WorldWideScience

Sample records for camshafts

  1. Camshaft bearing arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  2. Camshaft bearing arrangement for overhead cam engine

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.

    1985-01-01

    In an assembly for an internal combustion engine comprising a cylinder block, a cylinder head detachably affixed to the cylinder block by a plurality of threaded fastening means, a plurality of poppet valves supported for reciprocation in the cylinder head and a camshaft for operating the poppet valves, the improvement is described comprising a cam carrier detachably affixed to the cylinder head and overlying the threaded fastening means, and a bearing cap affixed to the cam carrier. The cam carrier and the bearing cap have bearing surfaces for journaling the camshaft.

  3. Structural Design of Two-Cylinder Single Overhead Camshaft

    Science.gov (United States)

    Zhao, Yuxia; Zhang, Kangsheng; Di, Jiejian

    2018-01-01

    Due to the higher performance demand, the camshaft is the key driving part in the engine. Because it is eccentric circular section part, it is very difficult to design and manufacture this kind of axial parts. Take two-cylinder single overhead camshaft for an example, the entire process of camshaft design is analyzed. The practice has proved that the method has simple, flexible and efficient advantages, and it can greatly shorten the design of artificial computing time.

  4. Partial electron beam hardening of cast iron camshafts

    Energy Technology Data Exchange (ETDEWEB)

    Csizmazia, A.; Reti, T. [Szechenyi Istvan Univ., Gyoer (Hungary); Horvath, M.; Olah, I. [Audi Hungaria Motor Kft., Gyoer (Hungary)

    2005-07-01

    In order to improve the local surface properties (hardness, wear and contact fatigue resistance) of cast iron camshafts, detailed experiments with partial electron beam hardening have been performed. It was found that the required case depth of 0.3-0.5 mm and surface hardness of 600-700 HV can be achieved by using appropriately selected, computer-controlled processing parameters (angular speed, specific energy input, beam deflection). (orig.)

  5. Studi Mekanisme Kinetik dengan Parametrik Camshaft pada Selubung Bangunan Adaptif

    Directory of Open Access Journals (Sweden)

    Firza Utama Sjarifudin

    2012-12-01

    Full Text Available Adaptation is essential to manage the problem of climate change. In order to meet the challenge, this paper proposes an adaptive building envelope system that can optimize its configuration by responding environmental changes to achieve new levels of sustainable performance and energy efficiency. Most current adaptive building envelope uses kinetic techniques make its formation transformable. However, the use of kinetic components such as a large amount of interactive motorized system that requires electrical power may alsocause further decrease the building energy efficiency. This paper proposes a camshaft mechanism system for adaptive building envelope that uses less motors, controllers, and sensors. This system uses pre-programmed analysis data of daily solar radiation changes to parametrically drive the number of rotation phase and length of nose (Lobe Lift that generates the shape of camshaft. The camshaft then controls the values of opening and closing of the building envelope components. The advantages of this system are less energy consumption, less maintenance and lower cost since it uses fewer motors, controllers and wiring. In conclusion, this paper has developed a prototypical tool that facilitates a new approach to energy-efficient kinetic buildings.

  6. Vane-Cam - camshaft controls with new functionalities; Vane-Cam - Nockenwellenversteller mit neuen Funktionalitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, A.; Pohl, D. [Hydraulik-Ring GmbH, Nuertingen (Germany); Hannibal, W. [Fachhochschule Suedwestfalen, Iserlohn (Germany). Labor fuer Konstruktion und CAE-Anwendungen; enTec Consulting GmbH, Hemer (Germany)

    2007-01-15

    Infinitely variable camshaft phasing systems will be used in the future in practically all gasoline internal combustion engines high volume production. This paper of Hydraulik-Ring GmbH gives an overview of the current system concepts of the latest generation of camshaft controls utilizing the principle of the vane motor. (orig.)

  7. Optimising the Design Process of the Injection Camshaft by Critical Path Method (CPM

    Directory of Open Access Journals (Sweden)

    Olga-Ioana Amariei

    2016-10-01

    Full Text Available In the present paper a series of advantages of the CPM method are presented, focusing on the optimization of design duration of an injection camshaft, by cost criteria. The minimum duration of finalizing the design of the injection camshaft will be determined, as well as the total cost associated to this project, normally, and then under crash regime. At the end, two types of sensitivity analysis will be performed: Meeting the desire completation time and Meeting the desired budget cost

  8. Daylight Adaptive Shading Using Parametric Camshaft Mechanism for SOHO in Jakarta

    Directory of Open Access Journals (Sweden)

    Sjarifudin Firza Utama

    2014-03-01

    Full Text Available This research analyzes SOHO (Small Office Home Office which can adjust to the need of visual comfort for the users through natural daylighting and also can be adapted to standard requirements of 14 creative industry workspace in Jakartas. The method of the research is by simulating the SOHO unit with variation of shading opening angles in order to adapt to each unit. Analysis done to every shading opening angle to get the appropriate daylight intensity level which support the work activities in every unit for the whole day. In order for the shading to be able to adapt to the changing daylight condition, previously developed parametric camshaft mechanism was used. The study found that the visual comfort for SOHO with creative industries workers in Jakarta can be achieve by varying the shading opening angles between 15-75°.

  9. Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts

    Directory of Open Access Journals (Sweden)

    Moser Michael M.

    2015-01-01

    Full Text Available Idling losses constitute a significant amount of the fuel consumption of internal combustion engines. Therefore, shutting down the engine during idling phases can improve its overall efficiency. For driver acceptance a fast restart of the engine must be guaranteed. A fast engine start can be performed using a powerful electric starter and an appropriate battery which are found in hybrid electric vehicles, for example. However, these devices involve additional cost and weight. An alternative method is to use a tank with pressurized air that can be injected directly into the cylinders to start the engine pneumatically. In this paper, pneumatic engine starts using camshaft driven charge valves are discussed. A general methodology for an air-optimal charge valve design is presented which can deal with various requirements. The proposed design methodology is based on a process model representing pneumatic engine operation. A design example for a two-cylinder engine is shown, and the resulting optimized pneumatic start is experimentally verified on a test bench engine. The engine’s idling speed of 1200 rpm can be reached within 350 ms for an initial pressure in the air tank of 10 bar. A detailed system analysis highlights the characteristics of the optimal design found.

  10. Finite Element Simulation of the Presta Joining Process for Assembled Camshafts: Application to Aluminum Shafts

    Directory of Open Access Journals (Sweden)

    Robert Scherzer

    2018-02-01

    Full Text Available This work shows a sequence of numerical models for the simulation of the Presta joining process: a well-established industrial process for manufacturing assembled camshafts. The operation is divided into two sub-steps: the rolling of the shaft to widen the cam seat and the joining of the cam onto the shaft. When manufactured, the connection is tested randomly by loading it with a static torque. Subsequently, there are three numerical models using the finite element method. Additionally, a material model of finite strain viscoplasticity with nonlinear kinematic hardening is used throughout the whole simulation process, which allows a realistic representation of the material behavior even for large deformations. In addition, it enables a transfer of the deformation history and of the internal stresses between different submodels. This work also shows the required parameter identification and the associated material tests. After comparing the numerical results with experimental studies of the manufacturing process for steel-steel connections, the models are used to extend the joining process to the utilization of aluminum shafts.

  11. System Design and Analysis of a Directly Air-Assisted Turbocharged SI Engine with Camshaft Driven Valves

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-03-01

    Full Text Available The availability of compressed air in combination with downsizing and turbocharging is a promising approach to improve the fuel economy and the driveability of internal combustion engines. The compressed air is used to boost and start the engine. It is generated during deceleration phases by running the engine as a piston compressor. In this paper, a camshaft-driven valve is considered for the control of the air exchange between the tank and the combustion chamber. Such a valve system is cost-effective and robust. Each pneumatic engine mode is realized by a separate cam. The air mass transfer in each mode is analyzed. Special attention is paid to the tank pressure dependence. The air demand in the boost mode is found to increase with the tank pressure. However, the dependence on the tank pressure is small in the most relevant operating region. The air demand of the pneumatic start shows a piecewise continuous dependence on the tank pressure. Finally, a tank sizing method is proposed which uses a quasi-static simulation. It is applied to a compact class vehicle, for which a tank volume of less than 10 L is sufficient. A further reduction of the tank volume is limited by the specifications imposed on the pneumatic start.

