WorldWideScience

Sample records for canada nrx research reactor

  1. The genesis of NRX - first stop on the road to CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2015-12-15

    The CANDU (Canada Deuterium Uranium) reactor family is traceable to World War Two and to certain principal players. They gave Canada an early entry into the world of practical nuclear energy with the NRX (National Research Experimental) reactor, developed under the auspices of the ABC (America, Britain, Canada) countries. The principal players on the NRX project were, in alphabetical order: James Chadwick, C.D. Howe, Leslie R. Groves and C-J. Mackenzie. Their careers up to about 1940 are outlined in Section 10. (author)

  2. Measurement of the stored energy in the NRX reactor reflector graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, H.B.; Larson, E.A.G.

    1959-07-15

    With the co-operation of workers at Windscale and Harwell, whose assistance is hereby gratefully acknowledged, the stored energy content of the inner reflector graphite of NRX has been measured. Measurements made at three different elevations and at different positions through the reflector show that there is, at present, no danger to NRX from an accidental release of the energy. The energy stored in the reflector in 1958 is less by a factor five to ten than the stored energy as measured in 1953. It appears that there has been a continual release of stored energy since 1954 when, after the rehabilitation, the maximum power was raised to 40 MW. Additional thermocouples have been installed in the inner reflector, and future stored energy measurements are being scheduled. (author)

  3. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  4. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  5. The present status of iodine chemistry research in Canada and its application to reactor safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, K.R. [Ontario Hydro Nuclear, Toronto (Canada); Kupferschmid, W.C.H.; Wren, J.C.; Ball, J.M. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-01

    The current need to understand iodine chemistry in a reactor safety context has become more sharply focussed as the level of that understanding has advanced. At the same time, the situations of most concern within containment, from an iodine perspective, are also being redefined in the light of that understanding. The present paper summarises these developments. Over the past five years, considerable advances have occurred in our understanding of iodine chemistry under conditions of interest in reactor accidents. A number of key experiments have yielded important results in the areas of solution chemistry, the role of surfaces, the importance of organics and the effects of impurities. This understanding supplements the already substantial gains made in characterising the key roles of pH and the effects of radiation. All these factors underline the now evident fact that the kinetics of iodine are the controlling factor when radiation is involved, and that a number of reactive species, not present in thermal reactions, effectively control the observed volatility of iodine. In this paper, recent advances are summarised and the present status of our understanding of iodine chemistry is reviewed. Specifically, an attempt is made to identify those areas where our understanding appears to be relatively complete, and to flag the remaining critical areas where our attention is currently focussed. The state of our modelling capability is reviewed, as is the significance or related areas such as the role of mass transfer. Finally, an overview is presented of the significance of this work for reactor safety, and our expectations for its application over the near term future. (author) 2 figs., 12 refs.

  6. Canada-China Conference on advanced reactor development (CCCARD-2014). Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Canada-China Conference on Advanced Reactor Development (CCCARD-2014) was held on April 27-30, 2014 in Niagara Falls, Ontario, Canada. About 80 engaged registrants attended the conference, which provided a direct link between Canada and China in Advanced Reactor Development helping to establish bridges between utilities, industries, research organizations and academic institutions from the two countries. The four-day conference was created to provide a forum to discuss advances and issues, share information and promote future collaborations on advanced nuclear reactor development. The technical sessions focussed on: Reactor Designs; Materials, Chemistry and Corrosion; Thermal hydraulics and Safety Design; Reactor Physics and Fuel. (author)

  7. Performance of the NRX shut-off rods

    Energy Technology Data Exchange (ETDEWEB)

    Manson, R.E.

    1965-08-15

    A new type of shut-off rod of electromechanical design was developed by the American Machine and Foundry Company for use in the NRX reactor following the accident of 1952. The new rods were installed in May, 1956, as part of the control system conversion program which was completed in 1958. Some problems were encountered with limit switch adjustment but minor modifications in design led to much improved operation. he performance of the rods also improved as more experience was gained in the maintenance and adjustment of the various headgear components. Each headgear is now overhauled once a year on a routine basis. The present design of shut-off rod is considered to be very satisfactory. There has only been one occasion when a shut-off rod has failed to come fully down on a trip. Rods have failed to operate correctly on five other occasions but these occurred during shutdown periods or when the reactor was being shutdown manually. (author)

  8. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  9. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  10. Gaseous fuel reactor research

    Science.gov (United States)

    Thom, K.; Schneider, R. T.

    1977-01-01

    The paper reviews studies dealing with the concept of a gaseous fuel reactor and describes the structure and plans of the current NASA research program of experiments on uranium hexafluoride systems and uranium plasma systems. Results of research into the basic properties of uranium plasmas and fissioning gases are reported. The nuclear pumped laser is described, and the main results of experiments with these devices are summarized.

  11. CER. Research reactors in France

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, Jerome [CEA, DEN, DER, Saint-Paul-lez-Durance (France). Jules Horowitz Reactor (JHR)

    2012-10-15

    Networking and the establishment of coalitions between research reactors are important to guarantee a high technical quality of the facility, to assure well educated and trained personnel, to harmonize the codes of standards and the know-ledge of the personnel as well as to enhance research reactor utilization. In addition to the European co-operation, country-specific working groups have been established for many years, such as the French research reactor Club d'Exploitants des Reacteurs (CER). It is the association of French research reactors representing all types of research reactors from zero power up to high flux reactors. CER was founded in 1990 and today a number of 14 research reactors meet twice a year for an exchange of experience. (orig.)

  12. Compute Canada: Advancing Computational Research

    Science.gov (United States)

    Baldwin, Susan

    2012-02-01

    High Performance Computing (HPC) is redefining the way that research is done. Compute Canada's HPC infrastructure provides a national platform that enables Canadian researchers to compete on an international scale, attracts top talent to Canadian universities and broadens the scope of research.

  13. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  14. L-Area STS MTR/NRU/NRX Grapple Assembly Closure Mechanics Review

    Energy Technology Data Exchange (ETDEWEB)

    Huizenga, D. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Nuclear Solutions (SRNS)

    2016-06-08

    A review of the closure mechanics associated with the Shielded Transfer System (STS) MTR/NRU/NRX grapple assembly utilized at the Savannah River Site (SRS) was performed. This review was prompted by an operational event which occurred at the Canadian Nuclear Laboratories (CNL) utilizing a DTS-XL grapple assembly which is essentially identical to the STS MTR/NRU/NRX grapple assembly used at the SRS. The CNL operational event occurred when a NRU/NRX fuel basket containing spent nuclear fuel assemblies was inadvertently released by the DTS-XL grapple assembly during a transfer. The SM review of the STS MTR/NRU/NRX grapple assembly will examine the operational aspects of the STS and the engineered features of the STS which prevent such an event at the SRS. The design requirements for the STS NRU/NRX modifications and the overall layout of the STS are provided in other documents.

  15. Small modular reactors (SMRs) - the way forward for the nuclear industry in Canada?

    Energy Technology Data Exchange (ETDEWEB)

    Sam-Aggrey, H. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    Small Modular Reactors (SMRs) are being touted as safer, more cost effective and more flexible than traditional nuclear power plants (NPPs). Consequently, it has been argued that SMR technology is pivotal to the revitalization of the nuclear industry at the national and global levels. Drawing mainly on previously published literature, this paper explores the suitability of SMRs for various niche market applications in Canada. The paper examines the potential role of SMRs in providing an opportunity for remote mines and communities in northern Canada to reduce their vulnerability and dependence on costly, high-carbon diesel fuel. Other niche market applications of SMRs explored include: SMRs deployment in Saskatchewan for grid augmentation and as replacement options for Saskatchewan's ageing coal plants; the use of SMRs for bitumen extraction in the Oil Sands, and the potential use of SMRs in Canadian-owned foreign based mines. The socio-economic benefits of SMR deployments are also discussed. Building an SMR industry in Canada could complement the country's extensive expertise in uranium mining, reactor technology, plant operation, nuclear research, and environmental and safety standards, thereby enhancing Canada's ability to offer services throughout the entire nuclear life cycle. The paper also outlines some of the technical, economic and social barriers that could impede the successful introduction of SMRs in Canada. (author)

  16. Global Affairs Canada | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    As a Government of Canada Crown Corporation, we are an important part of Canada's foreign affairs and development efforts. ... The Canadian International Food Security Research Fund is a CA$125 million initiative that aims to bring market-ready agriculture innovations to more people, improving lives and livelihoods.

  17. canada's “thousand talent program”i: how canada research chair ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-10-24

    Oct 24, 2013 ... richer explanation of brain circulation, using the case study of Chinese holders of Canada Research Chairs. (CRC). Canada suffered brain drain in the 1990s, in particular to the United States. The Canada. Research Chair Program (CRCP), launched in 2000 by the Government of Canada, signalled the ...

  18. Reactor Safety Research Programs Quarterly Report April- June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  19. Utilisation of British University Research Reactors.

    Science.gov (United States)

    Duncton, P. J.; And Others

    British experience relating to the employment of university research reactors and subcritical assemblies in the education of nuclear scientists and technologists, in the training of reactor operators and for fundamental pure and applied research in this field is reviewed. The facilities available in a number of British universities and the uses…

  20. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  1. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  2. Reactor Safety Research Programs Quarterly Report October - December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  3. Reactor Safety Research Programs Quarterly Report July- September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  4. Reactor Safety Research Programs Quarterly Report April -June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  5. Home Economics Research in Canada.

    Science.gov (United States)

    Canadian Home Economics Journal, 1998

    1998-01-01

    Offers abstracts of 16 research papers presented at the 1998 Canadian Home Economics Association conference. Includes abstracts related to consumer economics, financial management, care giving, volunteerism, elder care, one-parent families, teacher education, females in the military, diet and health, and ethics. (JOW)

  6. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  7. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  8. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  9. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  10. TRIGA research reactors; Reacteurs de recherche Triga

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, D.M.; Razvi, J.; Whittemore, W.L. [Triga General Atomics, San Diego, CA (United States); Duban, B.; Harbonnier, G.; Du Limbert, P.; Durand, J.P. [AREVA/FRAMATOME ANP/CERCA, 92 - Paris-La-Defence (France)

    2004-02-01

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  11. New research possibilities at the Budapest research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Vidovszky, I. [KFKI Atomic Energy Research Institute, H-1525 Budapest (Hungary)

    2001-07-01

    The Budapest Research Reactor is the first nuclear facility of Hungary. It was commissioned in 1959, reconstructed and upgraded in 1967 and 1986-92. The main purpose of the reactor is to serve neutron research. The reactor was extended by a liquid hydrogen type cold neutron source in 2000. The research possibilities are much improved by the CNS both in neutron scattering and neutron activation. (author)

  12. Supply of enriched uranium for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H. [NUKEM GmbH, Alzenau (Germany)

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  13. Facility for a Low Power Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chalker, R. G.

    1949-09-14

    Preliminary investigation indicates that a reactor facility with ample research provisions for use by University or other interested groups, featuring safety in design, can be economically constructed in the Los Angeles area. The complete installation, including an underground gas-tight reactor building, with associated storage and experiment assembly building, administration offices, two general laboratory buildings, hot latoratory and lodge, can be constructed for approxinately $1,500,000. This does not include the cost of the reactor itself or of its auxiliary equipment,

  14. United States Domestic Research Reactor Infrastructure - TRIGA Reactor Fuel Support

    Energy Technology Data Exchange (ETDEWEB)

    Morrell, Douglas [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-10-29

    The purpose of the United State Domestic Research Reactor Infrastructure Program is to provide fresh nuclear reactor fuel to United States universities at no, or low, cost to the university. The title of the fuel remains with the United States government and when universities are finished with the fuel, the fuel is returned to the United States government. The program is funded by the United States Department of Energy - Nuclear Energy division, managed by Department of Energy - Idaho Field Office, and contracted to the Idaho National Laboratory's Management and Operations Contractor - Battelle Energy Alliance. Program has been at Idaho since 1977 and INL subcontracts with 26 United States domestic reactor facilities (13 TRIGA facilities, 9 plate fuel facilities, 2 AGN facilities, 1 Pulstar fuel facility, 1 Critical facility). University has not shipped fuel since 1968 and as such, we have no present procedures for shipping spent fuel. In addition: floor loading rate is unknown, many interferences must be removed to allow direct access to the reactor tank, floor space in the reactor cell is very limited, pavement ends inside our fence; some of the surface is not finished. The whole approach is narrow, curving and downhill. A truck large enough to transport the cask cannot pull into the lot and then back out (nearly impossible / refused by drivers); a large capacity (100 ton), long boom crane would have to be used due to loading dock obstructions. Access to the entrance door is on a sidewalk. The campus uses it as a road for construction equipment, deliveries and security response. Large trees are on both sides of sidewalk. Spent fuel shipments have never been done, no procedures approved or in place, no approved casks, no accident or safety analysis for spent fuel loading. Any cask assembly used in this facility will have to be removed from one crane, moved on the floor and then attached to another crane to get from the staging area to the reactor room

  15. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  16. Research on plasma core reactors

    Science.gov (United States)

    Jarvis, G. A.; Barton, D. M.; Helmick, H. H.; Bernard, W.; White, R. H.

    1976-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diameter by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17 cm thick by 89 cm diameter beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000 cu cm aluminum canister in the central region was fueled with UF6 gas and fission density distributions determined. These results are to be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  17. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  18. Simulation of in-reactor experiments with the ELOCA.Mk5 code. AECL research No. AECL-11133

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.E.; Arimescu, V.I.; Carlucci, L.N.

    1994-12-31

    ELOCA.Mk5 is a FORTRAN-77 computer code developed to model the thermo-mechanical response and associated fission-product release behavior of CANDU fuel elements during high-temperature transients such as large-break loss of coolant accidents (LOCA). This paper reports the results of model runs conducted to simulate two in-reactor LOCA experiments, using ELOCA.Mk5 in the Mk4S mode. Mk4S is a thermo-mechanical mode capable of performing a multi-segment analysis of a CANDU fuel element, accounting for axial variations in sheath temperatures, metallurgical regions, and reactor neutron flux. The first LOCA experiment consisted of four elements subjected to a coolant depressurization in the Power Burst Facility at Idaho Falls. The second consisted of a single fresh element, with an artificially set internal gas pressure, subjected to a coolant depressurization in the NRX reactor.

  19. New South Africa–Canada Research Chairs Initiative | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-12-08

    Dec 8, 2016 ... They build on NRF's existing South African Research Chairs Initiative (SARChI), as well as on the Industrial Research Chairs program, funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chairs Program (CRCP). Funded jointly by ...

  20. Reactor-produced radionuclides at the University of Missouri Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ketring, A.R.; Evans-Blumer, M.S.; Ehrhardt, G.J. [University of Missouri Research Reactor, Colombia (United States). Departments of Radiology, Chemistry and Nuclear Engineering

    1997-10-01

    Nuclear medicine has primarily been a diagnostic science for many years, but today is facing considerable challenges from other modalities in this area. However, these competing techniques (magnetic resonance imaging, ultrasound, and computer-assisted tomography) in general are not therapeutic. Although early nuclear medicine therapy was of limited efficacy, in recent years a revolution in radiotherapy has been developing base don more sophisticated targeting methods, including radioactive intra-arterial microspheres, chemically-guided bone agents, labelled monoclonal antibodies, and isotopically-tagged polypeptide receptor-binding agents. Although primarily used for malignancies, therapeutic nuclear medicine is also applicable to the treatment of rheumatoid arthritis and possibly coronary artery re closure following angioplasty. The isotopes of choice for these applications are reactor-produced beta emitters such as Sm-153, Re-186, Re-188, Ho-166, Lu-177, and Rh-105. Although alpha emitters possess greater cell toxicity due to their high LET, the greater range of beta emitters and the typically inhomogeneous deposition of radiotherapy agents in lesions leads to greater beta `crossfire` and better overall results. The University of Missouri Research Reactor (MURR) has been in the forefront of research into means of preparing, handling and supplying these high-specific-activity isotopes in quantities appropriate not only for research, but also for patient trials in the US and around the world. Researchers at MURR in collaboration with others at the University of Missouri (MU) developed Sm-153 Quadramet{sup TM}, a drug recently approved in the US for palliation of bone tumor pain. In conjunction with researchers at the University of Missouri-Rolla, MURR also developed Y-90 TheraSphere{sup TM}, an agent for the treatment of liver cancer now approved in Canada. Considerable effort has been expended to develop techniques for irradiation, handling, and shipping isotopes

  1. The current status of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tri Wulan Tjiptono; Syarip

    1998-10-01

    The Kartini reactor reached the first criticality on January 25, 1979. In the first three years, the reactor power is limited up to 50 kW thermal power and on July 1, 1982 has been increased to 100 kW. It has been used as experiments facility by researcher of Atomic Energy National Agency and students of the Universities. Three beam tubes used as experiments facilities, the first, is used as a neutron source for H{sub 2}O-Natural Uranium Subcritical Assembly, the second, is developed for neutron radiography facility and the third, is used for gamma radiography facility. The other facilities are rotary rack and two pneumatic transfer systems, one for delayed neutron counting system and the other for the new Neutron Activation Analysis (NAA) facility. The rotary rack used for isotope production for NAA purpose (for long time irradiation), the delayed neutron counting system used for analysis the Uranium contents of the ores and the new NAA is provided for short live elements analysis. In the last three years the Reactor Division has a joint use program with the Nuclear Component and Engineering Center in research reactor instrumentation and control development. (author)

  2. Radionuclide release from research reactor spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, H., E-mail: h.curtius@fz-juelich.de [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany); Kaiser, G.; Mueller, E.; Bosbach, D. [Forschungszentrum Juelich, Institut fuer Energieforschung, IEF-6 Sicherheitsforschung und Reaktortechnik, Geb. 05.3, D-52425 Juelich (Germany)

    2011-09-01

    Numerous investigations with respect to LWR fuel under non oxidizing repository relevant conditions were performed. The results obtained indicate slow corrosion rates for the UO{sub 2} fuel matrix. Special fuel-types (mostly dispersed fuels, high enriched in {sup 235}U, cladded with aluminium) are used in German research reactors, whereas in German nuclear power plants, UO{sub 2}-fuel (LWR fuel, enrichment in {sup 235}U up to 5%, zircaloy as cladding) is used. Irradiated research reactor fuels contribute less than 1% to the total waste volume. In Germany, the state is responsible for fuel operation and for fuel back-end options. The institute for energy research (IEF-6) at the Research Center Juelich performs investigation with irradiated research reactor spent fuels under repository relevant conditions. In the study, the corrosion of research reactor spent fuel has been investigated in MgCl{sub 2}-rich salt brine and the radionuclide release fractions have been determined. Leaching experiments in brine with two different research reactor fuel-types were performed in a hot cell facility in order to determine the corrosion behaviour and the radionuclide release fractions. The corrosion of two dispersed research reactor fuel-types (UAl{sub x}-Al and U{sub 3}Si{sub 2}-Al) was studied in 400 mL MgCl{sub 2}-rich salt brine in the presence of Fe{sup 2+} under static and initially anoxic conditions. Within these experimental parameters, both fuel types corroded in the experimental time period of 3.5 years completely, and secondary alteration phases were formed. After complete corrosion of the used research reactor fuel samples, the inventories of Cs and Sr were quantitatively detected in solution. Solution concentrations of Am and Eu were lower than the solubility of Am(OH){sub 3}(s) and Eu(OH){sub 3}(s) solid phases respectively, and may be controlled by sorption processes. Pu concentrations may be controlled by Pu(IV) polymer species, but the presence of Pu(V) and Pu

  3. 78 FR 58575 - Review of Experiments for Research Reactors

    Science.gov (United States)

    2013-09-24

    ... COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Guide (RG) 2.4, ``Review of Experiments for Research Reactors.'' The guide is being withdrawn because... Experiments for Research Reactors,'' (ADAMS Accession No. ML003740131) because its guidance no longer provides...

  4. Canada-Latin America and the Caribbean Research Exchange ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Canada-Latin America and Caribbean Zika Virus Research Program. A new funding opportunity on Zika virus is responding to the virus outbreak and the health threat it represents for the affected populations in the hardest hit countries in Latin America and the... View moreCanada-Latin America and Caribbean Zika Virus ...

  5. Canada-Latin America and the Caribbean Research Exchange ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Like the three earlier phases (002624, 004097 and 101783), this project will allow the Association of Universities and Colleges of Canada (AUCC) to offer academics (graduate students, professors, researchers) from Canada and Latin America and the Caribbean (LAC) opportunities for face-to-face dialogue on ...

  6. The AFR. An approved network of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, Gabriele [Mainz Univ. (Germany). Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren (AFR)

    2012-10-15

    AFR (Arbeitsgemeinschaft fuer Betriebs- und Sicherheitsfragen an Forschungsreaktoren) is the German acronym for 'Association for Research Reactor Operation and Safety Issues' which was founded in 1959. Reactor managers of European research reactors mainly from the German linguistic area meet regularly for their mutual benefit to exchange experience and knowledge in all areas of operating, managing and utilization of research reactors. In the last 2 years joint meetings were held together with the French association of research reactors CER (Club d'Exploitants des Reacteurs). In this contribution the AFR, its members, work and aims as well as the French partner CER are presented. (orig.)

  7. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  8. Dynamic feedback characteristics of Ghana Research Reactor-1 ...

    African Journals Online (AJOL)

    Dynamic experiments were performed to investigate the effects of insertions of step and ramp reactivities on Ghana Research Reactor-1. These safety performance tests of the reactor show that the reactor is inherently safe. The peak powers were found to be low and could not lead to damage of fuel meat and cladding.

  9. Cronobacter spp. (Enterobacter sakazakii): advice, policy and research in Canada.

    Science.gov (United States)

    Pagotto, Franco J; Farber, Jeffrey M

    2009-12-31

    Although the number of reported cases of Cronobacter infection in Canada is low, Health Canada has been actively studying this organism since 1991. After reviewing the situation at the national level and due to health concerns with powdered formulae and its international trade, in 2003, Health Canada raised this issue at the international level by proposing to revise the Code of Practice for Powdered Formulae for Infants and Young Children at the Codex Alimentarius Committee of Food Hygiene. Canada volunteered to chair the Working Group that would be developing the Code, and the Code was completed in four years. The Code contributed to an improvement in the hygienic conditions in plants manufacturing Powdered Infant Formula (PIF), resulting in a lower level of product contamination with Cronobacter species. Canada has produced a document detailing Good Manufacturing Practices (GMPs) for Infant Formula in Canada. Health Canada uses the GMPs as a basis for assessing the manufacturing information received in pre-market notifications for new or changed infant formulas. Health Canada does not have microbiological criteria for Cronobacter spp. in PIF; however, we are currently working on developing these criteria. At present, there are no active or passive surveillance systems for Cronobacter spp. in Canada, although this has been discussed. Health Canada has recently adapted and condensed FAO/WHO guidelines to develop a draft guidance document for the hygienic preparation and handling of PIF in home and hospitals/care settings, which outline requirements for parents, caregivers, and staff in hospitals and day-care centres. Health Canada's Bureau of Microbial Hazards conducts research on the ecology, biology and pathogenesis of Cronobacter spp. Some of the research projects include specific aspects of molecular typing, virulence studies involving animal models, as well as in vitro tissue culture work to examine adhesion and invasion. Collaborative research is also being

  10. Meteodiffusive Characterization of Algiers' Nuclear Research Reactor

    Directory of Open Access Journals (Sweden)

    Mourad Messaci

    2007-01-01

    Full Text Available In the framework of the environmental impact studies of the nuclear research reactor of Algiers, we will present the work related to the atmospheric dispersion of releases due to the installation in normal operation, which dealt with the assessment of spatial distribution of yearly average values of atmospheric dilution factor. The aim of this work is a characterization of the site in terms of diffusivity, which is basic for the radiological impact evaluation of the reactor. The meteorological statistics result from the National Office of Meteorology and concern 15 years of hourly records. According to the nature and features of these data, a Gaussian-type model with wind direction sectors was used. Values of wind speed at release height were estimated from measurement values at 10 m from ground. For the assessment of vertical dispersion coefficient, we used Briggs' formulas related to a sampling time of one hour. Areas of maximum impact were delimited and points of highest concentration within these zones were identified.

  11. Research on the reactor physics and reactor safety of VVER reactors. AER Symposium 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S.

    2017-09-15

    The selected paperscan be attributed to the following main subjects: Reactor start-up tests and use of corresponding data for code validation, code development and application, approaches for safety analyses, closure of nuclear fuel cycle, prospective reactor concepts.

  12. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C.; Kanyukt, R.; Pongpat, P. [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  13. The research reactors their contribution to the reactors physics; Les reacteurs de recherche leur apport sur la physique des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Zaetta, A. [CEA/Cadarache, Direction des Reacteurs Nucleaires, DRN, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint Paul lez Durance (France); Mathoniere, G. [CEA/Saclay, DEN, 91 - Gif sur Yvette (France)] [and others

    2000-07-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  14. Social Science Research in Canada and Government Information Policy: The Statistics Canada Example.

    Science.gov (United States)

    Nilsen, Kirsti

    1998-01-01

    Identified the effects of government information policy on accessibility, use, and users by investigating policy effects on a government agency, Statistics Canada. Presents a case study and discusses bibliometric research on the use of statistics sources, examining Canadian social science journal articles in economics, education, geography,…

  15. Diversion assumptions for high-powered research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  16. Initial decommissioning planning for the Budapest research reactor

    Directory of Open Access Journals (Sweden)

    Toth Gabor

    2011-01-01

    Full Text Available The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  17. What Research Tells Us About Citizenship in English Canada.

    Science.gov (United States)

    Sears, Alan

    1996-01-01

    Reviews recent research on citizenship education in Canada. Discovers that, although citizenship education is widely promoted, little is known about actual classroom practices, and wide disparities exist about the very definition of citizenship. Some evidence suggests improvement; however, more research is needed. (MJP)

  18. Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).

    Energy Technology Data Exchange (ETDEWEB)

    Parma, Edward J., Jr.

    2009-06-01

    The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

  19. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  20. Proceedings of the sixth Asian symposium on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The symposium consisted of 16 sessions with 58 submitted papers. Major fields were: (1) status and future plan of research and testing reactors, (2) operating experiences, (3) design and modification of the facility, and reactor fuels, (4) irradiation studies, (5) irradiation facilities, (6) reactor characteristics and instrumentation, and (7) neutron beam utilization. Panel discussion on the 'New Trends on Application of Research and Test Reactors' was also held at the last of the symposium. About 180 people participated from China, Korea, Indonesia, Thailand, Bangladesh, Vietnam, Chinese Taipei, Belgium, France, USA, Japan and IAEA. The 58 of the presented papers are indexed individually. (J.P.N.)

  1. Antineutrino and gamma emission from the OSIRIS research reactor

    Science.gov (United States)

    Giot, Lydie; Fallot, Muriel

    2017-09-01

    For the first time, the summation method has been coupled with a complete reactor model, in order to predict the antineutrino emission of a research reactor. This work, discussed in the first part of this paper, allows us to predict the low energy part of the antineutrino spectrum, evidencing the important contribution of actinides to the antineutrino emission. Experimental conditions at short distance from research reactors are challenging, because the reactor itself produces huge gamma background that induce accidental and correlated backgrounds in an antineutrino target. The understanding of this background is of utmost importance and triggered the second part of the work presented here.

  2. Related activities on management of ageing of Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham Van Lam [Reactor Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the previous 250 kW TRIGA-MARK II reactor. The reactor core, the control and instrumentation system, the primary and secondary cooling systems as well as other associated systems were newly designed and installed. The renovated reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. Since then DNRR has been operated safely. Retained structures of the former reactor such as the reactor aluminum tank, the graphite reflector, the thermal column, the horizontal beam tubes and the radiation concrete shielding are 35 years old. During the recent years, in-service inspection has been carried out, the reactor control and instrumentation system were renovated due to ageing and obsolescence of its components, reactor general inspection and refurbishment were performed. Efforts are being made to cope with ageing of old reactor components to maintain safe operation of the DNRR. (author)

  3. Reactor Safety Research Programs Quarterly Report October - December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  4. Reactor Safety Research Programs Quarterly Report July - September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  5. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  6. Research Experience in Psychiatry Residency Programs Across Canada: Current Status

    Science.gov (United States)

    Shanmugalingam, Arany; Ferreria, Sharon G; Norman, Ross M G; Vasudev, Kamini

    2014-01-01

    Objective: To determine the current status of research experience in psychiatry residency programs across Canada. Method: Coordinators of Psychiatric Education (COPE) resident representatives from all 17 psychiatry residency programs in Canada were asked to complete a survey regarding research training requirements in their programs. Results: Among the 17 COPE representatives, 15 completed the survey, representing 88% of the Canadian medical schools that have a psychiatry residency program. Among the 15 programs, 11 (73%) require residents to conduct a scholarly activity to complete residency. Some of these programs incorporated such a requirement in the past 5 years. Ten respondents (67%) reported availability of official policy and (or) guidelines on resident research requirements. Among the 11 programs that have a research requirement, 10 (91%) require residents to complete 1 scholarly activity; 1 requires completion of 2 scholarly activities. Eight (53%) residency programs reported having a separate research track. All of the programs have a research coordinator and 14 (93%) programs provide protected time to residents for conducting research. The 3 most common types of scholarly activities that qualify for the mandatory research requirement are a full independent project (10 programs), a quality improvement project (8 programs), and assisting in a faculty project (8 programs). Six programs expect their residents to present their final work in a departmental forum. None of the residency programs require publication of residents’ final work. Conclusions: The current status of the research experience during psychiatry residency in Canada is encouraging but there is heterogeneity across the programs. PMID:25565474

  7. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-11-16

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... above, shall be submitted to the NRC to the attention of the Director, Office of Nuclear Reactor... properly marked and handled in accordance with 10 CFR 73.21. The Director, Office of Nuclear Reactor...

  8. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-12-20

    ... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... Director, Office of Nuclear Reactor Regulation under 10 CFR 50.4. In addition, licensee submittals that... Director, Office of Nuclear Reactor Regulation, may, in writing, relax or rescind any of the above...

  9. Canada | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Promoting the economic inclusion of youth and women through entrepreneurship in Madagascar. The project aims to promote women and youth entrepreneurship in Madagascar by supporting local research capacities and relevant, useful analysis. View morePromoting the economic inclusion of youth and women through ...

  10. Teaching and Teacher Education Research in Canada

    Directory of Open Access Journals (Sweden)

    Darlene Ciuffetelli Parker

    2010-05-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 As the editors of Brock Education, we want to highlight Canadian studies (whether supported or not by granting agencies that can help enhance our schools and educational communities, while contributing to  research locally, provincially, nationally, and internationally. This issue showcases some of that important work.

  11. A Potential NASA Research Reactor to Support NTR Development

    Science.gov (United States)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  12. A Bibliometric Analysis of Digestive Health Research in Canada

    Directory of Open Access Journals (Sweden)

    Désirée Tuitt

    2011-01-01

    Full Text Available Measurement of the impact and influence of medical/scientific journals, and of individual researchers has become more widely practiced in recent decades. This is driven, in part, by the increased availability of data regarding citations of research articles, and by increased competition for research funding. Digestive disease research has been identified as a particularly strong discipline in Canada. The authors collected quantitative data on the impact and influence of Canadian digestive health research. The present study involved an analysis of the research impact (Hirsch factor and research influence (Influence factor of 106 digestive health researchers in Canada. Rankings of the top 25 researchers on the basis of the two metrics were dominated by the larger research groups at the University of Toronto (Toronto, Ontario, McMaster University (Hamilton, Ontario, and the Universities of Calgary (Calgary, Alberta and Alberta (Edmonton, Alberta, but with representation by other research groups at the Universities of Manitoba (Winnipeg, Manitoba, Western Ontario (London, Ontario and McGill University (Montreal, Quebec. Female and male researchers had similar scores for the two metrics, as did basic scientists versus clinical investigators. Strategic recruitment, particularly of established investigators, can have a major impact on the ranking of research groups. Comparing these metrics over different time frames can provide insights into the vulnerabilities and strengths of research groups.

  13. JPL in-house fluidized-bed reactor research

    Science.gov (United States)

    Rohatgi, N. K.

    1984-01-01

    Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.

  14. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  15. Analysis of the Jamaican Slowpoke-2 Research Reactor for the Conversion from HEU to LEU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Puig, F.; Dennis, Haile T.

    2014-01-01

    The Jamaican SLOWPOKE-2 (JM-1) is a 20 kW research reactor manufactured by Atomic Energy of Canada Limited that has been operating for 30 years at the University of the West Indies, Mona Campus in Kingston, Jamaica. The University, with IAEA assistance under the GTRI/RERTR program, is currently in the process of converting from HEU to LEU. Full-reactor neutronic and thermal hydraulic analyses were performed, using MCNP5 and PLTEMP/ANL v4.1 respectively, on both the existing HEU and proposed LEU core configurations. Although conversion will result in the full nominal reactor power increasing from 20 kW to approximately 22 kW, in order to maintain the 1012 n·cm-2 s-1 flux in the inner irradiation channels, and maximum fuel temperature to increase from ~82°C to ~113°C, the analysis illustrates that increased safety margins will be obtained. No significant reactor behavior changes are expected and the characteristic SLOWPOKE-2 reactor inherent safety features will be preserved.

  16. Behavioural science at work for Canada: National Research Council laboratories.

    Science.gov (United States)

    Veitch, Jennifer A

    2007-03-01

    The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.

  17. A Design of Alarm System in a Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Jang, Gwisook; Seo, Sangmun; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The digital alarm system has become an indispensable design to process a large amount of alarms of power plants. Korean research reactor operated for decades maintains a hybrid alarm system with both an analog annunciator and a digital alarm display. In this design, several alarms are indicated on an analog panel and digital display, respectively, and it requires more attention and effort of the operators. As proven in power plants, a centralized alarm system design is necessary for a new research reactor. However, the number of alarms and operators in a research reactor is significantly lesser than power plants. Thus, simplification should be considered as an important factor for the operation efficiency. This paper introduces a simplified alarm system. As advances in information technology, fully digitalized alarm systems have been applied to power plants. In a new research reactor, it will be more useful than an analog or hybrid configuration installed in research reactors decades ago. However, the simplification feature should be considered as an important factor because the number of alarms and number of operators in a research reactor is significantly lesser than in power plants.

  18. Drug research and treatment for children in Canada: A challenge

    OpenAIRE

    Rieder, Michael J

    2011-01-01

    Historically, children have been ‘therapeutic orphans’. Many drugs have not been studied or labelled for use in children and adolescents, making the development and definition of optimally safe and effective drug therapies for the paediatric age group an ongoing challenge. Over the past decade, networks have developed in the United States and Europe to enhance drug research for this group, while no comparable evolution has occurred in Canada. The present statement provides context for the Can...

  19. Development of Digital MMIS for Research Reactors: Graded Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Khalil ur, Rahman; Shin, Jin Soo; Heo, Gyun Young [Kyunghee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu University, Geumsan (Korea, Republic of); Kim, Young Ki; Park, Jae Kwan; Seo, Sang Mun; Kim, Yong Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Though research reactors are small in size yet they are important in terms of industrial applications and R and D, educational purposes. Keeping the eye on its importance, Korean government has intention to upgrade and extend this industry. Presently, Korea is operating only HANARO at Korea Atomic Energy Research Institute (KAERI) and AGN-201K at Kyung Hee University (KHU), which are not sufficient to meet the current requirements of research and education. In addition, we need self-sufficiency in design and selfreliance in design and operation, as we are installing research reactors in domestic as well as foreign territories for instance Jordan. Based on these demands, KAERI and universities initiated a 5 year research project since December 2011 collaboratly, for the deep study of reactor core, thermal hydraulics, materials and instrumentation and control (I and C). This particular study is being carried out to develop highly reliable advanced digital I and C systems using a grading approach. It is worth mentioning that next generation research reactor should be equipped with advance state of the art digital I and C for safe and reliable operation and impermeable cyber security system that is needed to be devised. Moreover, human error is one of important area which should be linked with I and C in terms of Man Machine Interface System (MMIS) and development of I and C should cover human factor engineering. Presently, the digital I and C and MMIS are well developed for commercial power stations whereas such level of development does not exist for research reactors in Korea. Since the functional and safety requirements of research reactors are not so strict as commercial power plants, the design of digital I and C systems for research reactors seems to be graded based on the stringency of regulatory requirements. This paper was motivated for the introduction of those missions, so it is going to describe the general overview of digital I and C systems, the graded

  20. Activities for extending the lifetime of MINT research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bokhari, Adnan; Kassim, Mohammad Suhaimi [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia)

    1998-10-01

    MINT TRIGA Reactor is a 1-MW swimming pool nuclear reactor commissioned in June 1982. Since then, it has been used for research, isotope production, neutron activation, neutron radiography and manpower training. The total operating time till the end on September 1997 is 16968 hours with cumulative total energy release of 11188 MW-hours. After more than fifteen years of successful operation, some deterioration in components and associated systems has been observed. This paper describes some of the activities carried out to increase the lifetime and to reduce the shutdown time of the reactor. (author)

  1. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  2. ATRA and the specific RARα agonist, NRX195183, have opposing effects on the clonogenicity of pre-leukemic murine AML1-ETO bone marrow cells.

