMaster University (Canada)], email: warrenl@mcmaster.ca; Penner, Tara [Syncrude Environmental Research (Canada)

    2011-07-01

    This paper discusses the sulfur biogeochemistry of oil sands composite tailings (CT). The Government of Alberta is accelerating reclamation activities on composite tailings. As a CT pilot reclamation operation, Syncrude is currently constructing the first freshwater fen. Minor unpredicted incidents with H2S gas released from the dewatering process associated with these reclamations have been reported. The objective of this study is to ascertain the connection between microbial activity and H2S generation within CT and to assess the sulfur biogeochemistry of untreated and treated (fen) CT over seasonal and annual timescales. The microbial geochemical interactions taking place are shown using a flow chart. CT is composed of gypsum, sand, clay and organics like naphthenic acids and bitumen. Sulfur and Fe cycling in mining systems and their microbial activities are presented. The chemistry and the processes involved within CT are also given along with the results. It can be said that the diverse Fe and S metabolizing microorganisms confirm the ecology involved in H2S dynamics.

  10. Effects of oil sands sediments on fish

    International Nuclear Information System (INIS)

    Parrott, J.; Colavecchia, M.; Hewitt, L.; Sherry, J.; Headley, J.; Turcotte, D.; Liber, K.

    2010-01-01

    This paper described a collaborative project organized by Natural Resources Canada (NRCan) Panel of Energy Research and Development (PERD) with researchers from Environment Canada and the University of Saskatchewan. The 4-year study was conducted to assess the toxicity of oil sands sediments and river waters, and reclamation ponds and sediments on laboratory-raised fish. Three sediments from rivers were evaluated for their potential to cause adverse impacts on fathead minnow eggs and larvae for a period of 18 days. The study monitored hatching, larval survival, development, and growth. Naphthenic acids (NA), polycyclic aromatic hydrocarbons (PAHs) and metals were measured in the sediments to determine if the compounds can be correlated with observed toxicity. The study will also assess walleye eggs exposed to sediments, and in situ fish exposures. Toxicity identification and evaluation (TIE) studies will be conducted to isolate the fractions that may affect fish development and growth.

  11. The state of oil sands wetland reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    The state of oil sand and wetlands reclamation was the subject of this presentation. Wildlife habitat and response, plant community and production, and microbial biology were examples of research areas surrounding this body of knowledge. Hydrological research and landscape ecology were discussed along with peatlands and marshes such as the Corvette and the Kia. A few examples of what has been learned in the area of wetlands reclamation was presented. Other topics were also discussed, such as timeframes, pragmatic policy approaches, reclamation costs, research needs and some ideas on maturing the field. It was concluded that environmental conditions change with time and area because of time, chemistry, physics, stoichiometry, as well as biotic mediation and facilitation. figs.

  12. Bison and the oil sands industry

    International Nuclear Information System (INIS)

    Pauls, R.W.

    1998-01-01

    Syncrude's Mildred Lake oil sands development project is located within the central boreal mixed wood forest in an area supporting traditional land uses, including trapping and harvesting of wildlife and plant materials by Fort McKay First Nation residents, in a community within 10 km of the Syncrude development. Reclamation requirements and standards in Alberta specify that the reclamation process must restore a landscape capability equivalent to, or better than that existing before disturbance. Syncrude is committed to complying with all provincial requirements and guidelines in all aspects of its business, including land reclamation. A five year research program has been established to determine the feasibility of reclaiming a portion of the landscape to support wood bison and bison subspecies once indigenous to this area. The current project may be expanded as a pilot commercial ranching venture to explore its commercial viability as a business venture by the Fort McKay First nations

  13. Aging effects on oil-contaminated Kuwaiti sand

    International Nuclear Information System (INIS)

    Al-Sanad, H.A.; Ismael, N.F.

    1997-01-01

    Large quantities of oil-contaminated sands resulted from the destruction of oil wells and the formation of oil lakes in Kuwait at the end of the Gulf Wa/r. A laboratory testing program was carried out to determine the geotechnical properties of this material and the effect of aging on their properties. Tests included direct shear, triaxial, and consolidation tests on clean and contaminated sand at the same relative density. The influence of aging was examined by testing uncontaminated sand after aging for one, three, and six months in natural environmental conditions. The results indicated increased strength and stiffness due to aging and a reduction of the oil content due to evaporation of volatile compounds. The factors that influence the depth of oil penetration in compacted sand columns were also examined including the type of oil, relative density, and the amount of fines

  14. Geotechnical properties of oil-contaminated Kuwaiti sand

    International Nuclear Information System (INIS)

    Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F.

    1995-01-01

    Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction

  15. Geotechnical properties of oil-contaminated Kuwaiti sand

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

    1995-05-01

    Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction.

  16. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    1999-06-01

    The technological and economic significance of the Canadian petroleum industry to the national economy and to Canada's standing in the world are reviewed. The six key ways in which the oil and gas industry affects Canada, namely employment, balance of trade, products, government revenues, international technology trade and community support are stressed within the context of describing present and future oil and gas resources, Canada's petroleum and natural gas trade balance, and capital spending and product sales. Attention is also drawn to the role of the Canadian petroleum and natural gas industry as a producer and exporter of world class technology, especially in the areas of high tech exploration methods, cold-climate and offshore operations, enhanced recovery techniques, heavy oil production and and processing, mining and upgrading of oil sands bitumen, oil well firefighting, and environmental protection technology. maps, figs

  17. Oil sands: Strategies for future development - An overview

    International Nuclear Information System (INIS)

    Yildirim, E.

    1995-01-01

    The Alberta Chamber of Resources developed a Task Force in 1993 to promote oil sands development, and to identify and publicize the social and economic benefits of oil sands operations. Formation, mission of the National Task Force, impediments and opportunities for development were summarized. Attributes of oil sands, benefits of their development, impediments to development, strategic development and potential growth scenarios were discussed. Cooperation between government and industry was deemed essential. Recommendations included development of a bitumen pipeline network, provision of incentives to encourage development, encouragement of risk and reward sharing between bitumen producers and up graders, and diversification of products and by-products. 7 figs., 12 refs

  18. Comparative analysis of fiscal terms for Alberta oil sands and international heavy and conventional oils

    International Nuclear Information System (INIS)

    Van Meurs, P.

    2007-01-01

    There are considerable differences between international heavy oil and Alberta oil sands projects, notably the high viscosity of the bitumen in the oil sands reservoirs. The oil sands bitumen do not flow to wells without heating the bitumen, thereby adding to the already high cost of Alberta oil sand operations. This report provided an economic comparison of Alberta oil sands and international heavy oil projects. It also included a brief scoping review to compare with conventional oil regimes. Full exploration costs including the costs of dry holes were allocated to conventional oil operations in order to obtain a proper comparison. This investigation included the costs of dry holes. The report was a follow up to an earlier study released on April 12, 2007 on the preliminary fiscal evaluation of Alberta oil sand terms. The report provided an economic framework and described project selection. It then provided a discussion of production, costs and price data. Four adjusted projects were presented and compared with Alberta. The Venezuelan royalty formula was also discussed. Last, the report provided a detailed fiscal analysis. Comparisons were offered with Cold Lake and Athabasca Mine. A review of some other fiscal systems applicable to conventional oil were also outlined. It was concluded that Alberta oil sands developments are very competitive. It would be possible to modestly increase government revenues, without affecting the international competitive position of Alberta with respect to conventional oil. There is also some possibility to increase the base royalty on the Alberta oil sands without losing competitiveness. tabs., figs

  19. Kyoto, the oil sands and the GHG emissions market

    International Nuclear Information System (INIS)

    Vickers, P.

    2004-01-01

    This paper reviews uncertainties in the oil sands industry in relation to climate change, greenhouse gas emissions and the Kyoto Protocol. Other issues contributing to uncertainties in the industry were also discussed, including water and natural gas issues, refinery capacity and markets, price and exchange rates as well as capital availability and project cost overruns. The potential economic impact of the Kyoto Protocol on oil sands was outlined with prices per barrel. Government regulations were examined in the context of the evolving expectations of the Canadian public. U.S. actions on climate change were examined at the federal and state level. Emissions trading systems were reviewed with reference to a post 2012 regime. The 2005 budget was discussed, along with the Canadian legislative agenda and domestic offsets program, as well as the regulatory agenda in June of 2005. Post 2012 issues were examined, including discussions on the next commitment period, with reference to the fact that there was no support for new commitments among developing countries but that domestic pressures was building in the U.S. for air and climate regulations. Pressures from shareholders and the scientific community were discussed. Emissions trading in the European Union was reviewed. Stabilization goals will mean significant cuts to emissions in order to accommodate growth. Scenario planning and climate change uncertainties were also reviewed. The benefits of scenario planning in complex situations were outlined and were seen to encourage the development of strategic options. Issues concerning environmental stewardship and possible responses by the Unites States were discussed. Three scenarios were outlined: that climate change is not man-made and all the problems will go away; that technology will evolve to accommodate changes; and that policy will be insensitive to the economy, technology will lag and the energy sector will be faced with much higher costs. Various risk management

  20. Evaluating the oil sands reclamation process: Assessing policy capacity and stakeholder access for government and non-governmental organizations operating in Alberta's oil sands

    Science.gov (United States)

    Patterson, Tyler

    . In an effort to discern the overall status of reclamation in the oil sands this study explores several factors essential to policy capacity: work environment, training, employee attitudes, perceived capacity, policy tools, evidence based work, and networking. Data was collected through key informant interviews with senior policy professionals in government and non-government agencies in Alberta. The following are agencies of interest in this research: Canadian Association of Petroleum Producers (CAPP); Alberta Environment and Sustainable Resource Development (AESRD); Alberta Energy Regulator (AER); Cumulative Environmental Management Association (CEMA); Alberta Environment Monitoring, Evaluation, and Reporting Agency (AEMERA); Wood Buffalo Environmental Association (WBEA). The aim of this research is to explain how and why reclamation policy is conducted in Alberta's oil sands. This will illuminate government capacity, NGO capacity, and the interaction of these two agency typologies. In addition to answering research questions, another goal of this project is to show interpretive analysis of policy capacity can be used to measure and predict policy effectiveness. The oil sands of Alberta will be the focus of this project, however, future projects could focus on any government policy scenario utilizing evidence-based approaches.

  1. A new approach to the management of cumulative environmental impacts, the Alberta Oil Sands area

    International Nuclear Information System (INIS)

    Weagle, K.V.

    2002-01-01

    Resource development in the oil sand industry of Northeastern Alberta is enjoying a wave of renewed interest fuelled in part by changes made in the tax and royalty structure for oil sands developments in the province, the development of new technology and the price of oil. Announcements were made of investments totalling approximately 51 billion dollars in the oil sand industry over the next ten years in all deposits. The issue of cumulative environmental effects has been amplified accordingly. In June 2000, an association was formed, the Cumulative Environmental Management Association (CEMA), consisting of stakeholders and based on consensus, with a mandate to address 72 issues related to potential cumulative impacts in the expanded development of the Wood Buffalo Region. Five working groups were formed, as well as three standing committees. To mitigate the cumulative effects, the working groups and standing committees are working on management objectives, management systems and research recommendations. The regulatory bodies receive the recommendations, and the implementation process involves the issuance of permits and licenses. Research and monitoring activities play a vital role in the environmental management system and are part of other current environmental initiatives. Some of the initiatives are managed by the Wood Buffalo Environmental Association, Regional Aquatics Monitoring Program, and the Canadian Oil Sands Network for Research and Development. These organizations touch on topics including air quality monitoring, aquatics monitoring and environmental research. 1 fig

  2. Easing the capacity crunch : infrastructure requirements to support rapidly developing oil sands

    International Nuclear Information System (INIS)

    Zupan, L.

    2003-01-01

    Through annual consultation with its customers, Enbridge develops a supply and demand forecast which forms the basis for the company's development. It is complex to develop the appropriate pipeline infrastructure to support resource development, based on the significant forecast growth in supply in Alberta from oil sands and the limited traditional markets. The largest crude oil pipeline serving the oil sands industry in Alberta is owned and operated by Enbridge. The first customer was Suncor, followed by PetroCanada and EnCana. In 2002, a pipeline concept was developed by Enbridge to provide a link to Edmonton via a new large diameter pipeline. The mainline system which originates in Edmonton is expected to evolve and grow as oil sands production comes on line. The completion of Terrace Phase III expansion is one of the priorities for Enbridge in 2003. Other projects involve the extension of one of its lines from Mokena to Chicago, the segregation of batches on the system to improve quality of its deliveries, and extension and expansion into new markets. Shipper support will determine the scale of these developments. The Canadian Association of Petroleum Producers (CAPP) has undergone a market study, as has Enbridge (Oil Sands Markets Study) in an effort to better understand markets and potential markets. It will assist in the determination of which pipeline infrastructure requires expansion, as well as the extent of infrastructure required to support new markets. tabs., figs

  3. Modelling the behavior of an oil saturated sand

    International Nuclear Information System (INIS)

    Evgin, E.; Altaee, A.; Lord, S.; Konuk, I.

    1990-01-01

    The experiments carried out in an earlier study show the oil contamination affects the strength and deformation characteristics of a crushed quartz sand. In the present study, a mathematical soil model is used to simulate the mechanical behavior of the same sand. The model parameters are determined for both clean and oil contaminated soil. Simulations are made for the stress-strain behavior of the soil in drained and undrained conventional traixial compression tests. In order to illustrate the effect of changes in the soil properties on the behavior of an engineering structure, a finite element analysis is carried out. In this paper comparative results are presented to show the differences in the behavior of a foundation resting on a clean sand, on an oil contaminated sand, and on a sand contaminated locally

  4. Sources of atmospheric emissions in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    An inventory of emissions for the Athabasca oil sands airshed that can be used as a basis for air quality assessments was presented. This report was prepared for the Suncor Steepbank Mine Environmental Impact Assessment (EIA) and for the Syncrude Aurora Mine EIA. Both Syncrude and Suncor have plans to develop new oil sands leases and to increase their crude oil and bitumen production. Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere and Syncrude will develop additional ambient air quality, sulphur deposition and biomonitoring programs to ensure that environmental quality is not compromised because of atmospheric emissions associated with their operations. Major emission sources are controlled and monitored by regulatory statutes, regulations and guidelines. In this report, the following four types of emission sources were identified and quantified: (1) major industrial sources associated with Suncor's and Syncrude's current oil sands operations, (2) fugitive and area emission sources such as volatilization of hydrocarbons from tanks and tailings ponds, (3) other industrial emission sources in the area, including oil sands and non-oil sands related facilities, and (4) highway and residential emission sources. Emissions associated with mining operations include: SO 2 , NO x , CO, and CO 2 . The overall conclusion was that although there are other smaller sources of emissions that can influence air quality, there is no reason to doubt that Suncor and Syncrude oil sands operations are the major sources of emissions to the atmosphere. 13 refs., 12 tabs., 8 figs

  5. Characterization of oils sands thickened tailings

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.D.; Jeeravipoolvarn, S.; Donahue, R.; Ozum, B. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    This presentation discussed the characterization of oils sands thickened tailings. The problem statement was defined as the fact that many laboratory procedures to characterize fine tailings do not take into account the extraction process, and instead use standardized laboratory tests. The purpose of this presentation was to demonstrate how different extraction processes affect the fine tailings geotechnical properties and water chemistry. Properties that were characterized included particle size analysis from hydrometer-sieve tests; per cent clay from methylene blue tests; per cent clay from mineralogy tests; Atterberg limits; water chemistry; and morphology by scanning electron microscopy. The presentation discussed the origin of fines (silt and clay) in tailings; where fine particles come from; tailings materials; mineralogy of tailings; the hydrometer-sieve test on fine tailings and thickened tailings; and the methylene blue test. It was concluded that the great majority of clay minerals in the tailings come from the clay-shale discontinuous seams and layers. For thickened tailings, the dispersed and non-dispersed hydrometer tests show considerable difference in the amount of clay size material. tabs., figs.

  6. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Duffey, R.; Dunbar, R.B.

    2003-01-01

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700 TM (Advanced CANDU Reactor-700 TM ) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  7. The oil sands: A new energy vision for Canada

    International Nuclear Information System (INIS)

    1995-01-01

    Canada's oil sands deposits were considered to offer huge potential for wealth generation and enduring social benefits. This report showed that putting in action the plan developed by the National Task Force on Oil Sands Strategies would help unlock this potential and realize the benefits; the forecast called for a doubling or tripling of oil sands production over the next 25 years. The plan should also predicted an increase in investments in oil sands since the fiscal regime would be stable and the product would be in increasing demand. New capital investment should generate significant environmental, social and economic benefits. The real outcome would be increased national prosperity, since further growth in investment would translate into thousands of skilled jobs across Canada, expansion of government revenues, and improvements to Canada's trade balance. 1 ill

  8. The oil sands: A new energy vision for Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Canada`s oil sands deposits were considered to offer huge potential for wealth generation and enduring social benefits. This report showed that putting in action the plan developed by the National Task Force on Oil Sands Strategies would help unlock this potential and realize the benefits; the forecast called for a doubling or tripling of oil sands production over the next 25 years. The plan should also predicted an increase in investments in oil sands since the fiscal regime would be stable and the product would be in increasing demand. New capital investment should generate significant environmental, social and economic benefits. The real outcome would be increased national prosperity, since further growth in investment would translate into thousands of skilled jobs across Canada, expansion of government revenues, and improvements to Canada`s trade balance. 1 ill.

  9. The extraction of bitumen from western oil sands

    International Nuclear Information System (INIS)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report

  10. Production of oil from Intermountain West tar sands deposits

    Energy Technology Data Exchange (ETDEWEB)

    Glassett, J.M.; Glassett, J.A.

    1976-03-01

    Six tar sand deposits in the Intermountain West, each containing more than one billion barrels of oil in place, are identified. All of these deposits are in eastern Utah and contain a total of twenty-eight billion barrels of oil. The names of the six deposits arranged in descending order of desirability for large-scale surface-mining oil recovery operations are as follows: Sunnyside, Tar Sand Triangle, Asphalt Ridge, P.R. Spring, Circle Cliffs, and Hill Creek. An overview of each deposit is presented including geology, surface-mining variables, chemical processing variables, environmental aspects, and economics. A comparison of Utah tar sands and Athabasca, Alberta, Canada tar sands is also presented.

  11. North American Oil Sands: History of Development, Prospects for the Future

    National Research Council Canada - National Science Library

    Humphries, Marc

    2008-01-01

    .... Since 2004, when a substantial portion of Canada's oil sands were deemed economic, Canada, with about 175 billion barrels of proved oil sands reserves, has ranked second behind Saudi Arabia in oil reserves...

  12. Long vigil in Athabasca oil sands culminates in rapid expansion plans

    Energy Technology Data Exchange (ETDEWEB)

    1974-05-01

    Great Canadian Oil Sands Ltd. needs to earn $40 million or more per year to get a reasonable return on the investment, vice president and general manager R.D. Humphreys told delegates at the Petroleum Accountants Society of W. Canada annual conference at Jasper Park Lodge. The conference then was ''the Alberta Oil Sands.'' Sun Oil Co. has taken no return yet, but has paid off the loans and taken shares in return so it owns nearly all the equity capital. The operation is not really breaking even at present, but should improve because GCOS is getting the full effect of the oil price increase under the original royalty agreement with the Alberta government. It is hoped that this will enable the company to recoup an accumulated deficit of more than $90 million. Money is the biggest problem for the current expansion designed to raise production to the authorized 65,000 bpd. Manpower is second and delivery of materials third. There is a lead time of 15 to 18 mo. on critical materials. Over the long term, tailings disposal is the greatest single problem facing all oil sands operators.

  13. Sulphur output from oil sands : dramatically changing Alberta's sulphur balance

    International Nuclear Information System (INIS)

    D'Aquin, G.

    2008-01-01

    This paper discussed sulphur production from Alberta's gas and oil sands industries. While sulfur derived from natural gas production in the province is expected to decline as natural gas reserves diminish, Alberta's oil sands contain high amounts of sulphur. It is not yet known how much sulphur will be produced from the province's oil sands facilities. Alberta had considerable stockpiles of sulphur in the 1970s. By 1980, inventories began to decline. By 1996, output had increased to 7.1 million tonnes. Alberta's sulphur inventory reached 9.7 million tonnes following the collapse of the Soviet Union's government mandated fertilizer industry. In 2006, sulphur supplies in Alberta reached 12 million tonnes. Reduced global output has now lowered sulphur stockpiles. Increases in sulphur prices tend to reduce market demand, and lower prices will not typically change the volume of sulphur produced as a byproduct of oil and gas operations. Bitumen-derived sulphur output is expected to exceed gas-derived sulphur output in the near future. Sulphur from oil sands processing is expected to increase by 5 million tonnes by 2017. Increased sulphur production levels in Alberta will present a significant challenge for all sectors of the hydrocarbon industry. It was concluded that developing a plan for storing, selling or disposing of the sulphur will help to ensure the profitability of oil sands operations

  14. Alberta's oil sands fiscal system : historical context and system performance

    International Nuclear Information System (INIS)

    2007-01-01

    This report described the fiscal system applied to Alberta's oil sands. It is the first technical report forming part of a series designed to provide information and to invite comment as part of the Government of Alberta's public review of the fiscal system applied to the province's oil and gas resources. Specifically, this report assessed the robustness of Alberta's oil sands fiscal system and assessed how the regime balanced the risks and rewards to both investors and Albertans across a range of expected and probable economic outcomes. The report provided an explanation of the history and context of Alberta's royalty regime and included a case-by-case approach. It also provided a discussion of the oil sands fiscal system description. Next, it described the methodology employed for the analysis of the oil sands fiscal system. It also provided the assumptions for 5 scenario cases and presented the fiscal map approach for assessing project economics and fiscal system performance. Last, summary observations were presented. It was found that the oil sands fiscal system is very flexible for adverse economic conditions and much less so for highly profitable conditions. tabs., figs

  15. From oil sands to transportation fuels, to electricity, to hydrogen

    International Nuclear Information System (INIS)

    Yildirim, E.

    1993-01-01

    The Alberta Chamber of Resources programs and initiatives on oil sands and heavy oil, and strategies for revitalizing oilsands development in Alberta are described. The regional upgrader and satellite production facilities concept, and technology requirements for mineable oil sands by the year 2010 are discussed. Strategic alliances in furtherence of oil sands research and development and the National Task Force on Oil Sands Strategies are described. Changes in requirements for transportation fuels due to stricter regulations and environmental initiatives will cause a trend to lighter fuels with more hydrogen content, less aromatics, nitrogen, sulfur and metals. A preferred refinery configuration will be able to process heavier crudes and synthetic crudes, have no heavy fuel oil product, low sulfur products, low aromatics with high octane, and low operating cost. A regional or central facility that combines the processing capabilities of a bitumen upgrader with the process units of a refinery is preferred. Advantages of this concept are: value addition to the feedstock is maximized; dependence on refineries is eliminated; restriction on synthetic crude oil volumes due to capacity limitations at refineries is eliminated; directly marketable finished products are produced; more stringent quality specifications are satisfied; and the synergies between upgrading and refining improve overall economics of processing. It is recommended that the concept of regional upgraders be adopted for Alberta, strategic alliances be encouraged, incentives for bitumen production be provided, and a bitumen pipeline network be developed. 12 refs

  16. Water management challenges and perspective for surface oil sands operations in North Eastern Alberta

    International Nuclear Information System (INIS)

    MacKinnon, M.

    2009-01-01

    Oil sands waters has many sources, such as raw water inputs (import water and hydrologic waters); oil sands ore water such as formation water; and oil sands process-affected water (OSPW) such as produced water and released water from tailings. This presentation demonstrated the importance of water to oil sands operations and indicated how oil sands processing affects water quality. Water imports to meet oil sands needs is a topic of particular interest. Other topics that were presented included water properties changing during oil sands operations; tailings management and the effects on water quality; oil sands tailings and water management and the impact on water quality of the region; how oil sands processing affected water quality; and current tailings approach and proposed new tailings methods and the effects on water composition. Post extraction changes in OSPW and the potential impacts of engineered tailings were also discussed. It was concluded that water treatment options must meet water management objectives. figs.

  17. The use of stable isotopes to trace oil sands constituents

    International Nuclear Information System (INIS)

    Farwell, A.J.; Nero, V.; Dixon, D.G.

    2002-01-01

    A study was conducted to determine the biological effects of oil sands mining operations on aquatic ecosystems. The study focused on the Athabasca oil sand deposit, the largest of 4 deposits in northern Alberta. In particular, the study examined the cycling of oil sand constituents in Benthic invertebrates collected from test pits at Syncrude Canada Ltd.. The invertebrates were similar in size, but different in the quantity of process-affected water or mature fine tailings containing residual bitumen. Dragonflies and damselflies in particular, showed trends of depletion for the carbon 13 isotope and enrichment in nitrogen 15 isotope in pits where levels of process affected water was high. The depletion of carbon 13 isotope suggests that oil sand constituents assimilate into the benthic food chain. The greatest carbon 13 depletion, which was approximately 27 per cent, was found to be in test pits with high turbidity. This implies that oil sands constituents degrade microbially instead of by photosynthetic production. All benthic invertebrate group demonstrated an incremental enrichment in nitrogen 15 isotope from the control pit to the pit with greatest levels of mature fine tailings

  18. Preliminary fiscal evaluation of Alberta oil sands terms

    International Nuclear Information System (INIS)

    Van Meurs, P.

    2007-01-01

    The cost of oil sands projects varies significantly. While costs have escalated considerably over the past few years, oil prices have gone significantly higher. This report provided an economic evaluation of the current fiscal terms applicable to Alberta oil sands. The analysis was done to evaluate the profitability of oil sand projects to investors under current conditions based on the generic royalty regime based on bitumen values. The objective of the royalty review was to determine whether Albertans received a fair share from their oil and gas resources. It discussed the wide variety of oil sands projects in Alberta using five case studies as examples. Cases involving steam assisted gravity drainage (SAGD) operations were assessed for both the Athabasca Mine and Cold Lake. The report provided a discussion of the economic assumptions including economic cases as well as production, costs and price data. It then provided the preliminary results of the economic-fiscal evaluation from the investor perspective including profitability indicators; international comparisons; internal rate of return; and net present value. The government perspective was also discussed with reference to attractiveness indicators; royalties as a percentage of bitumen values; and non-discounted and discounted government take. A royalty and tax feature analysis was also provided. Several issues for possible further review were also presented. tabs

  19. EX8000 ramps up preparation phase in Horizon oil sands project

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    This article presented details of Hitachi's EX8000 hydraulic shovel, a key piece of equipment that will be used throughout the extensive mine preparation phase of the Horizon oil sands project. Within 2 years, the project expects to produce over 200,000 barrels of oil per day. However, more than 400 million cubic metres of soil will need to be moved before production can begin. In order to remain on schedule, overburden must be removed in massive volumes. With a 52.3 cubic yard bucket, the Hitachi EX8000 has the capacity to feed a dozen 320 metric tonne haul trucks as well as several smaller 282 metric tonne trucks, and can fill each truck in 4 passes. Material is now being moved by to an area in which dikes are being constructed to house water generated in the refining process. Stockpiling, relocation and reclamation phases will follow as the project progresses. In order to reach the oil, as much as 75 feet of overburden must be removed, including layers of sandstone, limestone, trap rock and other materials. Once the overburden has been removed, oil sand layers are also often intermixed with other materials. The EX8000 can separate the tramp material from the oil sands, improving the overall efficiency of the operation. The Alberta-based North American Construction Group, who have a 10-year contract with Canadian Natural Resources Ltd. for the Horizon project, owns more than 100 Hitachi units in various sizes and has already purchased another EX8000 which is slated for delivery in the Fall of 2006. It was concluded that the company has purchased hundreds of new trucks to handle added volumes of materials being moved as the oil sands industry gains momentum. 3 figs.

  20. The H-Oil Process : Preferred configurations for application to western Canadian feedstocks

    International Nuclear Information System (INIS)

    Colyar, J.J.; Peer, E.D.

    1997-01-01

    The technical and economic evaluation of a method used to convert and upgrade petroleum residua and heavy oils into lighter products was described. The feasibility of applying the process to typical western Canadian oil sand feedstocks was evaluated. The H-Oil process, developed by HRI Inc., is an ebullated-bed catalytic hydrocracking process that accounts for more than 50 per cent of the worldwide vacuum residue hydroprocessing market. It has a unique flexibility to handle many different types of heavy crudes while producing clean transportation fuels. The unconverted vacuum residue from the process can be used for fuel oil production, blended into asphalt, or routed to a resid catalytic cracker or coker. The residue can also be directly combusted or gasified to produce hydrogen. Four different technologies that have been used commercially in Canada to upgrade western Canadian heavy oil residue have been reviewed and evaluated from a technical and economic viewpoint. The following improvements in the H-oil process have resulted in greater economy and product quality: (1) development of a new generation of high activity catalysts, (2) development of an improved recycle cup, and (3) new outlets for unconverted residue. It was suggested that the H-Oil process produces more revenue than the delayed coker process. As coke becomes harder to dispose of, the H-Oil process will become more attractive for producing synthetic crude from heavy oil. 6 refs., 9 tabs., 9 figs

  1. Proceedings of the 2. international oil sands tailings conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The tailings produced by oil sands extraction processes pose significant threats to the surrounding environment in addition to releasing greenhouse gases (GHGs) into the atmosphere. Recent directives have been established to reduce the amount of tailings produced at oil sands operations, and to ensure that tailings ponds are reclaimed in the most effective manner. This conference provided a forum for researchers and industry experts to discuss issues related to the management and reclamation of oil sands tailings. New technologies for dewatering tailings ponds were presented, and methods of analyzing the chemical properties of tailings were reviewed. The conference was divided into the following 7 sessions: (1) tailings properties, (2) tailings dewatering, (3) new concepts, (4) water and chemistry, (5) soft tailings stabilization and reclamation, (6) water treatment, and (7) new concepts 2. The conference featured 44 presentations, all of which have been catalogued separately for inclusion in this database. tabs., figs.

  2. Geophysics comes of age in oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, P. [WorleyParsons Komex, Calgary, AB (Canada); Birch, R.; Parker, D.; Andrews, B. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2008-07-01

    This paper discussed geophysical techniques developed for oil sands exploration and production applications in Alberta's oil sands region. Geophysical methods are playing an important role in mine planning, tailings containment, water supply, and land reclamation activities. Geophysics techniques are used to estimate the volume of muskeg that needs to be stripped and stored for future reclamation activities as well as to site muskeg piles and delineate the thickness of clay Clearwater formations overlying Cretaceous oil-bearing sands. 2-D electrical resistivity mapping is used to map river-connected deep bedrock Pleistocene paleovalleys in the region. Geophysical studies are also used to investigate the interiors of dikes and berms as well as to monitor salt migration within tailings piles. Sonic and density logs are used to create synthetic seismograms for mapping the Devonian surface in the region. The new applications included the calculation of bitumen saturation from surface sands and shales; muskeg thickness mapping; and non-intrusive monitoring of leachate plumes. Geophysical techniques included 2-D electrical resistivity imaging; transient electromagnetic (EM) technologies; ground penetrating radar; and high-resolution seismic reflections. Polarization, surface nuclear magnetic resonance and push-probe sensing techniques were also discussed. Techniques were discussed in relation to Alberta's Athabasca oil sands deposits. 4 refs.

  3. Study on the basic properties of Indonesian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Jiang, Qian-qian; Bai, Jing-ru; Sun, Jian; Liu, Hong-peng [Northeast Dianli Univ., Jilin (China). Inst. of Energy and Power Engineering

    2013-07-01

    The basic properties of three Indonesian oil sands have been investigated. The results show that since the high content of volatile, heating value and oil yield, Indonesian oil sands could be combusted for power generation and retorting for oil refining. Moreover, oil sand ash with the low content of fixed carbon and high content of CaO, could not only be used as solid heat carrier during retorting, but also comprehensively used as construction material. Based on the thermogravimeric analysis (TGA), pyrolysis and combustion behaviors have been identified. As for pyrolysis, 350-520 C could be regarded as the major oil-producing region, the apparent activation energy E is not a constant obtained by distributed activation energy model (DAEM). For combustion, 620-800 C is the high-temperature oxidation (HTO) stage. TG-DTG extrapolation method was applied to determine the combustion characteristics parameters such as ignition temperature, burn-out temperature, combustion stability and combustion reactivity, and finally gave a comparison with those of oil shale and coal.

  4. The Impact of Foreign Investment Restrictions on the Stock Returns of Oil Sands Companies

    Directory of Open Access Journals (Sweden)

    Eugene Beaulieu

    2014-06-01

    Full Text Available In December 2012, prompted by the proposed purchase of Nexen by the Chinese SOE CNOOC, the federal government announced revised guidelines for investments by state-owned enterprises (SOEs in the oil sands. Declaring the sale marked “the end of a trend and not the beginning of a trend,” Prime Minister Stephen Harper explained how the government would approach such decisions in the future, including placing the onus on foreign investors to demonstrate how deals would be of net benefit to Canada, as well as granting the industry minister the discretion to accept or deny proposed deals. Accounting for five per cent of Canadian GDP, $28 billion in government revenue and three per cent of all jobs nationwide, the oil sands are an integral component of Canada’s economy. The sector has long relied on foreign capital to finance projects, meaning that any move to deter outside investment could have profound consequences for the development of this critical economic asset. In this paper, the authors examine the impact of this policy change by measuring the stock returns of firms operating in the oil sands. Employing an event study analysis, they find empirical evidence that the government’s policy change has resulted in the material destruction of shareholder wealth, particularly in the case of the smaller oil companies. What is more, given the composition of the global oil industry has changed to one where SOEs dominate both reserves and production, is this a policy Canada can afford in the long term? “When we say that Canada is open for business, we do not mean that Canada is for sale to foreign governments.” - Prime Minister Stephen Harper, December 7, 2012 “…going forward, the [industry] minister will find the acquisition of control of a Canadian oil-sands business by a state-owned enterprise to be of net benefit, only in an exceptional circumstance.” - Prime Minister Stephen Harper, December 7, 2012 “A year after the new Investment

  5. Mining aspects of hard to access oil sands deposits

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Wright, D.; Lukacs, Z. [Norwest Corp., Calgary, AB (Canada)

    2006-07-01

    While a variety of oil sands mining technologies have been explored since the 1960s, the oil sands industry has generally favoured truck and shovel mining as a proven, low-cost mining solution. However, surface mining economics are affected by the price of bitumen, haul distances, tailings storage and geotechnical constraints. Maintenance, labour and the cost of replacing tires and ground engaging tools also have a significant impact on the economics of surface mining. Large volumes of water are used in surface mining, and remediation of surface mined areas can take hundreds of years. Damage to machinery is common as oil sands are abrasive and adhere to equipment. This presentation examined recent technologies developed to improve the economics of surface mining. Various extraction and tailings technologies were reviewed. Issues concerning the integration of mining and extraction processes were discussed. Various monitoring tools were evaluated. A review of new underground mining options included outlines of: longwall mining; sub-level caving; tunnel boring; and room and pillar extraction techniques. A generalized regional geology was presented. It was concluded that the oil sands surfacing mining industry should concentrate on near-term research needs to improve the performance and economics of proven technologies. Screening studies should also be conducted to determine the focus for the development of underground technologies. refs., tabs., figs.

  6. Performance monitoring of electric shovels digging oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Patnayak, S. [Alberta Univ., Edmonton, AB (Canada). Natural Resources Engineering Facility; Tannant, D.D. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering; Parsons, I. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre; Del Valle, V. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2005-07-01

    Some of the largest available mining equipment is used for oil sand mining operations. However, the performance of electric cable shovels varies with the diggability characteristics of the ground. In particular, oil sands diggability with cable shovels depends on structural geology, the depositional environment and geotechnical parameters. This paper described some of the key shovel performance indicators such as dig cycle time, digging energy and digging power. In winter, frost penetration can also affect oil sands diggability. The challenge of hard digging in oil sands is often addressed by blasting or ripping, which increases the cost of production and impedes productivity. The shovel performance is also influenced by other parameters such as operator skills, bucket and tooth design and shovel dipper trajectory. This paper demonstrated that hoist and crowd motor voltages and currents are useful in identifying the beginning and end of dig cycles. Performance indicators such as dig cycle time, hoist motor energy and power, and crowd motor energy and power were considered to assess material diggability. It was suggested that hoist power represents the ground diggability better than other performance indicators. 5 refs., 1 tab., 10 figs.

  7. Canada's oil sands: nuclear power in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Calgary, Alberta (Canada)

    2008-07-01

    This paper discusses the role of nuclear power in Canada's oil sands industry. It outlines the oil sands resource in Alberta and the various industrial projects to recover the oil from the tar sands. It points to continuing innovation in technology since the 1930's. The hydrogen required for upgrading bitumen is made from natural gas. Finally, it discusses the next wave of oil sands production technologies.

  8. Sustainable use of oil sands for geotechnical construction and road building

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available Oil sands are natural deposits of bituminous sand materials that are mined and processed for crude oil. They are routinely used in oil sand fields for building temporary and sometimes permanent roads serving mining and hauling activities. Although...

  9. Oil sands from Sao Paulo State, Brazil and La Brea de Chumpi, Peru: a geologic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kramers, John W [Alberta Research Council, Edmonton, AB (Canada); Santos, Paulo R. dos [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Gianello, Pedro T [Petroleos del Peru, Lima (Peru)

    1987-12-31

    This work describes two `non-conventional` oil sands occurrences in Peru and Brazil. The study of such occurrences has pointed out the fact that oil sands are found in widely varying geological situations and that not all oil sands have origins similar to the supergiant `conventional` deposits in Canada and Venezuela. 3 refs., 9 figs.

  10. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    Science.gov (United States)

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  11. Geophysical applications for oil sand mine tailings management

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Bauman, P. [WorleyParsons, Calgary, AB (Canada)

    2009-07-01

    Geophysical techniques are applied throughout a mine's life cycle to facilitate siting, constructing and monitoring of tailings dumps and ponds. This presentation described 3 case studies from the Athabasca region in northeast Alberta that demonstrated some of the concerns associated with oil sand mine tailings, and the information that geophysical surveys can provide. The objectives of these studies were to determine the lateral and depth extents of elevated conductivities of soil and groundwater that have high salt concentration from the tailings sand pore fluid. Due to high chloride concentrations within the tailings material, salt within the root zone may affect vegetation. A terrain conductivity survey was designed to map the lateral extents of salinity impact, while an electrical resistivity tomography (ERT) survey was used to delineate the tailings sand leachate at depth. The proper management of oil sand tailings facilities is vital to the life cycle of a mine. It was concluded that geophysical techniques can be instrumental in managing several engineering and environmental challenges, from Pleistocene channel mapping, to tailings pond settling characteristics, to reclaiming tailings sands. 1 ref., 7 figs.

  12. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  13. Fluidization Behavior of Oil-Contaminated Sand.

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar; Pohořelý, Michael

    2007-01-01

    Roč. 61, 2 (2007) , s. 93-97 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : fluidized bed * hydrodynamics * oil pollution Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.367, year: 2007

  14. Oil sands development in a carbon constrained world

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, J. [Alberta Research Council, Devon, AB (Canada)

    2006-07-01

    The challenges facing oilsands development in Alberta were discussed in this PowerPoint presentation. In 2005, 71 per cent of Alberta's export value was derived from energy and mining. The author addressed the issue that resource based economies have rarely succeeded in the long term. He then demonstrated how such economies could capture value from technology. The primary focus was on the goal to develop and adapt greenhouse gas (GHG) transformational technologies that will break the link between hydrocarbon energy use and GHG emissions. The role of oil sands in this endeavour was also discussed. Alberta's oil sands are the world's largest hydrocarbon resource, with 315 b bbls proven reserves, and 2.5 t bbls potential reserves. As an important economic driver for Alberta, oil sands production is expected to grow significantly in the next 2 decades. Since bitumen production is more energy intensive than conventional oil, the industry is faced with the challenge of sustainable development. Concentrated GHG emissions create opportunities to proceed with long-term oil sands development with a sustainable level of GHG emissions, but technology and infrastructure are needed to take advantage of them. Current carbon dioxide (CO{sub 2}) storage projects in Alberta were highlighted. The economic potential of geological storage of CO{sub 2} through acid gas injection or deep disposal was discussed in terms of enhanced oil recovery, enhanced coalbed methane recovery, enhanced gas recovery and cost avoidance of CO{sub 2} per tonne. It was emphasized that a long-term vision and commitment is needed to balance with short term problems solving and longer-term strategic agendas. tabs., figs.