  12. Vibration in the impeller drive and camshafts of a medium-sized ship`s Diesel engine; Schwingungen in Raedertrieb und Nockenwellen eines mittelgrossen Schiffsdieselmotors

    Energy Technology Data Exchange (ETDEWEB)

    Weidemann, H.J.; Pfeiffer, F.

    1995-12-31

    The article contains the basic theory and methods for an analysis of vibration in the impeller drive of a ship`s Diesel engine. The elastic torsional and bending deformation of camshafts in several bearings and the non-linear, non-steady state behaviour of sliding bearings are taken into account. Gearing is replaced by non-linear power elements with play. The coupling of the combustion process with the torsional vibrations of the crankshaft gearwheel is produced by an elastic modelling of the crankshaft and by taking into account the thermodynamic laws of the combustion process. The feedback of the torsional vibrations of the whole control drive on the time synchronisation of the injection and combustion processes is examined by the modelling of the power and torque loading depending on the state of the injection cams of the elastic camshaft and the start of ignition and combustion in the piston depending on the state. By numerical simulation of the whole system, measurements of torsional vibrations of an actual 12V ship`s Diesel engine with an output of 3 MW can be verified to a very close approximation. Apart from the vibration behaviour of the engine, the mechanical model also supplies the state of deformation and stress in the crankshaft and camshaft and the state of loading of all gearing and bearings. (orig.) [Deutsch] Der Bericht beinhaltet die einer Analyse von Schwingungen im Raedertrieb eines Schiffsdieselmotors zugrundeliegende Theorie und Methodik. Beruecksichtigt wird die elastische Torsions- und Biegeverformung von mehrfach gelagerten Nockenwellen sowie das nichtlineare, instationaere Verhalten der Gleitlager. Verzahnungen werden durch spielbehaftete nichtlineare Kraftelemente ersetzt. Die Kopplung des Verbrennungsvorganges mit den Torsionsschwingungen des Kurbelwellenrades wird durch eine elastische Modellierung der Kurbelwelle sowie der Beruecksichtigung der thermodynamischen Gesetze des Verbrennungsvorganges hergestellt. Die Rueckwirkung der

  13. The New Grinding Process for Camshaft in Locomotive Engine%机车发动机用凸轮轴磨削新工艺

    Institute of Scientific and Technical Information of China (English)

    王歆令; 李静; 沈南燕; 何永义

    2013-01-01

    According to the geometric characteristics of camshaft in locomotive engine,this paper analyzed the difficulties and disadvantages of traditional grinding process that the concave arc of cam is machined by single type grinding wheel,thus a new grinding process that camshaft is machined by large size and small size grinding wheels was proposed.To avoid the concave arc when machining by large size grinding wheel and guarantee no vibration and impact,the reconstruction of concave arc and optimization of grinding carriage velocity were completed.The experimental results of grinding show that grinding accuracy and efficiency were improved by this new process,which demonstrates its feasibility.%针对机车发动机用凸轮轴几何特征,分析了传统磨削工艺中磨削全程使用一种型号的砂轮对凸轮轮廓的凹弧段进行加工的难点和弊端,提出了大小砂轮配合磨削凸轮轴的新工艺.实施过程中为了保证大砂轮避开凸轮轮廓的凹孤段且加工过程无振动冲击,完成了凸轮凹孤段轮廓重构以及砂轮架速度优化.磨削实验结果表明,采用该新工艺能提高凸轮轴磨削的精度和效率,具有很高的可行性.

  14. ''VaneCAM'' - the third generation of camshaft adjustment systems; ''VaneCAM'' - Nockenwellenversteller der dritten Generation

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, A. [Hydraulik-Ring GmbH, Nuertingen (Germany). Entwicklung Motorentechnik; Stephan, W. [Hydraulik-Ring GmbH, Nuertingen (Germany); Hannibal, W. [Fachhochschule Suedwestfalen, Iserlohn (Germany). Labor fuer Konstruktion und CAE-Anwendungen

    2002-04-01

    Continuously variable camphasers are now well established for modern spark-ignition engines in high-volume production. With the latest generation of camshaft adjustment systems using the vane-type actuator principle, it is possible to move rapidly and reliably through a large adjustment angle. The layout of these adjusting systems is very simple. The production costs are low in comparison to the first generation of camphasers using spur/helical gears to vary the valve timing. The new-generation systems are mechatronic, with the function depending on the coordination and tuning of hydraulic actuation and engine electronics. The term 'VaneCAM' is used for the continuously variable systems of this new generation supplied by Hydraulik-Ring in Nuertingen, Germany. (orig.) [German] Stufenlos wirkende Nockenwellenversteller haben sich an modernen Ottomotoren in den letzten Jahren in der Grossserie etabliert. Mit der neuesten Generation von Nockenwellenverstellern, die nach dem Schwenkmotor-Prinzip aufgebaut sind, lassen sich grosse Verdrehwinkel sehr schnell und betriebssicher verstellen. Der Aufbau dieser Versteller ist einfach, und die Herstellkosten sind gering im Vergleich zur ersten Generation von Verstellern. Bei den Systemen der neuen Generation handelt es sich um mechatronische Systeme, deren Funktion von dem Zusammenspiel und der Abstimmung von hydraulischer Ansteuerung und Motorelektronik abhaengt. Mit dem Begriff 'VaneCAM' werden die stufenlos wirkenden Systeme dieser neuen Generation von Hydraulik-Ring aus Nuertingen bezeichnet. (orig.)

  15. Secondary drive of an internal combustion engine for an air presser. Nebenantrieb einer Brennkraftmaschine fuer einen Luftpresser

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.

    1990-04-19

    The invention concerns an air presser propelled by a gearwheel and designed as a piston compressor. The drive gearwheel on the air presser crankshaft meshes with a gearwheel on the camshaft of the internal combustion engine. In the case of these drives, a negative torque of the air presser results when the top dead centre of the air presser piston is reached. This is accompanied by an unpleasant noise. In addition, the driving torque of the camshaft often has negative fractions. If the negative torque of the air presser is superposed by small or negative torques of the camshaft in the re-expansion phase additionally to the air presser wheel there will be a backward acceleration of the camshaft gear which propagates as impact into the rest of the gear drive. The invention prevents the backward acceleration of the camshaft wheel and minimizes stroke momentum and noise in the mesh of the camshaft wheel.

  16. Tracer techniques for the investigation of wear mechanisms in coated or surface-treated machine parts

    International Nuclear Information System (INIS)

    Goedecke, T.; Grosch, J.

    1990-01-01

    Tracer techniques allow wear measurement down to rates of only some μg/h, and these measurements can be done continuously within an inspection test run, not requiring dismantling of the parts to be examined. The measurements revealed the materials pair of a chilled cast iron camshaft and a hard metal coated rocker arm to be superior in terms of wear behaviour over the materials pair of a malleable cast iron camshaft with induction hardening and a rocker arm with hard chromium plating. The total wear of a chilled cast iron camshaft was measured to be approx. 90% less than that of the malleable cast iron camshaft, under equal loading conditions. With the rocker arms, this ratio is approx. 1:3. Another disadvantage of the latter pair is the overall wear ratio of 19:1. The best wear resistance was measured with a TiN-coated rocker arm combined with a chilled cast iron camshaft. (orig./MM) [de

  17. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Science.gov (United States)

    2010-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures and...

  18. 76 FR 9000 - Foreign-Trade Zone 29-Louisville, KY, Application for Expansion of Manufacturing Authority...