    Science.gov (United States)

    Chee, L C Y; Hendy, J; Purton, L E; McArthur, G A

    2013-06-01

    All-trans retinoic acid (ATRA) is used successfully in the treatment of acute promyelocytic leukemia (APL). ATRA enhances hematopoietic stem cell self-renewal through retinoic acid receptor (RAR)γ activation while promoting differentiation of committed myeloid progenitors through RARα activation. Its lack of success in the treatment of non-APL acute myeloid leukemia (AML) may be related to ATRA's non-selectivity for the RARα and RARγ isotypes, and specific RARα activation may be more beneficial in promoting myeloid differentiation. To investigate this hypothesis, the effects of ATRA and the specific RARα agonist NRX195183 was assessed in AML1-ETO (AE)-expressing murine bone marrow (BM) progenitors. ATRA potentiated the in vitro clonogenicity of these cells while NRX195183 had the opposite effect. Morphological and flow cytometric analysis confirmed a predominantly immature myeloid population in the ATRA-treated AE cells while the NRX195183-treated cells demonstrated an increase in the mature myeloid population. Similarly, NRX195183 treatment promoted myeloid differentiation in an AE9a in vivo murine model. In the ATRA-treated AE cells, gene expression analyses revealed functional networks involving SERPINE1 and bone morphogenetic protein 2; AKT phosphorylation was upregulated. Collectively, these findings confirm the contrasting roles of specific RARα and RARγ activation in the clonogenicity and differentiation of AE cells with potential significant implications in the treatment of non-APL AML using a specific RARα agonist.

  3. Operation of the FRG-research reactors at Geesthacht

    Energy Technology Data Exchange (ETDEWEB)

    Reymann, A.; Krull, W. [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany)

    1997-07-01

    Two research reactors have been operated very successfully by the GKSS research centre over decades in a connected pool system. FRG-1: 5 MW, criticality October 1958, FRG-2: 15 MW, criticality March 1963 and decommissioned February 1995. The FRG-2 was scheduled to stop operation in 1991 for lack of scientific and technical interest for future use. The reactor has been used as Germany's largest material testing reactor for power reactor fuel and power reactor materials development and safety tests. The FRG-2 has also played an important role in the conversion activities at the GKSS research centre. The FRG-1 is being used with high availability for beam tube experiments for fundamental and applied research in biology, membrane development, materials research, neutron radiography, neutron activation analyses etc. To enable the sufficient and efficient use of long wave length neutrons a cold neutron source has been installed in one of the beam tubes. The GKSS research centre, the advisory board, the scientific community and other clients are demanding the ongoing operation of the FRG-1 for at least till the year 2010. GKSS has taken many actions to ensure the save operation with high utilization and availability for the next 15 years. (author)

  4. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  5. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T. Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  6. High Density Fuel Development for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  7. A research review: exploring the health of Canada's Aboriginal youth

    Directory of Open Access Journals (Sweden)

    Ashley Ning

    2012-08-01

    Full Text Available Objective. To compare the current state of health research on Aboriginal and non-Aboriginal youth in Canada. Design. A search of published academic literature on Canadian Aboriginal youth health, including a comprehensive review of both non-Aboriginal and Aboriginal youth research, was conducted using MEDLINE and summarized. Methodology. A MEDLINE search was conducted for articles published over a 10-year period (2000–2010. The search was limited to research articles pertaining to Canadian youth, using various synonyms for “Canada,” “youth,” and “Aboriginal.” Each article was coded according to 4 broad categories: Aboriginal identity, geographic location, research topic (health determinants, health status, health care, and the 12 key determinants of health proposed by the Public Health Agency of Canada (PHAC. Results. Of the 117 articles reviewed, only 34 pertained to Aboriginal youth, while the remaining 83 pertained to non-Aboriginal youth. The results revealed major discrepancies within the current body of research with respect to the geographic representation of Aboriginal youth, with several provinces missing from the literature, including the northern territories. Furthermore, the current research is not reflective of the demographic composition of Aboriginal youth, with an under-representation of Métis and urban Aboriginal youth. Health status of Aboriginal youth has received the most attention, appearing in 79% of the studies reviewed compared with 57% of the non-Aboriginal studies. The number of studies that focus on health determinants and health care is comparable for both groups, with the former accounting for 62 and 64% and the latter comprising 26 and 19% of Aboriginal and non-Aboriginal studies, respectively. However, this review reveals several differences with respect to specific focus on health determinants between the two populations. In non-Aboriginal youth studies, all the 12 key determinants of health of PHAC

  8. CANADA

    International Development Research Centre (IDRC) Digital Library (Canada)

    Hakan Mustafa

    . AAAA. Numéro du fournisseur. Protégé B*. (une fois rempli). RENSEIGNEMENTS GÉNÉRAUX, FISCAUX ET BANCAIRES DU FOURNISSEUR – CANADA. Section 1 : RENSEIGNEMENTS GÉNÉRAUX. Nom du particulier (nom, prénom) ou ...

  9. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  10. Radiation protection personnel training in Research Reactors; Capacitacion en proteccion radiologica para reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos Dario; Lorenzo, Nestor Pedro de [Comision Nacional de Energia Atomica, Rio Negro (Argentina). Centro Atomico Bariloche. Instituto Balseiro

    1996-07-01

    The RA-6 research reactor is considering the main laboratory in the training of different groups related with radiological protection. The methodology applied to several courses over 15 years of experience is shown in this work. The reactor is also involved in the construction, design, start-up and sell of different installation outside Argentina for this reason several theoretical and practical courses had been developed. The acquired experience obtained is shown in this paper and the main purpose is to show the requirements to be taken into account for every group (subjects, goals, on-job training, etc) (author)

  11. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hanson, A. L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L-Y [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cuadra, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  12. Reactor Safety Research: Semiannual report, July-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  13. Study on the Export Strategies for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. K.; Lee, Y. J.; Ham, T. K.; Hong, S. T.; Kim, J. H. [Ajou University, Suwon (Korea, Republic of)

    2008-12-15

    Key strategic considerations taken into account should be based on understanding in the forecasts of demand and supply balance as well as the missions of research reactor for customers. For timely arrival at the competition, it may be advantageous to categorize the potential customers into 3 groups, the developed, the developing and the underdeveloped countries in respect of nuclear technology, and to be ready for the group-wise reference designs of the key reactor systems. Customizing the design to specific owner's requirements can advance from one of these reference designs when competition starts. To mobilize this approach effectively, it is useful to establish an integral project and technology management system earlier. This system will function as an important success factor for international research reactor business, because it makes easy to accommodate customer requirements and to achieve the design-to-cost.

  14. Dismantling of the DIORIT research reactor - Conditioning of activated graphite.

    Science.gov (United States)

    Sierra Perler, Isabel Cecilia; Beer, Hans-Frieder; Müth, Joachim; Kramer, Andreas

    2017-08-16

    The research reactor DIORIT at the Paul Scherrer Institute was a natural uranium reactor moderated by D2O. It was put in operation in 1960 and finally shut down in August 1977. The dismantling project started in 1982 and could be successfully finished on September 11th, 2012. About 40 tons of activated reactor graphite had to be conditioned during the dismantling of this research reactor. The problem of conditioning of activated reactor graphite had not been solved so far worldwide. Therefore a conditioning method considering radiation protection and economic aspects had to be developed. As a result, the graphite was crushed to a particle size smaller than 5 mm and added as sand substitute to a specially developed grout. The produced graphite concrete was used as a matrix for embedding dismantling waste in containers. By conditioning the graphite conventionally, about 58.5 m3 (13 containers) of waste volume would have been generated. The new PSI invention resulted in no additional waste caused by graphite. Consequently, the resulting waste volume, as well as the costs, were substantially reduced. Copyright © 2017. Published by Elsevier Ltd.

  15. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY..., Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Rockville, MD 20852. Telephone..., Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear Reactor...

  16. Best Safety Practices for the Operation of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, H.; Villa, M. [Atominstitute of the Austrian Universities, 1020 Vienna (Austria)

    2002-07-01

    A survey on administrative, organisational and technical aspects for the safe and efficient operation of a 250 kW TRIGA Mark II research reactor is given. The replacement of the I and C system is discussed, maintenance procedures are presented and the fuel management is described. (author)

  17. Neutron spectrometric methods for core inventory verification in research reactors

    CERN Document Server

    Ellinger, A; Hansen, W; Knorr, J; Schneider, R

    2002-01-01

    In consequence of the Non-Proliferation Treaty safeguards, inspections are periodically made in nuclear facilities by the IAEA and the EURATOM Safeguards Directorate. The inspection methods are permanently improved. Therefore, the Core Inventory Verification method is being developed as an indirect method for the verification of the core inventory and to check the declared operation of research reactors.

  18. Epiboron Neutron Activation Analysis with Nigeria Research Reactor

    African Journals Online (AJOL)

    Epiboron neutron activation analysis is optimized using Nigeria Research Reactor-1. Data are given for 6 elements using boron as shielding. Boron shield are of particular practical value for rapid instrumental analysis. Advantage factors for the following elements: I, Br, Cl, K, Mn and Na under boron shield are given.

  19. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  20. Fault detection system for Argentine Research Reactor instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Polenta, H.P. (Argentine Navy, Comodoro Py 2055 Office 11-93, 1104 - Buenos Aires (Argentina)); Bernard, J.A. (Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, Massachusetts 02139 (United States)); Ray, A. (205 Mechanical Engineering Department, Pennsylvania State University, University Park, Pennsylvania 16802 (United States))

    1993-01-20

    The design and implementation of a redundancy management scheme for the on-line detection and isolation of faulty sensors is presented. Such a device is potentially useful in reactor-powered spacecraft for enhancing the processing capabilities of the main computer. The fault detection device can be used as an integral part of intelligent instrumentation systems. The device has been built using an 8-bit microcontroller and commercially available electronic hardware. The software is completely portable. The operation of this device has been successfully demonstrated for real-time validation of sensor data on Argentina's RA-1 Research Reactor.

  1. Fuel shuffling optimization for the Delft research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft Univ. of Technology, Interfaculty Reactor Inst., Delft (Netherlands); Quist, A.J. [Delft Univ., Fac. of Applied Mathematics and Informatics, Delft (Netherlands)

    1997-07-01

    A fuel shuffling optimization procedure is proposed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, a 2 MWth swimming-pool type research reactor. In order to cope with the fluctuatory behaviour of objective functions in loading pattern optimization, the proposed cyclic permutation optimization procedure features a gradual transition from global to local search behaviour via the introduction of stochastic tests for the number of fuel assemblies involved in a cyclic permutation. The possible objectives and the safety and operation constraints, as well as the optimization procedure, are discussed, followed by some optimization results for the HOR. (author)

  2. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  3. Neutron beams implemented at nuclear research reactors for BNCT

    Science.gov (United States)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  4. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collect valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.

  5. Comparative Study on Cyber Securities between Power Reactor and Research Reactor with Bayesian Update

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Son, Han Seong [Joongbu Univiersity, Geumsan (Korea, Republic of)

    2016-10-15

    The Stuxnet has shown that nuclear facilities are no more safe from cyber-attack. Due to practical experiences and concerns on increasing of digital system application, cyber security has become the important issue in nuclear industry. Korea Institute of Nuclear Nonproliferation and control (KINAC) published a regulatory standard (KINAC/RS-015) to establish cyber security framework for nuclear facilities. However, it is difficult to research about cyber security. It is hard to quantify cyber-attack which has malicious activity which is different from existing design basis accidents (DBAs). We previously proposed a methodology on development of a cyber security risk model with BBN. However, the methodology had a limitation in which the input data as prior information was solely on expert opinions. In this study, we propose a cyber security risk model for instrumentation and control (I and C) system of nuclear facilities with some equation for quantification by using Bayesian Belief Network (BBN) in order to overcome the limitation of previous research. The proposed model has been used for comparative study on cyber securities between large-sized nuclear power plants (NPPs) and small-sized Research Reactors (RR). In this study, we proposed the cyber security risk evaluation model with BBN. It includes I and C architecture, which is a target system of cyber-attack, malicious activity, which causes cyber-attack from attacker, and mitigation measure, which mitigates the cyber-attack risk. Likelihood and consequence as prior information are evaluated by considering characteristics of I and C architecture and malicious activity. The BBN model provides posterior information with Bayesian update by adding any of assumed cyber-attack scenarios as evidence. Cyber security risk for nuclear facilities is analyzed by comparing between prior information and posterior information of each node. In this study, we conducted comparative study on cyber securities between power reactor

  6. 75 FR 57080 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-09-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order... which authorizes the possession, use, and operation of the Aerotest Radiography and Research Reactor...

  7. Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treated separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s

  8. IAEA designated international centre based on research reactors (ICERR)

    Energy Technology Data Exchange (ETDEWEB)

    Di Tigliole, Andrea Borio; Bradley, Edward; Khoroshev, Mikhail; Marshall, Frances; Morris, Charles; Tozser, Sandor [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Energy

    2016-04-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals. However, the needs of the nuclear community dictate that the majority of the research reactors continues to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. In view of this fact, the IAEA drew up a report presenting available reprocessing and recycling services for RR SNF.

  9. Safety culture and quality management of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia); Hauptmanns, Ulrich [Department of Plant Design and Safety, Otto-Von-Guericke-University, Magdeburg (Germany)

    1999-10-01

    The evaluation for assessing the safety culture and quality of safety management of Kartini research reactor is presented. The method is based on the concept of management control of safety (audit) as well as by using the developed method i.e. the questionnaires concerning areas of relevance which have to be answered with value statements. There are seven statements or qualifiers in answering the questions. Since such statements are vague, they are represented by fuzzy numbers. The weaknesses can be identified from the different areas contemplated. The evaluation result show that the quality of safety management of Kartini research reactor is globally rated as 'Average'. The operator behavior in the implementation of 'safety culture' concept is found as a weakness, therefore this area should be improved. (author)

  10. 77 FR 42771 - License Renewal for the Dow Chemical TRIGA Research Reactor

    Science.gov (United States)

    2012-07-20

    ... COMMISSION License Renewal for the Dow Chemical TRIGA Research Reactor AGENCY: Nuclear Regulatory Commission... Research Reactor is located on the Michigan Division of the Dow Chemical Company in Midland, MI and is a... INFORMATION CONTACT: Geoffrey A. Wertz, Project Manager, Research and Test Reactor Licensing Branch, Division...

  11. Opportunities and challenges related to the development of small modular reactors in mines in the Northern Territories of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sam-Aggrey, H., E-mail: godfree17@hotmail.com [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Small modular reactors (SMRs) are being touted as safer, more cost effective, and more flexible than traditional nuclear power plants. Consequently, it has been argued that SMR technology is pivotal to the revitalization of the nuclear industry at the national and global levels. Drawing mainly on previously published literature, this paper explores the opportunities and challenges related to the deployment of SMRs in the northern territories of Canada. The paper examines the potential role of SMRs in providing an opportunity for remote mines in northern Canada to reduce their vulnerability and dependence on costly, high-carbon diesel fuel. The paper also outlines and discusses some of the potential socio-economic barriers that could impede the successful introduction of SMRs in the territories. These issues include: economic factors (such as the price of primary minerals and economics of mineral exploration, and the cost of SMR deployment), the lack of infrastructure in the territories to support mining developments, and the issues pertaining to the social acceptance of nuclear power generation. (author)

  12. Characterization of radioactive aerosols in Tehran research reactor containment

    Directory of Open Access Journals (Sweden)

    Moradi Gholamreza

    2015-01-01

    Full Text Available The objectives of this research were to determine the levels of radioactivity in the Tehran research reactor containment and to investigate the mass-size distribution, composition, and concentration of radionuclides during operation of the reactor. A cascade impactor sampler was used to determine the size-activity distributions of radioactive aerosols in each of the sampling stations. Levels of a and b activities were determined based on a counting method using a liquid scintillation counter and smear tests. The total average mass fractions of fine particles (particle diameter dp < 1 mm in all of the sampling stations were approximately 26.75 %, with the mean and standard deviation of 52.15 ± 19.75 mg/m3. The total average mass fractions of coarse particles were approximately 73.2%, with the mean and standard deviation of 71.34 ± 24.57 mg/m3. In addition to natural radionuclides, artificial radionuclides, such as 24Na, 91Sr, 131I, 133I, 103Ru, 82Br, and 140La, may be released into the reactor containment structure. Maximum activity was associated with accumulation-mode particles with diameters less than 400 nm. The results obtained from liquid scintillation counting suggested that the mean specific activity of alpha particles in fine and coarse-modes were 89.7 % and 10.26 %, respectively. The mean specific activity of beta particles in fine and coarse-modes were 81.15 % and 18.51 %, respectively. A large fraction of the radionuclides' mass concentration in the Tehran research reactor containment was associated with coarse-mode particles, in addition, a large fraction of the activity in the aerosol particles was associated with accumulation-mode particles.

  13. The TRIGA Reactor Facility at the Armed Forces Radiobiology Research Institute: A Simplified Technical Description.

    Science.gov (United States)

    1986-05-01

    AD-AiS68 238 THE TRIGA REACTOR FACILITY AT THE ARMED FORCESI! RADIOBIOLOGY RESEARCH INST..(U) ARMED FORCES RADIOBIOLOGY RESEARCH INST BETHESDA NO...medium-power exposure. The reactor is also used to train military personnel in reactor operations., The AFRRI TRIGA Mark-F reactor facility is within the...AFRRI complex on the grounds ’of the Naval Medical Command National Capital Region, in Bethesda, Maryland.> TRIGA is an acronym for Training, Research

  14. Feasibility of Thermoelectric Waste Heat Recovery from Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byunghee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A thermoelectric generator has the most competitive method to regenerate the waste heat from research reactors, because it has no limitation on operating temperature. In addition, since the TEG is a solid energy conversion device converting heat to electricity directly without moving parts, the regenerating power system becomes simple and highly reliable. In this regard, a waste heat recovery using thermoelectric generator (TEG) from 15-MW pool type research reactor is suggested and the feasibility is demonstrated. The producible power from waste heat is estimated with respect to the reactor parameters, and an application of the regenerated power is suggested by performing a safety analysis with the power. The producible power from TEG is estimated with respect to the LMTD of the HX and the required heat exchange area is also calculated. By increasing LMTD from 2 K to 20K, the efficiency and the power increases greatly. Also an application of the power regeneration system is suggested by performing a safety analysis with the system, and comparing the results with reference case without the power regeneration.

  15. Developing strategic plans for effective utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, Danas [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Sciences and Applications

    2015-12-15

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  16. Reactivity feedback coefficients Pakistan research reactor-1 using PRIDE code

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Ali; Ahmed, Siraj-ul-Islam; Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Inam-ul-Haq [Comsats Institute of Information Technology, Islamabad (Pakistan). Dept. of Physics

    2017-05-15

    Results of the analyses performed for fuel, moderator and void's temperature feedback reactivity coefficients for the first high power core configuration of Pakistan Research Reactor - 1 (PARR-1) are summarized. For this purpose, a validated three dimensional model of PARR-1 core was developed and confirmed against the reference results for reactivity calculations. The ''Program for Reactor In-Core Analysis using Diffusion Equation'' (PRIDE) code was used for development of global (3-dimensional) model in conjunction with WIMSD4 for lattice cell modeling. Values for isothermal fuel, moderator and void's temperature feedback reactivity coefficients have been calculated. Additionally, flux profiles for the five energy groups were also generated.

  17. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  18. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  19. Contribution of CAD and PLM Research Reactors Design and Construction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnetain, Xavier [AREVA TA, Paris (France)

    2013-07-01

    As all the reactors, the main stakes in the engineering of design and construction of the research reactors consist of the management and sharing of the technical data, the functional, physical and contractual interfaces data between the various contributors on the whole designs and construction cycle project. For 40 years, AREVA TA designs and builds reactors. Computer Aided Design (CAD) tools were introduced for 30 years into the engineering processes of AREVA TA, completed for 15 years by Product Lifecycle Management (PLM) tools. For 15 years AREVA TA pursues the integration since the feasibility of its newest Information Technologies (IT). In the first part, the paper presents IN the second part, the paper presents how the schematics and CAD tools support the engineering processes during the different phases of the project. CAD was used during the studies and now supports the management of the layout and design studies, including interfaces between suppliers, up to the constitution of the as built CAD mock-up. In the third part, the paper presents the relations between the various tools and the PLM solution implemented by AREVA TA to ensure the consistency between all tools and data for the benefit of the project.

  20. Jordan's principle and Indigenous children with disabilities in Canada: jurisdiction, advocacy, and research.

    Science.gov (United States)

    Johnson, Shelly

    2015-01-01

    This article discusses Indigenous (1) (1)In this article, the terms Indigenous, First Nations, Aboriginal, and Treaty Indian are used interchangeably, and as needed to describe the political reality of the First Peoples of Canada. children with disabilities in Canada and examines their experiences with federal and provincial jurisdictional and funding disputes. It explores Canada's adversarial legal and policy techniques to delay implementation and funding of Jordan's Principle, a Canadian Human Rights Tribunal action seeking to address the delays, and the recommendations of a recent independent Canadian research project. Finally, it suggests ways to advance Jordan's Principle in Canada and elsewhere.

  1. Joint KAERI/VAEC pre-possibility study on a new research reactor for Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Kim, H.; Lee, C. S.; Choi, C. O.; Jun, B. J. [KAERI, Taejon (Korea, Republic of); Vien, Luong Ba; Dien, Nguyen Nhi [Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2004-05-01

    Based on the agreement on the technical cooperation for nuclear technology between Korea and Vietnam, a KAERI/VAEC joint study on the pre-possibility of a new research reactor for Vietnam has been carried out in the research reactor area from Nov. 2003 to May 2004. In this report, the results of the pre-possibility study on a new research reactor are described. The report presents the necessity of a new research reactor in Vietnam, and the desired performance requirements of the new research reactor if necessary. The major design characteristics of some existing research reactors and those under planning were also reviewed and the main characteristics which should be considered in selecting a new multipurpose research reactor for Vietnam were drawn. Some recommendations on the considerations for the next step of the feasibility study such as the project formulation, manpower requirements and international co-operation were also briefly touched upon.

  2. Fabrication of uranium dioxide fuel pellets in support of a SLOWPOKE-2 research reactor HEU to LEU core conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Aomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-07-01

    The International Centre for Environmental and Nuclear Sciences (ICENS) at the University of the West Indies in Jamaica operates a SLOWPOKE-2 research reactor that is currently fuelled with highly-enriched uranium (HEU). As part of the Global Threat Reduction Initiative, Atomic Energy of Canada Ltd. has been subcontracted to fabricate low-enriched uranium (LEU) fuel for the ICENS SLOWPOKE-2. The low enriched uranium core consists of a fuel cage containing uranium dioxide fuelled elements. This paper describes the fabrication of the low-enriched uranium dioxide fuel pellets for the SLOWPOKE-2 core conversion. (author)

  3. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  4. Study on the License Requirements for the SRO/RO of the Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Subeom; Shin, Taemyung [Korea Nat. University of Transportation, Seoul (Korea, Republic of); Chae, H. T.; Ahn, G. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, S. J.; Gam, S. C. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of the study is to propose an appropriate regulatory position for the Kijang reactor operator license requirement by the review of the applicability and compatibility of HANARO SRO/RO license holders for Kijang reactor operation. As the area using radioactive isotope became gradually enlarged both inside and outside of the country, the Kijang research reactor is planned and now under construction next to the HANARO research reactor now being operated in Taejon. In this paper, therefore, an establishment of revised operator license system is discussed for the new research reactor. The design and operation characteristics of the two (HANARO and Kijang) reactors are concluded to be very similar to each other, however, there still exist slight differences in some minor portions. It is recommendable to allow an independent license for each reactor if two reactors of the same power level have recognizable differences in the design and operation characteristics.

  5. History of Pain Research and Management in Canada

    Directory of Open Access Journals (Sweden)

    Harold Merskey

    1998-01-01

    Full Text Available Scattered accounts of the treatment of pain by aboriginal Canadians are found in the journals of the early explorers and missionaries. French and English settlers brought with them the remedies of their home countries. The growth of medicine through the 18th and 19th centuries, particularly in Europe, was mirrored in the practice and treatment methods of Canadians and Americans. In the 19th century, while Americans learned about causalgia and the pain of wounds, Canadian insurrections were much less devastating than the United States Civil War. By the end of that century, a Canadian professor working in the United States, Sir William Osler, was responsible for a standard textbook of medicine with a variety of treatments for painful illnesses. Yet pain did not figure in the index of that book. The modern period in pain research and management can probably be dated to the 20 years before the founding of the International Association for the Study of Pain. Pride of place belongs to The management of pain by John Bonica, published in Philadelphia in 1953 and based upon his work in Tacoma and Seattle. Ideas about pain were evolving in Canada in the 1950s with Donald Hebb, Professor of Psychology at McGill University in Montreal, corresponding with the leading American neurophysiologist, George H Bishop. Hebb's pupil Ronald Melzack engaged in studies of early experiences in relation to pain and, joining with Patrick Wall at Massachusetts Institute of Technology, published the 1965 paper in Science that revolutionized thinking. Partly because of this early start with prominent figures and partly because of its social system in the organization of medicine, Canada became a centre for a number of aspects of pain research and management, ranging from pain clinics in Halifax, Kingston and Saskatoon - which were among the earliest to advance treatment of pain - to studying the effects of implanted electrodes for neurosurgery. Work in Toronto by Moldofsky

  6. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately.

  7. Upgrading of neutron radiography/tomography facility at research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Bar, Waleed; Mongy, Tarek [Atomic Energy Authority, Cairo (Egypt). ETRR-2; Kardjilov, Nikolay [Helmholtz Zentrum Berlin (HZB) for Materials and Energy, Berlin (Germany)

    2014-03-15

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  8. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    Science.gov (United States)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  9. Review of the status of low power research reactors and considerations for its development

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Cheol; Wu, Sang Ik; Lee, Byung Chul; Ha, Jae Joo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    At present, 232 research reactors in the world are in operation and two thirds of them have a power less than 1 MW. Many countries have used research reactors as the tools for educating and training students or engineers and for scientific service such as neutron activation analysis. As the introduction of a research reactor is considered a stepping stone for a nuclear power development program, many newcomers are considering having a low power research reactor. The IAEA has continued to provide forums for the exchange of information and experiences regarding low power research reactors. Considering these, the Agency is recently working on the preparation of a guide for the preparation of technical specification possibly for a member state to use when wanting to purchase a low power research reactor. In addition, ANS has stated that special consideration should be given to the continued national support to maintain and expand research and test reactor programs and to the efforts in identifying and addressing the future needs by working toward the development and deployment of next generation nuclear research and training facilities. Thus, more interest will be given to low power research reactors and its role as a facility for education and training. Considering these, the status of low power research reactors was reviewed, and some aspects to be considered in developing a low power research reactor were studied.

  10. University-industry research collaborations in Canada: the role of federal policy instruments

    OpenAIRE

    Creso M Sá; Jeffrey Litwin

    2011-01-01

    Canada's research policy has aimed to facilitate technology transfer from universities and induce innovation in industry for the past three decades. This article examines the policy instruments currently employed by the federal government in Canada to stimulate university-industry research linkages. First, the article examines the national landscape of industry R&D and its interface with university research. Then, multiple policy instruments are identified, and their goals and functions are e...

  11. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  12. A scoping analysis of the neotronic design for a new South African research reactor / Vermaak J.I.C.

    OpenAIRE

    Vermaak, Jan Izak Cornelius

    2011-01-01

    Together with many other research reactors around the world, the SAFARI–1 reactor has been classified as an ageing research reactor. In order to continue the provision of the current irradiation services, the operator of the reactor, NECSA, needs to consider the replacement of SAFARI–1 with a new large neutron source, and therefore ultimately a new reactor. A replacement research reactor will have to provide irradiation services that primarily include: radio–isotope producti...

  13. Current Status of Periodic Safety Review of HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin; Ahn, Guk-Hoon; Lee, Choong Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A PSR for a research reactor became a legal requirement as the Nuclear Safety Act was amended and came into effect in 2014. This paper describes the current status and methodology of the first Periodic Safety Review (PSR) of HANARO that is being performed. The legal requirements, work plan, and process of implementing a PSR are described. Because this is the first PSR for a research reactor, it is our understating that the operating organization and regulatory body should communicate well with each other to complete the PSR in a timely manner. The first PSR of HANARO is under way. In order to achieve a successful result, activities of the operation organization such as scheduling, maintaining consistency in input data for review, and reviewing the PSR reports that will require intensive resources should be well planned. This means the operating organization needs to incorporate appropriate measures to ensure the transfer of knowledge and expertise arising from the PSR via a contractor to the operation organization. It is desirable for the Regulatory Body to be involved in all stage of the PSR to prevent any waste of resources and minimize the potential for a reworking of the PSR and the need for an additional assessment and review as recommended by foreign experts.

  14. Neutronics analysis of TRIGA Mark II research reactor

    Directory of Open Access Journals (Sweden)

    Haseebur Rehman

    2018-02-01

    Full Text Available This article presents clean core criticality calculations and control rod worth calculations for TRIGA (Training, Research, Isotope production-General Atomics Mark II research reactor benchmark cores using Winfrith Improved Multi-group Scheme-D/4 (WIMS-D/4 and Program for Reactor In-core Analysis using Diffusion Equation (PRIDE codes. Cores 133 and 134 were analyzed in 2-D (r, θ and 3-D (r, θ, z, using WIMS-D/4 and PRIDE codes. Moreover, the influence of cross-section data was also studied using various libraries based on Evaluated Nuclear Data File (ENDF/B-VI.8 and VII.0, Joint Evaluated Fission and Fusion File (JEFF-3.1, Japanese Evaluated Nuclear Data Library (JENDL-3.2, and Joint Evaluated File (JEF-2.2 nuclear data. The simulation results showed that the multiplication factor calculated for all these data libraries is within 1% of the experimental results. The reactivity worth of the control rods of core 134 was also calculated with different homogenization approaches. A comparison was made with experimental and reported Monte Carlo results, and it was found that, using proper homogenization of absorber regions and surrounding fuel regions, the results obtained with PRIDE code are significantly improved.

  15. Analysis of Nigeria research reactor-1 thermal power calibration methods

    Energy Technology Data Exchange (ETDEWEB)

    Agbo, Sunday Arome; Ahmed, Yusuf Aminu; Ewa, Ita Okon; Jibrin, Yahaya [Ahmadu Bello University, Zaria (Nigeria)

    2016-06-15

    This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  16. Canada-South Africa bilateral mobility grants for research chairs ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The bilateral mobility awards span a range of natural sciences and engineering disciplines across 11 different universities in Canada and South Africa. They include: an analysis of neuroimaging and genetic data (University of Victoria and University of Pretoria); double field theory (McGill University and University of Cape ...

  17. PUBLIC SECTOR OF CANADA: RATING RESEARCH OF LABOUR

    Directory of Open Access Journals (Sweden)

    Olesia Leontiivna TOTSKA

    2013-12-01

    Full Text Available n this article an author conducted the analysis of labour in the public sector of Canada after such nine subgroups of establishments: 1 federal general government; 2 provincial and territorial general government; 3 health and social service institutions (provincial and territorial; 4 universities, colleges, vocational and trade institutes (provincial and territorial; 5 local general government; 6 local school boards; 7 federal government business enterprises; 8 provincial and territorial government business enterprises; 9 local government business enterprises. On the basis of statistical information about these sub-groups for 2007-2011 from a web-site «Statistics Canada» the maximal and minimum values of such three indexes are found: amount of employees, general annual sums of wages and annual sums of wages per employee. Rating for nine sub-groups of establishments of public sector of Canada on these indexes is certain. The got results testify, that during an analysable period most of the employees of public sector was concentrated in health and social service institutions, the least – in local government business enterprises. In 2007– 2011 a most general sum was earned also by the employees of health and social service institutions, the least – by the employees of local government business enterprises. At the same time in an analysable period among the state employees of Canada a most wage in a calculation on one person was got by the employees of federal general government, the least – by the employees of local general government.

  18. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  19. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  20. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  1. Social Studies as Citizenship Education in English Canada: A Review Research.

    Science.gov (United States)

    Sears, Alan

    1994-01-01

    Asserts that social studies in North America has been defined most often as fundamentally concerned with preparing students for participation in civic life. Reviews research and summarizes findings on citizenship education in English Canada since 1988. (CFR)

  2. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D. [Vietnam Atomic Energy Agency, Hanoi (Viet Nam)

    1999-08-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  3. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbalm, K.F. [comp.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  4. Antineutrino emission and gamma background characteristics from a thermal research reactor

    CERN Document Server

    Bui, V M; Fallot, M; Communeau, V; Cormon, S; Estienne, M; Lenoir, M; Peuvrel, N; Shiba, T; Cucoanes, A S; Elnimr, M; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Thiolliere, N; Yermia, F; Zakari-Issoufou, A -A

    2016-01-01

    The detailed understanding of the antineutrino emission from research reactors is mandatory for any high sensitivity experiments either for fundamental or applied neutrino physics, as well as a good control of the gamma and neutron backgrounds induced by the reactor operation. In this article, the antineutrino emission associated to a thermal research reactor: the OSIRIS reactor located in Saclay, France, is computed in a first part. The calculation is performed with the summation method, which sums all the contributions of the beta decay branches of the fission products, coupled for the first time with a complete core model of the OSIRIS reactor core. The MCNP Utility for Reactor Evolution code was used, allowing to take into account the contributions of all beta decayers in-core. This calculation is representative of the isotopic contributions to the antineutrino flux which can be found at research reactors with a standard 19.75\\% enrichment in $^{235}$U. In addition, the required off-equilibrium correction...

  5. Very high flux research reactors based on particle fuels

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  6. Progress report on neutron beam experiments at Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Canh Hai; Tran Tuan Anh [Nuclear Physics Department, Nuclear Research Institute, Dalat (Viet Nam)

    2000-10-01

    The conduct and the utilizations of neutron beams at Dalat Nuclear Research Reactor was reported. In 1998 and 1999 the filtered thermal neutron beam at the beam tube using substances Si, Ti, C, Pb was extracted. The investigations on physical characteristics of reactor; neutron spectra and fluxes at beam tube; safety conditions have been carried out by calculations and experiments. The physical characteristics for the purposes of prompt gamma neutron activation analysis (PGNAA) and nuclear data measurement were improved. The delayed neutron analysis method is used to detect the neutron emission fragments produced by neutron irradiation of uranium and thorium. This method is to determine the concentrations of uranium and thorium simultaneously and detect 10{sup -6} g of uranium and 8x10{sup -6} g thorium in 10 g sample with a precision of 8 per cent. Beside the delayed neutron analysis facility, a gamma spectrometer system with HP-Ge 90 cm{sup 3} semiconductor detector was installed at pneumatic transfer for cyclic activation analysis (CAA). The CAA method has given analytical results quickly and sensitively for the isotopes with half-lives in order of seconds to minutes. (author)

  7. Ageing investigation and upgrading of components/systems of Kartini research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Syarip; Widi Setiawan [Yogyakarta Nuclear Research Centre, Yogyakarta (Indonesia)

    1998-10-01

    Kartini research reactor has been operated in good condition and has demonstrated successful operation for the past 18 years, utilized for: reactor kinetic and control studies, instrumentation tests, neutronic and thermohydraulic studies, routine neutron activation analysis, reactor safety studies, training for research reactor operators and supervisors, and reactor physics experiments. Several components of Kartini reactor use components from the abandoned IRT-2000 Project at Serpong and from Bandung Reactor Centre such as: reactor tank, reactor core, heat exchanger, motor blower for ventilation system, fuel elements, etc. To maintain a good operating performance and also for aging investigation purposes, the component failure data collection has been done. The method used is based on the Manual on Reliability Data Collection For Research Reactor PSAs, IAEA TECDOC 636, and analyzed by using Data Entry System (DES) computer code. Analysis result shows that the components/systems failure rate of Kartini reactor is around 1,5.10{sup -4} up to 2,8.10{sup -4} per hour, these values are within the ranges of the values indicated in IAEA TECDOC 478. Whereas from the analysis of irradiation history shows that the neutron fluence of fuel element with highest burn-up (2,05 gram U-235 in average) is around 1.04.10{sup 16} n Cm{sup -2} and this value is still far below its limiting value. Some reactor components/systems have been replaced and upgraded such as heat exchanger, instrumentation and control system (ICS), etc. The new reactor ICS was installed in 1994 which is designed as a distributed structure by using microprocessor based systems and bus system technology. The characteristic and operating performance of the new reactor ICS, as well as the operation history and improvement of the Kartini research reactor is presented. (J.P.N.)

  8. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  9. Sodium fast reactor fuels and materials : research needs.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  10. Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

    Directory of Open Access Journals (Sweden)

    Sunday Arome Agbo

    2016-06-01

    Full Text Available This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1, a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW, half power (15 kW, and full power (30 kW. Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was 3.7 ± 0.2 kW, 15.2 ± 1.2 kW, and 30.7 ± 2.5 kW, respectively. The thermal power obtained by the slope method at half power and full power was 15.8 ± 0.7 kW and 30.2 ± 1.5 kW, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

  11. The History and Current Status of Otter Research within Canada based on Peer Reviewed Journal Articles

    OpenAIRE

    Luke Tan; Nesime Askin; Michael Belanger; Carin Wittnich

    2010-01-01

    In Canada, there are two species of otters, the river otter (Lontra canadensis) and the sea otter (Enhydra lutris). The river otter is considered to be plentiful and ranges throughout a large part of Canada. On the other hand, the sea otter is classified as of Special Concern and only small translocated colonies are found along the coastline of Vancouver Island and British Columbia. The scientific literature was reviewed with respect to both river and sea otter research performed within Canad...