  15. The Canadian oil market: Annual review for 1993

    International Nuclear Information System (INIS)

    1994-07-01

    An overview is provided of the salient features of the Canadian oil market for 1993. This is the first annual version of the review; previous reviews (1986 to March 1993) were published quarterly. Statistics and discussion are given for refined petroleum product demand, drilling and exploration activity, crude oil supply and disposition, major oil pipelines, refinery activity, crude oil and petroleum product stocks, crude oil prices, and refined petroleum product prices. In 1993, demand for refined products continued to slowly recover against a background of generally stable prices. Drilling activity nearly doubled from 1992, due to such factors as royalty relief, rising demand, improved prices, and lower interest rates. Crude oil production rose nearly 10% over the last two years, with most of the rise occurring in 1993, and imports in 1993 reached their highest level in 15 years. Deliveries of crude to Canadian refineries rose in almost all regions. Half of Canadian crude production was exported, and the 1993 oil trade surplus reached a record $3.4 billion. Monthly Interprovincial PipeLines apportionment levels reached record highs in 1993. Refinery rationalization continued and capacity fell 6%, raising average refinery utilization to 84%. The price of Canadian sweet crude declined 7% to a five-year low. 45 figs., 9 tabs

  16. Preliminary fingerprinting analysis of Alberta oil sands and related petroleum products

    International Nuclear Information System (INIS)

    Yang, C.; Wang, Z.D.; Hollebone, B.; Brown, C.E.; Yang, Z.Y.; Landriault, M.; Fieldhouse, B.

    2009-01-01

    This paper reported on a study that presented a preliminary quantitative chemical characterization of Alberta oil sands and many other related Alberta oils such as oil sand bitumen, Cold Lake bitumen, Albian heavy synthetic crude, and Alberta Mixed sweet blend. The rapid increase in production of the Alberta oil sands has resulted in unprecedented environmental concern. The mining, extraction and production of oil sands such resulted in huge consumption of water resources, huge emission of greenhouse gas and large number of tailings ponds. In addition, accidental spills in the transportation and usage of oil sands will potentially cause considerable impact on the environment. It is therefore essential to have the ability to characterize Alberta oil sands and their oil products. The specific chemical properties of the oil sands bitumen must be known. Therefore, this study collected quantitative data on the concentration and distribution profiles of target compounds in Alberta oil sands and its petroleum products. The chemical fingerprints of 5 Alberta oil sands and their related petroleum products were studied using gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS). The characterized hydrocarbons were n-alkanes; target alkylated PAHs and other EPA priority PAHs; biomarker terpanes and steranes; and bicyclic sesquiterpanes. The information acquired during this study will provide the basis for oil-oil correlation and differentiation in future environmental applications relevant to oil sands. 24 refs., 6 tabs., 4 figs.

  17. Oil-sands giants leaving smaller environmental footprints

    International Nuclear Information System (INIS)

    Stonehouse, D.

    1999-01-01

    Suncor Energy and Syncrude Canada are both investing billions of dollars to increase production at their mining facilities near Fort McMurray, Alberta. The two oil-sand giants will be spending a good portion of their investment (almost $1 billion) to improve their environmental performance. Both companies are focusing on reducing their energy use to cut production costs and to reduce carbon dioxide (CO 2 ) emissions. Currently, oil-sand mining accounts for the largest industrial use of electricity in Alberta. This produces tremendous amounts of greenhouse gases such as CO 2 which has been linked to global warming. By year 2006, all of Syncrude's processing equipment will be replaced by energy-efficient equipment. Shovel/truck/hydrotransport will replace the dragline/bucket-wheel/conveyor system used in the past. New technology designed to improve bitumen recovery and increase upgrading processing yields is also expected to decrease emissions by 5 million tonnes per year. Syncrude will also construct a $60 million gas turbine generator for its Aurora project. Sulphur dioxide (SO 2 ) emissions which cause acid rain, are also on the decline at both Syncrude and Suncor. Suncor will reduce its energy use through the construction of a $315 million cogeneration plant which will generate 220 MV of electricity for its operations, along with waste heat that will be used to separate the heavy oil from the sand. The cogeneration plant will be 45 per cent more efficient that current operations. Both companies have planted millions of trees and shrubs to reclaim nearly 3,000 hectares of land. The tailings from oil-sand mining are currently being captured in settling basins. Both companies have long range plans for dealing with tailings. The first is called water capping which involves layering fresh water over tailing deposits to create a lake. The second is called composite tails, which involves mixing the tailings with gypsum and sand to make them settle faster

  18. Reports on 1974 result of Sunshine Project. Research on tar sand and oil shale; 1974 nendo tar sand oyobi oil shale ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-04-04

    The purpose of this research is to grasp the policy of the oil sand resource countries, the properties and existing conditions of the resources, effects of the oil sand resources on a long term energy supply/demand, etc., and to clarify the meaning and position of the researches on the development of oil sand resources in the future energy policy of Japan. The quantities of oil sand resources are mostly in the process of investigation except Alberta province of Canada and are estimated to be two trillion barrels. The quantity for which strip mining is possible is about 90 billion barrels, which are mostly located in the Athabasca region. The oil sand holding countries take a policy of positively developing oil sand. No barriers are particularly provided against the introduction of foreign technology and capital. Where the prospects are possible for the development of oil sand are Canada and Venezuela. R and D should be emphasized on the refining of bitumen and the extraction method within the oil reservoir. The investment per b/d is about 15-20 thousand dollars, which is likely to be more than twice as much as for the North Sea oilfields. The properties and quality of the synthetic crude oil are superior while the risk of exploitation is small; therefore, oil sand will be competitive with crude oil in the future. (NEDO)

  19. Response to Oil Sands Products Assessment

    Science.gov (United States)

    2015-09-01

    clothing , and eye protection. The MSDS for natural gas condensate for Oneok (2009) warns that condensate, being denser than air, will accumulate in...with shovels and clippers and plastic bags collecting all this stuff.” Detergents were ineffective, Hamilton said (Schulte, 2013). 3.4.5 Lack of...oil, are pumped to these basins—or ponds— where settling occurs and water is recycled for reuse in the process. When the ponds are no longer required

  20. Process for separating and recovering oil from oil-sands, etc

    Energy Technology Data Exchange (ETDEWEB)

    Preller, H

    1921-02-24

    A process for separating and recovering oil from oil-sands, bitumen from oil-chalk, oil-shale, and coal, according to Patent 400,122, is described. It is characterized in that the mined material falling on account of its weight is exposed to the running hot water in circulation through the wash-chamber and the clarifying chamber arranged separate or built on (circulation) being obtained by pumps or injectors in a regulatable motion.

  1. The oil and gas industry and the Canadian economy: a backgrounder

    International Nuclear Information System (INIS)

    Curran, R.

    2000-02-01

    The impact of the oil and natural gas industry on the Canadian economy is explained in terms of employment, balance of trade, products, government revenues, international technology trade and industry support to the community. It is reported that the industry employs almost one half million people in Canada; is the second largest contributor to Canada's balance of trade; generate billions of dollars for the economy and pays hundreds of millions of dollars in taxes and its employees contribute millions of dollars and thousands of hours of time to charitable and community organizations. The industry is also one of the major contributors to Canada's technology export through its leadership in high technology exploration methods, cold climate and offshore operations, enhanced recovery technologies, producing and processing heavy oil; mining and upgrading oil sands bitumen, oil-well firefighting techniques and environmental protection technologies, among others. Citing Canada's cold climate and energy-intensive industries, hence the need for large quantities of energy, the booklet offers a rationale for the industry's need to continue to be profitable in order to develop new sources of oil and gas production and invest in energy-efficient technologies. Assuming continued profitability, combined with more efficient use of oil and gas, the Foundation remains confident that the industry will provide energy security and export revenues for the benefit of all Canadians. 12 refs., photos

  2. Laboratory observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.

    2018-04-27

    Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.

  3. Reclamation and closure of an oil sands tailings facility

    Energy Technology Data Exchange (ETDEWEB)

    Sobkowicz, J. [Thurber Engineering Ltd., Calgary, AB (Canada); Morgenstern, N. [Alberta Univ., Edmonton, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of ensuring the successful reclamation of oil sands tailings facilities. Tailings should be reclaimed as mining proceeds in order to avoid an excessive accumulation of fluid fine tailings (FFT). The volume of mature fine tailings (MFT) in ponds should be limited in order to ensure effective tailings management. The reclaimed landforms should have good geotechnical stability and be comprised of self-sustaining native vegetation. Strength is needed to allow for timely capping and initial reclamation, and stiffness is required to minimize future settlement and to allow for the construction of a closure landscape. Reclamation strategies were presented for fines-dominated tailings; sand-depleted tailings; and sand-dominated tailings. Energy Resources Conservation Board (ERCB) criteria for tailings reclamation were discussed, and various monitoring and performance assessment strategies were presented. tabs., figs.

  4. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Englander, Jacob; Bharadwaj, Sharad

    2013-01-01

    It has been argued that the oil sands industry is not energy efficient: comparatively large energy inputs are required per unit of energy output from oil sands operations. Unfortunately, quantitative work to date in this area has suffered from poor data availability and uncertain methods. We apply a new methodology and new dataset to compute ERRs (energy return ratios) for the oil sands industry. We collected monthly oil sands energy consumption and output data from 1970 to 2010. Current oil sands operations have mine mouth NERs (net energy returns) of about 6 GJ output per GJ of energy consumed and point of use energy returns of about 3 GJ/GJ. Long-term trends show oil sands operations becoming significantly more efficient: point of use NER increased from about 1 GJ/GJ in 1970 to 3 GJ/GJ in 2010. These energy returns are lower than those observed in historical conventional oil operations, but low energy returns are not likely to hinder development of oil sands operations due to the large resource in place and the ability for largely self-fueled pathways to return significant amounts of energy to society for every unit of external energy supplied. - Highlights: • Oil sands operations have become significantly more energy efficient over the history of the industry. • Oil sands production is largely fueled with energy from the bitumen resource itself, making external energy returns high. • Oil sands production is still significantly less efficient than conventional oil production

  5. Recent advancements in the geotechnical characterization of oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, J. [Conetec, Richmond, BC (Canada)

    2010-07-01

    The technical aspects of soft oil sands tailings in-situ geotechnical site investigations were discussed. Geotechnical studies are conducted to determine containment structure stability as well as to determine volumetric and mass balances. The results of the studies are used in tailings management plans and construction activities. Flow penetrometers, field vane shear tests, and Gamma-CPTu tests are used in in-situ oil sands tailings geotechnical studies in order to determine pore pressure dissipation, and measure shear strength. Ball penetration tests are conducted to determine tailings strength. Methods of interpreting data from the tests were presented, and data from the tests were also compared and evaluated. Recommended procedures for strength screening were presented. Statistical methods for determining tailings behaviour types were outlined. The study showed that Gamma-CPTu data can be used to obtain reasonable preliminary estimates of solids and fines when combined with tailings behaviour type analyses. tabs., figs.

  6. Surface and groundwater management in the oil sands industry

    International Nuclear Information System (INIS)

    Dixon, D.G.; Barker, J.

    2004-02-01

    A study was conducted to examine the sublethal effects of oil sands constituents on gill and liver histopathology and fish reproduction. Field studies of food web dynamics were conducted using stable isotopes, including oil sands constituents degradation isotope studies. The objective was to determine changes in food web dynamics associated with reclamation methods and maturity using stable isotopes. The study related changes in toxicity to changes in ground and surface naphthenic acids concentration and composition. It also demonstrated the natural attenuation of toxic chemicals as they travel through groundwater to potential surface water receptors. A methodology was developed to assess the natural attenuation capacity for future situations involving process-affected groundwater of different chemistry with different critical potential contaminants such as sulphides, metals, and specific organics. The mobility and natural attenuation of process water chemicals migrating in groundwater was also assessed. tabs., figs

  7. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  8. A science and technology strategy for Canada's oil sands industry

    International Nuclear Information System (INIS)

    1995-01-01

    This report showed that science and technology are the basis for all current oil sands operations. Study proved that technological breakthroughs were essential for future grassroots investment. Assuming that the price of oil would remain in the range of 15 to 20 dollars a barrel, new technologies would be the key lever to economically sound commercial development. Technologies should reduce capital, operating as well as transportation costs. It was urged that, in the development of new technologies, emphasis should be put on technologies that eliminate or bypass entire sections of the current cost structure

  9. Oil sands mine planning and waste management using goal programming

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Awuah, E.; Askari-Nasab, H. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Alberta Univ., Edmonton, AB (Canada). Mining Optimization Laboratory

    2010-07-01

    A goal programming method was used to plan waste management processes at an oil sands mine. This method requires the decision maker (DM) to set goals. Mine planning is used to determine a block extraction schedule that maximizes net present value (NPV). Due to land restrictions, tailings facilities are sited within the pit area and dykes are used to contain the tailings. Many of the materials used to construct the dykes come from the mining operation. The mine plan scheduled both ore and dyke material concurrently. Dykes were constructed simultaneously as the mine phase advanced. A model was used to classify an oil sands block model into different material types. A mixed integer goal programming (MIGP) method was used to generate a strategic schedule. Block clustering techniques were used to large-scale mine planning projects. The method was used to verify and validate synthetic and real case data related to the cost of mining all material as waste, and the extra cost of mining dyke material. A case study of an oil sands project was used to demonstrate the method. The study showed that the developed model generates a smooth and uniform strategic schedule for large-scale mine planning projects. tabs., figs.

  10. Oil sands mine planning and waste management using goal programming

    International Nuclear Information System (INIS)

    Ben-Awuah, E.; Askari-Nasab, H.; Alberta Univ., Edmonton, AB

    2010-01-01

    A goal programming method was used to plan waste management processes at an oil sands mine. This method requires the decision maker (DM) to set goals. Mine planning is used to determine a block extraction schedule that maximizes net present value (NPV). Due to land restrictions, tailings facilities are sited within the pit area and dykes are used to contain the tailings. Many of the materials used to construct the dykes come from the mining operation. The mine plan scheduled both ore and dyke material concurrently. Dykes were constructed simultaneously as the mine phase advanced. A model was used to classify an oil sands block model into different material types. A mixed integer goal programming (MIGP) method was used to generate a strategic schedule. Block clustering techniques were used to large-scale mine planning projects. The method was used to verify and validate synthetic and real case data related to the cost of mining all material as waste, and the extra cost of mining dyke material. A case study of an oil sands project was used to demonstrate the method. The study showed that the developed model generates a smooth and uniform strategic schedule for large-scale mine planning projects. tabs., figs.

  11. Oil sands mine pit wall design and performance at Syncrude

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Danku, M; Purhar, G. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This study conducted slope stability analyses in order to compare pit performance at an oil sands mine with results from computerized simulations using conventionally known soil parameters. Ranges included fully-drained to fully-saturated piezometric conditions; full-peak strength conditions; fully-softened peak conditions; residual shear strength conditions; and undrained shear strength considerations. Pit wall designs were reviewed and a history of marine clay layers at the mine was presented. Assumed overburden fall-down limits were considered. Shovel overburden slope angles were calculated. An analysis of the review suggested that steeper pit walls provide less room for error and have a higher rate of failures. Incised pleistocene channels, joint and fracture areas as well as higher piezometric level areas also impacted on slope performance. Failed areas influenced ore volumes and led to productivity reductions below 50 per cent. It was concluded that the overburden portions of the oil sands mine ranged between 4H:1V to 5H:1V due to haul roads and the timing of top-bench pushbacks. Future plans for the mine must consider ore inventories, haul road requirements; running surface requirements; and ramping accesses. Future slopes at the oil sands mine will be buttressed with overburden and tailings storage areas, while longer-term slopes will be flattened. 6 refs., 2 tabs., 11 figs.

  12. Proceedings of the oil sands and heavy oil technologies conference and exhibition

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for oil sands industry leaders to review the current and future state of technology in this frontier environment. Presentations were delivered by key personnel involved in groundbreaking projects with a renewed focus on oil sands technology and equipment, viewed from the strategic level with case studies and reports on application technologies designed to optimize oil sands operations. The presentations addressed a wide range of issues related to the environmental impacts of oil sands processing facilities, including innovative water and wastewater solutions for heavy oil producers for bitumen mining, in-situ and upgrading facilities. New advances in sulphur treatment technologies were highlighted along with technologies designed to increase the energy efficiency and energy consumption rates of upgrader and processing facilities. Advances in carbon dioxide (CO 2 ) capture and storage systems were also discussed along with geopolitical and economic evaluations of the future of the oil sands industry. The conference featured 59 presentations, of which 48 have been catalogued separately for inclusion in this database. refs., tabs., figs

  13. Upgrader alley : oil sands fever strikes Edmonton

    International Nuclear Information System (INIS)

    Griffiths, M.; Dyer, S.

    2008-01-01

    Large-scale industrial complexes called upgraders are similar to oil refineries. Several upgraders are planned for the area just northeast of Edmonton, known as Upgrader Alley. Concerns have been expressed over the potential congestion and environmental impacts of these upgraders. Upgraders will also attract other industry, and the cumulative effects of development will have major impacts on the region, its people and the natural environment. The report provided an overview of Upgrader Alley, with reference to what is driving development; upgrading issues; what Upgrader Alley will look like; and how much water Upgrader Alley needs. The report also discussed impacts on the land, air quality, and greenhouse gases. Water demand issues were discussed with reference to impacts on the North Saskatchewan River, water levels, water quality, a water management framework, and groundwater resources. Cumulative impacts were also presented. It was concluded that if all the projects for which applications had been submitted were approved, the rapid pace of growth in Upgrader Alley would mimic that of Fort McMurray. If the rate of development were somewhat slower, there would be more time to develop and implement plans to reduce the impacts. 189 refs., 6 tabs., 14 figs

  14. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  15. Ecotoxicological impacts of effluents generated by oil sands bitumen extraction and oil sands lixiviation on Pseudokirchneriella subcapitata

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T., E-mail: tdebenest@yahoo.fr [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Turcotte, P. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagne, F., E-mail: francois.gagne@ec.gc.ca [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada); Gagnon, C.; Blaise, C. [Environment Canada, Fluvial Ecosystem Research, 105 McGill Street, 7 floor, Montreal, Quebec, H2Y 2E7 (Canada)

    2012-05-15

    The exploitation of Athabasca oil sands deposits in northern Alberta has known an intense development in recent years. This development has raised concern about the ecotoxicological risk of such industrial activities adjacent to the Athabasca River. Indeed, bitumen extraction generated large amounts of oil sands process-affected water (OSPW) which are discharged in tailing ponds in the Athabasca River watershed. This study sought to evaluate and compare the toxicity of OSPW and oil sands lixiviate water (OSLW) with a baseline (oil sands exposed to water; OSW) on a microalgae, Pseudokirchneriella subcapitata, at different concentrations (1.9, 5.5, 12.25, 25 and 37.5%, v/v). Chemical analyses of water-soluble contaminants showed that OSPW and OSLW were enriched in different elements such as vanadium (enrichment factor, EF = 66 and 12, respectively), aluminum (EF = 64 and 15, respectively), iron (EF = 52.5 and 17.1, respectively) and chromium (39 and 10, respectively). The toxicity of OSPW on cells with optimal intracellular esterase activity and chlorophyll autofluorescence (viable cells) (72 h-IC 50% < 1.9%) was 20 times higher than the one of OSW (72 h-IC 50% > 37.5%, v/v). OSLW was 4.4 times less toxic (IC 50% = 8.5%, v/v) than OSPW and 4.5 times more toxic than OSW. The inhibition of viable cell growth was significantly and highly correlated (<-0.7) with the increase of arsenic, beryllium, chromium, copper, lead, molybdenum and vanadium concentrations. The specific photosynthetic responses studied with JIP-test (rapid and polyphasic chlorophyll a fluorescence emission) showed a stimulation of the different functional parameters (efficiency of PSII to absorb energy from photons, size of effective PSII antenna and vitality of photosynthetic apparatus for energy conversion) in cultures exposed to OSPW and OSLW. To our knowledge, our study highlights the first evidence of physiological effects of OSPW and OSLW on microalgae.

  16. Part of the green plan : suppliers are helping the coal and oil sands industries to address environmental concerns

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.

    2009-09-15

    The Canadian coal and oil sands industries operate in one of the most stringent environmental regulatory frameworks found in the world. The purpose of the strict regulations is to ensure that Canadian energy resources are developed safely, responsibly and efficiently. Their primary objectives involve the protection of water supplies and aquatic life. This article discussed how suppliers are helping the coal and oil sands industries address environmental concerns. Several examples were provided. In terms of water protection and management, EBA Engineering Consultants has helped mining companies comply with strict environmental regulations and has assisted them in obtaining the necessary permits and establishing monitoring programs. In terms of containment, the Layfield Group's silt and sediment control products has helped prevent fine soil particles from running off into and clouding local water courses. In terms of land reclamation and remediation, IW Kuhn Environmental Ltd., has provided soil remediation services, including re-vegetation using hydroseeding which involves the sowing of seeds with a hosed jet of water. This article also discussed the many green technology products that have been developed and commercialized by EarthRenew for application in coal and oil sands projects. Their patented waste renew facilities can process and cook manures, biosolids or green wastes into organic fertilizers that could be used in land repair applications. 5 figs.

  17. Alberta's economic development of the Athabasca oil sands

    Science.gov (United States)

    Steinmann, Michael

    This dissertation examines the 61-year evolution of public policies pertaining to development of Alberta's non-conventional source of crude oil. The Athabasca oil sands contain an estimated 1.5 trillion barrels and provide for a safe continental supply. The Provincial Government first sponsored this undertaking in 1943. The period from then to 1971 was one of a transition from a wheat economy to a natural-resource economic base. A stable government emerged and was able to negotiate viable development policies. A second period, 1971 to 1986, was marked by unstable world conditions that afforded the Alberta government the ability to set terms of development with multi-national oil firms. A 50% profit-sharing plan was implemented, and basic 1973 terms lasted until 1996. However, 1986 was a critical year because the Organization of Petroleum Exporting Countries (OPEC) reduced prices, causing the Alberta economy to lapse into recession. During a third period, 1986 to 1996, the Alberta Government was unable to adapt quickly to world conditions. A new leadership structure in 1996 made major changes to create ongoing fiscal and development policies. That history provides answers to two primary research questions: How do public policies affect the behaviors of the modern corporation and visa versa? What are the implications for development theory? Two sources of information were used for this study. First, it was possible to review the Premier's files located in the Provincial Archives. Materials from various government libraries were also examined. Some 7,000 documents were used to show the evolution of government policymaking. Second, interviews with leaders of oil companies and federal research facilities were important. Findings support the thesis that, to facilitate oil sands development, government and the private sector have closely collaborated. In particular, revenue policies have allowed for effective R&D organization. Relying on intensive technological

  18. Process of extracting oil from stones and sands. [heating below cracking temperature and above boiling point of oil

    Energy Technology Data Exchange (ETDEWEB)

    Bergfeld, K

    1935-03-09

    A process of extracting oil from stones or sands bearing oils is characterized by the stones and sands being heated in a suitable furnace to a temperature below that of cracking and preferably slightly higher than the boiling-point of the oils. The oily vapors are removed from the treating chamber by means of flushing gas.

  19. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  20. Implications of Canadian oil tax policies

    Energy Technology Data Exchange (ETDEWEB)

    Copplestone, G H

    1983-01-01

    This thesis examines some of the implications of the policy initiatives taken by both levels of government during the 1974-80 period (i.e., from the OPEC oil embargo and subsequent quadrupling of posted world oil prices to the introduction of the National Energy Program, or NEP). A survey of the fiscal instruments employed by both the federal and the oil-producing provincial levels of government to distribute the oil revenues generated in Canada is presented. The focus of this survey is primarily on the pre-NEP regime and the immediate post-NEP regime. The remainder of the thesis then deals with some of the distributional and efficiency aspects of these tax regimes. The thesis also examines the economic efficiency aspects of the pre- and post-NEP tax regimes. In particular, it addresses the issue of an inefficient allocation of resources within the oil industry itself.

  1. Expanding U.S. markets for Canadian crude oil

    International Nuclear Information System (INIS)

    Heath, M.; Angevine, G.; Chan, K.; Renne, G.; Stariha, J.; MacKay, E.

    1993-01-01

    The quantities and types of Canadian, U.S. and competing foreign crudes flowing into U.S. market regions and the potential to retain and/or expand Canadian crude oil sales in each of those markets, was studied. The various pipeline system expansion/construction proposals were reviewed. Findings of the study with respect to prospects for crude oil sales into each of the U.S. market regions were presented. Opportunities and constraints with regard to the potential for incremental crude oil sales into each of the U.S. market regions were detailed. The study concluded that there was a substantial market in the U.S. for incremental sales of Canadian crudes. Most of the refineries in the U.S. market regions were more flexible in terms of their crude diet than they were before the rationalization and restructuring of the industry began. The market for crude oil in the U.S. was shown to be one of the most competitive in the world and the most volatile. The study also revealed that there were risks associated with large additions to the capacity to ship crude oil by pipeline from Western Canada, given the uncertainties surrounding future supply. 4 refs., figs., tabs

  2. Characterization of napthenic acids in oil sands process-affected waters using fluorescence technology

    International Nuclear Information System (INIS)

    Brown, L.; Alostaz, M.; Ulrich, A.

    2009-01-01

    Process-affected water from oil sands production plants presents a major environmental challenge to oil sands operators due to its toxicity to different organisms as well as its corrosiveness in refinery units. This abstract investigated the use of fluorescence excitation-emission matrices to detect and characterize changes in naphthenic acid in oil sands process-affected waters. Samples from oil sands production plants and storage ponds were tested. The study showed that oil sands naphthenic acids show characteristic fluorescence signatures when excited by ultraviolet light in the range of 260 to 350 mm. The signal was a unique attribute of the naphthenic acid molecule. Changes in the fluorescence signature can be used to determine chemical changes such as degradation or aging. It was concluded that the technology can be used as a non-invasive continuous water quality monitoring tool to increase process control in oil sands processing plants

  3. Ambient air quality observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Both Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. In recognition of the effects that this will have on the environment, Suncor has proposed modifications to reduce SO 2 emissions to the atmosphere, while Syncrude plans to develop additional ambient air quality, sulphur deposition and biomonitoring programs. This report discussed the ambient air quality monitoring that was undertaken in the Fort McMurray-Fort McKay airshed. Twelve continuous ambient air quality stations and 76 passive monitoring stations are maintained in the region. Environment Canada maintains eight precipitation monitoring stations in northern Alberta and Saskatchewan. Source characterization, ambient air quality and meteorology observations, air quality monitoring, and air quality data from continuous sulphur dioxide, hydrogen sulphide, nitrogen oxides, ozone, carbon monoxide, hydrocarbon, acid rain and particulates analyzers were reviewed. The documentation of all computer files used for the analysis of the air quality data is discussed in the Appendix. 47 refs., 39 tabs., 53 figs

  4. Process for separating and recovering oil from oil-sands, etc

    Energy Technology Data Exchange (ETDEWEB)

    Preller, H

    1920-07-14

    A process for separating and recovering oil from oil-sands, bitumen from oil-chalk, oil shale, and coal is characterized in that the material to be separated feeds, by a self-acting feeding arrangement, to a system with slowly rotating drums alternating in different directions and thereby it is exposed to the action of hot water running opposite to the rotation, direction of the drum, with addition of extraction-medium, so that the light material is washed out and rises to the top. It is carried off, while the heavy material sinks to the bottom and, by bucket-conveyor is removed.

  5. Geochemical characteristics of oil sands fluid petroleum coke

    International Nuclear Information System (INIS)

    Nesbitt, Jake A.; Lindsay, Matthew B.J.; Chen, Ning

    2017-01-01

    The geochemical characteristics of fluid petroleum coke from the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada were investigated. Continuous core samples were collected to 8 m below surface at several locations (n = 12) from three coke deposits at an active oil sands mine. Bulk elemental analyses revealed the coke composition was dominated by C (84.2 ± 2.3 wt%) and S (6.99 ± 0.26 wt%). Silicon (9210 ± 3000 mg kg"−"1), Al (5980 ± 1200 mg kg"−"1), Fe (4760 ± 1200 mg kg"−"1), and Ti (1380 ± 430 mg kg"−"1) were present in lesser amounts. Vanadium (1280 ± 120 mg kg"−"1) and Ni (230 ± 80 mg kg"−"1) exhibited the highest concentrations among potentially-hazardous minor and trace elements. Sequential extractions revealed potential for release of these metals under field-relevant conditions. Synchrotron powder X-ray diffraction revealed the presence of Si and Ti oxides, organically-complexed V and hydrated Ni sulfate, and provided information about the asphaltenic carbon matrix. X-ray absorption near edge structure (XANES) spectroscopy at the V and Ni K-edges revealed that these metals were largely hosted in porphyrins and similar organic complexes throughout coke grains. Minor differences among measured V and Ni K-edge spectra were largely attributed to slight variations in local coordination of V(IV) and Ni(II) within these organic compounds. However, linear combination fits were improved by including reference spectra for inorganic phases with octahedrally-coordinated V(III) and Ni(II). Sulfur and Fe K-edge XANES confirmed that thiophenic coordination and pyritic-ilmenitic coordination are predominant, respectively. These results provide new information on the geochemical and mineralogical composition of oil sands fluid petroleum coke and improve understanding of potential controls on associated water chemistry. - Highlights: • Oil sands fluid petroleum coke contains wide range of major, minor and

  6. Detoxification, endocrine, and immune responses of tree swallow nestlings naturally exposed to air contaminants from the Alberta oil sands.

    Science.gov (United States)

    Cruz-Martinez, Luis; Fernie, Kim J; Soos, Catherine; Harner, Tom; Getachew, Fitsum; Smits, Judit E G

    2015-01-01

    Changes in environmental and wildlife health from contaminants in tailings water on the Canadian oil sands have been well-studied; however, effects of air contaminants on wildlife health have not. A field study was conducted to assess biological costs of natural exposure to oil sands-related air emissions on birds. Nest boxes for tree swallows (Tachycineta bicolor) were erected at two sites; within 5 km of active oil sands mining and extraction, and ≥ 60 km south, at one reference site. Passive air monitors were deployed at the nest boxes to measure nitrogen dioxide, sulfur dioxide, ozone, volatile organic compounds, and polycyclic aromatic hydrocarbons (PAHs). Nestlings were examined at day 9 post hatching to assess T cell function and morphometry. At day 14 post hatching, a subset of nestlings was euthanized to measure detoxification enzymes, endocrine changes, and histological alterations of immune organs. Except for ozone, all air contaminants were higher at the two oil sands sites than the reference site (up to 5-fold). Adult birds had similar reproductive performance among sites (p>0.05). Nestlings from industrial sites showed higher hepatic ethoxyresorufin O-dealkylase (EROD) induction (pfeather corticosterone (p>0.6), and no histological alterations in the spleen or bursa of Fabricius (p>0.05). This is the first report examining toxicological responses in wild birds exposed to air contaminants from industrial activity in the oil sands. It is also the first time that small, individual air contaminant monitors have been used to determine local contaminant levels in ambient air around nest boxes of wild birds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Canadian Occidental joins Hunt as Yemen oil producer

    International Nuclear Information System (INIS)

    Gurney, J.

    1994-01-01

    On 23 September 1993, the Canadian Occidental Petroleum Company initiated the export of 120,000 b/d (barrels a day) of low sulphur, medium gravity crude oil from its Masila Block concession in Yemen. The oil is transported from Masila via a pipeline built by CanOxy and its partners to a new terminal at Ash Shihr, near Mukalla, in the Gulf of Aden. CanOxy is the third operator oil company to produce oil commercially in Yemen. The first, the Hunt Oil Company, began production in December 1987 and its output now totals about 187,000 b/d. The second, Nimir Petroleum, a Saudi venture which took over the facilities developed in the 1980s by two Soviet companies, is currently producing about 10,000 b/d and expects to increase its output to 25,000 b/d during this year. (Author)

  8. Threshold Considerations and Wetland Reclamation in Alberta's Mineable Oil Sands

    Directory of Open Access Journals (Sweden)

    Lee Foote

    2012-03-01

    Full Text Available Oil sand extraction in Alberta, Canada is a multibillion dollar industry operating over 143 km² of open pit mining and 4600 km² of other bitumen strata in northern boreal forests. Oil production contributes to Canada-wide GDP, creates socio-cultural problems, provides energy exports and employment, and carries environmental risks regarding long-term reclamation uncertainties. Of particular concern are the implications for wetlands and water supply management. Mining of oil sands is very attractive because proven reserves of known quality occur in an accessible, politically stable environment with existing infrastructure and an estimated 5.5 billion extractable barrels to be mined over the next five decades. Extraction occurs under a set of limiting factors or thresholds including: limited social tolerance at local to international levels for externalities of oil sand production; water demands > availability; limited natural gas supplies for oil processing leading to proposals for hydroelectric dams and nuclear reactors to be constructed; difficulties in reclaiming sufficient habitat area to replace those lost. Replacement of the 85 km² of peat-forming wetlands forecast to be destroyed appears unlikely. Over 840 billion liters of toxic fluid byproducts are currently held in 170 km² of open reservoirs without any known process to purify this water in meaningful time frames even as some of it leaches into adjacent lands and rivers. Costs for wetland reclamation are high with estimates of $4 to $13 billion, or about 6% of the net profits generated from mining those sites. This raises a social equity question of how much reclamation is appropriate. Time frames for economic, political, and ecological actions are not well aligned. Local people on or near mine sites have had to change their area use for decades and have been affected by industrial development. Examining mining effects to estimate thresholds of biophysical realities, time scales

  9. Energy infrastructure modeling for the oil sands industry: Current situation

    International Nuclear Information System (INIS)

    Lazzaroni, Edoardo Filippo; Elsholkami, Mohamed; Arbiv, Itai; Martelli, Emanuele; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • A simulation-based modelling of energy demands of oil sands operations is proposed. • Aspen simulations used to simulate delayed coking-based upgrading of bitumen. • The energy infrastructure is simulated using Aspen Plus achieving self-sufficiency. • Various scenarios affecting energy demand intensities are investigated. • Energy and CO_2 emission intensities of integrated SAGD/upgrading are estimated. - Abstract: In this study, the total energy requirements associated with the production of bitumen from oil sands and its upgrading to synthetic crude oil (SCO) are modeled and quantified. The production scheme considered is based on the commercially applied steam assisted gravity drainage (SAGD) for bitumen extraction and delayed coking for bitumen upgrading. In addition, the model quantifies the greenhouse gas (GHG) emissions associated with the production of energy required for these operations from technologies utilized in the currently existing oil sands energy infrastructure. The model is based on fundamental engineering principles, and Aspen HYSYS and Aspen Plus simulations. The energy demand results are expressed in terms of heat, power, hydrogen, and process fuel consumption rates for SAGD extraction and bitumen upgrading. Based on the model’s output, a range of overall energy and emission intensity factors are estimated for a bitumen production rate of 112,500 BPD (or 93,272 BPD of SCO), which were determined to be 262.5–368.5 MJ/GJ_S_C_O and 14.17–19.84 gCO_2/MJ_S_C_O, respectively. The results of the model indicate that the majority of GHG emissions are generated during SAGD extraction (up to 60% of total emissions) due to the combustion of natural gas for steam production, and the steam-to-oil ratio is a major parameter affecting total GHG emissions. The developed model can be utilized as a tool to predict the energy demand requirements for integrated SAGD/upgrading projects under different operating conditions, and

  10. Newest oil sands mine on the horizon : Fort McMurray's next megaproject

    Energy Technology Data Exchange (ETDEWEB)

    Werniuk, J.

    2005-08-01

    The newly approved Horizon mine project and on-site upgrader project will be one of Canada's largest oil sands operation. The site for the facility is 70 km north of Fort McMurray, Alberta. Drilling has revealed an in-place resource of 16 billion bbl of bitumen, of which 6 billion bbl is potentially recoverable using existing mining technologies. In situ recovery potential on the western parts of the lease will be used to obtain additional resources. Horizon is owned by Calgary-based Canadian Natural Resource Limited, the second largest oil and gas company in Canada. This senior oil and gas company has operations in western Canada, the United Kingdom, the North Sea and offshore West Africa. The 3-phase Horizon project will have a capital of $10.8 billion, including contingencies. The mine will be a truck and shovel operation, mining 450,000 tonnes of oil sand daily from 2 main pits. The clean, diluted bitumen from the froth treatment plant will be sent to an onsite upgrader that will use delayed coking technology to recover 99 per cent of the sulphur using a tail gas cleanup unit. All of the product will be hydrotreated. In the first phase, the mine will produce sweet synthetic crude oil by the second half of 2008 at a daily rate of 110,000 bbl. This will increase in the second phase to 155,000 bbl per day SCO by 2010 and to 232,000 bbl per day SCO by 2012. The tailings during the first phase will be sent to a conventional tailings pond. A non-segregating tailings disposal method will be considered for the second phase to reduce the size of the required tailings pond and to leave less of an environmental footprint. A 1.83 million cubic metre raw water pond is being built into the project to recycle as much of the water as possible. The Horizon leases include traditional lands of several First Nation bands. Canadian Natural is involving Aboriginal communities in the project through employment and consultation for traditional environmental knowledge. During peak

  11. Mud-farming of fine oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Y.; Tol van, F.; Paassen van, L.; Everts, B.; Mulder, A. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Geotechnology

    2010-07-01

    This PowerPoint presentation discussed an experimental mud-farming technique for fine oil sands tailings. The technique was based on a sub-areal drying technique for dredging sludge developed in the Netherlands for Rotterdam harbour sediments. Between 1960 and 1985, the sludge was deposited in confined disposal sites on land. The sludge was converted to usable clay between 1970 and 1980. The polluted portion of the sludge is stored in a man-made disposal site. The sludge was deposited in thin layers. Stagnant water was then removed. The mud was then dewatered and reused. The sludge was furrowed with amphirol and disc wheels in order to accelerate the ripening process. The dredged material was re-used in a clay factory. The technique was applied to oil sands tailings in order to understand the suction behaviour, sedimentation behaviour, and precipitation deficit of the tailings. State changes of the sludge were monitored. No clear sedimentation phase was identified prior to consolidation. A comparison of material properties showed that the total amount of water to be extracted was more than the Rotterdam sludge, but the suction behaviour was similar. The precipitation deficit from mid-April until September will require a customized deposition strategy. Details and photographs of the experimental studies were included. tabs., figs.

  12. Understanding AL-PAM assisted oil sands tailings treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, L.; Maham, Y.; Masliyah, J.; Xu, Z. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2010-07-01

    Technologies currently used to treat oil sands tailings include the composite tailings (CT) process and the thickened tailings (TT) or paste technology process. This PowerPoint presentation discussed a flocculation and filtration method used to produce stackable tailings deposits. Magnafloc 1011 and AL-PAM additions were used as part of the filtration technique to produce very dry filter cakes. The effect of AL-PAM molecular weight and aluminum content on tailings treatments was investigated as well as the effect of tailings characteristics on the performance of flocculant-assisted tailings filtration processes. The AL-PAM molecular structure was studied. An experimental study was conducted to determine the effect of various polymer additions on fresh tailings from an oil sands plant. The study showed that the optimum dosage for settling and filtration was lower for higher molecular weight AL-PAM. A higher aluminum content was beneficial for settling. Increases in the aluminum content did not improve filtration rates, but reduced optimal dosages. Step-by-step details of the supernatant filtration process were provided, as well as photographs of the laboratory study. tabs., figs.