    Science.gov (United States)

    2011-02-16

    ..., springs, brackets, plates, filters, bearings, air pumps/compressors, valves, switches, electric motors, tubes/pipes/profiles, aluminum plugs, transformers, crankshafts, camshafts, gears, pulleys, couplings, clutches, parts of electric motors, pinions, magnets, ignition parts, diodes, transistors, resistors...

  19. 77 FR 74170 - Foreign-Trade Zone 84-Houston, TX; Notification of Proposed Production Activity; Mitsubishi...

    Science.gov (United States)

    2012-12-13

    ..., wrenches, hand tools, flexible tubing, engines, parts of engines, water boilers, control panels, control... forklift trucks, electric motors, hydraulic pumps, crankshafts, camshafts, crank regulators, terminals, insulators, transmissions/speed changers and related parts, axles, CV joints, commutators, gears, shafts...

  20. Propulsion and Power Rapid Response Research and Development (R&D) Support. Delivery Order 0011: Advanced Propulsion Fuels R&D, Subtask: Evaluation of 50/50 Hydroprocessed Renewable Jet Fuel and JP8 in the Ford 6.7L High-Pressure Common Rail Design Engine

    Science.gov (United States)

    2012-12-01

    47 42. AF7938 50/50 JP-8/HRJ, Rear Pump Body Camshaft Bushing ........................................... 48 iii Approved for public...release; distribution unlimited. LIST OF FIGURES (Cont’d) Figure Page 43. AF7938 50/50 JP-8/HRJ, Front Pump Body Camshaft Bushing ...atmosphere. A butterfly valve was used to regulate engine exhaust backpressure to the Ford recommended 11psi specification. • Emissions were

  1. Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine

    Science.gov (United States)

    Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang

    2018-01-01

    For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.

  2. Gear ratting noise reduction of diesel engine; Diesel engine no gear hauchi soon teigen

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Miura, Y [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    Gear raffling noise of diesel engine at idling condition is required to reduce for keeping quiet environment and comfort of driver and passengers on track and bus. Decrease of gear backlash is generally adopted for reducing gear rattling noise. On the other hand, it has been found that newly devised measurement of gear teeth speed and gear meshing error has clarified phenomena of gear rattling between the crankshaft gear and the camshaft gear of the diesel engine. And it has been also found that gear ratting noise is reduced by changing meshing between the crankshaft gear and the camshaft gear. 2 refs., 10 figs.

  3. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  4. Cam-Follower Mechanism Design for Narrow Loom Beat Up Motion ...

    African Journals Online (AJOL)

    The topology of the kinematics is developed by using the graph theory method of kinematic synthesis. The forces required to drive the plate-cam and follower system were modeled and the components such as the plate-cam, camshaft, the follower and the drive mechanism were synthesized for smooth operation of the ...

  5. Modeling and Investigation of Electromechanical Valve Train Actuator at simulated Pressure conditions

    DEFF Research Database (Denmark)

    Habib, Tufail

    2012-01-01

    In an electromechanical valve actuated engine, the valves are driven by solenoid-type actuators and cam-shaft is eliminated. Control of each valve provides flexibility in valve timings over all engine conditions and achieves the benefits of variable valve timing(VVT). This paper is about investig...

  6. Motion and Stress Analysis of Cam System for Marine Diesel Engine 93 KW

    Directory of Open Access Journals (Sweden)

    Christian Dhani Setiawan

    2017-01-01

    Full Text Available The developments of maritime sector in Indonesia shows increasing demand for ships. Especially ships with size of 30 GT has problem with low availability of the ship engine, which most of the ships still use non marine diesel engine as its main propulsion. The problem gives interest to make a step to improve by design marine diesel engine using reverse engineering method. Cam system of marine diesel engine design was needed to be calculate to select the material and the motion. The design of cam system needs study about the stress analysis in cam system to make sure the distribution of force and moment. The result of stress analysis was used to select material of components in cam system. The motion analysis result was used to be input data of stress analysis. The condition to obtain the stress of components was on maximum condition, its contain pressure, torque, rotation, and force. All component that calculated are camshaft, lifter (flat-tappet, push rod, rocker arm, spring, and valve. Each component was given two different materials and material selection was based on safety factor of each component. Material for camshaft and lifter were malleable cast iron, for push rod and rocker arm were mild steel, for spring was ASTM A231, for intake valve was steel JIS SUH3, and for exhaust valve was steel JIS SUH35. The result of motion analysis were angular velocity of camshaft with value was 2400 deg/sec, friction force between camshaft and lifter with maximum value was 125.393 N, and contact force between camshaft and lifter with maximum value was 845.307 N, and linear velocity of intake valve with maximum value was 696.573 mm/s, and linear velocity of exhaust valve was 463.734 mm/s.

  7. Diagnostic for two-mode variable valve activation device

    Science.gov (United States)

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  8. design analysis of cam-follower system for beat up motion

    African Journals Online (AJOL)

    User

    A cam swing roller-follower mechanism is designed for the beat-up motion of a horizontal narrow loom. The system consists of a radial plate-cam driven by a camshaft keyed to the plate cam. A slay bar which act as the beater is attached to the radial swing roller-follower and assembled on the plate cam. A continuous ...

  9. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  10. Design And Analysis Of A Camless Valve Mechanism For I.C Engines Using Rotary Disc Valves

    Directory of Open Access Journals (Sweden)

    Vivek Jitendra Panchal

    2017-09-01

    Full Text Available It is the object of the presented paper to provide an electromechanical rotary valve actuating system for opening and closing valves of an internal combustion engine capable of separately controlling both the inlet and exhaust valve operations of each individual cylinder in a multi-cylinder engine. This indicates that only one valve will be required for each cylinder of the engine. Previously published versions of this concept require a separate valve for intake and exhaust in each cylinder. The system provides an alternative to the camshaft assembly in an attempt to overcome the limitations and inadequacies inevitably posed by a fully mechanical system. The prototype development is approached in a theoretical manner beginning with the conceptualization and design of a rotating disk with a notches and corresponding closure surfaces to open and close the flow path. The actuated disk and notch design is then refined and followed by the design of an inlet and exhaust manifold to correspond to the valve design and the theorizing and design of a sealing gasket. The rotating speed of the valve is determined by a general idling speed and can be varied to provide variable valve timing with the motor. The final assembly eliminates a majority of the moving parts currently used in camshaft systems like the cam camshaft rocker arm push rod and springs and results in a significantly lighter valve actuation system. By eliminating the translatory motion of valves the problem of valves slamming on the valve seats at high velocities is eliminated thus greatly reducing engine wear.

  11. A study of fluid flow and combustion with variable valve timing

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, F

    1998-10-01

    The effects of variable valve timing (VVT) were examined by in-cylinder Laser Doppler Velocimetry flow measurements and heat-release calculations. A single-cylinder Volvo B5254 engine was used for all experiments and the valve timing was altered by phasing or exchanging the camshaft. Special cam lobes were developed for simulation of throttle-less operation. With the standard double camshaft, a tumbling flow was generated and with valve deactivation, a swirling flow was generated. The turbulence was increased with valve deactivation. This increased the combustion rate making lean burn possible. The standard camshaft with inlet valve deactivation and late cam phasing had a faster combustion at {lambda} = 1.8 than the standard camshaft with normal cam phasing at {lambda} = 1.0. Early and late inlet valve closing was used for enabling throttle-less operation. Early inlet valve closing (EIVC) generated a very slow tumble with low turbulence. Late inlet valve closing generated both very high and low turbulence. The net indicated efficiency was improved with up to 10%. Some reduction was observed for the gross indicated efficiency, due to a too large reduction in effective compression ratio. A very stable combustion was obtained for EIVC with gasoline, possibly due to a sheering flow over the inlet valves resulting in improved fuel-air preparation. Wavelet analysis was used for dividing LDV flow measurements into time and frequency resolved information. The technique rendered the same flow results as the moving window technique, but with a separation of the turbulence into different frequencies. The choice of wavelet was shown not to be crucial. The frequency resolved turbulence was studied for tumble and swirl. A tumbling flow had a larger transfer of energy from low frequency turbulence into high frequency turbulence than a swirling flow. This is caused by the tumble breakdown. A correlation against heat-release indicated that high frequency turbulence have a larger

  12. Cylinder head fastening structure for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Futakuchi, Y.; Oshiro, N.

    1988-01-26

    In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.