  12. Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  13. Sodium fast reactor safety and licensing research plan. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  14. SoLid: Search for Oscillation with a 6Li Detector at the BR2 research reactor

    OpenAIRE

    Michiels, Ianthe

    2016-01-01

    In the past decades, various nuclear reactor neutrino experiments have measured a deficit in the flux of antineutrinos coming from the reactor at short reactor-detector distances, when compared to theoretical calculations. One of the experiments designed to investigate this reactor antineutrino anomaly is the SoLid experiment. It uses the compact BR2 research reactor from the SCK-CEN in Mol, Belgium, to perform reactor antineutrino flux measurements at very short baseline. These proceedings d...

  15. Research and proposal on SCR reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced CFD software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two SCR reactors were developed: reactor #1 was optimized and #2 was developed based on #1. Various indicators including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle and system pressure drop were analyzed. The analysis indicated Reactor #2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of reactor was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG #3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle and temperature distribution are subjected to SCR reactor shape to a great extent and Reactor #2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to Ammonia injection grid (AIG) shape and AIG #3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The development above on the reactor and the AIG are both of great application value and social efficiency.

  16. 75 FR 27368 - Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of...

    Science.gov (United States)

    2010-05-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Aerotest Operations, Inc., Aerotest Radiography and Research Reactor; Notice of Consideration of... Operating License No. R-98 for the Aerotest Radiography and Research Reactor (ARRR), currently held by...

  17. 75 FR 39985 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order..., use and operation of the Aerotest Radiography and Research Reactor (ARRR) located in San Ramon...

  18. Implementation of a management system for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Aquino, Afonso Rodrigues de; Zouain, Desiree Moraes, E-mail: araquino@ipen.b, E-mail: dmzouain@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the requirements established by an IAEA draft technical document for the implementation of a management system for operating organisations of research reactors. The following aspects will be discussed: structure of IAEA draft technical document, management system requirements, processes common to all research reactors, aspects for the implementation of the management system, and a formula for grading the management system requirements. (author)

  19. Status of reduced enrichment programs for research reactors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Keiji; Nishihara, Hedeaki [Kyoto Univ., Osaka (Japan); Shirai, Eiji; Oyamada, Rokuro; Sanokawa, Konomo [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1997-08-01

    The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for the full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE.

  20. Monitoring and Control Research Using a University Reactor and SBWR Test-Loop

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Edwards

    2003-09-28

    The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs.

  1. Impact of a 2 MWth research reactor on radioactivity in sediments.

    Science.gov (United States)

    Bose, S R; Williamson, T G; Mulder, R U; Molla, M A

    1993-08-01

    The objective of this study was to determine the environmental impact caused by liquid effluent discharge from the University of Virginia's 2 MWth Research Reactor during the course of its first quarter-century of normal operation. Sediment samples were collected from the reactor pond (situated in a restricted area next to the Reactor Facility), the stream feeding it, and its exit stream. For a comparative study, sediment samples were taken from a nearby closed reference pond having no direct link with the reactor pond. Concentrations of long-lived alpha, beta and gamma emitting radionuclides, from natural and nuclear weapons fallout sources, were detected in pond and stream sediments. Low levels of activation product radioisotopes from the research reactor were detected in the reactor pond sediment. It was observed that both natural and artificial radionuclide concentrations were higher in the UVAR pond (with the exception of 54Mn and 65Zn) as compared to exist stream and reference sediments.

  2. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  3. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  4. Future development of the research nuclear reactor IRT-2000 in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

    1999-07-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  5. The Canada Research Chairs Program: The Good, the Bad, and the Ugly

    Science.gov (United States)

    Grant, Karen R.; Drakich, Janice

    2010-01-01

    Drawing on 60 qualitative interviews with Canada research chairs (CRCs), we explore their careers in context. We develop a model to understand the intersection of individual and institutional factors that shape the everyday experiences of the CRCs. The model shows the dialectical relationship between faculty identity, research, relations with…

  6. Open Science Strategies in Research Policies: A Comparative Exploration of Canada, the US and the UK

    Science.gov (United States)

    Lasthiotakis, Helen; Kretz, Andrew; Sá, Creso

    2015-01-01

    Several movements have emerged related to the general idea of promoting "openness" in science. Research councils are key institutions in bringing about changes proposed by these movements, as sponsors and facilitators of research. In this paper we identify the approaches used in Canada, the US and the UK to advance open science, as a…

  7. Allocation and Evaluation: The Approach at the Social Sciences and Humanities Research Council of Canada.

    Science.gov (United States)

    Hanson, Robert

    1994-01-01

    Funding practices of Canada's Social Sciences and Humanities Research Council, the principal source of funds for university-based research and scholarship in those disciplines, are examined. In the current competitive environment, the council uses varied evaluation activities, from peer-based grant adjudication for operational purposes to program…

  8. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  9. Nuclear plant-aging research on reactor protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  10. Radioactive waste management in Research Reactor Institute, Kyoto University

    Energy Technology Data Exchange (ETDEWEB)

    Shimoura, Kazukuni [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-02-01

    The joint utilization by the researchers of the universities and others in whole Japan of the reactor facilities in Kyoto University was begun in 1965. The facility for abandoning radioactive waste was constructed in fiscal year 1963, and comprises 500 kg/h vaporization and concentration facility, 2 systems of 5 m{sup 3}/h flocculation, precipitation and filtration facility, and 2 systems of 5 m{sup 3}/h ion exchange facility for liquid waste, 50x10{sup 3} kg pressing capacity, four-column type press for reducing volume of solid waste, and waste store for 400 standard drums. Radioactive Waste Treatment Department was organized, and the stipulations on security and radiation injury prevention were enforced in 1964. Liquid and solid wastes have been accepted since 1964. The radioactivity in discharged water in each year is shown. About 600 m{sup 3} of waste liquid has been accepted in one year since 1980. The trust of solid waste treatment to Japan Radioisotope Association has been carried out 51 times. The radioactive waste which is temporarily stored in the waste store is reported. Hereafter, the construction of the facility for storing large finished equipment and the appearance of waste treatment enterprises are desirable. (K.I.)

  11. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  12. A neutron tomography facility at a low power research reactor

    CERN Document Server

    Körner, S; Von Tobel, P; Rauch, H

    2001-01-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at ...

  13. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  14. A Study on the demands of research reactors and considerations for an export

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, Young Jun

    2008-11-15

    Among around 240 research reactors in operation over the world, around 80% have been operated for more than 20 years and 65% for more than 30 years. Hence the number of operable reactors is expected, between 2010 and 2020, to be reduced to 1/3 of the present situation if the lifetime of a research reactor is assumed to be 40 years. However, considering the recent re-highlighting of nuclear energy as a practical mass energy source and the contributions to the overall areas of science and technology, the demands for constructing a new research reactor and replacing the existing research reactors will be increased in the near future. On the other hand, vendors which participate in providing research reactors are not few, and AREVA in France and INVAP in Argentina are example of them in a positive position. Japan and Russia are regarded as potential competitors, but they do not actively appear in the market so far. Comparing those competitors with Korea, we have weak points regarding experiences on exports and the organizational systems as an integrated vendor. But we may have a competitiveness by grafting our experiences on the development of nuclear power technology and the construction and operation of the HANARO. In this report, the future potential demands for research reactors and the related considerations for exports have been surveyed and described, particularly, centering around the Netherlands, Vietnam and Thailand that are countries which may construct research reactors in the near future. Considerations for exporting a research reactor have been categorized into two groups of technical and nontechnical items. From a technical point of view, the issues on fuel and reactor type, design data and design ability, design codes, and technology property rights have been reviewed. For the non-technical items, an integrated project system, reasonable estimate of demands, social and economic conditions for potential demand countries, MOU status, nuclear non

  15. Status of reactor-shielding research in the US

    Energy Technology Data Exchange (ETDEWEB)

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study.

  16. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  17. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  18. Joint Canada-Israel Health Research Program | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    First and foremost, the research achievements of both Israeli and Canadian researchers in different biomedical fields, including brain research, cancer biology, and immunology, are truly outstanding and in many cases, highly complementary. Secondly, we are genuinely excited at the thought of working with IDRC, CIHR, ...

  19. Nuclear energy was the way of the future; 50 anniversary of the research reactor

    NARCIS (Netherlands)

    Wassink, J.

    2013-01-01

    It was the hidden jewel of TU Delft, according to the employees of the nuclear reactor. Others protested against it and insisted that it be eliminated. Following a major mid-life crisis, the Delft research reactor is now in better shape than ever before.

  20. Generating the flux map of Nigeria Research Reactor-1 for efficient ...

    African Journals Online (AJOL)

    One of the main uses to which the Nigeria Research Reactor-1 (NIRR-1) will be put is neutron activation analysis. The activation analyst requires information about the flux level at various points within and around the reactor core to enable him identify the point of optimum flux (at a given operating power) for any irradiation ...

  1. A study on the establishment of component/equipment performance criteria considering Heavy Water Reactor characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keun Sun; Kwon, Young Chul; Lee, Min Kyu; Lee, Yun Soo [Sunmoon Univ., Asan (Korea, Republic of); Chang, Seong Hoong; Ryo, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Soong Pyung; Hwnag, Jung Rye; Chung, Chul Kee [Chosun Univ., Gwangju (Korea, Republic of)

    2002-03-15

    Foreign and domestic technology trends, regulatory requirements, design and researches for heavy water reactors are analyzed. Safety design guides of Canada industry and regulatory documents and consultative documents of Canada regulatory agency are reviewed. Applicability of MOST guidance 16 Revision 'guidance for technical criteria of nuclear reactor facility' is reviewed. Specific performance criteria are established for components and facilities for heavy water reactor.

  2. Conceptual Nuclear Design of a 20 MW Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, Hak Sung; Park, Cheol [KAERI, Daejeon (Korea, Republic of); Nghiem, Huynh Ton; Vinh, Le Vinh; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    A conceptual nuclear design of a 20 MW multi-purpose research reactor for Vietnam has been jointly done by the KAERI and the DNRI (VAEC). The AHR reference core in this report is a right water cooled and a heavy water reflected open-tank-in-pool type multipurpose research reactor with 20 MW. The rod type fuel of a dispersed U{sub 3}Si{sub 2}-Al with a density of 4.0 gU/cc is used as a fuel. The core consists of fourteen 36-element assemblies, four 18-element assemblies and has three in-core irradiation sites. The reflector tank filled with heavy water surrounds the core and provides rooms for various irradiation holes. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worths, etc. For the analysis, the MCNP, MVP, and HELIOS codes were used by KAERI and DNRI (VAEC). The results by MCNP (KAERI) and MVP (DNRI) showed good agreements and can be summarized as followings. For a clean, unperturbed core condition such that the fuels are all fresh and there are no irradiation holes in the reflector region, the fast neutron flux (E{sub n}{>=}1.0 MeV) reaches 1.47x10{sup 14} n/cm{sup 2}s and the maximum thermal neutron flux (E{sub n}{<=}0.625 eV) reaches 4.43x10{sup 14} n/cm{sup 2}s in the core region. In the reflector region, the thermal neutron peak occurs about 28 cm far from the core center and the maximum thermal neutron flux is estimated to be 4.09x10{sup 14} n/cm{sup 2}s. For the analysis of the equilibrium cycle core, the irradiation facilities in the reflector region were considered. The cycle length was estimated as 38 days long with a refueling scheme of replacing three 36-element fuel assemblies or replacing two 36-element and one 18-element fuel assemblies. The excess reactivity at a BOC was 103.4 mk, and 24.6 mk at a minimum was reserved at an EOC. The assembly average discharge burnup was 54.6% of initial U-235 loading. For the proposed fuel management

  3. 10 CFR 110.26 - General license for the export of nuclear reactor components.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of nuclear reactor... NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.26 General license for the export of nuclear reactor... nuclear power or research reactor in the United States: Austria Belgium Bulgaria Canada Czech Republic...

  4. Canada-Latin America and Caribbean Zika Virus Research Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-05-10

    May 10, 2016 ... A new funding opportunity on Zika virus is responding to the virus outbreak and the health threat it represents for the affected populations in the hardest hit countries in Latin America and the Caribbean. The Canadian Institutes for Health Research and the International Development Research Centre, ...

  5. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Science.gov (United States)

    2013-05-08

    ... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and Correction AGENCY: Nuclear Regulatory Commission. ACTION... Chemical TRIGA Research Reactor,'' to inform the public that the NRC is considering issuance of a renewed...

  6. Early Intervention Practice and Research in Ontario, Canada: Listening to the Field

    Science.gov (United States)

    Underwood, Kathryn; Killoran, Isabel

    2009-01-01

    In the province of Ontario, Canada, early intervention services are in need of networking opportunities in order to further a research agenda and support early childhood educators in the field. The authors describe the political circumstances facing new graduates of early childhood education (ECE) training programs and the discrepancy between the…

  7. Canada-Africa Research Exchange Grants (CAREG) : Pilot Phase ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Driving vaccine innovations to improve lives and livelihoods. Five world-class research teams are working to develop vaccines for neglected livestock diseases in the Global South. View moreDriving vaccine innovations to improve lives and livelihoods ...

  8. Digital, remote control system for a 2-MW research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Battle, R.E.; Corbett, G.K.

    1988-01-01

    A fault-tolerant programmable logic controller (PLC) and operator workstations have been programmed to replace the hard-wired relay control system in the 2-MW Bulk Shielding Reactor (BSR) at Oak Ridge National Laboratory. In addition to the PLC and remote and local operator workstations, auxiliary systems for remote operation include a video system, an intercom system, and a fiber optic communication system. The remote control station, located at the High Flux Isotope Reactor 2.5 km from the BSR, has the capability of rector startup and power control. The system was designed with reliability and fail-safe features as important considerations. 4 refs., 3 figs.

  9. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    Science.gov (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  11. Progress with OPAL, the new Australian research reactor

    Indian Academy of Sciences (India)

    Abstract. Australian science is entering a new 'golden age', with the start-up of bright new neutron and photon sources in Sydney and Melbourne, in 2006 and 2007 respectively. The OPAL reactor and the Australian Synchrotron can be considered as the greatest sin- gle investment in scientific infrastructure in Australia's ...

  12. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    Administrator

    Cs, will be separated and used as a radiation source for various societal applications. This approach minimizes the quantity of waste to be immobilized. Separation of noble metals such as palladium for societal applications such as catalysts, fuel cells etc is also possible. 3. FBR Programme in India. The seed for fast reactor ...

  13. Joint Canada-Israel Health Research Program | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In October 2016, the partners launched the 3rd call for research proposals in the field of cancer. The proposals were evaluated by an international committee, Chaired by Prof. Edward Harlow from the Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School. Six world-class teams were ...

  14. Canada-South Africa trilateral Research Chair in climate change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Using research based at Makerere University's biological field station near Kibale National Park in Uganda, this project will aim to predict how climate change will exacerbate such conflicts, and design and test measures to mitigate climate change impacts on the rural poor and wildlife. The project involves a trilateral ...

  15. Building bridges in economics research: John Whalley (Canada ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-09

    Dec 9, 2010 ... The achievements are heartening, as a remarkable group of senior Chinese and international economists mentors a new generation of scholars undertaking applied research on poverty and inequality in China: 19 young Chinese economists, assisted by almost as many respected senior scholars, are ...

  16. Relationships between Interlibrary Loan and Research Activity in Canada

    Science.gov (United States)

    Duy, Joanna; Larivière, Vincent

    2014-01-01

    Interlibrary Loan borrowing rates in academic libraries are influenced by an array of factors. This article explores the relationship between interlibrary loan borrowing activity and research activity at 42 Canadian academic institutions. A significant positive correlation was found between interlibrary loan borrowing activity and measures of…

  17. Energy efficiency research for Canada's agri-food sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Canada's agriculture and food processing sector accounts for 15 per cent of Canadian energy consumption, of which 4 per cent is consumed on farms and 5 per cent is consumed for food and beverage processing. The rest is assigned to transportation. Energy efficiency research projects within Agriculture and Agri-Food Canada are being conducted across Canada in support of Natural Resources Canada's Program for Energy Research and Development (PERD). The research focuses on on-farm energy use or food processing to increase energy use efficiency and to ultimately help businesses in the agri-food sector achieve lower costs and higher returns. Other objectives are to reduce greenhouse gas (GHG) emissions as well as other environmental emissions that have an impact on air and water quality. This document presents information about some of the projects and demonstrates the diversity of initiatives being undertaken. They include: improving produce while saving energy; reducing over-all energy inputs with manure; improved cooling of fresh blueberries; energy efficient drying of cranberries; liquid dairy manure and soil micro-organisms; saving energy on the farm with manure management; improved processing of ready-to-eat lettuce; removing surface moisture from blueberries; minimizing energy use during commercial banking; new biotechnology for energy recovery; decreasing energy use in processed meat cooking; energy efficient canola processing and utilization; reducing post-harvest losses of spinach; and, increasing production while decreasing consumption. 13 figs.

  18. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Universitaria CEP: 05508-000- Sao Paulo-SP (Brazil)

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  19. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  20. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  1. Proceedings of the 1997 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The 1997 Workshop on the Utilization of Research Reactors, which is the sixth Workshop on the theme of research reactor utilization was held in Bandung, Indonesia from November 6 to 13. This Workshop was executed based on the agreement in the Eighth International conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1997. The whole Workshop consists of the preceding Sub-workshop carried out the demonstration experiment of Radioisotope Production, and the Workshop on the theme of three fields (Neutron Scattering, Radioisotope production, Safe Operation and Maintenance of Research Reactor). The total number of participants for the workshop was about 100 people from 8 countries, i.e. China, Indonesia, Korea, Malaysia, Philippine, Thailand, Vietnam and Japan. It consists of the papers for Sub-workshop, Neutron Scattering, Radioisotope Production, Safe Operation and Maintenance of research reactor, and summary reports. The 53 of the presented papers are indexed individually. (J.P.N.)

  2. Improvement of Critical Heat Flux Correlation for Research Reactors using Plate-Type Fuel

    National Research Council Canada - National Science Library

    KAMINAGA, Masanori; YAMAMOTO, Kazuyoshi; SUDO, Yukio

    1998-01-01

    ... reversal.The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition...

  3. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  4. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    National Research Council Canada - National Science Library

    Boustani Ehsan; Khakshournia Samad; Khalafi Hossein

    2016-01-01

    One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall...

  5. Core calculations for the upgrading of the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adimir dos; Perrotta, Jose A.; Bastos, Jose Luis F.; Yamaguchi, Mitsuo; Umbehaun, Pedro E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: asantos@net.ipen.br; perrotta@net.ipen.br; mitsuo@net.ipen.br

    1998-07-01

    The IEA-R1 Research Reactor is a multipurpose reactor. It has been used for basic and applied research in the nuclear area, training and radioisotopes production since 1957. In 1995, the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) took the decision to modernize and upgrade the power from 2 to 5 MW and increase the operational cycle. This work presents the design requirements and the calculations effectuated to reach this goal. (author)

  6. Nuclear materials testing in the loops of the NRU research reactor using material test bundles

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C.; Walters, L. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    The NRU research reactor has been used to obtain data to understand and quantify the effects of irradiation on nuclear reactor components through their in-service lives and to develop improved designs and components. Apart from the Mark-4 and Mark-7 fast neutron rod material testing facilities in NRU, the high-pressure/high-temperature experimental loops provide an environment similar to the CANDU reactor core, where test materials are subjected to simulated power reactor conditions. Nuclear materials are tested in the loops using Material Test Bundles (MTB). This paper describes how the MTB is designed to operate in the NRU loops. It also describes the physics calculation of the 89-energy-group neutron spectrum in the MTB and its comparison with the spectrum in CANDU power reactors. The predictions of spectral effects on nuclear material behaviour, such as material damage and helium generation are summarized. (author)

  7. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  8. Proceedings of the first symposium on utilization of research reactors and JMTR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The first symposium on utilization of research reactors (JRR-2, JRR-3M, JRR-4) and Japan Materials Testing Reactor (JMTR) in JAERI was held from September 29th to 30th, 1997 at Sannomaru Hotel, Mito. The purpose of this symposium is to announce contribution to progress of scientific technology as well as to promote future utilization of the research reactors and JMTR. During the symposium, 16 reports were presented on nuclear fuel and material, neutron beam experiment, medical irradiation, radioisotope production and neutron activation analysis. The present status of the research reactors and JMTR were also reported. The special lecture titled `JRR-2 and Medical Irradiation` was given by Mr. Nakamura, former editorial writer of Yomiuri. Finally, panel discussion was carried on `The Role of Research Reactors and JMTR in Scientific Technology for the future` actively by the participants and experts in every field of research reactor utilization. 250 people participated in this symposium from universities, national research institutes, private corporations and JAERI. This proceedings briefly summarizes 16 reports, the content of panel discussion and so forth. (J.P.N.)

  9. Research reactor systems for the stable and efficient supply of RI

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Choel; Oh, Sooy Oul; Lee, Choong Sung; Jun, Byung Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-04-15

    The supply of medical isotopes has relied on the major four research reactors over the world and an unavailability of some of these reactors caused a problem in the stable supply of medical isotopes, especially {sup 9}9{sup M}o. There are several ways to produce {sup 9}9{sup M}o but is is believed that the use of a research reactor is the most efficient way. There are two ways to produce {sup 9}9{sup M}o in a research reactor; they are the separation of {sup 9}9{sup M}o from the fission product and the use of neutron capture reaction of {sup 9}8{sup M}o. For the former, various ways are available depending on the target morphology and the enrichment of uranium in the target. The efficiency of the neutron capture method depends on the available neutron flux, the enrichment of {sup 9}8{sup M}o in the target and the efficiency of the adsorption column. Besides these nuclear engineering aspects, other issues affect the use of the research reactor and they include the following; the on power loading of the target, the methods to reduce the cost for the production of RI in research reactors, the logistics between the producer and the consumer, and the coalition of research reactors. In addition, the producers of RI products or the distributors should become the prosumers in the production of sources. The stable and efficient supply of medical isotopes is believed to depend on all these factors and the future options on the use of a research reactor in Korea for the medical isotope supply should consider these.

  10. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  11. Evaluation of critical heat flux performances for design strategy of new research reactor nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Bang, In Cheol; Lee, Kwi Lim; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    The present project investigated stable burnout heat flux correlations applicable to research reactor operation conditions of low pressure, low temperature and high flow rate. In addition, in series of thermal limits important to safety of the reactor, ONB and OFI correlations also were investigated. There are some world CHF databases for tube-inside flow. In order to design a research reactor, DNB is final design limit factor and so the collection of the data or correlation are very important. The optimal core cooling capability can be done by considering neutronics, economical efficiency, materials limit together through engineering judgement based on DNB correlations. The project collected the materials and correlations applicable to research reactor conditions. The correlations give a fundamental base for analyzing thermal limit factors and will be used helpfully in review of regulatory body and designer for safety evaluation.

  12. Production and release rate of 37Ar from the UT TRIGA Mark-II research reactor.

    Science.gov (United States)

    Johnson, Christine; Biegalski, Steven R; Artnak, Edward J; Moll, Ethan; Haas, Derek A; Lowrey, Justin D; Aalseth, Craig E; Seifert, Allen; Mace, Emily K; Woods, Vincent T; Humble, Paul

    2017-02-01

    Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of 37Ar, 41Ar, and 133Xe present. The measured ratio of 37Ar/41Ar and historical records of 41Ar releases were then utilized to estimate an annual average release rate of 37Ar from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (∼1 MWt) do not release 37Ar in concentrations measurable by currently proposed OSI detection equipment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Canada's neglected tropical disease research network: who's in the core-who's on the periphery?

    Directory of Open Access Journals (Sweden)

    Kaye Phillips

    Full Text Available This study designed and applied accessible yet systematic methods to generate baseline information about the patterns and structure of Canada's neglected tropical disease (NTD research network; a network that, until recently, was formed and functioned on the periphery of strategic Canadian research funding.MULTIPLE METHODS WERE USED TO CONDUCT THIS STUDY, INCLUDING: (1 a systematic bibliometric procedure to capture archival NTD publications and co-authorship data; (2 a country-level "core-periphery" network analysis to measure and map the structure of Canada's NTD co-authorship network including its size, density, cliques, and centralization; and (3 a statistical analysis to test the correlation between the position of countries in Canada's NTD network ("k-core measure" and the quantity and quality of research produced.Over the past sixty years (1950-2010, Canadian researchers have contributed to 1,079 NTD publications, specializing in Leishmania, African sleeping sickness, and leprosy. Of this work, 70% of all first authors and co-authors (n = 4,145 have been Canadian. Since the 1990s, however, a network of international co-authorship activity has been emerging, with representation of researchers from 62 different countries; largely researchers from OECD countries (e.g. United States and United Kingdom and some non-OECD countries (e.g. Brazil and Iran. Canada has a core-periphery NTD international research structure, with a densely connected group of OECD countries and some African nations, such as Uganda and Kenya. Sitting predominantly on the periphery of this research network is a cluster of 16 non-OECD nations that fall within the lowest GDP percentile of the network.The publication specialties, composition, and position of NTD researchers within Canada's NTD country network provide evidence that while Canadian researchers currently remain the overall gatekeepers of the NTD research they generate; there is opportunity to leverage

  14. Reactor safety research programs. Quarterly report, January-March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1982-07-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  15. Reactor safety research programs. Quarterly report, April-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S.K. (ed.)

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  16. Significance of the Maritimes Region ecosystem research initiative to marine protected area network planning within Fisheries and Oceans Canada

    National Research Council Canada - National Science Library

    Lawton, P; Westhead, M; Greenlaw, M.E; Smith, S.J; Brown, C.J; Quigley, S; Brickman, D

    2013-01-01

    This research document outlines the relevance to Marine Protected Area (MPA) network planning of scientific work recently completed under Fisheries and Oceans Canada's Maritimes Region Ecosystem Research Initiative (ERI...

  17. Event management in research reactors; Gestion de eventos en reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, C.D. [Coordinador Reactores de Investigacion y Conjuntos Criticos, Autoridad Regulatoria Nuclear (Argentina)]. e-mail: cperrin@sede.arn.gov.ar

    2006-07-01

    In the Radiological and Nuclear Safety field, the Nuclear Regulatory Authority of Argentina controls the activities of three investigation reactors and three critical groups, by means of evaluations, audits and inspections, in order to assure the execution of the requirements settled down in the Licenses of the facilities, in the regulatory standards and in the documentation of mandatory character in general. In this work one of the key strategies developed by the ARN to promote an appropriate level of radiological and nuclear safety, based on the control of the administration of the abnormal events that its could happen in the facilities is described. The established specific regulatory requirements in this respect and the activities developed in the entities operators are presented. (Author)

  18. Recent results of research on supercritical water-cooled reactors in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Koehly, C.; Schulenberg, T. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Toivonen, A.; Penttila, S. [VTT Technical Research Centre, Espoo (Finland); Chandra, L.; Lycklama a Nijeholt, J.A. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2009-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. The recent design of the HPLWR including flow paths is described in this paper. Exemplarily, design analyses are presented addressing neutronics, thermal-hydraulics, thermo-mechanics, materials investigations and heat transfer. (author)

  19. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  20. Evaluation of funding gastroenterology research in Canada illustrates the beneficial role of partnerships

    Science.gov (United States)

    Sherman, Philip M; Hart, Kimberly Banks; Rose, Keeley; Bosompra, Kwadwo; Manuel, Christopher; Belanger, Paul; Daniels, Sandra; Sinclair, Paul; Vanner, Stephen; Buret, André G

    2013-01-01

    BACKGROUND: Funders of health research in Canada seek to determine how their funding programs impact research capacity and knowledge creation. OBJECTIVE: To evaluate the impact of a focused grants and award program that was cofunded by the Canadian Institutes of Health Research Institute of Nutrition, Metabolism and Diabetes, and the Canadian Association of Gastroenterology; and to measure the impact of the Program on the career paths of funded researchers and assess the outcomes of research supported through the Program. METHODS: A survey of the recipients of grants and awards from 2000 to 2008 was conducted in 2012. The CIHR Funding Decisions database was searched to determine subsequent funding; a bibliometric citation analysis of publications arising from the Program was performed. RESULTS: Of 160 grant and award recipients, 147 (92%) completed the survey. With >$17.4 million in research funding, support was provided for 131 fellowship awards, seven career transition awards, and 22 operating grants. More than three-quarters of grant and award recipients continue to work or train in a research-related position. Combined research outputs included 545 research articles, 130 review articles, 33 book chapters and 11 patents. Comparative analyses indicate that publications supported by the funding program had a greater impact than other Canadian and international comparators. CONCLUSIONS: Continuity in support of a long-term health research funding partnership strengthened the career development of gastroenterology researchers in Canada, and enhanced the creation and dissemination of new knowledge in the discipline. PMID:24340317

  1. Estimation of Na-24 activity concentration in BAEC TRIGA Research Reactor

    Directory of Open Access Journals (Sweden)

    M. Ajijul Hoq

    Full Text Available The Bangladesh Atomic Energy Commission (BAEC TRIGA Research Reactor is a unique nuclear installation of the country generally implemented for a wide variety of research applications and serves as an excellent source of neutron. During reactor operation it is necessary to measure and control the activity concentration of the pool water for fuel element failure detection and for the determination of contamination. The present study deals with the estimation of activity concentration for Na-24 present in water coolant produced as a result of 23Na (n, γ 24Na reaction. Several governing equations have been employed to estimate the Na-24 activity concentrations theoretically at different reactor power levels including maximum reactor power of 2.4 MW. From the obtained result it is ensured that the estimated Na-24 activity of 8.83 × 10−3 μCi/cm3 is not significant enough for any radiological hazard. Thus for ensuring radiological safety issues of the research reactor the assessment performed under the present study has an implication. Keywords: TRIGA Research Reactor, Na-24, Activity concentration, Purification system, Water impurity, Radiological safety

  2. MITR-III: Upgrade and relicensing studies for the MIT Research Reactor. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Trosman, H.G. [ed.; Lanning, D.D.; Harling, O.K.

    1994-08-01

    The current operating license of the MIT research reactor will expire on May 7, 1996 or possibly a few years later if the US Nuclear Regulatory Commission agrees that the license period can start with the date of initial reactor operation. Driven by the imminent expiration of the operating license, a team of nuclear engineering staff and students have begun a study of the future options for the MIT Research Reactor. These options have included the range from a major rebuilding of the reactor to its decommissioning. This document reports the results of a two year intensive activity which has been supported by a $148,000 grant from the USDOE contract Number DEFG0293ER75859, approximately $100,000 of internal MIT funds and Nuclear Engineering Department graduate student fellowships as well as assistance from international visiting scientists and engineers.

  3. Design Guideline for Primary Heat Exchanger in a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sunil; Seo, Kyoung-Woo; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, analytical study is conducted to track the variation of the PCS outlet temperature in conditions of the constant core power and constant SCS inlet temperature. The PCS circulates demineralized water to remove the heat generated in reactor core. The heat is transferred to the cold water of the SCS through the primary heat exchanger. In JRTR, Plate-type Heat Exchanger (PHE) was used as the primary heat exchanger. The cooling tower automatically sets the SCS inlet temperature constant by fan speed control. The flow rate of SCS is adjusted to be identical with the PCS flow rate. To design the PHE, the inlet and outlet temperatures and the flow rates for both systems should be determined. The flow rate has the allowable band for the safe operation from the lower limit to upper limit resulting in different temperature distribution in the PHE. Specially, the PCS outlet temperature which is the core inlet temperature is used for a safety parameter for the reactor shutdown. Therefore, we need to figure out which limit for the flow rate should be used from the conservative point of view. At 200 kg/s of PCS and SCS flow rates, the inlet and outlet temperatures are 41.3℃and 34℃, respectively. With increase of the flow rate, both of PCS inlet and outlet temperatures decrease to 33.6℃ and 39.9℃. This result means the low limit of the allowable flow band should be used for the conservative design of primary heat exchanger. If the upper limit of the allowable flow band is used, the PCS outlet temperature which is the safety parameter used for the reactor shutdown increases with decrease of the flow rate.

  4. Quality management in BNCT at a nuclear research reactor.

    Science.gov (United States)

    Sauerwein, Wolfgang; Moss, Raymond; Stecher-Rasmussen, Finn; Rassow, Jürgen; Wittig, Andrea

    2011-12-01

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Water treatment process in the JEN-1 Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Perez-Bustamante, J. A.; Batuecas, T.

    1965-07-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs.

  6. Operational performance of the three bean salad control algorithm on the ACRR (Annular Core Research Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R.M.; Madaras, J.J. (B and W Nuclear Technologies, Lynchburg, VA (USA). Space and Defense Systems); Trowbridge, F.R. Jr.; Talley, D.G.; Parma, E.J. Jr. (Sandia National Labs., Albuquerque, NM (USA))

    1991-01-01

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.

  7. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    OpenAIRE

    Boustani Ehsan; Khakshournia Samad; Khalafi Hossein

    2016-01-01

    One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall reliability of the reactor shutdown system. The proposed second shutdown system is a diverse, independent shutdown system compared to the existing rod based one that intends to achieve and maintain sub-criticality condition with an enough shutdown margin in man...

  8. POLARIS: Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity - New Opportunities in Canada

    Science.gov (United States)

    Cassidy, J. F.; Adams, J.; Asudeh, I.; Atkinson, G.; Bostock, M. G.; Eaton, D. W.; Ferguson, I. J.; Snyder, D.; Unsworth, M.

    2003-04-01

    POLARIS is a multi-institutional 10M project recently funded by the Canadian Foundation for Innovation, Provincial Governments and Universities, and private industry across Canada. This project is providing new, state-of-the-art portable geophysical observatories for research into lithospheric structure, continental dynamics, and earthquake hazards in Canada. When completed, POLARIS infrastructure will comprise 90 three-component broadband seismographs and 30 magnetotelluric (MT) mobile field systems and complementary satellite telemetry data acquistion. Over the initial four year installation of this project, the seismograph network will be deployed as three subarrays of 30 instruments each. The MT instruments will be used in shorter-term deployments at each of the three seismic subarrays for lithospheric imaging, and continuous recording at selected elements for deep-mantle imaging. The initial scientific objectives include: 1) three-dimensional detailed mapping of the asthenosphere and upper mantle of the Slave Province in Canada's north to assist the emerging diamond industry; 2) mapping lithospheric structure and earthquake hazards in the heavily populated area of southern Ontario (identifying zones of crustal weakness, obtaining accurate earthquake parameters, and ground motion attenuation studies). 3) mapping the structure and earthquake hazards over the Cascadia subduction zone in southwest British Columbia (subducting oceanic plate, site-response in urban areas, identifying active crustal faults, and seismic attenuation studies). The latter array will provide new opportunities into research involving slab seismicity, including focal mechanisms, attenuation studies, and detailed structural studies. Further research initiatives that will be possible include: testing Rapid Warning Systems for ground shaking in the urban areas of Canada; developing new fine-scale imaging techniques using the scattered wavefield; and investigating geomagnetically induced

  9. Paediatric clinical research from the perspective of hospital pharmacists from France and Canada.

    Science.gov (United States)

    Guérin, Aurélie; Tanguay, Cynthia; Lebel, Denis; Prot-Labarthe, Sonia; Bourdon, Olivier; Bussières, Jean-François

    2014-12-01

    To compare pharmacy support for paediatric research services in France and Canada and to describe the perception of pharmacists and rank the paediatric clinical research issues. This was a cross-sectional descriptive study. All paediatric hospitals from Canada and the main hospitals from France were contacted. A survey was conducted from May-September 2012. Descriptive statistics were performed. Results from 11 paediatric hospitals in Canada (11/12, 92%) and 11 (11/18, 61%) in France were obtained. There was a similar number of ongoing paediatric clinical trials per hospital in France versus Canada (38 (10-81) versus 20 (4-178)). A lower number of pharmacists per hospital was observed in France (17 (11.5-35) versus 45 (18.9-76.8)), but a similar number of pharmacists were assigned to clinical trials (1.5 (1-3) versus 1.9 (0.2-17.4)). Institutional protocols represented the majority of paediatric clinical trials in France (61% (14-100) versus 25% (0-100)). Similar pharmacy support services were offered, but the majority of French respondents also offered help for institutional protocol development (91 versus 50% P = 0.063). The main issues associated with paediatric clinical research were absence of financial interest from the pharmaceutical industry, prohibitive cost versus profit ratio, small patient cohorts and the non-availability of the appropriate drug formulations. Difficulties related to pharmaceutical compounding were identified as the main hindrance to paediatric clinical research; particular attention should be paid to these details when setting up a paediatric trial. © 2014 Royal Pharmaceutical Society.

  10. Implementing Knowledge Translation Strategies in Funded Research in Canada and Australia: A Case Study

    OpenAIRE

    Gabriel Moore; Therese Fitzpatrick; Ivy Lim-Carter; Abby Haynes; Anna Flego; Barbara Snelgrove

    2016-01-01

    There is an emerging literature describing the use of knowledge translation strategies to increase the relevance and usability of research, yet there are few real-world examples of how this works in practice. This case study reports on the steps taken to embed knowledge translation strategies in the Movember Foundation's Men’s Mental Health Grant Rounds in 2013–14, which were implemented in Australia and Canada, and on the support provided to the applicants in developing their knowledge trans...

  11. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not.