  13. Polymer aids for settling and filtration of oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Energy Resources Conservation Board, Calgary, AB (Canada). Oil Sands Section; Xu, Z.; Masliyah, J.H. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Oil sand tailings are segregated into coarse and fine tailings. High volumes of toxic fluids and tailings are created in the process. Tailings ponds are an environmental risk with high operating and maintenance costs. Current commercial technologies uses chemical additions to create recycled water and composite tailings (CT). Researchers are now investigating centrifuged and dry mature fine tailings (MFT). Filtration processes with flocculants are used to separate the tailings into warm recycle water and dried cakes that can be used in reclamation processes. Studies are being conducted to find a polymer than can effectively flocculate and filter whole oil sands tailings. The filtration procedure uses pressure to produce released water. Polymers include magnafloc and Al-PAM polymer concentrations are used in slurry masses. Tests have been conducted to determine the settling rates of the polymers. The tests showed that Al-PAM filtered the tailings effectively. Paraffinic froth treatment tests have also been conducted to determine settling rates. A cake produced with froth treatment tailings of Al-PAM 400 ppm had a water content 42.5 wt per cent. The tests showed that while Magnafloc 1011 is a good settling aid, but a poor filtration addition. Al-PAM aided in both the flocculation and filtration processes. Higher Al-PAM dosages are needed for froth treatment tailings processes. It was concluded that dry cakes are produced with the addition of Al-PAM. tabs., figs.

  14. Predicting wear of hydrotransport pipelines in oil sand slurries

    Energy Technology Data Exchange (ETDEWEB)

    Been, J.; Lu, B.; Wolodko, J. [Alberta Research Council, Edmonton, AB (Canada); Kiel, D. [Coanda Research and Development Corp., Burnaby, BC (Canada)

    2008-07-01

    An overview of erosion and corrosion methods and techniques was presented. Wear to pipelines is influenced by slurry flow and chemistry; solids loading; and electrochemical interactions. While several experimental techniques have been developed to rank the performance of different pipeline materials, experiments do not currently provide accurate quantitative prediction of pipeline wear in the field. Rotating cylinder electrodes (RCE) and jet impingement methods are used to study the effect of flow velocity on corrosion rate. Slurry pot erosion-corrosion testers are used to rank materials for use in more dilute, less turbulent slurries. Coriolois slurry erosion testers are used to rank the erosion resistance of different pipeline materials. A pilot-scale flow loop is now being constructed by the Alberta Research Council (ARC) in order to replicate wet erosion phenomena in oil sands applications. The flow loop will be used to simulate the field conditions of oil sands pipelines and develop predictive wear data and models. Coulombic shear stress and characteristic wall velocities have been determined using a 2-layer model designed to represent flow as 2 distinct layers. To date, the flow loop pilot study has demonstrated that wear rates in smaller diameter flow loops are not significantly different than larger diameter field installations. Preliminary calculations have demonstrated that the flow loop can be used to accurately simulate the hydrodynamics and wear typically experienced in field slurry flows. 67 refs., 2 tabs., 7 figs.

  15. Identification of causes of oil sands coke leachate toxicity

    International Nuclear Information System (INIS)

    Puttaswamy, N.; Liber, K.

    2010-01-01

    The potential causes of oil sands coke leachate toxicity were investigated. Chronic 7-day toxicity tests were conducted to demonstrate that oil sands coke leachates (CL) are acutely toxic to Ceriodaphnia dubia (C. dubia). CLs were generated in a laboratory to perform toxicity identification evaluation (TIE) tests in order to investigate the causes of the CL toxicity. The coke was subjected to a 15-day batch leaching process at 5.5 and 9.5 pH values. The leachates were then filtered and used for chemical and toxicological characterization. The 7-day estimates for the C. dubia survival were 6.3 for a pH of 5.5 and 28.7 per cent for the 9.5 CLs. The addition of EDTA significantly improved survival and reproduction in a pH of 5.5 CL, but not in a pH of 9.5 CL. The toxicity of the pH 5.5 CL was removed with a cationic resin treatment. The toxicity of the 9.5 pH LC was removed using an anion resin treatment. Toxicity re-appeared when nickel (Ni) and vanadium (V) were added back to the resin-treated CLs. Results of the study suggested that Ni and V were acting as primary toxicants in the pH 5.5 CL, while V was the primary cause of toxicity in the pH 9.5 CL.

  16. Oil Sands Regional Aquatics Monitoring Program (RAMP) 5 year report

    International Nuclear Information System (INIS)

    Fawcett, K.

    2003-05-01

    This 5 year report outlined and examined the activities of the Regional Aquatics Monitoring Program (RAMP) from its introduction in 1997 up to 2001. The RAMP is a multi-stakeholder program comprised of industry and government representatives as well as members of aboriginal groups and environmental organizations. The objectives of RAMP are to monitor aquatic environments in the oil sands region in order to allow for assessment of regional trends and cumulative effects, as well as to provide baseline data against which impact predictions of recent environmental impact assessments can be verified. Scientific programs conducted as part of RAMP during the 5-year period included water quality and sediment quality analyses; fish monitoring; benthic communities monitoring; water quality and aquatic vegetation analyses of wetlands; and hydrology and climate monitoring. RAMP's programs have expanded annually in scope as a result of increased oil sands development in the region. This report provided outlines of RAMP's individual program objectives and organizational structures, as well as details of all studies conducted for each year. Data were collected for all major study areas were presented, and program methodologies for assessing and identifying trends were outlined. refs., tabs., figs

  17. Robotics and automation for oil sands bitumen production and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2008-07-01

    This presentation examined technical challenges and commercial challenges related to robotics and automation processes in the mining and oil sands industries. The oil sands industry has on-going cost pressures. Challenges include the depths to which miners must travel, as well as problems related to equipment reliability and safety. Surface mines must operate in all weather conditions with a variety of complex systems. Barriers for new technologies include high capital and operating expenses. It has also proven difficult to integrate new technologies within established mining practices. However, automation has the potential to improve mineral processing, production, and maintenance processes. Step changes can be placed in locations that are hazardous or inaccessible. Automated sizing, material, and ventilation systems are can also be implemented as well as tele-operated equipment. Prototypes currently being developed include advanced systems for cutting; rock bolting; loose rock detection systems; lump size estimation; unstructured environment sensing; environment modelling; and automatic task execution. Enabling technologies are now being developed for excavation, haulage, material handling systems, mining and reclamation methods, and integrated control and reliability. tabs., figs.

  18. Influence of Oil Saturation Upon Spectral Induced Polarization of Oil Bearing Sands

    Science.gov (United States)

    The presence of oil in an unconsolidated granular porous material such as sand changes both the resistivity of the material and the value of the phase shift between the low-frequency current and the voltage. The resistivity and the phase angle can be written as a complex-valued r...

  19. Bituminous sands : tax issues

    International Nuclear Information System (INIS)

    Patel, B.

    2004-01-01

    This paper examined some of the tax issues associated with the production of bitumen or synthetic crude oil from oil sands. The oil sands deposits in Alberta are gaining more attention as the supplies of conventional oil in Canada decline. The oil sands reserves located in the Athabasca, Cold Lake and Peace River areas contain about 2.5 trillion barrels of highly viscous hydrocarbons called bitumen, of which nearly 315 billion barrels are recoverable with current technology. The extraction method varies for each geographic area, and even within zones and reservoirs. The two most common extraction methods are surface mining and in-situ extraction such as cyclic steam stimulation (CSS); low pressure steam flood; pressure cycle steam drive; steam assisted gravity drainage (SAGD); hot water flooding; and, fire flood. This paper also discussed the following general tax issues: bituminous sands definition; bituminous sands leases and Canadian development expense versus Canadian oil and gas property expense (COGPE); Canadian exploration expense (CEE) for surface mining versus in-situ methods; additional capital cost allowance; and, scientific research and experimental development (SR and ED). 15 refs

  20. Bringing Context to the Oil Sands Debate: understanding the role of nature versus man

    Science.gov (United States)

    Fennell, J.; Gibson, J. J.; Birks, S. J.; YI, Y.; Jasechko, S.; Moncur, M. C.

    2013-12-01

    The Canadian oil sands represent an important resource to the national economy, and a strategic supply-line to the United States of America. These hydrocarbon deposits reside beneath a vast area in northern Alberta, and have been exposed to the environment for millennia as a result of erosion by the Athabasca River and its tributaries. Further complexity to the geochemical setting occurs due to the existence of faulted pathways extending from deeper, highly saline, Devonian intervals to surface. Situated within this natural setting are large waste management structures used to contain mine tailings and oil sands produced water. Many of these structures are situated in close proximity to aquatic receptors and have the potential to affect local water quality due to seepage losses. As such, these structures are coming under increasing scrutiny as a potential source of environmental impact. Discharge of oil sands contaminants to the rivers, and the accumulation of these materials in the Peace-Athabasca Delta, has been cited as a factor leading to adverse health effects at downstream communities. However, the role that natural discharge of contaminants plays has never been fully acknowledged. To address this critical gap, a reconnaissance of the Athabasca River was conducted. Areas of elevated terrain conductivity (detected by EM31 survey) were identified both in background locations and areas suspected of industrial releases. Water samples were collected from various sites and from multiple depth intervals (up to 3 m) within the hyporheic zone of the river sediments. This was achieved using drive-point wells. Each sample was then analyzed for a comprehensive suite of parameters including: i) major ions; ii) dissolved trace elements; iii) dissolved organics; and iv) selected stable and radiogenic isotopes. Results of the investigation identified large areas (in excess of 10km) of groundwater discharge to the Athabasca River well outside the influence of oil sands

  1. Tapping into new markets for heavy crude : sustaining oil sands development in the long term

    International Nuclear Information System (INIS)

    Schrage, W.

    2003-01-01

    In 2002, 65 per cent of supply from the Western Canadian Sedimentary Basin (WCSB) was shipped by Enbridge to North American markets. A survey of refineries is used by Enbridge to establish expected market demand for oil from the WCSB. An Oil Sands Markets Study was undertaken to provide answers to the following: (1) what volumes to which markets will maximize the value of WCSB production? (2) what mix of raw bitumen, synthetic and fully saturated synthetic best fits the available markets? and (3) what infrastructure expansions, extensions, conversions and new development will be required? Enbridge elected to use the North American petroleum model using Alto's MarketPoint system. It was adapted to evaluate crude oil and refined products. It is expected that by the end of the first quarter of 2003, the preliminary results will be available for review with industry. There are currently 20 crude types identified as available to refineries. All imported crude types will be included. Eight distinct classes of refined products were used: liquid propane gas (LPG), low and high sulphur gasoline, jet fuel, low and high sulphur distillate, asphalt and coke. All major conversion units were modeled for all 150 refineries in Canada and the United States. figs

  2. Canadian oil companies, engineering and geomatics professionals and CSR overseas

    Energy Technology Data Exchange (ETDEWEB)

    Calderbank, B.

    2002-07-01

    This research project focused on the human rights issues associated with oil and gas development in Alberta. Of particular interest was the topic of corporate social responsibility (CSR). The author examined efforts deployed in Alberta to address this issue in oil and gas companies that have operations abroad. A brief review of the interest devoted to CSR in Canada over the years was provided. The United Nations (UN) Universal Declaration of Human Rights was introduced, before discussing the International Labour Organization's (ILO) Declaration on Fundamental Principles on Rights at Work. The author also touched on the Caux Round Table, representing senior business leaders from industrialized and developing nations. The Canadian efforts in the field of CSR for overseas operations were reviewed in the next section. Canadian oil and gas trade associations and CSR was dealt with, followed by a section on verification of CSR. The next section was devoted to Canadian engineering and geomatic professional associations and CSR. The author concluded by indicating that having a set of principles to be applied in real situations also require individuals that possess a strong ethical and moral basis of their own. 88 refs., 4 tabs.

  3. Risk factors in stock returns of Canadian oil and gas companies

    International Nuclear Information System (INIS)

    Sadorsky, P.

    2001-01-01

    This paper uses a multifactor market model to estimate the expected returns to Canadian oil and gas industry stock prices. Results are presented to show that exchange rates, crude oil prices and interest rates each have large and significant impacts on stock price returns in the Canadian oil and gas industry. In particular, an increase in the market or oil price factor increases the return to Canadian oil and gas stock prices while an increase in exchange rates or the term premium decreases the return to Canadian oil and gas stock prices. Furthermore, the oil and gas sector is less risky than the market and its moves are pro-cyclical. This suggests that Canadian oil and gas stocks may not be a good hedge against inflation

  4. Nearshore dynamics of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  5. Oil sands tailings technology : understanding the impact to reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Mamer, M. [Suncor Energy Inc., Fort McMurray, AB (Canada)

    2010-07-01

    This paper discussed tailings management techniques at oil sands mines and their effects on reclamation schedules and outcomes. The layer of mature fine tailings (MFT) that forms in tailings ponds does not settle within a reasonable time frame, requiring more and larger tailings ponds for storing MFT. Consolidated tailings (CT) technology was developed to accelerate the consolidation of MFT, although the process nonetheless takes decades. CT is produced from mixing tailings sand, gypsum, and MFT to create a mixture that will consolidate more quickly and release water. However, CT production is tied to the extraction process, making it applicable only when the plant is operational, and a precise recipe and accurate injection are required for CT to work. In tailings reduction operations (TRO), a new approach to tailings management, MFT is mixed with a polymer flocculant, deposited in thin layers, and allowed to dry. TRO has a significant advantage over CT in that the latter takes up to 30 years to consolidate to a trafficable surface compared to weeks for TRO. TRO allows MFT to be consumed more quickly than it is produced, reducing need to build more tailings ponds, operates independent of plant operations, accelerates the reclamation time frame, and offers enhanced flexibility in final tailings placement sites. TRO also creates a dry landscape, to which well established reclamation techniques can be applied. Dried MFT is a new material type, and research is exploring optimum reclamation techniques. 2 figs.

  6. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  7. Meteorology observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Meteorological data was collected in the Athabasca oil sands area of Alberta in support of Syncrude' application for approval to develop and operate the Aurora Mine. Meteorology controls the transport and dispersion of gaseous and particulate emissions which are vented into the atmosphere. Several meteorological monitoring stations have been set up in the Fort McMurray and Fort McKay area. The study was part of Suncor's commitment to Alberta Environmental Protection to substantially reduce SO 2 emissions by July 1996. Also, as a condition of approval of the proposed Aurora Mine, the company was required to develop additional ambient air quality, sulphur deposition and biomonitoring programs. Background reports were prepared for: (1) source characterization, (2) ambient air quality observations, (3) meteorology observations, and (4) air quality monitoring. The following factors were incorporated into dispersion modelling: terrain, wind, turbulence, temperature, net radiation and mixing height, relative humidity and precipitation. 15 refs., 9 tabs., 40 figs

  8. The Asia-Pacific oil market : prospects for Canadian oil

    International Nuclear Information System (INIS)

    Fesharaki, F.

    2004-01-01

    The Asia-Pacific region is among the fastest growing oil markets for which analysts predict healthy growth rates due to high energy demands from developing countries such as China. Increased oil demand will mean new refining capacity needs and increased supplies of crude oil. The indigenous crude supply in the Asia-Pacific region is limited and unable to meet the region's needs. Imports are therefore expected to rise continuously. Although the Middle East will continue to be the dominant player in meeting these growing oil needs, Canada has an opportunity to diversify the supply source and play a significant role in meeting the energy needs of the Asia-Pacific region. tabs., figs

  9. Strategic marketing opportunities for Suncor OSG [Oil Sands Group

    International Nuclear Information System (INIS)

    Carrothers, S.

    1993-01-01

    Suncor's Oil Sands Group (OSG) is in a unique position to provide advantages to its customers, producing a light, sweet resid-free crude at a time when North American production of this valuable type of oil is in decline. While the per-barrel production cost of synthetic crude has been high historically, the OSG has recently committed to over US$300 million in capital investments which will reduce unit costs to conventional levels. Adding to this, the plant is located on a reserve that, even with existing technology, could feed the plant virtually indefinitely. Three aggressive strategic initiatives which will enhance the value of the products are being undertaken. The product slate diversification initiative involves significantly expanding the production slate to include premium products that are customized to meet customer needs. The product quality initiative will address product characteristics that are unattractive to some end users. The transportation initiative will ensure reliable and timely delivery of a wide variety of OSG products to an expanded customer base. 1 fig

  10. Upgrading oil sands bitumen with FLUID COKING and FLEXICOKING technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamienski, P.; Phillips, G. [ExxonMobil Research and Engineering Co., Fairfax, VA (United States); McKnight, C.; Rumball, B. [Syncrude Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    This presentation described EMRE's Fluid Coking and Flexicoking technologies that are well suited for upgrading Alberta's heavy crudes and oil sands bitumen into pipelineable crudes or synthetic crudes, which can be further processed into transportation fuels. The Fluid Coking technology uses a fluidized bed reactor that thermally converts the heavy oils into light gases, liquids and coke. The metals and much of the sulphur are concentrated in the coke. Combustion of the coke provides process heat and the remaining coke is sold or stored on site for later recovery. Syncrude Canada currently operates 3 Fluid Coking units in northern Alberta. Flexicoking extends fluid coking by integrating air gasification to produce a carbon monoxide/hydrogen rich fuel gas that helps meet fuel and energy requirements of bitumen recovery and upgrading. The yields of light gas and liquids are similar to those of the Fluid Coking process. The partial combustion of coke provides the process heat for the thermal conversion and gasification steps. The remaining coke is gasified and desulphurized using Flexsorb technology. At present, there are 5 Flexicoking units in operation around the world. Interest in the technology is growing, particularly in locations with large demand for clean fuel or electricity. It is also suitable for steam assisted gravity drainage (SAGD) operations in Alberta. This presentation outlined the operating principles of the Flexicoking integrated gasification system and compared it with more expensive oxygen gasification processes. tabs., figs.

  11. [Research on Oil Sands Spectral Characteristics and Oil Content by Remote Sensing Estimation].

    Science.gov (United States)

    You, Jin-feng; Xing, Li-xin; Pan, Jun; Shan, Xuan-long; Liang, Li-heng; Fan, Rui-xue

    2015-04-01

    Visible and near infrared spectroscopy is a proven technology to be widely used in identification and exploration of hydrocarbon energy sources with high spectral resolution for detail diagnostic absorption characteristics of hydrocarbon groups. The most prominent regions for hydrocarbon absorption bands are 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm by the reflectance of oil sands samples. These spectral ranges are dominated by various C-H overlapping overtones and combination bands. Meanwhile, there is relatively weak even or no absorption characteristics in the region from 1,700 to 1,730 nm in the spectra of oil sands samples with low bitumen content. With the increase in oil content, in the spectral range of 1,700-1,730 nm the obvious hydrocarbon absorption begins to appear. The bitumen content is the critical parameter for oil sands reserves estimation. The absorption depth was used to depict the response intensity of the absorption bands controlled by first-order overtones and combinations of the various C-H stretching and bending fundamentals. According to the Pearson and partial correlation relationships of oil content and absorption depth dominated by hydrocarbon groups in 1,740-1,780, 2,300-2,340 and 2,340-2,360 nm wavelength range, the scheme of association mode was established between the intensity of spectral response and bitumen content, and then unary linear regression(ULR) and partial least squares regression (PLSR) methods were employed to model the equation between absorption depth attributed to various C-H bond and bitumen content. There were two calibration equations in which ULR method was employed to model the relationship between absorption depth near 2,350 nm region and bitumen content and PLSR method was developed to model the relationship between absorption depth of 1,758, 2,310, 2,350 nm regions and oil content. It turned out that the calibration models had good predictive ability and high robustness and they could provide the scientific

  12. Outward bound: Unprecedented opportunity lures all Canadian energy sectors to international oil scene

    International Nuclear Information System (INIS)

    Jaremko, G.

    1998-01-01

    The global dimensions of Canadian energy enterprises were reviewed. It has been found that as the Western Canadian Sedimentary Basin is getting more mature, the opportunities in Canada are declining, hence the worldwide involvements of Canadian oil and service and supply companies in exploration, drilling, production and servicing in many parts of the world. Canadian Occidental Petroleum in Yemen, Canadian Fracmaster in Russia, Destiny Resource Services in South America, Gabon, Yemen and Papua New Guinea, Pacalta Resources Limited in Ecuador, Talisman Energy in Indonesia, TransCanada Pipelines, Ocelot Energy Inc and Nova Corporation building pipelines in South America and in Zambia, and Atco everywhere, are just some of the examples cited. So far, Canadian push abroad is short of a rush as only 10 per cent of spending and production by Canadian oil and gas companies is overseas, compared to 50 per cent for Americans. The ratio is about the same for Canadian service and supply companies. Canada has the advantage of being almost the only industrial society without an unpleasant imperial past. That, combined with the 'nice guy' image of the maple leaf will inevitably lead to even greater Canadian share of the international oil and gas business. The decline in the traditional role of U. S. companies in global oil markets after 1985 (according to a recent API report) and the tremendous opportunities created by the opening of the former Soviet Union to foreign capital will also contribute to enhancing the international role played by Canadian oil, gas, and service and supply companies

  13. Ecohydrology applications to ecosystem reconstruction after oil-sand mining

    Science.gov (United States)

    Mendoza, Carl; Devito, Kevin

    2014-05-01

    Oil-sand deposits in northeast Alberta, Canada comprise some of the world's largest oil reserves. Open-pit mining of these resources leads to waste-rock piles, tailings ponds and open pits that must be reclaimed to "equivalent landscape capability", with viable forests and wetlands, using only native vegetation. Understanding ecohydrological processes in natural systems is critical for designing the necessary landforms and landscapes. A challenge is the cold, sub-humid climate, with highly variable precipitation. Furthermore, there are competing demands, needs or uses for water, in both quantity and quality, for reclamation and sustainability of forestlands, wetlands and end-pit lakes. On average there is a potential water deficit in the region, yet wetlands cover half of the undisturbed environment. Water budget analyses demonstrate that, although somewhat unpredictable and uncontrollable, the magnitude and timing of water delivery largely control water storage and conservation within the landscape. The opportunity is to design and manipulate these reconstructed landscapes so that water is stored and conserved, and water quality is naturally managed. Heterogeneous geologic materials can be arranged and layered, and landforms sculpted, to minimize runoff, enhance infiltration, and promote surface and subsurface storage. Similarly, discharge of poor quality water can be minimized or focused. And, appropriate vegetation choices are necessary to conserve water on the landscape. To achieve these ends, careful attention must be paid to the entire water budget, the variability in its components, interconnections between hydrologic units, in both space and time, and coupled vegetation processes. To date our knowledge is guided primarily by natural analogues. To move forward, it is apparent that numerous priorities and constraints, which are potentially competing, must be addressed. These include geotechnical and operational requirements, material limitations or excesses

  14. Carbon dioxide sequestration in oil sands tailings streams

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.; Afara, M.; Namsechi, B.; Demko, B.; Wong, P. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation discussed the use of carbon dioxide (CO{sub 2}) as an oil sands tailings process aid and investigated its role in maximizing recycle water availability by rapid consolidation of the transition zone. The potential for CO{sub 2} sequestration was also investigated. CO{sub 2} composite tailings (CT) pilot plants were discussed and the results of cylinder tests and water chemistry analyses were presented. Issues related to physical entrapment, ionic trapping, and mineral trapping were discussed. The study showed that carbonic acid lowers pH, dissolving calcite and dolomite. Aluminum hydroxide groups on the clay surface reacted to produce water and Al{sup 3+} and Na+. Increased bicarbonate and calcium resulted in precipitated calcite. The reduction of a transition zone from 6 to 3 meters increased the available recycle water by 15 mm{sup 3} in a 5 km{sup 2} recycle water pond. Optimum CO{sub 2} additions to whole tailings are now being investigated. tabs., figs.

  15. Wildlife inventory of oil sand leases 12, 13 and 34

    International Nuclear Information System (INIS)

    Skinner, D.L.

    1996-01-01

    Results of a preliminary study to assess wildlife abundance and distribution on Syncrude's proposed oil sand leases 12, 13 and 34 were presented. The objective of the study was to determine the relative abundance and habitat preferences of different wildlife species. Aerial and track count surveys were conducted in winter. The abundance of hooved animals was determined using an aerial survey of the entire Syncrude area which is composed of conifer-dominated lowlands. Results of the surveys showed that wildlife abundance in the study area was typical of the Fort McMurray region. Thirteen habitat types were identified, including 2 types of upland deciduous forest, mixed wood forest, 4 types of coniferous forest, 2 types of wetland community, 3 types of riparian community and cleared peatland. The distribution of mammals in the study area was presented. This included distribution of hooved animals, small herbivores, large carnivores, small carnivores, and other furbearers. The habitat utilization of each wildlife species was discussed. Several habitat types were preferred by at least one species. Very few species were associated with deciduous and mixed wood forest. It was noted that winter track counts may not be indicative of habitat preferences and distribution during other important periods such as breeding and natal seasons. 69 refs., 12 tabs., 13 figs

  16. Production of high quality water for oil sands application

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)

    2008-10-15

    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF hollow fiber microfiltration membrane system contained in a trailer. Suspended particles and bacteria were captured within the filter, and permeate was sent to the RO unit. Within 6 hours of being installed, the unit was producing water with SDI values in the range of 1.0 to 2.5. It was concluded that the microfiltration system performed reliably regardless of wide variations in feed water quality and flow rates. 3 refs., 1 tab., 8 figs.

  17. Parameters and mechanisms in the mechanical upgrading of Athabasca oil sands by a cold water process

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G B

    1977-01-01

    The efficiency of sand rejection in the cold water mechanical upgrading of Athabasca oil sands has been studied in the operation of rotary contactors of 8.9 cm and 19.0 cm internal diameter, fitted with lifters. Duration of operation, rate of rotation, linear velocity of lifters, temperature, water to oil sands ratio, depth of charge to lifter height ratio, and internal diameter of the contactor have been identified as important parameters. Surfactant addition and presoaking of the feed had negligible effects on the process. A model has been proposed that accounts for the variation of extraction efficiency as a function of duration of operation, the data showing that both the equilibrium extraction efficiency and the rate constant were greater in the large contactor than the small contactor for equal rates of rotation, except when centrifuging occurred in the large contactor. Sand rejection was promoted by lifter-sand and contactor wall-sand impacts and by the action of shear fields within vortices created by the lifter. The impacts occurred for all loading conditions but the latter mechanism only contributed to the sand rejection process for depth-of-charge to lifter height ratios of one or greater. In addition, the contribution of shear fields was only significant for large water to oil sands ratios. Finally, the sand rejection process was affected significantly by variations in temperature. 37 refs., 34 figs., 11 tabs., 4 illus.

  18. Sulphur extended oil sand mix : paving material for lower transport cost and CO{sub 2} reduction : ASRL Syncrude research project 1995

    Energy Technology Data Exchange (ETDEWEB)

    Aquin d' , G. [Con-Sul Inc., Missoula, MT (United States)

    2010-07-01

    This power point presentation discussed the use of sulphur-enhanced oil sands (SEOS) as a paving mixture. Sulphur has been added to asphaltic bitumen paving processes since the 1850s. Research into sulphur additions has been conducted by various Canadian industry members and institutions. A study in 1995 investigated the use of SEOS as a temporary paving material. The benefits of using SEOS included lower capital costs and lower greenhouse gas (GHG) impacts. Increases in equipment efficiency were also observed. Researchers are now developing mixing protocols and testing various paving materials in relation to temperature regimes and percentages of sulphur. Sand, limestone, coke, and rubber additions are also being evaluated, as well as the behaviour of SEOS in freeze-thaw cycles. To date, the studies have indicated that a 30 percent sulphur, 10 percent sand, and 60 percent oil sand mixture provides optimal compression and behaviour under freeze-thaw conditions. The use of SEOS paving at oil sands mine sites will reduce truck and road maintenance as well as reduce fuel emissions and consumption rates. tabs., figs.

  19. Review of four major environmental effects monitoring programs in the oil sands region

    International Nuclear Information System (INIS)

    Lott, E.O.; Jones, R.K.

    2010-10-01

    The lack of knowledge on current environmental effects monitoring programs for the mineable oil sands region generates a low public confidence in environment health monitoring and reporting programs for the oil sands operations. In 2010, the Oil Sands Research and Information Network (OSRIN) supervised a study reviewing the major environmental effects monitoring programs that are underway in the Regional Municipality of Wood Buffalo. Four main environmental effects monitoring and reporting organizations existing in the oil sands area were engaged to describe their programs through this study: Alberta Biodiversity Monitoring Institute (ABMI), Cumulative Environmental Management Association (CEMA), Regional Aquatic Monitoring Program (RAMP), Wood Buffalo Environmental Association (WBEA). These different organizations have specific roles in providing information, data and understanding of ecosystem effects. A one page visual summary of environmental effects monitoring in the oil sands area resulted from the information received from these organizations and detailed fact sheets were presented for each one of the programs. The report of this study also presents seven other environmental monitoring initiatives or organizations such as Alberta Environment and Environment Canada environmental effects monitoring program. The main observation that emerged from the review was the lack of detailed understanding shown by the stakeholders regarding the monitoring activities performed in the oil sands area. There is a lack of communication of the different programs that are conducted in the region. The study also pointed out that no efforts were put in cross-linking the various programs to be assured that every concerns related to environmental effects associated with oil sands operations were addressed. A better understanding of environmental effects and an improvement in public confidence in the data and its interpretation would probably be observed with the establishment of a

  20. Proceedings of the Canadian Heavy Oil Association Conference : Heavy oil, the business of evolution

    International Nuclear Information System (INIS)

    2003-01-01

    gas industry to exchange knowledge about fueling options, emerging technologies for resource recovery, and markets and logistics. Most of the papers were presented in Power-Point format with several viewgraphs depicting processes used mostly to recover bitumen from the tar sand and oil sand deposits in Western Canada. The enhanced recovery methods ranged from chemical recovery and thermal recovery methods such as steam assisted gravity drainage (SAGD) and toe-to-heel air injection (THAI). Separation processes and sorbent recovery methods were also discussed. The conference featured 11 presentations, of which 5 were indexed separately for inclusion in this database. refs., tabs., figs

  1. An investigation of the potential for in situ bioremediation of oil sands tailings

    International Nuclear Information System (INIS)

    Herman, D.C.; Costerton, J.W.; Fedorak, P.M.; Mackinnon, M.D.

    1993-01-01

    Oil sand tailings water has been shown to be acutely toxic to aquatic organisms. Naphthenic acids have been shown to be the primary source of this toxicity within oil sand tailings waste. The potential for in-situ bioremediation of oil sand tailings was investigated by determining the ability of indigenous bacteria to biodegrade naphthenic acids. A mixed bacterial culture enriched from oil sand tailings was found to be capable of growth on a commercially available naphthenic acid mixture. When sodium naphthenates (30 mg/l) were added to a minimal salts medium and inoculated with the mixed bacterial culture, gas chromatography revealed that many components of the naphthenic acid mixture were biodegraded within eight days of incubation. The same culture was also tested against the naphthenic acid fraction extracted directly from oil sand tailings. The tailings extract was diluted into the minimal salts medium in sealed flasks and inoculated with the enrichment culture. The production of CO 2 indicated microbial mineralization of components within the oil sands extract. Microtox analysis determined that microbial activity resulted in a reduction in the acute toxicity of the tailings extract. 5 refs., 3 figs

  2. Marrying project deliverability models and labour supply for the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Albright, R.; Whitaker, C.A. [Fluor Canada Ltd., Calgary, AB (Canada)

    2005-07-01

    Alberta is predicting a labour shortage to support the construction and operation of planned oil sands projects in the region. This paper provided a framework of options available to stakeholders in addressing resource constraints from the viewpoint of Fluor Canada Ltd. A background of previous projects was presented, which highlighted various strategies used in the management of human resources issues. Strategies included local hiring through the Alberta-based trade unions; recruitment from other Canadian provinces; a higher ratio of apprentices; extremely high utilization crew schedules; and extended use of overtime. It was noted that these strategies resulted in some cost overruns and lower productivity levels. A productivity analysis was used to determine and resolve productivity issues. Various regulations in Alberta were discussed in relation to training programs and skilled immigrants. Various international training facilities operated by Fluor were reviewed. A factor model of human resources issues was presented. Summaries of supply chain management, systems, and technologies were presented. Issues concerning prefabrication, pre-assembly, modularization and offsite fabrication were discussed. It was concluded that by taking advantage of lessons learned in previous projects a solid foundation is set from which to plan for future requirements. Successful project execution is achieved by taking advantage of current technology; enhancing modular construction standards; and using supply chain management techniques and enhanced labour supply solutions. tabs., figs.

  3. A role for nuclear energy in the recovery of oil from the tar sands of Alberta

    International Nuclear Information System (INIS)

    Puttagunta, V.R.; Sochaski, R.O.; Robertson, R.F.S.

    1976-12-01

    Techniques of oil recovery from the tar sands and the energy requirements of this operation are described. Fossil fuels, and CANDU reactors are examined as competitive sources of energy for the tar sands plants. The CANDU-OCR reactor appears to have the necessary flexibility to fit into many of the possible methods of recovering oil from the tar sands. Cost comparisons of fossil and nuclear sources show that, for the supply of process steam, the nuclear source is competitive under the criteria of debt financing or low discount rates on capital, continued escalation, and long plant capital write-off period. (author)

  4. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  5. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    Science.gov (United States)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  6. Inversion of Airborne Electromagnetic Data: Application to Oil Sands Exploration

    Science.gov (United States)

    Cristall, J.; Farquharson, C. G.; Oldenburg, D. W.

    2004-05-01

    . We provide an example that involves the interpretation of an airborne time-domain electromagnetic data-set from an oil sands exploration project in Alberta. The target is the layer that potentially contains oil sands. This layer is relatively resistive, with its resistivity increasing with increasing hydrocarbon content, and is sandwiched between two more conductive layers. This is quite different from the classical electromagnetic geophysics scenario of looking for a conductive mineral deposit in resistive shield rocks. However, inverting the data enabled the depth, thickness and resistivity of the target layer to be well determined. As a consequence, it is concluded that airborne electromagnetic surveys, when combined with inversion procedures, can be a very cost-effective way of mapping even fairly subtle conductivity variations over large areas.

  7. The splitting of P and NG and oil sands rights: an historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, F. D. [Alberta Department of Energy, Edmonton, AB (Canada)

    1997-12-31

    Changes in the Mines and Minerals Act of Alberta are described to illustrate the evolution of the priorities and thinking over time that led to the present administration of oil sands and natural gas as separate minerals. Natural gas was first excluded from the definition of bituminous sands in 1955. The definition of bituminous sands was changed in 1957 to include natural gas once again. In a further change in 1978, both petroleum and natural gas were excluded from the definition of oil sands. More changes followed in 1984, when petroleum was added back into the definition, leaving natural gas as the only mineral excluded from the definition of oil sands. The 1984 change was triggered by changes in the Oil Sands Conservation Act. It is the current definition, which includes `sands and other rock materials containing crude bitumen, and any other mineral substances, other than natural gas, in association with that crude bitumen`. It was a resource conservation issue in the past, and it is a conservation issue today, although much influenced by changes in technology and increased knowledge and understanding of the relevant factors. 2 tabs.

  8. Buying versus exploring for reserves in the Canadian oil industry

    International Nuclear Information System (INIS)

    Sayer, F.

    1992-01-01

    The issue of a business strategy for Canadian oil companies focussed on either buying reserves or on exploration is examined. A measurement of the amount of merger and acquisition (M ampersand A) transactions vs the amount of exploration activity shows that the number of M ampersand A transactions has risen from 262 in 1989 to an estimated 1,500 in 1992. This sales activity has partly resulted from major companies selling assets to pay down debt. In the same period, the number of licensed exploration wells has decreased from 2,800 to 1,500. An analysis of statistics on the costs of acquisitions vs cost of finding and development shows acquisitions costs are lower in all cases. In addition, the median acquisition price has been falling steadily. Buying reserves has other advantages, including the fact that reserves can be added more quickly, lower risk, and readily available financing. Exploration, however, has its advantages, including the potential for very large reserve additions, higher tax deductions and incentives available, less competition from the industry, and low input costs. The acquisition vs exploration strategies are illustrated using the stock performance of two companies. If the acquisitions trend continues, there will be increases in the profitability of existing reserves, the number of companies, and tax receipts, However, in the long term there will be a drop in Canadian reserves and a significant reduction in the size of the industry. 14 figs., 2 tabs

  9. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  10. Dewatering behavior of fine oil sands tailings : A summary of laboratory results

    NARCIS (Netherlands)

    Yao, Y.; van Tol, A.F.; van Paassen, L.A.; Vardon, P.J.; Sego, D.C.; Wilson, G.W.; Beier, N.A.

    2016-01-01

    To evaluate the disposal technology for fine oil sands tailings, the appropriate engineering properties of the tailings should be ascertained. A laboratory study was conducted by Delft University of Technology (the Netherlands) on the geotechnical properties and dewatering behavior of the fine oil

  11. Semipermeable membrane devices concentrate mixed function oxygenase inducers from oil sands and refinery wastewaters

    International Nuclear Information System (INIS)

    Parrott, J.L.; Hewitt, L.M.

    2002-01-01

    The health of fish in the Athabasca River was examined to determine the effects of both natural and anthropogenic oil sands exposure on liver mixed function oxygenase (MFO) enzymes. Semipermeable membrane devices (SPMD) were used to concentrate bioavailable compounds that may result in MFO induction. The SPMDs were used for a period of 2 weeks in the Steepbank River as well as in oil refinery wastewater and intake ponds. They were then tested to see if they induced ethoxyresorufin-O-deethylase (EROD) activity in hepatoma cells, a cell line derived from a liver cancer of a small fish. SPMDs from the wastewater pond contained potent EROD inducers in fish liver cells. SPMDs from the Athabasca River exhibited some EROD inducers, but they were 1/100 as potent as those of the refinery wastewater. The characteristics of MFO inducers from refinery wastewater were different from natural inducers from the oil sands in the Athabasca and Steepbank Rivers. For instance, log Kow was less than 5 for refinery wastewater, but it was greater than 5 for Athabasca River wastewater and from natural oil sands exposure. In the case of the Steepbank River, the pattern of MFO induction was similar to the MFO induction seen in wild fish.The highest MFO inducers were found to be in the area of the mine, suggesting and anthropogenic pollution source. The less potent inducers were in the area of the natural and undisturbed oil sands. Very few inducers were found outside of the oil sands formation

  12. Sulphur output from oil sands : dramatically changing Alberta's sulphur balance

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquin, G. [Con-Sul Inc., Bigfork, MT (United States)

    2008-07-01

    This paper discussed sulphur production from Alberta's gas and oil sands industries. While sulfur derived from natural gas production in the province is expected to decline as natural gas reserves diminish, Alberta's oil sands contain high amounts of sulphur. It is not yet known how much sulphur will be produced from the province's oil sands facilities. Alberta had considerable stockpiles of sulphur in the 1970s. By 1980, inventories began to decline. By 1996, output had increased to 7.1 million tonnes. Alberta's sulphur inventory reached 9.7 million tonnes following the collapse of the Soviet Union's government mandated fertilizer industry. In 2006, sulphur supplies in Alberta reached 12 million tonnes. Reduced global output has now lowered sulphur stockpiles. Increases in sulphur prices tend to reduce market demand, and lower prices will not typically change the volume of sulphur produced as a byproduct of oil and gas operations. Bitumen-derived sulphur output is expected to exceed gas-derived sulphur output in the near future. Sulphur from oil sands processing is expected to increase by 5 million tonnes by 2017. Increased sulphur production levels in Alberta will present a significant challenge for all sectors of the hydrocarbon industry. It was concluded that developing a plan for storing, selling or disposing of the sulphur will help to ensure the profitability of oil sands operations.

  13. Examination of oil sands projects : gasification, CO{sub 2} emissions and supply costs

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, K. [Energy Resources Conservation Board, Calgary, AB (Canada)

    2008-10-15

    Non-conventional resources such as Alberta's oil sands are experiencing increased global interest because of the decline in global conventional oil and natural gas reserves. Bitumen extraction and upgrading is an energy intensive process. This paper provided a general discussion of Alberta's oil sands reserves, production and energy requirements. The paper discussed the application of different technologies to the oil sands, and in particular, the use of gasification as a method to produce bitumen-derived synthesis gas. Two oil sands projects currently under construction and implementing gasification technology were briefly described. The paper also provided a comparison of emission intensities from projects that employ gasification leading to a forecast of carbon dioxide equivalent emissions from the oil sands. The impact of Alberta's legislation and the federal framework on greenhouse gas emissions were also examined. Last, the paper discussed a supply cost methodology to compare an integrated extraction and upgrading project using gasification versus a similar project using a conventional steam methane reforming process (SMR). It was concluded that after comparing carbon dioxide emission intensities across different types of projects, the type of project that would be most heavily impacted by greenhouse gas emissions penalties was an in-situ extraction with an upgrading project that employed gasification technology. 36 refs., 5 tabs., 12 figs., 1 appendix.