  13. The new Toyota variable valve timing and lift system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Fuwa, N.; Yoshihara, Y. [Toyota Motor Corporation (Japan); Hori, K. [Toyota Boshoku Corporation (Japan)

    2007-07-01

    A continuously variable valve timing (duration and phase) and lift system was developed. This system was applied to the valvetrain of a new 2.0L L4 engine (3ZRFAE) for the Japanese market. The system has rocker arms, which allow continuously variable timing and lift, situated between a conventional roller-rocker arm and the camshaft, an electromotor actuator to drive it and a phase mechanism for intake and exhaust camshafts (Dual VVT-i). The rocking center of the rocker arm is stationary, and the axial linear motion of a helical spline changes the initial phase of the rocker arm which varies the timing and lift. The linear motion mechanism uses an original planetary roller screw and is driven by a brushless motor with a built-in electric control unit. Since the rocking center and the linear motion helical spline center coincide, a compact cylinder head design was possible, and the cylinder head is a common design with a conventional engine. Since the ECU controls intake valve duration and timing, a fuel economy gain of maximum 10% (depending on driving condition) is obtained by reducing light to medium load pumping losses. Also intake efficiency was maximized throughout the speed range, resulting in a power gain of 10%. Further, HC emissions were reduced due to increased air speed at low valve lift. (orig.)

  14. Parameter design and performance analysis of shift actuator for a two-speed automatic mechanical transmission for pure electric vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-08-01

    Full Text Available Recent developments of pure electric vehicles have shown that pure electric vehicles equipped with two-speed or multi-speed gearbox possess higher energy efficiency by ensuring the drive motor operates at its peak performance range. This article presents the design, analysis, and control of a two-speed automatic mechanical transmission for pure electric vehicles. The shift actuator is based on a motor-controlled camshaft where a special geometric groove is machined, and the camshaft realizes the axial positions of the synchronizer sleeve for gear engaging, disengaging, and speed control of the drive motor. Based on the force analysis of shift process, the parameters of shift actuator and shift motor are designed. The drive motor’s torque control strategy before shifting, speed governing control strategy before engaging, shift actuator’s control strategy during gear engaging, and drive motor’s torque recovery strategy after shift process are proposed and implemented with a prototype. To validate the performance of the two-speed gearbox, a test bed was developed based on dSPACE that emulates various operation conditions. The experimental results indicate that the shift process with the proposed shift actuator and control strategy could be accomplished within 1 s under various operation conditions, with shift smoothness up to passenger car standard.

  15. Manufacturing technology development of plasma/ion nitriding for improvement of hardness of machine components and tools

    International Nuclear Information System (INIS)

    Suprapto; Tjipto Sujitno; Saminto

    2015-01-01

    The manufacturing technology development of plasma/ion nitriding to improve of hardness of machine components and tools has been done. The development of this technology aims to improve device performance plasma nitriding double chamber and conducted with the addition of thermal radiation shield. Testing was done by testing for preheating operation (start-up), test operation for conditions nitriding and test for nitriding process. The results show that: the plasma nitriding device can be operated for nitriding process at the temperature of about 500 °C for 6 hours, using the thermal radiation shield obtained outside wall temperature of about 65 °C and shorten start-up time to about 60 minutes. The use of thermal radiation shield can also improve the efficiency of the electric power supply and increase the operating temperature for nitriding process. Test for nitriding obtained increase of hardness 1.33 times for the original camshaft (genuine parts) and 1.8 times for the imitation camshaft (imitation parts), the results are compared with after the tempering process at a temperature of 600 °C. For sample SS 304 was 2.45 times compared with before nitrided These results indicate that the development of manufacturing technology of plasma/ion nitriding to increase hardness of machine components and tools have been successfully able to increase the hardness, although still need to be optimized. Besides that, these devices can be developed to use for the process of carburizing and carbonitriding. (author)

  16. Vehicular engine design

    CERN Document Server

    Hoag, Kevin

    2016-01-01

    This book provides an introduction to the design and mechanical development of reciprocating piston engines for vehicular applications. Beginning from the determination of required displacement and performance, coverage moves into engine configuration and architecture. Critical layout dimensions and design trade-offs are then presented for pistons, crankshafts, engine blocks, camshafts, valves, and manifolds.  Coverage continues with material strength and casting process selection for the cylinder block and cylinder heads. Each major engine component and sub-system is then taken up in turn, from lubrication system, to cooling system, to intake and exhaust systems, to NVH. For this second edition latest findings and design practices are included, with the addition of over sixty new pictures and many new equations.

  17. Application of radionuclide techniques to study the wear behaviour of peripherally treated and coated components

    International Nuclear Information System (INIS)

    Hirsch, E.; Mayer, K.H.; Rodrian, U.; Scheidemantel, N.; Schweizer, R.

    1990-07-01

    Technically and economically important machinery components (helical gear wheels, camshafts, rams, valve rockers) were to be optimized with regard to their wear behaviour under operation-oriented load conditions, and the process parameters required both for peripheral layer heating and surface coating were to be determined. Based on earlier experiments, the treatment parameters and the basic materials were varied. The layer structure was studied, characterized and correlated wi the wear behaviour. The wearing parts were activated in the reactor by thermal neutrons, or in the cyclotron by charged particles. By labelling various parts by means of different radioisotopes, up to three components may be measured at the same time in practice, provided that the circumstances are favourable. (BBR) [de

  18. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    International Nuclear Information System (INIS)

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the 3 He solute in a superfluid 3 He-- 4 He solution. At low temperatures, the superfluid 4 He is in its quantum ground state, and therefore is thermodynamically inert, while the 3 He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the 3 He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the 3 He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs

  19. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    Science.gov (United States)

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  20. Design type air engine Di Pietro

    Directory of Open Access Journals (Sweden)

    Zwierzchowski Jaroslaw

    2017-01-01

    Full Text Available The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors’ distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  1. Design type air engine Di Pietro

    Science.gov (United States)

    Zwierzchowski, Jaroslaw

    The article presents a pneumatic engine constructed by Angelo Di Pietro. 3D solid models of pneumatic engine components were presented therein. A directional valve is a key element of the control system. The valve functions as a camshaft distributing air to particular engine chambers. The construction designed by Angelo Di Pietro is modern and innovative. A pneumatic engine requires low pressure to start rotary movement. With the use of CFD software, the fields of velocity vectors' distribution were determined. Moreover, the author determined the distribution of pressure values in engine inlet and outlet channels. CFD model studies on engine operation were conducted for chosen stages of operating cycles. On the basis of simulation tests that were conducted, the values of flow rates for the engine were determined. The distribution of pressure values made it possible to evaluate the torque value on the rotating shaft.

  2. Research and industrialization of near-net rolling technology used in shaft parts

    Science.gov (United States)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  3. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  4. The new 1.8 l TFSI engine from Audi. Pt. 1. Base engine and thermomanagement

    Energy Technology Data Exchange (ETDEWEB)

    Eiser, Alex; Jung, Michael; Adam, Stephan [Audi AG, Ingolstadt (Germany). Engine Development Dept.; Doerr, Joachim [Audi AG, Ingolstadt (Germany). Longitudinally Mounted Engines Dept.

    2011-06-15

    The launch of the new 1.8 l TFSI engine marks the third generation of the successful four-cylinder gasoline engine family from Audi. It has been completely revised in order to meet ambitious CO{sub 2} targets and ensure compliance with future Euro 6 emissions standards. The new generation features numerous innovative technologies, including an exhaust gas cooling system integrated into the cylinder head, a dual fuel injection system with direct and port-fuel injection as well as the Audi valvelift system with twin camshaft adjustment. A new-style fully electronic coolant control also enables an innovative thermomanagement system to be implemented. This first part of the article details the base engine and the thermomanagement system of the new engine. The second part of the article, which will be published in MTZ 7/8, covers the mixture formation, the combustion method and the turbocharging. (orig.)