  12. Air leakage analysis of research reactor HANARO building in typhoon condition for the nuclear emergency preparedness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Goany Up; Lee, Hae Cho; Kim, Bong Seok; Kim, Jong Soo; Choi, Pyung Kyu [Dept. of Emergency Preparedness, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    To find out the leak characteristic of research reactor 'HANARO' building in a typhoon condition MELCOR code which normally is used to simulate severe accident behavior in a nuclear power plant was used to simulate the leak rate of air and fission products from reactor hall after the shutdown of the ventilation system of HANARO reactor building. For the simulation, HANARO building was designed by MELCOR code and typhoon condition passed through Daejeon in 2012 was applied. It was found that the leak rate is 0.1%·day{sup -1} of air, 0.004%·day{sup -1} of noble gas and 3.7×10{sup -5}%·day{sup -1} of aerosol during typhoon passing. The air leak rate of 0.1%·day can be converted into 1.36 m{sup 3}·hr{sup -1} , but the design leak rate in HANARO safety analysis report was considered as 600 m3·hr{sup -1} under the condition of 20 m·sec{sup -1} wind speed outside of the building by typhoon. Most of fission products during the maximum hypothesis accident at HANARO reactor will be contained in the reactor hall, so the direct radiation by remained fission products in the reactor hall will be the most important factor in designing emergency preparedness for HANARO reactor.

  13. Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…

  14. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  15. Ageing management and refurbishment of Ghana Research Reactor-1 (GHARR-1)

    Energy Technology Data Exchange (ETDEWEB)

    Amponsahabu, Edward Oscar; Gbadago, Joseph Korbla; Addo, Moses Ankamah; Sogbadji, Robert Bright Mawuko; Odoi, Henry Cecil; Gyamfi, Kwame; Ampong, Atta Gyekye; Opate, Nicholas Sackitey [Ghana Atomic Energy Commission, Accra (Ghana)

    2013-07-01

    Ageing management is an essential component of the routine practices at the Ghana Research Reactor-1 (GHARR-1) Facility. The reactor is Miniature Neutron Source Reactor with a rated power of 30 kW. GHARR-1 was installed and attained criticality on December 17, 1994 and commissioned on 8th March, 1995. It has since been in operation. The routine practices and operational procedures have been set out with clear emphasis on ageing policy at the facility. Some electronic components are changed regularly during maintenance sessions and keeping to regular purification of the reactor and pool water to mitigate against corrosion. This paper outlines the ageing management programme, mitigation practices, strategies for ageing management, periodic safety reviews, consideration of ageing during designing, design features for components and unit replacement, top beryllium shim addition, and succession planning. Information sharing with other operating organization is one of the means considered by GHARR-1 to attain excellence.

  16. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  17. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  18. R and D on fuzzy control applications to the BR1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, D.; Li, X. [Nuclear Research Center, Mol (Belgium)

    1998-12-31

    Fuzzy control applications in nuclear reactor operations present a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear industry and the very strict safety regulations in force for nuclear power plants. The very same regulations prevent a researcher from quickly introducing novel fuzzy-logic methods into this field. On the other hand, the application of fuzzy logic has, despite the ominous sound of the word `fuzzy` to nuclear engineers, a number of very desirable advantages over classical methods, e.g., its robustness and the capability to include human experience into the controller. In this paper we report an on-going R and D project for controlling the power level of the Belgian Nuclear Reactor 1 (BR1) at the Belgian Nuclear Research Centre (SCK.CEN). The project started in 1995 and aims to investigate the added value of fuzzy control for nuclear reactors. We first review some relevant literature on fuzzy logic control in nuclear reactors, then present the state-of-the-art of the BR1 project. After experimenting fuzzy logic control under off-line tests at the BR1 reactor, we now foresee a new development for a closed-loop fuzzy control as an on-line operation of the BR1 reactor. Finally, we present the new development for a closed-loop fuzzy logic control at BR1 with an understanding of the safety requirements for this real fuzzy logic control application in nuclear rectors. (author) 18 refs.

  19. Research and development of an electrochemical biocide reactor

    Science.gov (United States)

    See, G. G.; Bodo, C. A.; Glennon, J. P.

    1975-01-01

    An alternate disinfecting process to chemical agents, heat, or radiation in an aqueous media has been studied. The process is called an electrochemical biocide and employs cyclic, low-level voltages at chemically inert electrodes to pass alternating current through water and, in the process, to destroy microorganisms. The paper describes experimental hardware, methodology, and results with a tracer microorganism (Escherichia coli). The results presented show the effects on microorganism kill of operating parameters, including current density (15 to 55 mA/sq cm (14 to 51 ASF)), waveform of applied electrical signal (square, triangular, sine), frequency of applied electrical signal (0.5 to 1.5 Hz), process water flow rate (100 to 600 cc/min (1.6 to 9.5 gph)), and reactor resident time (0 to 4 min). Comparisons are made between the disinfecting property of the electrochemical biocide and chlorine, bromine, and iodine.

  20. Activity report on the utilization of research reactors. Japanese Fiscal Year, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Masayuki; Koyama, Yoshimi [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    This is the second issue of the activity report on the utilization of research reactors in the fields of neutron beam experiments, neutron activation analysis, radioisotope production, etc., performed during Japanese Fiscal Year 1998 (April 1, 1998 - March 31, 1999). All reports in this volume were described by users from JAERI and also users from the other organizations, i.e., universities, national research institutes and private companies, who have utilized our research reactor utilization facilities for the purpose of the above studies. (author)

  1. Activity report on the utilization of research reactors. Japanese Fiscal Year, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Masayuki [ed.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    This is the second issue of the activity report on the utilization of research reactors in the fields of neutron beam experiments, neutron activation analysis, radioisotope production, etc., performed during Japanese Fiscal Year 1999 (April 1, 1999 - March 31, 2000). All reports in this volume were described by users from JAERI and also users from the other organizations, i.e., universities, national research institutes and private companies, who have utilized our research reactor utilization facilities for the purpose of the above studies. (author)

  2. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Draft Environmental Impact Statement (EIS) for the replacement of the Australian Research reactor has been released. An important objective of the EIS process is to ensure that all relevant information has been collected and assessed so that the Commonwealth Government can make an informed decision on the proposal. The environmental assessment of the proposal to construct and operate a replacement reactor described in the Draft EIS has shown that the scale of environmental impacts that would occur would be acceptable, provided that the management measures and commitments made by ANSTO are adopted. Furthermore, construction and operation of the proposed replacement reactor would result in a range of benefits in health care, the national interest, scientific achievement and industrial capability. It would also result in a range of benefits derived from increased employment and economic activity. None of the alternatives to the replacement research reactor considered in the Draft EIS can meet all of the objectives of the proposal. The risk from normal operations or accidents has been shown to be well within national and internationally accepted risk parameters. The dose due to reactor operations would continue to be small and within regulatory limits. For the replacement reactor, the principle of `As Low As Reasonably Achievable` would form an integral part of the design and licensing process to ensure that doses to operators are minimized. Costs associated with the proposal are $286 million (in 1997 dollars) for design and construction. The annual operating and maintenance costs are estimated to be $12 million per year, of which a significant proportion will be covered by commercial activities. The costs include management of the spent fuel from the replacement reactor as well as the environmental management costs of waste management, safety and environmental monitoring. Decommissioning costs for the replacement reactor would arise at the end of its lifetime

  3. Prediction of Decommissioning Cost for Kijang Research Reactor Using Power Data of DACCORD

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun Jeong; Jin, Hyung Gon; Park, Hee Seong; Park, Seung Kook [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    There are 3 types of cost estimate that can be used, and each have a different level of accuracy: (i) Order of magnitude estimate: One without detailed engineering data, where an estimate is prepared using scale-up or -down factors and approximate ratios. It is likely that the overall scope of the project has not been well defined. The level of accuracy expected is -30% to +50%. The cost plans to predict referring to abroad examples as decommissioning cost estimation has still not developed and been commercial method for Kijang research reactor. In Kijang research reactor case, overall scope of business isn't yet decided. Then it is supposed to estimate cost with type (i). The IAEA project, entitled 'DACCORD' (Data Analysis and Collection for Costing of Research Reactor Decommissioning) performs decommissioning costing after collecting and analyzing the information related to research reactors around the world for several years. Also decommissioning costing method development tends to increase in the each country. This paper aims to estimate preliminary decommissioning cost based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD project' data which is collected by member state. In this paper, preliminary decommissioning cost is estimated based on total decommissioning cost per thermal power rate of research reactor presented in DACCORD data which is collected by member state. Although there exists a general tendency for costs to increase with increasing thermal power, the limited data available show that decommissioning costs at any given power level can vary widely, with increased variability at higher power levels. Variations in decommissioning cost for the research reactors of the same or similar thermal power are caused by differences in reactor types and design, decommissioning project scopes, country- specific unit workforce costs, and other reactor or project factors. An important factor for the

  4. A Development of Technical Specification of a Research Reactor with Plate Fuels Cooled by Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sujin; Kim, Jeongeun; Kim, Hyeonil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The contents of the TS(Technical Specifications) are definitions, safety limits, limiting safety system settings, limiting conditions for operation, surveillance requirements, design features, and administrative controls. TS for Nuclear Power Plants (NPPs) have been developed since many years until now. On the other hands, there are no applicable modernized references of TS for research reactors with many differences from NPPs in purpose and characteristics. Fuel temperature and Departure from Nuclear Boiling Ratio (DNBR) are being used as references from the thermal-hydraulic analysis point of view for determining whether the design of research reactors satisfies acceptance criteria for the nuclear safety or not. Especially for research reactors using plate-type fuels, fuel temperature and critical heat flux, however, are very difficult to measure during the reactor operation. This paper described the outline of main contents of a TS for open-pool research reactor with plate-type fuels using core cooling through passive systems, where acceptance criteria for nuclear safety such as CHF and fuel temperature cannot be directly measured, different from circumstances in NPPs. Thus, three independent variables instead of non-measurable acceptance criteria: fuel temperature and CHF are considered as safety limits, i.e., power, flow, and flow temperature.

  5. Aligning research to meet policy objectives for migrant families: an example from Canada

    Directory of Open Access Journals (Sweden)

    Joly MP

    2009-06-01

    Full Text Available Abstract Background 'Evidence-based policy making' for immigrants is a complicated undertaking. In striving toward this goal, federal Canadian partners created the Metropolis Project in 1995 to optimize a two-way transfer of knowledge (researchers – policy makers within five Canadian Centres of Excellence focused on migrants newly arrived in Canada. Most recently, Metropolis federal partners, including the Public Health Agency of Canada, defined one of six research priority areas as, immigrant 'families, children, and youth'. In order to build on previous work in the partnership, we sought to determine what has been studied within this research-policy partnership about immigrant 'families, children, and youth' since its inception. Methods Annual reports and working papers produced in the five Centres of Excellence between 1996–2006 were culled. Data on academic works were extracted, results coded according to eleven stated federal policy priority themes, and analyzed descriptively. Results 139 academic works were reviewed. All federal priority themes, but few specific policy questions were addressed. The greatest volume of policy relevant works were identified for Services (n = 42 and Education and Cultural Identity (n = 39 priority themes. Conclusion Research conducted within the last 10 years is available to inform certain, not all, federal policy questions. Greater specificity in federal priorities can be expected to more clearly direct future research within this policy-research partnership.

  6. Perspectives of anesthesia residents training in Canada on fellowship training, research, and future practice location.

    Science.gov (United States)

    Khan, James; Gilbert, Jaclyn; Sharma, Abhinav; LeManach, Yannick; Yee, Doreen

    2015-09-01

    We conducted this study to determine the preferences of anesthesia residents training in Canada for fellowship training, research, and future practice location and to identify the factors that influence those preferences. Using a cross-sectional study design, a survey was sent to all anesthesia residents enrolled at an accredited Canadian anesthesiology residency program (N = 629). Data were collected on demographics and preferences for fellowship training, research, and future practice location. A multivariable logistic regression model was used to determine significant associations. Two hundred forty-four residents (39%) responded to the survey. Seventy percent of residents intended to pursue fellowship training. The top three fellowships they favoured were regional anesthesia, intensive care, and cardiac anesthesia. Male sex was positively associated with the decision to pursue fellowship training, whereas having an additional graduate degree was negatively associated with this choice. Among those pursuing fellowship training, the most influential factors were personal interest, enhancing employability, and an interest in an academic career. Fifty-seven percent of residents preferred to work at an academic hospital. Thirty-four percent of residents intended to incorporate research into their future practice, and personal interest, employability, and colleagues were most influential in their decision. Research activity and publishing in residency were associated with the desire to pursue future research initiatives. The majority of anesthesia residents training in Canada choose to pursue fellowship training and work at an academic hospital. Approximately one-third of residents have an interest in incorporating research into their future careers.

  7. Annual report of department of research reactors, 2001. April 1, 2001 - March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization of the JRR-3 and the JRR-4 and for the related R and D. Besides RI production including its R and D are carried out. This report describes the activities of the department in fiscal year of 2001 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, the utilization of irradiation and neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. RI production and its R and D works were conducted as well. The international cooperations between the developing countries and the department were also made concerning the operation, utilization and safety analysis for research reactors. (author)

  8. Proceedings of the 1998 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The 1998 Workshop on the Utilization of Research Reactors, which is the seventh Workshop on the theme of research reactor utilization was held in Yogyakarta and Serpong, Indonesia from February 8 to 14. This Workshop was executed based on the agreement in the Ninth International Conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1998. The whole Workshop consists of the Workshop on the theme of following three fields, 1) Neutron Scattering, 2) Neutron Activation analysis and 3) Safe Operation and Maintenance of Research Reactor, and the Sub-workshop carried out the experiment of Neutron Activation analysis. The total number of participants for the workshop was about 100 people from 8 countries, i.e. Australia, China, Indonesia, Korea, Malaysia, Thailand, Vietnam and Japan. The 38 papers are indexed individually. (J.P.N.)

  9. Annual report of department of research reactor, 1995 (April 1, 1995 - March 31, 1996)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1995 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  10. Analysis on safeguard approach of radioactive waste at KIJANG research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Kim, In Chul; Kim, Hyun Sook; Jung, Juang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    KIJANG Research Reactor (KJRR) will be constructed in Busan in order to provide the self-sufficiency of RI demand including Mo-99, to increase the neutron transmutation doping (NTD) capacity and to develop and validate technologies related to the research reactor. Considering the categorization of nuclear facility such as item counting and bulk facility, HANARO which is another research reactors in Korea is item counting facility because physical/chemical forms of nuclear material are not changes. During the dissolving process, radioactive wastes containing nuclear material are occurred at KJRR. In this paper, the features of the KJRR are described and safeguards approach on the radioactive wastes containing nuclear material occurred at KJRR are reviewed. This paper reviews the safeguards approach on radioactive wastes containing nuclear materials occurred during FM production at KJRR. Most uranium dissolved during FM production process are collected in U filter cakes and very tiny amount of uranium will be remained in the ILLW.

  11. Annual report of Department of Research Reactor, 1996. April 1, 1996 - March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1996 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author)

  12. Annual report of department of research reactor, 1999. April 1, 1999 - March 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization of the JRR-3M (new JRR-3) and the JRR-4 and for the related R and D. Besides the decommissioning of the JRR-2 and RI production including its R and D are carried out. This report describes the activities of the department in fiscal year of 1999 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, the utilization of irradiation and neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. RI production and its R and D works were conducted as well. The international cooperations between the developing countries and the department were also made concerning the operation, utilization and safety analysis for research reactors. (author)

  13. Annual report of department of research reactor, 1994. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Department of Research Reactor is responsible for the operation, maintenance, utilization and related R and D works of the research reactors including JRR-2, JRR-3M (new JRR-3) and JRR-4. This report describes the activities of our department in fiscal year of 1994 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, irradiation utilization, neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as well as related R and D works. The international cooperations between the developing countries and our department were also made concerning the operation, utilization and safety analysis for nuclear facilities. (author).

  14. Development of a research reactor power measurement system using Cherenkov radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Brício M.; Mesquita, Amir Z., E-mail: briciomares@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Nuclear research reactors are usually located in open pools, to allow visibility to the core and bluish luminosity of Cherenkov radiation. Usually the thermal power released in these reactors is monitored by chambers that measure the neutron flux, as it is proportional to the power. There are other methods used for power measurement, such as monitoring the core temperature and the energy balance in the heat exchanger. The brightness of Cherenkov's radiation is caused by the emission of visible electromagnetic radiation (in the blue band) by charged particles that pass through an insulating medium (water in nuclear research reactors) at a speed higher than that of light in this medium. This effect was characterized by Pavel Cherenkov, which earned him the Nobel Prize for Physics in 1958. The project's objective is to develop an innovative and alternative method for monitoring the power of nuclear research reactors. It will be performed by analyzing and monitoring the intensity of luminosity generated by Cherenkov radiation in the reactor core. This method will be valid for powers up to 250 kW, since above that value the luminosity saturates, as determined by previous studies. The reactor that will be used to test the method is the TRIGA, located at Nuclear Technology Development Center (CDTN), which currently has a maximum operating power of 250 kW. This project complies with International Atomic Energy Agency (IAEA) recommendations on reactor safety. It will give more redundancy and diversification in this measure and will not interfere with its operation. (author)

  15. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  16. European research activities within the project: High Performance Light Water Reactor phase 2 (HPLWR phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, Karlsruhe (Germany); Marsault, P. [CEA Cadarache (DER/SESI), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Reacteurs; Bittermann, D. [AREVA NP, NEPR-G, Erlangen (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Laurien, E. [Stuttgart Univ. IKE (Germany); Lycklama, J.A. [NRG Petten, NL (Netherlands); Anglart, H. [KTH Energy Technology, Stockholm (Sweden); Aksan, N. [Paul Scherrer Institut CH, Villigen PSI (Switzerland); Ruzickova, M. [UJV Rez plc, Husinec-Rez c.p. (Czech Republic); Heikinheimo, L. [VTT, FIN (Finland)

    2007-07-01

    The High Performance Light Water Reactor (HPLWR) is a Light Water Reactor (LWR) operating at supercritical pressure (25 MPa). It belongs to the six reactors currently being investigated under the framework of the Generation IV International Forum. The most visible advantage of the HPLWR shall be the low construction costs in the order of 1000 Euro/kWe, because of size reduction of components and buildings compared to current Light Water Reactors, and the low electricity production costs which are targeted at 3-4 cents/kWh. In Europe, investigations on the HPLWR have been integrated into a joint research project, called High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), which is co-funded by the European Commission. Within 42 months, ten partners from eight European countries working on critical scientific issues shall show the feasibility of the HPLWR concept. This paper reports on 5 points relevant for HPLWR: 1) design and integration, 2) core design, 3) safety, 4) materials, and 5) heat transfer. The final goal is to assess the future potential of this reactor in the electricity market.

  17. Radioisotope radiotherapy research and achievements at the University of Missouri Research Reactor

    Science.gov (United States)

    Ehrhardt, G. J.; Ketring, A. R.; Cutler, C. S.

    2003-01-01

    The University of Missouri Research Reactor (MURR) in collaboration with faculty in other departments at the University of Missouri has been involved in developing new means of internal radioisotopic therapy for cancer for many years. These efforts have centered on methods of targeting radioisotopes such as brachytherapy, embolisation of liver tumors with radioactive microspheres, small-molecule-labelled chelates for the treatment of bone cancer, and various means of radioimmunotherapy or labelled receptor agent targeting. This work has produced two radioactive agents, Sm-153 Quadramet™ and Y-90 TheraSphere™, which have U.S. Food and Drug Administration approval for the palliation of bone cancer pain and treatment of inoperable liver cancer, respectively. MURR has also pioneered development of other beta-emitting isotopes for internal radiotherapy such as Re-186, Re-188, Rh-105, Ho-166, Lu-177, and Pm-149, many of which are in research and clinical trials throughout the U.S. and the world. This important work has been made possible by the very high neutron flux available at MURR combined with MURR's outstanding reliability of operation and flexibility in meeting the needs of researchers and the radiopharmaceutical industry.

  18. Understanding Vaccine Hesitancy in Canada: Results of a Consultation Study by the Canadian Immunization Research Network.

    Directory of Open Access Journals (Sweden)

    Eve Dubé

    Full Text Available "Vaccine hesitancy" is a concept now frequently used in vaccination discourse. The increased popularity of this concept in both academic and public health circles is challenging previously held perspectives that individual vaccination attitudes and behaviours are a simple dichotomy of accept or reject. A consultation study was designed to assess the opinions of experts and health professionals concerning the definition, scope, and causes of vaccine hesitancy in Canada. We sent online surveys to two panels (1- vaccination experts and 2- front-line vaccine providers. Two questionnaires were completed by each panel, with data from the first questionnaire informing the development of questions for the second. Our participants defined vaccine hesitancy as an attitude (doubts, concerns as well as a behaviour (refusing some / many vaccines, delaying vaccination. Our findings also indicate that both vaccine experts and front-line vaccine providers have the perception that vaccine rates have been declining and consider vaccine hesitancy an important issue to address in Canada. Diffusion of negative information online and lack of knowledge about vaccines were identified as the key causes of vaccine hesitancy by the participants. A common understanding of vaccine hesitancy among researchers, public health experts, policymakers and health care providers will better guide interventions that can more effectively address vaccine hesitancy within Canada.

  19. Estimation of Na-24 activity concentration in BAEC TRIGA Research Reactor

    Science.gov (United States)

    Ajijul Hoq, M.; Malek Soner, M. A.; Salam, M. A.; Khanom, Salma; Fahad, S. M.

    The Bangladesh Atomic Energy Commission (BAEC) TRIGA Research Reactor is a unique nuclear installation of the country generally implemented for a wide variety of research applications and serves as an excellent source of neutron. During reactor operation it is necessary to measure and control the activity concentration of the pool water for fuel element failure detection and for the determination of contamination. The present study deals with the estimation of activity concentration for Na-24 present in water coolant produced as a result of 23Na (n, γ) 24Na reaction. Several governing equations have been employed to estimate the Na-24 activity concentrations theoretically at different reactor power levels including maximum reactor power of 2.4 MW. From the obtained result it is ensured that the estimated Na-24 activity of 8.83 × 10-3 μCi /cm3 is not significant enough for any radiological hazard. Thus for ensuring radiological safety issues of the research reactor the assessment performed under the present study has an implication.

  20. Improvement of the reactivity computer for HANARO research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jin; Park, S. J.; Jung, H. S.; Choi, Y. S.; Lee, K. H.; Seo, S. G

    2001-04-01

    The reactivity computer in HANARO has a dedicated neutron detection system for experiments and measurements of the reactor characteristics. This system consists of a personal computer and a multi-function I/O board, and collects the signals from the various neutron detectors. The existing hardware and software are developed under the DOS environment so that they are very inconvenient to use and have difficulties in finding replacement parts. Since the continuity of the signal is often lost when we process the wide rang signal, the need for its improvement has been an issue. The purpose of this project is to upgrade the hardware and software for data collection and processing in order for them to be compatible with Windows{sup TM} operating system and to solve the known issue. We have replaced the existing system with new multi-function I/O board and Pentium III class PC, and the application program for the wide range reactivity measurement and multi-function signal counter have been developed. The newly replaced multi-function I/O board has seven times fast A/D conversion rate and collects sufficient amount of data in a short time. The new application program is user-friendly and provides various useful information on its display screen so that the ability of data processing and storage has been very much enhanced.

  1. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  2. The University-Public Health Partnership for Public Health Research Training in Quebec, Canada.

    Science.gov (United States)

    Paradis, Gilles; Hamelin, Anne-Marie; Malowany, Maureen; Levy, Joseph; Rossignol, Michel; Bergeron, Pierre; Kishchuk, Natalie

    2017-01-01

    Enhancing effective preventive interventions to address contemporary public health problems requires improved capacity for applied public health research. A particular need has been recognized for capacity development in population health intervention research to address the complex multidisciplinary challenges of developing, implementing, and evaluating public health practices, intervention programs, and policies. Research training programs need to adapt to these new realities. We have presented an example of a 2003 to 2015 training program in transdisciplinary research on public health interventions that embedded doctoral and postdoctoral trainees in public health organizations in Quebec, Canada. This university-public health partnership for research training is an example of how to link science and practice to meet emerging needs in public health.

  3. A reload and startup plan for conversion of the NIST research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-31

    The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts. The reload portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.

  4. A Reload and Startup Plan for and #8233;Conversion of the NIST Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Varuttamaseni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-30

    The National Institute of Standards and Technology operates a 20 MW research reactor for neutron-based research. The heavy-water moderated and cooled reactor is fueled with high-enriched uranium (HEU) but a program to convert the reactor to low-enriched uranium (LEU) fuel is underway. Among other requirements, a reload and startup test plan must be submitted to the U.S. Nuclear Regulatory Commission (NRC) for their approval. The NRC provides guidance for what should be in the plan to ensure that the licensee has sufficient information to operate the reactor safely. Hence, a plan has been generated consisting of two parts.The reload portion of the plan specifies the fuel management whereby initially only two LEU fuel elements are in the core for eight fuel cycles. This is repeated until a point when the optimum approach is to place four fresh LEU elements into the reactor each cycle. This final transition is repeated and after eight cycles the reactor is completely fueled with LEU. By only adding two LEU fuel elements initially, the plan allows for the consumption of HEU fuel elements that are expected to be in storage at the time of conversion and provides additional qualification of production LEU fuel under actual operating conditions. Because the reload is to take place over many fuel cycles, startup tests will be done at different stages of the conversion. The tests, to be compared with calculations to show that the reactor will operate as planned, are the measurement of critical shim arm position and shim arm and regulating rod reactivity worths. An acceptance criterion for each test is specified based on technical specifications that relate to safe operation. Additional tests are being considered that have less safety significance but may be of interest to bolster the validation of analysis tools.

  5. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sayyah, A. [Department of Radiation Application, Shahid Beheshti University (Iran, Islamic Republic of); Rahmani, F., E-mail: FRahamni@kntu.ac.in [K.N. Toosi University of Technology, Department of Physics (Iran, Islamic Republic of); Khalafi, H. [Nuclear Science and Technology Research Institute (NSTRI) (Iran, Islamic Republic of)

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  6. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  7. Decontamination and decommissioning project of the TRIGA Mark-2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Baik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, B. J.; Kim, J. K.; Yang, S. H

    2000-01-01

    During the review on the decommissioning plan and environmental impact assessment report by the KINS, the number of the inquired items were two hundred and fifty one, and the answers were made and sent until September 10, 1999, as the screened review results were reported to Ministry of Science and Technology(MOST) in December 14, 1999, all the reviews on the licence were over. Radioactive liquid wastes of 400 tons generated during the operation of the research reactors including reactor vessels are stored in the facility of the research reactor 1 and 2. Those liquid wastes have the low-level-radioactivity which can be discharged to the surroundings, but was wholly treated to be vaporized naturally by means of the increased numbers of the natural vaporization disposal facilities with the annual capacity of 200 tons for the purpose of the minimized environmental contamination.

  8. Corrosion of spent fuels from research and prototype reactors under conditions relevant to geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Curtius, Hilde; Bosbach, Dirk; Deissmann, Guido [Forschungszentrum Juelich GmbH (Germany). Inst. for Nuclear Waste Management and Reactor Safety (IEK-6)

    2015-07-01

    The reference inventory of high-level nuclear wastes designated for geological disposal in Germany as used within the preliminary safety assessment for a geological repository in the Gorleben salt dome (''vorlaeufige Sicherheitsanalyse Gorleben'', vSG) includes various types of spent nuclear fuels from research and prototype reactors, besides LWR spent fuels and vitrified high-level wastes. This paper will discuss the results of and conclusions from corrosion experiments on spent fuels from prototype high-temperature reactors (HTR) and research reactors that were performed under conditions relevant for a deep geological repository and provided the basis for the derivation of respective source terms in the vSG.

  9. Proceedings of the 1999 workshop on the utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 1999 workshop on the utilization of reactors, which is the eighth workshop on the theme of research reactor utilization was held at JAERI Tokai and Mito Plaza Hotel, in Japan from November 25 to December 2. This workshop was executed based on the agreement in the Tenth International conference for Nuclear Cooperation in Asia (ICNCA) held in Tokyo, March 1999. The whole workshop consists of the workshop on the theme of following three fields, 1) neutron scattering, 2) radioisotope production and 3) safe operation and maintenance of research reactor, and the sub-workshop carried out the experiments of small angle neutron scattering. The total number of participants for the workshop was about 70 people from 9 countries, i.e. Australia, China, Indonesia, Korea, Malaysia, The Philippines, Thailand, Vietnam and Japan. The 37 of the presented papers are indexed individually. (J.P.N.)

  10. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  11. Development of a Low Temperature Irradiation Capsule for Research Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee Nam; Cho, Man Soon; Lee, Cheol Yong; Yang, Sung Woo; Shin, Yoon Taek; Park, Seng Jae; Kang, Suk Hoon; Kang, Young Hwan; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    A new capsule design was prepared and tested at HANARO for a neutron irradiation of core materials of research reactors as a part of the research reactor development project. Irradiation testing of the materials including graphite, beryllium, and zircaloy-4 that are supposed to be used as core materials in research reactors was required for irradiation at up to 8 reactor operation cycles at low temperature (<100 .deg. C). Therefore, three instrumented capsules were designed and fabricated for an evaluation of the neutron irradiation properties of the core materials (Graphite, Be, Zircaloy-4) of research reactors. The capsules were first designed and fabricated to irradiate materials at low temperature (<100 .deg. C) for a long cycle of 8 irradiation cycles at HANARO. Therefore, the safety of the new designed capsule should be fully checked before irradiation testing. Out-pile performance and endurance testing before HANARO irradiation testing was performed using a capsule under a 110% condition of a reactor coolant flow amount. The structural integrity of the capsule was analyzed in terms of a vibration-induced fatigue cracking of a rod tip of the capsule that is suspected to be the most vulnerable part of a capsule. Another two capsules were irradiated at HANARO for 4 cycles, and one capsule was transferred to a hot cell to examine the integrity of the rod tip of the capsule. After confirming the soundness of the 4 cycle-irradiated capsule, the remaining capsule was irradiated at up to 8 cycles at HANARO. Based on the structural integrity analysis of the capsule, an improved capsule design will be suggested for a longer irradiation test at HANARO.

  12. Canadian Drought Research and its Contributions to Sustainable Development in Western Canada

    Science.gov (United States)

    Lawford, R. G.; Stewart, R.

    2009-05-01

    The widespread multi-year drought that North America experienced during the 1999-2004 period led to losses of $6 million in Gross Domestic Product and 41,000 jobs in western Canada. Furthermore, these impacts occurred in key sectors such as forestry, agriculture and water resources that are critical for western Canada's development. The processes that initiated and maintained the drought were related to large-scale atmospheric circulation patterns and were moderated by landscape processes and land-atmosphere interactions. The prolonged dry conditions had serious regional hydrological effects impacting soil moisture, then runoff and wetlands, and finally groundwater. The Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) has been supporting the Drought Research Initiative (DRI) to study this event. Through its network of 15 funded investigators from six Canadian universities, and collaborators in other universities and government research laboratories and programs, DRI has characterized the drought's development, examined the critical processes that initiated, maintained and terminated the drought, and assessed and improved the ability to predict hydrological drought and its impacts. This presentation provides an overview of the research results obtained to date from DRI with a special emphasis on those results that relate to economic growth and sustainable development.

  13. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  14. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  15. Experimental computer-controlled instrumentation system for the research reactor DR2

    DEFF Research Database (Denmark)

    Goodstein, L.P.

    1969-01-01

    An instrumentation system has been developed for one of the Danish Atomic Energy Commission's research reactors as part of an experiment on the advantages to be gained by the use of digital computers in a process plant application. Problem areas to be investigated include (a) reliability and safety...

  16. Annual report of department of research reactor, 2000. April 1, 2000 - March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The Department of Research Reactor is responsible for the operation, Maintenance, utilization of the JRR-3 and the JRR-4 and for the related R and D. Besides RI production including its R and D are carried out. This report describes the activities of the department in fiscal year of 2000 and it also includes some of the technical topics on the works mentioned above. As for the research reactors, we carried out the operation, maintenance, the utilization of irradiation and neutron beam experiments, technical management including fuels and water chemistry, radiation monitoring as related R and D works. RI Production and its R and D works were conducted as well. The international cooperations between the developing countries and the department were also made concerning the operation, utilization and safety analysis for research reactors. Although the term 'JRR-3M' was used to denote the JRR-3M modified 1990 until the 2000 annual report of the Department of Research Reactor, the term 'JRR-3' will be used from this annual report because the JRR-3 has been operated for about 10 years since the modification and is now under further modification and upgrading study. (author)

  17. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Science.gov (United States)

    2010-10-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of Monday...

  18. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  19. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  20. Irradiation of Electronic Components and Circuits at the Portuguese Research Reactor: Lessons Learned

    Science.gov (United States)

    Marques, J. G.; Ramos, A. R.; Fernandes, A. C.; Santos, J. P.

    2016-06-01

    A program was started in 1999 in the Portuguese Research Reactor to test electronics components and circuits for the LHC facility at CERN, initially with a dedicated in-pool irradiation container used at a reactor power of 2 kW and later an irradiation chamber outside the pool, with tailored neutron and gamma filters that could be used at 1 MW. Practice has shown the need to introduce several improvements to the irradiation procedures and infrastructures over the years. In this paper, we review the lessons learned and the major improvements introduced.

  1. Experimental estimation of moderator temperature coefficient of reactivity of the IPEN/MB-01 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens C. da; Bitelli, Ulysses D.; Mura, Luiz Ernesto C., E-mail: rubensrcs@usp.br, E-mail: ubitelli@ipen.br, E-mail: credidiomura@gmail.com [Universidade de Sao Paulo (PNV/POLI/USP), SP (Brazil). Arquitetura Naval e Departamento de Engenharia Oceanica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this article is to present the procedure for the experimental estimation of the Moderator Temperature Coefficient of Reactivity of the IPEN/MB-01 Research Reactor, a parameter that has an important role in the physics and the control operations of any reactor facility. At the experiment, the IPEN/MB-01 reactor went critical at the power of 1W (1% of its total power), and whose core configuration was 28 x 26 rectangular array of UO{sub 2} fuel rods, inside a light water (moderator) tank. In addition, there was a heavy water (D{sub 2}O) reflector installed in the West side of the core to obtain an adequate neutron reflection along the experiment. The moderator temperature was increased in steps of 4 °C, and the measurement of the mean moderator temperature was acquired using twelve calibrated thermocouples, placed around the reactor core. As a result, the mean value of -4.81 pcm/°C was obtained for such coefficient. The curves of ρ(T) (Reactivity x Temperature) and α{sup M}{sub T}(T)(Moderator Temperature Coefficient of Reactivity x Temperature) were developed using data from an experimental measurement of the integral reactivity curves through the Stable Period and Inverse Kinetics Methods, that was carried out at the reactor with the same core configuration. Such curves were compared and showed a very similar behavior between them. (author)

  2. Determination of the Design Speed of the Primary Cooling Pump in the Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyungi; Seo, Kyoungwoo; Chi, Daeyoung; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    An open-pool type research reactor is widely designed in consideration of the reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom. rimary cooling system circulates the coolant from the reactor core to the heat exchanger. Therefore the heat generated from the reactor core is continuously removed. After the primary cooling pumps stop, the decay heat is removed by the coastdown flow induced by the inertia force of a flywheel attached to each primary cooling pump. A pump coastdown flow means that the pump operates with the angular momentums of the shaft, impeller, and flywheel when a loss of electricity occurs. The primary cooling pump consists of the pump, flywheel, and moto. They are connected by flexible couplings. The primary cooling pump is conceptually designed based on the required flow rate and system constraints. A centrifugal pump of Case 1 with a non-dimensional specific speed of 0.59 and specific diameter of 4.94 is chosen as the primary cooling pump based on the hydraulic performance and mechanical integrity.

  3. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-07-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  4. Verification of HELIOS/MASTER Nuclear Analysis System for SMART Research Reactor, Rev. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Kim, Kang Seog; Cho, Jin Young; Lee, Chung Chan; Zee, Sung Quun

    2005-12-15

    Nuclear design for the SMART reactor is performed by using the transport lattice code HELIOS and the core analysis code MASTER. HELIOS code developed by Studsvik Scandpower in Norway is a transport lattice code for the neutron and gamma behavior, and is used to generate few group constants. MASTER code is a nodal diffusion code developed by KAERI, and is used to analyze reactor physics. This nuclear design code package requires verification. Since the SMART reactor is unique, it is impossible to verify this code system through the comparison of the calculation results with the measured ones. Therefore, the uncertainties for the nuclear physics parameters calculated by HELIOS/MASTER have been evaluated indirectly. Since Monte Carlo calculation includes least approximations an assumptions to simulate a neutron behavior, HELIOS/MASTER has been verified by this one. Monte Carlo code has been verified by the Kurchatov critical experiments similar to SMART reactor, and HELIOS/MASTER code package has been verified by Monte Carlo calculations for the SMART research reactor.

  5. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    Science.gov (United States)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  6. Risk of the research reactor BER II in Berlin; Risiken des Berliner Experimentierreaktors BER II

    Energy Technology Data Exchange (ETDEWEB)

    Paulitz, Henrik; Hoevener, Barbara; Rosen, Alex

    2015-04-20

    The research reactor BER II is sited at the periphery of Berlin in the neighborhood of residential areas. The operational license is limited until December 31, 2019. The reactor is funded by the Federal Government (90%) and the city of Berlin (10%). The stress test has shown that the reactor is not secured against an aircraft crash (airliner or fast flying military jet), meltdown with remarkable radiological consequences to the public would be the consequence. Further hazards result from the radioactive waste transport, explosions and fires. The emergency measures cannot be considered to be sufficient. The city of Berlin would not be able to fulfill the required measures in case of a radiation accident.

  7. Anti-neutrino flux in a research reactor for non-proliferation application

    Energy Technology Data Exchange (ETDEWEB)

    Khakshournia, Samad; Foroughi, Shokoufeh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Atomic Energy Organization of Iran (AEOI)

    2017-11-15

    Owing to growing interest in the study of emitted antineutrinos from nuclear reactors to test the Atomic Energy Agency safeguards, antineutrino flux was studied in the Tehran Research Reactor (TRR) using ORIGEN code. According to our prediction, antineutrino rate was obtained 2.6 x 10{sup 17} (v{sub e}/sec) in the core No. 57F of the TRR. Calculations indicated that evolution of antineutrino flux was very slow with time and the performed refueling had not an observable effect on antineutrino flux curve for a 5 MW reactor with the conventional refueling program. It is seen that for non-proliferation applications the measurement of the contribution of {sup 239}Pu to the fission using an antineutrino detector is not viable in the TRR.

  8. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  9. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  10. Graphic-object information system {open_quotes}research base for reactor materials science{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Markina, N.V.; Lebedeva, E.E.; Arkhangel`skii, N.V.; Semenov, S.B.; Moiseev, A.L.

    1994-11-01

    An information system developed for reactor materials research is described. The information system incorporates an expert system, MATREKS, and a heirarchial data base. The data base contains information from 20 Russian research reactors. The information system structure, data base structure, search methods, system output modes, and technical facilities and software required are briefly discussed. 6 refs., 2 figs.

  11. 77 FR 13376 - Notice of License Termination for the University of Arizona Research Reactor, License No. R-52

    Science.gov (United States)

    2012-03-06

    ... COMMISSION Notice of License Termination for the University of Arizona Research Reactor, License No. R-52 The... No. R-52, for the University of Arizona Research Reactor (UARR). The NRC has terminated the license... released for unrestricted use. Therefore, Facility Operating License No. R-52 is terminated. For further...

  12. Major update of Safety Analysis Report for Thai Research Reactor-1/Modification 1

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, Chanatip [Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2013-07-01

    Thai Research Reactor-1/Modification 1 (TRR-1/M1) was converted from a Material Testing Reactor in 1975 and it had been operated by Office of Atom for Peace (OAP) since 1977 until 2007. During the period, Office of Atom for Peace had two duties for the reactor, that is, to operate and to regulate the reactor. However, in 2007, there was governmental office reformation which resulted in the separation of the reactor operating organization from the regulatory body in order to comply with international standard. The new organization is called Thailand Institute of Nuclear Technology (TINT) which has the mission to promote peaceful utilization of nuclear technology while OAP remains essentially the regulatory body. After the separation, a new ministerial regulation was enforced reflecting a new licensing scheme in which TINT has to apply for a license to operate the reactor. The safety analysis report (SAR) shall be submitted as part of the license application. The ministerial regulation stipulates the outlines of the SAR almost equivalent to IAEA standard 35-G1. Comparing to the IAEA 35-G1 standard, there were several incomplete and missing chapters in the original SAR of TRR1/M1. The major update of the SAR was therefore conducted and took approximately one year. The update work included detail safety evaluation of core configuration which used two fuel element types, the classification of systems, structures and components (SSC), the compilation of detail descriptions of all SSCs and the review and evaluation of radiation protection program, emergency plan and emergency procedure. Additionally, the code of conduct and operating limits and conditions were revised and finalized in this work. A lot of new information was added to the SAR as well, for example, the description of commissioning program, information on environmental impact assessment, decommissioning program, quality assurance program and etc. Due to the complexity of this work, extensive knowledge was

  13. RETU. The Finnish research programme on reactor safety. Interim report 1995 - May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Vanttola, T.; Puska, E.K. [VTT Energy, Espoo (Finland). Nuclear Energy] [eds.

    1997-08-01

    The Finnish national research programme on Reactor Safety (RETU, 1995-1998) concentrates on the search of safe limits of nuclear fuel and the reactor core, accident management methods and risk management of the operation of nuclear power plants. The annual volume of the programme has been about 26 person years and the annual funding FIM 15 million. This report summarises the structure and objectives of the programme, research fields included and the main results obtained during the period 1995 - May 1997. In the field of operational margins of a nuclear reactor, the behaviour of high burnup nuclear fuel is studied both in normal operation and during power transients. The static and dynamic reactor analysis codes are developed and validated to cope with new fuel designs and complicated three-dimensional reactivity transients and accidents. Research on accident management aims at development and validation of calculation methods needed to plan preventive measures and to train the personnel to severe accident mitigation. Other goals are to reduce uncertainties in phenomena important in severe accidents and to study actions planned for accident management. In the field of risk management probabilistic methods are developed for safety related decision making and for complex phenomena and event sequences. Effects of maintenance on nuclear power plant safety are studied and more effective methods for the assessment of human reliability and safety critical organisations are searched. 135 refs.

  14. Studies on capacity management for factories of nuclear fuel for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel Luiz Miotto; Durazzo, Michelangelo; Mesquita, Marco Aurélio de; Carvalho, Elita Fontenele Urano de; Andrade, Delvonei Alves de, E-mail: mlnegro@ipen.br, E-mail: mdurazzo@ipen.br, E-mail: elitaucf@ipen.br, E-mail: delvonei@ipen.br, E-mail: mamesqui@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Escola Politécnica. Departamento de Engenharia de Produção

    2017-11-01

    The use and the power of nuclear reactors for research and materials testing is increasing worldwide. That implies the demand for nuclear fuel for this kind of reactors is rising. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently, safely and keeping good quality. Focus is given to factories that produce plate type fuel elements loaded with LEU U{sub 3}Si{sub 2}-Al fuel, which are typically used in nuclear research reactors. Of the various production routes for this kind of fuel, we chose the route which uses hydrolysis of uranium hexafluoride. Raising the capacity of this kind of plants faces several problems, especially regarding safety against nuclear criticality. Some of these problems are briefly addressed. The new issue of the paper is the application of knowledge from the area of production administration to the fabrication of nuclear fuel for research reactors. A specific method for the increase in production capacity is proposed. That method was tested by means of discrete event simulation. The data were collected from the nuclear fuel factory at IPEN. The results indicated the proposed method achieved its goal as well as ways of raising production capacity in up to 50%. (author). (author)

  15. A pragmatic approach towards designing a second shutdown system for Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Boustani Ehsan

    2016-01-01

    Full Text Available One second shutdown system is proposed for the Tehran Research Reactor to achieve the goal of higher safety in compliance with current operational requirements and regulations and improve the overall reliability of the reactor shutdown system. The proposed second shutdown system is a diverse, independent shutdown system compared to the existing rod based one that intends to achieve and maintain sub-criticality condition with an enough shutdown margin in many of abnormal situations. It is designed as much as practical based on neutron absorber solution injection into the existing core while the changes and interferences with the existing core structure are kept to a minimum. Core neutronic calculations were performed using MCNPX 2.6.0 and MTR_PC package for the current operational core equipped with the second shutdown system, and one experiment was conducted in the Tehran Research Reactor to test the neutronic calculations. A good agreement was seen between theoretical results and experimental ones. In addition, capability of the second shutdown system in the case of occurrence of design basis accident in the Tehran Research Reactor is demonstrated using PARET program.

  16. Canada geese of the Patuxent Wildlife Research Center: family relationships, behavior and productivity

    Science.gov (United States)

    Rummel, L.H.

    1979-01-01

    Geese described are non-migratory, free-flying Todd's Canada geese (Branta canadensis interior). The genealogy of 261 of these geese was traced by archival research and three years of field observations. Nest locations and densities, preferences for various types of artificial nest structures, clutch sizes, hatching success, brood survival to flight stage, and food habits were recorded. Resul ts indicate geese may:,pair as yearlings, but these bonds may be broken and re-formed before breeding. Pair bonding generally resulted in geese of similar ages remaining together until the death of one partner, although re-pairing, polygamy, and pairing between broodmates also occurred. The dominance hierarchy of related birds strongly influenced the position of 'outsiders' pairing with indigenous females. Dominant status passed not only from male to male, but, upon the death of the dominant male, in at least one instance, the surviving female retained dominant status. Gang broods were composed of progeny of the rearing pair, plus goslings relinquished by female offspring or siblings of the rearing pair. Among indentifiable geese, gang broods were reared by the dominant pair on each impoundment. Geese retained their family integrity both in flight and during the post-molt dispersion. Female and males paired with local females, nested in their natal areas. No significant relationship (P reproductive success of a specific resident family. Collars, legbands, and telemetry were initially used to distinguish conspecifics. It was subsequently discovered that individual geese could be recognized by cheek-patch patterns, unusual plumage, or mannerisms. It is suggested that cheek-patch similarities in related Canada geese might be used to trace gene flow within flocks, and may be used for individual recognition by other Canada geese.

  17. Comparison of AFRRI (Armed Forces Radiobiology Research Institute) and ETCA (Etablissement Technique Central de l’Armament) Dosimetry Measurements at AFRRI TRIGA (Training Research Isotopes General Atomic) Reactor

    Science.gov (United States)

    1987-11-01

    TECHNICAL REPORT Comparison of AFRRI and ETCA dosimetry measurements at AFRRI TRIGA reactor M. Dooley G. H. Zeman DEFENSE NUCLEAR AGENCY ARMED...Research Institute (AFRRI) TRIGA (Training Research Isotopes General Atomic) reactor on 10-12 September 1985. The purpose of the experiment was to...anthropomorphic dosimetry phantom (a Incite cylinder 30 cm in diameter and 60 cm tall) in exposure room 1 of the AFRRI TRIGA reactor. As reference

  18. Application of best estimate plus uncertainty in review of research reactor safety analysis

    Directory of Open Access Journals (Sweden)

    Adu Simon

    2015-01-01

    Full Text Available To construct and operate a nuclear research reactor, the licensee is required to obtain the authorization from the regulatory body. One of the tasks of the regulatory authority is to verify that the safety analysis fulfils safety requirements. Historically, the compliance with safety requirements was assessed using a deterministic approach and conservative assumptions. This provides sufficient safety margins with respect to the licensing limits on boundary and operational conditions. Conservative assumptions were introduced into safety analysis to account for the uncertainty associated with lack of knowledge. With the introduction of best estimate computational tools, safety analyses are usually carried out using the best estimate approach. Results of such analyses can be accepted by the regulatory authority only if appropriate uncertainty evaluation is carried out. Best estimate computer codes are capable of providing more realistic information on the status of the plant, allowing the prediction of real safety margins. The best estimate plus uncertainty approach has proven to be reliable and viable of supplying realistic results if all conditions are carefully followed. This paper, therefore, presents this concept and its possible application to research reactor safety analysis. The aim of the paper is to investigate the unprotected loss-of-flow transients "core blockage" of a miniature neutron source research reactor by applying best estimate plus uncertainty methodology. The results of our calculations show that the temperatures in the core are within the safety limits and do not pose any significant threat to the reactor, as far as the melting of the cladding is concerned. The work also discusses the methodology of the best estimate plus uncertainty approach when applied to the safety analysis of research reactors for licensing purposes.

  19. Application of coupled code technique to a safety analysis of a standard MTR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hamidouche, Tewfik [Division de l' Environnement, de la Surete et des Dechets Radioactifs, Centre de Recherche Nucleaire d' Alger (CRNA), Alger (Algeria); Laboratoire de Mecanique des Fluides Theorique et Appliquee, Faculte de Physique, Universite Des Sciences et de la Technologie Houari Boumediene, (USTHB), Bab-Ezzouar, Alger (Algeria)], E-mail: t.hamidouche@crna.dz; Bousbia-Salah, Anis [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione-Facolta di Ingegneria, Universita di Pisa, Pisa (Italy)], E-mail: b.salah@ing.unipi.it; Si-Ahmed, El Khider [Laboratoire de Mecanique des Fluides Theorique et Appliquee, Faculte de Physique, Universite Des Sciences et de la Technologie Houari Boumediene, (USTHB), Bab-Ezzouar, Alger (Algeria)], E-mail: esi-ahmed@usthb.dz; Mokeddem, Mohamed Yazid [Division de la Physique et des Applications Nucleaires, Centre de Recherche Nucleaire de Draria (CRND) (Algeria); D' Auria, Franscesco [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione-Facolta di Ingegneria, Universita di Pisa, Pisa (Italy)

    2009-10-15

    Accident analyses in nuclear research reactors have been performed, up to now, using simple computational tools based on conservative physical models. These codes, developed to focus on specific phenomena in the reactor, were widely used for licensing purposes. Nowadays, the advances in computer technology make it possible to switch to a new generation of computational tools that provides more realistic description of the phenomena occurring in a nuclear research reactor. Recent International Atomic Energy Agency (IAEA) activities have emphasized the maturity in using Best Estimate (BE) Codes in the analysis of accidents in research reactors. Indeed, some assessments have already been performed using BE thermal-hydraulic system codes such as RELAP5/Mod3. The challenge today is oriented to the application of coupled code techniques for research reactors safety analyses. Within the framework of the current study, a Three-Dimensional Neutron Kinetics Thermal-Hydraulic Model (3D-NKTH) based on coupled PARCS and RELAP5/Mod3.3 codes has been developed for the IAEA High Enriched Uranium (HEU) benchmark core. The results of the steady state calculations are sketched by comparison to tabulated results issued from the IAEA TECDOC 643. These data were obtained using conventional diffusion codes as well as Monte Carlo codes. On the other hand, the transient analysis was assessed with conventional coupled point kinetics-thermal-hydraulic channel codes such as RELAP5 stand alone, RETRAC-PC, and PARET codes. Through this study, the applicability of the coupled code technique is emphasized with an outline of some remaining challenges.

  20. Light-water-reactor safety research program: quarterly progress report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Progress is summarized on the Argonne National Laboratory work performed during July, August, and September 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of Zircaloy containing oxygen; and (4) steam-explosion studies.

  1. The Satisfaction and Use of Research Ethics Board Information Systems in Canada.

    Science.gov (United States)

    Detlor, Brian; Wilson, Michael J

    2015-10-01

    This article reports findings from a national survey of Research Ethics Board (REB) personnel across Canada on the satisfaction and use of information systems that support the review and administration of research ethics protocols. Findings indicate that though a wide variety of REB systems are utilized, the majority fall short of desired characteristics. Despite these shortcomings, most respondents are satisfied with their current REB systems. Satisfaction is dependent on the volume of protocols processed in relation to the robustness of the system. Boards with higher volumes are more satisfied with full-fledged systems; however, the satisfaction of REBs with lower volumes is not affected by the robustness of the REB system used. Recommendations are provided. © The Author(s) 2015.

  2. Nodalization effects on RELAP5 results related to MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The present work deals with the anal y sis of RELAP5 results obtained from the evaluation study of the total loss of flow transient with the deficiency of the heat removal system in a research reactor using two different nodalizations. It focuses on the effect of nodalization on the thermal-hydraulic evaluation of the re search reactor. The analysis of RELAP5 results has shown that nodalization has a big effect on the predicted scenario of the postulated transient. There fore, great care should be taken during the nodalization of the reactor, especially when the avail able experimental or measured data are insufficient for making a complete qualification of the nodalization. Our analysis also shows that the research reactor pool simulation has a great effect on the evaluation of natural circulation flow and on other thermal-hydraulic parameters during the loss of flow transient. For example, the on set time of core boiling changes from less than 2000 s to 15000 s, starting from the beginning of the transient. This occurs if the pool is simulated by two vertical volumes in stead of one vertical volume.

  3. Proposed design for the PGAA facility at the TRIGA IPR-R1 research reactor.

    Science.gov (United States)

    Guerra, Bruno T; Jacimovic, Radojko; Menezes, Maria Angela Bc; Leal, Alexandre S

    2013-01-01

    This work presents an initial proposed design of a Prompt Gamma Activation Analysis (PGAA) facility to be installed at the TRIGA IPR-R1, a 60 years old research reactor of the Centre of Development of Nuclear Technology (CDTN) in Brazil. The basic characteristics of the facility and the results of the neutron flux are presented and discussed. The proposed design is based on a quasi vertical tube as a neutron guide from the reactor core, inside the reactor pool, 6 m below the room's level where shall be located the rack containing the set sample/detector/shielding. The evaluation of the thermal and epithermal neutron flux in the sample position was done considering the experimental data obtained from a vertical neutron guide, already existent in the reactor, and the simulated model for the facility. The experimental determination of the neutron flux was obtained through the standard procedure of using Au monitors in different positions of the vertical tube. In order to validate both, this experiment and calculations of the simulated model, the flux was also determined in different positions in the core used for sample irradiation. The model of the system was developed using the Monte Carlo code MCNP5. The preliminary results suggest the possibility of obtaining a beam with minimum thermal flux of magnitude 10(6) cm(-2) s(-1), which confirm the technical feasibility of the installation of PGAA at the TRIGA IPR-R1 reactor. This beam would open new possibilities for enhancing the applications using the reactor.

  4. The RISC research project: injury in First Nations communities in British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    M. Anne George

    2013-08-01

    Full Text Available Background. The project, Injury in British Columbia’s Aboriginal Communities: Building Capacity while Developing Knowledge, funded by the Canadian Institutes of Health Research (CIHR, aims to expand knowledge on injury rates among First Nations communities in British Columbia (BC, Canada. Objective. The purpose is to improve understanding of community differences and to identify community-level risk and protective factors. Generally, injury incidence rates in the Aboriginal population in Canada greatly exceed those found in the non-Aboriginal population; however, variability exists between Aboriginal communities, which have important implications for prevention. Design. This study uses administrative records of deaths, hospitalizations, ambulatory care episodes, and workers’ compensation claims due to injuries to identify communities that have been especially successful in maintaining low rates of injury. Results. The analysis of risk and protective factors extends the work of Chandler and Lalonde who observed that community efforts to preserve and promote Aboriginal culture and to maintain local control over community life are strongly associated with lower suicide rates. Conclusion. The discussion on psychological and cultural considerations on healing and reducing the rates of injury expands the work of McCormick on substance use in Aboriginal communities.

  5. The RISC research project: injury in First Nations communities in British Columbia, Canada.

    Science.gov (United States)

    George, M Anne; McCormick, Rod; Lalonde, Chris E; Jin, Andrew; Brussoni, Marianna

    2013-01-01

    The project, Injury in British Columbia's Aboriginal Communities: Building Capacity while Developing Knowledge, funded by the Canadian Institutes of Health Research (CIHR), aims to expand knowledge on injury rates among First Nations communities in British Columbia (BC), Canada. The purpose is to improve understanding of community differences and to identify community-level risk and protective factors. Generally, injury incidence rates in the Aboriginal population in Canada greatly exceed those found in the non-Aboriginal population; however, variability exists between Aboriginal communities, which have important implications for prevention. This study uses administrative records of deaths, hospitalizations, ambulatory care episodes, and workers' compensation claims due to injuries to identify communities that have been especially successful in maintaining low rates of injury. The analysis of risk and protective factors extends the work of Chandler and Lalonde who observed that community efforts to preserve and promote Aboriginal culture and to maintain local control over community life are strongly associated with lower suicide rates. The discussion on psychological and cultural considerations on healing and reducing the rates of injury expands the work of McCormick on substance use in Aboriginal communities.

  6. U-Mo Monolithic Fuel for Nuclear Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad

    2017-11-02

    The metallic fuel selected to replace the current HEU fuels in the research and test reactors is the LEU-10 weight % Mo alloy in the form of a thin sheet or foil encapsulated in AA6061 aluminum alloy with a zirconium interlayer. In order to effectively lead this pursuit, new developments in processing and fabrication of the fuel elements have been initiated, along with a better understanding of material behavior before and after irradiation as a result of these new developments. This editorial note gives an introduction about research and test reactors, need for HEU to LEU conversion, fuel requirements, high uranium density monolithic fuel development and an overview of the four articles published in the December 2017 issue of JOM under a special topic titled “U-Mo Monolithic Fuel for Nuclear Research and Test Reactors”.

  7. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, and up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them

  8. The International Science and Technology Center (ISTC) and ISTC projects related to research reactors: information review

    Energy Technology Data Exchange (ETDEWEB)

    Tocheniy, L. V.; Rudneva, V. Ya. [ISTC, Moscow (Russian Federation)

    1998-07-01

    The ISTC is an intergovernmental organization established by agreement between the Russian Federation, the European Union, Japan, and the United States. Since 1994, Finland, Sweden, Norway, Georgia, Belarus, Kazakhstan and the Kyrgyz Republic have acceded to the Agreement and Statute. At present, the Republic of Korea is finishing the process of accession to the ISTC. All work of the ISTC is aimed at the goals defined in the ISTC Agreement: To give CIS weapons scientists, particularly those who possess knowledge and skills related to weapons of mass destruction and their delivery systems, the opportunities to redirect their talents to peaceful activities; To contribute to solving national and international technical problems; To support the transition to market-based economics; To support basic and applied research; To help integrate CIS weapons scientists into the international scientific community. The projects may be funded both through governmental funds of the Funding partners of the ISTC. According to the ISTC Statute, approved by the appropriate national organizations, funds used within ISTC projects are exempt from CIS taxes. As of March 1998, more than 1500 proposals had been submitted to the Center, of which 551 were approved for funding, for a total value of approximately US$166 million. The number of scientists and engineers participating in the projects is more than 18000. There are about 20 funded and as yet nonfunded projects related to various problems of research reactors. Many of them address safety issues. Information review of the results and plans of both ongoing projects and as yet nonfunded proposals related to research reactors will be presented with the aim assisting international researchers to establish partnerships or collaboration with ISTC projects. The following groups of ISTC projects will be represented: 1. complex computer simulator s for research reactors; 2. reactor facility decommissioning; 3. neutron sources for medicine; 4

  9. A descriptive qualitative examination of knowledge translation practice among health researchers in Manitoba, Canada.

    Science.gov (United States)

    Sibley, Kathryn M; Roche, Patricia L; Bell, Courtney P; Temple, Beverley; Wittmeier, Kristy D M

    2017-09-06

    The importance of effective translation of health research findings into action has been well recognized, but there is evidence to suggest that the practice of knowledge translation (KT) among health researchers is still evolving. Compared to research user stakeholders, researchers (knowledge producers) have been under-studied in this context. The goals of this study were to understand the experiences of health researchers in practicing KT in Manitoba, Canada, and identify their support needs to sustain and increase their participation in KT. Qualitative semi-structured interviews were conducted with 26 researchers studying in biomedical; clinical; health systems and services; and social, cultural, environmental and population health research. Interview questions were open-ended and probed participants' understanding of KT, their experiences in practicing KT, barriers and facilitators to practicing KT, and their needs for KT practice support. KT was broadly conceptualized across participants. Participants described a range of KT practice experiences, most of which related to dissemination. Participants also expressed a number of negative emotions associated with the practice of KT. Many individual, logistical, and systemic or organizational barriers to practicing KT were identified, which included a lack of institutional support for KT in both academic and non-academic systems. Participants described the presence of good relationships with stakeholders as a critical facilitator for practicing KT. The most commonly identified needs for supporting KT practice were access to education and training, and access to resources to increase awareness and promotion of KT. While there were few major variations in response trends across most areas of health research, the responses of biomedical researchers suggested a unique KT context, reflected by distinct conceptualizations of KT (such as commercialization as a core component), experiences (including frustration and lack of

  10. Characterization and quantification of an in-core neutron irradiation facility at a TRIGA II research reactor

    Science.gov (United States)

    Aghara, Sukesh; Charlton, William

    2006-07-01

    Experiments have been performed to characterize the neutron environment at an in-core TRIGA type nuclear research reactor. Steady-state thermal and epithermal neutron environment testing is important for many applications including, materials, electronics and biological cells. A well characterized neutron environment at a research reactor, including energy spectrum and spatial distribution, can be useful to many research communities and for educational research. This paper describes the characterization process and an application of exposing electronics to high neutron fluence.

  11. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-11-15

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  12. Gas Cooled Fast Reactor Research and Development in the European Union

    Directory of Open Access Journals (Sweden)

    Richard Stainsby

    2009-01-01

    Full Text Available Gas-cooled fast reactor (GFR research is directed towards fulfilling the ambitious goals of Generation IV (Gen IV, that is, to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. The research is directed towards developing the GFR as an economic electricity generator, with good safety and sustainability characteristics. Fast reactors maximise the usefulness of uranium resources by breeding plutonium and can contribute to minimising both the quantity and radiotoxicity nuclear waste by actinide transmutation in a closed fuel cycle. Transmutation is particularly effective in the GFR core owing to its inherently hard neutron spectrum. Further, GFR is suitable for hydrogen production and process heat applications through its high core outlet temperature. As such GFR can inherit the non-electricity applications that will be developed for thermal high temperature reactors in a sustainable manner. The Euratom organisation provides a route by which researchers in all European states, and other non-European affiliates, can contribute to the Gen IV GFR system. This paper summarises the achievements of Euratom's research into the GFR system, starting with the 5th Framework programme (FP5 GCFR project in 2000, through FP6 (2005 to 2009 and looking ahead to the proposed activities within the 7th Framework Programme (FP7.

  13. Source term derivation and radiological safety analysis for the TRICO II research reactor in Kinshasa

    Energy Technology Data Exchange (ETDEWEB)

    Muswema, J.L., E-mail: jeremie.muswem@unikin.ac.cd [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Ekoko, G.B. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Lukanda, V.M. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Democratic Republic of the Congo' s General Atomic Energy Commission, P.O. Box AE1 (Congo, The Democratic Republic of the); Lobo, J.K.-K. [Faculty of Science, University of Kinshasa, P.O. Box 190, KIN XI (Congo, The Democratic Republic of the); Darko, E.O. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Boafo, E.K. [University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, ONL1 H7K4 (Canada)

    2015-01-15

    Highlights: • Atmospheric dispersion modeling for two credible accidents of the TRIGA Mark II research reactor in Kinshasa (TRICO II) was performed. • Radiological safety analysis after the postulated initiating events (PIE) was also carried out. • The Karlsruhe KORIGEN and the HotSpot Health Physics codes were used to achieve the objectives of this study. • All the values of effective dose obtained following the accident scenarios were below the regulatory limits for reactor staff members and the public, respectively. - Abstract: The source term from the 1 MW TRIGA Mark II research reactor core of the Democratic Republic of the Congo was derived in this study. An atmospheric dispersion modeling followed by radiation dose calculation were performed based on two possible postulated accident scenarios. This derivation was made from an inventory of peak radioisotope activities released in the core by using the Karlsruhe version of isotope generation code KORIGEN. The atmospheric dispersion modeling was performed with HotSpot code, and its application yielded to radiation dose profile around the site using meteorological parameters specific to the area under study. The two accident scenarios were picked from possible accident analyses for TRIGA and TRIGA-fueled reactors, involving the case of destruction of the fuel element with highest activity release and a plane crash on the reactor building as the worst case scenario. Deterministic effects of these scenarios are used to update the Safety Analysis Report (SAR) of the reactor, and for its current version, these scenarios are not yet incorporated. Site-specific meteorological conditions were collected from two meteorological stations: one installed within the Atomic Energy Commission and another at the National Meteorological Agency (METTELSAT), which is not far from the site. Results show that in both accident scenarios, radiation doses remain within the limits, far below the recommended maximum effective

  14. Material characteristics and construction methods for a typical research reactor concrete containment in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimia, Mahsa; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Eghbalic, Rahman; Jahan, Farzaneh Asadi malek [School of Architecture and Urbanism, Qazvin (Iran, Islamic Republic of)

    2012-10-15

    Generally selecting an appropriate material and also construction style for a concrete containment due to its function and special geometry play an important role in applicability and also construction cost and duration decrease in a research reactor (RR) project. The reactor containment enclosing the reactor vessel comprises physical barriers reflecting the safety design and construction codes, regulations and standards so as to prevent the community and the environment from uncontrolled release of radioactive materials. It is the third and the last barrier against radioactivity release. It protects the reactor vessel from such external events as earthquake and aircraft crash as well. Thus, it should be designed and constructed in such a manner as to withstand dead and live loads, ground and seismic loads, missiles and aircraft loads, and thermal and shrinkage loads. This study aims to present a construction method for concrete containment of a typical RR in Iran. The work also presents an acceptable characteristic for concrete and reinforcing re bar of a typical concrete containment. The current study has evaluated the various types of the RR containments. The most proper type was selected in accordance with the current knowledge and technology of Iran.

  15. The neutronic analysis of opportunity of ITER blanket element tests in RF research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.; Tocheniy, L. [ENTEK-RDIPE, Moscow (Russian Federation)

    1994-12-31

    In the framework of development of plan of in-pile radiative tests of ITER blanket elements the calculations are carried out of the models of tritium-producing elements in loop channels, placed in the number of Russian various type test reactors. There are presented: (1) The variants of models of blanket, on the base of which the set of experiment goal parameters and its ranges are formed; (2) Outline of loop channel; (3) The experimental opportunities of research reactors with thermal (SM-3, MIR, IVV-2M, RBT) and fast (BOR-60, EBR) spectra of neutrons; (4) The calculation procedures - settlement models, codes. The results are given: (1) power generation rates in components of channel; (2) the tritium breeding rate; (3) the helium production rate in beryllium; (4) the neutron group fluxes; (5) absorption rates in zones of loop channel. The possible reactivity effects due to experimental channel accommodation in reactor core and to radiated sample replace inside of the channel are shown. The last section includes the recommendations for the choice of reactor acceptable from the neutronics point of view, and for the next study directions and stages.

  16. Evaluation of Gamma Fluence Rate Predictions for 41-argon Releases to the Atmosphere at a Nuclear Research Reactor Site

    DEFF Research Database (Denmark)

    Rojas-Palma, Carlos; Aage, Helle Karina; Astrup, Poul

    2004-01-01

    An experimental study of radionuclide dispersion in the atmosphere has been conducted at the BR1 research reactor in Mol, Belgium. Artificially generated aerosols ('white smoke') were mixed with the routine releases of Ar-41 in the reactor's 60-m tall venting stack. The detailed plume geometry...

  17. Development of improved electrical-substitution radiometers at the National Research Council of Canada.

    Science.gov (United States)

    Gibb, K; Decker, J E; Boivin, L P; Das, S R; Buchanan, M A

    1996-07-01

    We describe the development of a third generation of electrical-substitution radiometers (ESR's) at the National Research Council of Canada. The new ESR's follow the same general design as before, but incorporate improved thermopiles and electrical heating elements. The ESR's have a responsivity between 0.6 and 1.0 VW(-1), a time constant of approximately 2.0 s, a uniformity of 0.1% over a 6-mm-diameter region, and a noise level of approximately 6 nW. Performance characteristics of the new ESR's are discussed. It is shown that calibrations performed with these ESR's agree with those made with the previous generation of ESR's to better than 0.05%.

  18. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    Science.gov (United States)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  19. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  20. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  1. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K. [Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Aksan, S. N. [International Atomic Energy Agency, 1400 Vienna (Austria)

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  2. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  3. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  4. Event and fault tree model for reliability analysis of the greek research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Tob R.; Guimaraes, Antonio C.F.; Moreira, Maria de Lourdes, E-mail: atalbuquerque@ien.gov.br, E-mail: btony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This work uses the methods of fault tree (FT) and event tree (ET) to perform the Probabilistic Safety Assessment (PSA) in research reactors. The PSA according to IAEA (International Atomic Energy Agency) is divided into Level 1, Level 2 and level 3. At Level 1, conceptually safety systems act to prevent the accident, at Level 2, the accident occurred and seeks to minimize the consequences, known as stage management of the accident, and at Level 3 are determined consequences. This paper focuses on Level 1 studies, and searches through the acquisition of knowledge consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR - 1, was used as a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from there were developed the possible accident sequences, using event tree, which could lead damage to the core. Furthermore, for each of the affected systems, the possible accidents sequences were made fault tree and evaluated the probability of each event top of the FT. The studies were conducted using a commercial computational tool SAPHIRE. The results thus obtained, performance or failure to act of the systems analyzed were considered satisfactory. This work is directed to the Greek Research Reactor due to data availability. (author)

  5. Canada's International Development Research Centre's eco-health projects with Latin Americans: origins, development and challenges.

    Science.gov (United States)

    Cole, Donald C; Crissman, Charles C; Orozco, A Fadya

    2006-01-01

    Since its founding in 1970, Canada's International Development Research Centre (IDRC) has supported research by concerned Latin American researchers on environments and human health relationships. Framing of such relationships has changed through different periods. Participant observation, bibliographic searches, document review, and interviews with key IDRC staff. From the early years of multiple different projects, IDRC developed more focussed interest in tropical diseases, pesticides, agriculture and human health in the 1980s. The United Nations Conference on Sustainable Development in the early 1990s gave impetus to examination of links between ecosystems and human health or "EcoHealth". Projects in Latin America built on earlier work but extended it in methods (transdisciplinarity, community participation, gendered approach) and scope (broader land use and development paradigm issues tackled). A key IDRC-funded activity in Latin America was "EcoSalud", an Ecuadorian effort, which has worked with farming communities, agricultural researchers, health practitioners and local politicians to advance integrated pest management, better recognize and treat poisonings and improve pesticide-related policies. ONGOING CHALLENGES INCLUDE: mobilizing sufficient resources for the primary prevention focus of EcoHealth activities when primary care infrastructure remains stretched, promoting micro-level change in diverse communities and ecosystems, and addressing power structures at the global level that profoundly affect environmental change.

  6. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  7. Reactor safety research programs. Quarterly progress report, January 1--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Romano, A.J. (comp.)

    1977-05-01

    The projects reported each quarter are the following: Gas Reactor Safety Evaluation, THOR Code Development, SSC Code Development, LMFBR and LWR Safety Experiments, Fast Reactor Safety Code Validation, Technical Coordination of Structural Integrity, and Fast Reactor Safety Reliability Assessment.

  8. Online Dissemination Strategies of a Canada Research Chair: Overview and Lessons Learned.

    Science.gov (United States)

    Hébert, Jessica; Robitaille, Hubert; Turcotte, Stéphane; Légaré, France

    2017-02-24

    Little is known about the use of online dissemination strategies, such as websites and social media, to increase the visibility and uptake of research. To describe two online dissemination strategies of the Canada Research Chair in Implementation of Shared Decision Making in Primary Care over an eight-year period. Our two sources of online dissemination data were the website of the Canada Research Chair in Implementation of Shared Decision Making in Primary Care and the Chair's Twitter account. We conducted a content analysis of the news section of the website. We extracted website usage statistics using Google Analytics and analyzed indicators such as total number of visits, new and returning visitors, page views per visit, time spent onsite per visit, visitors' country of origin, and most popular pages. From the Chair's Twitter account, we collected the number of tweets, followers, and follows. We consulted Google Scholar to chart the trend in citations of the Chair's articles over the same period. From the website's inception in January 2008 to December 2015, we recorded an average of 7906 visits per year (3809 in 2008; 8874 in 2015), 65.85% of which involved new visitors (5206/7906). The average number of pages viewed per visit was 3.2 and average bounce rate was 57.87% (4575/7906). Visitors spent an average of two minutes and 12 seconds per visit. We computed visits from 162 countries, with the majority from Canada (5910/7906, 74.75%). In order of frequency, the seven most visited pages were: (1) home page with news of publications and grants (24,787 visits), (2) profile of Chairholder (8041 visits), (3) profiles of research team members (6272 visits), (4) list of research team members (4593 visits), (5) inventory of shared decision making (SDM) programs (1856 visits), (6) interprofessional approaches to SDM (1689 visits), and (7) description of Chair activities (1350 visits). From the inception of the Twitter account in April 2011 to November 30, 2016 we

  9. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  10. Implementing Knowledge Translation Strategies in Funded Research in Canada and Australia: A Case Study

    Directory of Open Access Journals (Sweden)

    Gabriel Moore

    2016-09-01

    Full Text Available There is an emerging literature describing the use of knowledge translation strategies to increase the relevance and usability of research, yet there are few real-world examples of how this works in practice. This case study reports on the steps taken to embed knowledge translation strategies in the Movember Foundation's Men’s Mental Health Grant Rounds in 2013–14, which were implemented in Australia and Canada, and on the support provided to the applicants in developing their knowledge translation plans. It identifies the challenges faced by the Men’s Mental Health Program Team and how these were resolved. The strategies explored include articulating knowledge translation requirements, ensuring a common understanding of knowledge translation, assessing knowledge translation plans, methods of engaging end users, and building capacity with applicants. An iterative approach to facilitating knowledge translation planning within project development was rolled out in Australia just prior to Canada so that lessons learned were immediately available to refine the second roll out. Implementation included the use of external knowledge translation expertise, the development of knowledge translation plans, and the need for internal infrastructure to support monitoring and reporting. Differences in the Australian and Canadian contexts may point to differential exposure to the concepts and practices of knowledge translation. This case study details an example of designing and implementing an integrated knowledge translation strategy that moves beyond traditional dissemination models. Lessons learned point to the importance of a long lead-up time, the use of knowledge translation expertise for capacity building, the need for flexible implementation, and the need for efficiencies in supporting applicants.

  11. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  12. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Weimin Ma

    2016-03-01

    Full Text Available A historical review of in-vessel melt retention (IVR is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs. The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential phenomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV. For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contribute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.

  13. IGORR-1: Proceedings of the first meeting of the international group on research reactors

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D. (comp.)

    1990-05-01

    Many organizations, in several countries, are planning or implementing new or upgraded research reactor projects, but there has been no organized forum devoted entirely to discussion and exchange of information in this field. Over the past year or so, informal discussions resulted in widespread agreement that such a forum would serve a useful purpose. Accordingly, a proposal to form a group was submitted to the leading organizations known to be involved in projects to build or upgrade reactor facilities. Essentially all agreed to join in the formation of the International Group on Research Reactors (IGORR) and nominated a senior staff member to serve on its international organizing committee. The first IGORR meeting took place on February 28--March 2, 1990. It was very successful and well attended; some 52 scientists and engineers from 25 organizations in 10 countries participated in 2-1/2 days of open and informative presentations and discussions. Two workshop sessions offered opportunities for more detailed interaction among participants and resulted in identification of common R D needs, sources of data, and planned new facilities. Individual papers have been cataloged separately.

  14. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  15. Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.

    1976-01-01

    The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.

  16. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  17. Analysis of neutron flux distribution for the validation of computational methods for the optimization of research reactor utilization.

    Science.gov (United States)

    Snoj, L; Trkov, A; Jaćimović, R; Rogan, P; Zerovnik, G; Ravnik, M

    2011-01-01

    In order to verify and validate the computational methods for neutron flux calculation in TRIGA research reactor calculations, a series of experiments has been performed. The neutron activation method was used to verify the calculated neutron flux distribution in the TRIGA reactor. Aluminium (99.9 wt%)-Gold (0.1 wt%) foils (disks of 5mm diameter and 0.2mm thick) were irradiated in 33 locations; 6 in the core and 27 in the carrousel facility in the reflector. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and experimental normalized reaction rates in the core are in very good agreement for both isotopes indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux and reaction rate distribution in the reactor core. In the reflector however, the accuracy of the epithermal and thermal neutron flux distribution and attenuation is lower, mainly due to lack of information about the material properties of the graphite reflector surrounding the core, but the differences between measurements and calculations are within 10%. Since our computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of research reactor utilization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Production and modeling of radioactive gold nanoparticles in Tehran research reactor.

    Science.gov (United States)

    Hosseini, Seyedeh Fatemeh; Sadeghi, Mahdi; Aboudzadeh, Mohammad Reza; Mohseni, Morteza

    2016-12-01

    Gold has two medically useful radioactive isotopes, 198Au and 199Au, for locally irradiating and killing tumor cells. 198Au radionuclide has been produced through the irradiation of the pure gold via 197Au(n,γ)198Au reaction in the Tehran Research Reactor at a thermal neutron flux of 4.5×1013ncm-2s-1 for the different irradiation times. In this paper, the activity of 198Au radionuclide has been determined using MCNPX-2.6 and TALYS-1.6 codes and also the theoretical approach. The calculated results were compared with the corresponding experimental values. The calculated results were in good agreement with the experimental data, thus the used codes can be used as a powerful tool to predict and optimize production conditions in reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Article Commentary: Researching Prescription Drug Misuse among First Nations in Canada: Starting from a Health Promotion Framework

    Directory of Open Access Journals (Sweden)

    Colleen Anne Dell

    2012-01-01

    Full Text Available The intentional misuse of psychotropic drugs is recognized as a significant public health concern in Canada, although there is a lack of empirical research detailing this. Even less research has been documented on the misuse of prescription drugs among First Nations in Canada. In the past, Western biomedical and individual-based approaches to researching Indigenous health have been applied, whereas First Nations’ understandings of health are founded on a holistic view of wellbeing. Recognition of this disjuncture, alongside the protective influence of First Nations traditional culture, is foundational to establishing an empirical understanding of and comprehensive response to prescription drug misuse. We propose health promotion as a framework from which to begin to explore this. Our work with a health promotion framework has conveyed its potential to support the consideration of Western and Indigenous worldviews together in an ‘ethical space’, with illustrations provided. Health promotion also allots for the consideration of Canada's colonial history of knowledge production in public health and supports First Nations’ self-determination. Based on this, we recommend three immediate ways in which a health promotion framework can advance research on prescription drug misuse among First Nations in Canada.

  20. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    National Research Council Canada - National Science Library

    Rezaeian Mahdi; Kamali Jamshid; Roshanzamir Manoochehr; Moosakhani Alireza; Noori Elghar

    2015-01-01

    ... operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated...

  1. Decommissioning of the ASTRA research reactor: Planning, executing and summarizing the project

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2010-01-01

    Full Text Available The decommissioning of the ASTRA research reactor at the Austrian Research Centres Seibersdorf was described within three technical papers already released in Nuclear Technology & Radiation Protection throughout the years 2003, 2006, and 2008. Following a suggestion from IAEA the project was investigated well after the files were closed regarding rather administrative than technical matters starting with the project mission, explaining the project structure and identifying the key factors and the key performance indicators. The continuous documentary and reporting system as implemented to fulfil the informational needs of stake-holders, management, and project staff alike is described. Finally the project is summarized in relationship to the performance indicators.

  2. The Operational Parameter Electronic Database of the IPR-R1 TRIGA Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Zacarias; Gomes do Prado Souza, Rose Mary [Nuclear Technology Development Center (CDTN), Belo Horizonte - MG (Brazil)

    2008-10-29

    it in a historical database. In every operation of the research reactor about forty variables are registered by the data acquisition system. The system provides data for the last five years (since 2004)

  3. Lymphedema in Canada: a qualitative study to help develop a clinical, research, and education strategy

    Science.gov (United States)

    Hodgson, P.; Towers, A.; Keast, D.H.; Kennedy, A.; Pritzker, R.; Allen, J.

    2011-01-01

    Objective The aim of this study was to gather data from Canadian stakeholders to help construct a national strategy and agenda for lymphedema management. Methods The Canadian Lymphedema Framework, a collaboration of medical academics, lymphedema therapists, patient advocates, and others, used participatory action research and Open Space Technology to identify issues and build consensus at a national meeting of lymphedema stakeholders. Proceedings were videotaped and underwent content analysis. Existing Canadian documentation on lymphedema services was analyzed. Using those data sources, the Canadian Lymphedema Framework drafted a development strategy. Results Of 320 invited stakeholders (patients, therapists, physicians, industry representatives, and health policymakers), 108 participated in a day-long videotaped meeting discussing strategies to improve the management of lymphedema and related disorders in Canada. Participants identified barriers, challenges, and issues related to the need to raise awareness about lymphedema with patients, physicians, and the public. Five priority areas for development were articulated: education, standards, research, reimbursement and access to treatment, and advocacy. The main barrier to development was identified as the lack of clear responsibility within the health care system for lymphedema care. Conclusions Data from stakeholders was obtained to solidly define priority areas for lymphedema development at a national level. The Canadian Lymphedema Framework has created a working plan, an advisory board, and working groups to implement the strategy. PMID:22184493

  4. Lymphedema in Canada: a qualitative study to help develop a clinical, research, and education strategy.

    Science.gov (United States)

    Hodgson, P; Towers, A; Keast, D H; Kennedy, A; Pritzker, R; Allen, J

    2011-12-01

    The aim of this study was to gather data from Canadian stakeholders to help construct a national strategy and agenda for lymphedema management. The Canadian Lymphedema Framework, a collaboration of medical academics, lymphedema therapists, patient advocates, and others, used participatory action research and Open Space Technology to identify issues and build consensus at a national meeting of lymphedema stakeholders. Proceedings were videotaped and underwent content analysis. Existing Canadian documentation on lymphedema services was analyzed. Using those data sources, the Canadian Lymphedema Framework drafted a development strategy. Of 320 invited stakeholders (patients, therapists, physicians, industry representatives, and health policymakers), 108 participated in a day-long videotaped meeting discussing strategies to improve the management of lymphedema and related disorders in Canada. Participants identified barriers, challenges, and issues related to the need to raise awareness about lymphedema with patients, physicians, and the public. Five priority areas for development were articulated: education, standards, research, reimbursement and access to treatment, and advocacy. The main barrier to development was identified as the lack of clear responsibility within the health care system for lymphedema care. Data from stakeholders was obtained to solidly define priority areas for lymphedema development at a national level. The Canadian Lymphedema Framework has created a working plan, an advisory board, and working groups to implement the strategy.

  5. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  6. RESEARCHES ON THE DIGESTERS AND REACTORS WHICH CAN BE USED IN A FARM SCALE BIOGAS PLANT

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2014-10-01

    Full Text Available In the general context of searching integrated system of renewable energy production, this paper present some researches on the reactors and the digesters, as a main part of a biogas plant at a farm scale. After we present the most used types of digesters, we also concentrated over the processes which take place into a digester, one of them being the removal of H2S from biogas (desulphurisation, which can be made by various methods, either biological or chemical, taking place inside or outside the digester. In the case of biological desulphurization outside the digester, we concentrate on the types of reactors which can be used in this case. Beside the well known types of reactors, we present the possibility of using an original self pressure membrane bioreactor. In this type of bioreactor, the metabolic activity of gas producing microorganisms, especially yeast, could obtain high pressure from gas produced in closed medium on the one hand, and separation of other products of metabolism through membrane on the other hand, using gas pressure as driving force. It is known that several strains of yeast resist on very high hydrostatic pressure heaving good activity. This fact give the possibility to use their energy for other purposes, such as producing mechanical work. Combination of both, gas pressure and alchool burning, increase the process efficiency.

  7. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2014-12-01

    Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.

  8. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    Science.gov (United States)

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An Introduction to Ethical Considerations for Novices to Research in Teaching and Learning in Canada

    Directory of Open Access Journals (Sweden)

    Mark MacLean

    2010-12-01

    Full Text Available Considering Canada's Tri-Council statement on the ethical conduct for research involving human subjects, we discuss some of the ethical challenges of doing research on teaching and learning in which one's own students and teaching act as the context of such scholarly activity. We advocate establishing basic principles based in the complex relationships in teaching and learning, making reference to the such issues as the potential social consequences for students of choosing not to participate in SoTL research. We propose some principles for those new to teaching and learning research to consider as part of their own ethical considerations.En ce qui concerne l'Énoncé de politique des trois Conseils : Éthique de la recherche avec des êtres humains, nous présentons les difficultés déontologiques de la recherche sur l’enseignement et l’apprentissage au cours de laquelle nos propres étudiants et notre enseignement constituent le contexte de cette activité savante. Nous prônons l’établissement de principes fondamentaux basés sur les relations complexes entre l’enseignement et l’apprentissage et faisons référence à des enjeux comme les conséquences sociales potentielles du choix des étudiants de ne pas participer à la recherche sur l’ACEA. Nous proposons des principes que les chercheurs novices pourraient intégrer à leurs propres considérations déontologiques.

  10. Power up-grading study for the first Egyptian research reactor

    Energy Technology Data Exchange (ETDEWEB)

    El-Sawy Temraz, H.; Ashoub, N. E-mail: nageeb@pcn.aea.sci.eg; Fathallah, A

    2001-09-01

    In the present work, power up-grading study is performed, for the first Egyptian Research Reactor (ET-RR-1), using the present fuel basket with 4x4 fuel rods, (17.5 mm pitch), and a proposed fuel basket with 5x5 fuel rods, (14.0 mm pitch), without violating the thermal hydraulic safety criteria. These safety criteria are; fuel centerline temperature (fuel melting), clad surface temperature (surface boiling), outlet coolant temperature, and maximum heat flux (critical heat flux ratio). Different thermal reactor powers (2-10 MW) and different core coolant flow rates (450, 900, 1350 m{sup 3} h{sup -1}) are considered. The thermal hydraulic analysis was performed using the subchannel code COBRA-IIIC for the estimation of temperatures, coolant velocities and critical heat flux. The neutronic calculations were performed using WIMS-D4 code with 5-group neutron cross section library. These cross sections were adapted to use in the two-dimensional (2-D) diffusion code DIXY for core calculations. The study concluded that ET-RR-1 power can be upgraded safely up to 4 MW with the present 4x4-fuel basket and with the proposed 5x5-fuel basket up to 5 MW with the present coolant flow rate (900 m{sup 3} h{sup -1}). With the two fuel arrays, the reactor power can be upgraded to 6 MW with coolant flow rate of 1350 m{sup 3} h{sup -1} without violating the safety criterion. It is also concluded that, loading the ET-RR-1 core with the proposed fuel basket (5x5) increases the excess reactivity of the reactor core than the present 4x4 fuel matrix with equal U-235 mass load and gave better fuel economy of fuel utilization.

  11. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  12. Complementary Safety Margin Assessment f the Nuclear Installations of the research reactor in Petten, Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    On March 11, 2011, a large part of the Japanese eastern coastal area was devastated by an earthquake, followed by an immense tsunami. As a result, thousands of people were killed, injured or made homeless. In the days that followed, the situation was further complicated because of the failing nuclear reactors on the Fukushima coast. The local environment suffered from radioactive releases, requiring evacuation zones, and generating international concerns about nuclear safety. In the wake of this disaster the European Union decided to assess safety on all operating nuclear reactors in its member states. This safety evaluation initiated by the European Union focusses on extreme natural hazards, beyond the standard safety evaluations which regularly have to be performed to demonstrate the safety of a nuclear power plant. Consequences of these extreme hazards for the research reactor in Petten, Netherlands, have been evaluated based on available safety analyses, supplemented by engineering judgement. In this way, the robustness of the existing plant has been assessed and possible measures to further increase the safety margins have been identified. This document presents the results of the Complementary Safety margin Assessment (CSA) performed for the 'Onderzoekslocatie Petten'. The distinct difference between this report and former risk analysis reports in general and the existing Safety Report of the Petten reactor is that the maximum resistance of the plant against redefined and more challenging events has been investigated, whereas traditionally the plant design is investigated against certain events that are determined on a historical basis. This different approach requires different analyses and studies, which in turn presents new insights into the robustness of the plant. The main purpose of this report is to answer the questions posed by the Ministry of Economic Affairs, Agriculture and Innovation. It was decided to write at the same time a report in

  13. Assessment of the National Research Universal Reactor Proposed New Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-29

    This document reports on a series of tests conducted to assess the proposed air sampling location for the National Research Universal reactor (NRU) complex exhaust stack, located in Chalk River, Ontario, Canada, with respect to the applicable criteria regarding the placement of an air sampling probe. Due to the age of the equipment in the existing monitoring system, and the increasing difficulty in acquiring replacement parts to maintain this equipment, a more up-to-date system is planned to replace the current effluent monitoring system, and a new monitoring location has been proposed. The new sampling probe should be located within the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The internal Pacific Northwest National Laboratory (PNNL) project for this task was 65167, Atomic Energy Canada Ltd. Chalk River Effluent Duct Flow Qualification. The testing described in this document was guided by the Test Plan: Testing of the NRU Stack Air Sampling Position (TP-STMON-032).

  14. Concept of a nuclear powered submersible research vessel and a compact reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (Japan); Tokunaga, Sango [Japan Deep Sea Technology Association, Tokyo (Japan)

    2001-07-01

    A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

  15. The development of urban renewable energy at the existential technology research center (ETRC) in Toronto, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Steve; Harris, Isaac; Harris, Joshua [University of Toronto, 10 King' s College Road, Toronto, ON (Canada)

    2006-12-15

    This paper presents new forms of urban renewable energy, in particular, the integration of solar and wind power into the industrial and commercial buildings with flat roofs which populate a city's downtown core. This combination of renewable energy passively adapts to pre-existing structures and exploits them to their full advantage. The working prototypes presented aim to introduce an element of multi-functionality to building-integrated photovoltaics (BIPV), creating systems which produce energy while meeting required needs and desirable features of urban buildings. We also explore the combination of wind energy and various energy efficiency initiatives with BIPV designs. Our energy efficiency initiatives include a new method of generating the perception of natural sunlight from artificial light and brainwave controlled lighting that dims automatically when occupants' concentration is lowered. These efforts result in an environment that celebrates the existential notion of self-empowerment through reducing energy consumption and having control over one's own energy production. Our discussion follows into market considerations of our BIPV designs and how project costs are lowered and space is conserved, assets when designing for urban locations. The test site for the development of urban renewable energy is the Existential Technology Research Center (ETRC), located in downtown Toronto, Canada. (author)

  16. NCTPlan application for neutron capture therapy dosimetric planning at MEPhI nuclear research reactor.

    Science.gov (United States)

    Elyutina, A S; Kiger, W S; Portnov, A A

    2011-12-01

    The results of modeling of two therapeutic beams HEC-1 and HEC-4 at the NRNU "MEPhI" research nuclear reactor exploitable for preclinical treatments are reported. The exact models of the beams are constructed as an input to the NCTPlan code used for planning Neutron Capture Therapy (NCT) procedure. The computations are purposed to improve the accuracy of prediction of a dose absorbed in tissue with the account of all components of radiation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    Science.gov (United States)

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Decontamination and decommissioning project of the TRIGA mark - 2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Baik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Kim, J. K.; Lee, D. G.; Kim, H. R.; Lee, B. J.; Yang, S. H.

    2001-01-15

    The decommissioning license for KRR (Korea Research Reactor) 1 and 2 was issued Nov. 23, 2000. The atmospheric stability on the KRR site was evaluated using the meteorological data measured at the site. From the results of this evaluation, the population dose was evaluated for the public who lives at the periphery of the site. The Radiation Safety Management Guideline was developed and it will be used as a base line making Radiation Safety Management Procedure. The container was specially designed and manufactured for the storing of low level radioactive solid waste arising from the D and D activities. Firstly, the 50 containers were completely manufactured.

  19. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan figs., ills., refs. Prepared for Australian Nuclear Science and Technology Organisation (ANSTO)

  20. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    Science.gov (United States)

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  2. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  3. Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

  4. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P.C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  5. Atomic Energy of Canada Limited annual report 1999-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2000, and summarizes the activities of AECL during the period 1999-2000. The activities covered in this report include the CANDU reactor business, with the completion of the Wolsong unit 4 in the Republic of Korea, progress in the construction of two CANDU reactors for the Qinshan CANDU project in China, as well as the service business with Ontario Power Generation in the rehabilitation and life extension of operating CANDU reactors. In the R and D programs there is on-going effort towards the next generation of reactor technologies for CANDU nuclear power plants, discussions continue on the funding for the Canadian Neutron Facility for materials research (CNF) and progress being made on the Maple medical isotope reactor.

  6. Reliability studies in research reactors; Estudo de confiabilidade em reatores de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Tob Rodrigues de

    2013-08-01

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This study uses the methods of FT (Fault Tree) and ET (Event Tree) to accomplish the PSA (Probabilistic Safety Assessment) in research reactors. According to IAEA (lnternational Atomic Energy Agency), the PSA is divided into Level 1, Level 2 and Level 3. At the Level 1, conceptually, the security systems perform to prevent the occurrence of accidents, At the Level 2, once accidents happened, this Level seeks to minimize consequences, known as stage management of accident, and at Level 3 accident impacts are determined. This study focuses on analyzing the Level 1, and searching through the acquisition of knowledge, the consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR-1, is a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from it, using ET, possible accidental sequences were developed, which could lead damage to the core. Moreover, for each of affected systems, probabilities of each event top of FT were developed and evaluated in possible accidental sequences. Also, the estimates of importance measures for basic events are presented in this work. The studies of this research were conducted using a commercial computational tool SAPHIRE. Additionally, achieved results thus were considered satisfactory for the performance or the failure of analyzed systems. (author)

  7. Assessment of the reliability of neutronic parameters of Ghana Research Reactor-1 control systems

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah-Abu, E.O., E-mail: edwardabu2002@yahoo.com [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana); Gbadago, J.K. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana); Akaho, E.H.K.; Akoto-Bamford, S. [School of Nuclear and Allied Sciences, University of Ghana (Ghana); Gyamfi, K.; Asamoah, M.; Baidoo, I.K. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana)

    2015-01-15

    Highlights: • The reliability of neutronics parameters of GHARR-I was assessed. • The reactor was operated at different power levels of 5–30 kW. • The pre-set flux was compared with the flux in the inner irradiation site. • Decrease in the core reactivity caused difference in flux on the meters and site. • Neutronic parameters become reliable when operation is done at reactivity of 4 mk. - Abstract: The Ghana Research Reactor-1 (GHARR-1) has been in operation for the past 19 years using a Micro-Computer Closed Loop System (MCCLS) and Control Console (CC) as the control systems. The two control systems were each coupled separately with a micro-fission chamber to measure the current pulses of the neutron fluxes in the core at excess reactivity of 4 mk. The MCCLS and CC meter readings at a pre-set flux of 5.0 × 10{sup 11} n/cm{sup 2} s were 6.42 × 10{sup 11} n/cm{sup 2} s and 5.0 × 10{sup 11} n/cm{sup 2} s respectively. Due to ageing and obsolescence, the MCCLS and some components that control the sensitivity and the reading mechanism of the meters were replaced. One of the fission chambers was also removed and the two control systems were coupled to one fission chamber. The reliability of the neutronic parameters of the control systems was assessed after the replacement. The results showed that when the reactor is operated at different power levels of 5–30 kW using one micro-fission chamber, the pre-set neutron fluxes at the control systems is 1.6 times the neutron fluxes obtained using a flux monitor at the inner irradiation site two of the reactor. The average percentage deviations of the obtained fluxes from the pre-set values of 1.67 × 10{sup 11}–1.0 × 10{sup 12} n/cm{sup 2} s were 36.5%. This compares very well with the decrease in core excess reactivity of 36.3% of the nominal value of 4 mk, after operating the reactor at critical neutron flux of 1.0 × 10{sup 9} n/cm{sup 2} s.

  8. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  9. The effect of code user and boundary conditions on RELAP calculations of MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The safety evaluation of nuclear power and re search reactors is a very important step before their construction and during their operation. This evaluation based on the best estimate calculations requires qualified codes qualified users, and qualified nodalizations. The effect of code users on the RELAP5 results during the analysis of loss of flow transient in MTR research reactors is presented in this pa per. To clarify this effect, two nodalizations for research reactor different in the simulation of the open water surface boundary conditions of the reactor pool have been used. Very different results are obtained with few choices for code users. The core natural circulation flow with the be ginning of core boiling doesn't stop but in creases. The in creasing in the natural circulation flow shifts out the boiling from the core and the clad temperature decreases be low the local saturation temperature.

  10. Religion and the public ethics of stem-cell research: Attitudes in Europe, Canada and the United States.

    Science.gov (United States)

    Allum, Nick; Allansdottir, Agnes; Gaskell, George; Hampel, Jürgen; Jackson, Jonathan; Moldovan, Andreea; Priest, Susanna; Stares, Sally; Stoneman, Paul

    2017-01-01

    We examine international public opinion towards stem-cell research during the period when the issue was at its most contentious. We draw upon representative sample surveys in Europe and North America, fielded in 2005 and find that the majority of people in Europe, Canada and the United States supported stem-cell research, providing it was tightly regulated, but that there were key differences between the geographical regions in the relative importance of different types of ethical position. In the U.S., moral acceptability was more influential as a driver of support for stem-cell research; in Europe the perceived benefit to society carried more weight; and in Canada the two were almost equally important. We also find that public opinion on stem-cell research was more strongly associated with religious convictions in the U.S. than in Canada and Europe, although many strongly religious citizens in all regions approved of stem-cell research. We conclude that if anything public opinion or 'public ethics' are likely to play an increasingly important role in framing policy and regulatory regimes for sensitive technologies in the future.

  11. Community-driven research on environmental sources of H. pylori infection in arctic Canada.

    Science.gov (United States)

    Hastings, Emily V; Yasui, Yutaka; Hanington, Patrick; Goodman, Karen J

    2014-01-01

    The role of environmental reservoirs in H. pylori transmission remains uncertain due to technical difficulties in detecting living organisms in sources outside the stomach. Residents of some Canadian Arctic communities worry that contamination of the natural environment is responsible for the high prevalence of H. pylori infection in the region. This analysis aims to estimate associations between exposure to potential environmental sources of biological contamination and prevalence of H. pylori infection in Arctic Canada. Using data from 3 community-driven H. pylori projects in the Northwest and Yukon Territories, we estimated effects of environmental exposures on H. pylori prevalence, using odds ratios (OR) and 95% confidence intervals (CI) from multilevel logistic regression models to adjust for household and community effects. Investigated exposures include: untreated drinking water; livestock; dogs; cats; mice or mouse droppings in the home; cleaning fish or game. Our analysis did not identify environmental exposures associated clearly with increased H. pylori prevalence, except any exposure to mice or mouse droppings (OR = 4.6, CI = 1.2-18), reported by 11% of participants. Our multilevel models showed H. pylori clustering within households, but environmental exposures accounted for little of this clustering; instead, much of it was accounted for by household composition (especially: having infected household members; number of children). Like the scientific literature on this topic, our results do not clearly implicate or rule out environmental reservoirs of H. pylori; thus, the topic remains a priority for future research. Meanwhile, H. pylori prevention research should seek strategies for reducing direct transmission from person to person.

  12. Investigation of Classification and Design Requirements for Digital Software for Advanced Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gee Young; Jung, H. S.; Ryu, J. S.; Park, C

    2005-06-15

    As the digital technology is being developed drastically, it is being applied to various industrial instrumentation and control (I and C) fields. In the nuclear power plants, I and C systems are also being installed by digital systems replacing their corresponding analog systems installed previously. There had been I and C systems constructed by analog technology especially for the reactor protection system in the research reactor HANARO. Parallel to the pace of the current trend for digital technology, it is desirable that all I and C systems including the safety critical and non-safety systems in an advanced research reactor is to be installed based on the computer based system. There are many attractable features in using digital systems against existing analog systems in that the digital system has a superior performance for a function and it is more flexible than the analog system. And any fruit gained from the newly developed digital technology can be easily incorporated into the existing digital system and hence, the performance improvement of a computer based system can be implemented conveniently and promptly. Moreover, the capability of high integrity in electronic circuits reduces the electronic components needed to construct the processing device and makes the electronic board simple, and this fact reveals that the hardware failure itself are unlikely to occur in the electronic device other than some electric problems. Balanced the fact mentioned above are the roles and related issues of the software loaded on the digital integrated hardware. Some defects in the course of software development might induce a severe damage on the computer system and plant systems and therefore it is obvious that comprehensive and deep considerations are to be placed on the development of the software in the design of I and C system for use in an advanced research reactor. The work investigates the domestic and international standards on the classifications of digital

  13. Thermal-hydraulic modelling of the SAFARI-1 research reactor using RELAP/SCDAPSIM/MOD3.4

    Energy Technology Data Exchange (ETDEWEB)

    Sekhri, Abdelkrim; Graham, Andy [RRT Radiation and Reactor Theory, South African Nuclear Energy Corporation - NECSA, PO Box 582 Pretoria 0001 (South Africa); D' Arcy, Alan; Oliver, Melissa [SAFARI-1 Research Reactor, South African Nuclear Energy Corporation - NECSA, PO Box 582 Pretoria 0001 (South Africa)

    2008-07-01

    The SAFARI-1 reactor is a tank-in-pool MTR type research reactor operated at a nominal core power of 20 MW. It operates exclusively in the single phase liquid water regime with nominal water and fuel temperatures not exceeding 100 deg. C. RELAP/SCDAPSIM/MOD3.4 is a Best Estimate Code for light water reactors as well as for low pressure transients, as part of the code validation was done against low pressure facilities and research reactor experimental data. The code was used to simulate SAFARI-1 in normal and abnormal operation and validated against the experimental data in the plant and was used extensively in the upgrading of the Safety Analysis Report (SAR) of the reactor. The focus of the following study is the safety analysis of the SAFARI-1 research reactor and describes the thermal hydraulic modelling and analysis approach. Particular emphasis is placed on the modelling detail, the application of the no-boiling rule and predicting the Onset of Nucleate Boiling and Departure from Nucleate Boiling under Loss of Flow conditions. Such an event leads the reactor to switch to a natural convection regime which is an adequate mode to maintain the clad and fuel temperature within the safety margin. It is shown that the RELAP/SCDAPSIM/MOD3.4 model can provide accurate predictions as long as the clad temperature remains below the onset of nucleate boiling temperature and the DNB ratio is greater than 2. The results are very encouraging and the model is shown to be appropriate for the analysis of SAFARI-1 research reactor. (authors)

  14. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    OpenAIRE

    Ketelaer, J.; Krämer, J.; Beck, D; Blaum, K; Block, M; Eberhardt, K.; Eitel, G.; Ferrer, R.; Geppert, C; George, S; Herfurth, F.; Ketter, J.; Nagy, Sz.; Neidherr, D.; Neugart, R

    2008-01-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beam line for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also h...

  15. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    Science.gov (United States)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  16. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  17. Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Shin, Chang Hwan; Lee, Chan; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-12-15

    The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermalhydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermalhydraulic technology and the commercialization.

  18. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  19. The current state of the Russian reduced enrichment research reactors program

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A. [and others

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% from RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.

  20. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    Science.gov (United States)

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  2. First Joint U.S.-Canada Polar Expedition for Educators, Axel Heiberg Island, Nunavut, Canada: Planetary Analogue Research and Lessons Learned

    Science.gov (United States)

    Williamson, M.; Pollard, W. H.; McKay, C. M.; Coe, L.; Steinberg, M.; Clement, J.

    2008-12-01

    From July 20 to August 2, 2008, joint activities sponsored by the Canadian Space Agency (CSA - Space Learning) and NASA (Spaceward Bound) were carried out at the McGill Arctic Research Station (MARS) in the Canadian High Arctic. Established in 1960, MARS consists of two sites located on western Axel Heiberg Island along the shore of Expedition Fiord (lower camp), and 8 km inland, at Colour Lake (upper camp). The MARS upper camp is one of the longest-operating seasonal field research facilities in polar regions. The lower camp was established in 2007 through infrastructure support provided by the CSA. The station is located in a mountainous area dominated by ice caps, outlet and valley glaciers, polar desert, arctic tundra, and permafrost, and is internationally recognized for research on cold, perennial springs associated with the presence of evaporite domes. Six educators from the U.S. and Canada participated in field surveys and hands-on demonstrations with the following objectives: (1) join a team of scientists and engineers to explore the topics of Physical Geography, Geoscience, Astrobiology, and Robotics through experiential learning; (2) discover how remote and extreme polar environments on Earth are used by planetary scientists to better understand the evolution of the Moon and Mars, and to potentially train future planetary explorers; (3) bring that experience back to their classrooms, and assist in the development of space curriculum related to science, technology, and engineering projects carried out at planetary analogue sites. In this paper, we present a summary of operational planning and field surveys that led to successful scientific experiments by 16 participants during the Expedition. Research topics explored prior to, and during the arctic mission include Physical Geography, Geomorphology, Geology, Seismology, Earth Observation, Astrobiology, and Terrain Characterization with implications for future human and robotic exploration missions to the

  3. Spanish collaboration in the OECD Halden Reactor Project research on Gadolinia Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M.; Munoz-Reja, C.; Tverberg, T.; Jenssen, H. K.

    2010-07-01

    Safe and reliable operation of nuclear power plants benefit from research and development advances and related technical solutions. One research platform is the OECD Halden Reactor Project (HRP). HRP is a joint undertaking of national organisations in 18 countries sponsoring a jointly financed programme under the auspices of the OECD - Nuclear Energy Agency (NEA). As a member state, Spain is participating HRP research programs with ENUSA as a partner in the fuel research programs. Improving the NPP operations, fuel cycles were designed to increase fuel burnup. Higher fuel burnup reduces the number of spent fuel assemblies and thus the costs of new fuel as well as the costs of back-end management. Higher burnup is reached either by prolonging the reactor cycles or by increasing the number of reactor cycles for the fuel in the core. Both ways entail additional requirements concerning fuel enrichment and burnable absorbers as additives and adjustments on the cladding material properties, such as mechanical treatment and chemical composition of the alloys. For these demands and needs ENUSA promotes the research on high burnup effects, gadolinium doped fuels and cladding material behaviour under irradiation. Various experiments, called IFA, are developed and performed also by providing materials. ENUSA collaborates with HRP on various experiments investigating the fuel densification and swelling, fission gas release, pressure limits on UO{sub 2} and (U,Gd)O{sub 2} fuels (IFA-504, -515, -636, -681); the cladding creep, lift-off, corrosion and hydrides on different tubing materials (IFA-567, -610, -638); instrumentation of the experiments, especially on pre-irradiated materials (IFA-533). These experiments are combined with model calculations to improve predictions for higher burnups and to maintain safety margins (IFA-515, -636, -681). Besides these unique in-pile experiments PIEs are performed as well on fuel and structural materials to complete the scope of these

  4. Novel Cryogenic Engineering Solutions for the New Australian Research Reactor Opal

    Science.gov (United States)

    Olsen, S. R.; Kennedy, S. J.; Kim, S.; Schulz, J. C.; Thiering, R.; Gilbert, E. P.; Lu, W.; James, M.; Robinson, R. A.

    2008-03-01

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons. The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber are cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption). A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2nd half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions. A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2nd GM cryocooler (4K-300K) and a variable electric field can be applied.

  5. Advancing sustainable development in Canada : policy issues and research needs[PRI Project, Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, P. [Government of Canada Privy Council Office, Ottawa, ON (Canada). Policy Research Initiative; Creech, H.; Glanville, B.; Barg, S.; Cosbey, A.; Roy, M.; Swanson, D.A.; Venema, H.D.; Von Moltke, K. [International Inst. for Sustainable Development, Winnipeg, MB (Canada); Slayen, S. (ed.)

    2003-11-01

    This paper defined 7 policy-relevant issues that advance sustainable development in Canada. These were; (1) urban redesign, (2) freshwater management, (3) eco-region sustainability, (4) impacts of globalization on sustainable development in Canada, (5) designing signals and incentives that promote sustainable behaviour among citizens, (6) reducing the ecological burden of unsustainable lifestyles, and (7) international engagement in sustainable development. The authors questioned why these issues have not made greater progress, given that they have been on national and international agendas since 1972. They also questioned why it is so difficult to integrate environmental and economic signals. Finally, they examined whether enough ecological and political space can be provided to developing countries to achieve sustainable development while enhancing the standard of living in Canada and not threatening critical global systems. 173 refs.

  6. Operational experiences and coping with ageing effects of the IRT-Sofia research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krezhov, K. [Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    1995-12-31

    The present paper gives a review on the efforts to cope with reactor equipment ageing effects and describes the major experience gained in the maintenance work necessary to keep the reactor in good condition throughout the years. Also, a short description of the modernization project with preserved reactor power level of 2 MW is given. (orig.)

  7. Development of in-vessel type control rod drive mechanism for a innovative small reactor (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Yoritsune, Tsutomu; Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Although the control rod drive mechanism of an existing large scale light water reactor is generally installed outside the reactor vessel, an in-vessel type control rod drive mechanism (INV-CRDM) is installed inside the reactor vessel. The INV-CRDM contributes to compactness and simplicity of the reactor system, and it can eliminate the possibility of a rod ejection accident. Therefore, INV-CRDM is an important technology adopted in an innovative small reactor. Japan Atomic Energy Research Institute (JAERI) has developed this type of CRDM driven by an electric motor, which can work under high temperature and high pressure water for the advanced marine reactor. On the basis of this research result, a driving motor coil and a bearing were developed to be used under the high temperature steam, severe condition for an innovative small reactor. About the driving motor, we manufactured the driving motor available for high temperature steam and carried out performance test under room temperature atmosphere to confirm the electric characteristic and coolability of the driving coil. With these test results and the past test results under high temperature water, we analyzed and evaluated the electric performance and coolability of the driving coil under high temperature steam. Concerning bearing, we manufactured the test pieces using some candidate material for material characteristic test and carried out the rolling wear test under high temperature steam to select the material. Consequently, we confirmed that performance of the driving coil for the advanced type driving motor, is enough to be used under high temperature steam. And, we evaluated the performance of the bearing and selected the material of the bearing, which can be used under high temperature steam. From these results, we have obtained the prospect that the INV-CRDM can be used for an innovative small reactor under steam atmosphere could be developed. (author)

  8. Design of a Control Room for Jordan Research and Training Reactor (JRTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun; Suh, Sang Moon; Lee, Hyun Chul; Park, Je Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Since the main role of JRTR(Jordan Research and Training Reactor) operating personnel is safe and reliable operation of the reactor, MCR(Main Control Room) and SCR(Supplementary Control Room) must provide them with sufficient information and controls needed to optimize their performance. Before the TMI accident, control room were generally designed just with intuitive common sense, without using any proper HFE(human factors engineering) practices. Many results derived from the analysis of TMI accident showed that a more comprehensive and systematic approaches to develop MCR design requirements were needed. Moreover changes of operators' role as a decision maker from a physical controller in rapid improvement of control system which resulted in higher automation clearly needed more featured regulatory requirements and guidelines. So many regulatory and industrial guidance for control room design have been developed by relevant institution and regulatory bodies. In this paper, a conceptual design of the JRTR control room in the effort of satisfying current regulatory requirements and guidelines are presented. And some information display design is also presented

  9. The Multi一physics Research on I ron一Core Vibration Noise of Power Reactor

    Directory of Open Access Journals (Sweden)

    LI U Ja

    2017-02-01

    Full Text Available On the basis of theoretical research releted to the magnetostriction and maxwell’.s equations,the fi- nite element coupling in the transient electromagnetic field coupling,structure and sound field coupling has been developed In thts paper by using the flnlte element sOftWare CO}IS01., Whleh establish a serles three-phase COT’e re- actor model, to analyzing the power frequency magnetic field distribution,core magnetostrictive displacement,max- well force displacement and sound pressure level of the three-phase series core reactor under the power frequency working state. According to transient magnetic field distribution in the simulation of the reactor,the magnetic flux density distribution inside the reactor and the vibration displacement distribution are calculated,the acoustic field distribution is measured alao. It is shown that physical field simulation results and measured data are basically in consisent by experiment,it is proved multi-physics coupling is an effective method for forecast of noise.

  10. Intense positron source at the Munich research reactor FRM-II

    CERN Document Server

    Hugenschmidt, C; Schreckenbach, K; Strasser, B; Koegel, G; Sperr, P; Triftshaeuser, W

    2002-01-01

    The principle and the design of the in-pile positron source at the new Munich research reactor FRM-II are presented. Absorption of high-energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd generates positrons by pair production. For this purpose, a cadmium cap is placed inside the tip of the inclined beam tube SR11 in the neutron field of the reactor, where an undisturbed thermal neutron flux up to 2 x 10 sup 1 sup 4 n cm sup - sup 2 s sup - sup 1 is expected. At this position the flux ratio of thermal to fast neutrons will be better than 10 sup 4. Monte Carlo calculations showed that a mean capture rate in cadmium between 4.5 and 6.0 x 10 sup 1 sup 3 n cm sup - sup 2 s sup - sup 1 can be expected. Inside the cadmium cap a structure of platinum foils is placed for converting gamma-radiation into positron-electron pairs. The heated foils also act as positron moderators to generate monoenergetic positrons. After acceleration to 5 keV a positron beam is formed by electric lenses and guid...

  11. An overview of IPPE research on liquid metal fast reactor thermohydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A. P.; Efanov, A. D.; Zhukov, A. V.; Bogoslovskaia, G. P. [SSC RF-IPPE, Kaluga (Russian Federation)

    2003-07-01

    The paper presents brief information on the most significant researches in the fields of liquid metal hydrodynamics and heat transfer performed in the State Scientific Center of Russian Federation 'Institute for Physics and Power Engineering' named after A.I.Leypunski applied to sodium-cooled fast reactors. Experimental methods for studying liquid metal thermohydraulics and applied measurement techniques are overviewed briefly in the paper. Some results of fundamental thermohydraulic investigations, such as quasi-universal character of velocity and temperature profile in liquid metals, if considered normally to the channel wall etc. are presented. Specific features of heat transfer in liquid metal cooled fuel subassembly are mentioned, among them there are: high level of coolant temperature; significant influence of an interchannel exchange on velocity and temperature distribution; an availability of contact thermal resistance; large azimuthal non-uniformity of velocity and temperature; 'conjugate' problem of heat transfer in combined geometry of fuel pin; an absence of stabilization of heat transfer in non-standard channels; an influence of non-uniform heat generation. Special attention is given to the temperature fields in fuel subassembly subjected to deformation because of radioactive swelling and creeping, as well as in case of blockage of a part of subassembly cross section. Some results of thermohydraulic investigation are demonstrated for intermediate heat exchangers, pressurized head collectors. Also the developed methods and codes of thermohydraulic calculations applied to fast reactor core are considered: subchannel approach, porous body model.

  12. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Science.gov (United States)

    2012-11-15

    ... COMMISSION The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R... Operating License No. R-84 (Application), which currently authorizes the Armed Forces Radiobiology Research... the renewal of Facility Operating License No. R-84, which currently authorizes the licensee to operate...

  13. Nuclear non-proliferation: the U.S. obligation to accept spent fuel from foreign research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shapar, Howard K.; Egan, Joseph R. [Shaw, Pittman, Potts and Trowbridge (United States)

    1995-12-31

    The U.S. Department of Energy (DOE) had a 35-year program for the sale and receipt (for reprocessing) of high-enriched research reactor fuel for foreign research reactors, executed pursuant to bilateral agreements with nuclear trading partners. In 1988, DOE abruptly let this program lapse, citing environmental obstacles. DOE promised to renew the program upon completion of an environmental review which was to take approximately six months. After three and a half years, an environmental assessment was finally produced.Over a year and half elapsed since publication of the assessment before DOE finally took action to renew the program. The paper sets forth the nuclear non-proliferation and related foreign policy considerations which support renewal of the program. It also summarized the contractual and other commitments made to foreign research reactors and foreign governments and aspects of U.S. environmental law as they apply to continuation of the program. (author).

  14. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  15. Recent field experiences with Bacillus thuringiensis in Canada and research needs

    Science.gov (United States)

    Oswald N. Morris

    1985-01-01

    The CANUSA working group on the use of B.t. against the spruce budworm has prepared a document entitled "Guidelines for the operational use of Bacillus thuringiensis (B.t.) against the spruce budworm" following six years of extensive cooperative field trials in Canada and the U.S.A. (Morris et al 1984). The document summarized below (Table...

  16. Assessment of the Implementation of a Neutron Measurement System During the Commissioning of the Jordan Research and Training Reactor

    Directory of Open Access Journals (Sweden)

    Sanghoon Bae

    2017-04-01

    Full Text Available The Jordan Research and Training Reactor (JRTR is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.

  17. Replacement Nuclear Research Reactor. Supplement to Draft Environmental Impact Statement. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    The Draft Environmental Impact Statement for a replacement research reactor at Lucas Heights, was available for public examination and comment for some three months during 1998. A Supplement to the Draft Environmental Impact Statement (Draft EIS) has been completed and was lodged with Environment Australia on 18 January 1999. The Supplement is an important step in the overall environmental assessment process. It reviews submissions received and provides the proponent`s response to issues raised in the public review period. General issues extracted from submissions and addressed in the Supplement include concern over liability issues, Chernobyl type accidents, the ozone layer and health issues. Further studies, relating to issues raised in the public submission process, were undertaken for the Supplementary EIS. These studies confirm, in ANSTO`s view, the findings of the Draft EIS and hence the findings of the Final EIS are unchanged from the Draft EIS

  18. Fuel management optimization for the WWR-M research reactor in Kiev

    Energy Technology Data Exchange (ETDEWEB)

    Mahlers, Y.P. [Institute for Nuclear Research Prospect Nauki 47, Kiev 252022 (Ukraine)

    2002-07-01

    Core loading patterns, number and types of fuel assemblies in the core as well as discharged fuel burnup are determined for the WWR-M research reactor in Kiev by the optimization procedure providing high neutron flux under the safety and fuel constraints. For neutronics calculation, the iterational hybrid method combining diffusion model with higher approximations of neutron transport equation is applied. The results of calculation are shown to be consistent with the results of measurement. To determine the best placement of fuel assemblies in the core, successive mixed-integer linear programming and backward diffusion calculation is used. An example of maximization of thermal neutron flux in large channels in the core is demonstrated. (author)

  19. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Science.gov (United States)

    Peng, Mei; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-01

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm-1 to 5.0 nm-1. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service.

  20. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  1. Elements of record management system for the RA research reactor decommissioning

    Directory of Open Access Journals (Sweden)

    Stejić Milijana

    2004-01-01

    Full Text Available According to latest recommendations, the record management system of a nuclear facility should operate as a part of the integrated management information system, and is implemented at the very beginning of the facility’s life cycle. The record management becomes particularly important at the end of the operation of a facility and then the operational record management system gradually transforms to a decommissioning one. However there is a significant number of nuclear facilities in the world which have reached the decommissioning stage with out having neither the initial decommissioning plan nor the established record management system. The objective of this paper is to introduce constituted elements of the record management system for the decommissioning of the RA research reactor in the VINČA Institute of Nuclear Sciences, and to discuss future planned actions related to this matter.

  2. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    Science.gov (United States)

    Erradi, L.; Essadki, H.

    2001-06-01

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  3. Generation IV Reactor Safety and Materials Research by the Institute for Energy and Transport at the European Commission's Joint Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tuček, K., E-mail: kamil.tucek@ec.europa.eu; Tsige-Tamirat, H.; Ammirabile, L.; Lázaro, A.; Grah, A.; Carlsson, J.; Döderlein, Ch.; Oettingen, M.; Fütterer, M.A.; D’Agata, E.; Laurie, M.; Turba, K.; Ohms, C.; Nilsson, K.-F.; Hähner, P.

    2013-12-15

    To support the drafting, development, implementation and monitoring of European energy and transport policy, the Institute for Energy and Transport of the European Commissions’ Joint Research Centre conducts pre-competitive research in the areas of experimental qualification of advanced fuels and materials as well as simulation and modelling of reactor safety and material performance. The work covers assessments, design optimisation and improvements to the safety and performance of new, innovative reactor systems, materials and instrumentation, in order to meet the EU's long-term energy needs while respecting enhanced safety, sustainability, and economic aspects. The research is linked, and contributes, to related EURATOM Framework Programme projects, Generation IV International Forum (GIF), International Atomic Energy Agency as well as OECD's Nuclear Energy Agency (OECD NEA) activities. The current paper gives an overview and examples of past, current, and upcoming activities in the areas of reactor safety assessments, advanced fuel irradiation and materials research.

  4. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  5. Post-market drug evaluation research training capacity in Canada: an environmental scan of Canadian educational institutions.

    Science.gov (United States)

    Wiens, Matthew O; Soon, Judith A; MacLeod, Stuart M; Sharma, Sunaina; Patel, Anik

    2014-01-01

    Ongoing efforts by Health Canada intended to modernize the legislation and regulation of pharmaceuticals will help improve the safety and effectiveness of drug products. It will be imperative to ensure that comprehensive and specialized training sites are available to train researchers to support the regulation of therapeutic products. The objective of this educational institution inventory was to conduct an environmental scan of educational institutions in Canada able to train students in areas of post-market drug evaluation research. A systematic web-based environmental scan of Canadian institutions was conducted. The website of each university was examined for potential academic programs. Six core programmatic areas were determined a priori as necessary to train competent post-market drug evaluation researchers. These included biostatistics, epidemiology, pharmacoepidemiology, health economics or pharmacoeconomics, pharmacogenetics or pharmacogenomics and patient safety/pharmacovigilance. Twenty-three academic institutions were identified that had the potential to train students in post-market drug evaluation research. Overall, 23 institutions taught courses in epidemiology, 22 in biostatistics, 17 in health economics/pharmacoeconomics, 5 in pharmacoepidemiology, 5 in pharmacogenetics/pharmacogenomics, and 3 in patient safety/pharmacovigilance. Of the 23 institutions, only the University of Ottawa offered six core courses. Two institutions offered five, seven offered four and the remaining 14 offered three or fewer. It is clear that some institutions may offer programs not entirely reflected in the nomenclature used for this review. As Heath Canada moves towards a more progressive licensing framework, augmented training to increase research capacity and expertise in drug safety and effectiveness is timely and necessary.

  6. Public Spending on Health Service and Policy Research in Canada, the United Kingdom, and the United States: A Modest Proposal.

    Science.gov (United States)

    Thakkar, Vidhi; Sullivan, Terrence

    2017-04-10

    Health services and policy research (HSPR) represent a multidisciplinary field which integrates knowledge from health economics, health policy, health technology assessment, epidemiology, political science among other fields, to evaluate decisions in health service delivery. Health service decisions are informed by evidence at the clinical, organizational, and policy level, levels with distinct, managerial drivers. HSPR has an evolving discourse spanning knowledge translation, linkage and exchange between research and decision-maker partners and more recently, implementation science and learning health systems. Local context is important for HSPR and is important in advancing health reform practice. The amounts and configuration of national investment in this field remain important considerations which reflect priority investment areas. The priorities set within this field or research may have greater or lesser effects and promise with respect to modernizing health services in pursuit of better value and better population outcomes. Within Canada an asset map for HSPR was published by the national HSPR research institute. Having estimated publicly-funded research spending in Canada, we sought identify best available comparable estimates from the United States and the United Kingdom. Investments from industry and charitable organizations were not included in these numbers. This commentary explores spending by the United States, Canada, and the United Kingdom on HSPR as a fraction of total public spending on health and the importance of these respective investments in advancing health service performance. Proposals are offered on the merits of common nomenclature and accounting for areas of investigation in pursuit of some comparable way of assessing priority HSPR investments and suggestions for earmarking such investments to total investment in health services spending. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open

  7. Public Spending on Health Service and Policy Research in Canada, the United Kingdom, and the United States: A Modest Proposal

    Directory of Open Access Journals (Sweden)

    Vidhi Thakkar

    2017-11-01

    Full Text Available Health services and policy research (HSPR represent a multidisciplinary field which integrates knowledge from health economics, health policy, health technology assessment, epidemiology, political science among other fields, to evaluate decisions in health service delivery. Health service decisions are informed by evidence at the clinical, organizational, and policy level, levels with distinct, managerial drivers. HSPR has an evolving discourse spanning knowledge translation, linkage and exchange between research and decision-maker partners and more recently, implementation science and learning health systems. Local context is important for HSPR and is important in advancing health reform practice. The amounts and configuration of national investment in this field remain important considerations which reflect priority investment areas. The priorities set within this field or research may have greater or lesser effects and promise with respect to modernizing health services in pursuit of better value and better population outcomes. Within Canada an asset map for HSPR was published by the national HSPR research institute. Having estimated publiclyfunded research spending in Canada, we sought identify best available comparable estimates from the United States and the United Kingdom. Investments from industry and charitable organizations were not included in these numbers. This commentary explores spending by the United States, Canada, and the United Kingdom on HSPR as a fraction of total public spending on health and the importance of these respective investments in advancing health service performance. Proposals are offered on the merits of common nomenclature and accounting for areas of investigation in pursuit of some comparable way of assessing priority HSPR investments and suggestions for earmarking such investments to total investment in health services spending.

  8. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, G. van [Nuclear Fission and Radiation Protection European Commission, Building MO75-5-34, B-1049 Brussels (Belgium)]. E-mail: georges.van-goethem@cec.eu.int

    2004-07-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  9. RAZORBACK - A Research Reactor Transient Analysis Code Version 1.0 - Volume 3: Verification and Validation Report.

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Darren G.

    2017-04-01

    This report describes the work and results of the verification and validation (V&V) of the version 1.0 release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, the equation of motion for fuel element thermal expansion, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This V&V effort was intended to confirm that the code shows good agreement between simulation and actual ACRR operations.

  10. Design and development of fast pneumatic transfer system (PTS) for instrumental neutron activation analysis at Jordan research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yongsam; Kim, Sunha; Moon, Jonghwa; Choi, Jinbok; Lee, Jongmin; Ryu, Jungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    A pneumatic transfer system (PTS) is one of the important equipment used for an neutron irradiation of a target material for an instrumental neutron activation analysis (INAA) in a research reactor. In particular, a rapid pneumatic transportation of irradiation capsule is essential for an accurate measurement of a short half-life nuclide. Three types of PTS for NAA facility at the Jordan Research and Training Reactor (JRTR) were newly developed for a functional improvement involving a manual and an automatic system which is equipped with programmable logic controller, software, and 13 devices to facilitate optimal operation of the system. In this paper, the designs and construction of these PTS, the operation and control of the system are described. In addition, a functional and operational test of the system were carried out as one of the basic requirement and characteristic parameters, and the results were reported to provide a user information as well as for the management and safety of the reactor.

  11. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  12. Training courses on neutron detection systems on the ISIS research reactor: on-site and through internet training

    Energy Technology Data Exchange (ETDEWEB)

    Lescop, B.; Badeau, G.; Ivanovic, S.; Foulon, F. [National Institute for Nuclear science and Technology French Atomic Energy and Alternative Energies Commission (CEA), Saclay Research Center, 91191 Gif-sur-Yvette (France)

    2015-07-01

    Today, ISIS research reactor is an essential tool for Education and Training programs organized by the National Institute for Nuclear Science and Technology (INSTN) from CEA. In the field of nuclear instrumentation, the INSTN offers both, theoretical courses and training courses on the use of neutron detection systems taking advantage of the ISIS research reactor for the supply of a wide range of neutron fluxes. This paper describes the content of the training carried out on the use of neutron detectors and detection systems, on-site or remote. The ISIS reactor is a 700 kW open core pool type reactor. The facility is very flexible since neutron detectors can be inserted into the core or its vicinity, and be used at different levels of power according to the needs of the course. Neutron fluxes, typically ranging from 1 to 10{sup 12} n/cm{sup 2}.s, can be obtained for the characterisation of the neutron detectors and detection systems. For the monitoring of the neutron density at low level of power, the Instrumentation and Control (I and C) system of the reactor is equipped with two detection systems, named BN1 and BN2. Each way contains a fission chamber, type CFUL01, connected to an electronic system type SIREX.The system works in pulse mode and exhibits two outputs: the counting rate and the doubling time. For the high level of power, the I and C is equipped with two detection systems HN1 and HN2.Each way contain a boron ionization chamber (type CC52) connected to an electronics system type SIREX. The system works in current mode and has two outputs: the current and the doubling time. For each mode, the trainees can observe and measure the signal at the different stages of the electronic system, with an oscilloscope. They can understand the role of each component of the detection system: detector, cable and each electronic block. The limitation of the detection modes and their operating range can be established from the measured signal. The trainees can also

  13. Nuclear Research Reactor IEA-R1 - A Study of the Preparing for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Valdir Maciel; Filho, Tufic Madi; Ricci, Walter; Martins, Mauro Onofre; Pereira, Maria da Conceicao [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN - Sao Paulo, Av. Professor Lineu Prestes n 2242, USP, Sao Paulo (Brazil)

    2015-07-01

    The Institute of Energy and Nuclear Research (IPEN), Sao Paulo, according to the assignments given by the National Commission of Nuclear Energy (CNEN), enabled the development of this study, especially operational reports about refurbishing carried out on 2013, involving the production of radioisotopes and research in the areas of Radiochemistry and Nuclear Physics. These reports are made in accordance with established standard procedures to meet the requirements of CNEN (National Nuclear Energy Commission, the regulator the nuclear area activities in Brazil) and IAEA (International Atomic Energy Agency). This study presents an assessment of the procedures and methods of treatments for decontamination of the refrigeration primary circuit and changes parts, equipment and tubes of the of the IEA-R1 nuclear research reactor, pool type, power between 3,5 and 4,5 MW. In order to have a sequence in the work, the well-known contaminant radioisotopes were evaluated firstly, using Geiger- Muller equipment. In the second phase, the decontamination was done manually together with the ultrasound cleaning and washing equipment. From the several water solutions of citric acid assessment, the concentration with better confidence was obtained; in order to achieve the best results for decontamination. This study intends to define the best process for decontamination with low taxes of waste and without expensive costs. (authors)

  14. Organizational value in enhancing individual research use capacity: a joint evaluation project led by EXTRA and SEARCH Canada.

    Science.gov (United States)

    Fletcher, Laura; Thornhill, Jennifer

    2009-01-01

    Evidence-informed decision-making supports high-quality, efficient healthcare. Programs such as SEARCH Classic (Swift Efficient Application of Research in Community Health) and EXTRA (Executive Training for Research Application) give health system decision-makers the skills and experience required to apply the best evidence to their work. But effectively leading change in how evidence comes to bear on the overall management and delivery of care requires strategies aimed at whole organizations and systems. The Canadian Health Services Research Foundation (CHSRF, EXTRA's managing organization) and SEARCH Canada (the SEARCH Classic program's managing organization) recently launched a jointly commissioned research study to assess organizational mechanisms and the impacts of these programs. Moving away from a focus on individual trainees and their immediate organizational connections, this evaluation builds on the evidence to date that leads to the hypothesis that a critical mass of highly educated, evidence-savvy decision-makers (senior executives in the case of EXTRA; middle- and front-line managers in the case of SEARCH Canada) enhance organizational capacity to use knowledge and ultimately lead to a more systematic use of evidence at the systems level (Champagne et al. 2008).

  15. Interim status report on lead-cooled fast reactor (LFR) research and development.

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.; Smith, C. F.; de Caro, M.; Halsey, W. G.; Li, N.; Hosemann, P.; Zhang, J.; Bolind, A.; LLNL; LANL; Univ. of Illinois

    2008-03-31

    This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigation of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup

  16. Annual report on reactor safety research projects. Reporting period 2014. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Within its competence for energy research the Federal Ministry for Economic Affairs and Energy (BMWi) sponsors research projects on the safety of nuclear power plants currently in operation. The objective of these projects is to provide fundamental knowledge, procedures and methods to contribute to realistic safety assessments of nuclear installations, to the further development of safety technology and to make use of the potential of innovative safety-related approaches. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, by order of the BMWi, continuously issues information on the status of such research projects by publishing semi-annual and annual progress reports within the series of GRS-F-Fortschrittsberichte (GRS-F-Progress Reports). Each progress report represents a compilation of individual reports about the objectives, work performed, results achieved, next steps of the work etc. The individual reports are prepared in a standard form by the research organisations themselves as documentation of their progress in work. The progress reports are published by the Project Management Agency/Authority Support Division of GRS. The reports as of the year 2000 are available in the lnternet-based information system on results and data of reactor safety research (http://www.grs-fbw.de). The compilation of the reports is classified according to the classification system ''Joint Safety Research Index (JSRI)''. The reports are arranged in sequence of their project numbers. lt has to be pointed out that the authors of the reports are responsible for the contents of this compilation. The BMWi does not take any responsibility for the correctness, exactness and completeness of the information nor for the observance of private claims of third parties.

  17. Atomic Energy of Canada Limited annual report 2000-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This is the annual report of the Atomic Energy of Canada Limited for the year ending March 31, 2001 and summarizes the activities of AECL during the period 2000-2001. The activities covered in this report include the CANDU reactor business, with progress being reported in the construction of two CANDU 6 reactors for the Qinshan CANDU project in China, the anticipated completion of Cernavoda unit 2, the completion of spent fuel storage at Cernavoda unit 1 in Romania, as well as the service business with New Brunswick Power, Ontario Power Generation, Bruce Power and Hydro Quebec in the refurbishment of operating, CANDU reactors. In the R and D programs discussions continue on funding for the Canadian Neutron Facility for Materials Research (CNF) and progress on the Maple medical isotope reactor.

  18. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, G. van [European Commission, DG Research, Directorate J: Energy (Euratom), 1049 Brussels (Belgium)]. E-mail: georges.van-goethem@ec.europa.eu; Hugon, M. [European Commission, DG Research, Directorate J: Energy (Euratom), 1049 Brussels (Belgium); Bhatnagar, V. [European Commission, DG Research, Directorate J: Energy (Euratom), 1049 Brussels (Belgium); Manolatos, P. [European Commission, DG Research, Directorate J: Energy (Euratom), 1049 Brussels (Belgium); Deffrennes, M. [European Commission, DG Research, Directorate J: Energy (Euratom), 1049 Brussels (Belgium)

    2007-07-15

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  19. Development of Thermal Stress Test Profile for Class 1E Equipment in Main Control Room of a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Ki; Park, Je Yun; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jang, Hee Jun [Daewoo Engineering and Construction Co, Seoul (Korea, Republic of)

    2014-10-15

    The primary objective of an equipment qualification (EQ) is to demonstrate with reasonable assurance that Class 1E equipment for which a qualified life or condition has been established can perform its safety function without experiencing common-cause failures before, during, and after applicable design basis events (DBEs). For the environmental test of Class 1E equipment installed in the main control room (MCR) of a research reactor, the thermal stress test profile should be developed based on normal and abnormal environmental conditions of the MCR. A thermal stress test profile for Class 1E equipment located in the MCR of a research reactor is developed based on an engineering justification. A set of thermal stress test conditions including temperature, test duration, and number of test cycles is defined considering the specific characteristics of the targeted research reactor. The method used in this study can be applied to develop a thermal stress test profile used for the EQ test to qualify Class 1E equipment installed in the MCR of various research reactors.

  20. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... COMMISSION Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108... renewal of Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow... Operating License No. R-108 for the DTRR. The application contains SUNSI. Based on its initial review of the...

  1. Perspective on fusion research in China (2) fusion activities in China with special intonation on hybrid reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Lijian, Qiu

    2001-09-01

    Chinese fusion research was started from 1958, but with more clear problem definition it has been set up as the national program for development of the hybrid reactor in 1986. In this paper, it will be described how the organized program is going on.

  2. Development and preliminary validation of the spondyloarthritis research consortium of Canada magnetic resonance imaging sacroiliac joint structural score

    DEFF Research Database (Denmark)

    Maksymowych, Walter P; Wichuk, Stephanie; Chiowchanwisawakit, Praveena

    2015-01-01

    on magnetic resonance imaging (MRI), the Spondyloarthritis Research Consortium of Canada (SPARCC) SIJ Structural Score (SSS). METHODS: The SSS method for assessment of structural lesions is based on T1-weighted spin echo MRI, validated lesion definitions, slice selection according to well-defined anatomical...... to excellent for ankylosis (ICC 0.79-0.98), consistently good for fat metaplasia (ICC 0.71-0.78), moderate to good for erosion (ICC 0.58-0.62), and fair to good for backfill (ICC 0.35-0.66). Reliability for change scores was moderate to good for all structural lesions despite the relatively small changes...

  3. Abstracts of the OMRN National Conference : Canada's oceans : research, management, and the human dimension

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The research taking place across Canada on interactions between people and oceans was highlighted at this conference which focused on ways to improve the health of ocean environments through better managed human activities at sea and along coastal regions. The conference included policy roundtables, poster sessions and plenary discussions for sharing knowledge and lessons learned. Some of the topics of discussion included offshore oil and gas, fishery management, marine protected areas, the health and food security of the ocean environment, issues in sustainable ocean use, community management, ecosystem-based management, and ocean regulation and rights. Two of the 78 presentations have been indexed separately for inclusion in the database.

  4. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  5. Conceptual Thermal Hydraulic Design of a 20MW Multipurpose Research Reactor (KAERI/VAEC joint study on a new research reactor for Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Hee Taek; Seo, Chul Gyo; Park, Jong Hark; Park, Cheol [Kaeri, Daejeon (Korea, Republic of); Vinh, Le Vinh; Nghiem, Huynh Ton; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    The conceptual thermal hydraulics design analyses for the 20 MW reference AHR core have been jointly performed by the KAERI and DNRI(VAEC). The preliminary core thermal hydraulic characteristics and safety margins for the AHR core were studied for various core flow rates, fuel assembly powers and core inlet temperatures. Statistical method was applied to the thermal hydraulic design of the reactor core. The MATRA{sub h} subchannel code has been applied to evaluate the thermal hydraulic performances of the AHR and the resulting thermal margins of the core under the forced convection cooling mode during a nominal power operation and the natural circulation mode during a reactor shutdown condition. In addition, typical accident analyses were carried out for a loss of flow accident by a primary pump seizure and a reactivity induced accident by a CAR rod withdrawal during a normal full power operation. The normal full power operation of the AHR was ensured with a sufficient safety margin for the onset of nucleate boiling phenomena. The AHR also had a sufficient natural circulation cooling capability to cool the core without the onset of nucleate boiling in the channel after a normal reactor shutdown and the anticipated transients. It was confirmed by the typical accident analyses that the AHR core was sufficiently protected from the loss of flow by the primary cooling pump seizure and the overpower transients by the CAR withdrawal from the MCHFR and fuel temperature points of view.

  6. Immunization information systems in Canada: Attributes, functionality, strengths and challenges. A Canadian Immunization Research Network study.

    Science.gov (United States)

    Wilson, Sarah E; Quach, Susan; MacDonald, Shannon E; Naus, Monika; Deeks, Shelley L; Crowcroft, Natasha S; Mahmud, Salaheddin M; Tran, Dat; Kwong, Jeffrey C; Tu, Karen; Johnson, Caitlin; Desai, Shalini

    2017-03-01

    Canada does not have a national immunization registry. Diverse systems to record vaccine uptake exist, but these have not been systematically described. Our objective was to describe the immunization information systems (IISs) and non-IIS processes used to record childhood and adolescent vaccinations, and to outline the strengths and limitations of the systems and processes. We collected information from key informants regarding their provincial, territorial or federal organization's surveillance systems for assessing immunization coverage. Information collection consisted of a self-administered questionnaire and a follow-up interview. We evaluated systems against attributes derived from the literature using content analysis. Twenty-six individuals across 16 public health organizations participated over the period of April to August 2015. Twelve of Canada's 13 provinces and territories (P/Ts) and two organizations involved in health service delivery for on-reserve First Nations people participated. Across systems, there were differences in data collection processes, reporting capabilities and advanced functionality. Commonly cited challenges included timeliness and data completeness of records, particularly for physician-administered immunizations. Privacy considerations and the need for data standards were stated as challenges to the goal of information sharing across P/T systems. Many P/Ts have recently implemented new systems and, in some cases, legislation to improve timeliness and/or completeness. Considerable variability exists among IISs and non-IIS processes used to assess immunization coverage in Canada. Although some P/Ts have already pursued legislative or policy initiatives to address the completeness and timeliness of information, many additional opportunities exist in the information technology realm.

  7. International Atomic Energy Agency (IAEA) Coordinated Research Projects on Structural Integrity of Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Server, W. L. [ATI Consulting, Pinehurst, NC; Nanstad, Randy K [ORNL

    2009-01-01

    The International Atomic Energy Agency (IAEA) has conducted a series of Coordinated Research Projects (CRPs) that have focused on irradiated reactor pressure vessel (RPV) steel fracture toughness properties and approaches for assuring structural integrity of RPVs throughout operating life. A series of nine CRPs have been sponsored by the IAEA, starting in the early 1970s, focused on neutron radiation effects on RPV steels. The purpose of the CRPs was to develop comparisons and correlations to test the uniformity of irradiated results through coordinated international research studies and data sharing. Consideration of dose rate effects, effects of alloying (nickel, manganese, silicon, etc.) and residual elements (eg., copper and phosphorus), and drop in upper shelf toughness are also important for assessing neutron embrittlement effects. The ultimate use of embrittlement understanding is assuring structural integrity of the RPV under current and future operation and accident conditions. Material fracture toughness is the key ingredient needed for this assessment, and many of the CRPs have focused on measurement and application of irradiated fracture toughness. This paper presents an overview of the progress made since the inception of the CRPs in the early 1970s. The chronology and importance of each CRP have been reviewed and put into context for continued and long-term safe operation of RPVs.

  8. Development of Neutron Imaging System for Neutron Tomography at Thai Research Reactor TRR-1/M1

    Science.gov (United States)

    Wonglee, S.; Khaweerat, S.; Channuie, J.; Picha, R.; Liamsuwan, T.; Ratanatongchai, W.

    2017-09-01

    The neutron imaging is a powerful non-destructive technique to investigate the internal structure and provides the information which is different from the conventional X-ray/Gamma radiography. By reconstruction of the obtained 2-dimentional (2D) images from the taken different angle around the specimen, the tomographic image can be obtained and it can provide the information in more detail. The neutron imaging system at Thai Research Reactor TRR-1/M1 of Thailand Institute of Nuclear Technology (Public Organization) has been developed to conduct the neutron tomography since 2014. The primary goal of this work is to serve the investigation of archeological samples, however, this technique can also be applied to various fields, such as investigation of industrial specimen and others. This research paper presents the performance study of a compact neutron camera manufactured by Neutron Optics such as speed and sensitivity. Furthermore, the 3-dimentional (3D) neutron image was successfully reconstructed at the developed neutron imaging system of TRR-1/M1.

  9. Regulatory Approach to Safety of Long Time Operating Research Reactors in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, Alexander [Industrial and Nuclear Supervision Service, Moscow (Russian Federation)

    2013-07-01

    In the Russian Federation more than 60% of operating Nuclear Research Facilities (NRFs) are of age over 30 years old or their usage exceeds originally conceived continuous operation. In this regard, important areas of regulatory body activity are: 1) a systematic assessment of the actual state of structures, systems and components (SSCs) important to safety, 2) control of implementation of organizational and technical measures to mitigate ageing impact on the basis of programmes to manage reliability (service life) of SSCs, and 3) issues of facility modification/reconstruction in line with up-to-day safety requirements. The practice of licensing NRFs with long operating times shows that the national regulations are generally in compliance with IAEA recommendations for ageing management of research reactors. In operating organizations, the ageing management is being effectively provided as a part of the integrated management system for NRFs, including the monitoring of the reliability of SSCs, a methodology to detect their ageing, reporting and investigation of events, analysis of their root causes, and measures to prevent and mitigate ageing effects to safety. The report outlines a good practice of safety regulation of NRFs with long operating times and based on lessons learned from experience, including challenges for future improvement of ageing management.

  10. Study on Pressure drop for Ion Exchanger in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki-jung; Choi, Jungwoon; Kim, Seong-Hoon; Chi, Dae-Young; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Jordan Research and Training Reactor (JRTR) is currently being constructed and commissioned in the JUST (Jordan University of Science and Technology) site. The main fluid systems relevant to the JRTR have been proceeding at the Korea Atomic Energy Research Institute. In order to achieve the purpose of the pool water purification, two filters and two ion exchangers which can be to remove suspended solids and ionic impurities in the in-taken pool water have been designed. For the reliable design of this system pump, it is important to predict the pressure drop of the system equipment including the ion exchanger. In this study, the pressure drop in the ion exchanger of PWMS is predicted by using the well-known model and the results provided from manufacturing company. And, the calculated results are compared to the actual data which is measured from the ion exchanger during the PWMS commissioning. The predicted pressure drop is dominated by the resin bed as a portion of about 85% for total pressure drop. The predicted pressure drop is compared to the measured pressure drop of the ion exchanger which is installed in the JRTR, the data above 5 kg/s agree within 5% in the entire range.

  11. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    Science.gov (United States)

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Neutronic design study of accelerator driven system (ADS) for Jordan subcritical reactor as a neutron source for nuclear research.

    Science.gov (United States)

    Xoubi, Ned

    2018-01-01

    In this paper, a preliminary neutronic design study of an accelerator driven subcritical system for Jordan Subcritical Assembly (JSA) is presented. The conceptual design of coupling the JSA core with proton accelerator and spallation target is investigated, and its feasibility as a neutron source for nuclear research, and possibly for target irradiation and isotope production evaluated. 3D MCNPX model of the JSA reactor, the accelerator beam, and the Pb target was developed, based on actual reactor parameters. MCNPX calculations were carried out to estimate the absolute radial and axial neutron flux in the reactor, and to calculate the multiplication factor K eff and heat generated in the reactor. Numerical results showed an enormous increase in the neutron flux, by seven orders of magnitude, compared to the current JSA core design using Pu-Be source. In this research the results obtained are discussed and compared with those of the JSA, and do confirm the feasibility of utilizing the JSA as a viable nuclear research facility with adequate neutron flux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An Integrated Management System (IMS) for JM-1 SLOWPOKE-2 research reactor in Jamaica: experiences in documentation

    Energy Technology Data Exchange (ETDEWEB)

    Warner, T., E-mail: traceyann.warner02@uwimona.edu.jm [Univ. of West Indies, Mona (Jamaica)

    2014-07-01

    Since the first criticality in March 1984, the Jamaica SLOWPOKE-2 research reactor at the University of the West Indies, Mona located in the department of the International Centre for Environmental and Nuclear Sciences (ICENS) has operated for approximately 52% of the lifetime of the existing core configuration. The 20kW pool type research reactor has been primarily used for neutron activation analysis in environmental, agricultural, geochemical, health-related studies and mineral exploration in Jamaica. The involvement of the JM-1 reactor for research and teaching activities has segued into commercial applications which, coupled with the current core conversion programme from HEU to LEU, has demanded the implementation of management systems to satisfy regulatory requirements and assure compliance with internationally defined quality standards. At ICENS, documentation related to the Quality Management System aspect of an Integrated Management System (IMS) is well underway. The quality system will incorporate operational and nuclear safety, training, maintenance, design, utilization, occupational health and safety, quality service, and environmental management for its Nuclear Analytical Laboratory, NAL. The IMS is being designed to meet the requirements of the IAEA GS-R-3 with additional controls from international standards including: ISO/IEC 17025:2005, ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007. This paper reports on the experiences of the documentation process in a low power reactor facility characterized by limited human resource, where innovative mechanisms of system automation and modeling are included to increase productivity and efficiency. (author)

  14. New reactor concepts. An analysis of the actual research status; Neue Reaktorkonzepte. Eine Analyse des aktuellen Forschungsstands

    Energy Technology Data Exchange (ETDEWEB)

    Pistner, Christoph; Englert, Matthias

    2017-04-15

    The report on new reactor concepts covers the following issues: characterization and survey of new reactor concepts; evaluation criteria: safety, resources for fuel supply, waste problems, economy and proliferation; comprehensive relevant aspects: thorium as alternative resource, partitioning and transmutation; actual developments and preliminary experiences for fast breeding reactor (FBR), high-temperature reactor (HTR), molten salt reactor (MSR), small modular reactor (SMR).

  15. Politics and partnerships: challenges and rewards of partnerships in workplace health research in the healthcare sector of British Columbia, Canada.

    Science.gov (United States)

    Yassi, Annalee; Tomlin, Katrina; Sidebottom, Claire; Rideout, Karen; De Boer, Henrietre

    2004-01-01

    In British Columbia (BC), Canada, a partnership of researchers, healthcare employers, and healthcare unions reduced high injury rates through examining determinants of healthy workplaces and designing, implementing, and evaluating interventions. Over 51 million dollars (Canadian) was saved from the BC healthcare budget over two years, largely attributable to the collaborative effort. Challenges and rewards of the process were determined from interviews and workshops with researchers and community stakeholders, and by obtaining direct input to this report. Challenges included maintaining communication and trust between partners, preserving partnerships during restructuring and labor disputes, and maintaining involvement and support of front-line workers and senior management. As all partners recognized the importance of the research agenda, the stakeholders remained committed to working through the challenges, and have consequently achieved considerable success.

  16. Design and R&D Progress of China Lead-Based Reactor for ADS Research Facility

    Directory of Open Access Journals (Sweden)

    Yican Wu

    2016-03-01

    Full Text Available In 2011, the Chinese Academy of Sciences launched an engineering project to develop an accelerator-driven subcritical system (ADS for nuclear waste transmutation. The China Lead-based Reactor (CLEAR, proposed by the Institute of Nuclear Energy Safety Technology, was selected as the reference reactor for ADS development, as well as for the technology development of the Generation IV lead-cooled fast reactor. The conceptual design of CLEAR-I with 10 MW thermal power has been completed. KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant, key components, structural materials, fuel assembly, operation, and control. In order to validate and test the key components and integrated operating technology of the lead-based reactor, the lead alloy-cooled non-nuclear reactor CLEAR-S, the lead-based zero-power nuclear reactor CLEAR-0, and the lead-based virtual reactor CLEAR-V are under realization.

  17. Decommissioning of the ASTRA research reactor: Dismantling the auxiliary systems and clearance and reuse of the buildings

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2008-01-01

    Full Text Available The paper presents work performed in the last phase of the decommissioning of the ASTRA research reactor at the Austrian Research Centers Seibersdorf. Dismantling the pump room installations and the ventilation system, as well as the clearance of the buildings is described. Some conclusions and summary data regarding the timetable, material management, and the cost of the entire project are also presented.

  18. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, January--March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Zane, J. O.; Farman, R. F.; Hanson, D. J.; Peterson, A. C.; Ybarrondo, L. J.; Berta, V. T.; Naff, S. A.; Crocker, J. G.; Martinson, Z. R.; Smolik, G. R.; Cawood, G. W.; Quapp, W. J.; Ramsthaler, J. H.; Ransom, V. H.; Scofield, M. P.; Dearien, J. A.; Bohn, M. P.; Burnham, B. W.; James, S. W.; Lee, W. H.; Lime, J. F.; Nalezny, C. L.; MacDonald, P. E.; Thompson, L. B.; Domenico, W. F.; Rice, R. E.; Hendrix, C. E.; Davis, C. B.

    1976-06-01

    Light water reactor sfaety research performed January through March 1976 is summarized. Results of the Semiscale Mod-1 blowdown heat transfer test series relating to those phenomena that influence core fluid and heat transfer effects are analyzed, and preliminary analyses of the recently completed reflood heat transfer test series are summarized for the forced and gravity feed reflood tests. The first nonnuclear LOCE in the LOFT program was successfully completed and preliminary results are presented. Preliminary results are given for the PCM 8-1 RF Test, the PCM-2A Test, and the Irradiation Effects Scoping Test 2 in the Thermal Fuel Behavior Program. Model development and verification efforts reported in the Reactor Behavior Program include checkout of RELAP4/MOD5 Update 1, development of a new hydrodynamic model for two-phase separated flows, development of the RACHET code to assess the assumptions in current fuel behavior codes of uniform stress and strain in the cladding, modifications of the containment code BEACON, analysis of results from the Halden Assembly IFA-429 helium sorption experiment, development of correlations for the thermal conductivity of UO/sub 2/ and (U,Pu)O/sub 2/, and evaluation of RALAP4 through comparison of calculated results with data from the GE Blowdown Heat Transfer and Semiscale experiments.

  19. State of the art on nuclear heating measurement methods and expected improvements in zero power research reactors

    Directory of Open Access Journals (Sweden)

    Le Guillou Mael

    2017-01-01

    Full Text Available The paper focuses on the recent methodological advances suitable for nuclear heating measurements in zero power research reactors. This bibliographical work is part of an experimental approach currently in progress at CEA Cadarache, aiming at optimizing photon heating measurements in low-power research reactors. It provides an overview of the application fields of the most widely used detectors, namely thermoluminescent dosimeters (TLDs and optically stimulated luminescent dosimeters. Starting from the methodology currently implemented at CEA, the expected improvements relate to the experimental determination of the neutron component, which is a key point conditioning the accuracy of photon heating measurements in mixed n–γ field. A recently developed methodology based on the use of 7Li and 6Li-enriched TLDs, precalibrated both in photon and neutron fields, is a promising approach to deconvolute the two components of nuclear heating. We also investigate the different methods of optical fiber dosimetry, with a view to assess the feasibility of online photon heating measurements, whose primary benefit is to overcome constraints related to the withdrawal of dosimeters from the reactor immediately after irradiation. Moreover, a fibered setup could allow measuring the instantaneous dose rate during irradiation, as well as the delayed photon dose after reactor shutdown. Some insights from potential further developments are given. Obviously, any improvement of the technique has to lead to a measurement uncertainty at least equal to that of the currently used methodology (∼5% at 1σ.

  20. Analysis of LOCA Scenarios in the NIST Research Reactor Before and After Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, L. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Diamond, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-30

    An analysis has been done of hypothetical loss-of-coolant-accidents (LOCAs) in the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The purpose of the analysis is to determine if the peak clad temperature remains below the Safety Limit, which is the blister temperature for the fuel. The configuration of the NBSR considered in the analysis is that projected for the future when changes will be made so that shutdown pumps do not operate when a LOCA signal is detected. The analysis was done for the present core with high-enriched uranium (HEU) fuel and with the proposed low-enriched uranium (LEU) fuel that would be used when the NBSR is converted from one to the other. The analysis consists of two parts. The first examines how the water would drain from the primary system following a break and the possibility for the loss of coolant from within the fuel element flow channels. This work is performed using the TRACE system thermal-hydraulic code. The second looks at the fuel clad temperature as a function of time given that the water may have drained from many of the flow channels and the water in the vessel is in a quasi-equilibrium state. The temperature behavior is investigated using the three-dimensional heat conduction code HEATING7.3. The results in all scenarios considered for both HEU and LEU fuel show that the peak clad temperature remains below the blister temperature.

  1. Research and Development Methodology for Practical Use of Accident Tolerant Fuel in Light Water Reactors

    Directory of Open Access Journals (Sweden)

    Masaki Kurata

    2016-02-01

    Full Text Available Research and development (R&D methodology for the practical use of accident tolerant fuel (ATF in commercial light water reactors is discussed in the present review. The identification and quantification of the R&D-metrics and the attribute of candidate ATF-concepts, recognition of the gap between the present R&D status and the targeted practical use, prioritization of the R&D, and technology screening schemes are important for achieving a common understanding on technology screening process among stakeholders in the near term and in developing an efficient R&D track toward practical use. Technology readiness levels and attribute guides are considered to be proper indices for these evaluations. In the midterm, the selected ATF-concepts will be developed toward the technology readiness level-5, at which stage the performance of the prototype fuel rods and the practicality of industrial scale fuel manufacturing will be verified and validated. Regarding the screened-out concepts, which are recognized to have attractive potentials, the fundamental R&D should be continued in the midterm to find ways of addressing showstoppers.

  2. Development of a computational database for probabilistic safety assessment of nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macedo, Vagner S.; Oliveira, Patricia S. Pagetti de; Andrade, Delvonei Alves de, E-mail: vagner.macedo@usp.br, E-mail: patricia@ipen.br, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The objective of this work is to describe the database being developed at IPEN - CNEN / SP for application in the Probabilistic Safety Assessment of nuclear research reactors. The database can be accessed by means of a computational program installed in the corporate computer network, named IPEN Intranet, and this access will be allowed only to professionals previously registered. Data updating, editing and searching tasks will be controlled by a system administrator according to IPEN Intranet security rules. The logical model and the physical structure of the database can be represented by an Entity Relationship Model, which is based on the operational routines performed by IPEN - CNEN / SP users. The web application designed for the management of the database is named PSADB. It is being developed with MySQL database software and PHP programming language is being used. Data stored in this database are divided into modules that refer to technical specifications, operating history, maintenance history and failure events associated with the main components of the nuclear facilities. (author)

  3. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  4. The Conceptual Design for a Fuel Assembly of a New Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, J-S.; Cho, Y-G.; Yoon, D-B.; Dan, H-J.; Chae, H-T.; Park, C.

    2004-10-06

    A new Research Reactor (ARR) has been under design by KAERI since 2002. In this work, as a first step for the design of the fuel assembly of the ARR, the conceptual design has been carried out. The vibration characteristics of the tubular fuel model and the locking performance of the preliminary designed locking devices were investigated. In order to investigate the effects of the stiffener on the vibration characteristics of the tubular fuel, a modal analysis was performed for the finite element models of the tubular fuels with stiffeners and without stiffeners. The analysis results show that the vibration characteristics of the tubular fuel with stiffeners are better than those of the tubular fuel without stiffeners. To investigate the locking performance of the preliminary designed locking devices for the fuel assembly of the ARR, the elements of the locking devices were fabricated. Then the torsional resistance, fixing status and vibration characteristics of the locking devices were tested. The test results show that using the locking device with fins on the bottom guide can prevent the torsional motion of the fuel assembly, and that additional springs or guides on the top of the fuel assembly are needed to suppress the lateral motion of the fuel assembly. Based on the modal analysis and experimental results, the fuel assembly and locking devices of the ARR were designed and its prototype was fabricated. The locking performance, pressure drop characteristics and vibration characteristics of the newly designed fuel assembly will be tested in the near future.

  5. Development of integrated management system for the research reactor in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanova, A.S.; Ilieva, K.T. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2007-07-01

    The main purpose to set up an Integrated Management System (IMS) is to guarantee the safety operation of nuclear facilities as well as to increase their exploitation effectiveness. To ensure the safety operation of nuclear facilities the Bulgarian Nuclear Regulatory Agency has created requirements and norms to prevent potential nuclear incidents, overdose irradiation or terrorist attacks opportunities. The IMS of the Institute for Nuclear Research and Nuclear Energy has been developed in a way to create an environment which guarantees the ways and means for: quality management according to ISO 9001:2000, environmental management according to ISO 14001:2004, management of safety requirements of the Bulgarian Nuclear Regulatory Agency, security and physical protection, and the management of the safe and health working conditions for the employees. The IMS is based on the concepts recommended by IAEA: the entirety of work can be structured and interpreted as a set of interacting processes that can be planned, performed, measured, assessed and improved, and, those performing assessing work, all contribute in achieving quality and ensuring safety. The IMS has been developed in the way to be continuously upgraded and additive. The IMS will be added with new instructions, procedures and others, which will correspond to new activities arising during the reactor reconstruction. The IMS was developed on the basis of state-of-the-art software ARIS in the way to achieve ease in communication, visualization, possibilities for assessment and continuous improvement of the IMS. (authors)

  6. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  7. Performance improvement of artificial neural networks designed for safety key parameters prediction in nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mazrou, Hakim [Division de Physique Radiologique, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, 16000 Alger (Algeria)], E-mail: mazrou_h@crna.dz

    2009-10-15

    The present work explores, through a comprehensive sensitivity study, a new methodology to find a suitable artificial neural network architecture which improves its performances capabilities in predicting two significant parameters in safety assessment i.e. the multiplication factor k{sub eff} and the fuel powers peaks P{sub max} of the benchmark 10 MW IAEA LEU core research reactor. The performances under consideration were the improvement of network predictions during the validation process and the speed up of computational time during the training phase. To reach this objective, we took benefit from Neural Network MATLAB Toolbox to carry out a widespread sensitivity study. Consequently, the speed up of several popular algorithms has been assessed during the training process. The comprehensive neural system was subsequently trained on different transfer functions, number of hidden neurons, levels of error and size of generalization corpus. Thus, using a personal computer with data created from preceding work, the final results obtained for the treated benchmark were improved in both network generalization phase and much more in computational time during the training process in comparison to the results obtained previously.

  8. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    Science.gov (United States)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  9. Fast neutron radiography and tomography at a 10MW research reactor beamline.

    Science.gov (United States)

    Zboray, R; Adams, R; Kis, Z

    2017-01-01

    Fast neutron imaging was performed using a beamline of the 10MW research reactor of the Budapest Neutron Centre, Hungary. A simple, low-cost 2D area detector has been used featuring a 8mm thick BC400 plastic scintillator converter screen and a CCD camera. A spatial resolution of around 1.3mm has been achieved. Typically 10min long exposures were needed to obtain reasonable quality radiographic images. For tomographic imaging typically several hours of acquisition were needed to obtain reasonable quality on non-symmetric and larger (e.g. 10×10×10cm3) objects. Due to the presence of a significant gamma background at the experimental position, massive (30cm thick) lead shielding and filtering was applied to the beam. The gamma contribution was mostly baseline independent of the object imaged and therefore could be subtracted, whereas the direct gamma contribution from the beam to the imaging detector signal is estimated to be less than 1%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mei, E-mail: pm740509@163.com; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-21

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm{sup −1} to 5.0 nm{sup −1}. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service. - Highlights: • A new SANS spectrometer has been put into use since 2014 in China. • One MBR selector possesses a higher resolution compared with traditional selector is used. • The spectrometer has a good performance and is now in routinely service.

  11. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  12. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  13. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    Science.gov (United States)

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  14. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  15. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    Energy Technology Data Exchange (ETDEWEB)

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  16. Feynman-alpha technique for measurement of detector dead time using a 30 kW tank-in-pool research reactor

    CERN Document Server

    Akaho, E H K; Intsiful, J D K; Maakuu, B T; Nyarko, B J B

    2002-01-01

    Reactor noise analysis was carried out for Ghana Research Reactor-1 GHARR-1, a tank-in-pool type reactor using the Feynman-alpha technique (variance-to-mean method). Measurements made at different detector positions and under subcritical conditions showed that the technique could not be used to determine the prompt decay constant for the reactor which is Be reflected with photo-neutron background. However, for very low dwell times the technique was used to measure the dead time of the detector which compares favourably with the value obtained using the alpha-conventional method.

  17. Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2

    Science.gov (United States)

    Frye, Robert

    1990-01-01

    Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.

  18. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    Energy Technology Data Exchange (ETDEWEB)

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y. (Oak Ridge National Lab., TN (USA); Argonne National Lab., IL (USA); General Electric Co., San Jose, CA (USA))

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  19. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30 MW and the reactor outlet coolant temperature of 850/950 degC is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. The HTTR, which locates at the south-west area of 50,000 m{sup 2} in the Oarai Research Establishment, had been constructed since 1991 before accomplishing the first criticality on November 10, 1998. Rise to power tests of the HTTR started in September, 1999 and the rated thermal power of 30 MW and the reactor outlet coolant temperature of 850 degC was attained in December 2001. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R and Ds on HTGRs from FY1999 to 2001. (author)

  20. Experimental evaluation of gamma fluence-rate predictions from Argon-41 releases to the atmosphere over a nuclear research reactor site

    DEFF Research Database (Denmark)

    Rojas-Palma, C.; Aage, H.K.; Astrup, P.

    2004-01-01

    An experimental study of radionuclide dispersion in the atmosphere has been conducted at the BR1 research reactor in Mol, Belgium. Artificially generated aerosols ('white smoke') were mixed with the routine releases of Ar-41 in the reactor's 60-m tall venting stack. The detailed plume geometry...

  1. Soil submodel, SCEMR1, for the assessment of Canada`s nuclear fuel waste management concept. AECL research No. AECL-9577

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, M.I.

    1992-12-31

    One of the main objectives of Canada`s Nuclear Fuel Waste Management Program is to assess the movement of radionuclides using modelling techniques in order to evaluate the acceptability of disposal of nuclear fuel wastes underground in stable plutonic rock. This report describes the soil submodel of the BIOTRAC biosphere model developed to support the assessment. The SCEMR1 soil model is a mechanistic, time-dependent transport model, and the report includes full descriptions of its major subroutines for water and nuclide transport, its input parameter values, and its major assumptions. The report also presents the quality assurance procedures used for developing SCEMR1, results of testing the model using experimental data, simplification and development of SCEMR1 for implementation in BIOTRAC, results of calculations of soil nuclide transport processes, the coupling of SCEMR1 with BIOTRAC using the response function, and validation of the SCEMR1 model in the international BIOMOVS study.

  2. Impact of mesh points number on the accuracy of deterministic calculations of control rods worth for Tehran research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Boustani, Ehsan [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.; Khakshournia, Samad [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of). Energy Engineering and Physics Dept.

    2016-12-15

    In this paper two different computational approaches, a deterministic and a stochastic one, were used for calculation of the control rods worth of the Tehran research reactor. For the deterministic approach the MTRPC package composed of the WIMS code and diffusion code CITVAP was used, while for the stochastic one the Monte Carlo code MCNPX was applied. On comparing our results obtained by the Monte Carlo approach and those previously reported in the Safety Analysis Report (SAR) of Tehran research reactor produced by the deterministic approach large discrepancies were seen. To uncover the root cause of these discrepancies, some efforts were made and finally was discerned that the number of spatial mesh points in the deterministic approach was the critical cause of these discrepancies. Therefore, the mesh optimization was performed for different regions of the core such that the results of deterministic approach based on the optimized mesh points have a good agreement with those obtained by the Monte Carlo approach.

  3. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon......-41 source term and the meteorological parametres. Good overall agreement is found between measurement data and model results using the mesoscale atmospheric dispersion and dose rate model RIMPUFF....

  4. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    OpenAIRE

    Rezaeian Mahdi; Kamali Jamshid; Roshanzamir Manoochehr; Moosakhani Alireza; Noori Elghar

    2015-01-01

    Containment of a transport cask during both normal and accident conditions is important to the health and safety of the public and of the operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated. The contributions to the total activity from the four sources of gas, volatile, fines, and corrosion...

  5. Feasibility studies of producing {sup 99} Mo by capture in the IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Concilio, Roberta; Mendonca, Arlindo Gilson; Maiorino, Jose Rubens [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: maiorino@net.ipen.br; amendon@net.ipen.br

    1998-07-01

    Everyday the production of {sup 99} Mo for {sup 99m} Tc generators, becomes more necessary, whose properties are ideal for medical diagnosis. This works presents a description and an analysis of the production of {sup 99} Mo by radioactive capture at {sup 98} Mo using the research reactor IEA-R1 in 5 MW and operating 5 days a week, referring to the use of targets, separation methods, total and specific activity attained and its limitations. (author)

  6. Knowledge Mobilisation in Education across Canada: A Cross-Case Analysis of 44 Research Brokering Organisations

    Science.gov (United States)

    Cooper, Amanda

    2014-01-01

    Knowledge mobilisation (KMb) attempts to address research-policy-practice gaps in education. Research brokering organisations (RBOs) are third party, intermediary organisations whose active role between research producers and users is a catalyst for research use in education. Sample: 44 Canadian RBOs in the education sector. Methodology: employed…

  7. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  8. TAIPAN: First Results from the Thermal Triple-axis Spectrometer at OPAL Research Reactor

    Science.gov (United States)

    Danilkin, S. A.; Yethiraj, M.; Saerbeck, T.; Klose, F.; Ulrich, C.; Fujioka, J.; Miyasaka, S.; Tokura, Y.; Keimer, B.

    2012-02-01

    The thermal triple-axis spectrometer TAIPAN is the first instrument for inelastic neutron scattering at the new Australian research reactor OPAL. TAIPAN started operation in February 2009 and is in full user service since November 2010. Conceptually, it is similar to the triple-axis spectrometers IN8 (ILL) and PANDA (FRM-II) with variable incident and final energies and a secondary spectrometer with a single detector. The instrument can be operated either in a high flux mode with a double-focusing monochromator and analyser, or with Soller collimators - gaining resolution at the expense of intensity. Presently the PG (002) double-focusing monochromator and analyser are in use. The incident energy range on the TAIPAN TAS is from ~5 meV up to ~100 meV with neutron flux at sample position of 2.4<=107 n/cm2/s at incident energy of 14.8 meV. First experiments were performed with superionic conductor Cu2-δSe. The measurements reveal the presence of a soft mode related to ordering of Cu atoms followed by α - β phase transition at a lower temperature. The evolution of the magnetic structure with temperature in a magnetically modulated FePt3 thin film was investigated in the diffraction mode of TAIPAN. The results show that the film fabricated by modulation of the chemical order parameter consists of a magnetic FM/AFM superlattice in single-crystalline FePt3. The spin wave and phonon dispersion was recently investigated in TbVO3 single crystal. The acoustic and optical magnon branches were observed in the same energy range. This indicates that the 'orbital Peiers state' also exists in TbVO3.

  9. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center

    Science.gov (United States)

    Reid, Terry V.

    2016-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.

  10. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky; Miroslav Picek; Alexey Smirnov; Sergey Komarov; Edward Bradley; Alexander Dudchenko; Konstantin Golubkin

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing, testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.

  11. Fuel irradiation research of Japan at OECD Halden Reactor Project. Achievement of joint researches between JAERI and other organizations in the period from 1994 to 1996

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi; Nakamura, Jinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kinoshita, Motoyasu [and others

    1998-01-01

    JAERI has performed cooperative researches with many Japanese agencies and companies by means of the Halden Boiling Heavy Water Reactor (HBWR) which is located at Halden in Norway. These cooperative researches are carried out based on the contracts of the cooperative researches, which are revised every three years, in accordance with the renewal of the participation of JAERI to the OECD Halden Reactor Project. This report summaries the objectives, contents and the outlines of the achievements of the cooperative researches during the three years from 1994 January to 1996 December. During the period, ten cooperative researches had been carried out, and two of them had finished during the period and other eight researches has been continued to the next three year period. There are many research items, and most of them are irradiation test researches of advanced fuel and cladding concerned with the high burnup utilization of LWR fuel or MOX fuel irradiation researches to prepare for the introduction of Plutonium utilization in LWRs. The researches of fuel irradiation usually take long time because of the characteristics of these kind of research work, and three years are usually not enough to obtain some achievements from the irradiation tests. Therefore, eight tests have been continued after the three year period. In this report, the achievements of the continued researches to the next three year period are not final one but a kind of progress report. (author)

  12. Informing body checking policy in youth ice hockey in Canada: a discussion meeting with researchers and community stakeholders.

    Science.gov (United States)

    McKay, Carly D; Meeuwisse, Willem H; Emery, Carolyn A

    2014-11-05

    Body checking is a significant risk factor for injury, including concussion, in youth ice hockey. Recent evidence regarding injury rates in youth leagues prompted USA Hockey to institute a national policy change in 2011 that increased the age of body checking introduction from 11-12 years old (Pee Wee) to 13-14 years old (Bantam). Body checking policy was more controversial in Canada, and research evidence alone was insufficient to drive change. The purpose of this paper is to provide an example of one of the knowledge exchange processes that occurred between researchers and community stakeholders, leading up to a national policy change in 2013. There were 28 stakeholder attendees, representing the research community, youth hockey organizations, and child health advocacy groups. A one-day meeting held in Whistler, British Columbia, in April 2013. Researchers and stakeholders presented current perspectives on evidence and policy change, and discussion focused on an a priori set of questions designed to elicit facilitators and barriers to policy change. Three major factors that can drive policy change in the sport safety context were identified: the need for decision-making leadership, the importance of knowledge translation, and the role of sport culture as a barrier to change. There is a critical need for researcher and stakeholder partnership in facilitating ongoing policy discussion and informing evidence-based policy change in sport and recreation injury prevention.

  13. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  14. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    Energy Technology Data Exchange (ETDEWEB)

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E

    1987-02-01

    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  15. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  16. Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor

    Science.gov (United States)

    Yu, Yaqin

    2015-01-01

    The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554

  17. Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor.

    Science.gov (United States)

    Yu, Yaqin

    2015-09-01

    The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II.

  18. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    OpenAIRE

    Ma, Weimin; Yuan, Yidan; Sehgal, Bal Raj

    2016-01-01

    A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential...

  19. Ageing Management of Beryllium and Graphite Blocks in Research Reactor MARIA

    Energy Technology Data Exchange (ETDEWEB)

    Golab, A. [National Centre for Nuclear Research, Warsaw (Poland)

    2013-07-01

    In the paper the phenomenon of beryllium moderator poisoning by thermal neutron absorption and the method and results of this phenomenon control is presented. Also the phenomenon of graphite blocks damage due to fast neutrons accumulation and the methods and results of this process supervising is described. These methods refer especially to: visual inspection of their state and radiography of graphite blocks. Special attention is paid to permanent estimate of fast neutron fluency accumulated in blocks and methods of their shuffling in the reactor core. The shuffling makes possible to increase the lifetime of beryllium and graphite blocks and decrease the cost of reactor operation.

  20. A comparative assessment of independent thermal-hydraulic models for research reactors: The RSG-GAS case

    Energy Technology Data Exchange (ETDEWEB)

    Chatzidakis, S., E-mail: schatzid@purdue.edu [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Hainoun, A. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400, San Carlos de Bariloche, Rio Negro (Argentina); Alhabet, F. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Francioni, F. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400, San Carlos de Bariloche, Rio Negro (Argentina); Ikonomopoulos, A. [Institute of Nuclear and Radiological Sciences, Energy, Technology and Safety, National Center for Scientific Research ‘Demokritos’, 15130, Aghia Paraskevi, Athens (Greece); Ridikas, D. [Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, A-1400 Vienna (Austria)

    2014-03-15

    Highlights: • Increased use of thermal-hydraulic codes requires assessment of important phenomena in RRs. • Three independent modeling teams performed analysis of loss of flow transient. • Purpose of this work is to examine the thermal-hydraulic codes response. • To perform benchmark analysis comparing the different codes with experimental measurements. • To identify the impact of the user effect on the computed results, performed with the same codes. - Abstract: This study presents the comparative assessment of three thermal-hydraulic codes employed to model the Indonesian research reactor (RSG-GAS) and simulate the reactor behavior under steady state and loss of flow transient (LOFT). The RELAP5/MOD3, MERSAT and PARET-ANL thermal-hydraulic codes are used by independent research groups to perform benchmark analysis against measurements of coolant and clad temperatures, conducted on an instrumented fuel element inside RSG-GAS core. The results obtained confirm the applicability of RELAP5/MOD3, MERSAT and PARET-ANL on the modeling of loss of flow transient in research reactors. In particular, the three codes are able to simulate flow reversal from downward forced to upward natural convection after pump trip and successful reactor scram. The benchmark results show that the codes predict maximum clad temperature of hot channel conservatively with a maximum overestimation of 27% for RELAP5/MOD3, 17% for MERSAT and 8% for PARET-ANL. As an additional effort, the impact of user effect on the simulation results has been assessed for the code RELAP5/MOD3, where the main differences among the models are presented and discussed.

  1. History of the research reactor institute of Kyoto University in view of nuclear science information data base (KURRIP)

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Takayuki; Mizuma, Mitsuo (Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.); Kimura, Itsuro

    1994-02-01

    Since the Research Reactor Institute of Kyoto University was established as an inter-university research institute in 1963, a large number of cooperative research projects have been achieved by visiting scientists and its own staff in various research fields, making use of facilities centered around the Kyoto University Reactor, as well as the other experimental facilities. Ten years ago, the construction of the 'KURRIP' data base was initiated to grasp the whole aspect of the research activities at the Institute, in commemoration of its 20th anniversary. At the present time, KURRIP contains the information on 5,910 papers published for 29 years from 1963 to 1991. As this academic year is the 30th anniversary of the Institute, the history of its research activities was reviewed again using this data base. All of the publications were classified by authors's affiliations, kinds of papers, publishers, fields of studies, and research facilities used, and their historical variations are checked and discussed. (author).

  2. Development of Pneumatic Transfer Irradiation Facility (PTS no.3) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-04-15

    A pneumatic transfer system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide. The pneumatic transfer irradiation system (PTS no.3) involving a manual system and an semi-automatic system were reconstructed with new designs of a functional improvement at the HANARO research reactor and NAA laboratory of RI building in 2006. In this technical report, the design, operation and control of these system (PTS no.3) was described. Also the experimental results and the characteristic parameters measured from a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  3. Development of Pneumatic Transfer Irradiation Facility (PTS no.1) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer system (PTS no.1) involving a manual system and an semiautomatic system were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of these system (PTS no.1) was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  4. Development of Pneumatic Transfer Irradiation Facility (PTS no.2) for Neutron Activation Analysis at HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J

    2008-03-15

    A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.

  5. Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2017-01-01

    Full Text Available High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components.

  6. Derivation of the source term, dose results and associated radiological consequences for the Greek Research Reactor – 1

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Charalampos, E-mail: chpappas@ipta.demokritos.gr; Ikonomopoulos, Andreas; Sfetsos, Athanasios; Andronopoulos, Spyros; Varvayanni, Melpomeni; Catsaros, Nicolas

    2014-07-01

    Highlights: • Source term derivation of postulated accident sequences in a research reactor. • Various containment ventilation scenarios considered for source term calculations. • Source term parametric analysis performed in case of lack of ventilation. • JRODOS employed for dose calculations under eighteen modeled scenarios. • Estimation of radiological consequences during typical and adverse weather scenarios. - Abstract: The estimated source term, dose results and radiological consequences of selected accident sequences in the Greek Research Reactor – 1 are presented and discussed. A systematic approach has been adopted to perform the necessary calculations in accordance with the latest computational developments and IAEA recommendations. Loss-of-coolant, reactivity insertion and fuel channel blockage accident sequences have been selected to derive the associated source terms under three distinct containment ventilation scenarios. Core damage has been conservatively assessed for each accident sequence while the ventilation has been assumed to function within the efficiency limits defined at the Safety Analysis Report. In case of lack of ventilation a parametric analysis is also performed to examine the dependency of the source term on the containment leakage rate. A typical as well as an adverse meteorological scenario have been defined in the JRODOS computational platform in order to predict the effective, lung and thyroid doses within a region defined by a 15 km radius downwind from the reactor building. The radiological consequences of the eighteen scenarios associated with the accident sequences are presented and discussed.

  7. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee`s annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs.

  8. Membrane bio-reactor - Research, pilot installation and measurement campaign; Membranbioreaktor (MBR) - Forschung, Pilotanlage und Messkampagne - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hersener, J.-L. [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U. [Meritec GmbH, Guntershausen (Switzerland)

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE), takes a look at a project involving a fermenter installation in Eastern Switzerland. Research work is noted, the pilot installation is described and the results of a measurement campaign are presented and commented on. The plant is able to handle about 20,000-25,000 tonnes of slurry and organic waste. The plant is built as a membrane bio-reactor and allows the separation of the digested biomass into fractions of solid and liquid fertilisers and useful water. Furthermore, a part of the separated and digested liquid is returned to the fermenter in order to improve the digestion process. For the production of electricity a 1.1 MW generator is installed. The adaptations made during the measurement period are noted and commented on. According to the authors, the results - although difficult to interpret - show that the concept of a membrane bio-reactor can work successfully.

  9. Radiation and criticality safety analyses for the highly-enriched uranium core removal from a research reactor.

    Science.gov (United States)

    Dennis, Haile; Grant, Charles; Preston, John

    2017-11-01

    Analysis was performed to estimate radiation levels during removal and packaging of the highly-enriched uranium core of the JM-1 SLOWPOKE-2 research reactor. Due to severe limitations of space in and around the reactor pool, the core could not be removed in the conventional manner as was done for previous SLOWPOKE defuelling operations. A transfer shield, with a balance between shielding efficacy, volume and weight was designed. Fuel depletion, Monte Carlo shielding and criticality calculations were performed. Comparisons of measured and calculated dose rates as well as results of the criticality safety assessment are presented. The designed transfer shield reduced the calculated unshielded dose rate from 29Sv/h to 8mSv/h. The maximum calculated effective neutron multiplication factor of approximately 0.89 was below the 0.91 upper subricital limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  11. Advanced reactor safety research. Quarterly report, April-June 1982. Volume 22

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-10-01

    Overall objective of this work is to provide NRC a comprehensive data base essential to (1) defining key safety issues, (2) understanding risk-significant accident sequences, (3) developing and verifying models used in safety assessments, and (4) assuring the public that power reactor systems will not be licensed and placed in commercial service in the United States without appropriate consideration being given to their effects on health and safety. This report describes progress in a number of activities dealing with current safety issues relevant to both light water and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents, and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  12. Neutronic simulation of a research reactor core of (232 Th, 235 U ...

    Indian Academy of Sciences (India)

    A simple nuclear reactor core arranged 19 assemblies in hexagonal structure, using thorium-based fuel and heavy water as coolant and moderator was simulated using MCNPX2.6 code, aiming an optimized critical assembly. Optimized reflector thickness and gap between assemblies were determined to achieve minimum ...

  13. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    Science.gov (United States)

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Report of the second joint Research Committee for Fusion Reactor and Materials. July 12, 2002, Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    Joint research committees in purpose of the discussion on DEMO blanket in view point of the both of reactor technology and materials were held by the Research Committee for Fusion Reactor and Fusion Materials. The joint research committee was held in Tokyo on July 12, 2002. In the committee, the present status of development of solid and liquid breeding blanket, the present status of development of reduced activation structure materials, and IFMIF (International Fusion Materials Irradiation Facility) program were discussed based on the discussions of the development programs of the blanket and materials at the first joint research committee. As a result, it was confirmed that high electric efficiency with 41% would be obtained in the solid breeding blanket system, that neutron radiation data of reduced activation ferritic steel was obtained by HFIR collaboration, and that KEP (key element technology phase) of IFMIF would be finished at the end of 2002 and the data base for the next step, i.e. EVEDA (engineering validation/engineering design activity) was obtained. In addition, the present status of ITER CTA, which was a transient phase for the construction, and the outline of ITER Fast Track, which was an accelerated plan for the performance of the power plants, were reported. This report consists of the summary of the discussion and the viewgraphs which were used at the second joint research committee, and these are very useful for the researchers of the fusion area in Japan. (author)

  15. Testing and Research Capabilities at the Sandia Fast Pulsed Reactor Facility

    Science.gov (United States)

    Berry, Donald T.

    1994-07-01

    A wide variety of space-based system components have been qualified for use through neutron irradiation testing performed at the Sandia Pulsed Reactor (SPR) Facility. The SPR Facility is the operating location for two fast burst reactors, SPR II and SPR III, which have been used to induce neutron and gamma damage in electronic components and other materials for customers in the Department of Energy, Department of Defense, NASA, and the private sector. In addition to the pulse mode of operation, during which peak fluxes of up to 1023 n/m2-s are achieved, the steady state mode allows for the long term irradiation of components and systems in a fast neutron environment at a flux of up to 5×1015 n/m2-s. The SPR reactors are operated in a 9.2 meter diameter exposure cell, or Kiva, suitable for the irradiation of large test articles external to the reactors. Currently, a new upgraded version of SPR III (SPR HIM) is in fabrication; a unique feature of SPR HIM is its 190 mm (usable diameter) central irradiation cavity, the largest of any U.S. fast burst reactor. An improved cooling system permits continuous operation at power levels in excess of 20 kWt. The SPR Facility is also the operating site for a critical assembly which was used to characterize prototypic fuels in arrays appropriate for the Space Nuclear Thermal Propulsion Program. Work continues on use of the facility to design, build, and operate critical assemblies for a diverse customer base.

  16. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  17. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  18. Doctoral Research Education in Canada: Full-Time and Part-Time Students' Access to Research Assistantships

    Science.gov (United States)

    Niemczyk, Ewalina Kinga

    2016-01-01

    Graduate students' development as researchers is a key objective in higher education internationally. Research assistantships (RAships) nurture graduate students as novice researchers as they develop theoretical and methodological knowledge. However, few studies have investigated the ways institutional regulations, informal practices, and…

  19. Research citation analysis of nursing academics in Canada: identifying success indicators.

    Science.gov (United States)

    Hack, Thomas F; Crooks, Dauna; Plohman, James; Kepron, Emma

    2010-11-01

    This article is a report of a citation analysis of research publications by Canadian nursing academics. Citation analysis can yield objective criteria for assessing the value of published research and is becoming increasingly popular as an academic evaluation tool in universities around the world. Citation analysis is useful for examining the research performance of academic researchers and identifying leaders among them. The journal publication records of 737 nursing academics at 33 Canadian universities and schools of nursing were subject to citation analysis using the Scopus database. Three primary types of analysis were performed for each individual: number of citations for each journal publication, summative citation count of all published papers and the Scopus h-index. Preliminary citation analysis was conducted from June to July 2009, with the final analysis performed on 2 October 2009 following e-mail verification of publication lists. The top 20 nursing academics for each of five citation categories are presented: the number of career citations for all publications, number of career citations for first-authored publications, most highly cited first-authored publications, the Scopus h-index for all publications and the Scopus h-index for first-authored publications. Citation analysis metrics are useful for evaluating the research performance of academic researchers in nursing. Institutions are encouraged to protect the research time of successful and promising nursing academics, and to dedicate funds to enhance the research programmes of underperforming academic nursing groups. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  20. Call for proposals for the Joint Canada-Israel Health Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    23 nov. 2017 ... ... plans could include a range of activities supporting the research and training objectives of the proposal, as well as using this funding opportunity to design a collaborative international research project. The application process for this funding opportunity consists of two steps: registration and application.