  14. Insight conference reports : western Canada oil sands summit : meeting North America's energy needs

    International Nuclear Information System (INIS)

    2004-01-01

    This conference focused on exploration and development of oil sands in western Canada, with particular reference to market opportunities and challenges for oil sands exploitation in Alberta, risk management in large resource development projects, pipeline issues, investment issues, and asset life cycle management. Some presentations also addressed regulatory regimes, royalty regimes, taxes, resource potential, research activities, environmental impacts, and offshore prospects. Both industry and government have an interest in ensuring resources are developed in a sustainable manner. The influence of the Kyoto Protocol on oil sands development and the greenhouse gas emissions market was also addressed along with joint venture issues and a comparison of extra-heavy crude oil projects in Venezuela and Canada. The conference featured 20 presentations, of which 8 have been indexed separately for inclusion in this database. refs., tabs., figs

  15. Finite element analysis of a model scale footing on clean and oil contaminated sand

    International Nuclear Information System (INIS)

    Evgin, E.; Boulon, M.; Das, B.M.

    1995-01-01

    The effects of oil contamination on the behavior of a model scale footing is determined. Tests are carried out with both clean and oil contaminated sand. The data show that the bearing capacity of the footing is reduced significantly as a result of oil contamination. A finite element analysis is performed to calculate the bearing capacity of the footing and the results are compared with the experimental data. The significance of using an interface element in the analysis is discussed

  16. Clean energy and hydrogen for oil sands development with CANDU SCWR nuclear reactors and Cu-Cl cycles

    International Nuclear Information System (INIS)

    Wang, Z.L.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the unique capabilities and advantages of SCWR technology for cleaner oil sands development are discussed from two perspectives: lower temperature steam generation by supercritical water for steam assisted gravity drainage (SAGD), and hydrogen production for oil sands upgrading by coupling SCWR with the thermochemical copper-chlorine (Cu-Cl) cycle. The heat requirements for bitumen extraction from the oil sands and the hydrogen requirements for bitumen upgrading are evaluated. A conceptual layout of SCWR coupled with oil sands development is presented. The reduction of CO 2 emissions due to the use of SCWR and thermo chemical hydrogen production cycle is also analyzed. (author)

  17. Process water treatment in Canada's oil sands industry : 1 : target pollutants and treatment objectives

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    The continuous recycling of tailings pond water in the oil sands industry has contributed to an overall decline in water quality used for bitumen recovery, general water consumption, and remedial activities. This paper reviewed process water quality and toxicity data from 2 long-term oil sands operations. The aim of the study was to determine potential roles for water treatment and provide benchmarks for the selection of candidate water treatment technologies in the oil sands region of Alberta. An overview of the oil sands industry was provided as well as details of bitumen recovery processes. The study examined target pollutants and exceedances identified in environmental and industrial water quality guidelines. The study demonstrated that the salinity of tailings pond water increased at a rate of 75 mg per litre per year between 1980 and 2001. Increases in hardness, chloride, ammonia, and sulphates were also noted. Naphthenic acids released during bitumen extraction activities were determined as the primary cause of tailings pond water toxicity. A summary of recent studies on experimental reclamation ponds and treatment wetlands in the oil sands region was included. 19 refs., 4 tabs., 11 figs

  18. 3D Finite Element Analysis of PWA-Oil Sand Terrain System Interaction

    Directory of Open Access Journals (Sweden)

    Y. Li

    2012-01-01

    Full Text Available A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA method and von Mises yield criterion using the Algor mechanical event simulation (MES software. The three-dimensional (3D distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to 3.6+7 N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.

  19. Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries

    Science.gov (United States)

    Kelly, Erin N.; Short, Jeffrey W.; Schindler, David W.; Hodson, Peter V.; Ma, Mingsheng; Kwan, Alvin K.; Fortin, Barbra L.

    2009-01-01

    For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of polycyclic aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 kg of dissolved PAC was also deposited. Dissolved PAC concentrations in tributaries to the Athabasca increased from 0.009 μg/L upstream of oil sands development to 0.023 μg/L in winter and to 0.202 μg/L in summer downstream. In the Athabasca, dissolved PAC concentrations were mostly snow, dissolved PAC concentrations were up to 4.8 μg/L, thus, spring snowmelt and washout during rain events are important unknowns. These results indicate that major changes are needed to the way that environmental impacts of oil sands development are monitored and managed. PMID:19995964

  20. Integration of nuclear energy into oil sands projects - HTR2008-58239

    International Nuclear Information System (INIS)

    Finan, A.; Kadak, A. C.

    2008-01-01

    Energy security and greenhouse gas reductions are thought to be two of the most urgent priorities for sustaining and improving the human condition in the future. Few places pit the two goals so directly in opposition to one another as the Alberta oil sands. Here, Canadian natural gas is burned in massive quantities to extract oil from one of North America's largest native sources of carbon-intensive heavy oil. This conflict need not continue, however; non-emitting nuclear energy can replace natural gas as a fuel source in an economical and more environmentally sound way. This would allow for the continued extraction of transportation fuels without greenhouse gas emissions, while freeing up the natural gas supply for hydrogen feedstock and other valuable applications. Bitumen production in Alberta has expanded dramatically in the past five years as the price of oil has risen to record levels. This paper explores the feasibility and economics of using nuclear energy to power future oil sands production and upgrading activities, and puts forth several nuclear energy application scenarios for providing steam and electricity to in-situ and surface mining operations. This review includes the Enhanced CANDU 6, the Advanced CANDU Reactor (ACR) and the Pebble Bed Modular Reactor (PBMR). Based on reasonable projections of available cost information, nuclear energy used for steam production is expected to be less expensive than steam produced by natural gas at current natural gas prices and under $7/MMBtu (CAD). For electricity production, nuclear becomes competitive with natural gas plants at natural gas prices of $10-13/MMBtu (CAD). Costs of constructing nuclear plants in Alberta are affected by higher local labor costs, which this paper took into account in making these estimates. Although more definitive analysis of construction costs and project economics will be required to confirm these findings, there appears to be sufficient merit in the potential economics to

  1. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    Oballa, M.; Simanzhenkov, V.; Clark, P.; Laureshen, C.; Plessis du, D.

    2006-01-01

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  2. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  3. BioTiger{sup TM} : a natural microbial product for enhanced hydrocarbon recovery from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Berry, C.J.; Milliken, C.E.; Jones, W. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    This presentation discussed the feasibility of using BioTiger{sup TM} technology to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery processes was initially developed and used by the United States Department of Energy for bioremediation of soils contaminated with oil, but it may also be used to optimize bitumen separation. BioTiger was described as being a unique microbial consortia that has resulted from nearly a decade of extensive microbiology screening and characterization of samples collected from an old waste lagoon. The technology offers rapid and complete degradation of aliphatic and aromatic hydrocarbons and produces new surfactants. It is tolerant of both chemical and metal toxicity and has good activity at high temperatures at extreme pH levels. A flotation test protocol with oil sands from Fort McMurray, Alberta was used for the BioTiger evaluation. A comparison of hot water extraction/flotation test of the oil sands performed with BioTiger showed a 50 per cent improvement in separation as measured by gravimetric analysis. BioTiger is well suited for enhanced hydrocarbon recovery from oil sands because it performs well at high temperatures. 8 figs.

  4. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  5. The growth and photosynthesis of Typha in oil sands process affected material and water

    Energy Technology Data Exchange (ETDEWEB)

    Foote, L. [Alberta Univ., Edmonton, AB (Canada); Hornung, J. [Petro-Canada, Calgary, AB (Canada)

    2007-07-01

    Aquatic plants such as cattail contribute substantially to the energy flow in wetlands. Since Typha (cattail) plants acquire and cycle carbon and nutrients through wetlands, their growth and recycling of captured nutrients are an important part of natural, healthy wetland ecosystems. Cattail are pervasive and satisfy many of the criteria to be used as indicators of wetland integrity. This study investigated if cattail growth and carbon accrual were influenced by oil sands process materials (OSPM) such as consolidated tailings (CT). The purpose was to facilitate land reclamation initiatives by evaluating the impact that constituents of oil sands process material have on aquatic plant growth. The study was conducted at Suncor's experimental trenches. Six lined basins were used, of which 3 were filled with natural water and 3 were filled with trench water. Cattail were planted in different growth medium combinations, including CT over CT; soil over soil; soil over CT; and soil over sterilized sand. All leaf lengths and widths were measured along with the photosynthesis of the leaves and root and plant biomass at planting and after 2-years growth. A larger leaf area was observed under oil sands process influence, which may indicate increased carbon accrual above ground. Leaf area data suggested that CT affected plants are quite productive. The study also indicated that oil sands affected water may reduce plant fitness, and therefore could influence the overall oil sands reclamation timelines. Conversely, cattail grown in soil capped process affected material had a much larger leaf area compared to those grown in soil capped sand, most likely due to the higher levels of ammonia in process affected material.

  6. Oil sands geologists in an industry-school partnership : a resource and teaching opportunity

    International Nuclear Information System (INIS)

    Dudley, J.S.; Doram, T.

    1999-01-01

    The province of Alberta has developed a credit course within their Career and Technology Studies Program on the earth science of oil sands for senior high school science students. The course helps students learn to apply basic sciences to earth science through workplace site visits, resource material and team work. This paper described the increasing demand for, and success of, industry-high school partnerships, and provided special emphasis on the Bowness Senior High School-Imperial Oil partnership in Calgary, Alberta. Imperial Oil Resources is a major producer of oil sands and an employer of earth scientists in a variety of careers in which a wide range of technologies is applied. Students enrolled in the credit study program visit the Imperial Oil Resources Research Centre on five different occasions to gain skills and qualities sought by the workplace including communication, adaptability, team work, and science literacy and its application. 9 refs., 1 tab., 2 figs

  7. Improvement of Dune Sands by Residual Oil in Order to Use in Construction of Lagoons

    Directory of Open Access Journals (Sweden)

    Alborz Hajian nia

    2011-10-01

    Full Text Available This research which is based on experimental work, devoted to study the improvement and stabilization of dune sands in order to create strong layer and stabilize slope and floor construction of sewage Lagoons. Materials used stabilizing these soils are residual oil from the refinery. To confirm the effectiveness of the use of residual oil to improve the mechanical properties of the sand, various samples with different percentages were tested. In besides, the geotechnical and environmental tests were done. Results demonstrate that samples made with 5% oil have highest shear and unconfined compaction strength. It revealed that in compare with natural samples, cohesion and loading capacity highly increased and permeability decrease well. Percentage of fine aggregate, minerals and durability of oil in soil material were also investigated. Finally, effects of sewage on the samples were analyzed, and performance the oils were evaluated in order to use in lagoons.

  8. Log analysis in the shallow oil sands of the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    Vohs, J.B.

    1976-01-01

    Many fields in the San Joaquin Valley of California produce oil from a depth of 2,500 ft or less. During the period of primary production in these fields, evaluation of potential pay intervals from logs was restricted to examination of ES logs and correlation. With the introduction of secondary and tertiary recovery techniques the need for more and better answers, more quickly available, became apparent. However, several log-analysis problems had to be resolved. Formation evaluation using well logs was complicated by the shaliness of the sand intervals, the low and variable salinity of the formation waters, and the presence of low-pressure-gas (depleted) zones in many of the shallow sands. Solutions to these problems have required more modern logging programs and interpretation techniques. Logs available for the evaluation of these sands are the dual induction-laterolog, the compensated formation density log, the compensated neutron log, and the microlaterolog or proximity log. With this suite of logs it is possible to determine the shale content, porosity, saturation in the flushed zone, and water saturation of the sand, and to locate the low-pressure-gas sands and depleted zones. In cases where freshwater and oil are interlayered, it is possible to tell which sands contain oil and which contain only water. Because a quick interpretation is required, wellsite techniques are called for. These will be described

  9. Applications in the oil sands industry for Particlear{sup R} silica microgel

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, B. [DuPont Chemical Solutions Enterprise, Wilmington, DE (United States)

    2009-07-01

    This presentation demonstrated the use of Particlear{sup R} silica microgel in the oil sands industry. The silica-based coagulant is an amorphous silicon dioxide microgel solution. The surface area of a football field can be obtained using 2.7 grams of the substance. The coagulation mechanism is achieved by charge neutralization and inter-particle bridging. The microgel is manufactured at the point of use from commodity chemicals, water, and carbon dioxide (CO{sub 2}). Applications for the microgel include potable water treatment, paper retention, and animal processing wastewater. In the oil sands industry, Particlear{sup R} can be used in tailings flocculation, thickened tailings drying, steam assisted gravity drainage (SAGD) water treatment, and enhanced bitumen recovery. It was concluded that the microgel can be used in many oil sands processing and liquid-solid separation processes in order to remove dissolved solids and organics and increase the rate of solids dewatering. tabs., figs.

  10. Sustainable use of oil sands for geotechnical construction and road building

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available of the three oil sand samples. Oil Sand ID w [%] wb [%] D10 D30 D50 D60 Cu Cc SE-09 1.4 8.5 0.07 0.12 0.17 0.19 2.9 1.17 SE-14 3.2 13.3 0.08 0.14 0.18 0.21 2.8 1.24 AU-14 2.2 14.5 0.09 0.17 0.22 0.27 3.0 1.19 w = water content; wb = bitumen content; Di... = grain size (mm) corresponding to i-percent passing by mass; Cu = coefficient of uniformity; Cc = coefficient of curvature. Sample Preparation The oil sand samples were prepared for the laboratory testing program using an Industrial Process...

  11. Integrated sulphur management : gas, oil sands, reclamation and the challenges of fluctuating demand

    International Nuclear Information System (INIS)

    Pineau, R.

    2009-01-01

    International Commodities Export Corporation is a privately held company that provides fully integrated service offerings to add maximum value in designing, building, owning, and operating sulphur assets. The company also offers in-house, engineering, procurement and project management, as well as supply management, transportation and distribution services. It also has expertise in marine transportation. This presentation discussed integrated sulphur management, with particular focus on gas, oil sands, reclamation and the challenges of fluctuating demand. The presentation provided an overview of the sulphur market and oil sands sulphur. Key considerations for oil sands producers were also presented. The challenges of fluctuating demand include price and volume considerations; logistics; geography and distance to market; export/offshore versus domestic/United States; seasonal considerations; and an inelastic sulphur market. The presentation concluded with a status update of ICEC's initiative and the advantages of Prince Rupert, an economically viable export infrastructure to producers without onsite forming facilities. figs

  12. Effect of bioremediation agents on oil biodegradation in medium-fine sand

    International Nuclear Information System (INIS)

    Croft, B.C.; Swannell, R.P.J.; Grant, A.L.; Lee, K.

    1995-01-01

    A spill of weathered Arabian light crude oil on an intertidal sand zone was simulated in the laboratory. Respirometry, chemical, and microbiological methods were employed to assess the effectiveness of two bioremediation agents: a slow-release inorganic (Max Bac) and an oleophilic organic fertilizer (Inipol EAP22). Inipol EAP22 stimulated additional CO 2 evolution, and significantly increased both the total chemoheterotrophic population and the number of hydrocarbon-degrading microorganisms. At the end of the experiment, the residual oil extracted from the Inipol-treated sand was significantly more biodegraded, based on the application of the conserved biomarkers (phytane and 17α, 21β hopane), than that removed from the other sand columns, albeit by a relatively small amount. The results suggested that Inipol EAP22 stimulated the chemoheterotrophic and hydrocarbon-degrading microbial population and, after a lag phase, encouraged oil biodegradation in fine sandy sediments subjected to a vertical tidal cycle

  13. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    Science.gov (United States)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  14. Application of oxy-fuel CO2 capture for In-situ bitumen extraction from Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Mark; Goold, Scott; Laux, Stefan; Sharma, Apoorva; Aasen, Knut; Neu, Ben

    2010-09-15

    The CO2 Capture Project, along with Praxair, Devon Canada, Cenovus Energy and Statoil are executing a project to demonstrate oxy-fuel combustion as a practical and economic method for CO2 capture from once-through steam generators used in the in-situ production of bitumen in the Canadian Oil Sands. The goal of the project is to develop a reliable, lower cost solution for capturing CO2 that will eliminate up to 90% of the GHG emissions from in-situ operations. The participants will present results of Phase I of this project, and will also outline the future Phases to pilot this technology.

  15. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  16. Study on trace and rare earth elements in Indonesian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Hong-peng; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Major, trace elements and rare earth and mineral composition of the oil sand samples (ST1, ST2, ST3) and the oil sand retorting residue (semi-coke: SC1, SC2, SC3) from Indonesian were determined by XFS, ICP-MS and XRD methods. The trace elements content in oil sand is pretty much the same thing in Earth's Clarke value. The trace element is abundantly in earth's Clarke, in oil sand yet, for Ti, Mn, Ba, Sr, but these elements are lower enrichment. However, the Cr (EF = 16.8) and Mo (EF = 11.8) are ''enrichment'' in ST1; the Ni (EF =10.5), Se (EF = 17.5), Sr (EF = 28.7), Mo (EF = 106.5), Sc (EF = 12.8) and U (EF = 43.2) are ''enrichment'' in ST2; the Se (EF = 12.6), Sr (EF = 18.4), Mo (EF = 47.5), and U (EF = 27.8) are ''enrichment'' in ST3. Calculations show that trace elements in sime-coke have lower evaporation rate during Fischer Assay. Trace elements in raw oil sand are so stable that trace elements can't move easily to other pyrolysis product but enrich to sime-coke. After retorting, more elements are EF > 10, such as B, V, Ni, As, Se, Sr, Mo, Hg, Cs and U. It is essential to take the pollution produced by trace elements in sime-coke during the sime-coke utilization into consideration. The REEs content had a high correlation with the ash in oil sand. The REE is closely related to terrigenous elastic rocks.

  17. Effects of oil sands effluent on cattail and clover: photosynthesis and the level of stress proteins

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, A.U.; Han, B.; Kermode, A.R.; Bendell-Young, L.I.; Plant, A.L. [Simon Fraser University, Burnaby (Canada). Dept. of Biological Sciences

    2001-07-01

    The oil sands industry located in northeastern Alberta, Canada, generates large volumes of effluent characterized by a high level of dissolved ions and naphthenic acids. The dikes used to store the effluent seep, creating wetlands which are subsequently invaded by obligate wetland flora such as cattail (Typha latifolia L.). The appearance of these wetlands prompted the oil sands industry to consider wetlands as part of their reclamation strategy. However, to ensure long-term viability of such wetlands, the response of the flora to the industrial effluent needed to be determined. To this end, apparent photosynthesis (APS), the level of ribulose-1,5-bisphosphate carboxylase (RuBisCo) large subunit, dehydrin-related polypeptides, and protein disulphide isomerase (PDI) were evaluated in cattail and alsike clover plants (Trifolium hybridum L.) exposed to the oil sands effluent. APS measured in plants impacted by oil sands effluent was significantly higher than that of plants in the non-impacted off-site location. Among the on-site locations, plants growing in the natural wetlands site had higher APS compared to all other sites. The level of RuBisCo was not increased in cattail or clover growing in effluent-contaminated sites indicating that enhanced photosynthesis was not due to greater levels of this enzyme. Dehydrin-related polypeptides were detected only in the roots of cattail and were absent in clover. The polypeptide profile was altered in cattail exposed to oil sands effluent indicating that they were responding to an osmotic stress. The level of PDI was unaffected in the leaves of cattail regardless of the nature of the effluent to which they were exposed. Overall, the data indicate that cattail and clover are adapted to the oil sands effluent, although further studies are needed to assess their long-term ability to survive in the presence of this anthropogenic stress. (Author)

  18. An introduction to conservation and reclamation at Alberta's mineable oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Richens, T. [Alberta Environment, Edmonton, AB (Canada)

    2009-07-01

    This paper presented a balanced view of the conservation and reclamation issues and challenges facing oil sands development in Alberta. Bitumen is recovered by truck and shovel in the shallow oil sands of the Athabasca region. The deeper deposits in the Athabasca, Peace River and Cold Lake regions are accessed primarily using a system of horizontal wells and steam to extract the bitumen from the sand and pump it to the surface. Individual in-situ operations have a smaller environmental impact than mines, and do not produce tailings ponds. However, the footprint of in-situ facilities will accumulate over time because of the potential for extensive future development. The key issues facing conservation and reclamation in the mineable oil sands were discussed. Summary statistics on land disturbed and reclaimed in the region were also provided. The challenges facing reclamation activities include long timeframes; large scale, regional planning and integration; competing land use goals; revegetation; byproduct management; and tailings and process-affected water. Multi-stakeholder forums have proven to be the key to the progression of monitoring, research and development and the sharing of knowledge and information. Frameworks have been developed for the assessment of pre-disturbed and reclaimed soil capability specific to the oil sands region. Additional resources are also available, such as guidelines for the reclamation of terrestrial and wetland habitats that represent the best management practices for reclamation research in revegetation, soil salvage, stockpiling and placement, tailings reclamation, end pit lakes, wetlands and biodiversity. 16 refs., 1 fig.

  19. A novel waste water cleanup, fines sequestration and consolidation technology for oil sands applications

    Energy Technology Data Exchange (ETDEWEB)

    Soane, D.; Ware, W.; Mahoney, R.; Kincaid, P. [Soane Energy LLC, Cambridge, MA (United States)

    2010-07-01

    This paper discussed a wastewater technology designed to rapidly sequester suspended fines and other pollutants from the tailings produced during oil sands processes. The technology can also be used to clarify existing tailings ponds, and is expected to help address growing environmental concerns over the remediation of oil sands tailings. The ATA system is comprised of the following 3 components: (1) an activator polymer, (2) a tether polymer, and (3) an anchor particle. A small dose of the activator polymer is added to the fine or mature tailings, which then causes the suspended clay fines to aggregate. The anchor particles are then coated with the tether polymer. The anchor particle is formed from sand derived from coarser tailings. The tether-bearing anchor particles bind to the aggregated clay fines in the activated tailings to form robust complexes that can easily be separated from the waste stream. Output streams from the ATA process include a clean water stream that can be reused in oil sands extraction processes; and a dewatered solid that can be used as landfill as well as in construction and reclamation applications. The sensible heat retained in the recycled water is expected to also reduce the energy requirements of the oil sands extraction process. 6 refs., 1 tab., 5 figs.

  20. Impacts and mitigations of in situ bitumen production from Alberta oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, Neil

    2010-09-15

    85% or more of Alberta's oil sands is too deep to mine and will be recovered by in situ methods, i.e. from drill holes. This has been made commercially possible through the development in Alberta of Steam Assisted Gravity Drainage (SAGD). Does this impending development threaten the local ecosystem? A quantitative account is given of the principal impacts of in situ oil sands development in Alberta. Impacts on land (habitats), water, and air are considered in terms of local capacity, global benchmarks, and comparisons to alternative renewable technologies. Improvements due to new solvent-additive technology are highlighted.

  1. Advanced testing and characterization of shear modulus and deformation characteristics of oil sand materials

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2014-09-01

    Full Text Available and Pressures,” Can. Geotech. J., Vol. 24, 1987, pp. 1–10. [5] Samieh, A.M. and Wong, R.C.K., “Deformation of Athabasca Oil Sand in Triaxial Compression Tests at Low Effective Stresses under Varying Boundary Conditions,” Can. Geotech. J., Vol.34, 1997, pp.... 985– 990. [6] Samieh, A.M. and Wong, R.C.K., “Modeling the Responses of Athabasca Oil Sand in Triaxial Compression Tests at Low Pressure,” Can. Geotech. J., Vol. 35, 1998, pp. 395–406. [7] AASHTO Standard T265, 2009, “Laboratory Determination...

  2. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  3. Mass spectrometry of oil sands naphthenic acids : degradation in OSPW and wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Headley, J. [Environment Canada, Saskatoon, SK (Canada). Water Science and Technology Directorate

    2009-07-01

    This presentation discussed mass spectrometry of oil sands naphthenic acids and the degradation in OSPW and wetland plants. It presented background information on the Athabasca oil sands and naphthenic acids which involve a mixture of alkanes and cycloalkane carboxylic acids with aliphatic side chains. The presentation also discussed mass spectrometry with electrospray operating in negative ion modes. Loop injection, external standard methods and solid phase extraction were reviewed along with improved analysis by removing background ions. Other topics that were presented included hydroponic test systems and wetland plant toxicity, growth and transpiration. It was concluded that dissipation included species containing oxygen, ozone, O{sub 4}, and O{sub 5}. tabs., figs.

  4. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada

    International Nuclear Information System (INIS)

    Lynam, Mary M.; Dvonch, J. Timothy; Barres, James A.; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-01-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010–2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10"−"5 - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10"−"4 – 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130–2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems. - Highlights: • Atmospheric event wet deposition was collected during a 21 month pilot study. • Major ion, anthropogenic and crustal element wet deposition was characterized. • Low precipitation depths attenuated major ion and anthropogenic element deposition. • Oil sands development, urban activities and forest fires contributed to deposition. - In the vicinity of oil sands, monitoring revealed that wet deposition of major ions (SO_4"2"−, NO_3"-, NH_4"+) was highest followed by S and Mg, the latter is a tracer for soil/crustal dust.

  5. Legal aspects of financing Canadian offshore oil and gas developments

    International Nuclear Information System (INIS)

    Green, J.M.; Hudec, A.J.

    1992-01-01

    A review is presented of the significant legal considerations involved in structuring, negotiating, and documenting commercial financing of a Canadian offshore oil and gas production facility. Emphasis is placed on the Hibernia Project in the Newfoundland offshore as an example, and more specifically the $450 million bank financing completed in November 1991. The legal framework governing offshore production financing in this case was complex, due to the project's location in international waters on the continental shelf. Complex intergovernmental arrangements have been implemented between Canada and Newfoundland to govern the offshore area and regulate the project. An agreement called the Atlantic Accord allowed the Canada Newfoundland Offshore Petroleum Board (CNOPB) to grant production licenses and to regulate offshore exploration and development, with matters relating to legislation, taxation, and royalties shared between the governments. Certain other acts were enacted or extended for application to the offshore area. The CNOPB administers a registry system for transfers and security interests in offshore licenses. Security interests including property are ensured by the Hibernia Act, which makes Newfoundland's existing security interest regime applicable to the offshore. The project owners are operating Hibernia as a joint venture, and the structure of project financing and inter-creditor arrangements is examined. The competing security interest of project lenders and non-defaulting participants is discussed, along with assignment of priorities on the security in case of default

  6. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  7. Investing for the future : Athabasca Oil Sands Trust 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    The Athabasca Oil Sand Trust was created in 1995 when a subsidiary of the Trust, Athabasca Oil Sands Investment Inc., acquired Alberta's 11.74 per cent working interest in the Syncrude Project, which is a joint venture involved in the mining and upgrading of bitumen from the Athabasca oil sands. The Trust is a closed-end investment trust which was created to provide an opportunity for direct public investment in Syncrude and oil sands development in northern Alberta. Syncrude, produced a record 76.7 million barrels of Syncrude Sweet Blend (SSB), and shipped its one billionth barrel on April 16, 1998. Another key achievement in 1998 was the investment the Syncrude Joint Venture Partners of almost half a billion dollars to maintain Syncrude's operations and pursue the Business Plan growth targets outlined in last year's report. By aggressively pursuing this capital investment program despite the current low oil prices, the Syncrude Joint Venture Partners expect to double SSB production to 155 million barrels per year by 2007. The Athabasca Trust's share of these capital expenditures to fuel the projected growth in production is about $ 70 million this year and the next. The report provides operating statistics on production, financial highlights and consolidated balance sheets for 1998, including operating expenditures, capital expenditures, and the usual notes to the consolidated financial statement. 10 tabs., 2 figs

  8. Estimation of particle size distribution in Athabasca oil sands by indirect neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schutte, R.; Thompson, G.R.; Donkor, K.K. [New Caledonia College, Prince George, BC (Canada). Dept. of Chemistry; Duke, M.J.M. [Alberta Univ., Edmonton, AB (Canada). SLOWPOKE Nuclear Reactor Facility; Cowles, R. [Syncrude Canada, Edmonton, AB (Canada); Li, X.P.; Kratochvil, B. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemistry

    1999-10-01

    Knowledge concerning the particle size distribution (PSD) of oil sands is necessary for optimal extraction of bitumen from the sand, and it indicates ore quality, gives a measure of process performance during bitumen extraction, and yields information useful for tailings management. Oil sands with mainly coarse particulates are usually bitumen rich and easy to process in the conventional hot water extraction process. These ores do not require the addition of sodium hydroxide as a process aid, and tailings volumes are minimal in contrast to high fines oil sands. Compared to the methods currently in use for determining the PSD in the oil sand industry, a method is described that is rapid, simple to carry out, and does not involve the use of organic solvents with attendant disposal problems. The principle behind the method is the development of a set of correlations by applying regression analysis to a large set of PSD and elemental analysis data. Predicted PSDs compare favorably with results obtained by existing methods. Each of the three PSD methods currently in use could be simulated by the INAA method. The INAA-based model that predicts hydrometer equivalent data was only applicable above certain lower limits for the amount of the fine size fractions present because of the limited sensitivity of the hydrometer method for PSD determination of fine fractions. For all six particle sizes studied, the INAA model had lower overall uncertainty than the corresponding Microtrac and Coulter instrument methods; the instrument repeatability of the INAA fell between those of Microtrac and Coulter. For Athabasca oil sands, the INAA-based method for PSD determination at and below 44 microm afforded results comparable to current Microtrac and Coulter methods. 13 refs., 9 tabs., 2 figs.

  9. Steam producing plant concept of 4S for oil sand extraction

    International Nuclear Information System (INIS)

    Matsuyama, Shinichiro; Nishiguchi, Youhei; Sakashita, Yoshiaki; Kasuga, Shoji; Kawashima, Masatoshi

    2009-01-01

    Plant concept of small fast reactor '4S' applying to continuous steam production for recovery of crude oil from oil sands was investigated. Assuming typical steam assisted gravity drainage (SAGD) plant whose production scale is 120,000 barrels per day of a crude oil, concept of nuclear steam supply system consisting of eight reactor modules for steam production and three reactor modules for electric generation of the 4S with a thermal rating of 135 MWt was established without any essential or significant design change from the preceding 4S with a thermal rating of 30 MWt. The 4S, provided for an oil sand extraction, will reduce greenhouse gas emission significantly, and has not much burden for development and licensing and has economic competitiveness. (author)

  10. Profiler : Canadian oil and gas : the First Nations : building successful partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-05-15

    Canada's petroleum and natural gas is often produced in remote areas where the majority of the population is Aboriginal. Many First Nations and Metis communities are now playing an active role in Canada's oil and gas industry. Aboriginal-owned companies have earned more than $2.6 billion in the oil sands region since 1999. In 2007, the value of contracts between Alberta oil sands companies and Aboriginal companies was estimated at $606 million. This special supplement discussed First Nations partnerships in the oil and gas industry. Articles in the supplement presented new employment, training and partnership activities in the oil and gas industry as well as activities related to emerging unconventional resources. Educational programs and training facilities were described. The employment and procurement practices of leading oil and gas operators were discussed. The supplement featured presentations by several leading oil and gas companies. tabs., figs.

  11. Heat-resistant agent used for control sand of steam huff and puff heavy oil well

    Science.gov (United States)

    Zhang, F. S.; Liu, G. L.; Lu, Y. J.; Xiong, X. C.; Ma, J. H.; Su, H. M.

    2018-01-01

    Heat-resistant agent containing hydroxymethyl group was synthesized from coal tar, which has similar structure with phenolic resin and could improve the heat resistance of phenolic resin sand control agent. The results showed that the heat resistance of the sand control agent was improved by adding 10% to 30% heat-resistant agent, after 280°C high temperature treatment for 7d, the compressive strength of consolidated core was increased to more than 5MPa. The compressive strength of consolidation core was not decreased after immersion in formation water, crude oil, acid or alkaline medium, which showed good resistance to medium immersion. The sand control agent had small core damage and the core permeability damage ratio of sand control agent consolidation was only 18.7%.

  12. Watered down : overcoming federal inaction on the impact of oil sands development to water resources

    International Nuclear Information System (INIS)

    Droitsch, D.

    2009-11-01

    The oil sands industry is having a negative impact on Canada's fresh water resources and aquatic ecosystems. Members of the Government of the Northwest Territories (NT) and experts from scientific, non-governmental, and First Nations groups have stated at federal hearings that the federal government must involve itself in the protection of Canada's water resources. This report discussed compelling testimony from recent federal hearings by the House of Commons Standing Committee on Environment and Sustainable Development.The federal government must establish enforceable standards for key toxic substances created by oil sands activity. A water-sharing agreement must be established between Alberta, NT, Saskatchewan, and First Nations governments. Other recommendations included the establishment of a peer-reviewed assessment of the health impacts of industrial oil sands development on First Nations communities; the establishment of cumulative effects assessment procedures; the identification and protection of listed species at risk; and the establishment of proactive measures designed to ensure that oil sands operators pay for the environmental damage caused to water resources. 94 refs., 4 figs.

  13. Physiological and biochemical responses of small fish exposed to Athabasca oil sands sediment

    International Nuclear Information System (INIS)

    Tetrault, G.R.; Environment Canada, Burlington, ON; McMaster, M.E.; Dixon, D.G.; Parrott, J.L.

    2002-01-01

    A study was conducted to determine the influence of naturally occurring oil sands related compounds on the reproductive function and hepatic responses of fish. Wild fish, both exposed and unexposed to the compounds in question, were collected along with sediments for laboratory testing. The study showed that in vitro gonadal incubation levels of steroid production were lower at the tributary sites within the oil sands deposits. One indicator of exposure to oil sands related compounds (hepatic 7-ethoxyresorufin-O-deethylase activity) was shown to be 5 times higher at the same sites. In addition, slimy sculpin were exposed to sediment samples from the Steepbank River site for 4 to 8 days to evaluate the absorption of the indicator. The indicator in exposed fish was found to be comparable to that measured in fish native to the oil sands area. The study was not capable of predicting an altered ability of gonadal tissue of exposed fish to produce steroid hormones in vitro. It was concluded that future development could compromise the reproductive health of fish in the area

  14. Royal Society of Canada expert panel report : environmental and health impacts of Canada's oil sands industry

    International Nuclear Information System (INIS)

    Gosselin, P.; Hrudey, S.E.; Naeth, M.A.; Plourde, A.; Therrien, R.; Laval Univ., Quebec City, PQ; Van Der Kraak, G.; Guelph Univ., ON; Xu, Z.

    2010-12-01

    This expert panel report was commissioned by the Royal Society of Canada to provide a comprehensive evidence-based assessment of the environmental and health impacts of Canada's oil sands industry. The report evaluated the feasibility of land reclamation and the impacts of oil sands contaminants on downstream residents. Health impacts on residents living in the Regional Municipality of Wood Buffalo were assessed, and the impacts on regional water supplies were evaluated. Regional water and ground water quantities were examined, and issues related to tailing pond operations and reclamation were examined. Ambient air quality impacts were assessed, as well as potential impacts of the oil sands industry on greenhouse gas (GHG) emissions. The environmental regulatory performance of operators in the industry was also evaluated. A summary of economic and policy issues related to the industry was also provided. The study identified major gaps in the process of assessment, prevention, and mitigation of the health impacts of oil sands exploitation, as as major indirect health impacts linked to past exploitation activities. 672 refs., 11 tabs., 11 figs. 10 appendices.

  15. Microbial communities involved in methane production from hydrocarbons in oil sands tailings.

    Science.gov (United States)

    Siddique, Tariq; Penner, Tara; Klassen, Jonathan; Nesbø, Camilla; Foght, Julia M

    2012-09-04

    Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.

  16. Streamflow measurements in the oil sands region of northeastern Alberta[General Conference

    Energy Technology Data Exchange (ETDEWEB)

    Ashiq, M.; Ade, F. [Golder Associates Ltd., Calgary, AB (Canada). Water Resources Engineering Group

    2006-07-01

    Oil sands mining in the muskeg terrain of north-eastern Alberta will result in changes to the natural landscape, including changes to the morphology of receiving streams. The streams in the oil sands region are fed by constricted flows through the muskeg terrain. The roughness of the stream is attributed to sporadic cobbles and boulders, in-stream vegetation, over hanging vegetation and large quantities of wooden debris from beaver activities. This paper discussed stream roughness features in the oil sands region and compared the velocity profiles in these streams to the normal channel velocity profile. The study also included a comparison of computed discharges based on a simple method and a detailed method. The sources of errors in velocity measurements were then discussed. It was noted that before any oil sand mining project is approved, flows in receiving streams are monitored as part of the Environment Impact Assessment (EIA). The flows are then monitored again after project approval as part of project approval conditions.

  17. Post-Secondary Learning Priorities of Workers in an Oil Sands Camp in Northern Alberta

    Science.gov (United States)

    Fahy, Patrick J.; Steel, Nancy

    2008-01-01

    This paper reports results to date of a three-year project by Athabasca University, intended to determine the education and training needs and interests of employees in a work camp in northern Alberta's oil sands. (Future reports will address results of efforts to provide programming suiting the needs identified, and the uptake, satisfaction,…

  18. Process water treatment in Canada's oil sands industry : 2 : a review of emerging technologies

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    This review was conducted to identify candidate treatment technologies for treating oil sands process water. The oil sands industry in Canada uses large volumes of fresh water in order to extract bitumen deposits. The development of process water treatment technologies has become a critical issue for the industry, particularly as oil sand production is expected to triple in the next decade. However, treatment technologies must be adapted to consider the fouling potential of bitumens and fine clays as well as the effect of alkaline process water on treatment performance. The review included developments in chemical modifications to membranes and adsorbents designed to improve pollutant removal and reduce fouling; hybridization technologies designed to enhance the biological treatment of toxic feedwaters; recent advances in photocatalytic oxidation technologies for organic compounds; and new designs for large-scale treatment wetlands for polluted waste waters. It was concluded that major knowledge gaps must be optimized and preliminary studies must be conducted in order to understand how the treatment technologies will be affected by the chemical and physical characteristics of oil sands process water. 188 refs., 8 tabs

  19. Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca oil sands area

    International Nuclear Information System (INIS)

    Pauls, R.W.; Abboud, S.A.; Turchenek, L.W.

    1996-01-01

    A study was conducted to monitor the accumulation and impact on the environment of emissions from oil sands processing plants. SO 2 , H 2 S, NO x and hydrocarbon concentrations in the air were monitored. Syncrude Canada Ltd. conducted surveys to determine elemental levels in lichens and mosses. The objective of the study was to monitor the pattern of accumulation of emissions by oil sand plants in, and their effects on, lichens and mosses, and examine changes in wood induced by soil acidity. The moss, lichen and wood samples were analyzed for total elemental content. Soils were analyzed for pH, soluble sulphate and other properties related to soil acidity and soil composition. Little or no evidence was found to indicate that wood tissue chemistry has been affected by atmospheric deposition of substances originating from oil sands plants. These results led to the inference that no large changes in soil acidity have resulted from oil sands plant emissions either. 66 refs., 21 tabs., 124 figs

  20. Athabasca tar sands as a source of crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D S

    1964-01-01

    A general review is presented of the variable nature of the Athabasca bituminous sand resource, and the chemical composition of the bitumen is given at various stages during the refining from raw material to finished products. The research conducted at the Mines Branch, Ottawa, on vapor-phase hydrogenation of coker distillates is described, emphasizing the effect of hydrogen pressure on the rate of catalyst deactivation. The quality of the hydrogenated products is described in general terms and some observations are made on the reasons why large-scale operation is essential if an economical process is to be achieved.

  1. The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus).

    Science.gov (United States)

    Raine, J C; Turcotte, D; Tumber, V; Peru, K M; Wang, Z; Yang, C; Headley, J V; Parrott, J L

    2017-10-01

    Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments

  2. Achieving emissions reduction through oil sands cogeneration in Alberta’s deregulated electricity market

    International Nuclear Information System (INIS)

    Ouellette, A.; Rowe, A.; Sopinka, A.; Wild, P.