  5. application

    Directory of Open Access Journals (Sweden)

    S.-Y. Chiang

    2001-01-01

    Full Text Available The bottleneck of a production line is a machine that impedes the system performance in the strongest manner. In production lines with the so-called Markovian model of machine reliability, bottlenecks with respect to the downtime, uptime, and the cycle time of the machines can be introduced. The two former have been addressed in recent publications [1] and [2]. The latter is investigated in this paper. Specifically, using a novel aggregation procedure for performance analysis of production lines with Markovian machines having different cycle time, we develop a method for c-bottleneck identification and apply it in a case study to a camshaft production line at an automotive engine plant.

  6. Investigation of the Swirl Effect on Engine Using Designed Swirl Adapter

    Directory of Open Access Journals (Sweden)

    Mohiuddin AKM

    2011-12-01

    Full Text Available Swirl is the rotational flow of charge within the cylinder about its axis. The engine used in this investigation is a basic Double Overhead Camshaft (DOHC which has a capacity of 1597 cc and installed with a total of 16 valves developed by Malaysian car manufacturer PROTON. The swirl adapter is placed inside the intake port of the Engine. The Adapter angle is set to 30o to force the charge to bounce off the wall of the port to create swirl. The objective of this paper is to find the effect of swirl on the engine and to compare it with the normal turbulence mixing process. The swirl effect analysis is done by using the GT-SUITE which has a standard swirl flow embedded in the software. The effect is simulated on the GT-SUITE and it is found that the swirl affects the engine in reducing the fuel consumption and increasing the volumetric efficiency. The experimental result shows that the effect of swirl increases the power as well as torque in the idle and cruising speed conditions in comparison with normal turbulence. But it decreases rapidly in the acceleration speed. This happens due to the inability of the swirl adapter to generate swirl at higher wind flow velocity during the higher throttle opening condition.ABSTRAK: Pusar merupakan aliran putaran cas melingkungi silinder pada paksinya. Enjin yang digunakan untuk penyelidikan ini merupakan Enjin Aci Sesondol Stas Kembar (Double Overhead Camshaft (DOHC asas, yang mempunyai kapasiti 1597 cc. Ia dipasangkan dengan 16 injap yang dibangunkan oleh pembuat kereta Malaysia, PROTON. Penyesuai pusar diletakkan di dalam masukan liang enjin. Sudut penyesuai di tetapkan pada 30o untuk memaksa cas supaya melantun kepada dinding liang agar membentuk pusaran. Tujuan tesis ini ditulis adalah untuk mendapatkan kesan pusar ke atas enjin dan membandingkannya dengan proses percampuran gelora normal. Analisis kesan pusaran dilakukan dengan menggunakan GT-SUITE yang mempunyai aliran pusar yang telah dipiawaikan di

  7. Využití simulačního modelování v programu SIMUL8 ke zlepšení podnikových procesů

    Directory of Open Access Journals (Sweden)

    Martina Kuncová

    2017-12-01

    Full Text Available Simulation is a method used for studying complex systems that are not solvable with standard analytical techniques. Main advantage of the simulation modelling is the fact that all changes are made in virtual reality, in simulation software, without the necessity of the change in real life situation. As it is hard to follow and analyze all the processes in a company, the simulation model can be a good solution for the analysis. To perform the simulation it is necessary to map the whole process including the sequencing of activities and then set the rules for the movement of entities between the activities. Entities are dynamic objects (customers, products, documents moving through the processes and using various resources. Afterwards all resources required or used by entities must be defined and the probability distributions of activities’ times must be selected. Business processes can be modeled in software aimed at discrete event simulation principle. SIMUL8 belongs to these types of software. This contribution describes the use of the simulation model in different situation under the support of SIMUL8 software. All the examples described above (model of the administration processes in vehicle register system, model of the shields production system, model of the camshafts production show how the model can help to study the system and to analyze the influence of the higher demand, higher production or other changes on the capacity utilization in the system. According to the simulation results some recommendations for the company relating workers, machines or processes could be made.

  8. The new BMW four-cylinder four-valve engine. Der neue BMW-Vierzylinder-Vierventilmotor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, K.H.; Ederer, G.; Frerk, J.; Kramer, F.

    1989-09-01

    BMW offers with the 318is a new sporty 3 series model since September 1989. This new BMW is equipped with a new 1.8-l-four-valve engine, which had been developed on the basis of the 1.8-l-two-valve engine. Technical features are two overhead camshafts driven by a duplex chain drive, bucket tappet control with integrated hydraulic valve clearance compensation and a distributorless direct fire ignition system. In addition to the increase of the maximum output to 100 kW the advantages of the four-valve-technique have been used to achieve a remarkable low end troque characteristic. The maximum bmep of 1.2 kJ/dm{sup 3} (corresponds to172 Nm) at an engine speed of 4600 rpm is a notable level for a catalitic converter model. Extraordinary development work in the lay out of mixture preparation, combustion process and exhaust gas treatment in general resulted in more favourable emissions and fuel consumption figures compared with two valve engines. (orig.).

  9. The possibility of controlled auto-ignition (CAI) in gasoline engine and gas to liquid (GTL) as a fuel of diesel engine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, D. [Korea Inst. of Machinery and Materials, Daejou (Korea)

    2005-07-01

    A significant challenge grows from the ever-increasing demands for the optimization of performance, emissions, fuel economy and drivability. The most powerful technologies in the near future to improve these factors are believed Controlled Auto-Ignition (CAI) in gasoline engine and Gas to Liquid (GTL) as a fuel of Diesel engine. In recent years there has been an increasing trend to use more complex valvetrain designs from traditional camshaft driven mechanical systems to camless electromagnetic or electrohydraulic solutions. Comparing to fixed valve actuation systems, variable valve actuation (VVA) should be powerful to optimize the engine cycle. The matching of valve events to the engine performance and to emission requirements at a given engine or vehicle operating condition can be further optimized to the Controlled Auto-Ignition (CAI) in gasoline engine, which has benefits in NOx emission, fuel consumption, combustion stability and intake throttle load. In case of Diesel engine, the increasing demands for NOx and soot emission reduction have introduced aftertreatment technologies recently, but been in need of basic solution for the future, such as a super clean fuel like Gas to Liquid (GTL), which has benefits in comparability to diesel fuel, independency from crude oil and reduction of CO, THC and soot emissions. Korea looks to the future with these kinds of technologies, and tries to find the possibility for reaching the future targets in the internal combustion engine. (orig.)

  10. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. I. Development of ceramic-metal joint by brazing method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Continuously contacting with camshaft, the face of Valve Lifter, made of cast iron, brings about abnormal wear such as unfair wear or early wear because it is heavily loaded in the valve train system as the engine gets more powered. This abnormal sear becomes a defect namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close action of engine valve in the combustion chamber. The imperfect combustion, in the end, results in the major causes of air pollution and decrease of the engine output. Consequently, to prevent this wear, this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200, the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150 MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM and EDS, Optical microscope. Also, 2,500 hours, high speed(3,000{approx}4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to the casting valve lifter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  11. Present status and future trends for ceramic parts and engines

    International Nuclear Information System (INIS)

    Kawamura, H.