    2014-01-01

    The province of Alberta faces the challenge of balancing its commitment to reduce CO 2 emissions and the growth of its energy-intensive oil sands industry. Currently, these operations rely on the Alberta electricity system and on-site generation to satisfy their steam and electricity requirements. Most of the on-site generation units produce steam and electricity through the process of cogeneration. It is unclear to what extent new and existing operations will continue to develop cogeneration units or rely on electricity from the Alberta grid to meet their energy requirements in the near future. This study explores the potential for reductions in fuel usage and CO 2 emissions by increasing the penetration of oil sands cogeneration in the provincial generation mixture. EnergyPLAN is used to perform scenario analyses on Alberta’s electricity system in 2030 with a focus on transmission conditions to the oil sands region. The results show that up to 15–24% of CO 2 reductions prescribed by the 2008 Alberta Climate Strategy are possible. Furthermore, the policy implications of these scenarios within a deregulated market are discussed. - Highlights: • High levels of cogeneration in the oil sands significantly reduce the total fuel usage and CO 2 emissions for the province. • Beyond a certain threshold, the emissions reduction intensity per MW of cogeneration installed is reduced. • The cost difference between scenarios is not significant. • Policy which gives an advantage to a particular technology goes against the ideology of a deregulated market. • Alberta will need significant improvements to its transmission system in order for oil sands cogeneration to persist

  3. Ethoxyresorufin-O-deethylase (EROD) induction in rainbow trout exposed to diluted oil sand wastewater

    International Nuclear Information System (INIS)

    Verbeek, A.; Mackay, W.; Birkholz, D.

    1995-01-01

    Toxic industrial wastewaters, such as those from oil sands extraction, must be assessed for their potential sublethal effects before they can be safely disposed in the environment. The induction of ethoxyresorufin-O-deethylase activity was assessed as a potential bioindicator of sublethal stress in rainbow trout exposed to sublethal concentrations of oil sands tailings water. The mixed-function oxygenase system in rainbow trout responded rapidly following a definable concentration-response relationship; however, it proved to be a relatively insensitive indicator of sublethal exposure to oil sands tailings water. Increased activity and maximal induction, as a result of exposure to 0.3 and 0.6 times the LC 50 (Toxic Units), occurred rapidly within 24 hours of exposure. The linearity of the relationship between the concentration of oil sands tailings pond water and ethoxyresorufin-O-deethylase activity, expressed by the following regression equation, In EROD = 3.68 (conc.) + 3.20, had an r 2 value of 0.593. Maximal induction required 0.4--0.8 Toxic Units. The absolute level of maximal induction was only one-fifth to one-sixth of the potential induction as found in response to the positive control, 0.5 mg/kg β-naphthoflavone (i.p.). The authors also present data that suggests that the different levels of induction observed in trout exposed to tailings pond water vs those injected with 0.5 mg/kg β-naphthoflavone (i.p.) may be indicative of two different P450 isoforms, the CYP4Al isoform responding to the organic acidic surfactants in oil sands tailings pond water and the CYP1A1 isoform, the isoform generally associated with most xenobiotic transformation in fish, responding to β-naphthoflavone

  4. Co-occurrence of methanogenesis and N{sub 2} fixation in oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Collins, C.E. Victoria [Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7 (Canada); Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 (Canada); Siddique, Tariq, E-mail: tariq.siddique@ualberta.ca [Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7 (Canada)

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N{sub 2} fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N{sub 2} headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH{sub 4}) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and {sup 15}N{sub 2} incorporation in all N-deficient cultures (with or without PAM) suggested active N{sub 2} fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N{sub 2}-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. - Highlights: • Methanogenesis in oil sands tailings can occur under nitrogen depleted conditions. • {sup 15}N{sub 2} isotopic analysis reveals that indigenous microbes can fix N{sub 2} for microbial metabolism and methanogenesis. • 16S rRNA gene analysis suggests that members of Hyphomicrobiaceae and Clostridium may be involved in N{sub 2} fixation. • This is the first report that describes co-occurrence of methanogenesis and nitrogen fixation in oil sands tailings.

  5. On the origin of calcite-cemented sandstones in the clearwater formation oil-sands, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Colquhoun, I.M.

    1999-01-01

    This thesis examined the formation of calcite-cemented sandstones in the Clearwater Formation within the Cold Lake and southern Primrose areas of the Alberta oil sands. Three stages of diagenesis have been recognized, both in the calcite-cemented sandstones and reservoir sands. Diagenesis of the Clearwater Formation in the Cold Lake and southern Primrose areas ended once the reservoir filled with hydrocarbons, but in the Cold Lake area, diagenesis of water-saturated sands likely continued after hydrocarbon emplacement. The reservoir sands in the formation contain a diverse clay mineral assemblage. In general, 0.7 nm clays dominate the diagenetic clay mineralogy of the Clearwater sands. Reservoir sands that contain large amounts of detrital clays and early diagenetic, grain-coating chlorite/smectite have significantly reduced bitumen-saturation. The presence of detrital and diagenetic smectitic clays complicates the removal of bitumen from the Clearwater formation using cyclic steam stimulation techniques because they swell during steam stimulation and reduce porosity and permeability of reservoir sands. Reservoir sands that contain kaolinite, feldspar and calcite react to form smectitic clays, which swell upon cyclic steam stimulation and further reduce porosity and permeability of reservoir sands. However, in the Cold Lake and Primrose areas, the dominant clay mineral is berthierine, which is associated with high calcite, which help to preserve porosity, permeability and bitumen saturation. The porous nature of bitumen-saturated, calcite-cemented sandstones that are laterally extensive could possibly provide a preferential path for steam to initiate calcite dissolution and produce significant concentrations of dissolved carbon dioxide in injected fluids. It was noted that this may then precipitate as carbonate scale within the reservoir and could cause formation damage or affect production equipment. 207 refs., 9 tabs., 58 figs., 3 appendices.

  6. Nerves of steel: Canadians devised formula for international oil ventures behind enemy lines in the Cold War

    International Nuclear Information System (INIS)

    Jaremko, G.

    2002-01-01

    The Canadian formula for international success in oil, natural gas and associated services and equipment is described as a blend of stamina in extreme natural environments, an open mind, a sharp eye for technical opportunity, technical creativity, a sharp eye for fitting into foreign communities, and willingness to chart an independent course through global political conflict. By way of background, little known early western ventures into the then-touchiest international arena, the Soviet Union, are described. >From these early ventures in the 1970s resulted some pioneering ideas which, with Canadian refinements, became the cornerstones of today's oilfield technology: mud motors to drive bits with speed and precision, and SAGD or steam-assisted gravity drainage to tap the oil sands. It is well to remember that the industrial intelligence that gave us these fundamental tools was gathered at a time when it was common practice to disparage Russian industry for its shortcomings and inefficiency. Other examples cited are Nexen Inc.,'s successful exploitation of the Masila Block which has been producing an average of 118,300 barrels per day since 1993, which yielded $636 million in corporate cash flow in 2001. Nexen's 'Yemenization' program achieved 65 per cent employment of local hires and set an 80 per cent target for 2009, with scholarships and technology transfer plans serving the goal. This example of attention to community benefits such as employment, civic and health services, goes far towards making up for the Canadian drawback of small size by global industry standards. The independent streak in Canadian international oil and gas enterprise also continues to show most clearly at Talisman Energy, with its globally controversial role in Sudan. Despite continuous wrangling with missionary groups and advocates of U.S. sanctions against Sudan, Talisman Energy was able to persuade the government to make public the government's share in proceeds from the oil

  7. Nerves of steel: Canadians devised formula for international oil ventures behind enemy lines in the Cold War

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, G.

    2002-06-03

    The Canadian formula for international success in oil, natural gas and associated services and equipment is described as a blend of stamina in extreme natural environments, an open mind, a sharp eye for technical opportunity, technical creativity, a sharp eye for fitting into foreign communities, and willingness to chart an independent course through global political conflict. By way of background, little known early western ventures into the then-touchiest international arena, the Soviet Union, are described. >From these early ventures in the 1970s resulted some pioneering ideas which, with Canadian refinements, became the cornerstones of today's oilfield technology: mud motors to drive bits with speed and precision, and SAGD or steam-assisted gravity drainage to tap the oil sands. It is well to remember that the industrial intelligence that gave us these fundamental tools was gathered at a time when it was common practice to disparage Russian industry for its shortcomings and inefficiency. Other examples cited are Nexen Inc.,'s successful exploitation of the Masila Block which has been producing an average of 118,300 barrels per day since 1993, which yielded $636 million in corporate cash flow in 2001. Nexen's 'Yemenization' program achieved 65 per cent employment of local hires and set an 80 per cent target for 2009, with scholarships and technology transfer plans serving the goal. This example of attention to community benefits such as employment, civic and health services, goes far towards making up for the Canadian drawback of small size by global industry standards. The independent streak in Canadian international oil and gas enterprise also continues to show most clearly at Talisman Energy, with its globally controversial role in Sudan. Despite continuous wrangling with missionary groups and advocates of U.S. sanctions against Sudan, Talisman Energy was able to persuade the government to make public the government's share in

  8. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone

    Science.gov (United States)

    Dalyander, P. Soupy; Long, Joesph W.; Plant, Nathaniel G.; Thompson, David M.

    2014-01-01

    Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3 years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these “surface residual balls” (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results.

  9. Institutionalizing environmental due diligence as part of the organization's culture: The Suncor Oil Sands Group experience

    International Nuclear Information System (INIS)

    Allen, R.; Klym, D.

    1992-01-01

    The Suncor Oil Sands Group produces ca 22 million bbl/y of synthetic crude oil from oil sands in northern Alberta. Initiatives taken by the Group to install environmental due diligence as an integral part of Suncor culture are reviewed. Environmental due diligence means taking all reasonable care to safeguard the environment. To practice environmental due diligence, the organization and its members must have an environmental consciousness that can be observed, measured, and monitored through daily practices. In the period from startup of the oil sands plant in 1967 to the mid-1970s, Suncor culture could be described as research oriented, oriented toward examination of the viability of extracting oil from the oil sands and the development of new extraction processes. Management then moved toward a more production-based culture, in which environmental issues were sometimes perceived to be in conflict with production goals. External factors toward the end of the 1980s created a culture shift to an integration of production culture with social entities including environmental consciousness. A corporate push toward a new environmental culture was first concretized when the management's Health and Safety Policy was changed in 1990 to the Health, Safety and Environment Policy. A new Environmental Diligence Program was implemented in three phases, including planning, development of a comprehensive environmental management system, and implementation. Installation of the Program in the first phase is described, focusing on employee and management training, and results of the installation process are presented. Modifications of Suncor's loss control management program to integrate with the environmental diligence program are also noted. 2 refs

  10. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids.

    Science.gov (United States)

    Nikolopoulou, M; Pasadakis, N; Norf, H; Kalogerakis, N

    2013-12-15

    Mediterranean coastal regions are particularly exposed to oil pollution due to extensive industrialization, urbanization and transport of crude and refined oil to and from refineries. Bioremediation of contaminated beach sand through landfarming is both simple and cost-effective to implement compared to other treatment technologies. The purpose of the present study was to investigate the effect of alternative nutrients on biodegradation of crude oil contaminated beach sand in an effort to reduce the time required for bioremediation employing only indigenous hydrocarbon degraders. A natural sandy soil was collected from Agios Onoufrios beach (Chania, Greece) and was contaminated with weathered crude oil. The indigenous microbial population in the contaminated sand was tested alone (control treatment) or in combination with inorganic nutrients (KNO3 and K2HPO4) to investigate their effects on oil biodegradation rates. In addition, the ability of biosurfactants (rhamnolipids), in the presence of organic nutrients (uric acid and lecithin), to further stimulate biodegradation was investigated in laboratory microcosms over a 45-day period. Biodegradation was tracked by GC/MS analysis of aliphatic and polycyclic aromatic hydrocarbons components and the measured concentrations were corrected for abiotic removal by hopane normalizations. It was found that the saturated fraction of the residual oil is degraded more extensively than the aromatic fraction and the bacterial growth after an incubation period of approximately 3 weeks was much greater from the bacterial growth in the control. The results show that the treatments with inorganic or organic nutrients are equally effective over almost 30 days where C12-C35n-alkanes were degraded more than 97% and polyaromatic hydrocarbons with two or three rings were degraded more than 95% within 45 days. The results clearly show that the addition of nutrients to contaminated beach sand significantly enhanced the activity of

  11. Sea sand disruption method (SSDM) as a valuable tool for isolating essential oil components from conifers.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B

    2011-11-01

    Essential oils are one of nature's most precious gifts with surprisingly potent and outstanding properties. Coniferous oils, for instance, are nowadays being used extensively to treat or prevent many types of infections, modify immune responses, soothe inflammations, stabilize moods, and to help ease all forms of non-acute pain. Given the broad spectrum of usage of coniferous essential oils, a fast, safe, simple, and efficient sample-preparation method is needed in the estimation procedure of essential oil components in fresh plant material. Generally, the time- and energy-consuming steam distillation (SD) is applied for this purpose. This paper will compare SD, pressurized liquid extraction (PLE), matrix solid-phase dispersion (MSPD), and the sea sand disruption method (SSDM) as isolation techniques to obtain aroma components from Scots pine (Pinus sylvestris), spruce (Picea abies), and Douglas fir (Pseudotsuga menziesii). According to the obtained data, SSDM is the most efficient sample preparation method in determining the essential oil composition of conifers. Moreover, SSDM requires small organic solvent amounts and a short extraction time, which makes it an advantageous alternative procedure for the routine analysis of coniferous oils. The superiority of SSDM over MSPD efficiency is ascertained, as there are no chemical interactions between the plant cell components and the sand. This fact confirms the reliability and efficacy of SSDM for the analysis of volatile oil components. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Changes in algal stable isotopes following nutrient and peat amendments in oil sands aquatic reclamation

    International Nuclear Information System (INIS)

    Farwell, A.; Chen, H.; Boutsivongskad, M.; Dixon, D.

    2010-01-01

    The processing of oil sands in Alberta generates large volumes of processed material that must be reclaimed. Processed water and solids (PW/S) contain higher levels of naturally occurring compounds such as naphthenic acids (NAs) and polycyclic aromatic compounds (PACs). Organic carbon and nitrogen are some of the constituents in PW/S that may provide nutrient sources for aquatic reclamation sites as they develop into viable ecosystems. This study was conducted to assess the modifying factors that may affect the stable carbon and nitrogen isotope values of primary production in oil sands aquatic reclamation. Both field-based microcosm studies and laboratory studies were used to evaluate the changes in the growth and stable isotope values of phytoplankton, periphyton and/or filamentous algae along gradients of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrogen and phosphorus. Various types of reclamation substrates were used in the study, including various combinations of sand, mature fine tailings, peat and process water. Results showed different levels of growth depending on both the water and substrate type. Typically, periphyton from oil sands reclamation sites were more enriched in 15N than the reference site. Periphyton from one site known as the MP site was more enriched in 13C than periphyton from another site know as the Shallow Wetland South Ditch (SWSD). However, periphyton in the demonstration pond (DP) was more 13C depleted than the reference site. Findings from this study indicate that carbon isotopes are influenced by other factors, such as nutrients.

  13. Proceedings of the Infonex oil sands 2005 conference : an industry summit on emerging trends in exploration, production and resource management

    International Nuclear Information System (INIS)

    2005-01-01

    This conference provided a forum to discuss the opportunities and challenges facing the oil sands industry with particular reference to resource characterization and supply and market outlooks to 2015. The driving forces behind oil sands development were also identified. The conference featured 12 presentations that dealt with a range of issues including resource management; operations management; price and cost sharing; emerging transmission pipeline challenges and opportunities; the fiscal regime for oil sands; minimizing the environmental impact of oil sands development; cumulative effects management and the regulatory approval process. An overview of a joint venture by Alberta Environment Northern Region and the Alberta Geological Survey to update existing maps of buried bedrock and drift channels in the oil sands mining and in-situ recoverable areas was included along with an overview of economic and environmental benefits of gasification. A new technology known as multiphase superfine atomized residue (MSAR) as an alternate fuel in oil sands production was discussed along with the issue of bridging the gap between the oil sand industry and First Nations partners. Three of the 12 presentations were catalogued separately for inclusion in this database. tabs., figs

  14. Assessing the effects of oil sands related ozone precursor emissions on ambient ozone levels in the Alberta oil sands region, Canada

    Science.gov (United States)

    Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun

    2017-11-01

    A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.

  15. Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete

    Science.gov (United States)

    Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.

    2017-11-01

    Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.

  16. Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    OpenAIRE

    Stela Jokić; B. Nagy; K. Aladić; B. Simándi

    2013-01-01

    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was det...

  17. Heavy crude and tar sands - the long-term oil reserve

    Energy Technology Data Exchange (ETDEWEB)

    Barnea, J

    1984-10-01

    It appears that heavy crude and tar sands occur in many sedimentary areas, and estimates of known world-wide quantities exceed those known for conventional light crude resources. Although there are not precise figures available, production could be as high as three million barrels per day, with Venezuela, the US, and Canada the largest producers. There are different scales to measure the costs of production because of differences in the quality of various types of heavy crude and tar sands. Economic development of these resources should banish fears of oil scarcity in the foreseeable future. A center for information exchange through international meetings and publications is under development.

  18. Canadian oil spill response capability - an investigation of the proposed fee regime

    International Nuclear Information System (INIS)

    Gold, E.; Gratwick, J.; Yee, P.

    1996-08-01

    Canada's oil spill response capability and its fee structure was examined and assessed. The present regime consists of five industry-owned oil spill response organizations who provide response teams throughout Canadian waters, except the Arctic. These organizations are fully adequate to meet the standards set by the Canadian Coast Guard. However, the Canadian Coast Guard withdrew from active control of the fee regime, leaving it to each response team to determine its own fee structure. The expectation was that the market would be capable of controlling the fees to be charged. This did not happen, and the investigative panel came to the conclusion that the present regime was not workable. In view of the situation the Panel concluded that ensuring oil spill response capability in Canada must always be the sole responsibility of the Canadian Government. Eleven recommendations were detailed in this final report. The most important recommendation was that the Canadian Coast Guard should re-establish its principal role in the oil spill response area. It was also suggested that there should be a single, national fee structure applying to the whole country except the Arctic, and that the fee should be collected by an independent national agency

  19. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Luh [Univ. of Utah, Salt Lake City, UT (United States); Miller, Jan [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (Οm) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  20. An assessment of ground-level ozone concentrations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1997-01-01

    Syncrude and Suncor have plans to develop new oil sands leases and to increase crude oil and bitumen recovery in the Athabasca oil sands region. A first air quality assessment was prepared as part of the Alberta Energy and Utilities Board application, in order to evaluate the emissions and potential impacts associated with the development. The Pembina Institute raised several issues with respect to potential future changes in ambient ozone levels as a result of the Aurora Mine operations. In response to these concerns, another more rigorous assessment was conducted to predict future ground-level ozone concentrations in the Fort McMurray area. This report includes: (1) ambient air quality guidelines for ozone, (2) emissions inventory for dispersion modelling, (3) dispersion modelling methodology, and (4) predicted ambient ozone concentrations. Ground level ozone (O 3 ) concentrations result from anthropogenically produced ozone, and from naturally occurring ozone. Ozone is not directly emitted to the atmosphere from industrial sources, but is formed as a result of chemical reactions between NO x and VOCs, which are emitted from industrial sources within the Athabasca oil sands region. NO x and VOC emissions associated with the Aurora Mine operation are predicted to increase hourly average ozone concentrations in the Fort McMurray area by only 0.001 ppm. 17 refs., 18 tabs., 5 figs

  1. Oil sands naphthenic acids: a review of properties, measurement, and treatment.

    Science.gov (United States)

    Brown, Lisa D; Ulrich, Ania C

    2015-05-01

    The Alberta oil sands contain one of the world's largest reserves of oil - over 169 billion barrels of bitumen are economically recoverable with current extraction technologies. Surface mining and subsequent hot water extraction of bitumen from the ore generates about nine cubic meters of raw tailings per cubic meter of oil. Oil sands facilities are required to operate under a policy of zero water discharge, resulting in ponds containing more than one billion cubic meters of tailings, a mixture of sand, fines and process-affected water. Process-affected water contains numerous organic compounds, including naphthenic acids (NAs), which have been identified as the primary source of acute toxicity of process-affected water. Developments in analytical techniques, aerobic biodegradability, and treatment via chemical oxidation (ozone) of NAs are reviewed. The field continues to be challenged by the lack of a cost-effective, accurate analytical technique for NAs or an understanding of all the organic constituents in process-affected water that may be contributing to observed toxicity and thus requiring treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Regional sustainable development strategy for the Athabasca Oil Sands area

    International Nuclear Information System (INIS)

    1999-07-01

    The Regional Sustainable Development Strategy (RSDS) provides a framework for balancing development with environmental protection. This provisional direction for sustainable resource management was confirmed in a March 1999 policy document. It is as follows: the use of Alberta's natural resources shall be sustainable, the management of Alberta's natural resources shall support and promote the Alberta economy, Alberta's environment shall be protected, resources shall be managed on an integrated basis, and Alberta's natural resources shall be managed for multiple benefits. The focus of the RSDS is to address the need to balance resource development and environmental protection. The report covers: an overview, the Regional Sustainable Development Strategy and the RSDS management model. Blueprints for action concerning the impacts of oilsands development are provided under 14 themes, including 1) cumulative impacts on wildlife, fish habitat and populations, surface and groundwater quality and 2) human health effects of air emissions and effects of air emissions on wildlife and vegetation. The RSDS will apply provincial and federal policy, legislation, standards and programs in a regional context, including principles in the Canadian Council of Ministers of the Environment (CCME) Harmonization Accord

  3. Proceedings of the 2002 Petroleum Society of CIM/SPE/CHOA International Thermal Operations and Heavy Oil Symposium, International Conference on Horizontal Well Technology, and Canadian Heavy Oil Association Business Conference : Resources 2 Reserves 2 Results. CD ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This three day conference combined the Petroleum Society's International Horizontal Well and Technology Conference, the Society of Petroleum Engineer's (SPE) International Thermal Operations and Heavy Oil Symposium, and the Canadian Heavy Oil Association's (CHOA) Annual Business Meeting. The 87 presentations covered all aspects of heavy oil, thermal, and horizontal well technology from geosciences and drilling to economics and environment. The themes included financing, turning projects into results, eliminating the downstream barriers to oil sand development in North America and the world, and emerging technologies for horizontal or heavy oil applications. The conference included the following 20 sessions: (1) thermal operations/engineering, (2) well testing/productivity of horizontal wells, (3) heavy oil operations, (4) environmental aspects of heavy oil projects, (5) upgrading/pipelines, (6) economics and project appraisal, (7) simulation studies of thermal projects, (8) multilaterals, (9) horizontal wells in conventional reservoirs, (10) cold production of heavy oil, (11) horizontal drilling in thermal projects, (12) simulation studies of horizontal wells, (13) horizontal drilling technology, (14) thermal field studies and horizontal wells in heavy oil, (15) completion/production technology of horizontal and thermal wells, (16) physics and PVT of heavy oil recovery processes, (17) reservoir characterization/geosciences, (18) horizontal injectors/produced water technology, (19) emerging technologies, and (20) reservoir geomechanics/fracturing. Tutorials were also organized to provide opportunity to review areas that have undergone major changes. A total of 73 papers were indexed separately for inclusion in the database. refs., tabs., figs.

  4. The tar sands of the USA : with permits now in hand, a Calgary company is a cash injection away from producing oil from America's first oilsands mine

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2010-06-15

    A Canadian company has recently received approval to develop large oil sands mining operations in Utah. Earth Energy Resources is now raising the finances required to commercialize its operations in the state. Utah's oil sands reserves are currently estimated at between 20 to 32 billion barrels. However, the impacts of oil sands operations are of concern to some environmental groups, who worry that Utah will become a duplicate of Alberta's Athabasca region. The planned project is a 2000 barrel-per-day pilot project. Regulators in Utah have received negative responses from the public after advertising the potential project in local newspapers, and demonstrations have been held in the state's capital. Oil sands are already being developed at 2 installations in Utah, with the bitumen currently being sold as asphalt products. The state is also home to significant oil shale reserves. Operators in the region plan to design compact, well-contained mines in order to maintain transportability. 3 figs.

  5. Loadings of polynuclear aromatic compounds and metals to the Athabasca River watershed by oil sands mining and processing

    International Nuclear Information System (INIS)

    Hodson, P.V.

    2010-01-01

    The contribution of oil sands operations to pollution in the Athabasca River has not yet been determined. Wastes from oil sands processes include recycled water, sand, silt, clay, bitumen, and polycyclic aromatic compounds (PAC) and metals. Upgrading processes can also release significant quantities of PAC and heavy metals. This paper discussed a study in which PAC and metals in the snow pack and river water of the Athabasca watershed were assessed. The study showed that the oil sands industry is a significant source of contamination. The equivalent of 600 T of bitumen was observed at sites within 50 km of oil sands upgrading facilities. The strongest contamination signals occurred during the summer months, which suggested that the surface run-off of contaminated water was related to recent oil sands developments. Samples taken from tributaries in watersheds with little or no development indicated that increased concentrations of oil sands related contaminants were not caused by natural erosion. The contaminants may contribute to higher levels of mercury (Hg) and cadmium (Cd) in the flesh of fish and wildlife and increase toxicity to the embryos of spring-spawning fish.

  6. Sedimentological and Scanning Electron Miscroscopic Descriptions of Afowo Oil Sand Deposits, South Western Nigeria

    Directory of Open Access Journals (Sweden)

    Akinmosin A

    2017-12-01

    Full Text Available Sedimentological and scanning electron microscopic analyses of some shallow reservoir tar sand samples in parts of Southwestern Nigeria were carried out with the aim of characterizing the reservoir properties in relation to bitumen saturation and recovery efficiency. The production of impregnated tar from the sands requires the reservoir to be of good quality. A total of thirty samples were collected at different localities within the tar sand belt (ten out of these samples were selected for various reservoir quality analyses based on their textural homogeneity. The result of particle size distribution study showed that bulk of the sands is medium – coarse grained and moderately sorted. The grain morphologies are of low to high sphericity with shapes generally sub-angular to sub-rounded, implying that the sands have undergone a fairly long transportation history with depositional energy having a moderate to high velocity. The quartz content was made up of about 96% of the total mineralogical components; the sediments of the Afowo Formation can be described to be mineralogically and texturally stable. The result of the scanning electron microscopy (SEM analysis revealed that the oil sands contained minerals which had been precipitated and occurred as pore filling cement; these minerals include sheet kaolinite, block kaolinite, vermiform kaolinite, pyrite crystals and quartz. The SEM images also showed micro-pores ranging from 0.057µm to 0.446µm and fractures. The study showed that the clay minerals contained in the Afowo reservoir rocks were mainly kaolinite. Kaoline unlike some other clays (e.g Montimorillonite does not swell with water, hence it is not expected to have any negative effects on the reservoir quality, especially during enhanced oil recovery operations.

  7. Enhanced Gravitational Drainage of Crude Oil Through Alabama Beach Sand Caused by the Dispersant Corexit 9500A

    Science.gov (United States)

    Steffy, D. A.; Nichols, A.; Hobbs, K.

    2017-12-01

    Oil spill material released by the 2010 Deepwater Horizon accident contaminated a majority of the 60 miles of Alabama coastline. In response to the oil spill, BP sprayed a dispersant, Corexit 9500A, as an initial remediation effort. An unforeseen impact of the saltwater-dispersant mixture includes the mobilization of oil-spilled material into the underlying beach sand. This study investigated the effect of the dispersant to promote gravitational drainage by measuring the physical characteristics of the sand, saltwater, crude oil, and the dispersant solution. The saltwater-dispersant mixture promoted the downward movement of oil mass 20 times greater extent than just saltwater. These tests are meant to simulate spill material on the beach being exposed to a low-energy, 1-meter mixed tide occurring along the Alabama coastline. A separate test simulated oilwet sand exposed to saltwater and a saltwater-dispersant mixture. The oil-wet sand impeded the vertical movement of saltwater, but allowed a saltwater-dispersant solution to mobilize the oil to migrate downward. The mobilization of oil in this three phase system of saltwater, oil, and air is controlled by: the pressure-saturation profile of the sand; interfacial tension with saltwater; and its surface tension with air.

  8. Conservation and reclamation at Alberta's mineable oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, B.; Richens, T. [Alberta Environment, Edmonton, AB (Canada)

    2010-07-01

    The regulatory foundation for oil sands in this region is established by the Energy Resources Conservation Board, Environmental Protection and Enhancement Act (EPEA), as well as the Water Act. This presentation discussed the regulatory foundation for conservation and reclamation in the mineable oil sands region. EPEA requirements and conservation objectives were identified. EPEA conservation and reclamation requirements stipulate that an operator must conserve and reclaim and obtain a reclamation certificate. EPEA approvals that were presented compared prescriptive standards versus meeting outcomes at certification. Operational and management challenges as well as the role of research networks and multi-stakeholder organizations were also addressed. Challenge facing the industry include progressive reclamation; tailings management and process-affected water; reclamation certification; integrated landscapes; soil handling and revegetation and monitoring and research. The presentation demonstrated that reclamation begins with mine planning and ends with certification. figs.

  9. An approach to managing cumulative effects to groundwater resources in the Alberta oil sands

    International Nuclear Information System (INIS)

    Fennell, J.; Forrest, Francine; Klebek, Margaret

    2011-01-01

    In the Athabasca region of Northern Alberta, oil sands activity has raised many concerns over how mining and extracting processes might affect groundwater quality and quantity. The groundwater management framework was developed by Alberta Environment to address these concerns by identifying and managing the potential environmental effects of oil sands activity on groundwater in a science-based manner. This paper develops the framework using risk identification and performance monitoring. The decision-making approach was conducted using decision support tools such as modeling, monitoring and management. Results showed the complexity and variability of groundwater conditions in the Athabasca region and pointed out that knowledge in this area is still developing. This paper presented how the groundwater management framework was developed and pointed out that it will have to be updated as new information arrives.

  10. The development of today's mineable oil sands projects, the key factors influencing economics

    International Nuclear Information System (INIS)

    Lynn, J.R.

    1991-01-01

    Many factors influence the perception of economic performance for developing projects. Some of these factors can be controlled by the developer, while some are outside the developer's sphere of influence. Technology selection, management systems, stakeholder involvement, environmental responsiveness and risk management are areas that may be influenced, however interest rates, product prices and currency exchange all have a measurable effect on project economics and are beyond a developer's control. Economic considerations for evaluating mineable oil sand development projects are outlined, focussing on the key factors unique to such developments in general and to the OSLO project in particular. The OSLO project is a proposed $5 billion energy development that entails constructing an open pit oil sands mine and a bitumen extraction facility north of Fort McMurray, Alberta, coupled with a bitumen upgrader in the Redwater area. 7 figs

  11. Carbon dynamics, food web structure and reclamation strategies in Athabasca oil sands wetlands (CRFAW)

    International Nuclear Information System (INIS)

    Ciborowski, J.; Dixon, G.; Foote, L.; Liber, K.; Smits, J.

    2010-01-01

    This abstract provided details of the Carbon Dynamics, Food Web Structure and Reclamation Strategies in Athabasca Oil Sands Wetlands (CFRAW) program, a collaboration between oil sands industry partners and university laboratories. CFRAW researchers are investigating the effects of mine tailings and process waters on the development, health, and function of wetland communities in post-mining landscapes. The aim of the program is to accurately predict how quickly the reclaimed wetlands will approach conditions seen in reference wetland systems. The program is also examining the effects of hydrocarbons as a surrogate source of carbon after they are metabolized by bacteria. The biological uptake, pathways, and movement through the food web of materials used by the biota in constructed wetlands are also being studied. Flux estimates will be used to determine if wetlands amended with peat will maintain their productivity. A conceptual model of carbon pathways and budgets is also being developed.

  12. Presentations of the CONRAD Research Symposium : oil sands water usage workshop

    International Nuclear Information System (INIS)

    2004-01-01

    This symposium provided a forum to exchange ideas regarding water use by the oil sands industry in Canada. The topics of discussion addressed timely issues such as corrosion control in pipelines, cumulative discharge modelling in the oil sands area, waste management schemes, the effects of potential limits on water withdrawal for thermal recovery operations and plant operations, the feasibility of geological sequestration of salts, and the impact of process-affected water on bitumen recovery. Other topics of discussion included tailings ponds management, deoxygenation of water, nanofiltration for water management, water quality for wetlands, water reuse, and water supply security. The conference featured 25 presentations, of which 17 have been indexed separately for inclusion in this database. tabs., figs

  13. Planning for, and measuring, the business value of technology projects in the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, M. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Burgess, A. [Telus Energy Sector Organization, Calgary, AB (Canada)

    2007-07-01

    This presentation discussed new communications technology options developed for oil sands industry operators. Technology options included broadband access for data, video and voice requirements, as well as new options for video, audio, and web conferencing. Recent technology options for inter-camp communications were presented, as well as new software developments for distance education, video surveillance, and data security. Various entertainment technologies for oil sands camp employees included in-room telephones, internet and gaming access, radio, television, and family web-cams. New electronic permitting equipment was described, and details of security and verification cards and tickets were provided. The economic benefits and social advantages of adopting the technologies were discussed. A research project and assessment tool designed to predict and measure the business value of information technology (IT) and communications technologies and projects was outlined. A case study of the Schlumberger heavy equipment program was used to demonstrate the assessment tool. refs., tabs., figs.

  14. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS).

    OpenAIRE

    Mareike Noah; Andrea Vieth-Hillebrand; Heinz Wilkes

    2012-01-01

    The Athabasca region of northern Alberta, Canada, is home to deposits of oil sands containing vast amounts (~ 173 billion barrels) of heavily biodegraded petroleum. Oil sands are recovered by surface mining or by in situ steam injection. The extraction of bitumen from oil sands by caustic hot water processing results in large volumes of fluid tailings, which are stored in on-site settling basins. There the tailings undergo a compaction and dewatering process, producing a slowly densifying sus...

  15. Carbon neutral 2020 : a leadership opportunity in Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, M.; Raynolds, M.; Wong, R.; Holmes, R. (ed.)

    2006-10-15

    Canada's greenhouse gas (GHG) emissions are projected to be 32 per cent higher in 2010 than they were in 1990. The development of Canada's oil sands is the single largest contributor to GHG emissions growth in Canada. This report estimates the cost for an oil sands operation to become carbon neutral by 2020. In addition to energy efficiency or fuel switching measures which should be considered on a continual basis, the 2 main options for achieving carbon neutrality are carbon capture and storage (CCS) and GHG offsets. This report considered 3 scenarios: (1) maximum CCS in which all point sources are captured and stored, (2) moderate CCS in which only carbon dioxide from hydrogen production is captured and stored, and (3) maximum offsets in which CCS is not used and all emissions are offset. The results for the 3 scenarios were presented under operating situations that ranged from 100 per cent mining, 100 per cent in-situ, and 55 per cent mining with 45 per cent in-situ operations. The estimated costs per tonne of carbon dioxide equivalent using both CCS and offsets ranged from US $22 to US $66. The costs per barrel for achieving neutrality could therefore range from US $2-14, with the higher costs assigned to the CCS options. It was noted that the cost of becoming carbon neutral will continue to decline as oil sands companies generate greater profits per barrel. It was concluded that carbon neutrality is economically feasibly by 2020, given the current high profit margins for oil sands companies. In addition, the cost of reducing carbon is not much higher per barrel than the cost of removing lead or sulphur from fuel. 67 refs., 13 tabs., 10 figs.

  16. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    Science.gov (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  17. Expectations and drivers of future greenhouse gas emissions from Canada's oil sands: An expert elicitation

    International Nuclear Information System (INIS)

    McKellar, Jennifer M.; Sleep, Sylvia; Bergerson, Joule A.; MacLean, Heather L.

    2017-01-01

    The greenhouse gas (GHG) emissions intensity of oil sands operations has declined over time but has not offset absolute emissions growth due to rapidly increasing production. Policy making, decisions about research and development, and stakeholder discourse should be informed by an assessment of future emissions intensity trends, however informed projections are not easily generated. This study investigates expected trends in oil sands GHG emissions using expert elicitation. Thirteen experts participated in a survey, providing quantitative estimates of expected GHG emissions intensity changes and qualitative identifications of drivers. Experts generally agree that emissions intensity reductions are expected at commercially operating projects by 2033, with the greatest reductions expected through the use of technology in the in situ area of oil sands activity (40% mean reduction at multiple projects, averaged across experts). Incremental process changes are expected to contribute less to reducing GHG emissions intensity, however their potentially lower risk and cost may result in larger cumulative reductions. Both technology availability and more stringent GHG mitigation policies are required to realize these emissions intensity reductions. This paper demonstrates a method to increase rigour in emissions forecasting activities and the results can inform policy making, research and development and modelling and forecasting studies. - Highlights: • Expert elicitation used to investigate expected trends in oil sands GHG emissions. • Overall, emissions intensity reductions are expected at commercial projects by 2033. • Reductions are expected due to both technology changes and process improvements. • Technology availability and more stringent GHG policies are needed for reductions. • Method used increases rigour in emissions forecasting, and results inform policy.

  18. Thermochemical method for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Gorceix, Ouro Preto, MG (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, based on NGS (Nitrogen Generating System) technology, was adapted for cleaning contaminated sand and recovering of spilled oil. NGS is a thermochemical method first developed for removal of paraffin deposits in production and export pipelines. The method is based on a strongly exothermic redox chemical reaction between two salts catalyzed in acidic pH. The reaction products are harmless to the environment and consist of nitrogen, sodium chloride, water and heat. By combining simultaneous effects of the treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand. After treatment, removed oil can be securely returned to refining process. The method has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in place right after a contamination event. (author)

  19. Restructuring of oil and gas companies in financial difficulty: the Canadian experience

    International Nuclear Information System (INIS)

    Hudec, A.J.

    1992-01-01

    The relationship, under Canadian law, between oil or gas company in financial difficulty and its various creditors is discussed. In particular, commercial bank lenders and non-defaulting co-venturers in the project are considered. The broad topics covered are: the financing of multi-party resource projects; recent developments in conventional oil and gas production loan facilities; alternative and new approaches to energy loan restructuring; minimizing the lender's environmental risk in realizing against an energy project. (UK)

  20. Where in the World are Canadian Oil and Gas Companies? An Introduction to the Project

    Directory of Open Access Journals (Sweden)

    Niloo Hojjati

    2017-06-01

    Full Text Available In April 2013, The School of Public Policy formally launched the Extractive Resource Governance Program, a platform to harness Canadian and international research and technical expertise to assist resource-rich jurisdictions in establishing sustainable and mutually beneficial policies for governance of the extractive sector. The program delivers applied policy research, technical assistance and executive training programs to countries with emerging or established extractive resources, working in collaboration with governments, regulatory bodies, academia, civil society, and industry. Begun in 2011 as an internal research tool for the development of the Extractive Resource Governance Program, this project was conceived as a means to identify jurisdictions where Canadian companies had ongoing projects and activities around the world. This paper introduces the methodology used to answer the question: Where in the world are Canadian oil and gas companies? To answer this question, firm-level data from publicly traded Canadian companies were collected and analyzed culminating in the development of an online tool for public use. This paper accompanies an interactive website launched by The School’s Extractive Resource Governance Program and describes the data available online as well as in the annual reports released by The school. The website and annual reports allow interested users to geographically locate jurisdictions around the world where publicly traded Canadian oil and gas companies have activities, over time. The website is available at http://www.policyschool.ca/research-teaching/teachingtraining/extractive-resource-governance/ergp-map/. While Canada is a well-recognized oil and gas jurisdiction within its own borders, the extent of activity that Canadian companies undertake in the international arena is less well known. For instance, while Natural Resources Canada collects and publishes regular data on Canadian mining assets and

  1. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  2. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings.

    Science.gov (United States)

    Mohamad Shahimin, Mohd Faidz; Siddique, Tariq

    2017-04-01

    Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C 5 -C 6 ; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL -1 ) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    Science.gov (United States)

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Predicting development of undrained shear strength in soft oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Masala, S. [Klohn Crippen Berger, Calgary, AB (Canada); Matthews, J. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed a method of predicting the development of undrained shear strength in soft oil sands tailings. Phenomenology charts of oil sands tailings ponds were used to present the suspension, density, stresses and hydrostatic behaviour of tailings. Sedimentation and consolidation processes were discussed. The charts demonstrated how the tailings slurry settles and consolidates, releases water and dissipates pore pressures. The slurry then develops intergranular stresses and increases in density. The increases correlate with increased resistance to deformation and decreased compressibility and hydraulic conductivity. A critical state soil mechanics (CSSM) was used to characterize the soft oil sands tailings. Undrained strength was determined using the concept of the undrained strength ratio (USR). The USR was determined using traditional geotechnical investigation methods. Settling of the non-consolidated (NC) soil deposits was simulated using the finite strain consolidation theory. The model was based on the premise that current effective stresses control undrained shear strength in the NC deposits. Case studies were used to demonstrate the predictive framework. tabs, figs.

  5. Development of a bioassay to assess the toxicity of oil sands sediments to pike (Esox lucius)

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, D.; Yuan, H.; Tumber, V.; Parrott, J. [Environment Canada, Ottawa, ON (Canada); Raine, J. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    Pike (Esox lucius) are a commercially sought fish species that inhabit the Athabasca River, which flows through the Athabasca oil sands. The fish are exposed to natural sources of bitumen from the McMurray formation. This study was conducted to design and implement a daily-renewal bioassay to assess the toxicity of oil sands to this fish species and to obtain information regarding the development of pike exposed to bitumen. Eggs were collected and fertilized with milt from spawning wild pike captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish, approximately 15 days post-hatch. For the rest of the experiment, brine shrimp were fed to the walleye embryos every day after hatching. The developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length. The research findings indicated that pike is less sensitive than walleye and fathead minnow to the toxicity of oil sands sediments.

  6. Oil sands mining and reclamation cause massive loss of peatland and stored carbon

    Science.gov (United States)

    Rooney, Rebecca C.; Bayley, Suzanne E.; Schindler, David W.

    2012-01-01

    We quantified the wholesale transformation of the boreal landscape by open-pit oil sands mining in Alberta, Canada to evaluate its effect on carbon storage and sequestration. Contrary to claims made in the media, peatland destroyed by open-pit mining will not be restored. Current plans dictate its replacement with upland forest and tailings storage lakes, amounting to the destruction of over 29,500 ha of peatland habitat. Landscape changes caused by currently approved mines will release between 11.4 and 47.3 million metric tons of stored carbon and will reduce carbon sequestration potential by 5,734–7,241 metric tons C/y. These losses have not previously been quantified, and should be included with the already high estimates of carbon emissions from oil sands mining and bitumen upgrading. A fair evaluation of the costs and benefits of oil sands mining requires a rigorous assessment of impacts on natural capital and ecosystem services. PMID:22411786

  7. A foundation for the future: building an environmental monitoring system for the oil sands

    International Nuclear Information System (INIS)

    Dowdeswell, L.; Dillon, P.; Ghoshal, S.; Miall, A.; Rasmussen, J.; Smol, J.P.

    2010-12-01

    In September, 2010, important concerns regarding the impacts of oil sand industry on the environment in the Lower Athabasca River Basin resulted in the creation of the oil sands advisory panel. This panel was set up to examine and evaluate the existing system for research and monitoring and identify strengths and weaknesses regarding water monitoring in the Lower Athabasca River Basin and connected waterways. In this report, the panel provides important elements to guide the monitoring of water quality and quantity. The panel has identified several organizations or individuals contributing to the research and monitoring of the Athabasca River system but also points out in the document that the research has not yet led to a consensus regarding the impacts of oil sands development on the environment. It has also been observed that no standardized data management system has been put in place to facilitate the access to data for interested parties. Important weaknesses in the existing monitoring system were identified by the panel. The advisory panel recommended the implementation of a credible and transparent, comprehensive and adaptive monitoring program, through a collaborative work between relevant jurisdictions and stakeholders. 50 refs.

  8. Dynamic simulation of cable shovel specific energy in oil sands excavation

    Energy Technology Data Exchange (ETDEWEB)

    Awuah-Offei, K. [Missouri-Rolla Univ., Rolla, MO (United States). School of Materials, Energy and Earth Resources; Frimpong, S. [Missouri-Rolla Univ., Rolla, MO (United States). Dept. of Mining Engineering, Mining and Nuclear Engineering; Askari-Nasab, H. [Alberta Univ., Edmonton, AB (Canada). School of Mining and Petroleum Engineering

    2005-07-01

    Oil sand excavation requires the use cable shovels which constitute one of the major costs in surface mining operations. Random occurrences of shales and limestones within the Athabasca oil sands formation result in varying shovel diggability and stress loading of the boom-crowd-dipper-teeth assembly which reduces digging efficiency. This inefficient use of cable shovels negatively affects the return on capital investment in these otherwise effective machines. In the Athabasca oil sands, varying stress loading has the potential to increase shovel downtime and increase maintenance costs. This paper presented a newly developed cable shovel simulator that uses shovel kinematics and dynamics, dynamic cutting resistance and payload models. It can model the specific energy needed to overcome the resistance to machine motion and material digging. The comprehensive model considers both machine motion and machine-formation interaction forces. It also provides a comprehensive theoretical assessment of shovel performance. The model is useful to mining engineers when examining both the machine operating parameters and material parameters that influence shovel performance. The study showed that bulk density is the most important material property influencing diggability. Operator preferences also influence the specific energy of excavation. 12 refs., 2 tabs., 6 figs.

  9. Cultural keystone species in oil sands reclamation, Fort McKay, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, A.; Straker, J. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2009-12-15

    This presentation discussed a reclamation project conducted in Fort McKay, Alberta that was designed to address some of the social and cultural concerns related to oil sands mining in the region. Conventional reclamation practices in the region have demonstrated a lack of communication and participation from surrounding communities. The project was designed to address future land use plans and to include cultural values in the reclamation process. An integrative approach was used to address community landscapes issues and to explore methods of reclaiming the social and ecological components impacted by oil sands development. Traditional environmental knowledge was also incorporated into the program's design. Cultural keystone species (CKS) were used to provide a culturally relevant compass to guide people engaging in long-term reclamation and land use planning. Cultural keystone species were defined as salient species that significantly shape the cultural identity of a people. Keystone species in the region include the beaver; the moose; the ratroot; and cranberries and blueberries. Challenges to the program included the fact that the scale of oil sands disturbances are so immense that some community recommendations for reclaiming CKS may be impractical. tabs., figs.

  10. Sediment oxygen demand of wetlands in the oil sands region of north-eastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Ciborowski, J.J.; Gardner Costa, J.

    2009-01-01

    Reclaimed land in the Alberta oil sands mining area contains both reference and oil sands process-affected wetlands constructed using varying sediment compositions. The sediments derived from oil sands process materials (OSPM) may alter the biochemical reactions that take place and affect the sediment oxygen demand (SOD), which is a key factor that contributes to oxygen depletion. This presentation reported on a study in which SOD was measured in a suite of constructed wetlands of different ages, with or without OSPM and topsoil. The purpose of the study was to clarify the role of SOD in wetland function and in the reclamation process. Dissolved oxygen loggers were inserted into dome-shaped chambers on the sediment to measure changes in oxygen demand. Complementary measurements of respiration (CO 2 elution) were used to quantify the biological sediment oxygen demand (BSOD) component of SOD. The chemical sediment oxygen demand (CSOD) was then determined by subtraction from SOD. Wetlands reclaimed using OSPM are expected to have a lower BSOD to CSOD ratio than reference wetlands. Residual ammonia in OSPM sediments may react with sulphate and bind phosphorus. This reduces phosphorus bioavailability and may impede submergent macrophyte growth. As such, wetlands affected by CSOD will have fewer submerged macrophytes than BSOD dominant wetlands.

  11. Fish gill responses to pollutants from oil sands mining-associated waters

    International Nuclear Information System (INIS)

    Lee, L.E.J.; Willfang, S.; Lamb, M.P.; Nero, V.; Farwell, A.J.; Dixon, D.G.

    2002-01-01

    The processing of Athabasca Deposit oil sands results in large amounts of liquid wastes associated with oil sand tailings. In addition to containing polycyclic aromatic hydrocarbons (PAHs), these waste waters are high in salinity and naphthenic acids which may be toxic to aquatic biota and their effects must be clarified. This study presents a suite of tests for in-depth and quick analysis of tailings water toxicity and contributes to the assessment of environmental risk. Yellow perch, fathead minnows, and rainbow trout were exposed to reclamation ponds where both in vivo and in vitro evaluation of crude and individual naphthenic acids and salts were conducted to examine their effect on fish gills which are very susceptible to contaminants. The fish exposed to the reclamation ponds showed higher incidence of gill pathological changes than control fish in Mildred Lake, a reservoir lake whose waters are diverted for use in oil sands extraction. Notable gill histopathological changes were observed when fish were exposed in vivo to sulfate/chloride salts and to abietic acid. Changes in membrane integrity, lysosomal activity and general morphology were observed when fished were exposed in vitro to salts, commercial napthenic acids or crude naphthenic extracts from the reclamation ponds

  12. NorthernLights Transmission : bringing competitive cogen energy from the oil sands to west coast markets

    International Nuclear Information System (INIS)

    Hogan, M.J.C.

    2005-01-01

    NorthernLights Transmission is an initiative by TransCanada that proposes 2 major high-voltage direct current (HVDC) transmission lines to bring low cost, fossil fuelled and renewable generation from the Fort McMurray area to growing electricity markets in the Pacific Northwest, Nevada, Arizona and California. This presentation demonstrated why oil sands cogeneration, shipped via NorthernLights Transmission, is a very attractive resource for these markets. It was shown that the best generation resources are tied to natural resources such as coal, wind, oil sands cogeneration and hydro. Both the Pacific Northwest and California markets prefer low carbon dioxide generation. The proposed HVDC transmission lines would maximize the use of existing energy infrastructure corridors and rights-of-way where possible. This paper presented details of the proposed Celilo Project and the Inland Project, and noted that both are attractive from a technical and economic perspective. The transmission line for the Celilo project would originate in Fort McMurray and connect highly efficient cogeneration and other developing forms of generation to growing loads in the Pacific Northwest and northern California. The cogeneration plants will supply steam and electricity to northern Alberta's oil sands developments along with surplus electricity for export. tabs., figs

  13. Profiling oil sands mixtures from industrial developments and natural groundwaters for source identification.

    Science.gov (United States)

    Frank, Richard A; Roy, James W; Bickerton, Greg; Rowland, Steve J; Headley, John V; Scarlett, Alan G; West, Charles E; Peru, Kerry M; Parrott, Joanne L; Conly, F Malcolm; Hewitt, L Mark

    2014-01-01

    The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.

  14. Groundwater recharge estimates in the Athabasca and Cold Lake oil sands areas

    International Nuclear Information System (INIS)

    MacMillan, G.J.; Smith, A.D.

    2009-01-01

    Groundwater recharge estimates for the Cold Lake and Athabasca oil sands region were presented. New oil sands projects planned for the future will require approximately 150,000 m 3 per day of groundwater. Regulators and public agencies are now investigating the potential impacts of oil sands operations on both shallow groundwater and surface water in the region. Maximum yields from the aquifers are also being estimated. Measurements are currently being taken to determine transmissivity, hydraulic pressure, storage potential and leakage. Numerical models are currently used to determine saturated zone recharge estimates and water table fluctuations. Isotope tracers are also being used to determine where groundwater flow potential is vertical as well as to determine correction factors for hydrogeological and geochemical conditions at each site. Darcy's Law is used to determine heat flow in the groundwater aquifers. To date, the studies have demonstrated that drilling fluids have been recovered at groundwater sites. Wells are often installed near water supply and supply well networks. It was concluded that new water wells will need to be completed at various depths. Data were presented for aquifers and nest wells. refs., tabs., figs

  15. Assessing refinery capacity and readiness to take Canadian product : is Canadian crude pushing or pulling?

    International Nuclear Information System (INIS)

    Friesner, J.M.

    2005-01-01

    This presentation addressed some of the challenges facing oil sands production in Canada. Refinery products and refining investments were discussed, as was the impact of alternative crude supply on the markets and pricing of oil sands. The oils sands products discussed include various qualities of sweet synthetic crude oil produced via upgraders; virgin and cracked intermediate products from oil sands upgraders; mined or Steam Assisted Gravity Drainage (SAGD) produced bitumen blended products; and synthetic heavy crude produced via hydrocracking. Products were listed in terms of ease of production, and a rationale for generic ranking was provided. A chart of 2003 characteristics of non-Canadian imports to the mid-west United States was provided. Various marketing strategies for different oil sands products were discussed, as well as issues concerning logistics. Strategies for the development of a bigger market include producer investment in refining capability; the acquisition of refining assets; investment in refiners' upgrading capability; and securing a long term supply deal. Core and extended markets for Western Canadian oil sands products were reviewed. A chart of North American refining capacity was presented. Details of a refinery with both coking and cracking capacity were examined. An increase in hydro processing capacity and expanded coking capacity, as well as an upgrade of metallurgy were suggested as possible upgrading options. Various refinery configurations were discussed in relation to lower cost feedstocks and clean fuels specifications. Issues concerning crude supply were examined with reference to pricing parity points and declines in traditional crude production. Specific supply issues concerning oil sands production were discussed, including transportation costs; adequate refining capacity; and availability of supply. Various logistic investments were considered. A map of BP's 5 U.S. refineries was presented. A forecast of expected changes in

  16. Proceedings of the Canadian Heavy Oil Association's annual business conference : out of the chute

    International Nuclear Information System (INIS)

    2004-01-01

    This conference provided a forum for advanced technology experts in the upstream petroleum industry and heavy oil industry to exchange information about emerging technologies for resource recovery, refining, markets, trade and logistics. It was divided into 4 sessions entitled: (1) natural gas and upgrading alternatives, (2) project management issues, (3) project updates, and (4) business and markets. The presentations outlined the use of fuel substitutions and the implications for upgrading, controlling the capital costs of oil sand projects and construction issues facing heavy oil. Trends and factors affecting the petroleum industry in Canada were discussed with particular reference to the Asian interest in Alberta's oil sands and the need for a transportation corridor to bring products to southern markets. The conference featured 12 presentations, of which 6 were indexed separately for inclusion in this database. refs., tabs., figs

  17. Firm grip: the Canadian top 100 climb out of the oil price crater

    International Nuclear Information System (INIS)

    Jaremko, G.

    1999-01-01

    New price forecasts and corporate plans for Canadian oil and gas companies were presented. Since the fall of 1997 Canadian oil prices have been on a continuous and long downward slide to as low as US$11-12 for the 1998-99 winter. However, by the end of February 1999, oil prices projections have averaged $13. As the market grows stronger, it is believed that oil prices will be strong enough for the rest of 1999 to pull the annual average up at least to US$16, then stay firm at $18 or more in year 2000. It is also believed that natural gas prices will be the best since the onset in 1985 of energy free trade. Even Canadian heavy oil, the most depressed sector in 1997-98, will bounce back as Mexico and Venezuela shut theirs in while U.S. refineries add processing capacity. In western Canada there will be 9,200 wells in 1999 and 14,400 in 2000. Industry spending might almost double to $18.6 billion. It is also predicted that the Toronto Stock Exchange's oil and gas index will top 8,000 for the first time. 1 fig

  18. A risk-based approach for identifying constituents of concern in oil sands process-affected water from the Athabasca Oil Sands region.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Hendrikse, Maas; Gaspari, Daniel P; Calomeni, Alyssa J; Iwinski, Kyla J; Castle, James W; Haakensen, Monique C; Peru, Kerry M; Headley, John V; Rodgers, John H

    2017-04-01

    Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H 2 O 2 +UV 254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of Geometric Parameters of the Hydrocyclone and Sand Concentration on the Water/Sand/Heavy-Oil Separation Process: Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    F Farias

    2016-09-01

    Full Text Available In the oil exploitation, produced fluids are composed of oil, gas, water and sand (depending on the reservoir location. The presence of sand in flow oil leads to several industrial problems for example: erosion and accumulation in valves and pipeline. Thus, it is necessary to stop production for manual cleaning of equipments and pipes. These facts have attracted attention of academic and industrial areas, enabling the appearing of new technologies or improvement of the water/oil/sand separation process. One equipment that has been used to promote phase separation is the hydrocyclone due to high performance of separation and required low cost to installation and maintenance. In this sense, the purpose of this work is to study numerically the effect of geometric parameters (vortex finder diameter of the hydrocyclone and sand concentration on the inlet fluid separation process. A numerical solution of the governing equations was obtained by the ANSYS CFX-11 commercial code. Results of the streamlines, pressure drop and separation efficiency on the hydrocyclone are presented and analyzed. It was observed that the particles concentration and geometry affect the separation efficiency of the hydrocyclone.

  20. Experimental and simulated displacement of oil in sand berea cores using aqueous solutions

    International Nuclear Information System (INIS)

    Ramirez, A.; Gonzalez, J.L.; Hernandez, F.; Hernandez, H.

    2009-01-01

    The development of a mathematical algorithm to simulate the displacement of a resident fluid using a displacing one in a saturated anisotropic porous media is shown in this work. The algorithm was included in the simulator developed by the present authors in previous works to represent the anisotropic distribution of the porous media properties and the fluid injection [Ramirez A et al. Mathematical simulation of oil reservoir properties. Chaos, solitons and Fractals 2008;38:778-88, Ramirez A et al. Simulation of uncompressible fluid flow through a porous media. Chaos, Solitons and Fractals 2009;39:1753-63] in a nested loop to analyze the participant nodes in the transport process and calculate the volumes of the resident and new fluids. The new routine developed takes in count the mobility of both fluids. Additionally experimental fluid displacement tests were done using heavy oil from Mexican reservoirs as a resident fluid in sand berea cores. The injection of new fluids in natural oil reservoirs is a part of the Enhanced oil recovery (EOR) methods used to improve the oil displacement and increase production after the primary stage of the oil recovery has been finished. Water is an available and economical resource to be used as a displacing fluid due to many of the producers (off-shores) of the oil industries are placed in the sea near the coast.

  1. Prediction of critical transport velocity for preventing sand deposition in gas-oil multiphase production and well systems

    Energy Technology Data Exchange (ETDEWEB)

    Bello, O.O.; Reinicke, K.M. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Petroleum Engineering; Teodoriu, C. [Texas A and M Univ., College Station, TX (United States). Dept. of Petroleum Engineering

    2008-10-23

    The critical transport velocity is one of the key parameters for gas-oil-sand multiphase production and well system design and safe operation. Existing American Petroleum Institute Recommended Practice 14E (API RP 14E) for the sizing of multiphase flow systems suggests an equation to calculate threshold transport velocity. This equation only considers mixture density and does not account for factors such as fluid properties, gas-liquid flow patterns, sand loading, sand particle size, size distributions, shape factor and density. This work presents an improved computational methodology, which can be applied to estimate the critical transport velocity required to ensure efficient performance of gas-oil-sand multiphase production and well systems. The improved method is based on the modelling of three-phase gas-oil-sand pipe flow physics from first principle. Computations of the critical transport velocities show reasonable agreement with values calculated from mechanistic model (Danielson, 2007) for a relatively wide range of design and operating conditions. Compared with the mechanistic model (Danielson, 2007), the present method has no imposed limitations to the range of applicability. It is also takes into adequate account the effects of operating pressure, flow geometry, sand particle size, size distribution and shape factor, which have considerable influence on the critical transport velocity in gas-oil-sand multiphase production and well systems. (orig.)

  2. Where in the World are Canadian Oil and Gas Companies? 2011

    Directory of Open Access Journals (Sweden)

    Niloo Hojjati

    2017-06-01

    Full Text Available Canada is well recognized for its prominence as an oil and gas jurisdiction in regard to its resources within its own borders. However, there is little available analysis and information regarding the presence of Canadian companies in the international arena. Begun in 2011 as an internal research tool for the development of the Extractive Resource Governance Program, this project seeks to answer the vital question: Where in the world are Canadian oil and gas companies? To answer this question, firm-level data from publicly traded Canadian companies are collected and analyzed, culminating in the development of an online tool for public use. This map allows interested users to geographically locate jurisdictions around the world where publicly traded Canadian oil and gas (hereafter O&G companies have activities, over time. The map is available at http://www.policyschool.ca/ research-teaching/teaching-training/extractive-resource-governance/ergp-map/. This project, hereafter referred to as the WIW project, provides a measure that quantifies Canadian oil and gas activity around the world and identifies key jurisdictions that are of particular interest to Canadian O&G companies. The data collected holds value for various stakeholders such as governments, regulatory bodies, academia, civil society, and industry across the extractive resource spectrum. Prior to further discussion regarding the 2011 annual data results, it is valuable to provide a brief overview of the methodology used in the collection of data for this research project. The WIW project examines the global activities of Canadian O&G companies in 218 countries spanning seven international regions of analysis.1 The aim of the WIW project is to examine the international presence of Canadian companies in foreign countries. As such, it is important to note that this project does not provide information related to the activities of Canadian companies within Canada’s border, such as the

  3. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  4. Oil and gas fiscal regimes of the western Canadian provinces

    International Nuclear Information System (INIS)

    1991-11-01

    This report compares the fiscal regimes in British Columbia, Alberta, Saskatchewan and Manitoba. During 1985-1988, federal and provincial governments have made numerous fiscal changes, many in response to the drop in world oil prices. The new fiscal policies generally have reflected governments' willingness to forego revenues in an effort to aid the oil and gas industry, with certain exemptions. Since 1988, changes have reflected trends of consolidation and less government willingness to forego revenues. A federal large corporations capital tax has been introduced, the natural gas exploration holiday in Alberta expired, new oil royalties were introduced, and changes were made in fiscal regimes to accomodate horizontal drilling in Saskatchewan and Manitoba. In this document, the existing corporate tax regime is described. A comparison of fiscal regimes must recognize the differing scale and nature of oil and gas operations among the 4 provinces, with Alberta accounting for 80-90% of Canada's oil and gas productions, while British Columbia, Saskatchewan and Manitoba are much smaller producers. The document describes Crown royalties and incentives and freehold taxes for each type of fuel (crude oil, natural gas, natural gas byproducts, nonconventional oil). 8 figs

  5. Petrophysical studies in heavy oil sands with early water production - Hamaca area, Orinoco Oil Belt

    Energy Technology Data Exchange (ETDEWEB)

    Salisch, H.A.

    1982-07-01

    This study describes the main lines of petrophysical research in the Hamaca-Pao region of the Orinoco Oil Belt. The techniques and parameters most appropriate for petrophysical studies in the area of interest are discussed. Field tests have confirmed the conclusions of this study on early water production and low oil recovery. Steam injection was shown to be a means for increasing oil mobility to such a degree that significant amounts of additional oil can be produced.

  6. Applying the Analytic Hierarchy Process to Oil Sands Environmental Compliance Risk Management

    Science.gov (United States)

    Roux, Izak Johannes, III

    Oil companies in Alberta, Canada, invested $32 billion on new oil sands projects in 2013. Despite the size of this investment, there is a demonstrable deficiency in the uniformity and understanding of environmental legislation requirements that manifest into increased project compliance risks. This descriptive study developed 2 prioritized lists of environmental regulatory compliance risks and mitigation strategies and used multi-criteria decision theory for its theoretical framework. Information from compiled lists of environmental compliance risks and mitigation strategies was used to generate a specialized pairwise survey, which was piloted by 5 subject matter experts (SMEs). The survey was validated by a sample of 16 SMEs, after which the Analytic Hierarchy Process (AHP) was used to rank a total of 33 compliance risks and 12 mitigation strategy criteria. A key finding was that the AHP is a suitable tool for ranking of compliance risks and mitigation strategies. Several working hypotheses were also tested regarding how SMEs prioritized 1 compliance risk or mitigation strategy compared to another. The AHP showed that regulatory compliance, company reputation, environmental compliance, and economics ranked the highest and that a multi criteria mitigation strategy for environmental compliance ranked the highest. The study results will inform Alberta oil sands industry leaders about the ranking and utility of specific compliance risks and mitigations strategies, enabling them to focus on actions that will generate legislative and public trust. Oil sands leaders implementing a risk management program using the risks and mitigation strategies identified in this study will contribute to environmental conservation, economic growth, and positive social change.

  7. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    Science.gov (United States)

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.

  8. Considerations when ranking stochastically modeled oil sands resource models for mining applications

    Energy Technology Data Exchange (ETDEWEB)

    Etris, E.L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Petro-Canada, Calgary, AB (Canada); Idris, Y.; Hunter, A.C. [Petro-Canada, Calgary, AB (Canada)

    2008-10-15

    Alberta's Athabasca oil sands deposit has been targeted as a major resource for development. Bitumen recovery operations fall into 2 categories, namely mining and in situ operations. Mining recovery is done above ground level and consists of open pit digging, disaggregation of the bitumen-saturated sediment through crushing followed by pipeline transport in a water-based slurry and then separation of oil, water and sediment. In situ recovery consists of drilling wells and stimulating the oil sands in the subsurface with a thermal treatment to reduce the viscosity of the bitumen and allow it to come to the surface. Steam assisted gravity drainage (SAGD) is the most popular thermal treatment currently in use. Resource models that simulate the recovery process are needed for both mining and in situ recovery operations. Both types can benefit from the advantages of a stochastic modeling process for resource model building and uncertainty evaluation. Stochastic modeling provides a realistic geology and allows for multiple realizations, which mining operations can use to evaluate the variability of recoverable bitumen volumes and develop mine plans accordingly. This paper described the processes of stochastic modelling and of determining the appropriate single realization for mine planning as applied to the Fort Hills oil sands mine which is currently in the early planning stage. The modeling exercise was used to estimate the in-place resource and quantify the uncertainty in resource volumes. The stochastic models were checked against those generated from conventional methods to identify any differences and to make the appropriate adaptations. 13 refs., 3 tabs., 16 figs.

  9. Ranking Canadian oil and gas projects using TOPSIS

    Directory of Open Access Journals (Sweden)

    Seyed Jafar Sadjadi

    2017-08-01

    Full Text Available One of the primary concerns for investment in oil and gas projects is to have a comprehensive understanding on different issues associated with this industry. The industry is mainly influ-enced by the price of oil and gas and in some events, many production units have been forced to shut down solely because of low price of oil and gas. Environmental issues are other important factors, which may put pressure on Canada’s political affairs since the country has strong com-mitment to reduce green gas effect. In this paper, we introduce a multi-criteria decision making method, which helps us rank different projects in terms of investment. The proposed study con-siders different investment factors including net present value, rate of return, benefit-cost analy-sis and payback period along with the intensity of green gas effects for ranking the present oil and gas projects in Canada.

  10. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  11. Gill histopathology of goldfish exposed to oil sands processed-waters

    International Nuclear Information System (INIS)

    Nero, V.; Farwell, A.J.; Dixon, D.G.; Lee, L.E.J.

    2002-01-01

    Large volumes of processed wastewater are generated through the oil extraction process at Alberta's Athabasca oil sand deposit. These wastewaters are very toxic to aquatic biota because they are high in salinity and consist of napthenic acids and polycyclic aromatic hydrocarbons (PAH). In this study, goldfish were caged in 3 different experimental ponds in order to evaluate the biological effects of aquatic reclamation alternatives for process-affected waters. The first pond was a control pond, while the other 2 ponds consisted of known and varying chemicals. The fish were exposed to the ponds for 19 days. Those in the pond with elevated levels of napthenic acids and high salinity exhibited severe gill histopathological changes. Alterations included epithelial hyperplasia resulting in severe lamellar fusion, chloride cell hyperplasia, and lamellar edema, all of which were believed to be defense responses of the fish. Additional severe gill alterations were also observed that may indicate the direct negative effects of oil sands processed-water on fish. Exposed goldfish also showed signs of necrosis and degenerative changes resulting in desquamation of the epithelial surfaces of the gill, which are symptoms seen in free-range exposure of yellow perch, a native fish species, at the same sites and exposure times

  12. Gill histopathology of goldfish exposed to oil sands processed-waters

    Energy Technology Data Exchange (ETDEWEB)

    Nero, V.; Farwell, A.J.; Dixon, D.G. [Waterloo Univ., ON (Canada). Dept. of Biology; Lister, A.; Van Der Kraak, G.J. [Guelph Univ., ON (Canada); Lee, L.E.J. [Wilfred Laurier Univ., Waterloo, ON (Canada). Dept. of Biology

    2002-07-01

    Large volumes of processed wastewater are generated through the oil extraction process at Alberta's Athabasca oil sand deposit. These wastewaters are very toxic to aquatic biota because they are high in salinity and consist of napthenic acids and polycyclic aromatic hydrocarbons (PAH). In this study, goldfish were caged in 3 different experimental ponds in order to evaluate the biological effects of aquatic reclamation alternatives for process-affected waters. The first pond was a control pond, while the other 2 ponds consisted of known and varying chemicals. The fish were exposed to the ponds for 19 days. Those in the pond with elevated levels of napthenic acids and high salinity exhibited severe gill histopathological changes. Alterations included epithelial hyperplasia resulting in severe lamellar fusion, chloride cell hyperplasia, and lamellar edema, all of which were believed to be defense responses of the fish. Additional severe gill alterations were also observed that may indicate the direct negative effects of oil sands processed-water on fish. Exposed goldfish also showed signs of necrosis and degenerative changes resulting in desquamation of the epithelial surfaces of the gill, which are symptoms seen in free-range exposure of yellow perch, a native fish species, at the same sites and exposure times.

  13. Responsible management of peatlands in Canada, from peat industry to oil sands

    Science.gov (United States)

    Rochefort, Line

    2013-04-01

    Canada harbors one third of the peat resources of the world. Peat is an accumulated organic matter composed of dead and partly decomposed plant material, forming huge deposit through time in wetlands like peatlands and boreal coniferous swamps. Peat is a valuable resource as a growing media and soil amendments, an eco-friendly absorbent, also used as biofilters, for body care and for wastewater treatment. Peatlands also offer valuable ecological services : for example, they are the most efficient terrestrial ecosystem to store carbon on a long-term basis. Their ability to "cool off" the planet warrants a good look at their management. The horticultural peat industry of Canada has invested 22 years in R&D in habitat restoration and is now a strong leader in managing industrial peatlands in a sustainable way. The oil sand industry, which is strongly impacting the wetland landscapes of northern Canada, does realize that it has to reduce its ecological footprint, which is heavily criticized around the world. Decommissioned open mines near Fort McMurray have already begun recreating peatland ecosystems, and some restoration attempts of former oil pads are underway in the Peace River region. But the restoration of the largely disturbed wetland landscape of the oil sands is commanding innovative solutions.

  14. Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water.

    Directory of Open Access Journals (Sweden)

    Mathew L Frankel

    Full Text Available Anthropogenic activities have resulted in the intensified use of water resources. For example, open pit bitumen extraction by Canada's oil sands operations uses an estimated volume of three barrels of water for every barrel of oil produced. The waste tailings-oil sands process water (OSPW-are stored in holding ponds, and present an environmental concern as they are comprised of residual hydrocarbons and metals. Following the hypothesis that endogenous OSPW microbial communities have an enhanced tolerance to heavy metals, we tested the capacity of planktonic and biofilm populations from OSPW to withstand metal ion challenges, using Cupriavidus metallidurans, a known metal-resistant organism, for comparison. The toxicity of the metals toward biofilm and planktonic bacterial populations was determined by measuring the minimum biofilm inhibitory concentrations (MBICs and planktonic minimum inhibitory concentrations (MICs using the MBEC ™ assay. We observed that the OSPW community and C. metallidurans had similar tolerances to 22 different metals. While thiophillic elements (Te, Ag, Cd, Ni were found to be most toxic, the OSPW consortia demonstrated higher tolerance to metals reported in tailings ponds (Al, Fe, Mo, Pb. Metal toxicity correlated with a number of physicochemical characteristics of the metals. Parameters reflecting metal-ligand affinities showed fewer and weaker correlations for the community compared to C. metallidurans, suggesting that the OSPW consortia may have developed tolerance mechanisms toward metals present in their environment.

  15. Canadian oilsands, heavy oil poised for surge in development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Operators in Canada's oilsands and heavy oil regions are on the brink of a period of growth that could last well into the next century. Several factors are combining in a scenario a National Task Force report on oilsands says could dramatically increase investment and production in the next 25 years. By then, massive oilsands and heavy oil reserves in northern Alberta could account for as much as 50%--perhaps more--of Canada's oil production. Technological improvements in recovery and processing have slashed production costs and put nonconventional oil on a more competitive footing with declining reserves of conventional crude in western Canada. At the same time, persistent lobbying by industry and a well researched national study have persuaded federal and provincial governments to introduce a new royalty and fiscal regime designed to bolster oilsands investment. New policies give clear incentives to investors to put money into oilsands and heavy oil projects. Policies also will provide a generic tax treatment for all new projects, long a major objective of oilsands promoters. Previously, royalty and tax agreements were negotiated for project case by case. This paper reviews the resource base and the new operational developments resulting from these policies

  16. Measurements of oxygenated volatile organic compounds in the oil sands region of Alberta

    Science.gov (United States)

    Moussa, S. G.; Leithead, A.; Li, S. M.; Gordon, M.; Hayden, K. L.; Wang, D. K.; Staebler, R. M.; Liu, P.; O'Brien, J.; Mittermeier, R.; Liggio, J.

    2014-12-01

    Oxygenated volatile organic compounds (OVOCs) are ubiquitous in the atmosphere, and represent an important fraction of volatile organic compounds. Additionally some OVOC species may pose health risks. OVOCs can affect the oxidative and radiative budget of the atmosphere since they are precursors to ground level ozone, hydroxyl radicals and secondary organic aerosols (SOA). OVOCs such as methanol, formaldehyde, acetaldehyde, acetone, crotonaldehyde, methylvinylketone (MVK), methylethylketone (MEK) and acrolein can be emitted from anthropogenic and biogenic sources. Additionally, they are the secondary products of the photo-oxidation of hydrocarbons (biogenic and anthropogenic). Understanding the magnitude of these sources is a prerequisite for accurate representations of radical cycling, ozone production and SOA formation in air quality models. The sources of OVOCs in the Alberta Oil Sands (OS) region have not previously been well characterized. In the summer of 2013, airborne measurements of various OVOCs were made in the Athabasca oil sands region between August 13 and September 7, 2013. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure methanol, formaldehyde, acetaldehyde, acetone, crotonaldehyde, MVK, MEK, acrolein as well as other hydrocarbons. Emission ratios (ER) for several OVOCs (relative to carbon monoxide; CO) were used to estimate direct anthropogenic emissions from OS industrial sources, while the calculated OH radical exposures were used to estimate the production and removal of secondary anthropogenic OVOCs. The results indicate that OVOCs such as acetaldehyde, crotonaldehyde and MVK have both primary and secondary anthropogenic and biogenic sources. However, species such as methanol and acrolein are from biogenic and anthropogenic sources, respectively. The results of this work will help to characterize sources of OVOCs and the factors influencing their atmospheric fate in the Oil Sands region.

  17. Predicted water quality of oil sands reclamation wetlands : impact of physical design and hydrology

    International Nuclear Information System (INIS)

    2006-01-01

    Although engineered wetlands can be used as treatment systems in the reclamation of oil sands mines, a variety of factors must be considered to improve the biological functioning of many oil sands reclamation landscapes. Key factors in the control of concentrations of dissolved substances include area, depth, shape, surrounding landscape material and contributing water quality and quantity. Seasonal cycles of precipitation and ice cover also require consideration in the planning of wetlands ecosystems. This paper presented details of a model designed to predict constituent concentrations in planned wetlands based on probable inflow and processes. Input variables consisted of key substances and hydrological factors that may be encountered on reclaimed landscapes. The model was constructed to perform sensitivity analyses of wetlands with respect to total dissolved solids (TDS), major ions, and naphthenic acids concentrations. Inputs and assumptions drawn from previous environmental impact assessments completed for proposed and approved oil sands projects were used. Results suggested that wetlands volume is an important factor in the moderation of peak flows and substance decay. The predictions generated by the model suggested that wetlands size, tailings and sandcap placement schedules may be manipulated to achieve desired wetlands salinities. It was observed that the proportion of the watershed covered by specific land types can affect both initial and future concentrations. Long-term climate change that results in 15 per cent more or less runoff was predicted to have little effect on wetlands concentrations, although concentrations may rise during periodic droughts. It was concluded that site-specific modelling and careful planning is needed to achieve desired water quality for the creation of engineered wetlands. 18 refs., 3 tabs., 3 figs

  18. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    Science.gov (United States)

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  20. Stuck in the tar sands : how the federal government's proposed climate change strategy lets oil companies off the hook

    International Nuclear Information System (INIS)

    2008-10-01

    The credibility of any federal climate change strategy must be measured against its ability to reduce emissions from the tar sands. However, the federal government has proposed a climate change strategy that would allow tar sands producers to double their total emissions over the next decade. This report discussed how the federal government's proposed climate change strategy lets oil companies off the hook. The report discussed the problems and harmful effects associated with tar sands development, including greenhouse gas emissions; water depletion and pollution; toxic air emissions; destruction of the boreal forest; violation of native rights; threat to energy security; and negative socio-economic spin-off from an overheated economy. The federal government's proposed strategy was also assessed in terms of its weak greenhouse gas targets; ignoring the recent growth in tar sands emissions; adopting intensity-based targets instead of hard caps on greenhouse gas pollution, allowing total emissions from the tar sands to keep climbing; putting off critical measures until 2018; awarding oil companies hundreds of millions of dollars in credits for meeting targets they have already adopted voluntarily; lowballing the price of oil and downplaying future growth in tar sands emissions; ignoring huge portions of the oil industry's greenhouse gas pollution; letting oil companies buy their way out at rockbottom prices instead of forcing them to reduce their own emissions; and subsidizing increased tar sands production. It was concluded that the federal government's proposed plan to reduce greenhouse gas emissions was inadequate, because it failed to crack down on rising greenhouse gas emissions from the tar sands, one of Canada's most carbon intensive and fastest growing industries. 29 refs., 1 appendix

  1. Where in the World are Canadian Oil and Gas Companies? 2012

    Directory of Open Access Journals (Sweden)

    Niloo Hojjati

    2017-06-01

    Full Text Available Begun in 2011 as an internal research tool for the development of the Extractive Resource Governance Program, this study seeks to answer the vital question: Where in the world are Canadian oil and gas companies? To answer this question, we extract firm-level information from publicly traded Canadian companies in order to establish the location of their activities around the globe.1 The data collected in the “Where in the World” (hereafter WIW project are presented through a publicly accessible interactive world map, which allows users to explore a specific country or region over time. This map can be accessed online at http://www.policyschool.ca/research-teaching/teaching-training/extractiveresource-governance/ergp-map/. For background information regarding the WIW project, including an extensive overview of the methodology, please refer to http://www.policyschool.ca/wp-content/uploads/2017/06/Where-in-the-WorldHojjati-Horsfield-Jordison-final.pdf. For a summarized overview of the annual data gathered in 2011, please refer to http://www.policyschool.ca/wp-content/ uploads/2017/06/2011-Where-in-the-World-Hojjati-Horsfield-Jordison-final.pdf. This report, as in the earlier report in this series, presents an extensive account of the global presence of Canadian oil and gas (hereafter O&G companies in the 2012 year of study.2 In total, 228 Canadian O&G companies conducted operations in 85 countries in 2012, extending their presence to every region of the world. While North America continued to serve as the primary destination for Canadian exploration and production activities, the role of Canadian O&G service companies increased significantly in the Middle Eastern oil and gas industry, particularly in the United Arab Emirates, Saudi Arabia, Kuwait, and Oman. This report begins with a regional overview of the international activities of Canadian exploration and production (E&P companies, followed by a summary of the level of activities on a

  2. Coprocessing of biooils from biomass pyrolysis and bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Feng, M.; Daruwalla, S.; Daruwalla, D.D. [Southwest Research Inst., San Antonia, TX (United States). Dept. of Chemical Engineering

    2009-07-01

    Liquid biooils can be produced from the thermochemical treatment of biomass by pyrolysis. However, because of their poor volatility, high viscosity, coking, corrosiveness, and cold flow problems, biooils cannot be used directly as transportation fuel. Biooils can be upgraded into a liquid transportation fuel by hydrodeoxygenation with typical hydrotreating procedure with sulfided cobalt and molybdenum (CoMo) or nickel molybdenum (NiMo) as catalysts in the current oil refinery facilities. Coprocessing of biooils and bitumen from oil sand provides an opportunity to process the two feeds at the same time which can be achieved by injection of pyrolytic biooils and vacuum gas oil (VGO) from bitumen into a fluid catalytic cracking (FCC) unit if the acid number of the biooils is below 35. Typically the biooils are diluted to about 1.5 to 5 per cent in the VGO feed to be processed. For the blends of VGO and biooils, the biooils appear to facilitate the cracking of the VGO and shift yields toward light ends, lower light cycle oil. They also clarify slurry oil, which makes the process more cost effective. This paper briefly reviewed the typical methods for bitumen pretreatment and preliminary upgrading. The paper also discussed the current status of coprocessing of biooils and hydrocarbons, and suggested two possible processes for coprocessing bitumen with biooils and biopitches. The impact on the hydrodesulphurization process conversion of dibenzothiophenic compounds was also studied, showing no differences of the inhibiting effect between these molecules. 8 refs., 4 tabs., 6 figs.