    1987-01-01

    The author feels that there have been subtle changes in the direction of ceramic engine research in years. Before then, the emphasis was to develop countermeasures to overcome the disappointing performance of adiabatic engines which were made using partially stabilized zirconia. Current interest focuses on finding appropriate applications, namely those which make effective use of ceramic properties, and developing new materials suitable for adiabatic engines. Partially stabilized zirconia in the adiabatic diesel loses its strength around 800 degrees C. On the other hand, silicon nitride has demonstrated the ability to withstand thermal shock because of its high rupture strength. Other new materials are alumina zirconia and alumina titanium (Al 2 TiO 3 ). The latter has both good thermal and rupture strength properties, making it suitable for adiabatic engines. Also important are new or improved metal-ceramic joining technologies needed for camshafts, pistons, rocker arms and supercharger rotor blades. Another reason for the failure of the previous ceramic adiabatic engine was the inherent inability of the engine design to make use of the excess heat generated in the combustion chamber. In order to overcome this difficulty, a new type of adiabatic turbo-compound engine has been considered. A turbocharger-type energy recovery system is installed at the engine exhaust, and its power output is fed back to the crankshaft through an elaborate generator/motor system in lieu of the traditional gear train system. The generator speed is regulated to achieve the maximum exhaust gas turbine efficiency

  12. Commande en boucle fermee sur un profil d'aile deformable dans la soufflerie Price-Paidoussis

    Science.gov (United States)

    Brossard, Jeremy

    The purpose of the ATR-42 project is to apply the concept of morphing wings by fabricating a morphing composite wing model of the Regional Transport Aircraft-42 to reduce drag and improve the aerodynamic performance. A control-command system coupled to an actuator mechanism will morph the wing skin. However, for best results, the control of the deformation must be studied carefully to insure the precision. Thus, a dual digitalexperimental approach is required. The solution proposed in this paper focuses on the controlled deformation of the upper wing of the ATR-42. A composite wing model with morphing capabilities was built and tested in the wind tunnel to evaluate its aerodynamic performance and serve as reference. A deformation mechanism, consisting of two engines and two camshafts, was subsequently designed and integrated within this model to obtain the optimum wing shapes according to the different flight condition. A control loop position was modeled in Matlab / Simulink and implemented experimentally to control the mechanism. Two types of results have been obtained. The first set concerned regulation and the second concerned aerodynamics. The control loop has achieved the desired skin displacement with an accuracy of 5%. Deformations of the upper skin were performed by a actuation system driven by motors, limitations supply were assured by the regulation architecture. For several flight conditions, the pressure measurements, validated with simulation results, have confirmed a reduction of the induced drag, compared to the original ATR-42 airfoil drag reduction.

  13. The new engine generation of the R4 TFSI from Audi; Die neue Motorengeneration des R4 TFSI von Audi

    Energy Technology Data Exchange (ETDEWEB)

    Heiduk, T.; Dornhoefer, R.; Eiser, A.; Grigo, M.; Pelzer, A.; Wurms, R [Audi AG, Ingolstadt (Germany)

    2011-07-01

    The new 1.8l TFSI engine in the Audi B8 family (A4, A5) is the third generation of the fourcylinder inline TFSI technology to be launched onto the market by Audi. The engine has been completely revised in order to meet ambitious CO2 targets and ensure compliance with future EU6 emissions standards. The development also incorporated other strategic objectives, such as cross-market applicability and integration into the VW Group's worldwide manufacturing network, as ongoing key elements of the EA888 global engine family. The new generation features numerous innovative technologies, including a cooled exhaust manifold integrated into the cylinder head, a combined FSI/MPI fuel injection system with 200 bar high-pressure injection, and the Audi valve lift system [1, 2] on the exhaust side in combination with an exhaust camshaft adjuster. A particular highlight is the world's first deployment of an entirely newly developed rotary slide control system to implement intelligent thermo-management. Bringing together all the fundamental revisions to components with a view to optimising thermodynamics, friction and weight, the first embodiment of this new engine generation - the 1.8l TFSI - represents a new benchmark in its class in terms of fuel efficiency and performance. (orig.)

  14. Control of fast non linear systems - application to a turbo charged SI engine with variable valve timing; controle des systemes rapides non lineaires - application au moteur a allumage commande turbocompresse a distribution variable

    Energy Technology Data Exchange (ETDEWEB)

    Colin, G.

    2006-10-15

    Spark ignition engine control has become a major issue for the compliance with emissions legislation while ensuring driving comfort. Engine down-sizing is one of the promising ways to reduce fuel consumption and resulting CO{sub 2} emissions. Combining several existing technologies such as supercharging and variable valve actuation, down-sizing is a typical example of the problems encountered in Spark Ignited (SI) engine control: nonlinear systems with saturation of actuators; numerous major physical phenomena not measurable; limited computing time; control objectives (consumption, pollution, performance) often competing. A methodology of modelling and model-based control (internal model and predictive control) for these systems is also proposed and applied to the air path of the down-sized engine. Models, physicals and generics, are built to estimate in-cylinder air mass, residual burned gases mass and air scavenged mass from the intake to the exhaust. The complete and generic engine torque control architecture for the turbo-charged SI engine with variable cam-shaft timing was tested in simulation and experimentally (on engine and vehicle). These tests show that new possibilities are offered in order to decrease pollutant emissions and optimize engine efficiency. (author)

  15. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    Science.gov (United States)

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  16. Dictionary of engines. The internal combustion engine from A-Z; Lexikon Motorentechnik. Der Verbrennungsmotor von A-Z

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, F. (ed.); Basshuysen, R. van

    2004-04-01

    This dictionary describes current engine technology and gives an outlook to the future. Cross-references, broader and narrower terms ensure optimal user guidance. Entries do not stand alone but provide content-oriented information. About 4,500 terms are included from A-Z, providing an outline of subjects like exhaust systems, acoustics, supercharging, combustion chamber, injection systems, control, flame propagation, mixing, catalytic converters, pistons, fuels, cooling, crank casing, stratified charging, lambda control, camshaft, oil, particulate filters, sensors/actuators, pollutants, valves, combustion processes, efficiency, ignition, cylinder head. The dictionary is for development engineers in the motor car industry, in component and system development in the supply industry, university teachers and students, foremen in motor car repair shops, etc. (orig.) [German] Das Lexikon Motorentechnik ist ein Nachschlagewerk, das die aktuelle Motorentechnik umfassend beschreibt und Ausblicke in der Zukunft ermoeglicht. Das ausgefeilte System aus Querverweisen fuehrt alle Unterbegriffe zum Hauptbegriff und ermoeglicht so eine optimale Benutzerfuehrung. Dadurch stehen die Stichwoerter nicht isoliert, sondern es werden inhaltlich zusammenhaengende Betrachtungen moeglich. Der Inhalt umfasst 4 500 Begriffe von A-Z wie z.B.: Abgastechnik, Akustik, Aufladung, Brennraum, Einspritzsysteme, Elektronische Motorsteuerung, Flammenausbreitung, Gemischbildung, Katalysator, Kolben, Kraftstoff, Kuehlung, Kurbelgehaeuse, Kurbeltrieb, Ladungswechsel, Lambda-Regelung, Nockenwelle, Oel, Partikelfilter, Sensoren/Aktuatoren, Schadstoffe, Ventiltrieb, Verbrennungsverfahren, Wirkungsgrad, Zuendung, Zylinderkopf. Die Zielgruppen waeren Ingenieure in Motoren- und Fahrzeugentwicklung der Automobilindustrie, Ingenieure in der Komponenten- und Systementwicklung der Zuliefererindustrie, Professoren und Studenten an Hochschulen mit Schwerpunkt Kraftfahrzeugtechnik, Meister in Kfz-Werkstaetten. (orig.)

  17. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a ‘made-from’ approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special

  18. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  19. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  20. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.

  1. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  2. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    International Nuclear Information System (INIS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A.E.; Engelhardt, M.