  3. Original oilpatch; the biggest Canadian oil company laid its cornerstone in Sarnia 100 years ago

    International Nuclear Information System (INIS)

    Faulkner, P.

    2000-01-01

    The end of the 20. century also marked the occasion of 100 years of oil refining by Imperial Oil, the largest oil company in Canada. The first commercial oil well was dug at Oil Springs, near Petrolia in southwestern Ontario in the days when the only market for crude oil was kerosene for lamps and cooking. The original well today occupies the doorstep of the Oil Museum of Canada, which contains the records of the birth and growth of the industry which flourished long before anyone had dreamt of Leduc in Alberta, OPEC, or the myriads of petrochemical products, from nylon stockings and rubber tires to bubble bath and detergents, that are common place today. Documents at the Museum reveal that the first oil tanked for commercial sale came from a well at Oil Springs in 1858, a year ahead of the Titusville, Pennsylvania claim. By 1860 production reached a maximum of 800 barrels a day and Canada's first oilpatch was born. The original production equipment, primitive but durable, can be seen at the second local museum, the outdoor Discovery at Petrolia. Refining prior to the start of Imperial in 1880, was done by boiling down crude oil in cast iron vats to isolate kerosene, then the only byproduct of any use. At one stage, there were about 100 small refineries in southern Ontario. Sarnia became the centre of Canadian oil refining after Imperial was sold to the Rockefeller's Standard Oil of New York, who relocated it from Petrolia in 1898. With the arrival of the horseless carriage, gasoline had become a major byproduct. The refinery was rebuilt ; by 1927 it processed 15,500 barrels a day and manufactured 381 products, including vast numbers of candles. Today, plant capacity is up to 120,000 barrels a day. Although southwestern Ontario has long been overshadowed by Alberta as an oil producer, there are still some 600 active wells in the region, and a dozen entrepreneurs still ship about 60,000 barrels a year of southwest Ontario oil to Sarnia for refining. Imperial still

  4. Modification of the process for separating and recovering oil from oil-sands, etc

    Energy Technology Data Exchange (ETDEWEB)

    Preller, H

    1922-08-30

    A method of carrying out the process according to Patent 400,122 especially for washing oil or bitumen-bearing mineral materials contaminated with more or less clay, marl, and so forth is characterized in that the oil-bearing raw material is first washed in an opposing stream of warm water for separating the larger part of the oil and settling the larger part of the rock. At the same time the fine clay suspended during the washing operation to a large extent and the remaining rock particles, which are unbound from the oil, by means of a regulatable water stream for further washing are carried into a receptacle of greater cross section, where by the very slow rise of the liquid the finer oil particles find an opportunity to ascend.

  5. Hydrocarbon upgrading demonstration program (HUDP): an investment in the future of the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, Duke; Isaacs, Eddy [AI-EES (Canada); Hill, Rich; McPhee, Anne; Keesom, Bill; Arnold, Ed [Jacobs Consultancy (Canada)

    2011-07-01

    Alberta Innovates Energy and Environment Solutions (AIEES), the technology arm of the Alberta Government in terms of energy and the environment, has initiated the hydrocarbon upgrading demonstration program (HUDP). Since lighter products have a better market value, this program aims to develop technologies for upgrading heavy oil into light, transportable fuel. The program also aims to improve SAGD efficiency while reducing greenhouse gas emissions. To do so, the gaps between typical and ideal operations were identified and quantified, life cycle analyses were performed, current studies were reviewed and future issues and opportunities were assessed. With the HUDP program, AIEES is supporting the industry through investment and technology support to develop innovative technologies which will improve margins and the sustainability of oil sands operations.

  6. The great Canadian oil patch : the petroleum era from birth to peak. 2. ed.

    International Nuclear Information System (INIS)

    Gray, E.

    2004-01-01

    This book presents a history of the petroleum industry from its early years to the present day. Anecdotal tales of pioneers in the industry were related, with reference to the birth of the oil industry, the Turner Valley, early energy waste issues, and accidents. Norman Wells and the Canol Project were discussed, as was the accident at Leduc and issues surrounding Pembina. Issues concerning the great pipeline debate and Trans-Canada were related. An overview of the oil sands industry was provided along with historical information on Arctic development and offshore oil. The National Oil Policy was considered, with reference to the oil crisis, economic development and the rise and fall of the National Energy Program. Survivors of the oil industry crisis were discussed, with reference to the remaining large independent producers. Issues surrounding the end of the oil and gas age were also examined, with reference to issues concerning renewable energy technologies and energy efficiency. The Kyoto Protocol was reviewed in relation to the oil and gas industry. It was concluded that currently, low market prices mask external costs such as air pollution. It was also noted that if energy prices continue to rise, energy efficiency will increase, thereby reducing the gap between fossil and alternative fuels. In addition, it was suggested that the incentive to capture carbon dioxide emissions and sequester them to recover more oil from old fields will increase. refs., tabs., figs

  7. Legitimacy in Green: Pollution vs. Profit in Canadian Oil Refineries

    Directory of Open Access Journals (Sweden)

    Vanessa Magness

    2007-06-01

    light of changing societal expectations have created an external environment that encourages the development of new technologies that promote cost efficiencies and good environmental performance simultaneously.  Russo and Fouts (1997 argued that industries subject to rapid technological advance are well suited to respond to these changes in the external environment. The findings of this paper suggest that the petroleum refinery sector of the oil and gas industry may be meeting the challenge of the environmental movement.

  8. Canadian coastal environments, shoreline processes, and oil spill cleanup

    International Nuclear Information System (INIS)

    Owens, E.H.

    1994-03-01

    The coastal zone is a dynamic environment, so that in developing practical and effective oil spill response strategies it is necessary to understand the forces that contribute to shore-zone processs. The coasts of Canada encompass a wide range of environments and are characterized by a variety of shoreline types that include the exposed, resistant cliffs of eastern Newfoundland and the sheltered marshes of the Beaufort Sea. A report is presented to provide an understanding of the dynamics and physical processes as they vary on the different coasts of Canada, including the Great Lakes. An outline of the general character and processes on a regional basis describes the coastal environments and introduces the literature that can be consulted for more specific information. The likely fate and persistence of oil that reaches the shoreline is discussed to provide the framework for development of spill response strategies and for the selection of appropriate shoreline cleanup or treatment countermeasures. Lessons learned from recent experience with major oil spills and field experiments are integrated into the discussion. Separate abstracts have been prepared for each of the four sections of this report. 502 refs., 5 figs

  9. Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands

    International Nuclear Information System (INIS)

    Nimana, Balwinder; Canter, Christina; Kumar, Amit

    2015-01-01

    Highlights: • A model to estimate energy consumption and GHG emissions in oil sands is presented. • The model is developed from fundamental engineering principles. • Cogeneration in the oil sands has the ability to offset GHG emissions. • The effect of key parameters is investigated through a sensitivity analysis. - Abstract: A model – FUNNEL-GHG-OS (FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in the Oil Sands) was developed to estimate project-specific energy consumption and greenhouse gas emissions (GHGs) in major recovery and extraction processes in the oil sands, namely surface mining and in situ production. This model estimates consumption of diesel (4.4–7.1 MJ/GJ of bitumen), natural gas (52.7–86.4 MJ/GJ of bitumen) and electricity (1.8–2.1 kW h/GJ of bitumen) as fuels in surface mining. The model also estimates the consumption of natural gas (123–462.7 MJ/GJ of bitumen) and electricity (1.2–3.5 kW h/GJ of bitumen) in steam assisted gravity drainage (SAGD), based on fundamental engineering principles. Cogeneration in the oil sands, with excess electricity exported to Alberta’s grid, was also explored. Natural gas consumption forms a major portion of the total energy consumption in surface mining and SAGD and thus is a main contributor to GHG emissions. Emissions in surface mining and SAGD range from 4.4 to 7.4 gCO 2 eq/MJ of bitumen and 8.0 to 34.0 gCO 2 eq/MJ of bitumen, respectively, representing a wide range of variability in oil sands projects. Depending upon the cogeneration technology and the efficiency of the process, emissions in oil sands recovery and extraction can be reduced by 16–25% in surface mining and 33–48% in SAGD. Further, a sensitivity analysis was performed to determine the effects of key parameters on the GHG emissions in surface mining and SAGD. Temperature and the consumption of warm water in surface mining and the steam-to-oil ratio (SOR) in SAGD are major parameters

  10. Where in the World are Canadian Oil and Gas Companies? 2013

    Directory of Open Access Journals (Sweden)

    Niloo Hojjati

    2017-06-01

    Full Text Available Begun in 2011 as an internal research tool for the development of the Extractive Resource Governance Program, this project seeks to answer the vital question: Where in the world are Canadian oil and gas companies? To answer this question, we extract firm-level information for publicly traded Canadian companies in order to establish the location of their activities around the globe.1 The data collected in the “Where in the World” (hereafter WIW project are presented through a publicly accessible interactive world map, which allows users to explore a specific country or region over time. This map can be accessed online at http://www.policyschool.ca/research-teaching/teaching-training/ extractive-resource-governance/ergp-map/. For further information regarding the WIW project, including a comprehensive overview of the methodology, please refer to http://www.policyschool.ca/wp-content/uploads/2017/06/Where-in-theWorld-Hojjati-Horsfield-Jordison-final.pdf. In addition, summary reports of the annual data collection for the 2011 and 2012 years of analysis are also available at http://www.policyschool.ca/wp-content/uploads/2017/06/2011-Where-in-theWorld-Hojjati-Horsfield-Jordison-final.pdf and http://www.policyschool.ca/wpcontent/uploads/2017/06/2012-Where-in-the-World-Hojjati-final.pdf. This report, as in the earlier reports in this series, provides an account of emerging trends and highlights variations in the level of global activities of Canadian oil and gas companies (hereafter O&G for the 2013 year of study.2 In 2013, a total of 226 Canadian O&G companies engaged in global exploration and service activities in 99 countries worldwide. The Middle East and Europe experienced the greatest increase in the concentration of Canadian exploration and production (E&P companies. Meanwhile, the international presence of Canadian O&G service companies continued to grow in several countries, including Colombia, Mexico, and the United Kingdom. This report

  11. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    Directory of Open Access Journals (Sweden)

    Tariq eSiddique

    2014-03-01

    Full Text Available Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae and Desulfobulbaceae and Archaea (Methanolinea/Methanoregula and Methanosaeta transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O and goethite (α-FeOOH were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy. These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  12. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry.

    Science.gov (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  13. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    Science.gov (United States)

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  14. Experimental research on accelerated consolidation using filter jackets in fine oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Tol van, F.; Yao, Y.; Paaseen van, L.; Everts, B. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Geotechnology

    2010-07-01

    This PowerPoint presentation discussed prefabricated vertical drains used to enhance the dewatering of fine oil sand tailings. Filtration tests conducted with thickened tailings on standard PVD jackets were presented. Potential clogging mechanisms included clogging of the filter jacket by particles, blinding of the jackets by filter cake, the decreased permeability of consolidated tailings around the drain, and the clogging of the filter jacket with bitumen. Polypropylene and polyester geotextiles were tested in a set-up that replicated conditions observed at 5 to 10 meters below mud level in an oil sand tailings pond. A finite strain consolidation model was used to interpret results obtained in the experimental study. The relationship between the void ratio and hydraulic conductivity was investigated. Results of the study showed that neither the bitumen nor the fines in the sludge cause serious blinding of the filter jackets during the 40 day test period. The consolidation process was adequately simulated with the finite strain consolidation model. tabs., figs.

  15. Developing the Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region

    Energy Technology Data Exchange (ETDEWEB)

    Straker, J. [Integral Ecology Group Ltd., Victoria, BC (Canada); Cumulative Environmental Management Association, Fort McMurray, AB (Canada). Reclamation Working Group, Terrestrial Subgroup; Donald, G. [Donald Functional and Applied Ecology Inc., Victoria, BC (Canada); Cumulative Environmental Management Association, Fort McMurray, AB (Canada). Reclamation Working Group, Terrestrial Subgroup

    2010-07-01

    This paper discussed the development process behind and the structure of the Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region. The advances present in the second edition, published in 2010, were described relative to the first edition, which was published in 1998. Oils sands mining companies are mandated to use the manual under the Alberta Environmental Protection and Enhancement Act. The paper provided an overview of the structure of the second edition and presented the process used to develop the second edition. It also described the planning approaches for revegetative treatments and the planning guidance of overstory and understory species selection. The methods for evaluating revegetative success were also described with particular reference to plant community composition and soil salinity indicators as examples of indicator development. The goal of the manual is to provide guidance on re-establishing the vegetation component of upland ecosystems on reclaimed landscapes and on evaluating the success of the re-establishment, assuming that the reclaimed plant communities should have species characteristic of native plant communities in the region, that the trends of vegetation community and structure development on reclaimed land should be similar to native plant communities in the region, and that the reclaimed ecosystems should have development trajectories that satisfy land-use objectives and provide resilience against natural disturbances. 15 refs., 1 tab., 1 fig.

  16. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  17. Growth of Chironomus dilutus larvae exposed to ozone-treated and untreated oil sands process water

    International Nuclear Information System (INIS)

    Anderson, J.; Wiseman, S.; Franz, E.; Jones, P.; Liber, K.; Giesy, J.; Gamal El-Din, M.; Marin, J.

    2010-01-01

    Oil sand processing operations require large quantities of freshwater and produce large volumes of oil sands process water (OSPW) which must be stored on-site. This presentation reviewed various treatment methods for remediating OSPW in order to eliminate downstream toxicity. Naphthenic acids are the most important target fractions for treatment because they are primarily responsible for the acute toxicity of OSPW. Although ozonation has shown promise for reducing OSPW toxicity, the effects of ozonation on aquatic invertebrates remain unknown. This study investigated the effects of exposure to untreated and ozonated OSPW in Chironomus dilutus larvae. OSPW was treated with either a 50 or 80 mg O 3 /L dose of ozonation. The effects of ozonation levels on C. dilutus survival and growth were examined. The study showed that after a 10-day exposure, there were pronounced effects on survival of larvae exposed to ozone-treated or untreated OSPW. Larvae exposed to OSPW were 64-77 percent smaller than their respective controls, but the mean wet mass of organisms exposed to 50 mg O 3 /L ozonated OSPW was not much different from that of the controls. Larvae exposed to 80 mg O 3 /L ozone-treated OSPW were 40 percent smaller than the freshwater controls, and the mean wet mass was also much larger than the untreated OSPW. It was concluded that the toxicity of OSPW to benthic invertebrates may be reduced by ozone treatment.

  18. Metal mining to the aid of the oil sands? Lateral opportunities in industrial cross-breeding

    Energy Technology Data Exchange (ETDEWEB)

    Sabag, S.F. [Dumont Nickel Inc., Toronto, ON (Canada)

    2009-07-01

    This paper demonstrated how oil sands operations can benefit from supporting innovative low cost metal mining to enhance their eco-footprint. Northeast Alberta contains large accumulations of recoverable metals, hosted in metal bearing black shales. Immense low grade polymetallic zones were discovered in 1995 but could not be exploited with existing recovery technologies. However, significant advances in bioleaching of metals from polymetallic black shale deposits have propelled this new deposit type to the forefront over the past 5 years as a long term future source of metals. Compared to traditional smelting and refining, bioleaching has lower Capex/Opex, lower eco-footprint and less energy dependence. Envisaged metal mining in the black shales of northeast Alberta can benefit oil sands operations by consuming large amounts of waste sulfur while also providing collateral opportunities for carbon sinks/offsets. Black shales have the capacity to sequester carbon dioxide (CO{sub 2}). Dumont Nickel Inc. is advancing 6 polymetallic black shale projects in northeast Alberta over 2,500 km{sup 2} with potential for hosting up to 20 billion tons in six 50-100 km{sup 2} deposits. The projects present opportunities to develop low footprint metal mines, to use run-of-river hydro, to harvest waste heat, and to combine local technologies to create a new valuable industry independent of energy markets.

  19. The chemical and biological evolution of mature fine tailings in oil sands end-pit lakes

    International Nuclear Information System (INIS)

    Chen, M.; Weisener, C.; Ciborowski, J.

    2010-01-01

    This presentation described an innovative bench-scale technique to characterize oil sand tailings and their impact on sediment oxygen demand (SOD) for future end-pit lake model behaviour. SOD is a dominant contributor to oxygen depletion in wetlands. The function and sustainability of a wetland ecosystem depends on the biochemical processes occurring at the sediment-water interface. The biochemical reactions associated with natural sediment can change with the addition of oil sands processed material (OSPM), which can affect SOD and ecosystem viability. It is important to establishing the biotic and abiotic controls of SOD. In order to evaluate the effectiveness of current wetland reclamation designs, it is important to establish the biotic and abiotic controls of SOD. The REDOX chemistry of fresh tailings sediment (MFT) was measured in this laboratory microcosm to determine the chemical and biological influences, and to study the role of developing microbial communities as new mature fine tailings (MFT) age. The study evaluated the changes in the main chemical, physical and biological populations of the MFT in both aerobic and anaerobic microcosms. A combination of microelectrode arrays and DNA profiling at the tailings water interface was used in the study.

  20. Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond.

    Science.gov (United States)

    Golby, Susanne; Ceri, Howard; Gieg, Lisa M; Chatterjee, Indranil; Marques, Lyriam L R; Turner, Raymond J

    2012-01-01

    Bitumen extraction from the oil sands of Alberta has resulted in millions of cubic meters of waste stored on-site in tailings ponds. Unique microbial ecology is expected in these ponds, which may be key to their bioremediation potential. We considered that direct culturing of microbes from a tailings sample as biofilms could lead to the recovery of microbial communities that provide good representation of the ecology of the tailings. Culturing of mixed species biofilms in vitro using the Calgary Biofilm Device (CBD) under aerobic, microaerobic, and anaerobic growth conditions was successful both with and without the addition of various growth nutrients. Denaturant gradient gel electrophoresis and 16S rRNA gene pyrotag sequencing revealed that unique mixed biofilm communities were recovered under each incubation condition, with the dominant species belonging to Pseudomonas, Thauera, Hydrogenophaga, Rhodoferax, and Acidovorax. This work used an approach that allowed organisms to grow as a biofilm directly from a sample collected of their environment, and the biofilms cultivated in vitro were representative of the endogenous environmental community. For the first time, representative environmental mixed species biofilms have been isolated and grown under laboratory conditions from an oil sands tailings pond environment and a description of their composition is provided.

  1. Oil sands tailings treatment via surface modification of solids with polymers

    Energy Technology Data Exchange (ETDEWEB)

    Soane, D.; Ware, W.; Mahoney, R.; Kincaid, K. [Soane Energy, Cambridge, MA (United States)

    2010-07-01

    Oil sands fine tailings require large containment area and long-term storage. A recent directive has been established to reduce fluid tailings storage by 30 percent by 2012. This PowerPoint presentation described a method of treating oil sands tailings by modifying the surfaces of solids with polymers. The ATA process divided whole tailings into fines and coarse streams. The coarse stream was used to prepare anchor particles with a monolayer of tether polymers. An activator was added to the fine tailings in order to aggregate. The process cause a Velcro-like attraction between the activated fines and the tether-coated anchor particles. The solid ATA matrix trapped the fines and allowed water to drain more easily. Photographs of the process were provided. An analysis of the process demonstrated that 70 percent of the water in the tailings was recovered in less than 5 minutes. The water was clear, with less than 0.2 percent of suspended solids. The process is applicable to live tailings and mature fine tailings (MFT). tabs., figs.

  2. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  3. Ecosystem stress response : understanding effects on the benthic invertebrate community of Alberta oil-sands wetlands

    International Nuclear Information System (INIS)

    Wytrykush, C.M.; Ciborowski, J.J.H.

    2003-01-01

    The environmental stress response of invertebrates was examined using wetlands in the Alberta oil-sands region as a model. Wetlands in this region occur naturally or they have been affected by oil-sands mining process materials such as mine-tailings, or saline process water. These materials can be toxic to aquatic organisms due to their high concentrations of sulphate ions, ammonia, polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids. Wetlands are classified as either young or mature, and as having low or high sediment organic content. This study examined food web dynamics and structure in wetlands using stable isotopes to determine the effects of stress on ecological communities. Primary and secondary production in the wetlands was measured along with invertebrate diversity in order to determine a relationship. The maximum trophic position was determined using stable carbon and nitrogen isotopes to indicate food chain length which is influenced by energetic constraints, ecosystem size and stressors. The study quantifies the dynamics of vital links between the responses to environmental pressures in aquatic systems and the effects on terrestrial ecosystems

  4. Perch population assessment in lakes reclaimed using oil-sands derived material

    International Nuclear Information System (INIS)

    Heuvel, M.R. van den; Dixon, D.G.; Power, M.; Boerger, H.; MacKinnon, M.D.; Meer, T. van

    1995-01-01

    The mining and extraction of petroleum products from oil-sands involves large areas of land and produces enormous volumes of tailings. One possible land reclamation option is to incorporate fine-tailings material into the bottoms of constructed lakes capped with natural surface water. The wet landscape method represents potential risk to aquatic biota-naphthenic acids and PAHs elute from pore water contained in the fine-tailings substrate. In spring 1995 yellow perch were stocked into a large-scale (5ha) experimental pond that consisted of fine-tailings capped with natural water as well as into two other reclaimed ponds that were constructed with oil-sands overburden material. Prior to stocking of perch, ponds had colonized with cyprinids, macrophytes and benthic invertebrates over a two year period. Perch were sampled in fall 1995 for age, condition factor, liver size, gonad size, fecundity, stomach contents, liver mixed-function oxygenase activity (MFO), bile PAH metabolites and plasma steroid hormones. When compared to the source lake, perch in the DP did not show reduced reproductive potential. Perch in all of the reclaimed ponds demonstrated exposure to organic compounds as indicated by marginally induced MFO activity and increased liver size. Exposure to naphthenates and PAHs in water as well as ecological environmental factors will be discussed

  5. Rainbow trout (Oncorhynchus mykiss) detection, avoidance, and chemosensory effects of oil sands process-affected water.

    Science.gov (United States)

    Lari, Ebrahim; Pyle, Greg G

    2017-06-01

    Oil sands process-affected water (OSPW) - a byproduct of the oil sands industry in Northern Alberta, Canada - is currently stored in on-site tailings ponds. The goal of the present study was to investigate the interaction of OSPW with the olfactory system and olfactory-mediated behaviours of fish upon the first encounter with OSPW. The response of rainbow trout (Oncorhynchus mykiss) to different concentrations (0.1, 1, and 10%) of OSPW was studied using a choice maze and electro-olfactography (EOG), respectively. The results of the present study showed that rainbow trout are capable of detecting and avoiding OSPW at a concentration as low as 0.1%. Exposure to 1% OSPW impaired (i.e. reduced sensitivity) the olfactory response of rainbow trout to alarm and food cues within 5 min or less. The results of the present study demonstrated that fish could detect and avoid minute concentrations of OSPW. However, if fish were exposed to OSPW-contaminated water and unable to escape, their olfaction would be impaired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of oil sands waste water on the wood frog (rana sylvatica)

    Energy Technology Data Exchange (ETDEWEB)

    Hersikorn, B.; Smits, J.E. [Saskatchewan Univ., Regina, SK (Canada)

    2007-07-01

    The sustainability of various reclamation strategies can be determined by the growth and health of indigenous amphibians (Wood Frogs). This paper referred to the large quantities of tailings water that are generated by oil sand extraction activities. It presented the results of a study that was conducted in the spring and summer of 2006 and 2007 on reclaimed formation wetlands comprising tailings water. The objective was to understand the impact of these wetlands on native amphibians. Frogs were exposed to wetlands containing oil sands process affected water (OSPW) and reference water (no OSPW). Six experimental trenches were made at one site in the first year. Each trench had 3 enclosures with 50 tadpoles. In the second year, there were 13 sites, including 6 reference and 7 OSPW affected sites, which were classified as old (more than 8 yrs) or young (less than 7 yrs). Four enclosures, with 50 tadpoles each, were placed in each wetland. The study involved the evaluation of growth rate, survival, time to metamorphosis, thyroid hormone concentrations, liver EROD activity, and tissue retinol concentrations. In addition, stable isotopes were used to track carbon flow from primary production plants, through the food chain, to tadpoles and frogs which represent intermediate and higher trophic levels in reclaimed wetlands.

  7. Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P

    2015-10-20

    Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.

  8. On properties of royalty and tax regimes in Alberta's oil sands

    International Nuclear Information System (INIS)

    Plourde, Andre

    2010-01-01

    Simulation models that include royalty and tax provisions are used to examine the distribution between developers and governments of net returns from the development of Alberta's oil sands deposits. A specific focus is to assess the effects on the level and distribution of net revenues associated with a number of changes in assumed revenue and expenditure conditions. Developers typically bear a greater share of the consequences of variations in capital expenditures than they do of changes in operating expenditures, prices, and exchange rates. A comparison across royalty and tax regimes suggest that there is a positive relationship between the level of net revenues estimated to accrue to either developers or governments and the share of the consequences of changes in conditions borne by that party. Some differences across production technologies are noted. The role of the federal government as a fiscal player in oil sands development has shrunk over time. In contrast, under the current regime, the Government of Alberta captures a higher share of net returns and typically bears a greater proportion of the consequences of changes in conditions than at any time since the introduction of an explicit royalty and tax regime in 1997.

  9. Report and recommendations of the task force on tree and shrub planting on active oil sands tailings dams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    In oil sands reclamation operations in Canada there is a conflict between dam safety and the planting of trees and woody shrubs. Indeed, tree planting is being restricted on the downstream slopes of dams to avoid damage to drains and to ensure the integrity of visual and instrumentation monitoring conflicting thus with progressive reclamation. Alberta Environment hired the Oil Sands Research and Information Network (OSRIN), an independent organization which analyzes and interprets available knowledge on soil and water reclamation in the oil sands mining sector, to address this issue and make recommendations. The organization appointed a Task Force which presented its final report in March 2011. The Task Force recommended that the Engineer of Record should be responsible for determining the tree and shrub planting zones and that he should submit his plans to Alberta Environment for approval.

  10. Investigating salt and naphthenic acids interactions in the toxicity of oil sands process water to freshwater invertebrates

    International Nuclear Information System (INIS)

    Turcotte, D.; Kautzman, M.; Wojnarowicz, P.; Cutter, J.; Bird, E.; Liber, K.

    2010-01-01

    The hot water extraction process used to produce bitumens from oil sands produces a large volume of oil sands process water (OSPW) that contain elevated concentrations of naphthenic acids (NA) and salts. Many oil sands reclamation projects are proposing the use of OSPW as part of reconstructed wetlands projects. This study investigated the toxicity of OSPW to freshwater invertebrates. The toxic interactions between NA and salinity on freshwater invertebrates were assessed. Bioassays with laboratory-cultured Ceriodaphnia dubia were conducted to determine the toxicity of OSPW from selected water bodies. The study showed that while the concentrations of NAs and salinity were elevated in OSPW waters that caused toxic responses, the concentrations of salinity ions varied greatly among the OSPW samples. Results of the study suggested that ion composition may be a factor in toxicity. Interactions between NAs and salinity were then assessed by performing bioassays with mixtures representing major ion combinations in OSPW.

  11. Eastern Canadian crude oil supply and its implications for regional energy security

    International Nuclear Information System (INIS)

    Hughes, Larry

    2010-01-01

    Canada has been blessed with immense energy resources; however, their distribution is not uniform. One such example is crude oil, which is found primarily in western Canada. Eastern Canada, consisting of the six eastern-most provinces (Newfoundland and Labrador, New Brunswick, Nova Scotia, Ontario, Prince Edward Island, and Quebec), produce limited quantities of crude oil, most of which is exported to the United States. Ideally, western Canadian crude oil would meet the demands of eastern Canada; however, the North American Free Trade Agreement (NAFTA) and the absence of oil pipelines means that eastern Canada increasingly relies on supplies of crude oil from a small number of oil exporting countries, many with declining production. This paper examines crude oil production, supply, and its refining in eastern Canada. It shows that crude production in the region has reached its peak and that increasing global competition for crude oil will affect energy security in eastern Canada, either through price increases or supply shortages, or both. (author)

  12. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  13. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    Science.gov (United States)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  14. Development of high temperature resistant geomembranes for oil sands secondary containments

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)

    2008-07-01

    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  15. Fueling war : the impact of Canadian oil investment on the conflict in Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, S.

    2002-11-15

    Canadian oil companies have become increasingly involved in oil exploration and development in Columbia over the last 2 years. This paper examined the impact of Canadian oil investment on armed conflict in Columbia, and suggested that there is a strong correlation between regions of mineral wealth and regions of political conflict. The role of Canadian companies in contributing to the escalation of political violence was explored, and the economics of civil war from a theoretical perspective were examined with regards to the financing of rebellion and the role of international investment. The origins and evolution of the civil war in Colombia were outlined. Possibilities for ethical oil investment in Colombia were also explored. The paper supported recent assertions that in order to understand the political economy of civil war, the role of the international private sector must be evaluated. The significance of primary resources as a funding source for armed groups was confirmed, as well as the tendency for conflict to centre on areas of resource wealth in the country. A case study of Talisman Energy's activities in Sudan was also presented. It was suggested that oil companies operating in Colombia must become involved in local development projects to improve education and health, and should also design security measures from a corporate social responsibility perspective. It was concluded that in order to work towards the resolution of armed conflict there the root causes of the conflict, issues such as land reform, social inequality, and the terms of foreign investment must be addressed in addition to the means by which illegal armed actors finance themselves. 73 figs.

  16. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  17. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  18. Microbial turnover and incorporation of organic compounds in oil sand mining reclamation sites

    Science.gov (United States)

    Lappé, M.; Kallmeyer, J.

    2013-12-01

    Microorganisms play an important role in the development of new soils and in the reclamation of disturbed landscapes. Especially in hydrocarbon-contaminated soils their ability to degrade organic matter and pollutants makes them essential to re-establish full ecosystem functionality. Microbes are also involved in the mobilization of nutrients for plant growth and in the production of greenhouse gases. Reclamation sites from oil sand mining activities in Alberta, Canada, contain residual bitumen as well as other hydrocarbons. So, these areas provide a great opportunity to study microbial degradation of residual contaminants from oil sand. To get an impression of degradation rates as well as metabolic pathways, incubation experiments were performed in the lab. We measured microbial turnover (catabolic metabolism) and incorporation (anabolic metabolism) rates of different common organic compounds in samples from differently treated reclamation sites - with plant cover and without plant cover. About 10 g of sample material was suspended in 10 mL of a solution that mimics the in-situ concentration of dissolved ions. Radioactively labelled 14C-acetate was added as a common substrate, whereas 14C-naphthenic acid was chosen to investigate the microbial community's capability to utilize a typical hydrocarbon pollutant in oil sand tailings as a nutrient source. To test for the influence of fertilizers on microbial activity, phosphate, nitrate and potassium were added to some samples in different combinations. Incubations were run over two different time periods (7 and 14 days). At the end of each incubation experiment, the amount of produced 14CO2, 14C incorporated into the cells and the remaining unreacted 14C in the slurry were measured. First results show that most of the added 14C-acetate is used for respiration as it is mostly released as 14CO2. In upper soil layers only about 3% of 14C is incorporated into cells, whereas in deeper horizons with lower cell abundances

  19. Canadian firm contains huge oil spill in Northern Russia

    International Nuclear Information System (INIS)

    Gray, B.

    1997-01-01

    The Kharyaga-Usink pipeline, 1400 km northeast of Moscow, suffered a major failure in the fall of 1994, releasing some 100,000 tonnes of oil (three times more than the Exxon Valdez) into the frozen tundra. It was considered by environmental groups as one of the worst disasters of its kind. The oil threatened to seep into the nearby rivers and eventually into the Barents Sea. After a delay of some three months AGRA Earth and Environmental of Calgary, an engineering consulting firm, was called in to inspect the damage and to make recommendations for a successful cleanup operation. A multi-disciplinary emergency response team was formed to assess the environmental and socio-economic impacts of the spill, the state of the existing pipeline, and the Russian plans for spill containment and recovery. Community consultation, probably the first in Russia, was part of the evaluation, culminating in a three-volume appraisal report containing detailed recommendation on how to properly contain the spill. On the strength of the report the World Bank and the European Bank for Reconstruction and Development approved loans to the Russian Federation totaling 145 million dollars to undertake the work of pipeline restoration. Construction of the uniquely-designed dams as well as the Russian-pioneered siphon-dams was done by international contractors and maintained throughout the breakup period. A new pipeline is also being constructed to prevent future leaks

  20. Using Epiphytic Lichens to Elucidate the Sources and Spatial Distribution of Inorganic Air Pollution in the Athabasca Oil Sands Region

    Science.gov (United States)

    Landis, M.; Graney, J. R.; Pancras, P.; Krupa, S.; Edgerton, E.; Puckett, K.; Percy, K.

    2013-12-01

    The Wood Buffalo Environmental Association (WBEA) conducted studies to document the geographic patterns of atmospheric deposition of sulfur (S) and nitrogen (N) in the Athabasca Oil Sands Region (AOSR) using epiphytic lichens as bioindicators of atmospheric pollution. Epiphytic lichen samples (Hypogymnia physodes) were collected from 44 locations in 2002, 359 locations in 2008, and 21 locations in 2011 within the AOSR. A subset of samples from 2002 (15) and 2008 (121); and all the samples from 2011 were microwave extracted and analyzed for a comprehensive suite of trace elements using DRC-ICPMS. In addition, source profiles were developed for samples from a variety of available process stacks, heavy duty diesel fleet vehicles, bulk materials representing the various stages of oil sands processing operations, and forest fires. The lichen monitoring and source profile information were integrated into a receptor modeling framework to elucidate the relative importance of natural and anthropogenic sources to the observed atmospheric deposition of S and N in the AOSR. U.S. EPA implemented statistical receptor models utilized included Positive Matrix Factorization (PMF), Unmix, and Chemical Mass Balance (CMB). The sources uniquely identified that significantly contributed to concentrations of elements in the lichen tissue include: fugitive dust from haul roads, tailing sand, and oil sand mining; oil sand processing; combustion processes; and a general urban regional source. The spatial patterns of CMB, PMF, and Unmix receptor model estimated source impacts on the Hypogymnia physodes tissue concentrations from the oil sand processing and fugitive dust sources had a significant association with the distance from the primary oil sands surface mining operations and related production facilities. The spatial extent of the fugitive dust impact was limited to an approximately 20 km radius around the major mining and oil production facilities, indicative of ground level coarse

  1. Transfer prices and the excess cost of Canadian oil imports: New evidence on Bertrand versus Rugman

    International Nuclear Information System (INIS)

    Bernard, J.-T.; Weiner, R.J.

    1992-01-01

    Transfer pricing can be a source for contention between governments and multinational corporations, with suspicion that transfer prices are set so as to report higher income in countries where corporations are taxed more lightly. The first systematic empirical evidence on transfer pricing in multinational corporations is presented, through examination of the Canadian petroleum industry, which is dominated by foreign multinationals. The data cover the period 1974-84 and allow analysis of the allegation of excess cost paid by Canada for crude oil imports. After taking into account crude oil quality indicators, transaction characteristics, and countries of export, the merging of a comparable set of U.S. and Canadian data demonstrates evidence of transfer-price setting at levels significantly different from arm's-length prices for crude oil imports to Canada from 1974-84. However, the evidence runs contrary to Bertrand's assessment: the crude oil prices for affiliate transactions were found to be, in general, lower than comparable prices for third-party transactions. As to transport costs, the converse was found to be the case, however, the effect is much less important than transfer pricing. The overall result is that transfer prices have worked in Canada's favour. 15 refs., 7 tabs

  2. Canadian upstream oil and gas industry profitability: Historical review and future perspectives [with executive summary

    International Nuclear Information System (INIS)

    1991-09-01

    The profitability of the Canadian upstream oil and gas industry is examined by analyzing return on equity and return on capital invested. By all measures and interpretations, the upstream industry has been unprofitable since the mid-1980s; returns generated are far below the industry's own historical cost of capital, and are inadequate relative to other sectors of the Canadian economy and to international oil and gas companies. This poor profitability is attributed to such factors as: overly optimistic price forecasts and healthy cash flows generated in the early 1980s, which led to excess capital spending; poor returns on capital reflective of the physical limitations of the Western Canadian Sedimentary Basin; high capital and operating costs; and a high royalty burden imposed by provincial governments. The consequences of low profitability include inadequate returns to equity investors, a drop in spending on upstream services such as drilling and exploration, a reduced ability of the industry to generate employment, and an adverse effect on the economy of Alberta. Forecasts indicate that the upstream sector is extremely vulnerable to a scenario of relatively flat prices due to high and increasing operating costs and depletion charges, and the significant royalty payments that still are in effect. Little scope is foreseen for industry profitability to return to acceptable levels over the first half of the 1990s. Reduced royalties have the potential to make a significant contribution to improved profitability. 52 figs., 40 tabs

  3. Impact of the climate change issue on Canadian oil and gas development

    International Nuclear Information System (INIS)

    Hyndman, R.

    2003-01-01

    Canadian policy regarding climate change and the Kyoto Protocol was outlined with reference to what actions must be taken to secure energy supplies and to stabilize greenhouse gas (GHG) emissions. The author presented an economic model projection of global carbon dioxide emissions without the Kyoto agreement and noted the implications for oil and gas. The likely path of global action on climate change would include increased efficiency to slow the growth in demand for energy. However, oil and gas demand is likely to grow for the next two decades or more because of the growing population worldwide and because developing countries should not forgo economic growth to avoid higher energy use. The author argued that Canadian climate change policies are out of line with the global climate change effort because they focus on short-term reductions rather than developing technologies. The policies also divert investment to competing suppliers that do not impose GHG costs, with no global GHG benefit. The author describes, in particular, why Alberta climate change policy rejects the Kyoto target. Natural Resource Canada's approach to large industrial emitters was also discussed along with a proposed policy framework by the Canadian Association of Petroleum Producers (CAPP) for post 2012 and long term certainty. 3 figs

  4. Plucking the Golden Goose: Higher Royalty Rates on the Oil Sands Generate Significant Increases in Government Revenue

    Directory of Open Access Journals (Sweden)

    Kenneth J. McKenzie

    2011-09-01

    Full Text Available The Alberta government’s 2009 New Royalty Framework elicited resistance on the part of the energy industry, leading to subsequent reductions in the royalties imposed on natural gas and conventional oil. However, the oil sands sector, subject to different terms, quickly accepted the new arrangement with little complaint, recognizing it as win-win situation for industry and the government. Under the framework, Alberta recoups much more money in royalties — about $1 billion over the two year period of 2009 and 2010 — without impinging significantly on investment in the oil sands. This brief paper demonstrates that by spreading the financial risks and benefits to everyone involved, the new framework proves it’s possible to generate increased revenue without frightening off future investment. The same model could conceivably be applied to the conventional oil and natural gas sectors.

  5. Oil sands terrestrial habitat and risk modeling for disturbance and reclamation - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Welham, C. [FORRx Consulting Inc., Belcarra, BC (Canada)

    2010-11-15

    The main purpose of this study is to build a framework that includes risk management and strategic decision-making to assess the impact of natural and industrial disturbance on ecosystem products and services and on the existence of habitat for terrestrial species in Alberta's Lower Athabasca planning region. This will include an evaluation of the impact of disturbance, conservation and reclamation activities associated with oil sands development both at the lease and regional levels. The basecase scenario, established in Phase I, includes a dendrochronology study of the link between climate and tree growth in the sub boreal region that comprises oil sands mining, an analysis of habitat availability for 10 wildlife species compared with reclamation activities on the Kearl Lake mine, and an examination of the potential for development of high levels of water stress in recent reclamation plantations at the Kearl Lake mine. Four tree species of the subboreal forests of Alberta and Saskatchewan were considered for the dendrochronology study: the white spruce or Picea glauca, the black spruce or Picea mariana, the jack pine or Pinus banksiana, and the trembling aspen or Populus tremuloides. This study shows that the water stress observed during the year has restricted the radial growth of white spruce and a link has been established between radial growth and increasing season precipitation and summer temperatures. The purposes of the habitat suitability analysis were to list habitats suitability models that could be applied to Alberta boreal forests, distinguish the parameters used in those models that can be simulated with an ecosystem simulation model, simulate the reclamation prescriptions detailed in the Kearl Lake EIA documents with the ecosystem simulation model and generate output suitable for populating each habitat suitability model. The establishment of ecologically viable reclamation plans in the oil sands region can be hard to manage regarding the

  6. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong; Yu, Tong, E-mail: tong.yu@ualberta.ca; Liu, Yang, E-mail: yang.liu@ualberta.ca

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H{sub 2}S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H{sub 2}S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the

  7. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm

    International Nuclear Information System (INIS)

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-01-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H 2 S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. - Graphical abstract: The development of sulfate reducing bacteria (SRB) within Oil Sands Process-affected Water (OSPW) biofilm and the biofilm treatment of OSPW were evaluated by Liu and coworkers. Combined microsensor and molecular biology techniques were utilized in this study. Their results demonstrated that multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H 2 S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. - Highlights: • Biofilm in oil sands wastewater was developed on engineered biocarriers. • Bacterial community and in situ activity of SRB were studied in the biofilm.

  8. Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada

    International Nuclear Information System (INIS)

    Gue, Anita E.; Mayer, Bernhard; Grasby, Stephen E.

    2015-01-01

    Highlights: • Saline groundwater enters the Athabasca and Clearwater rivers in the AOSR via springs. • High TDS is due to subsurface dissolution of Devonian evaporites and carbonates. • Low δ 18 O values, and 3 H and 14 C data suggest some Laurentide glacial meltwater input. • Bacterial sulfate reduction, methanogenesis, and CH 4 oxidation were identified. • Metal and PAH contents are reported; bitumen does not appear to be major influence. - Abstract: The geochemistry of saline spring waters in the Athabasca oil sands region (AOSR) in Alberta (Canada) discharging from Devonian carbonate rocks into the Athabasca and Clearwater rivers was characterized for major ions, trace elements, dissolved gases, and polycyclic aromatic hydrocarbons (PAHs). In addition, stable isotope analyses of H 2 O, SO 4 , dissolved inorganic carbon (DIC), Sr, and CH 4 were used to trace the sources of spring waters and their dissolved solutes, and to identify subsurface processes affecting water chemistry. The spring waters had δ 18 O values as low as −23.5‰, suggesting they are composed of up to 75% Laurentide glacial meltwater. Tritium and radiocarbon age-dating results, analyzed for three spring waters, supported a glacial origin. The high salinity of the spring waters (TDS 7210–51,800 mg/L) was due to dissolution of Devonian evaporite and carbonate deposits in the subsurface. Spring waters were affected by bacterial (dissimilatory) sulfate reduction, methanogenesis, and methane oxidation. Trace elements were present in spring waters at varying concentrations, with only one spring containing several predominant oil sands metals (As, Fe, Mo, Ni, Se, Zn) suggesting bitumen as a source. Five springs contained elements (Al, As, B, Fe, Se) at concentrations exceeding water quality guidelines for the protection of aquatic life. Seven PAHs were detected in spring waters (total PAH concentrations ranged from 7.3 to 273.6 ng/L), but most springs contained a maximum of two PAHs

  9. Key performance indicators for electric mining shovels and oil sands diggability

    Science.gov (United States)

    Patnayak, Sibabrata

    A shovel performance monitoring study was undertaken in two oil sands mines operated by Syncrude Canada Ltd. using performance data obtained from P&H 4100 TS and BOSS electric mining shovels. One year of shovel performance data along with geological, geotechnical, and climatic data were analyzed. The approach adopted was to use current and voltage data collected from hoist and crowd motors and to calculate the energy and/or power associated with digging. Analysis of performance data along with digital video records of operating shovels indicated that hoist and crowd motor voltages and currents can be used to identify the beginning and the end of individual dig cycles. A dig cycle identification algorithm was developed. Performance indicators such as dig cycle time, hoist motor energy and power, and crowd motor energy and power were determined. The shovel performance indicators provide important insight into how geology, equipment and operators affect the digging efficiency. The hoist motor power is a useful key performance indicator for assessing diggability. Hoist motor energy consumption per tonne of material excavated and the number of dig cycles required for loading a truck can be useful key performance indicators for assessing operator performance and productivity. Analysis of performance data along with operators team schedules showed that the performance of a shovel can be significantly influenced by the operator's digging technique while digging uniform material. Up to 25% variability in hoist motor power consumption and 50% variability in productivity was noted between different operators. Shovel type and dipper teeth configuration can also influence the power draw on electrical motors during digging. There is no common agreement existing on the influence of bitumen content on oil sands diggability. By comparing the hoist motor power consumption, it was found that the rich ore was more difficult to dig than the lean ore. Similarly, estuarine ore was more

  10. A Critical Review of the Oil and Tar Sands of the Dahomey Basin

    International Nuclear Information System (INIS)

    Osundina, A.; Mustapha, A.; Nzewi, T.

    2002-01-01

    The Benin Basin previously referred to as the Dahomey embayment has been designated as a frontier basin within Nigeria due to its potentially high prospects, but comparatively low exploitation campaign to date. The basin offers a promising opportunity for heavy oil exploration in a narrow belt extending westward from Edo State to the republic of Benin; while offshore, there are high prospects for finding more conventional hydrocarbon.The eastern Dahomey embayment is known to have an extensive reserve of hydrocarbons (bitumen and tar sands). The sediments occur in a 5 8 km belt stretching 120km from the fringes of Lagos State through Ogun, Ondo and Edo States. The estimated reserve potentials exceed 30 billion barrels of oil equivalent.Recently acquired seismic data in OPL 309 and 310, and subsequent drilling of 2 wells on the narrow continental shelf, have shown the presence of closed structures over Basement Highs and other related structural styles in the basin and confirm that conventional light oils and condensates hydrocarbons occur in commercial quantity. These hydrocarbons are reservoired in stratigraphic sequences of Albian Cenomanian age.This paper hopes to expose the hidden riches of this Basin and hopefully get the attention of the big players in refocusing their interests in the basin that attracted attention of the early petroleum explorers to Nigeria approximately 100 years ago

  11. Economic and environmental effects of the FQD on crude oil production from tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; De Buck, A.; Afman, M. [CE Delft, Delft (Netherlands); Van den Berg, J.; Otten, G.J. [Carbon Matters, Den Haag (Netherlands)

    2013-05-15

    The production of unconventional crudes in Canada and Venezuela and exports of these crudes to the EU are investigated. In addition the potential economic and environmental impact of the proposed EU FQD measures (Fuel Quality Directive) on the production of crudes from tar sands and on new tar sand exploration projects are examined. CE Delft has analysed the impact by using a dedicated cost model. For existing projects, the model determines the effect on the basis of marginal production costs. For planned projects the model used the net present value (NPV) of proposed investments. The impacts were determined for a range of crude oil prices and FQD price effects. Combined, for existing and new projects together, the maximum effect would be at a price level at 60 USD/bbl, with savings of up to 19 Mt CO2/y at an FQD price differential of 3 euro/bbl. This overall effect would be substantial and come on top of the total emission reduction effect of the FQD of 60 Mt CO2/y, which will be achieved mostly by the blending of low-carbon fuels and reduced flaring and venting. As part of the reduction of transport greenhouse gas (GHG) emissions, the revised FQD obliges fuel suppliers to reduce these emissions by 6% by 2020 on a well-to-wheel basis. The EU is currently developing a methodology to differentiate fossil fuels on the basis of feedstock and GHG emissions. In the proposal, diesel produced from tar sands, has been given a default emission value of 108.5 gCO2 eq/MJ, while diesel from conventional crude was set at 89.1 gCO2 eq/MJ. The Commission's proposal is currently undergoing an impact assessment and is expected to be resubmitted to the Council later this year (2013)

  12. Mature fine tailings from oil sands processing harbour diverse methanogenic communities

    Energy Technology Data Exchange (ETDEWEB)

    Penner, T.J.; Foght, J.M. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences

    2010-06-15

    Syncrude's bitumen extraction process produces a fine tailings slurry consisting of water, sand, fines, residual bitumen and naphtha diluent. Following rapid settling of the sand fraction, the tailings are stored in large settling ponds to form a thick mature fine tailings (MFT). This paper discussed the potential benefits of methane production on management of the settling basins. Enhanced methanogenesis accelerates densification and improves the rheological properties of MFT. In this study molecular techniques were used to characterize the methanogenic communities in uncultivated MFT samples to determine the diversity present in the Mildred Lake Settling Basin (MLSB) and West In-Pit tailings deposit. The flux of methane is currently estimated at about 40 million L/day at the MLSB. Clone libraries of amplified archaeal and bacterial 16S rRNA genes were created in order to analyze the methanogenic consortia in MFT samples from depth profiles in the 2 tailings deposits. The archaeal sequences, whose closest matches were primarily cultivated methanogens, were comparable within and between basins and were mostly affiliated with acetoclastic Methanosaeta spp. However, bacterial clone libraries were diverse, with most sequences relating to Proteobacteria, including some presumptive nitrate-, iron-, or sulfate-reducing, hydrocarbon-degrading genera. The study showed that MFT consists of a diverse community of prokaryotes that may be responsible for producing methane from substrates indigenous to the MFT. These findings contribute to a better understanding of the biogenesis of methane and densification of MFT in oil sands tailings deposits. The results from this study will help determine strategies to control and exploit microbial activities in these large systems and improve the understanding of methanogenic environments. 43 refs., 2 tabs., 3 figs.

  13. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    Science.gov (United States)

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Assessment of oil sand process water toxicity in wetlands of northern Alberta using Chironomid mentum deformities

    Energy Technology Data Exchange (ETDEWEB)

    Whelly, M. P.; Ciborowski, J. J. H. [Windsor, Univ., Windsor, ON (Canada)

    1998-07-01

    The effects of oil sands process water (OSPW) on aquatic invertebrates in wetlands near Fort McMurray, Alberta, are assessed. Principal components analysis and cluster analysis of environmental characteristics of 15 wetlands were used to identify three pairs of environmentally similar wetlands that differed mainly in exposure to or absence of OSPW. Large larvae of Chironomidae were collected and examined for mentum deformities (missing or extra teeth) for use as a biomarker. Invertebrate taxa richness and abundance was only moderately lower at OSPW -affected sites than at corresponding reference sites. The incidence of teeth deformities in midges (Chironomidae spp.) from OSPW-affected and corresponding reference wetlands was found to be moderate, and homogeneous among sites and between paired reference and OSPW-affected wetlands. This finding led to the conclusion that the suspected trace metals and PAHs may not be bioavailable in these highly humic wetlands.

  15. Assessment of oil sand process water toxicity in wetlands of northern Alberta using Chironomid mentum deformities

    Energy Technology Data Exchange (ETDEWEB)

    Whelly, M. P.; Ciborowski, J. J. H. [Windsor, Univ., Windsor, ON (Canada)

    1998-12-31

    The effects of oil sands process water (OSPW) on aquatic invertebrates in wetlands near Fort McMurray, Alberta, are assessed. Principal components analysis and cluster analysis of environmental characteristics of 15 wetlands were used to identify three pairs of environmentally similar wetlands that differed mainly in exposure to or absence of OSPW. Large larvae of Chironomidae were collected and examined for mentum deformities (missing or extra teeth) for use as a biomarker. Invertebrate taxa richness and abundance was only moderately lower at OSPW -affected sites than at corresponding reference sites. The incidence of teeth deformities in midges (Chironomidae spp.) from OSPW-affected and corresponding reference wetlands was found to be moderate, and homogeneous among sites and between paired reference and OSPW-affected wetlands. This finding led to the conclusion that the suspected trace metals and PAHs may not be bioavailable in these highly humic wetlands.

  16. Assessment of oil sand process water toxicity in wetlands of northern Alberta using Chironomid mentum deformities

    International Nuclear Information System (INIS)

    Whelly, M. P.; Ciborowski, J. J. H.

    1998-01-01

    The effects of oil sands process water (OSPW) on aquatic invertebrates in wetlands near Fort McMurray, Alberta, are assessed. Principal components analysis and cluster analysis of environmental characteristics of 15 wetlands were used to identify three pairs of environmentally similar wetlands that differed mainly in exposure to or absence of OSPW. Large larvae of Chironomidae were collected and examined for mentum deformities (missing or extra teeth) for use as a biomarker. Invertebrate taxa richness and abundance was only moderately lower at OSPW -affected sites than at corresponding reference sites. The incidence of teeth deformities in midges (Chironomidae spp.) from OSPW-affected and corresponding reference wetlands was found to be moderate, and homogeneous among sites and between paired reference and OSPW-affected wetlands. This finding led to the conclusion that the suspected trace metals and PAHs may not be bioavailable in these highly humic wetlands

  17. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, Kathryn A. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9 (Canada); Lindsay, Matthew B.J., E-mail: matt.lindsay@usask.ca [Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cruz-Hernández, Pablo [Department of Geology, University of Huelva, Campus ‘El Carmen’, E-21071 Huelva (Spain); Halferdahl, Geoffrey M. [Environmental Research and Development, Syncrude Canada Limited, Edmonton, Alberta T6N 1H4 (Canada)

    2016-06-15

    Geochemical characteristics of fluid fine tailings (FFT) were examined in Base Mine Lake (BML), which is the first full-scale demonstration oil sands end pit lake (EPL) in northern Alberta, Canada. Approximately 186 Mm{sup 3} of FFT was deposited between 1994 and 2012, before BML was established on December 31, 2012. Bulk FFT samples (n = 588) were collected in July and August 2013 at various depths at 15 sampling sites. Temperature, solid content, electrical conductivity (EC), pH, Eh and alkalinity were measured for all samples. Detailed geochemical analyses were performed on a subset of samples (n = 284). Pore-water pH decreased with depth by approximately 0.5 within the upper 10 m of the FFT. Major pore-water constituents included Na (880 ± 96 mg L{sup −1}) and Cl (560 ± 95 mg L{sup −1}); Ca (19 ± 4.1 mg L{sup −1}), Mg (11 ± 2.0 mg L{sup −1}), K (16 ± 2.3 mg L{sup −1}) and NH{sub 3} (9.9 ± 4.7 mg L{sup −1}) were consistently observed. Iron and Mn concentrations were low within FFT pore water, whereas SO{sub 4} concentrations decreased sharply across the FFT–water interface. Geochemical modeling indicated that FeS{sub (s)} precipitation was favoured under SO{sub 4}-reducing conditions. Pore water was also under-saturated with respect to gypsum [CaSO{sub 4}·2H{sub 2}O], and near saturation with respect to calcite [CaCO{sub 3}], dolomite [CaMg(CO{sub 3}){sub 2}] and siderite [FeCO{sub 3}]. X-ray diffraction (XRD) suggested that carbonate-mineral dissolution largely depleted calcite and dolomite. X-ray absorption near edge structure (XANES) spectroscopy revealed the presence of FeS{sub (s)}, pyrite [FeS{sub 2}], and siderite. Carbonate-mineral dissolution and secondary mineral precipitation have likely contributed to FFT dewatering and settlement. However, the long-term importance of these processes within EPLs remains unknown. These results provide a reference for assessing the long-term geochemical evolution of oil sands EPLs, and offer

  18. Molten salt reactors and the oil sands: odd couple or key to north american energy independence?

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, D., E-mail: d_leblanc@rogers.com [Ottawa Valley Research Associates Ltd., Ottawa, Ontario (Canada); Quesada, M.; Popoff, C.; Way, D. [Penumbra Energy, Calgary, Alberta (Canada)

    2012-07-01

    The use of nuclear power to aid oil sands development has often been proposed largely due to the virtual elimination of natural gas use and thus a large reduction in GHG emissions. Nuclear power can replace natural gas for process steam production (SAGD) and electricity generation but also potentially for hydrogen production to upgrade bitumen for pipeline transit, synthetic crude production and even at the final refinery stage. Prior candidates included CANDU and gas cooled Pebble Bed Reactors. The case for CANDU use can be shown to be marginally economic with a proven technology but with an uncertainty of current construction costs and too large a unit size (~2400 MWth). PBRs offered modest theoretical cost savings, smaller unit size and the ability to offer higher temperatures needed for thermochemical hydrogen production from water. Interest in PBRs however has greatly waned with the cancellation of their major South African development program which highlighted the severe challenges of helium as a coolant and TRISO fuel manufacturing. More recently, Small Modular Reactors based on scaled down light water reactor technology have attracted interest but are unlikely to compete economically outside of niche applications. However, a 'new' reactor option, the Molten Salt Reactor, has been rapidly gaining momentum over the past decade. This 'new' technology was actually developed over 50 years ago as a thorium breeder reactor to compete with the sodium cooled fast breeder reactor (U-Pu cycle). During this time two molten salt test reactors were constructed. A modern version however would likely be a simpler converter design using Low Enriched Uranium but needing only a small fraction the uranium resources of LWRs or CANDUs. Besides resource sustainability, these unique designs offer large potential improvements in the areas of capital costs, safety and nuclear waste. This presentation will explain the unique attributes and advantages of these

  19. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Gardner Costa, J.; Ciborowski, J.

    2010-01-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  20. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Slama, C.; Gardner Costa, J.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  1. Application of TIE's in assessing toxicity associated with oil sands process waters

    International Nuclear Information System (INIS)

    MacKinnon, M.

    1998-01-01

    The hot water digestion process which separates bitumen from oil sands produces large volumes of process-affected waters which are extremely toxic to aquatic organisms. At Syncrude Canada's northeastern Alberta plant, the toxic waters are contained on the site and none are discharged. Organic acids, hydrocarbons and salts are leached into the tailings waters. A toxicity identification evaluation (TIE) test was used to confirm the main contributors to the acute toxicity in these waters. A battery bioassay approach as well as field and laboratory testing was used to understand the source, pathway and duration of the toxicity. Bioassays helped in developing ways in which to mitigate toxicity issues in both reclamation and operational waters. It was demonstrated that natural bioremediation of process-affected waters can reduce acute and chronic toxicity. The long term reclamation impacts of these waters has yet to be determined

  2. Application of toxicity testing in the evaluation of reclamation options for oil sands fine tails

    International Nuclear Information System (INIS)

    Nelson, L.R.; MacKinnon, M.; Gulley, J.R.

    1993-01-01

    The hot water process for the extraction of bitumen from oil sands leads to the production of large volumes of wastewater and the formation of a large inventory of fine clay tailings. This fine tailings material and its associated water are acutely toxic to various aquatic test organisms during bioassays. An overview is presented of toxicity testing at Syncrude and Suncor, the application of toxicity testing to fine tailings management, and the role in reclamation planning. The main acutely toxic component of the tailings is the polar organic acid fraction, specifically naphthanates. These naphthanates are readily degraded biologically by indigenous microbial populations. Toxicity testing is aimed at assessing the degree of both acute and chronic toxicity and the long term potential for the input of toxins into the environment from various proposed reclamation measures. 28 refs., 6 figs., 2 tabs

  3. Managing regional cumulative effects of oil sands development in Alberta, Canada

    International Nuclear Information System (INIS)

    Spaling, H.; Zwier, J.

    2000-01-01

    This paper demonstrates an approach to regional cumulative effects management using the case of oil sands development in Alberta, Canada. The 17 existing, approved, or planned projects, all concentrated in a relatively small region, pose significant challenges for conducting and reviewing cumulative effects assessment (CEA) on a project-by-project basis. In response, stakeholders have initiated a regional cumulative effects management system that is among the first such initiatives anywhere. Advantages of this system include (1) more efficient gathering and sharing of information, including a common regional database, (2) setting acceptable regional environmental thresholds for all projects, (3) collaborative assessment of similar cumulative effects from related projects, (4) co-ordinated regulatory review and approval process for overlapping CEAs, and (5) institutional empowerment from a Regional Sustainable Development Strategy administered by a public authority. This case provides a model for integrating project-based CEA with regional management of cumulative effects. (author)

  4. The effects of oil sands wastewater on fish resulting from exposure to sub-lethal concentrations

    International Nuclear Information System (INIS)

    Birkholz, D.A.; Goudey, J.S.; Balch, G.C.; Nelson, L.R.; MacKinnon, M.

    1995-01-01

    Rainbow trout, Oncorhynchus mykiss, were exposed to sub-lethal concentrations of oil sands wastewater in flow through laboratory experiments as well as to artificial ponds containing sub-lethal concentrations of tailings pond water and fine tails in order to study the viability of the wet landscape remediation option. Large (200--300 g) fish were used for all the exposures in this preliminary study and the following data were collected: blood cell counts, sex hormone concentrations, sexual maturation, stress protein concentrations, PAH-metabolites in bile, condition factors, liver somatic indices, mixed function oxygenase induction, PAHs in muscle, external condition and the condition of internal organs. The data obtained from this study revealed no adverse effects upon fish during extended field exposures. Given similar exposure conditions in the release waters of a wet landscape reclamation, the data suggest that there may be no adverse effects upon fish, however, longer term studies, other indicator organisms and additional chronic tests should be conducted

  5. Relating zoobenthic and emergent terrestrial insect production to tree swallow (Tachycineta bicolor) nestling diet in oil sands wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Thoms, J.L.; Martin, J.P.; Ciborowski, J.J. [Windsor Univ., Windsor, ON (Canada); Harms, N.J.; Smits, J.E. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    This study examined the influence of oil sands process materials (OSPM) on wetland macroinvertebrate community composition and production. Tree swallows are known to inhabit constructed nest boxes and forage near their nest on flying insects of terrestrial and aquatic origin. Therefore, this study evaluated the structure of wetland food webs and how it relates to the transfer of production from aquatic sediments to nestling tree swallows. The study involved 2 reference and 2 oil sands affected wetlands. Exuviae of emerging aquatic and flying insects from floating and sticky traps were collected every 3 days during the tree swallow nestling period in order to estimate benthic invertebrate composition and production. The tree swallow nest boxes, placed around the perimeter of the wetlands in spring were monitored during egg laying and incubation. Diets of the 10-14 day-old nestlings were determined by placing a ligature around the neck of each nestling, preventing the passage of food into the esophagus for 45 min. Food boluses were collected from nestlings fed by the parents during that time. The study showed that although oil sands-affected wetlands had lower aerial insect abundance, they represented over half of the total boluses collected. It was concluded that this study will help determine the ecological viability of oil sands-affected wetlands and their capability of supporting terrestrial predators that rely on zoobenthos.

  6. Spatial and temporal distribution of ambient nitric acid and ammonia in the Athabasca Oil Sands Region, Alberta

    Science.gov (United States)

    A. Bytnerowicz; W. Fraczek; S. Schilling; D. Alexander

    2010-01-01

    Monthly average ambient concentrations of gaseous nitric acid (HNO3) and ammonia (NH3) were monitored at the Athabasca Oils Sands Region (AOSR), Alberta, Canada, between May 2005 and September 2008. Generally, concentrations of both pollutants were elevated and highly variable in space and time. The highest atmospheric...

  7. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water.

    Science.gov (United States)

    Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B

    2016-11-01

    Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  8. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada

    Science.gov (United States)

    Shaun A. Watmough; Colin J. Whitfield; Mark E. Fenn

    2014-01-01

    Industrial activities in the oil sands region of Alberta, Canada have resulted in greatly elevated emissions of SO2 and N (NOx and NH3) and there are concerns over possible widespread ecosystem acidification. Acid sensitive soils in the region are common and have very low base cation weathering rates...

  9. Thermochemical methods for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Jose Bonifacio, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Nitrogen Generating System (SGN in Portuguese) is a thermochemical method first developed for cleaning and removal of paraffin deposits in production and export pipelines. SGN is based on a redox chemical reaction between two salts which is catalyzed in acidic pH. The reaction is strongly exothermic and its products are nitrogen, sodium chloride, water and heat. All reaction products are harmless to the environment. In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, developed at PETROBRAS Research Center (CENPES), was based on SGN technology which has been adapted for cleaning contaminated sand and recovering of spilled oil. By combining simultaneous effects of the SGN treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand and removed oil can be securely returned to refining process. SGN technology has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in loco right after a contamination event. (author)

  10. Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands

    International Nuclear Information System (INIS)

    Hersikorn, Blair D.; Smits, Judit E.G.

    2011-01-01

    The wet landscape approach to oil sands tailings reclamation in the Athabasca Oil Sands region involves creating wetlands from fluid tailings in mined-out pits. We measured time to metamorphosis, thyroid hormone status, and detoxification enzyme (EROD) induction in Wood frog (Lithobates sylvaticus) tadpoles raised on reclaimed oil sands wetlands of different ages [young (≤7 yr) vs. old (>7 yr)] and compared data with tadpoles raised on reference (control) wetlands. Metamorphosis was delayed or never occurred in tadpoles raised in young tailings; those exposed to older tailings developed similarly to those in reference wetlands. Thyroid hormone disruption likely played an important role in the metamorphosis delay as the T3:T4 ratio was lowest in tadpoles raised in young, tailings-affected wetlands. Our findings suggest tailings wetlands become less toxic with age, and that these amphibians will be able to complete their life cycle in tailing wetlands that have sufficiently detoxified with age. - This work provides guidance for reclamation of oil sands tailings and shows the usefulness of frogs and caging studies in environmental toxicology.

  11. Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Hersikorn, Blair D., E-mail: blair.hersikorn@usask.c [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3 (Canada); Smits, Judit E.G., E-mail: judit.smits@ucalgary.c [Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6 (Canada)

    2011-02-15

    The wet landscape approach to oil sands tailings reclamation in the Athabasca Oil Sands region involves creating wetlands from fluid tailings in mined-out pits. We measured time to metamorphosis, thyroid hormone status, and detoxification enzyme (EROD) induction in Wood frog (Lithobates sylvaticus) tadpoles raised on reclaimed oil sands wetlands of different ages [young ({<=}7 yr) vs. old (>7 yr)] and compared data with tadpoles raised on reference (control) wetlands. Metamorphosis was delayed or never occurred in tadpoles raised in young tailings; those exposed to older tailings developed similarly to those in reference wetlands. Thyroid hormone disruption likely played an important role in the metamorphosis delay as the T3:T4 ratio was lowest in tadpoles raised in young, tailings-affected wetlands. Our findings suggest tailings wetlands become less toxic with age, and that these amphibians will be able to complete their life cycle in tailing wetlands that have sufficiently detoxified with age. - This work provides guidance for reclamation of oil sands tailings and shows the usefulness of frogs and caging studies in environmental toxicology.

  12. Breaking the bottleneck : how best can we bring oil sands products to demanding markets

    International Nuclear Information System (INIS)

    Prince, D.

    2006-01-01

    Alberta-based Altex Energy Ltd. is pursuing the development of an innovative heavy oil/bitumen pipeline from Alberta to the United States Gulf Coast (USGC). This energy infrastructure development company is led by a proven management team that developed and constructed the 3,700 km long Alliance Pipeline system. This presentation included a map of the $3.7 billion dollar Alliance Pipeline that identified the mainline compressor stations, lateral compressor stations, area offices and head offices. It was noted that oilsands will represent the most significant resource plays for many years. A graph indicating bitumen supply forecasts from 2005 to 2020 suggests that bitumen production will have exponential growth over the foreseeable future. Labor, materials and infrastructure limitations will create barriers to oilsands growth, as will uncertain market access. For that reason, assured pipeline capacity is needed along with an infrastructure to refineries and a favourable competitive balance for Canadian producers. The presentation addressed issues regarding marketing choices and the challenges of upgrading in Alberta. The economics of diluting heavy oil was also discussed along with industry response to the diluent challenge. Altex's proposed solution of a new direct greenfield pipeline from Alberta to the USGC would reach the largest refinery market in North America as well as the largest heavy oil/bitumen consuming regions. The Altex solution would be complementary to heavy oil/bitumen in Alberta. The proprietary pipeline technology permits alternative diluents, eliminating much of the diluent penalty. It mitigates the risks of upgrading in Alberta and competes on a cost basis with other expansion alternatives. The Altex pipeline system eliminates the need for costly condensate diluent, but accepts all current diluents. It transports up to 90 per cent more bitumen than clean diluted bitumen in a conventional pipeline. It can also transport as much as 175 per cent

  13. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  14. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    Science.gov (United States)

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-03

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  15. Cultural keystone species in oil sands mine reclamation, Fort McKay, Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, A.; Straker, J. [Stantec Ltd., Sidney, BC (Canada)

    2009-07-01

    Cultural keystone species (CKS) shape the cultural identify of people through the roles they have in diet, material and spiritual practices. The use of the CKS concept is regarded as a method of addressing linked social and ecological issues. This paper presented the results of using the CKS model in the indigenous community of Fort McKay, Alberta to address, social, ecological and spiritual values in regional mine-land reclamation. Fort McKay is at the epicenter of the existing mine developments. Its residents regard human and environmental health to be be linked and therefore experience the effects of development and subsequent reclamation on both cultural and ecological levels. The community is actively engaged in working with the local mining companies on issues of mine reclamation design. In order to hold meaning to the local people, oil sand operators used the CKS concept in their reclamation efforts to take into account ecological functionality and also address the linked social factors. Five CKS were identified through a literature review and extensive community interviews. The list includes moose, cranberry, blueberry, ratroot and beaver. These 5 CKS were used to focus discussions and make recommendations for relevant land reclamation within Fort McKay traditional territory. The project has influenced the way both the community and oil sands operators engage with reclamation. Lessons learned from this process will help direct reclamation activities on other portions of traditional territory, while offering guidance to other regional developers for addressing cultural values in reclamation on their leases. 15 refs., 1 fig.

  16. Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

    International Nuclear Information System (INIS)

    MacDonald, Gillian Z.; Hogan, Natacha S.; Köllner, Bernd; Thorpe, Karen L.; Phalen, Laura J.; Wagner, Brian D.; Heuvel, Michael R. van den

    2013-01-01

    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5 d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose × A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells.

  17. Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Gillian Z.; Hogan, Natacha S. [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada); Koellner, Bernd [Friedrich Loeffler Institute, Federal Research Institute of Animal Health, Institute of Immunology, Greifswald (Germany); Thorpe, Karen L.; Phalen, Laura J. [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada); Wagner, Brian D. [Department of Chemistry, University of Prince Edward Island, Charlottetown (Canada); Heuvel, Michael R. van den, E-mail: mheuvel@upei.ca [Canadian Rivers Institute, Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI (Canada)

    2013-01-15

    Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5 d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose Multiplication-Sign A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells.

  18. Canadian oil and gas industry competitiveness and financial performance update 2002

    International Nuclear Information System (INIS)

    Tertzakian, P.; Baynton, K.

    2002-08-01

    This report presents an independent assessment of profitability in the upstream Canadian petroleum industry. The upstream sector includes exploration and production of oil and gas reserves. This report offers a historical and a forward looking perspective on the financial performance of the industry in 2001. The performance of the industry is compared with other industries in Canada and around the world. The report is divided into the following 4 sections: (1) how capital flows in the Canadian upstream oil and gas economy, (2) the analysis of sector profitability based on the efficiency of capital flow in section 1, (3) how the profitability of the Canadian upstream oil and gas sector stands up compared to other industries, and (4) appendices and other supplementary information. It was noted that as geologic basins are developed, non-renewable resources continue to become more capital intense, a phenomenon that is very evident in the Western Canada Sedimentary Basin. The industry must provide financial incentives for investors to participate in exploration and development. The return on capital must exceed the cost of capital in order to maintain that incentive. The principal findings of this report include: (1) a higher than average uncertainty and volatility expected in 2003, (2) operating costs vary with production, but finding and developing costs are still increasing, (3) declining conventional reserves, (4) growing non-conventional expenditures, (5) current taxes cut into margins, (6) cost of capital only achievable with firm commodity prices, (7) in comparison to other industries, years 2000 and 2001 are exceptional for the industry with high commodity prices catalyzing returns greater than other countries. tabs., figs

  19. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Evaporation of Arabian light crude oil spilled on sea and on beach sands : influence of solar radiation and wind velocity

    International Nuclear Information System (INIS)

    Bergueiro, J.R.; Marti, A.; Fuertes, A.; Moreno, S.; Guijarro, S.

    1998-01-01

    The evaporation of crude oil resulting from a spill on sea water was studied to develop a simulation model. Evaporation takes place within a complex process of mass and energy transfer. The effects of physical and chemical variables (such as wind velocity and direct and diffused solar radiation) and the environmental conditions of the spillage were also considered. Arabian crude oil was used in the simulation model for crude oil spillage on sea water. An equation for the evaporation process was used to correlate the evaporated fraction of oil as a function of time. The area of spreading was determined as a function of the dominant stage at each moment of spreading. The evaporation of spilled crude oil on beach sand consisting of three different particle sizes was also studied and used for a simulation model for crude oil spillage on a polluted beach. 7 refs., 6 tabs., 10 figs

  1. Impacts of oil sands process water on fen plants: Implications for plant selection in required reclamation projects

    International Nuclear Information System (INIS)

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D.

    2012-01-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. - Highlights: ► Fen plant growth was assessed under groundwater discharges of oil sands process water. ► Sedge and grass species were not stressed after two growing seasons in greenhouse. ► Carex species and Triglochin maritima would be helpful in created contaminated fens. ► In dry conditions, contaminated groundwater discharge was detrimental for mosses. ► Campylium stellatum would be the best choice in created fens with contaminated water. - Sedges and grasses tolerated the contact with oil sands process water and could probably grow well in contaminated created fens, but mosses were particularly affected under dry conditions.

  2. Bitumen extraction from oil sands ore-water slurry using CaO (lime) and or ozone

    Energy Technology Data Exchange (ETDEWEB)

    Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada); Burkus, Z.; Moschopedis, S.E.; Ozum, B. [Apex Engineering Inc., Calvert City, KY (United States)

    2008-10-15

    Reductions in the surface and interfacial tensions in oil sands ore-water slurry systems improve bitumen extraction processes from oil sands ore structures and promote the attachment of air bubbles to liberated bitumen droplets. This study provided details of a non-caustic bitumen extraction process where oil sands slurries were conditioned by bitumen asphaltenes modified to act as surfactants. Oil sands ore-water slurry extraction processes were optimized by adding lime (CaO) and oxidizing bitumen asphaltenes with ozone (O{sub 3}). Experiments were conducted using oil sands ore and process water samples from Alberta. Extraction tests were performed to investigate the effects of various CaO and O{sub 3} dosages and treatment retention times on bitumen extraction efficiency on operating temperatures of 20, 35 and 50 degrees C. A Dean-Stark extraction apparatus was used to determine the amount of bitumen contained in the ore, froth, and in left-over tailings. Process water and release water chemistry were also monitored. Bitumen extraction efficiency was defined as the percentage of bitumen recovered in the resulting froth. Use of the slurries allowed high extraction efficiencies at a temperature of 35 degrees C. Energy consumption and carbon dioxide (CO{sub 2}) emissions were also reduced. The study showed that both additions resulted in significant improvements in bitumen extraction efficiency. Use of the technique also eliminated the accumulation of Na{sup +} ions in produced water. It was concluded that further tests are needed in order to commercialize the CaO and O{sub 3} based techniques. 14 refs., 1 tab., 4 figs.

  3. Abstracts of Go-Expo 2003 : Gas and oil exposition and Canadian international petroleum conference 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Go-Expo 2003 gas and oil exposition, held in conjunction with the Canadian international petroleum conference, showcased some of the newest technologies, products and services available to the petroleum industry. The more than 30 presentations featured case studies on new technologies pertaining to exploration, drilling and production, environmental strategies, information technology and e-commerce. The presenters represented academia, industry, as well as provincial and territorial governments. Some of the topics discussed included: coalbed methane drilling procedures, upgrading processes, in-line separation techniques, reducing emissions under the Kyoto Protocol, safety and pollution prevention in the industry, water abatement in gas wells, and integrated crisis management.

  4. Potential effects of climate change on hydrology in the oil sands region of Alberta

    International Nuclear Information System (INIS)

    Biftu, G.F.; Beersing, A.; Kalinga, O.A.; Pandit, K.N.

    2007-01-01

    The potential effects of climate change must be incorporated within environmental assessments of oil and gas developments. This paper evaluated the findings of a study examining the potential impacts of climate change on watershed hydrology in the oil sands region of Alberta. Components of the study included a review of trends in climate parameters and their effect on hydrology, as well as statistical analyses of precipitation, temperature and stream flow data of the Athabasca River at both the local and regional scale. The influences of tributary streams were also examined. Results of the study demonstrated that air temperatures have been steadily rising over the past few decades. Recorded annual precipitation also increased during the spring and summer months, and decreased during the winter and fall. Annual mean flows decreased. Results suggested that wet and dry cycles tended to exaggerate trends when only partial segments of the cycles were analyzed. The analysis of flows in the tributary streams indicated a that mean and peak flows were also decreasing. However, an increase in peak winter flows was observed. It was concluded that there is a large degree of uncertainty in the predictions of the hydrologic effects of climate change. 17 refs., 6 tabs

  5. Canadian oil and gas industry competitiveness and financial performance February 2003 update

    International Nuclear Information System (INIS)

    Tertzakian, P.; Baynton, K.

    2003-02-01

    An independent assessment of profitability in the upstream Canadian petroleum industry is presented. The report looks at capital flows in the Canadian upstream oil and gas economy, and analysis of sector profitability based on the efficiency of capital flow. Appendices and other supplementary information are provided along with a commodity price review and forward revisions. It was noted that geopolitical instability is tightening near-term supply expectations. Persistent instability is likely to keep prices high in the first half of 2003. Higher commodity prices implies that industry revenue will increase, particularly for 2003. Structural factors affecting production growth stem from two main issues: basin maturation, and moderating re-investment by oil and gas producers. The report notes that more than 400,000 wells have been drilled in the Western Canada Sedimentary Basin since the early 1950s, and each well, on average, is less productive than its predecessors. Declining productivity is directly related to marginal costs. The report presents a summary of industry cash flow and capital expenditures, including royalties, profitability and amendments to industry taxes. A review of federal resource allowance and royalties is also presented. tabs

  6. Geotechnical field investigation of the rapid densification phenomenon in oil sands mature fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.; Chalaturnyk, R.J.; Scott, J.D.; Cyre, G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; MacKinnon, M. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2002-07-01

    The Mildred Lake Settling Basin (MLSB) is an oil sand tailings pond with a water area of about 11 square km and a maximum depth of mature fine tailings (MFT) of about 50 m, rendering it Syncrude's largest disposal site for tailings. Syncrude began storing the MFT in 1978 but in recent years there has been a sharp increase in the consolidation of the fine tailings, creating pumping challenges in the transfer of tailings from the MLSB for the creation of composite tailings. This paper presents preliminary results of field and laboratory study which have been launched to better manage the rapid densification of fine tailings. The study involves sampling, field vane tests, cone penetration tests, steel plate penetration tests and earth pressure measurements. Methane producing microorganisms have become very active in the part of the pond that is experiencing rapid densification. The objective of the study was to determine the inventory and distribution of high strength MFT in current storage ponds and to assess whether geotechnical properties are enough to support direct loading with solids such as sand, clay or coke. The cause of the phenomena was also examined along with ways to possibly enhance MFT development through microbial, physical or chemical treatments. Results show that the accumulation of methane gas may have reached a critical state in some parts of the pond. The densification phenomenon at the southern pond is more significant compared to the northern pond. Earth pressure measurements indicate that the earth pressure cell has good sensitivity and that the coefficient of earth pressure at rest is approximately one. Good agreement was reached between different testing methods used to determine geotechnical properties of MFT. 5 refs., 4 tabs., 14 figs.

  7. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    Science.gov (United States)

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of nat