    2005-01-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2x10 7 cm -2 s -1 , which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300x1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points

  3. PARAMETER DETERMINATION FOR ADDITIONAL OPERATING FORCE MECHANISM IN DEVICE FOR PNEUMO-CENTRIFUGAL MACHINING OF BALL-SHAPED WORKPIECES

    Directory of Open Access Journals (Sweden)

    A. A. Sukhotsky

    2014-01-01

    Full Text Available The paper describes development of the methodology for optimization of parameters for an additional operating force mechanism in a device for pneumo-centrifugal machining of glass balls. Specific feature in manufacturing glass balls for micro-optics in accordance with technological process for obtaining ball-shaped workpieces is grinding and polishing of spherical surface in a free state. In this case component billets of future balls are made in the form of cubes and the billets are given preliminary a form of ball with the help of rough grinding. An advanced method for obtaining ball-shaped work-pieces from brittle materials is a pneumocentrifugal machining. This method presupposes an application of two conic rings with abrasive working surfaces which are set coaxially with large diameters to each other and the billets are rolled along these rings. Rotation of the billets is conveyed by means of pressure medium.The present devices for pneumo-centrifugal machining are suitable for obtaining balls up to 6 mm. Machining of the work-pieces with full spherical surfaces and large diameter is non-productive due to impossibility to ensure a sufficient force on the billet in the working zone. For this reason the paper proposes a modified device where an additional force on the machined billet is created by upper working disc that is making a reciprocating motion along an axis of abrasive conic rings. The motion is realized with the help of a cylindrical camshaft mechanism in the form of a ring with a profile working end face and the purpose of present paper is to optimize parameters of the proposed device.The paper presents expressions for calculation of constitutive parameters of the additional operating force mechanism including parameters of loading element motion, main dimensions of the additional operating force mechanism and parameters of a profile element in the additional operating force mechanism.Investigation method is a mathematical

  4. A tool for Load Modeling in Induction Hardening Equipment Driven by Power Semiconductor Systems

    International Nuclear Information System (INIS)

    Suarez Antola, R.; Suarez Bagnasco, D.

    2006-01-01

    Kelvin effect (Skin effect) is used in surface hardening produced by induction heating of gears, camforms, camshafts and other work pieces of fairly complex geometries.The induction heating equipment for surface hardening of metals and alloys (using LF or medium frequencies in the jargon of induction heating) is composed by a coil or coil assembly and a power semiconductor driving system up to 50kHz. The load seen by the driving system is equivalent to a transformer. The primary corresponds to the excitation coil or coil assembly, and the work piece corresponds to a short-circuited secondary. To asses the electrical load it is necessary to determine the variations in skin depth from place to place due to local curvature effects in the work piece, and its variations in space and time due to variations in conductivity and magnetic properties coupled with thermal effects. In these and others technical applications of Kelvin effect it is often necessary to be able to relate local skin depths with local curvatures of the surface of electrically conductive bodies.The purpose of this paper is twofold. First, derive a closed form analytical formula that relates the local skin depth with the local mean curvature and the well known skin depth for a flat conductive body. The limits of applicability of this formula are discussed. The predicted skin depths are compared with available experimental results obtained in the framework of surface hardening processes. Second, apply the above mentioned formula to describe the electrical load of the induction heating equipment in the conditions used for surface hardening. In the choice or design of an induction heating system the parameters of the intended process (depth of Kelvin effect, temperatures to be reached and duration of the heating process, amongst others) put restrictions over the coils and the power driving system. To determine the best shape and size of induction coils or coil assemblies, the complex thermal and

  5. Los batanes hidráulicos de la cuenca del Guadalquivir a fines de la Edad Media. Explotación y equipamiento técnico

    Directory of Open Access Journals (Sweden)

    Cordóba de la Llave, Ricardo

    2011-12-01

    Full Text Available This paper aims to be a technological analysis of the waterpowered fulling mills working in the Guadalquivir basin in the Late Middle Ages. After briefl y reviewing the process of fulling woollen cloth, this paper focuses on the discussion about the origin and spread of fulling mills in Europe and the Iberian Peninsula. It then describes the features of their architecture and it looks at the places where they were located on the most important rivers of the basin. The main chapter is devoted to studying how they worked, analyzing the systems used for making better use of water-power (dams, channels, vertical water wheels and camshafts and the various components or pieces of machinery (castle, beams, triphammers, stack. The study ends with a brief refl ection on the technology used in the mills.

    El presente trabajo tiene por objeto el análisis tecnológico de los batanes hidráulicos que funcionaron en la cuenca del Guadalquivir a fi nes de la Edad Media. Tras repasar brevemente el proceso de abatanado de los paños de lana, el artículo se centra en la discusión acerca del origen y difusión del batán hidráulico en Europa y en la Península Ibérica. A continuación se describen los rasgos de su arquitectura y se exponen los lugares donde se ubicaron en los ríos más importantes de la cuenca. El capítulo principal es el dedicado a estudiar su funcionamiento, analizando los sistemas empleados para el aprovechamiento de la energía hidráulica (presas, canales, ruedas hidráulicas y árbol de levas y los diversos componentes o piezas de la maquinaria (castillo, astiles, mazos, pila. Una breve refl exión sobre la pervivencia a lo largo de los siglos de la tecnología utilizada en los batanes cierra el trabajo.

  6. The effects of novel surface treatments on the wear and fatigue properties of steel and chilled cast iron

    Science.gov (United States)

    Carroll, Jason William

    Contact fatigue driven wear is a principal design concern for gear and camshaft engineering of power systems. To better understand how to engineer contact fatigue resistant surfaces, the effects of electroless nickel and hydrogenated diamond-like-carbon (DLC) coatings on the fatigue life at 108 cycles of SAE 52100 steel were studied using ultrasonic fatigue methods. The addition of DLC and electroless nickel coatings to SAE 52100 bearing steel had no effect on the fatigue life. Different inclusion types were found to affect the stress intensity value beyond just the inclusion size, as theorized by Murakami. The difference in stress intensity values necessary to propagate a crack for Ti (C,N) and alumina inclusions was due to the higher driving force for crack extension at the Ti (C,N) inclusions and was attributed to differences in the shape of the inclusion: rhombohedral for the Ti (C,N) versus spherical for the oxides. A correction factor was added to the Murakami equation to account for inclusion type. The wear properties of DLC coated SAE 52100 and chilled cast iron were studied using pin-on-disk tribometry and very high cycle ultrasonic tribometry. A wear model that includes sliding thermal effects as well as thermodynamics consistent with the wear mechanism for DLCs was developed based on empirical results from ultrasonic wear testing to 108 cycles. The model fit both ultrasonic and classic tribometer data for wear of DLCs. Finally, the wear properties of laser hardened steels - SAE 8620, 4140, and 52100 - were studied at high contact pressures and low numbers of cycles. A design of experiments was conducted to understand how the laser processing parameters of power, speed, and beam size, as well as carbon content of the steel, affected surface hardness. A hardness maximum was found at approximately 0.7 wt% carbon most likely resulting from increased amounts of retained austenite. The ratcheting contact fatigue model of Kapoor was found to be useful in

  7. Comparative study in LTC Combustion between a short HP EGR loop without cooler and a variable lift and duration system

    Energy Technology Data Exchange (ETDEWEB)

    Bression, Guillaume; Pacaud, Pierre; Soleri, Dominique; Cessou, Jerome [IFP (France); Azoulay, David [Renault Powertrain Div. (France); Lawrence, David [Mechadyne (United Kingdom); Doradoux, Laurent; Guerrassi, Noureddine [Delphi Diesel Systems (France)

    2008-07-01

    In order to reach future Diesel emission standards such as Euro 6 or Tier 2 Bin 5, NO{sub x} emissions need to be dramatically reduced. Advanced technologies and engine settings such as higher EGR rates, reduced compression ratio, EGR cooler and low-pressure EGR loop - depending on vehicle application - may help to reach this target whilst maintaining low CO{sub 2} emissions and fuel consumption. However, the resulting low combustion temperatures and the low air-fuel ratios lead to a significant increase in HC and CO emissions, especially during the start-up phase prior to catalyst light-off. Moreover, high levels of EGR make transient operation even more difficult. So HC-CO emissions and EGR transient operation represent two key issues that could limit the extension of this alternative combustion mode. Consequently, an in-depth investigation of a variable lift and duration (VLD) system was performed to overcome these problems on a 4-cylinder engine, which was also equipped with a dual HP-LP EGR loop. The VLD system tested in this paper produces a variable camshaft-operated exhaust valve re-opening, which is controlled by a hydraulic rotary actuator, ensuring quick and accurate regulation of the internal gas recirculation (IGR). By increasing gas temperature in the combustion chamber, this advanced technology allows us to reduce HC-CO emissions by 50% under 3 bar BMEP. Although efficient, this technology has to be compared with other solutions from a cost-to-value point of view. The aim of this paper is firstly to compare the double lift exhaust system with a short route high-performance EGR loop without cooler by quantifying their respective gains on steady state points of the NEDC cycle, then by evaluating their potential performances during transient conditions. With the short-route EGR, the potential in HC-CO emission reduction remains significant on a large scale of engine temperatures representative of engine warm up. However, the VLD system allows us to

  8. The new L4 gasoline engines with VALVEMATIC system

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Jun; Yamada, Tetsu; Watanabe, Kenji [Toyota Motor Corporation, Aichi (Japan)

    2008-07-01

    Reduction of CO{sub 2} emissions is one of the major responsibilities of car manufacturers. It is an especially urgent task to develop new technologies with a simple, compact and widely applicable mechanism which can be used for middle class engines of mass volume production category. Toyota has developed a continuously variable valve timing and lift control system called 'VALVEMATIC'. By implementing this system fuel consumption can be improved by using smaller valve lift during low and middle engine loads (reduction of pumping loss by closing the intake valve earlier). The system consists of a special rocker arm which realizes continuously variable valve timing and lift. It is located between a conventional roller-rocker arm and the camshaft. An electrically actuated motor is used to control the lift and valve opening duration, while a hydraulically controlled variable valve timing mechanism (VVT-i) is also applied on both intake and exhaust cam shafts. The newly developed actuator contains Toyota's original planetary roller screw unit translating rotary movement of the motor into linear actuation. Thanks to the alignment of rocking center and actuator drive direction, a compact design has been achieved. In 2007, VALVEMATIC has been introduced into the Japanese market on a 2.0L engine (3ZR-FAE), which has the largest displacement of the ZR series. The engine employs a cam housing structure with valve train system separated from the cylinder head. The structure realized a high ratio of part commonization with the conventional engine, and an easy mounting of the VALVEMATIC-system by changing only the cam housing assembly. The engine achieved 5-10% fuel consumption improvement and good drivability by using a newly developed cooperative control of VALVEMATIC, VVT-i and the throttle valve. Maximum power also improved by approximately 11kW thanks to the maximized volumetric efficiency using VALVEMATIC. Furthermore, exhaust emissions were improved due to

  9. Pneumatic-Combustion Hybrid Engine: A Study of the Effect of the Valvetrain Sophistication on Pneumatic Modes Moteur hybride pneumatique: une étude de l’effet de la complexité de la distribution sur les modes pneumatiques

    Directory of Open Access Journals (Sweden)

    Brejaud P.

    2009-09-01

    Full Text Available Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency is quite low and the kinetic energy during a braking phase is lost. This work presents a hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store and recover energy in the form of compressed air. The study focuses on the two major pneumatic modes: pneumatic pump mode and pneumatic motor mode. For each of them, three valvetrain technologies are considered: 4-stroke mode, 4-stroke mode with one camshaft disengaged, and 2-stroke fully variable. The concept can be adapted to SI or CI engines. In any case the valvetrain technology is the key to best fuel economy. A kinematic model of the charging valve’s actuator is introduced, and implemented in a quasi dimensional model of the pneumatic-combustion hybrid engine. Simulation results are presented for each pneumatic mode, for each valvetrain technology, in order to determine the best valve train configuration, and to show the impact of the kinematic valve actuator on the performance of the engine The tradeoffs between valvetrain sophistication and fuel economy will be presented for each case. Bien que le rendement total d’un moteur à combustion interne soit élevé, ce potentiel ne peut être pleinement exploité sur une automobile : dans les conditions réelles d’utilisation, la charge moteur moyenne (et donc le rendement est souvent faible. De plus, l’énergie cinétique en phase de freinage est totalement dissipée sous forme de chaleur. Cet article présente un concept de moteur hybride pneumatique, et les cycles thermodynamiques associés, capable de stocker de l’énergie (et de la réutiliser sous forme d’air comprimé. Le concept est adaptable au moteur à allumage commandé aussi bien qu’au moteur à allumage par

  10. Cam Profile Fitting Based on SPSS%基于SPSS的凸轮型线拟合

    Institute of Scientific and Technical Information of China (English)

    严帅

    2016-01-01

    柴油机在工程实际中广泛应用,而柴油机造成的排放污染也不断加剧。减少发动机有害物排放、提高发动机动力和降低燃油消耗已成为近年来国产柴油机发展的主要研究方向。研究表明柱塞面积与柱塞速度的乘积决定着油泵的供油率,通过改变凸轮型廓,可以有效地改变喷油泵的喷油压力、喷油规律和工作容量,从而有效地改善柴油机的性能。喷油泵柱塞的运动规律取决于凸轮轴的凸轮型线,如何设计和加工出具有合理型线的凸轮是喷油泵设计中很重要的问题。为此介绍了如何运用SPSS软件,从原始实测数据出发构造出喷油泵凸轮型线方程的方法,对合理设计凸轮的形状,提高喷油泵供油率及可靠性具有重要的意义。%With wide use of diesel engine in engineering practice, emission pol ution caused by diesel engines is uninterruptedly in ̄creasing in recent years. Reducing harmful engine emissions, improving engine power and reducing fuel consumption become the main reseach direction of development of the domestic diesel engine. It is found that the product of the piston area and the piston speed determines the rate of the oil pump,by changing the cam profile,the injection pressure of injection pump,the law of fuel in ̄jection and working capaciby can be changed effectively,thus its performance is improved greatly. The movement rule of plunger of injection pump depends on the lines of the cam profile of camshaft. Therefore it is very important to design and manufacture the cam profile with reasonable lines in the design of the injection pump. This paper introduces the method in which SPSS software is used to construce the fuel injection pump cam profile equation based on the original data, it is of an important significance to designing the shape of the cam and improving the fuel pump supply rate and reliability.

  11. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

  12. Homogeneous charge compression ignition compared with Otto-Atkinson in a passenger car size engine

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Andreas

    2000-07-01

    The use of Homogeneous Charge Compression Ignition (HCCI) was investigated in an ordinary SI (spark ignition) engine, in this case a modified Volvo 850, working on one cylinder only, the others towed. The major purpose of this study was to examine whether there were the same kind of throttle losses in this engine as in a Diesel engine (Volvo TD 100). One reason for throttling is that HCCI causes very cold exhaust gases. The Diesel engine has a larger cylinder volume (1.6 compared to 0.5 litre), working at low engine speed (1000 rpm) and only two valves with comparably small area. The smaller Volvo 850 engine has four valves and was in this examination working at up to 3500 rpm. To make the engine run by HCCI following modifications were made. The compression was set to 20:1 by changing the piston. To affect the ignition an electrical heater was installed near the air inlet. Mixing iso-octane (ON 100) and N-heptane (ON 0) set the octane number. A couple of camshafts with different cam-profiles were used to achieve the right valve opening duration depending on which kind of combustion that was studied. There could then also be a comparison between Otto and HCCI combustion both working with wide-open throttle. To obtain comparable indicated mean effective pressure (IMEP) the engine was working with late (LIVC) or early inlet valve closing (EIVC) at SI combustion. Measurements were taken involving in-cylinder pressure, temperature, speed, fuel-consumption, emissions etc. Regarding emissions there were special consideration taken to hydrocarbon and NO{sub x}, which are known to be extremely high respectively low with HCCI combustion. Important questions that should be answered were: * How does higher engine speed affect the combustion ?, * How does the engine size affect emissions ?, * How much is the valve area affecting gas exchange losses ?, and * How high is the efficiency with HCCI compared with Otto (LIVC/EIVC) ?. The best results are achieved at an indicated mean

  13. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    has consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new “opportunity fuel” deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar