WorldWideScience

Sample records for campylobacter jejuni strain

  1. Genomic Sequence of Campylobacter jejuni subsp. jejuni HS:19 Penner Serotype Reference Strain RM3420

    Science.gov (United States)

    Huynh, Steven; Heikema, Astrid P.

    2017-01-01

    ABSTRACT Campylobacter jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Penner serotype HS:19 is among several capsular types shown to be markers for GBS. This study describes the genome of C. jejuni subsp. jejuni HS:19 Penner reference strain RM3420. PMID:28232429

  2. Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions

    NARCIS (Netherlands)

    Chaveerach, P.; Huurne, ter A.A.H.M.; Lipman, L.J.A.; Knapen, van F.

    2003-01-01

    The culturability of 10 strains of Campylobacter jejuni and Campylobacter coli was studied after the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells could not survive 2 h under acid conditions (formic acid at pH 4). The 10 Campylobacter strains could not be

  3. Genomic characterization of Campylobacter jejuni strain M1.

    Directory of Open Access Journals (Sweden)

    Carsten Friis

    Full Text Available Campylobacter jejuni strain M1 (laboratory designation 99/308 is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1.

  4. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge

    DEFF Research Database (Denmark)

    Knudsen, Katrine Nørrelund; Bang, Dang Duong; Andresen, Lars Ole

    2006-01-01

    The aim of the study was to evaluate the colonizing ability and the invasive capacity of selected Campylobacter jejuni strains of importance for the epidemiology of C jejuni in Danish broiler chickens. Four C jejuni strains were selected for experimental colonization Studies in day-old and 14-day...

  5. Multi drug resistance of campylobacter jejuni and campylobacter coli to tested antibiotics in strains originating from humans, poultry and swine

    Directory of Open Access Journals (Sweden)

    Tambur Zoran Ž.

    2010-01-01

    Full Text Available Thermophilic Campylobacter are among the most common cause of bacterial enteritis in humans. Food animals are considered one of the most important sources of Campylobacter causing infections in man. Campylobacter infection is clinically mild and resolves spontaneously. In severe or long-lasting cases, treatment with antibiotics is necessary. Resistance of Campylobacter spp. to drugs used in treatment of infection is a matter of concern. The aim of this paper is to determine presence of multi drug resistant strains of Campylobacter jejuni and Campylobacter coli isolated from animals and man. Material for testing was obtained by scraping the cecum surface from boilers, pig cecum and colon, and human feces. For isolation Campylobacter jejuni and Campylobacter coli microaerophilic conditions, temperature of 42°C and antibiotic supplement were required to inhibit the growth of other intestinal bacteria. In this research, for sensitivity testing of Campylobacter jejuni and Campylobacter coli three different methods were used: disc diffusion test, E-test, and dilution agar method. A total of 55 strains of Campylobacter jejuni and Campylobacter coli. Out of the total, 24 strains originated from man, 16 from broilers were isolated, and 15 from pigs. Multidrug resistance was determined in cases when the strains were resistant to two or more antibiotics. Applying E-test, we detected that the largest number of Campylobacter jejuni were multi drug resistant to two antibiotics (41.2%, and three antibiotics (11.8%. Applying disc diffusion method it was detected that 5.9% of Campylobacter jejuni from man was resistant to four tested antibiotics. Applying all three methods, it was detected that the largest number of Campylobacter strains was resistant to two antibiotics and three antibiotics. Applying disc diffusion method it was detected that 50% of Campylobacter coli strains from pigs were resistant to three tested antibiotics.

  6. Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten;

    2011-01-01

    Campylobacter is one of the leading causes of food-borne gastroenteritis and has a high prevalence in poultry. Campylobacter jejuni subsp. jejuni 327 is a subspecies of the genus Campylobacter of the family Campylobacteraceae in the phylum Proteobacteria. The microaerophilic, spiral shaped, catal...... shotgun sequence of 1,618,613 bp long consists of 1,740 protein-coding genes, 46 tRNA genes and 3 rRNA operons. A protein based BLAST analysis places the turkey isolate 327 close to the human clinical strain 81116 (NCTC 11828)....

  7. Campylobacter jejuni organism (image)

    Science.gov (United States)

    Campylobacter jejuni infection causes cramping, diarrhea, abdominal pain and fever within 2 to 5 days after a person has been exposed to the organism. Campylobacter jejuni is one of the most common bacterial causes ...

  8. Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome

    NARCIS (Netherlands)

    Z. Islam (Zhahirul); A.F. van Belkum (Alex); J.A. Wagenaar (Jaap); A.J. Cody (Alison); A.G. de Boer (Albert); H. Tabor (Helen); B.C. Jacobs (Bart); K.A. Talukder (Kaisar); H.P. Endtz (Hubert)

    2009-01-01

    textabstractBackground: Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh t

  9. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina;

    2015-01-01

    were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according......In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  10. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...... using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We...... therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages...

  11. Genomic Characterization of Campylobacter jejuni strain M1

    DEFF Research Database (Denmark)

    Friis, Carsten; Wassenaar, Gertrude Maria; Javed, Muhammad A.

    2010-01-01

    publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core...

  12. Characterization of Campylobacter jejuni and Campylobacter coli strains isolated in the region of Niš, Serbia

    Directory of Open Access Journals (Sweden)

    Miljković-Selimović Biljana

    2010-01-01

    Full Text Available Introduction. Campylobacter jejuni and Campylobacter coli represent one of the main causes of bacterial diarrhoea in humans. Although the disease is usually mild and self-limiting, severe chronic sequelae may occur, such as reactive arthritis, Guillain-Barré and Miller Fisher syndromes. Serotyping is used as an epidemiological marker, while post-infective polyneuropathies are associated with several O serotypes. Objective. Strains of C. jejuni and C. coli were serotyped based on heat stable (HS and heat labile (HL antigens, as well as biotypes to determine strain diversity. Methods. Campylobacter spp. was isolated using selective blood media with antibiotics. Differentiation to the species level was done by a combination of biotyping tests and by a PCR-based RFLP test. The isolates were characterised by Penner and Lior serotyping methods. Results. The serotypes showed diversity without predominant serotypes. 24 HS serotypes were detected among 29 C. jejuni strains, and seven serotypes among nine C. coli strains. HL serotyping method successfully typed 62.5% of strains. Among 16 C. jejuni strains 14 serotypes were detected, and three among four C. coli strains. A C. jejuni strain associated with a patient with Guillain-Barré syndrome was typed as biotype II, O:19. Conclusion. The biotyping and serotyping results have indicated that C. jejuni and C. coli strains in the region of Niš, Serbia are diverse and could be probably of unrelated sources of origin or reservoirs. The strain associated with the Guillain-Barré syndrome patient was serotype O:19, one of the most common in this post-infective complication.

  13. Genome sequences of two stress-tolerant Campylobacter jejuni poultry strains, 305 and DFVF1099

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten;

    2011-01-01

    Campylobacter jejuni is a food-borne pathogen with a high prevalence in poultry meat, which in fresh unfrozen condition is the major source of campylobacteriosis. C. jejuni strains DFVF1099 and 305 are considered tolerant to several environmental stresses (T. Birk et al., J. Food Prot. 73......:258–265, 2010; S. L. On et al., Int. J. Med. Microbiol. 296:353–363, 2006). Here, we report the genome sequences of C. jejuni 305 and DFVF1099, a turkey and a chicken isolate, respectively. ©American Society for Microbiology. All rights reserved....

  14. Genotypic and serotypic stability of Campylobacter jejuni strains during in vitro and in vivo passage

    DEFF Research Database (Denmark)

    Nielsen, Eva M.; Engberg, J.; Fussing, V.

    2001-01-01

    The stability of four typing methods and the sero- and genotypic stability of three Campylobacter jejuni strains were evaluated after subculturing 50 times in triplicate and after colonising mice for up to 26 days. The employed methods were Penner heat-stable serotyping; automated ribotyping (Ribo...

  15. The ability of Fla-typing schemes to discriminate between strains of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Petersen, Line Hedegård; Newell, D.G.

    2001-01-01

    Aims: The aim of this investigation was to compare the usefulness of two previously published flagellin PCR-RFLP typing (Fla-typing) techniques for the subtyping of Campylobacter jejuni strains, in terms of ease of use and discriminatory power. Methods and Results: Six groups of isolates, which...

  16. The complete genome sequences of 65 Campylobacter jejuni and C. coli strains

    Science.gov (United States)

    Campylobacter jejuni (Cj) and C. coli (Cc) are genetically highly diverse based on various molecular methods including MLST, microarray-based comparisons and the whole genome sequences of a few strains. Cj and Cc diversity is also exhibited by variable capsular polysaccharides (CPS) that are the maj...

  17. Differential carbohydrate recognition by Campylobacter jejuni strain 11168: influences of temperature and growth conditions.

    Directory of Open Access Journals (Sweden)

    Christopher J Day

    Full Text Available The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS and the infrequently passaged, original, virulent (11168-O isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25 degrees C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure.

  18. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Directory of Open Access Journals (Sweden)

    Martine C Holst Sørensen

    Full Text Available In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb, host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220 as well as receptors (CPS or flagella recognised by the isolated phages.

  19. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Science.gov (United States)

    Sørensen, Martine C Holst; Gencay, Yilmaz Emre; Birk, Tina; Baldvinsson, Signe Berg; Jäckel, Claudia; Hammerl, Jens A; Vegge, Christina S; Neve, Horst; Brøndsted, Lone

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.

  20. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni

    Science.gov (United States)

    Day, Christopher J.; King, Rebecca M.; Shewell, Lucy K.; Tram, Greg; Najnin, Tahria; Hartley-Tassell, Lauren E.; Wilson, Jennifer C.; Fleetwood, Aaron D.; Zhulin, Igor B.; Korolik, Victoria

    2016-10-01

    A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.

  1. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions

    Science.gov (United States)

    Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile

    2016-01-01

    Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection.

  2. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina;

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...

  3. Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barre syndrome in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Zhahirul Islam

    Full Text Available BACKGROUND: Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS and the Miller Fisher syndrome (MFS. We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS genotyping, amplified fragment length polymorphism (AFLP analysis, multilocus sequence typing (MLST, and pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: C. jejuni HS:23 was a predominant serotype among GBS patients (50%, and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78% of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01 was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970. C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex. CONCLUSION/SIGNIFICANCE: LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS

  4. The complete genome sequence and annotation of a Campylobacter jejuni strain, MTVDSCj20, isolated from a naturally colonized farm-raised chicken

    Science.gov (United States)

    Campylobacter jejuni is a major cause of human foodborne illness worldwide with contaminated poultry products serving as a main source of human infection. C. jejuni strain MTVDSCj20 was isolated from the cecal contents of a farm-raised chicken naturally colonized with Campylobacter. The complete,...

  5. Assessment of chicken protection against Campylobacter jejuni infection by immunization with avirulent Salmonella enterica sv. Typhimurium strain producing Campylobacter CjaD/Pal protein

    Directory of Open Access Journals (Sweden)

    Łaniewski P

    2012-08-01

    Full Text Available Pawel Laniewski,1 Malgorzata Lis,2 Agnieszka Wyszynska,1 Pawel Majewski,3 Renata Godlewska,1 Elzbieta Katarzyna Jagusztyn-Krynicka11Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; 2Biowet Pulawy Ltd, Pulawy, Poland; 3Department of Vertebrate Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, PolandAbstract: Campylobacter jejuni is a major food-borne pathogen, causing gastroenteritis worldwide. Chickens are considered to be one of the most common sources of human C. jejuni infection in developed countries. Campylobacter CjaD/Pal protein (annotated as Cj0113 in C. jejuni strain NCTC11168 is a highly immunogenic, membrane-located antigen, conserved among different strains, with the potential to provide broad protection against C. jejuni colonization. The present study examines the immunogenicity and the general efficacy of avirulent S. enterica sv. Typhimurium Δcrp Δcya expressing C. jejuni CjaD as a chicken vaccine against Campylobacter colonization. The high copy number plasmid pYA3341 Asd+ was used as a cloning vector. Here, 1- and 14-day old chickens were orally immunized with a delivery vector strain, expressing C. jejuni CjaD. Two weeks later, they were challenged with a wild-type C. jejuni strain isolated from chicken carcasses. This schedule of immunization induced significant levels of serum-specific IgG as well as mucosal intestinal sIgA as measured by ELISA tests using Campylobacter membrane proteins as a coating antigen. Nevertheless, protection experiments did not result in significant reduction of colonization of vaccinated birds relative to nonvaccinated birds.Keywords: Campylobacter, cjaD, immunization, Pal

  6. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Science.gov (United States)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  7. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni.

    Science.gov (United States)

    Wu, Zuowei; Sahin, Orhan; Shen, Zhangqi; Liu, Peng; Miller, William G; Zhang, Qijing

    2013-01-01

    Campylobacter jejuni clone SA recently emerged as the predominant cause of sheep abortion in the United States and is also associated with foodborne gastroenteritis in humans. A distinct phenotype of this clone is its ability to induce bacteremia and abortion. To facilitate understanding the pathogenesis of this hypervirulent clone, we analyzed a clinical isolate (IA3902) of clone SA using multi-omics approaches. The genome of IA3902 contains a circular chromosome of 1,635,045 bp and a circular plasmid of 37,174 bp. Comparative genomic analysis revealed that IA3902 is most closely related to C. jejuni NCTC11168, which is a reference strain and was previously shown to be non-abortifacient in pregnant animals. Despite the high genomic synteny and sequence homology, there are 12 variable regions (VRs) and 8,696 single-nucleotide polymorphisms and indels between the two genomes. Notably, the variable genes in the capsular polysaccharides biosynthesis and O-linked glycosylation loci of IA3902 are highly homogenous to their counterparts in C. jejuni subsp. doylei and C. jejuni G1, which are known to be frequently associated with bacteremia. Transcriptomic and proteomic profiles were conducted to compare IA3902 with NCTC11168, which revealed that the pathways of energy generation, motility, and serine utilization were significantly up-regulated in IA3902, whereas the pathways of iron uptake and proline, glutamate, aspartate, and lactate utilization were significantly down-regulated. These results suggest that C. jejuni clone SA has evolved distinct genomic content and gene expression patterns that modulate surface polysacharide structures, motilitiy, and metabolic pathways. These changes may have contributed to its hyper-virulence in abortion induction.

  8. Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Jordan, Penelope J.

    2003-01-01

    We examined the sensitivity and specificity of 11 PCR assays described for the species identification of Campylobacter jejuni and Campylobacter coli by using 111 type, reference, and field strains of C. jejuni, C. coli, and Campylobacter lari. For six assays, an additional 21 type strains...

  9. Campylobacter jejuni in commercial eggs

    Directory of Open Access Journals (Sweden)

    Belchiolina Beatriz Fonseca

    2014-01-01

    Full Text Available This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health.

  10. Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived Campylobacter jejuni strain 11601MD.

    Science.gov (United States)

    Crespo, M D; Altermann, E; Olson, J; Miller, W G; Chandrashekhar, K; Kathariou, S

    2016-07-01

    In Campylobacter spp., resistance to the antimicrobials kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095nt) harboring tet(O) was identified in C. jejuni strain 11601MD, which was isolated from the jejunum of a turkey produced conventionally in North Carolina. Analysis of the p11601MD sequence revealed the presence of a high-GC content cassette with four genes that included tet(O) and a putative aminoglycoside transferase gene (aphA-3) highly similar to kanamycin resistance determinants. Several genes putatively involved in conjugative transfer were also identified on the plasmid. These findings will contribute to a better understanding of the distribution of potentially self-mobilizing plasmids harboring antibiotic resistance determinants in Campylobacter spp. from turkeys and other sources.

  11. MAMA-PCR assay for the detection of point mutations associated with high-level erythromycin resistance in Campylobacter jejuni and Campylobacter coli strains.

    Science.gov (United States)

    Alonso, Rodrigo; Mateo, Estibaliz; Churruca, Estibaliz; Martinez, Irati; Girbau, Cecilia; Fernández-Astorga, Aurora

    2005-10-01

    Twenty Campylobacter jejuni and 16 Campylobacter coli strains isolated from humans and food/animals, including 17 isolates resistant to erythromycin, were analyzed. A combined mismatch amplification mutation assay-PCR technique was developed to detect the mutations A 2074 C and A 2075 G in the 23S rRNA gene associated with erythromycin resistance. All high-level erythromycin-resistant strains examined by DNA sequencing carried the transition mutation A 2075 G, whereas no isolate carried the A 2074 C mutation. No mutations were found among the susceptible and low-level erythromycin-resistant strains.

  12. Inflammasome activation by Campylobacter jejuni

    NARCIS (Netherlands)

    Bouwman, Lieneke I; de Zoete, Marcel R; Bleumink-Pluym, Nancy M C; Flavell, Richard A; van Putten, Jos P M

    2014-01-01

    The Gram-negative pathogen Campylobacter jejuni is the most common cause of bacterial foodborne disease worldwide. The mechanisms that lead to bacterial invasion of eukaryotic cells and massive intestinal inflammation are still unknown. In this study, we report that C. jejuni infection of mouse macr

  13. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data

    Directory of Open Access Journals (Sweden)

    Kathy T Mou

    2015-01-01

    Full Text Available Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA in the United States, and that strain’s association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences’ Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902 and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176. Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.

  14. Cepas de Campylobacter jejuni resistentes a quinolonas aisladas de humanos, gallinas y pollos Quinolone resistant Campylobacter jejuni strains isolated from humans and from poultry

    Directory of Open Access Journals (Sweden)

    Rodolfo Notario

    2011-08-01

    Full Text Available Se compararon 8 aislamientos de Campylobacter jejuni provenientes de humanos con enfermedad diarreica aguda, con 23 aislamientos de cloaca de gallinas y pollos obtenidos de zonas próximas a la ciudad de Rosario, todos resistentes a la ciprofloxacina. Las muestras se sembraron en agar selectivo y se incubaron en microaerofilia a 42 °C. Las colonias se identificaron con el método tradicional. Los aislamientos se conservaron a -70 °C en caldo cerebro corazón con 17% v/v de glicerina. La clonalidad se determinó por RAPD-PCR, utilizando el primer 1254 (Stern NJ. Se interpretaron los aislamientos como clones distintos cuando diferían en una banda de amplificación. Se obtuvieron 5 clones diferentes. Los patrones I, II y V fueron aislados en criaderos industriales de pollos y en humanos (el II también en un establecimiento de gallinas ponedoras de huevos. En un gallinero familiar se obtuvo el patrón I. El patrón III sólo se obtuvo de humanos. El patrón IV se halló en uno de los criaderos pero no en humanos. Se pudo determinar que 93.5% de las cepas se aislaron tanto de animales como de humanos, por lo que se considera posible que la colonización de criaderos con cepas resistentes a los antimicrobianos pudiera ser el origen de la infección de humanos.Eight quinolone resistant Campylobacter jejuni strains isolated from humans with diarrheal disease were compared with 23 isolates from chicken and from laying hens. Samples were cultured on selective agar in microaerophilia, identified by conventional tests, and conserved in 17% glycerol at -70 °C. Clones were determined by RAPD-PCR employing the 1254 primer (Stern NJ. Five patterns were obtained. Patterns I, II, and V were found in both poultry and human isolates. Pattern I was obtained from poultry in a domestic henhouse. Pattern III was only obtained from humans whereas pattern IV was only obtained from poultry. A 95.3% of clones were found in both, humans and poultry. According to these

  15. Nutrient Acquisition and Metabolism by Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Martin eStahl

    2012-02-01

    Full Text Available The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar L-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron-sulphur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments.

  16. Detecção dos genes da toxina citoletal distensiva em estirpes de Campylobacter jejuni isoladas de carcaças de frangos Detection of cytolethal distending toxin genes in strains of Campylobacter jejuni isolated from broiler carcasses

    Directory of Open Access Journals (Sweden)

    A.F. Carvalho

    2010-10-01

    Full Text Available Foram analisadas 80 amostras de sobrecoxas de frangos de corte resfriados provenientes de feiras livres e hipermercados do município de São Paulo, SP. Treze estirpes de Campylobacter spp. foram isoladas em 10 (12,5% sobrecoxas, sendo cinco amostras originárias de feiras livres e cinco de hipermercados. Onze estirpes foram identificadas como Campylobacter jejuni e duas como Campylobacter coli. As 11 estirpes foram confirmadas como C. jejuni pela PCR do gene da hipuricase (hip, e destas, quatro (36,4% apresentaram os três genes (cdtA, cdtB e cdtC codificantes da toxina citoletal distensiva pela multiplex-PCR, sendo três estirpes provenientes de hipermercados e uma de feira livre. Observou-se a presença de estirpes virulentas de C. jejuni, portadoras do complexo de genes cdt, nas amostras de frango resfriado, não só na linha de abate, mas até o ponto final da cadeia de distribuição, nos dois principais centros de venda a varejo.Eighty samples of refrigerated broiler thighs purchased in street markets and supermarkets in the city of São Paulo, SP, were analyzed. Thirteen Campylobacter spp. strains were isolated in 10 (12.5% thighs, five of them from street market samples and other five from supermarkets. Eleven strains were identified as Campylobacter jejuni and two of them as Campylobacter coli. The 11 strains were confirmed to be C. jejuni using PCR for hippuricase (hip gene. From these, multiplex-PCR showed that four (36.4% strains presented the three genes (cdtA, cdtB, and cdtC encoding cytolethal distending toxin: three strains from supermarket and one from street market samples. These results are important, because they demonstrate the presence of virulent C. jejuni strains in refrigerated broiler thigh samples, not only in the slaughterhouse but in the final point of the distribution chain, at the two most important food retail commercer.

  17. Media for Campylobacter jejuni and other campylobacters

    NARCIS (Netherlands)

    Mossel, D.A.A.

    1985-01-01

    Despite their recent elaboration and the many variations in antibiotic combinations designed to attain selectivity, highly selective liquid and solid culture media for Campylobacter jejuni have proved satisfactory provided they are incubated at about 42°C and in a microaerophilic atmosphere such as

  18. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Johannes Beltinger; Jo del Buono; Maeve M Skelly; John Thornley; Robin C Spiller; William A Stack; Christopher J Hawkey

    2008-01-01

    AIM:To study the mechanisms by which Campylobacter jejuni (C.jejuni) causes inflammation and diarrhea.In particular,direct interactions with intestinal epithelial cells and effects on barrier function are poorly understood.METHODS:To model the initial pathogenic effects of C.jejuni on intestinal epithelium,polarized human colonic HCA-7 monolayerswere grown on permeabilized filters and infected apically with clinical isolates of C.jejuni.Integrity of the monolayer was monitored by changes in monolayer resistance,release of lactate dehydrogenase,mannitol fluxes and electron microscopy.Invasion of HCA-7 cells was assessed by a modified gentamicin protection assay,translocation by counting colony forming units in the basal chamber,stimulation of mediator release by immunoassays and secretory responses in monolayers stimulated by bradykinin in an Ussing chamber.RESULTS:All strains translocated across monolayers but only a minority invaded HCA-7 cells.Strains that invaded HCA-7 cells destroyed rnonolayer resistance over 6 h,accompanied by increased release of lactate dehydrogenase,a four-fold increase in permeability to [3H] mannitol,and ultrastructural disruption of tight junctions,with rounding and lifting of cells off the filter membrane.Synthesis of interleukin (IL)-8 and prostaglandin E2 was increased with strains that invaded the rnonolayer but not with those that did not.CONCLUSION:These data demonstrate two distinct effects of C.jejuni on colonic epithelial cells and provide an informative model for further investigation of initial host cell responses to C.jejuni.

  19. Cepas de Campylobacter jejuni resistentes a quinolonas aisladas de humanos, gallinas y pollos Quinolone resistant Campylobacter jejuni strains isolated from humans and from poultry

    OpenAIRE

    Rodolfo Notario; Noemí Borda; Telma Gambandé; Joaquín Bermejo; Adriana Ponessa; Virginia Toledo

    2011-01-01

    Se compararon 8 aislamientos de Campylobacter jejuni provenientes de humanos con enfermedad diarreica aguda, con 23 aislamientos de cloaca de gallinas y pollos obtenidos de zonas próximas a la ciudad de Rosario, todos resistentes a la ciprofloxacina. Las muestras se sembraron en agar selectivo y se incubaron en microaerofilia a 42 °C. Las colonias se identificaron con el método tradicional. Los aislamientos se conservaron a -70 °C en caldo cerebro corazón con 17% v/v de glicerina. La clonalid...

  20. Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies.

    Science.gov (United States)

    Cordwell, Stuart J; Len, Alice C L; Touma, Rachel G; Scott, Nichollas E; Falconer, Linda; Jones, David; Connolly, Angela; Crossett, Ben; Djordjevic, Steven P

    2008-01-01

    Campylobacter jejuni is the leading cause of food- and water-borne illness world-wide. The membrane-associated proteome of a recent C. jejuni gastrointestinal isolate (JHH1) was generated by sodium carbonate precipitation and ultracentrifugation followed by 2-DE and MALDI-TOF MS as well as 2-DLC (strong cation exchange followed by RP chromatography) of trypsin digests coupled to MS/MS (2-DLC/MS/MS). 2-DE/MS identified 77 proteins, 44 of which were predicted membrane proteins, while 2-DLC/MS/MS identified 432 proteins, of which 206 were predicted to be membrane associated. A total of 453 unique proteins (27.4% of the C. jejuni theoretical proteome), including 187 bona fide membrane proteins were identified in this study. Membrane proteins were also compared between C. jejuni JHH1 and ATCC 700297 to identify factors potentially associated with increased gastrointestinal virulence. We identified 28 proteins that were significantly (>two-fold) more abundant in, or unique to, JHH1, including eight proteins involved in chemotaxis signal transduction and flagellar motility, the amino acid-binding surface antigens CjaA and CjaC, and four outer membrane proteins (OMPs) of unknown function (Cj0129c, Cj1031, Cj1279c, and Cj1721c). Immunoblotting using convalescent patient sera generated post-gastrointestinal infection revealed 13 (JHH1) and 12 (ATCC 700297) immunoreactive proteins. These included flagellin (FlaA) and CadF as well as Omp18, Omp50, Cj1721c, PEB1A, PEB2, and PEB4A. This study provides a comprehensive analysis of membrane-associated proteins from C. jejuni.

  1. Numerical analysis of DNA microarray data of Campylobacter jejuni strains correlated with survival, cytolethal distending toxin and haemolysin analyses

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Dorrell, N.; Petersen, L.

    2006-01-01

    Molecular epidemiological studies of the enteric pathogen Campylobacter jejuni have suggested that not all animal isolates are equally pathogenic to humans. We examined the use of numerical analysis of whole-genomotype data as a potential tool for evaluating C. jejuni virulence potential. Whole-g...

  2. Draft Genome Sequence of Campylobacter jejuni 11168H

    Science.gov (United States)

    Macdonald, Sarah E.; Gundogdu, Ozan; Dorrell, Nick; Wren, Brendan W.; Blake, Damer

    2017-01-01

    ABSTRACT Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world. The reference and original sequenced strain C. jejuni NCTC11168 has low levels of motility compared to clinical isolates. Here, we describe the draft genome of the laboratory derived hypermotile variant named 11168H. PMID:28153902

  3. Survival of Campylobacter jejuni in different gas mixtures

    DEFF Research Database (Denmark)

    Boysen, Louise; Knochel, Susanne; Rosenquist, Hanne

    2007-01-01

    Campylobacter jejuni in fresh chilled chicken meat is known to be a major risk factor for human gastrointestinal disease. In the present study, the survival under chilled conditions of different C. jejuni strains exposed to different gas mixtures usually used for gas packaging of food was examined...

  4. Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea.

    Science.gov (United States)

    Oh, Jae-Young; Kwon, Yong-Kuk; Wei, Bai; Jang, Hyung-Kwan; Lim, Suk-Kyung; Kim, Cheon-Hyeon; Jung, Suk-Chan; Kang, Min-Su

    2017-01-01

    Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007-2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009-2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.

  5. Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni.

    Science.gov (United States)

    Axelsson-Olsson, Diana; Waldenström, Jonas; Broman, Tina; Olsen, Björn; Holmberg, Martin

    2005-02-01

    We showed by a laboratory experiment that four different Campylobacter jejuni strains are able to infect the protozoan Acanthamoeba polyphaga. C. jejuni cells survived for longer periods when cocultured with amoebae than when grown in culture alone. The infecting C. jejuni cells aggregated in amoebic vacuoles, in which they were seen to be actively moving. Furthermore, a resuscitation of bacterial cultures that were previously negative in culturability tests was observed after reinoculation into fresh amoeba cultures. After spontaneous rupture of the amoebae, C. jejuni could be detected by microscopy and culturability tests. Our results indicate that amoebae may serve as a nonvertebrate reservoir for C. jejuni in the environment.

  6. Molecular subtyping of Campylobacter jejuni subsp. jejuni strains isolated from different animal species in the state of São Paulo, Brazil Subtipagem molecular de estirpes de Campylobacter jejuni subsp. jejuni isoladas de diferentes espécies animais do Estado de São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Eliana Scarcelli

    2005-12-01

    Full Text Available The objective of the present trial was to characterize genetically strains of Campylobacter jejuni subsp. jejuni isolated from humans and several animal sources (bovines, swine, dogs, primates, wild boars and poultry. A total of 828 different animal samples (feces, carcass, aborted fetus and hysterectomized uterus were analysed by means of routine bacteriological methods, and 36 C. jejuni strains were isolated. Thirty strains of human fecal origin were obtained in clinical analysis laboratories in the city of São Paulo. The 66 C. jejuni strains isolated were submitted to genetic characterization. Primers based on fla A gene were used in a polymerase chain reaction (PCR and amplified a fragment of the 702 bp. PCR products were evaluated by means of sequencing and genealogic analysis. Genetic variability analysis of 66 strains showed 44 different subtypes of C. jejuni. One subtype was identical to a C. jejuni strain of human origin with the sequence in the GenBank (GENBANK accession number AF050186. Subtyping analysis of C. jejuni strains based on sequencing of the fla A gene variable region and analysis of sequence alignment by the Maximum Parsimony method showed to be highly discriminatory, providing the best conditions to differentiate strains involved in outbreaks from those sporadically isolated. This is the first study of molecular subtyping analysis of human and animal C. jejuni strains using sequencing technique and genealogic analysis in the state of São Paulo, Brazil.O objetivo do presente trabalho foi caracterizar geneticamente estirpes de Campylobacter jejuni subsp. jejuni isoladas de humanos e de diferentes origens animais (bovinas, suínas, cães, primatas, javalis, suínos e aves de corte. Um total de 828 amostras (fezes, carcaças, fetos abortados e útero histerectomizado foram analisadas por métodos de rotina bacteriológica e 36 estirpes de C. jejuni foram isoladas. Trinta estirpes de origem fecal humana foram obtidas de

  7. The globins of Campylobacter jejuni.

    Science.gov (United States)

    Tinajero-Trejo, Mariana; Shepherd, Mark

    2013-01-01

    Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.

  8. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    Directory of Open Access Journals (Sweden)

    Bang Dang D

    2008-06-01

    Full Text Available Abstract Background Campylobacter jejuni is a major cause of inflammatory diarrhoea in humans and is considered a commensal of the gastroenteric tract of the avian host. However, little is known about the interaction between C. jejuni and the avian host including the cytokine responses and the expression of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C. jejuni strains are capable of invading the CEICs and stimulate these cells in a pro-inflammatory manner and during this interaction the expression of the bacterial virulence-associated genes ciaB, dnaJ and racR is increased. Furthermore, incubation of bacteria with conditioned cell- and bacteria-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process.

  9. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens;

    2008-01-01

    Background Campylobacter jejuni is a major cause of inflammatory diarrhoea in humans and is considered a commensal of the gastroenteric tract of the avian host. However, little is known about the interaction between C. jejuni and the avian host including the cytokine responses and the expression....... jejuni strains are capable of invading the CEICs and stimulate these cells in a pro-inflammatory manner and during this interaction the expression of the bacterial virulence-associated genes ciaB, dnaJ and racR is increased. Furthermore, incubation of bacteria with conditioned cell- and bacteria......-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...

  10. Septic abortion caused by Campylobacter jejuni bacteraemia.

    Science.gov (United States)

    Skuhala, Tomislava; Škerk, Višnja; Markotić, Alemka; Bukovski, Suzana; Desnica, Boško

    2016-08-01

    A 20-year-old female patient, 14 weeks pregnant, was admitted to hospital with anamnestic and clinical features of acute pyelonephritis. Clinical signs of septic abortion developed and after obstetric examination the therapy was changed to ampicillin, gentamicin and clindamycin. Campylobacter jejuni was isolated from blood cultures. Pathohistological findings confirmed diagnosis of purulent chorioamnionitis. After 2 weeks of ciprofloxacin administration the patient fully recovered. Campylobacter jejuni was not isolated from stool culture and no signs of acute enteritis were registered during the illness. Invasive forms of Campylobacter disease without enteritis are not unusual in immunocompromised hosts but they are restricted to C. fetus rather than C. jejuni isolates.

  11. Complete genomic sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) that were isolated from patients with Guillain-Barré Syndrome

    Science.gov (United States)

    An infection with Campylobacter jejuni subsp. jejuni (Cjj) is a leading cause of foodborne gastroenteritis in humans and also the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the complete genomic sequences of Cjj HS:41 strains RM3196 (233.94) and RM3197 (308...

  12. Rapid Method for Sensitive Screening of Oligosaccharide Epitopes in the Lipooligosaccharide from Campylobacter jejuni Strains Isolated from Guillain-Barré Syndrome and Miller Fisher Syndrome Patients▿ †

    OpenAIRE

    Dzieciatkowska, Monika; Liu, Xin; Heikema, Astrid P.; Houliston, R. Scott; Van Belkum, Alex; Schweda, Elke K. H.; Gilbert, Michel; Richards, James C.; Li, Jianjun

    2008-01-01

    Campylobacter jejuni lipooligosaccharide (LOS) can trigger Guillain-Barré syndrome (GBS) due to its similarity to human gangliosides. Rapid and accurate structural elucidation of the LOS glycan of a strain isolated from a GBS patient could help physicians determine the spectrum of anti-ganglioside antibodies likely to be found and therefore provide valuable assistance in establishing an appropriate course of treatment. The ability of implemented mass spectrometry-based approaches in a clinica...

  13. Complete Genome Sequences of Campylobacter jejuni Strains OD267 and WP2202 Isolated from Retail Chicken Livers and Gizzards Reveal the Presence of Novel 116-Kilobase and 119-Kilobase Megaplasmids with Type VI Secretion Systems

    Science.gov (United States)

    Marasini, Daya

    2016-01-01

    Genome sequences of Campylobacter jejuni strains OD267 and WP2202, isolated from chicken livers and gizzards, showed the presence of novel 116-kb and 119-kb megaplasmids, respectively. The two megaplasmids carry a type VI secretion system and tetracycline resistance genes. These are the largest sequenced Campylobacter plasmids to date. PMID:27688318

  14. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    Directory of Open Access Journals (Sweden)

    Hana eTuronova

    2015-07-01

    Full Text Available During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176 prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions. The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  15. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    Science.gov (United States)

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen. PMID:26217332

  16. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions.

    Science.gov (United States)

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen.

  17. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    Science.gov (United States)

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  18. Studies on the epidemiology of Campylobacter jejuni

    NARCIS (Netherlands)

    J. Oosterom (Johannes)

    1985-01-01

    textabstractOver the last few years the bacterial species Campylobacter jejuni has been recognized as an important cause of acute enteritis in man. Investigations in several countries have shown that infections caused by C. jejuni may be as serious as those due to Salmonella spp., both in prevalence

  19. Detection of Campylobacter jejuni in raw meat

    OpenAIRE

    Z Noori; SH Saadati; A. Mirsalehian; SH Shoeibi; N Rahimifard; Mehrangiz Mehdizadeh; M Pirali- Hamedani

    2009-01-01

    Background & Objectives: Campylobacter jejuni is a Gram negative, microaerophilic, non-spore-forming and a small"ncurved bacillus which is able to cause foodborne infection in human. In this study the occurrence of C. jejuni in poultry and"nbeef meat was investigated."nMaterials & Methods: Forty raw meat samples including 22 poultry samples and 18 beef samples were investigated for the"npresence of C. jejuni. To isolate the bacterium, the samples were initially enriched in Preston Bro...

  20. Prevalence and Antimicrobial Resistance of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Salehi

    2014-07-01

    Full Text Available Background Campylobacter spp. are Gram-negative bacilli enteric pathogens that pose a major public health problem worldwide. In this genus, the most important species is Campylobacter jejuni. This bacterium causes diarrhea as its main symptom, which its intensity varies from mild to severe. Patients’ stools may be watery or bloody. Objectives In this study, we aimed to determine the prevalence of the species of Campylobacter. jejuni in Zahedan, a major city in southeastern Iran. Patients and Methods Fecal samples from 164 patients with acute diarrhea from Zahedan hospitals were collected from 2011 to 2013. Then the samples were streaked onto a campylobacter selective agar containing supplement and 7% defibrinated sheep blood. Conventional bacteriological tests (such as culture and biochemical tests were performed to confirm the genus and differentiate at the species level. Finally, disk diffusion method was performed according to the recommendation of Clinical and Laboratory Standards Institute (CLSI to determine the susceptibility of isolates to antibacterial agents. Results Out of 164 samples, 19 (11.6% were reported positive by culture which confirmed by biochemical tests. Fifteen (78.9% patients, whose samples were positive, hospitalized in infant ward. Two (10.5% patients treated as outpatients. Two remaining (10.5% patients were admitted in internal medicine ward. All of isolated strains were susceptible or moderately susceptible to erythromycin as the drug of choice. Conclusions In this study, the prevalence of the disease (11.6% is found to be more than other parts of Iran. The symptomatic infection mainly affects children younger than 5 years.

  1. Campylobacter jejuni enteritis and reactive arthritis

    OpenAIRE

    Short, C. D.; Klouda, P T; Smith, Lorna

    1982-01-01

    A further case of reactive arthritis following Campylobacter jejuni enteritis is reported. The interim results of a small prospective study are discussed. It may be desirable to do serological studies for campylobacter infection in the investigation of mono- or polyarthritis of acute onset.

  2. Campylobacter jejuni motility is required for infection of the flagellotropic bacteriophage F341

    DEFF Research Database (Denmark)

    Baldvinsson, Signe Berg; Sørensen, Martine Camilla Holst; Vegge, Christina Skovgaard;

    2014-01-01

    Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule...

  3. Does Campylobacter jejuni form biofilms in food-related environments?

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2014-09-01

    Campylobacter jejuni is one of the most frequent causes of bacterial gastrointestinal food-borne infection worldwide. This species is part of the normal flora of the gastrointestinal tracts of animals used for food production, including poultry, which is regarded as the primary source of human Campylobacter infections. The survival and persistence of C. jejuni in food processing environments, especially in poultry processing plants, represent significant risk factors that contribute to the spread of this pathogen through the food chain. Compared to other food-borne pathogens, C. jejuni is more fastidious in its growth requirements and is very susceptible to various environmental stressors. Biofilm formation is suggested to play a significant role in the survival of C. jejuni in the food production and processing environment. The aims of this minireview were (i) to examine the evidence that C. jejuni forms biofilms and (ii) to establish the extent to which reported and largely laboratory-based studies of C. jejuni biofilms provide evidence for biofilm formation by this pathogen in food processing environments. Overall existing studies do not provide strong evidence for biofilm formation (as usually defined) by most C. jejuni strains in food-related environments under the combined conditions of atmosphere, temperature, and shear that they are likely to encounter. Simple attachment to and survival on surfaces and in existing biofilms of other species are far more likely to contribute to C. jejuni survival in food-related environments based on our current understanding of this species.

  4. Genotyping of Campylobacter jejuni strains from Danish broiler chickens by restriction fragment length polymorphism of the LPS gene cluster

    DEFF Research Database (Denmark)

    Knudsen, K.N.; Bang, Dang Duong; Nielsen, E.M.;

    2005-01-01

    , the LG genotyping method was used to study the genetic stability of four C. jejuni strains after gastrointestinal passage through experimentally infected chickens. Methods and Results: In the present study, the LG genotyping method was modified with respect to the restriction enzymes used. To validate...... no changes in the LG genotype of the C. jejuni strains obtained after experimental passage through chickens. Concusions: All C. jejuni strains obtained from broiler chickens were typeable by the LG genotyping method. Application of the RsaI restriction enzyme improved the method in terms of ease...

  5. Screening of Australian plants for antimicrobial activity against Campylobacter jejuni.

    Science.gov (United States)

    Kurekci, Cemil; Bishop-Hurley, Sharon L; Vercoe, Philip E; Durmic, Zoey; Al Jassim, Rafat A M; McSweeney, Christopher S

    2012-02-01

    Campylobacter jejuni is the most common cause of acute enteritis in humans, with symptoms such as diarrhoea, fever and abdominal cramps. In this study, 115 extracts from 109 Australian plant species were investigated for their antimicrobial activities against two C. jejuni strains using an in vitro broth microdilution assay. Among the plants tested, 107 (93%) extracts showed activity at a concentration between 32 and 1024 µg/mL against at least one C. jejuni strain. Seventeen plant extracts were selected for further testing against another six C. jejuni strains, as well as Campylobacter coli, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Proteus mirabilis and Enterococcus faecalis. The extract from Eucalyptus occidentalis demonstrated the highest antimicrobial activity, with an inhibitory concentration of 32 µg/mL against C. jejuni and B. cereus. This study has shown that extracts of selected Australian plants possess antimicrobial activity against C. jejuni and thus may have application in the control of this organism in live poultry and retail poultry products.

  6. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum

    Energy Technology Data Exchange (ETDEWEB)

    Sosula, L.; Nicholls, E.M.; Skeen, M.

    1988-04-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and natural animal and human Campylobacter infections.

  7. The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by Campylobacter jejuni strain 81116.

    Science.gov (United States)

    Holden, Karen M; Gilbert, Michel; Coloe, Peter J; Li, Jianjun; Fry, Benjamin N

    2012-06-01

    Campylobacter jejuni is a major bacterial cause of gastroenteritis world-wide. C. jejuni produces a range of glycans including lipooligosaccharide (LOS), an important virulence factor. The genetic content of the LOS synthesis locus varies between C. jejuni strains and 19 classes have been described. Three LOS synthesis genes of C. jejuni strain 81116 (NCTC 11828), wlaRG, wlaTB and wlaTC were the focus of this study. WlaRG and the remaining two proteins of interest share sequence similarity to aminotransferases and glycosyltransferases, respectively. These genes were insertionally inactivated and phenotypically characterised. Each mutant produced truncated LOS. Mutants lacking WlaRG, WlaTB and WlaTC produced LOS with reduced immunogenicity. Both the wlaRG and wlaTC mutants were non-motile and aflagellate. In vitro invasion and adhesion assays revealed that the wlaRG, wlaTB and wlaTC mutants displayed reduced adherence to chicken embryo fibroblasts. All mutants were less invasive of human cells than 81116 confirming the role of intact LOS during invasion of human cells in vitro. Here we propose the general composition for the 81116 LOS core backbone based on capillary electrophoresis-mass spectrometry.

  8. Characterization of the virulence, growth temperature and antibiotic resistance of the Campylobacter jejuni IAL 2383 strain isolated from humans

    Directory of Open Access Journals (Sweden)

    B.B. Fonseca

    2014-01-01

    Full Text Available The objective of this study was to characterize the C. jejuni IAL2383 strain isolated from humans in Brazil. Transcripts for the racR, dnaJ and ciaB genes were found and flaA, plda and cadF genes were present in the genome and bacteria was sensitive to most of the important antimicrobials used to treat humans. C. jejuni IAL2383 is a good experimental model to analyze the interactions with cells.

  9. Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid

    Science.gov (United States)

    Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,18...

  10. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates.

    Science.gov (United States)

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25-5 μg mL(-1)) compared to AITC (MIC of 50-200 μg mL(-1)). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC.

  11. Nucleases Encoded by Integraded Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter Jejuni

    NARCIS (Netherlands)

    Gaasbeek, E.J.; Wagenaar, J.A.; Guilhabert, M.R.; Putten, van J.P.; Parker, C.T.; Wal, van der F.J.

    2010-01-01

    The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic factor

  12. [Effect of preservatives on survival of Campylobacter jejuni in ground pork meat].

    Science.gov (United States)

    Uradziński, J; Szteyn, J

    1993-01-01

    Campylobacter jejuni strains: Pen 2, 3, 6, 10 and 20 isolated from the food-borne infections in humans were tested. Fresh ground pork samples supplemented with chemical preservatives: sodium chloride--24,000 mg/kg, sodium nitrite--125 mg/kg, potassium nitrate--500 mg/kg, sodium ascorbate--300 mg/kg and polyphosphate (Hamine S)--3000 mg/kg were contaminated by C. jejuni strains. Survival of C. jejuni in ground pork was determined immediate after the contamination and over a 2-d period at 4 degrees C on Brucella agar (Difco) containing 10% horse blood, which were incubated 48 hrs at 42 degrees C under microaerobic conditions (5% O2, 5% CO2 and 90% N2). Campylobacter jejuni was isolated from all tested samples at the initial inoculum 2.5 x 10(5) to 1.7 x 10(8) cfu/1 g of meat. It was proved that chemical preservatives, added to meat samples in concentration usually used in meat processing, were affected in differential way on the survival of different strains of C. jejuni. Campylobacter jejuni Pen 2 was resistant to all preservatives used in this studies. Campylobacter jejuni Pen 3 and Pen 10 were sensitive to sodium nitrite, and Pen 10 was sensitive also to sodium chloride, potassium nitrate and composition of all tested chemicals. Also, Campylobacter jejuni Pen 20 was sensitive to sodium chloride, but potassium nitrate, sodium ascorbate and Hamine S stimulated growth of this strain.

  13. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates

    Directory of Open Access Journals (Sweden)

    Virginie eDufour

    2012-04-01

    Full Text Available Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes.We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC and benzyl-isothiocyanate (BITC, against 24 C. jejuni isolates from chicken feces, human infections and contaminated foods, as well as two reference strains NCTC11168 and 81-176.Both AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 2.5 to 5 g mL-1 compared to AITC (MIC of 50 to 200 g mL-1. Interestingly, the 24 C. jejuni isolates could be classified in 3 groups according to their sensitivity levels to both compounds, suggesting that AITC and BITC shared identical activity mechanisms and consequently faced similar resistance processes in bacterial cells.The sensitivity levels of C. jejuni strains against isothiocyanates were neither correlated with the presence of a GGT (-Glutamyl Transpeptidase encoding gene in the genome nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to WT when exposed to ITC.

  14. Comparative genomics and genome biology of invasive Campylobacter jejuni.

    Science.gov (United States)

    Skarp, C P A; Akinrinade, O; Nilsson, A J E; Ellström, P; Myllykangas, S; Rautelin, H

    2015-11-25

    Campylobacter jejuni is a major pathogen in bacterial gastroenteritis worldwide and can cause bacteremia in severe cases. C. jejuni is highly structured into clonal lineages of which the ST677CC lineage has been overrepresented among C. jejuni isolates derived from blood. In this study, we characterized the genomes of 31 C. jejuni blood isolates and 24 faecal isolates belonging to ST677CC in order to study the genome biology related to C. jejuni invasiveness. We combined the genome analyses with phenotypical evidence on serum resistance which was associated with phase variation of wcbK; a GDP-mannose 4,6-dehydratase involved in capsular biosynthesis. We also describe the finding of a Type III restriction-modification system unique to the ST-794 sublineage. However, features previously considered to be related to pathogenesis of C. jejuni were either absent or disrupted among our strains. Our results refine the role of capsule features associated with invasive disease and accentuate the possibility of methylation and restriction enzymes in the potential of C. jejuni to establish invasive infections. Our findings underline the importance of studying clinically relevant well-characterized bacterial strains in order to understand pathogenesis mechanisms important in human infections.

  15. Detection of Campylobacter jejuni in raw meat

    Directory of Open Access Journals (Sweden)

    Z Noori

    2009-12-01

    Full Text Available Background & Objectives: Campylobacter jejuni is a Gram negative, microaerophilic, non-spore-forming and a small"ncurved bacillus which is able to cause foodborne infection in human. In this study the occurrence of C. jejuni in poultry and"nbeef meat was investigated."nMaterials & Methods: Forty raw meat samples including 22 poultry samples and 18 beef samples were investigated for the"npresence of C. jejuni. To isolate the bacterium, the samples were initially enriched in Preston Broth medium and subsequently"ntransferred to Campylobacter selective Agar containing defibrinated sheep blood and antibiotics. The biochemical tests were"nused for identification of isolated bacteria at species level."nResults: Three poultry samples were positive for C. jejuni."nConclusion: Alimentary tract of chickens contain high numbers of C. jejuni therefore, this bacterium can be easily found in"ntheir feces. It is recommended to use chlorinated water in birds’ feed and to perform slaughtering, skinning and evisceration"nunder aseptic conditions to prevent campylobacteriosis in human from poultry meat. None of the beef samples yielded any"nCampylobacter, this may be due to limited number of samples of beef meat analyzed in this study.

  16. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation

    Directory of Open Access Journals (Sweden)

    Hartley Lauren E

    2009-06-01

    Full Text Available Abstract Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.

  17. Association of Anti-GT1a Antibodies with an Outbreak of Guillain-Barre Syndrome and Analysis of Ganglioside Mimicry in an Associated Campylobacter jejuni Strain.

    Directory of Open Access Journals (Sweden)

    Maojun Zhang

    Full Text Available An outbreak of Guillain-Barré syndrome (GBS, subsequent to Campylobacter jejuni enteritis, occurred in China in 2007. Serum anti-ganglioside antibodies were measured in GBS patients and controls. Genome sequencing was used to determine the phylogenetic relationship among three C. jejuni strains from a patient with GBS (ICDCCJ07001, a patient with gastroenteritis (ICDCCJ07002 and a healthy carrier (ICDCCJ07004, which were all associated with the outbreak. The ganglioside-like structures of the lipo-oligosaccharides of these strains were determined by mass spectrometry. Seventeen (53% of the GBS patients had anti-GT1a IgG antibodies. GT1a mimicry was found in the lipo-oligosaccharides of strain ICDCCJ07002 and ICDCCJ07004; but a combination of GM3/GD3 mimics was observed in ICDCCJ07001, although this patient had anti-GT1a IgG antibodies. A single-base deletion in a glycosyltransferase gene caused the absence of GT1a mimicry in ICDCCJ07001. The phylogenetic tree showed that ICDCCJ07002 and ICDCCJ07004 were genetically closer to each other than to ICDCCJ07001. C. jejuni, bearing a GT1a-like lipo-oligosaccharide, might have caused the GBS outbreak and the loss of GT1a mimicry may have helped ICDCCJ07001 to survive in the host.

  18. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a caco-2 assay

    DEFF Research Database (Denmark)

    Poli, Vanessa Fadanelli Schoenardie; Thorsen, Line; Olesen, Inger;

    2012-01-01

    Campylobacter jejuni is the leading cause of bacterial diarrheal disease in humans, and contaminated poultry and poultry products are recognized as the main vehicle of infection. Despite the significance of C. jejuni as a foodborne pathogen, little is known about its response to stress, and, espe...

  19. Distribution and Polymorphism of the Flagellin Genes from Isolates of Campylobacter coli and Campylobacter jejuni

    Science.gov (United States)

    1993-05-01

    American Society for Microbioloc% Distribution and Polymorphism of the Flagellin Genes from Isolates of Campylobacter coli and Campylobacter jejuni RICHARD...in Campylobacter jejuni . serogroups both the flaA and flaB genes are extremely Mol. M;crobiol. 5:1151-1158. z homologous. Within most LIO heat-labile...irllwn hungatei. J1. Bacteriol. 123:-28 proteins of Campylobacter jejuni 81116. Infect. Immun. 59: 42. Thomashow, L S., and S. C. Rittenberg. 198

  20. Neonatal sepsis by Campylobacter jejuni : Genetically proven transmission from a household puppy

    NARCIS (Netherlands)

    Wolfs, TFW; Duim, B; Geelen, SPM; Rigter, A; Thomson-Carter, F; Fleer, A; Wagenaar, JA

    2001-01-01

    We report a case of neonatal Campylobacter jejuni sepsis in a 3-week-old infant who acquired the infection through transmission from a recently acquired household puppy. Genotyping of Campylobacter strains obtained from puppy and child resulted in highly homogenous findings. This represents the firs

  1. Neonatal sepsis by campylobacter jejuni: a genetically proven transmission from a household puppy

    NARCIS (Netherlands)

    Wolfs, T.F.W.; Duim, B.; Geelen, S.P.M.; Rigter, A.; Thomson Carter, F.; Fleer, A.; Wagenaar, J.A.

    2001-01-01

    We report a case of neonatal Campylobacter jejuni sepsis in a 3-week-old infant who acquired the infection through transmission from a recently acquired household puppy. Genotyping of Campylobacter strains obtained from puppy and child resulted in highly homogeneous findings. This represents the fir

  2. Identification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method

    Directory of Open Access Journals (Sweden)

    Heath Sekou

    2007-02-01

    Full Text Available Abstract Background The human bacterial pathogen Campylobacter jejuni contains two subspecies: C. jejuni subsp. jejuni (Cjj and C. jejuni subsp. doylei (Cjd. Although Cjd strains are isolated infrequently in many parts of the world, they are obtained primarily from human clinical samples and result in an unusual clinical symptomatology in that, in addition to gastroenteritis, they are associated often with bacteremia. In this study, we describe a novel multiplex PCR method, based on the nitrate reductase (nap locus, that can be used to unambiguously subspeciate C. jejuni isolates. Results Internal and flanking napA and napB primer sets were designed, based on existing C. jejuni and Campylobacter coli genome sequences to create two multiplex PCR primer sets, nap mpx1 and nap mpx2. Genomic DNA from 161 C. jejuni subsp. jejuni (Cjj and 27 C. jejuni subsp. doylei (Cjd strains were amplified with these multiplex primer sets. The Cjd strains could be distinguished clearly from the Cjj strains using either nap mpx1 or mpx2. In addition, combination of either nap multiplex method with an existing lpxA speciation multiplex method resulted in the unambiguous and simultaneous speciation and subspeciation of the thermophilic Campylobacters. The Cjd nap amplicons were also sequenced: all Cjd strains tested contained identical 2761 bp deletions in napA and several Cjd strains contained deletions in napB. Conclusion The nap multiplex PCR primer sets are robust and give a 100% discrimination of C. jejuni subspecies. The ability to rapidly subspeciate C. jejuni as well as speciate thermophilic Campylobacter species, most of which are pathogenic in humans, in a single amplification will be of value to clinical laboratories in strain identification and the determination of the environmental source of campylobacterioses caused by Cjd. Finally, the sequences of the Cjd napA and napB loci suggest that Cjd strains arose from a common ancestor, providing clues as to

  3. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity.

    Science.gov (United States)

    Watson, Eleanor; Sherry, Aileen; Inglis, Neil F; Lainson, Alex; Jyothi, Dushyanth; Yaga, Raja; Manson, Erin; Imrie, Lisa; Everest, Paul; Smith, David G E

    2014-09-01

    Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  4. Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates.

    Science.gov (United States)

    Ugarte-Ruiz, M; Stabler, R A; Domínguez, L; Porrero, M C; Wren, B W; Dorrell, N; Gundogdu, O

    2015-11-01

    Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a number of loci to be identified, which encode virulence factors that aid survival and pathogenicity. Recently, a Type VI secretion system (T6SS) consisting of 13 conserved genes was described in C. jejuni strains and recognised to promote pathogenicity and adaptation to the environment. In this study, we determined the presence of this T6SS in 63 Spanish C. jejuni isolates from the food chain and urban effluents using whole-genome sequencing. Our findings demonstrated that nine (14%) strains harboured the 13 ORFs found in prototype strain C. jejuni 108. Further studies will be necessary to determine the prevalence and importance of T6SS-positive C. jejuni strains.

  5. Effect of clavulanic acid on susceptibility of Campylobacter jejuni and Campylobacter coli to eight beta-lactam antibiotics.

    Science.gov (United States)

    Gaudreau, C L; Lariviere, L A; Lauzer, J C; Turgeon, F F

    1987-01-01

    The effect of clavulanic acid on the susceptibility of 32 strains of Campylobacter jejuni and Campylobacter coli to eight beta-lactam agents was studied. Almost all strains tested became susceptible to amoxicillin and ticarcillin with 1 microgram of clavulanic acid per ml. This compound had little or no effect on susceptibility to penicillin G, cephalothin, cefamandole, and cefoxitin. Clavulanic acid had a marginal effect on cefotaxime and moxalactam susceptibility. PMID:3619428

  6. Effect of clavulanic acid on susceptibility of Campylobacter jejuni and Campylobacter coli to eight beta-lactam antibiotics.

    OpenAIRE

    Gaudreau, C L; Lariviere, L A; Lauzer, J C; Turgeon, F F

    1987-01-01

    The effect of clavulanic acid on the susceptibility of 32 strains of Campylobacter jejuni and Campylobacter coli to eight beta-lactam agents was studied. Almost all strains tested became susceptible to amoxicillin and ticarcillin with 1 microgram of clavulanic acid per ml. This compound had little or no effect on susceptibility to penicillin G, cephalothin, cefamandole, and cefoxitin. Clavulanic acid had a marginal effect on cefotaxime and moxalactam susceptibility.

  7. Campylobacter jejuni: exposure assessment and hazard characterization : growth, survival and infectivity of Campylobacter jejuni

    NARCIS (Netherlands)

    Verhoeff-Bakkenes, L.

    2012-01-01

    Campylobacter jejuni, a small, curved or spirally shaped highly motile microorganism, is identified as a major cause of bacterial gastroenteritis throughout the world. Serious complications such as the Guillain-Barré syndrome and reactive arthritis might occasionally follow infection. In this

  8. Post-genome Analysis of the Foodborne Pathogen Campylobacter jejuni

    Science.gov (United States)

    Kay, Emily J.; Gundogdu, Ozan; Wren, Brendan

    The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter and Wolinella genuses. Campylobacter species are Gram-negative, curved rod shaped or spiral and are motile (via polar flagella).

  9. Recombinant Escherichia coli strains with inducible Campylobacter jejuni single domain hemoglobin CHb expression exhibited improved cell growth in bioreactor culture.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available Maintaining an appropriate concentration of dissolved oxygen in aqueous solution is critical for efficient operation of a bioreactor, requiring sophisticated engineering design and a system of regulation to maximize oxygen transfer from the injected air bubbles to the cells. Bacterial hemoglobins are oxygen-binding proteins that transfer oxygen from the environment to metabolic processes and allow bacteria to grow even under microaerophilic conditions. To improve the oxygen utilization efficiency of cells and overcome the oxygen shortage in bioreactors, the gene coding for the Campylobacter jejuni single domain hemoglobin (CHb gene was artificially synthesized and functionally expressed under the control of inducible expression promoters PT7 and Pvgh in Escherichia coli. The effects of the recombinants PT7-CHb and Pvgh-CHb on cell growth were evaluated in aerobic shake flasks, anaerobic capped bottles and a 5-L bioreactor, and a pronounced improvement in cell biomass was observed for CHb-expressing cells. To determine the growth curves, CHb gene expression, and CHb oxygen-binding capacity of specific recombinants with different promoters, we determined the time course of CHb gene expression in the two recombinants by semi-quantitative RT-PCR and CO differential spectrum assays. Based on the growth patterns of the two recombinants in the bioreactor, we proposed different recombinant types with optimal performance under specific culture conditions.

  10. Effect of gamma radiation on Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, J.D.; Maxcy, R.B.

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10/sup 0/C, at 0-5/sup 0/C, and at 30 +/- 10/sup 0/C. Irradiation at -30/sup 0/C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D/sub 10/ value for C. jejuni was 32 Krad, which was less than D/sub 10/ values commonly reported for salmonellae. 20 references, 4 figures.

  11. Study of the infectivity of saline-stored Campylobacter jejuni for day-old chicks

    DEFF Research Database (Denmark)

    Hald, Birthe; Knudsen, Katrine; Lind, Peter

    2001-01-01

    The culturability of three Campylobacter jejuni strains and their infectivity for day-old chicks were assessed following storage of the strains in saline. The potential for colonization of chicks was weakened during the storage period and terminated 3 to 1 weeks before the strains became...

  12. [Evaluation of antigenic properties of Campylobacter jejuni and Campylobacter coli proteins in a western-immunoblot].

    Science.gov (United States)

    Rokosz, Natalia; Waldemar, Rastawicki; Jagielski, Marek

    2008-01-01

    Campylobacter jejuni and Campylobacter coli are the most common bacterial cause for acute diarrheal illnesses in developed countries. The aim of this study was to evaluate the antigenic properties of Campylobacterjejuni and Campylobacter coli proteins in western-blot assay. Whole-cell components of Campulobacter jejuni and Campylobacter coli were separated by sodium dodecyl sulfate-polyacrylamide gel electroforesis. Using this method we detected in all seven C. jejuni strains 21 peptides migrating between 180-29 kDa. All three Ccoli strains had a 17 bands migrating with the same molecular weight range. Proteins were transferred electrophoretically to nitrocellulose paper for immunoblotting experiments. The 74 kDa protein reacted strongly in all classes ofimmmunoglobulin with all tested human serum samples. We observed that this protein reacted also with human immunoglobulins for Salmonella and Yersinia sp. This cross-reaction observed for this protein could give false positive results in routine diagnosis of C. jejuni infections. The proteins with molecular weight of: 92, 62, 56, 52, 45-43, 29 kDa were most recognized in the 20 human serum samples. The other proteins of Cljejuni and C. coli, particularly in the 68-50 kDa and 45-31 kDa regions, were recognized occasionally and the response to these in reconvalescent sera was usually weak. The result of this study showed that the proteins with molecular weight: 92, 62, 56, 52, 45-43 and 29 kDa can be use in routine serological diagnostic of campylobacteriosis.

  13. Substrate utilization by Campylobacter jejuni and Campylobacter coli

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, H.N.; Rollins, D.M.; Weiss, E.

    1986-10-01

    An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO/sub 2/ formation from four /sup 14/C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. The cells were incubated with 0.02 M glutamate, glutamine, ..cap alpha..-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with /sup 2/chemically bond-ketoglutarate, was an immediate burst of CO/sub 2/ production followed by CO/sub 2/ evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO/sub 2/ production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and ..cap alpha..-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.

  14. Campylobacter jejuni PflB is required for motility and colonisation of the chicken gastrointestinal tract.

    Science.gov (United States)

    Kanji, Alpa; Jones, Michael A; Maskell, Duncan J; Grant, Andrew J

    2015-12-01

    Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis worldwide. Although the mechanisms by which C. jejuni causes disease are not completely understood, the presence of functional flagella appears to be required for colonisation of the gastrointestinal tract of humans and animals. Therefore much attention has been given to understanding the synthesis and role of flagella in C. jejuni. In this study we report insights into the function of PflB that is essential for Campylobacter motility. We have explored the function of this gene by constructing deletion mutants in C. jejuni strains NCTC11168 and M1, in the genes cj0390 and CJM1_0368, respectively. The mutants were non-motile yet assembled flagella that appeared structurally identical to the wild type. Furthermore the protein is required for C. jejuni colonisation of caeca in a two-week old chicken colonisation model.

  15. Chronic diarrhea associated with Campylobacter jejuni infection in a cat.

    Science.gov (United States)

    Fox, J G; Claps, M; Beaucage, C M

    1986-08-15

    Campylobacter jejuni was isolated from a cat with chronic diarrhea. The diarrheic cat and another cat (which previously had diarrhea) in the same household had bactericidal antibody titers to the C jejuni. Clinical response to antibiotic therapy and not recovering Campylobacter sp from normal feces after treatment also supported the diagnosis of Campylobacter-associated diarrhea. Although the owner had a protracted episode of diarrhea, C jejuni was not isolated from the owner's feces, nor was a bactericidal antibody detected in the owner's serum.

  16. Influxed insects as Vectors for Campylobacter jejuni and Campylobacter coll in Danish Broiler Houses

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Pedersen, Karl

    2008-01-01

    The vector potential of flies (Diptera: Brachycera) for spread of Campylobacter jejuni and Campylobacter coli on 5 Danish broiler farms was evaluated in a longitudinal field study from April to November 2004. First, the prevalence of C. jejuni- and C. coli-positive flies was determined in 2...

  17. Presence of antibodies against campylobacter flagellar capping proteins versus campylobacter jejuni isolation in broilers

    Science.gov (United States)

    Campylobacter jejuni is the leading foodborne pathogen that causes human acute bacterial gastroenteritis worldwide. Human cases have been linked to consumption and/or handling of contaminated poultry products. Although Campylobacter jejuni is commonly regarded as a commensal in broiler cecal micro...

  18. An outbreak of infectious hepatitis in commercially reared ostriches associated with Campylobacter coli and Campylobacter jejuni

    DEFF Research Database (Denmark)

    Stephens, C.P.; On, S.L.W.; Gibson, J.A.

    1998-01-01

    lesions resembled those of vibrionic hepatitis in other avian species. Campylobacter coli was isolated from the livers of affected ostriches from five of the six properties. Campylobacter jejuni subsp. jejuni was isolated from birds from the remaining property. Pulsed-field gel electrophoresis-based (PFGE...

  19. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets.

    Science.gov (United States)

    Mughini Gras, L; Smid, J H; Wagenaar, J A; Koene, M G J; Havelaar, A H; Friesema, I H M; French, N P; Flemming, C; Galson, J D; Graziani, C; Busani, L; VAN Pelt, W

    2013-12-01

    We compared Campylobacter jejuni/coli multilocus sequence types (STs) from pets (dogs/cats) and their owners and investigated risk factors for pet-associated human campylobacteriosis using a combined source-attribution and case-control analysis. In total, 132/687 pet stools were Campylobacter-positive, resulting in 499 strains isolated (320 C. upsaliensis/helveticus, 100 C. jejuni, 33 C. hyointestinalis/fetus, 10 C. lari, 4 C. coli, 32 unidentified). There were 737 human and 104 pet C. jejuni/coli strains assigned to 154 and 49 STs, respectively. Dog, particularly puppy, owners were at increased risk of infection with pet-associated STs. In 2/68 cases vs. 0.134/68 expected by chance, a pet and its owner were infected with an identical ST (ST45, ST658). Although common sources of infection and directionality of transmission between pets and humans were unknown, dog ownership significantly increased the risk for pet-associated human C. jejuni/coli infection and isolation of identical strains in humans and their pets occurred significantly more often than expected.

  20. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  1. Specific detection and confirmation of Campylobacter jejuni by DNA hybridization and PCR.

    Science.gov (United States)

    Ng, L K; Kingombe, C I; Yan, W; Taylor, D E; Hiratsuka, K; Malik, N; Garcia, M M

    1997-11-01

    Conventional detection and confirmation methods for Campylobacter jejuni are lengthy and tedious. A rapid hybridization protocol in which a 1,475-bp chromogen-labelled DNA probe (pDT1720) and Campylobacter strains filtered and grown on 0.22-micron-pore-size hydrophobic grid membrane filters (HGMFs) are used was developed. Among the environmental and clinical isolates of C. jejuni, Campylobacter coli, Campylobacter jejuni subsp. doylei, Campylobacter lari, and Arcobacter nitrofigilis and a panel of 310 unrelated bacterial strains tested, only C. jejuni and C. jejuni subsp. doylei isolates hybridized with the probe under stringent conditions. The specificity of the probe was confirmed when the protocol was applied to spiked skim milk and chicken rinse samples. Based on the nucleotide sequence of pDT1720, a pair of oligonucleotide primers was designed for PCR amplification of DNA from Campylobacter spp. and other food pathogens grown overnight in selective Mueller-Hinton broth with cefoperazone and growth supplements. All C. jejuni strains tested, including DNase-producing strains and C. jejuni subsp. doylei, produced a specific 402-bp amplicon, as confirmed by restriction and Southern blot analysis. The detection range of the assay was as low as 3 CFU per PCR to as high as 10(5) CFU per PCR for pure cultures. Overnight enrichment of chicken rinse samples spiked initially with as little as approximately 10 CFU/ml produced amplicons after the PCR. No amplicon was detected with any of the other bacterial strains tested or from the chicken background microflora. Since C. jejuni is responsible for 99% of Campylobacter contamination in poultry, PCR and HGMF hybridization were performed on naturally contaminated chicken rinse samples, and the results were compared with the results of conventional cultural isolation on Preston agar. All samples confirmed to be culture positive for C. jejuni were also identified by DNA hybridization and PCR amplification, thus confirming that

  2. Characterization of the biochemical properties of Campylobacter jejuni RNase III.

    Science.gov (United States)

    Haddad, Nabila; Saramago, Margarida; Matos, Rute G; Prévost, Hervé; Arraiano, Cecília M

    2013-11-25

    Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.

  3. Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles

    OpenAIRE

    Jenny Olofsson; Diana Axelsson-Olsson; Lars Brudin; Björn Olsen; Patrik Ellström

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81–176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furt...

  4. Host adaptation mechanisms and transcriptional regulation in Campylobacter jejuni

    NARCIS (Netherlands)

    van Mourik, A.

    2011-01-01

    Campylobacter jejuni is the most common cause of bacterial foodborne illness causing >100 million human cases each year worldwide. In contrast to other important enteropathogens such as Salmonella and Shigella spp., C. jejuni appears to lack a set of classical virulence traits, like adhesins, type I

  5. Colonization of broilers by Campylobacter jejuni internalized within Acanthamoeba castellanii

    Science.gov (United States)

    We present the first report that Campylobacter jejuni, internalized within Acanthamoeba castellanii, colonized broilers. After 1, 3, 7 and 14 days post challenge none of the broilers challenged with negative controls were colonized, but were with internalized C. jejuni. The biology of protozoa-Cam...

  6. Phage therapy reduces Campylobacter jejuni colonization in broilers

    NARCIS (Netherlands)

    Wagenaar, J.A.; Bergen, van M.A.P.; Mueller, M.A.; Wassenaar, T.M.; Carlton, R.M.

    2005-01-01

    The effect of phage therapy in the control of Campylobacter jejuni colonization in young broilers, either as a preventive or a therapeutic measure, was tested. A prevention group was infected with C. jejuni at day 4 of a 10-day phage treatment. A therapeutic group was phage treated for 6 days, start

  7. Identification of possible virulence marker from Campylobacter jejuni isolates.

    Science.gov (United States)

    Harrison, James W; Dung, Tran Thi Ngoc; Siddiqui, Fariha; Korbrisate, Sunee; Bukhari, Habib; Tra, My Phan Vu; Hoang, Nguyen Van Minh; Carrique-Mas, Juan; Bryant, Juliet; Campbell, James I; Studholme, David J; Wren, Brendan W; Baker, Stephen; Titball, Richard W; Champion, Olivia L

    2014-06-01

    A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS. The marker was most prevalent in human and chicken isolates from Vietnam.

  8. Reactions of Chicken Sera to Recombinant Campylobacter jejuni Flagellar Proteins

    Science.gov (United States)

    Campylobacter jejuni is a Gram-negative rod bacterium and is the leading but under-reported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated ...

  9. Clonal distribution and virulence of Campylobacter jejuni isolates in blood.

    Science.gov (United States)

    Feodoroff, Benjamin; de Haan, Caroline P A; Ellström, Patrik; Sarna, Seppo; Hänninen, Marja-Liisa; Rautelin, Hilpi

    2013-10-01

    Campylobacter jejuni bacteria are highly diverse enteropathogens. Seventy-three C. jejuni isolates from blood collected in Finland were analyzed by multilocus sequence typing and serum resistance. Approximately half of the isolates belonged to the otherwise uncommon sequence type 677 clonal complex. Isolates of this clonal complex were more resistant than other isolates to human serum.

  10. Serotypes and typability of Campylobacter jejuni and Campylobacter coli isolated from poultry products

    DEFF Research Database (Denmark)

    Nielsen, Eva Møller; Nielsen, Niels Ladefoged

    1999-01-01

    Campylobacter infection is one of the most common bacterial enteric pathogens. Campylobacter jejuni and Campylobacter coli infections are mostly food- and waterborne and especially poultry is often assumed to be an important source. The heat-stable serotyping system (the 'Penner' scheme) was used...

  11. The civRT operon is important for Campylobacter jejuni strain 81-176 host cell interactions through regulation of the formate dehydrogenase operon

    Science.gov (United States)

    C. jejuni colonizes the intestinal mucosa, and the severity of disease in different strains is correlated with host cell interaction and invasion. A microarray screen to identify genes differentially regulated during C. jejuni interaction with tissue culture cells revealed the up-regulation of a two...

  12. Antimicrobial susceptibility profiles and molecular typing of Campylobacter jejuni and Campylobacter coli isolates from ducks in South Korea.

    Science.gov (United States)

    Wei, Bai; Cha, Se-Yeoun; Kang, Min; Roh, Jae-Hee; Seo, Hye-Suk; Yoon, Ran-Hee; Jang, Hyung-Kwan

    2014-12-01

    Campylobacter is a food-borne zoonotic pathogen that causes human gastroenteritis worldwide. Campylobacter bacteria are commensal in the intestines of many food production animals, including ducks and chickens. The objective of the study was to determine the prevalence of Campylobacter species in domestic ducks, and the agar dilution method was used to determine resistance of the isolates to eight antibiotics. In addition, multilocus sequence typing (MLST) was performed to determine the sequence types (STs) of selected Campylobacter isolates. Between May and September 2012, 58 duck farms were analyzed, and 56 (96.6%) were positive for Campylobacter. Among the isolates, 82.1% were Campylobacter jejuni, 16.1% were C. coli, and one was unidentified by PCR. Of the 46 C. jejuni isolates, 87.0%, 10.9%, and 21.7% were resistant to ciprofloxacin, erythromycin, and azithromycin, respectively. Among the C. coli isolates, all 9 strains were resistant to ampicillin, and 77.8% and 33.3% were resistant to ciprofloxacin and azithromycin, respectively. The majority of the Campylobacter isolates were classified as multidrug resistant. Twenty-eight STs were identified, including 20 STs for C. jejuni and 8 STs for C. coli. The most common clonal complexes in C. jejuni were the ST-21 complex and the ST-45 complex, while the ST-828 complex predominated in C. coli. The majority of isolates were of STs noted in ducks and humans from earlier studies, along with seven STs previously associated only with human disease. These STs overlapped between duck and human isolates, indicating that Campylobacter isolates from ducks should be considered potential sources of human infection.

  13. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis

    DEFF Research Database (Denmark)

    Mortensen, Ninell P; Schiellerup, Peter; Boisen, Nadia

    2011-01-01

    The role of Campylobacter jejuni cytolethal distending toxin (CDT) on clinical outcome after gastroenteritis was investigated. Clinical data, blood serum samples, and Campylobacter spp. isolated, from each of 30 patients were collected over a period of 6 months. The CDT encoding genes, cdt...

  14. Cellular response of Campylobacter jejuni to trisodium phosphate

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Cohn, M. T.; Stabler, R. A.

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal...

  15. Serologic Evidence of Previous Campylobacter jejuni Infection in Patients with the Guillain-Barre Syndrome

    Science.gov (United States)

    1993-06-15

    Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development Approved for public release; distribution unlimited Acccsiccn For rNTIS CRA&I... Campylobacter jejuni may tigation of 106 patients with the Guillain-Barre syn- play a role in the initiation of the Guillain-Barr6 syn- drome, C. jejuni...C. jejuni infection also lain-Barr6 syndrome were 5.3 times more likely to have Table 2. Campylobacter jejuni Antibodies in Patients with Culture

  16. Quinolone and macrolide resistance in Campylobacter jejuni and C-coli: Resistance mechanisms and trends in human isolates

    DEFF Research Database (Denmark)

    Engberg, J.; Aarestrup, Frank Møller; Taylor, D. E.;

    2001-01-01

    The incidence of human Campylobacter jejuni and C. coli infections has increased markedly in many parts of the world in the last decade as has the number of quinolone-resistant and, to a lesser extent, macrolide-resistant Campylobacter strains causing infections. We review macrolide and quinolone...

  17. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs) by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  18. Molecular typing of Campylobacter jejuni isolates involved in a neonatal outbreak indicates nosocomial transmission

    DEFF Research Database (Denmark)

    Llovo, J.; Mateo, E.; Munoz, A.

    2003-01-01

    Genotypic typing by restriction fragment length polymorphism and pulsed-field gel electrophoresis showed that two neonates in a neonatal ward were infected with the same Campylobacter jejuni strain. Isolates from the mother and brother of the index patient were identical to each other but distinct...

  19. Complete genome sequence of Campylobacter jejuni RM1285 a rod-shaped morphological variant

    Science.gov (United States)

    Campylobacter jejuni is a spiral-shaped Gram-negative food-borne human pathogen found on poultry products. Strain RM1285 is a rod-shaped variant of this species. The genome of RM1285 was determined to be 1,635,803 bp with a G+C content of 30.5%....

  20. Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Liu

    Full Text Available Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways.

  1. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry.

    Science.gov (United States)

    Owens, Jane; Barton, Mary D; Heuzenroeder, Michael W

    2013-02-22

    Six hundred and sixty one samples - primarily fresh chicken faeces - were processed to isolate wild type Campylobacter jejuni bacteriophages, via overlay agar methods using C. jejuni NCTC 12662. The aims of this study were to isolate and purify bacteriophages and then test for their ability to lyse field strains of C. jejuni in vitro. Of all samples processed, 130 were positive for bacteriophages. A distinct difference was observed between samples from different poultry enterprises. No bacteriophages could be isolated from indoor broilers. The majority of bacteriophages were isolated from free range poultry - both broilers and egg layers. Bacteriophages were purified and then selected for characterization based on their ability to produce clear lysis on plaque assay, as opposed to turbid plaques. Two hundred and forty one C. jejuni field isolates were tested for sensitivity to the bacteriophages. Lysis was graded subjectively and any minimal lysis was excluded. Using this system, 59.0% of the C. jejuni isolates showed significant sensitivity to at least one bacteriophage. The sensitivity to individual bacteriophages ranged from 10.0% to 32.5% of the C. jejuni isolates. Five bacteriophages were examined by electron microscopy and determined to belong to the Myoviridae family. The physical size, predicted genetic composition and genome size of the bacteriophages correlated well with other reported Campylobacter bacteriophages. The reasons for the observed difference between indoor broilers and free range poultry is unknown, but are postulated to be due to differences in the Campylobacter population in birds under different rearing conditions.

  2. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

    Science.gov (United States)

    Dwivedi, Ritika; Nothaft, Harald; Garber, Jolene; Xin Kin, Lin; Stahl, Martin; Flint, Annika; van Vliet, Arnoud H M; Stintzi, Alain; Szymanski, Christine M

    2016-08-01

    Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.

  3. Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment.

    Science.gov (United States)

    Robyn, J; Rasschaert, G; Messens, W; Pasmans, F; Heyndrickx, M

    2012-12-01

    Thermotolerant Campylobacter spp., specifically Campylobacter jejuni and Campylobacter coli, are the most common bacterial causes of human gastroenteritis in developed countries. Consumption of improperly prepared poultry products and cross contamination are among the main causes of human campylobacteriosis. The aim of this study was to identify lactic acid bacterial (LAB) strains capable of inhibiting C. jejuni growth in initial in vitro trials ('spot-on-lawn' method), as well as in batch fermentation studies mimicking the broiler caecal environment. These experiments served as an indication for using these strains to decrease the capability of Campylobacter to colonise and grow in the chicken caeca during primary production, with the aim of reducing the number of human campylobacteriosis cases. A total of 1,150 LAB strains were screened for anti-Campylobacter activity. Six strains were selected: members of the species Lactobacillus reuteri, Lactobacillus agilis, Lactobacillus helveticus, Lactobacillus salivarius, Enterococcus faecalis and Enterococcus faecium. After treatment with catalase, proteinase K and a-chymotrypsin, anti-Campylobacter activity of cell-free culture supernatant fluid (CSF) for all six strains was retained, which indicated that activity was probably not exerted by bacteriocin production. Based on the activity found in CSF, the compounds produced by the selected strains are secreted and do not require presence of live bacterial producer cells for activity. During initial in vitro fermentation experiments, the E. faecalis strain exhibited the highest inhibitory activity for C. jejuni and was selected for further fermentation experiments. In these experiments we tested for therapeutic or protective effects of the E. faecalis strain against C. jejuni MB 4185 infection under simulated broiler caecal growth conditions. The best inhibition results were obtained when E. faecalis was inoculated before the C. jejuni strain, lowering C. jejuni counts at

  4. Phenotyping of Campylobacter jejuni and Campylobacter coli by a quantitative antibiogram [MIC] typing scheme using Euclidean distances [QATED

    Directory of Open Access Journals (Sweden)

    Goldsmith Colin E

    2001-07-01

    Full Text Available Abstract Background Enteropathogenic Campylobacter jejuni and C. coli are presently the most common cause of acute bacterial gastroenteritis in the developed world. An understanding of sources and means of transmission of Campylobacter is an essential factor in order to reduce the incidence of Campylobacter-related gastroenteritis in man. Consequently a reproducible, sensitive and well-standardised typing scheme is critical in the successful discrimination of strains and in the subsequent investigations of outbreaks. For this purpose, a phenotypic typing scheme based on quantitative antibiogram determination based on Euclidean distance (QATED, was developed. Results and Conclusion The results obtained with this typing scheme demonstrated that individual livers of colonized pigs could be infected with multiple strains of Campylobacter spp. and subspecies types. In conclusion, phenotyping of Campylobacter jejuni and C. coli by QATED is a simple, inexpensive and discriminatory sub-species characterisation scheme, which may be useful in primary diagnostic clinical laboratories, where no specialist Campylobacter phenotyping or molecular genotyping schemes exist. It is especially suitable for food-bome outbreak investigations in the community, where a rapid and local response is required to aid with public health epidemiological investigations.

  5. Importance of Campylobacter jejuni for Food Safety and Public Health

    Directory of Open Access Journals (Sweden)

    Omer Cakmak

    2010-04-01

    Full Text Available Campylobacter spp. are microorganisms that can be found in nature in the entire domestic and wild animal’s intestinal flora including the poultry and the sea animals. Campylobacter can better colonize in the poultry than the other animals. Campylobacter jejuni is an important pathogen among the thermophilic Campylobacter spp. whose growth temperature’s are different than the other Campylobacter spp. and can cause serious gastroenteritis in human beings which in some cases ended up with death. Human beings are generally infected with C. jejuni mainly because of the poultry meat and products and rarely because of the red meat which are contaminated during preparation and serving stages. Inadequate cooking, consumption of poorly chlorinated drinking water or unpasteurized milk are other infection sources of C. jejuni. Campylobacteriosis especially affect children under 5 years of age and reported to be a zoonotic illness that cause acute gastroenteritis in human. In many countries, food sourced C. jejuni infections were reported to occur more frequently than Salmonella spp. infections. In order to avoid Campylobacter infections, it is very important to enforce food security programmes and HACCP like systems during growth, slaughterhouses and point of sales stages. Also adequate cooking of the products, hygiene of the kitchen and personnel are important. [TAF Prev Med Bull 2010; 9(2.000: 157-166

  6. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  7. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Directory of Open Access Journals (Sweden)

    Euna eOh

    2015-10-01

    Full Text Available The increasing resistance of Campylobacter to clinically-important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN. Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  8. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  9. Virulence and Genomic Feature of Multidrug Resistant Campylobacter jejuni Isolated from Broiler Chicken

    Science.gov (United States)

    Hao, Haihong; Ren, Ni; Han, Jing; Foley, Steven L.; Iqbal, Zahid; Cheng, Guyue; Kuang, Xiuhua; Liu, Jie; Liu, Zhenli; Dai, Menghong; Wang, Yulian; Yuan, Zonghui

    2016-01-01

    The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655). The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline, and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g., pTet) and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence. PMID:27790202

  10. Comparison of cstⅡ gene in Guillain-Barré syndrome-associated Campylobacter jejuni strains%吉兰-巴雷综合征相关空肠弯曲菌cstⅡ基因序列对比研究

    Institute of Scientific and Technical Information of China (English)

    孙世超; 白欣立; 陈娟; 王莹; 邢丛丛; 付金生; 李震中

    2011-01-01

    目的 研究华北地区3株吉兰-巴雷综合征(Guillain-Barré syndrome,GBS)相关空肠弯曲菌(Campylobacter jejuni,C.jejuni)的cstⅡ基因序列并寻找GBS相关及GBS无关的两类空肠弯曲菌菌株间可能与GBS致病性相关的基因突变位点和蛋白高级结构变化,分析菌株间遗传进化关系.方法 选取分离自GBS患者粪便并经动物模型证实为致GBS的3株空肠弯曲菌菌株进行培养并提取基因组DNA测序,与GenBank中GBS无关空肠弯曲菌基因序列进行配对对比,寻找两类菌株间可能导致空肠弯曲菌致病能力差异的cstⅡ基因碱基突变位点及蛋白高级结构改变,观察这种变化是否为GBS相关菌株的共性,并构建遗传进化树.结果 与GBS无关菌株相比,3株致GBS菌株cstⅡ基因的氨基酸序列二级结构的第7个α螺旋的165~180区段均被打开形成了折叠或转角,该变化在其他GBS相关菌株的二级结构变化中同样得到体现.实验中75%的GBS相关菌株cstⅡ基因为双功能,25%GBS相关菌株及所有GBS无关菌株cstⅡ基因为单功能.LL株与实验中涉及的GBS相关菌株在进化上高度类聚.结论 双功能cstⅡ可能与空肠弯曲菌的致GBS特性相关.LL株cstⅡ基因在一定程度上反映了亚洲地区的GBS相关菌株cstⅡ基因的序列特征,为进一步探索GBS发病的地域性特点并对GBS菌株进行监测提供了资料.%Objective To investigate the pathogenic mechanism of Campylobacter jejuni(C.jejuni) associated with Guillain-Barré syndrome(GBS) and provide strategy for gene modification, the cstⅡ gene from 8 GBS-associated C.jejuni strains were compared with that from 3 GBS-unrelated C.jejuni strains, getting the base and amino acid mutations, the changes of secondary structures and finding the region which may be responsible for the pathogenicity of C.jejuni inducing GBS. Methods Three GBS-associated C.jejuni strains isolated from stools of GBS patients in north China were

  11. Analysis of putative chemoreceptor proteins of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Bang, Dang D.

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world. A very important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently and commensally by this organism. Predominantly the mucus filled crypts of the lower gastrointestinal tract...... are being analyzed in adherence and invasion assays with both human and chicken cells to explore the possibility that these membrane spanning proteins interact with host cells rather than operating as chemoreceptors....

  12. Campylobacter jejuni and Campylobacter coli in Children With Acute Diarrhea in Health Centers of Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    Rastyani

    2015-11-01

    Full Text Available Background Enteritis caused by Campylobacter is considered as the most common acute bacterial diarrhea around the world. In most cases, infection occurs as a result of consuming contaminated water or food, especially raw meat of fowls. Objectives The purpose of the present study was to determine the prevalence and antibiotic resistance of campylobacter species among pediatrics of Hamadan city, Iran. Patients and Methods A total of 120 stool samples from children less than 10 years old were examined from January 2013 to December 2014 in Hamadan, Iran. The samples were incubated in Campy-Thio enrichment medium for 1 - 2 hours and then cultured on a specific medium; after that, the suspected colonies were analyzed for Campylobacter spp. identification by conventional tests. The identified species by biochemical methods were confirmed by polymerase chain reaction (PCR. Antimicrobial susceptibility testing was performed by disk agar diffusion (DAD method. Results Twelve (10% Campylobacter spp. from 120 stool samples were isolated including C. coli and C. jejuni. In the antibiotic susceptibility test, the most frequent resistance was observed to ciprofloxacin 8 (88.8%, followed by 7 (77.7% resistant strains to tetracycline, 7 (77.7% to erythromycin, 6 (66.6% to clindamycin, 5 (55.5% to meropenem, 4 (44.4% to gentamicin, 3 (33.3% to nalidixicacid and only 1 (11.1% to chloramphenicol. Conclusions Campylobacter is responsible for some important clinical problems such as enteritis and is also associated with meningitis and hemolytic-uremic syndrome. It is imperative to monitor the prevalence and antibiotic resistance of Campylobacter spp. as well as other the zoonotic bacteria.

  13. Ribosomal operon intergenic sequence region (ISR) heterogeneity in Campylobacter coli and Campylobacter jejuni

    Science.gov (United States)

    Campylobacter jejuni and Campylobacter coli are closely related species that can not be distinguished by their 16S or 23S rRNA gene sequences. However, the intergenic sequence region (ISR) that is between the 16S and 23S genes is markedly different and characteristic for each species. A peculiarit...

  14. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity

    Directory of Open Access Journals (Sweden)

    Eleanor Watson

    2014-09-01

    Full Text Available Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC–ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith–Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  15. Prevalence of Campylobacter jejuni in poultry breeder flocks

    Directory of Open Access Journals (Sweden)

    Ludovico Dipineto

    2010-01-01

    Full Text Available The aim of this work is to present the preliminary results of a study about the prevalence of Campylobacter jejuni in poultry breeder flocks. It was examined three different breeder flocks of Bojano in Molise region. A total of 360 cloacal swabs and 80 enviromental swabs was collected. Of the 3 flocks studied, 6.9% tested were positive for Campylobacter spp. The most-prevalent isolated species is C. jejuni (8.2%. Only 3 of the 360 cloacal swabs samples examined were associated with C. coli. The environmental swabs resulted negative. This results confirms again that poultry is a reservoir of this germ.

  16. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate.

    Directory of Open Access Journals (Sweden)

    Maojun Zhang

    Full Text Available Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993 was isolated from a Guillain-Barré syndrome (GBS patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS loci and the flagella modification (FM loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.

  17. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks.

    Directory of Open Access Journals (Sweden)

    Sophie Kittler

    Full Text Available The pathogens Campylobacter jejuni and Campylobacter coli are commensals in the poultry intestine and campylobacteriosis is one of the most frequent foodborne diseases in developed and developing countries. Phages were identified to be effective in reducing intestinal Campylobacter load and this was evaluated, in the first field trials which were recently carried out. The aim of this study was to further investigate Campylobacter population dynamics during phage application on a commercial broiler farm. This study determines the superiority in colonisation of a Campylobacter type found in a field trial that was susceptible to phages in in vitro tests. The colonisation factors, i.e. motility and gamma glutamyl transferase activity, were increased in this type. The clustering in phylogenetic comparisons of MALDI-TOF spectra did not match the ST, biochemical phenotype and phage susceptibility. Occurrence of Campylobacter jejuni strains and phage susceptibility types with different colonisation potential seem to play a very important role in the success of phage therapy in commercial broiler houses. Thus, mechanisms of both, phage susceptibility and Campylobacter colonisation should be further investigated and considered when composing phage cocktails.

  18. Effects of decontamination at varying contamination levels of Campylobacter jejuni on broiler meat

    DEFF Research Database (Denmark)

    Boysen, Louise; Wechter, Naja Strandby; Rosenquist, Hanne

    2013-01-01

    When assessing effects of decontamination techniques on counts of Campylobacter spp. on broiler meat, it is essential that the results reflect the variations that may exist. Decontamination studies often use high inoculation levels (107 to 108 cfu) and one or few strains of Campylobacter jejuni...... difference in reductions was found for initial concentrations ranging from 103 to 107 cfu per sample. The mean log reductions obtained by all techniques were strongly dependent on the strain tested. The results reveal that reductions obtained with high inoculation levels of C. jejuni (107 cfu....../sample) or single or few strains of the species (or both) should not be interpreted as a generic result for the species. If inoculation studies cannot be replaced by investigations of naturally contaminated meat, we advise using a mixture of strains found in the production environment at levels as close as possible...

  19. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...

  20. Bacteriostatic and bactericidal activities of 24 antimicrobial agents against Campylobacter fetus subsp. jejuni.

    OpenAIRE

    Vanhoof, R.; Gordts, B; Dierickx, R; Coignau, H; Butzler, J P

    1980-01-01

    The bacteriostatic and bactericidal activities of 24 antimicrobial agents were tested with the Dynatech MIC 2000 system against 86 strains of Campylobacter fetus subsp. jejuni from human sources. The penicillins (penicillin G, ampicillin, amoxycillin, carbenicillin) had poor activity. Ampicillin and amoxycillin were equally active. Cefotaxime revealed a rather good activity. Erythromycin, gentamicin, tobramycin, amikacin, and furazolidone were the most active compounds. Two strains (2.3%) wer...

  1. Antibiotic Resistance of Campylobacter jejuni and C. coli Isolated from Children with Diarrhea in Thailand and Japan.

    Science.gov (United States)

    Pham, Ngan Thi Kim; Thongprachum, Aksara; Tran, Dinh Nguyen; Nishimura, Shuichi; Shimizu-Onda, Yuko; Trinh, Quang Duy; Khamrin, Pattara; Ukarapol, Nuthapong; Kongsricharoern, Tipachan; Komine-Aizawa, Shihoko; Okitsu, Shoko; Maneekarn, Niwat; Hayakawa, Satoshi; Ushijima, Hiroshi

    2016-01-01

    A total of 29 Campylobacter jejuni and C. coli strains were isolated from Thai and Japanese children with diarrhea using the Loop-mediated Isothermal Amplification method. The samples were evaluated for mutations in gyrA and 23S rRNA in order to assess resistance against fluoroquinolones and macrolides, respectively. Among the isolated strains, 9 (8 C. jejuni and 1 C. coli) were from Thai children, and the other 20 (C. jejuni) were isolated from Japanese children. High fluoroquinolone resistance rates were observed in Thai (66.7%) and Japanese (90%) children. Macrolide resistance was not observed in Japanese children but was observed at a considerable rate of 12.5% of C. jejuni isolated in the Thai cohort. The results indicate that continuous monitoring of resistance of Campylobacter strains to fluoroquinolones and macrolides is definitely necessary.

  2. Isolation and detection of Campylobacter jejuni from chicken fecal samples by immunomagnetic separation–PCR

    DEFF Research Database (Denmark)

    Le Ly, Tram Thuy; Cao, Cuong; Høgberg, Jonas

    2012-01-01

    Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal...

  3. Rapid Detection of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in Fresh Chicken Meat and By-Products in Bangkok, Thailand, Using Modified Multiplex PCR.

    Science.gov (United States)

    Saiyudthong, S; Phusri, K; Buates, S

    2015-07-01

    A multiplex PCR assay for simultaneous detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari was developed and validated to assess the occurrence of these bacteria in fresh chicken meat and by-products in Bangkok, Thailand, by using a new combination of four previously published PCR primers for C. jejuni, C. coli, C. lari, and a universal 16S rDNA gene as an internal control. The specificity was determined by using 13 strains of other bacteria. With pure culture DNA, the detection limit was 0.017 ng/PCR for C. jejuni and C. coli and was 0.016 ng/PCR for C. lari. It can detect 10 CFU of C. jejuni, C. coli, and C. lari in 2 g of chicken meat within a 16-h enrichment time. Our multiplex PCR assay was applied for identification of Campylobacter spp. in 122 supermarket samples and 108 fresh market samples. Of the 230 samples evaluated by multiplex PCR, 54.0, 3.3, and 10.7% of supermarket samples were positive for C. jejuni, C. coli, and mixed C. jejuni and C. coli, respectively, and 56.5 and 33.3% of fresh market samples were positive for C. jejuni and mixed C. jejuni and C. coli, respectively. No sample was positive for C. lari. Fresh market samples had significantly higher C. jejuni and C. coli contamination than those from supermarkets (relative risk: 1.3; P = 0.0001). Compared with the culture method (a gold standard), the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of multiplex PCR were 97.7, 86.8, 96.1, 92.0, and 95.2%, respectively. No significant difference was observed between results from two methods (P = 0.55). Therefore, the established multiplex PCR was not only rapid and easy to perform but had a high sensitivity and specificity to distinguish between C. jejuni, C. coli, and C. lari, even in samples containing mixed contamination. Our study indicated that fresh chicken meat and by-products from fresh markets were significantly less hygienic than those

  4. Metronidazole resistance in Campylobacter jejuni from poultry meat

    DEFF Research Database (Denmark)

    Andersen, Sigrid Rita; Shukri, Naseer Mahmoud; Boel, Jeppe

    2006-01-01

    The occurrence of metronidazole resistance was investigated among Campylobacter jejuni in raw poultry meat collected from supermarkets. MICs were determined by the agar dilution procedure in the testing range of 3 to 60 mu g/ml metronidazole. The MICs showed a bimodal distribution...

  5. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets

    NARCIS (Netherlands)

    Gras, L.M.; Smid, J.H.; Wagenaar, J.A.; Koene, M.G.J.; Havelaar, A.H.; Friesema, I.H.M.; French, N.P.; Flemming, C.; Galson, J.D.; Graziani, C.; Busani, L.; Pelt, van W.

    2013-01-01

    We compared Campylobacter jejuni/coli multilocus sequence types (STs) from pets (dogs/cats) and their owners and investigated risk factors for pet-associated human campylobacteriosis using a combined source-attribution and case-control analysis. In total, 132/687 pet stools were Campylobacter-positi

  6. Isolation and characterization of Campylobacter jejuni subsp jejuni from macaroni penguins (Eudyptes chrysolophus) in the subantarctic region

    DEFF Research Database (Denmark)

    Broman, T.; Bergstrom, S.; On, Stephen L.W.;

    2000-01-01

    On Bird Island, South Georgia, albatrosses (n = 140), penguins (n = 100), and fur seals (n = 206) were sampled for Campylobacter jejuni. C. jejuni subsp. jejuni was recovered from three macaroni penguins (Eudyptes chrysolophus). These isolates, the first reported for the subantarctic region, showed...

  7. Predominant Campylobacter jejuni sequence types persist in Finnish chicken production.

    Directory of Open Access Journals (Sweden)

    Ann-Katrin Llarena

    Full Text Available Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST and pulsed-field gel electrophoresis (PFGE to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%], and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST, but certain predominant MLST lineages were identified. ST-45 clonal complex (CC accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3% delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.

  8. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens;

    2008-01-01

    of the bacterial genes. We have investigated the invasiveness of primary chicken embryo intestinal cells (CEICs) by C. jejuni strains of human and chicken origins and the production of pro-inflammatory cytokines as well as the expression of the bacterial virulence-associated genes during co-cultivation. Results C......-free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...

  9. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: Strain diversity, host range, and recombination

    NARCIS (Netherlands)

    Schouls, L.M.; Reulen, S.; Duim, B.; Wagenaar, J.A.; Willems, R.J.L.; Dingle, K.E.; Colles, F.M.; Embden, van J.D.A.

    2003-01-01

    Three molecular typing methods were used to study the relationships among 184 Campylobacter strains isolated from humans, cattle, and chickens. All strains were genotyped by amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and sequence analysis of a genomic

  10. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  11. Complete genome sequences of multidrug-resistant Campylobacter jejuni 14980A (turkey feces) and Campylobacter coli 14983A (housefly from turkey farm), harboring a novel gentamicin resistance mobile element.

    Science.gov (United States)

    Multidrug resistance (MDR) in foodborne pathogens is a major food safety and public health issue. Here we describe whole-genome sequences of two MDR strains of Campylobacter jejuni and Campylobacter coli from turkey feces and a housefly in a turkey farm. Both strains harbor a novel chromosomal genta...

  12. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    Science.gov (United States)

    2009-11-01

    Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria by Dimitra N. Stratis-Cullum, Sun...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters, and Paul M. Pellegrino Sensors and Electron Devices...To) 2007–2008 4. TITLE AND SUBTITLE Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria 5a

  13. Exploring the chemotatic attraction of Campylobacter jejuni in chicken colonization

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ingmer, Hanne

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world and the bacteria causes millions of gastroenteritis cases each year. The most important reservoir for C. jejuni is the gut of chickens, which are colonized commensally and efficiently by this organism....... Predominantly the mucus filled crypts of the lower gastrointestinal tract of chickens are found to be colonized by C. jejuni, and the bacteria are expected to be attracted to this particular environment by chemotaxis. From the full genome sequence of C. jejuni NCTC11168 several chemotactic proteins...... function and to identify matching chemoeffectors. Furthermore, selected mutants will be investigated for their ability to colonize chickens with focus on establishment, level, and persistence. Special emphasis will be held at characterizing the colonization of mucus layers....

  14. Rotavirus y campylobacter fetus jejuni asociados a un brote de diarrea en terneros

    OpenAIRE

    1984-01-01

    artículo -- Universidad de Costa Rica. Instituto de Investigaciones en Salud, 1984 Rotaviruses and Campylobacter fetus jejuni are ubiquitous agents of diarrheal disease in animals and humans. Under natural conditions they do not seem to cross inter-species barriers; a zoonosis has not been documented for man. However, animal rotaviruses might contribute to the emergence of new reassortment strains in view of their segmented genome, and thus, produce new antigenic variants. On the contrary,...

  15. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs.

    Science.gov (United States)

    Godlewska, Renata; Kuczkowski, Maciej; Wyszyńska, Agnieszka; Klim, Joanna; Derlatka, Katarzyna; Woźniak-Biel, Anna; Jagusztyn-Krynicka, Elżbieta K

    2016-10-01

    Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.

  16. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor.

    Science.gov (United States)

    Masdor, Noor Azlina; Altintas, Zeynep; Tothill, Ibtisam E

    2016-04-15

    A quartz crystal microbalance (QCM) sensor platform was used to develop an immunosensor for the detection of food pathogen Campylobacter jejuni. Rabbit polyclonal antibodies and commercially available mouse monoclonal antibodies against C. jejuni were investigated to construct direct, sandwich and gold-nanoparticles (AuNPs) amplified sandwich assays. The performance of the QCM immunosensor developed using sandwich assay by utilising the rabbit polyclonal antibody as the capture antibody and conjugated to AuNPs as the detection antibody gave the highest sensitivity. This sensor achieved a limit of detection (LOD) of 150 colony forming unit (CFU)mL(-1) of C. jejuni in solution. The QCM sensor showed excellent sensitivity and specificity for Campylobacter detection with low cross reactivity for other foodborne pathogens such as Salmonella Typhimurium, (7%) Listeria monocytogenes (3%) and Escherichia coli (0%). The development of this biosensor would help in the sensitive detection of Campylobacter which can result in reducing pre-enrichment steps; hence, reducing assay time. This work demonstrates the potential of this technology for the development of a rapid and sensitive detection method for C. jejuni.

  17. Construction and Characterization of Campylobacter jejuni flhA Mutant Strain%空肠弯曲菌flhA突变株的构建及其功能研究

    Institute of Scientific and Technical Information of China (English)

    惠星星; 李烨; 王小元

    2011-01-01

    flhA, encoded by the gene flhA, is an important component of the flagellar export apparatus of Campylobacter jejuni. Here we constructed an flhA mutant strain HXW001.Compared with that of the wild type, the flhA mutant cell could grow well but lack flagella, the motility of the mutant cells was lost, and the ability of the mutant cells for the formation of biofilm and autoagglutination also decreased. In addition, it was found that the expression of the flagellin gene flaA was affected by flhA. These findings indicated that flhA was the molecular basis of flagellar synthesis and motility of Campylobacter jejuni and that flhA was closely related to pathogenicity of Carnpylobacter jejuni.%flhA是空肠弯曲茵鞭毛输出装置的关键基因,通过构建Campylobacterjejuni flhA突变株HXW001,进行毒力相关表型研究和分析.结果显示HXW001生长性能稳定,但其鞭毛和运动能力丧失,生物膜形成和自身凝集现象明显下降.RT-PCR实验证明flhA对鞭毛丝主要结构蛋白基因flaA的表达有一定的调控功能.研究表明flhA是空肠弯曲茵鞭毛生成和运动能力重要的分子基础,与空肠弯曲菌致病性密切有关.

  18. PFGE, Lior Serotype, and Antimicrobial Resistance Patterns Among Campylobacter jejuni Isolated from Travelers and US Military Personnel with Acute Diarrhea in Thailand, 1998-2003

    Science.gov (United States)

    2010-01-01

    Anuras5, Carl J Mason 1 Abstract Background: Compylobocrer jejuni is a major cause of gastroenteritis worldwide. In Thailand, several strains of C... gastroenteritis . Background Campylobacter jejuni is a major cause of gastroenteritis worldwide, especially in children, travelers, and military personnel...subtyping Salmonella spp., Shigella spp., and Vibrio spp., in addition to C. jejttni 112,13]. Unlike other enteric bacteria , Campylobacter is a

  19. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    Science.gov (United States)

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  20. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU.

    Science.gov (United States)

    Caballero, Moisés; Rivera, Isabel; Jara, Luis M; Ulloa-Stanojlovic, Francisco M; Shiva, Carlos

    2015-01-01

    Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coli were isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents.

  1. Identification of a novel membrane transporter mediating resistance to organic arsenic in Campylobacter jejuni.

    Science.gov (United States)

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping; Zhang, Qijing

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni.

  2. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity

    Science.gov (United States)

    Méndez-Olvera, Estela T.; Bustos-Martínez, Jaime A.; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-01-01

    Background Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. Objectives The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Methods Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). Results The results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. Conclusions This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes. PMID:27942359

  3. Exploring the chemotactic attraction of Campylobacter jejuni in chicken colonization

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ingmer, Hanne

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world. The most important reservoir for C. jejuni is the gut of chickens, which are colonized commensally and efficiently by this organism. Predominantly the mucus filled crypts of the lower gastrointestinal tract....... These mutants will be analyzed for their chemotatic capacity in order to investigate the chemoreceptor function and to identify matching chemoeffectors. Furthermore, selected mutants will be investigated for their ability to colonize chickens with focus on establishment, level, and persistence. Special emphasis...

  4. Comparison of PCR Binary Typing (P-BIT), a New Approach to Epidemiological Subtyping of Campylobacter jejuni, with Serotyping, Pulsed-Field Gel Electrophoresis, and Multilocus Sequence Typing Methods▿

    OpenAIRE

    2009-01-01

    To overcome some of the deficiencies with current molecular typing schema for Campylobacter spp., we developed a prototype PCR binary typing (P-BIT) approach. We investigated the distribution of 68 gene targets in 58 Campylobacter jejuni strains, one Campylobacter lari strain, and two Campylobacter coli strains for this purpose. Gene targets were selected on the basis of distribution in multiple genomes or plasmids, and known or putative status as an epidemicity factor. Strains were examined ...

  5. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni.

    Science.gov (United States)

    Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul

    2013-04-01

    Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are

  6. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology.

  7. Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni.

    Science.gov (United States)

    Muraoka, Wayne T; Zhang, Qijing

    2011-03-01

    Campylobacter jejuni remains among the leading causes of bacterial food-borne illness. The current understanding of Campylobacter physiology suggests that it is asaccharolytic and is unable to catabolize exogenous carbohydrates. Contrary to this paradigm, we provide evidence for l-fucose utilization by C. jejuni. The fucose phenotype, shown in chemically defined medium, is strain specific and linked to an 11-open reading frame (ORF) plasticity region of the bacterial chromosome. By constructing a mutation in fucP (encoding a putative fucose permease), one of the genes in the plasticity region, we found that this locus is required for fucose utilization. Consistent with their function in fucose utilization, transcription of the genes in the locus is highly inducible by fucose. PCR screening revealed a broad distribution of this genetic locus in strains derived from various host species, and the presence of this locus was consistently associated with fucose utilization. Birds inoculated with the fucP mutant strain alone were colonized at a level comparable to that by the wild-type strain; however, in cocolonization experiments, the mutant was significantly outcompeted by the wild-type strain when birds were inoculated with a low dose (10⁵ CFU per bird). This advantage was not observed when birds were inoculated at a higher inoculum dose (10⁸ CFU per bird). These results demonstrated a previously undescribed substrate that supports growth of C. jejuni and identified the genetic locus associated with the utilization of this substrate. These findings substantially enhance our understanding of the metabolic repertoire of C. jejuni and the role of metabolic diversity in Campylobacter pathobiology.

  8. Campylobacter jejuni motility is required for infection of the flagellotropic bacteriophage F341.

    Science.gov (United States)

    Baldvinsson, Signe Berg; Sørensen, Martine C Holst; Vegge, Christina S; Clokie, Martha R J; Brøndsted, Lone

    2014-11-01

    Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor.

  9. Computer-assisted analysis and epidemiological value of genotyping methods for Campylobacter jejuni and Campylobacter coli

    NARCIS (Netherlands)

    Boer, P. de; Duim, B.; Rigter, A.; Plas, J. van der; Jacobs-Reitsma, W.F.; Wagenaar, J.A.

    2000-01-01

    For epidemiological tracing of the thermotolerant Campylobacter species C. jejuni and C. coli, reliable and highly discriminatory typing techniques are necessary. In this study the genotyping techniques of flagellin typing (flaA typing), pulsed-field gel electrophoresis (PFGE), automated ribotyping,

  10. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-02-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.

  11. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Lieke B van Alphen

    Full Text Available Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81-176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity.

  12. Resistance to quinolones in Campylobacter jejuni and Campylobacter coli from Danish broilers at farm level

    DEFF Research Database (Denmark)

    Pedersen, Karl; Wedderkopp, A.

    2003-01-01

    Aims : To investigate the prevalence of quinolone resistance among Campylobacter jejuni and Camp. coli isolates from Danish poultry at the farm level, as well as for the whole country. Methods and Results : Data and isolates were collected from a national surveillance of Campylobacter in poultry....... Quinolone resistance was investigated by determination of minimum inhibitory concentration (MIC) to nalidixic acid and enrofloxacin. Among Camp. jejuni and Camp. coli combined, 7.5% were resistant to nalidixic acid. Quinolone resistance varied considerably from farm to farm, with 0% on some farms and almost...... 100% on others, but the resistance was evenly distributed geographically. With respect to isolates from farms where resistance was detected, quinolone resistance was higher among Camp. coli (28.7%) than among Camp. jejuni (11.3%). PFGE typing of quinolone-resistant and quinolone-susceptible isolates...

  13. Evaluation of flaA short variable region sequencing, multilocus sequence typing and Fourier transform infrared spectroscopy for discrimination between Campylobacter jejuni strains

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas T.;

    2012-01-01

    sequencing, were further subjected to multilocus sequence typing (MLST). It was found that flaA SVR sequencing had a slightly higher discriminatory power than FTIR spectroscopy, based on the Simpson diversity index. The clustering of strains indicated that FTIR spectroscopy is indeed a suitable method...... for discrimination of Campylobacter. The isolates were assigned to six clusters based on flaA SVR sequences and nine clusters based on the FTIR spectroscopy profiles. Furthermore, the cluster analysis of flaA SVR sequences, MLST, and FTIR spectroscopy profiles showed a high degree of congruence, assigning......Discriminatory and robust typing methods are needed to improve the understanding of the dynamics of food-borne Campylobacter infections and epidemiology in primary animal production. To evaluate the strain discriminatory potential of typing methods, flaA short variable region (SVR) sequencing...

  14. The effects of high-pressure treatments on Campylobacter jejuni in ground poultry products containing polyphosphate additives.

    Science.gov (United States)

    Gunther, Nereus W; Sites, Joseph; Sommers, Christopher

    2015-09-01

    Marinades containing polyphosphates have been previously implicated in the enhanced survival of Campylobacter spp. in poultry product exudates. The enhanced Campylobacter survival has been attributed primarily to the ability of some polyphosphates to change the pH of the exudate to one more amenable to Campylobacter. In this study a ground poultry product contaminated with a 6 strain Campylobacter jejuni cocktail was utilized to determine if the efficiency of high-hydrostatic-pressure treatments was negatively impacted by the presence of commonly utilized polyphosphates. Two polyphosphates, hexametaphosphate and sodium tripolyphosphate, used at 2 concentrations, 0.25 and 0.5%, failed to demonstrate any significant negative effects on the efficiency of inactivation of C. jejuni by high-pressure treatment. However, storage at 4°C of the ground poultry samples containing C. jejuni after high-pressure treatment appeared to provide a synergistic effect on Campylobacter inactivation. High-pressure treatment in conjunction with 7 d of storage at 4°C resulted in a mean reduction in C. jejuni survival that was larger than the sum of the individual reductions caused by high pressure or 4°C storage when applied separately.

  15. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence

    Directory of Open Access Journals (Sweden)

    Dorrell Nick

    2007-06-01

    Full Text Available Abstract Background Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation. Results Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised. Conclusions Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.

  16. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh.

    Science.gov (United States)

    Islam, Z; van Belkum, A; Wagenaar, J A; Cody, A J; de Boer, A G; Sarker, S K; Jacobs, B C; Talukder, K A; Endtz, H P

    2014-12-01

    Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of Campylobacter to humans in Bangladesh. We determined the population structure of C. jejuni isolated from poultry (n = 66) and patients with enteritis (n = 39) or GBS (n = 10). Lipooligosaccharide (LOS) typing showed that 50/66 (76 %) C. jejuni strains isolated from poultry could be assigned to one of five LOS locus classes (A-E). The distribution of neuropathy-associated LOS locus classes A, B, and C were 30/50 (60 %) among the typable strains isolated from poultry. The LOS locus classes A, B, and C were significantly associated with GBS and enteritis-related C. jejuni strains more than for the poultry strains [(31/38 (82 %) vs. 30/50 (60 %), p < 0.05]. Multilocus sequence typing (MLST) defined 15 sequence types (STs) and six clonal complexes (CCs) among poultry isolates, including one ST-3740 not previously documented. The most commonly identified type, ST-5 (13/66), in chicken was seen only once among human isolates (1/49) (p < 0.001). Amplified fragment length polymorphism (AFLP) revealed three major clusters (A, B, and C) among C. jejuni isolated from humans and poultry. There seems to be a lack of overlap between the major human and chicken clones, which suggests that there may be additional sources for campylobacteriosis other than poultry in Bangladesh.

  17. Survival of Campylobacter jejuni in naturally and artificially contaminated laying hen feces.

    Science.gov (United States)

    Ahmed, M F M; Schulz, J; Hartung, J

    2013-02-01

    Infected laying hens regularly excrete large amounts of Campylobacter jejuni with their feces, which represent a reservoir of infection within the flock and for animals in the region. However, the knowledge about survival times of C. jejuni in these feces is still scarce. Therefore, orienting laboratory experiments were carried out under controlled conditions to estimate the survival times of C. jejuni both in artificially and naturally contaminated laying hen feces. In 6 different laying hen flocks (3 Campylobacter-free and 3 Campylobacter-positive flocks), fresh excreta were randomly collected and pooled in 20-g samples per flock. In the laboratory, each of the 3 pooled samples from the Campylobacter-free barns were homogenized and mixed with 10 mL of a freshly prepared C. jejuni suspension (3 × 10(8) cfu/mL). The other 3 samples were homogenized only. The 6 samples were stored at 20 ± 1°C and 40 to 60% RH in 2 different incubators. Specimens of 2 g were taken from all 6 samples 1 h after storage and daily at the same time during the next 10 consecutive days and investigated on culturable C. jejuni. The survival times of culturable C. jejuni ranged from 72 to 96 h in artificially inoculated feces and varied from 120 to 144 h in naturally colonized flocks. The flaA typing by RFLP confirmed that the isolates from the artificially contaminated feces were identical with the added strain. A total of 5 different flaA types were identified from the naturally contaminated feces, and survival of these isolates was dependent on flaA type. The demonstrated survival times indicate that contaminated fresh feces are an important reservoir of C. jejuni, representing a permanent source of infection over at least 6 d after excretion. It shows the considerable potential of fresh feces in transmitting the agent within and between flocks during that period. This 6-d span should be considered when poultry manure is applied to land as organic fertilizer.

  18. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Nabila eHaddad

    2012-03-01

    Full Text Available Polynucleotide phosphorylase, encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As the two major ribonucleases (RNase E and RNase II of Escherichia coli are absent from Campylobacter genome, this study was focused on PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3, motility (NANA synthetase, stress-response (KatA, DnaK, Hsp90 and translation system (EF-Tu, EF-G were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay and the decrease of cell adhesion/invasion ability.

  19. Phenotypic Characters and Molecular Epidemiology of Campylobacter Jejuni in East China.

    Science.gov (United States)

    Zeng, Dexin; Zhang, Xiaoping; Xue, Feng; Wang, Yanhong; Jiang, Luyan; Jiang, Yuan

    2016-01-01

    In this study, we investigated the distribution, phenotypic and molecular typing characters of Campylobacter jejuni in domestic fowl, and livestock populations in East China, to provide some reference for researches on its molecular epidemiology. A total of 1250 samples were collected from different animal sources, and C. jejuni strains were then isolated and tested for antibiotic sensitivity. Antibiotics-resistance gene and pathogenic genes were detected by polymerase chain reaction. Phylogenic analysis on the C. jejuni strains was performed by multilocus sequence typing (MLST) method. The results showed that 108 out of the 1250 samples (mean 8.64%) were C. jejuni positive. These 108 C. jejuni strains were highly sensitive to antibiotics such as chloramphenicol, amoxicillin, amikacin, cefotaxime, and azithromycin, whereas they were highly resistant to antibiotics such as cefoperazone, cotrimoxazole, cefamandole, sulfamethoxazole, and cefradine. Pathogenicity related gene identification indicated that the mean carrying rate of adhesion related gene cadF and racR, flagellin gene flaA, toxin regulating gene cdtA, cdtB, cdtC, wlaN and virB11, heat shock proteins and transferring proteins related genes dnaJ and ceuE, CiaB and pldA were 92.45%, 38.69%, 73.58%, 71.70%, 52.83%, 96.23%, 12.26%, 1.89%, 0.94%, 65.09%, 39.62% and 9.43%, respectively. A total of 58.82% of these strains contained more than 6 pathogenicity-related genes. MLST typed 58 ST types from the 108 isolated C. jejuni strains, including 24 new types, and ST-21 was the major type, accounting for 39.3% of the total strains.

  20. The Campylobacter jejuni RacRS system regulates fumarate utilization in a low oxygen environment

    Science.gov (United States)

    The natural environment of the human pathogen Campylobacter jejuni is the gastrointestinal tract of warm blooded animals. In the gut, the availability of oxygen is limited; therefore, less efficient electron acceptors such as nitrate or fumarate are used by C. jejuni. C. jejuni has a highly branched...

  1. Bacteriocins control chicken colonization while probiotic bacteria are ineffective at reducing Campylobacter jejuni

    Science.gov (United States)

    Broilers chickens are widely considered an important source for human exposure to Campylobacter jejuni. We sought to intervene in C. jejuni colonization by using a probiotic approach. Isolates from chicken intestine were screened for C. jejuni inhibition. These isolates were live-fed to treat chi...

  2. Identification of the main quinolone resistance determinant in Campylobacter jejuni and Campylobacter coli by MAMA-DEG PCR.

    Science.gov (United States)

    Hormeño, Lorena; Palomo, Gonzalo; Ugarte-Ruiz, María; Porrero, M Concepción; Borge, Carmen; Vadillo, Santiago; Píriz, Segundo; Domínguez, Lucas; Campos, Maria J; Quesada, Alberto

    2016-03-01

    Among zoonotic diseases, campylobacteriosis stands out as the major bacterial infection producing human gastroenteritis. Antimicrobial therapy, only recommended in critical cases, is challenged by resistance mechanisms that should be unambiguously detected for achievement of effective treatments. Quinolone (ciprofloxacin) resistance of Campylobacter jejuni and Campylobacter coli, the 2 main Campylobacter detected in humans, is conferred by the mutation gyrA C-257-T, which can be genotyped by several methods that require a previous identification of the pathogen species to circumvent the sequence polymorphism of the gene. A multiplex PCR, based on degenerated oligonucleotides, has been designed for unambiguous identification of the quinolone resistance determinant in Campylobacter spp. isolates. The method was verified with 249 Campylobacter strains isolated from humans (141 isolates) and from the 3 most important animal sources for this zoonosis: poultry (34 isolates), swine (38 isolates), and cattle (36 isolates). High resistance to ciprofloxacin, MIC above 4μg/mL, linked to the mutated genotype predicted by MAMA-DEG PCR (mismatch amplification mutation assay PCR with degenerated primers) was found frequently among isolates from the different hosts.

  3. Status of vaccine research and development for Campylobacter jejuni.

    Science.gov (United States)

    Riddle, Mark S; Guerry, Patricia

    2016-06-03

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea worldwide and is associated with a number of sequelae, including Guillain-Barre Syndrome, reactive arthritis, irritable bowel syndrome and growth stunting/malnutrition. Vaccine development against C. jejuni is complicated by its antigenic diversity, a lack of small animal models, and a poor understanding of the bacterium's pathogenesis. Vaccine approaches have been limited to recombinant proteins, none of which have advanced beyond Phase I testing. Genomic analyses have revealed the presence of a polysaccharide capsule on C. jejuni. Given the success of capsule-conjugate vaccines for other mucosal pathogens of global importance, efforts to evaluate this established approach for C. jejuni are also being pursued. A prototypical capsule-conjugate vaccine has demonstrated efficacy against diarrheal disease in non-human primates and is currently in Phase I testing. In addition to proof of concept studies, more data on the global prevalence of capsular types, and a better understanding of the acute and chronic consequences of C. jejuni are needed to inform investments for a globally relevant vaccine.

  4. High Prevalence and Genetic Diversity of Campylobacter jejuni in Wild Crows and Pigeons.

    Science.gov (United States)

    Ramonaitė, Sigita; Novoslavskij, Aleksandr; Zakarienė, Gintarė; Aksomaitienė, Jurgita; Malakauskas, Mindaugas

    2015-11-01

    The occurrence, seasonal variation and genetic diversity of Campylobacter spp. in pigeons and crows over a 1-year period were evaluated. Campylobacter spp. were isolated from 166 (34.6 %) out of 480 wild bird faecal samples. The occurrence of Campylobacter spp. in faecal samples was higher among crows (39.2 %) than pigeons (30.0 %), (P Campylobacter jejuni was the most common species detected among wild bird faecal samples (98.2 %). Meanwhile, Campylobacter coli prevalence in wild bird faecal samples was low-6 %. The Simpson's diversity index of C. jejuni flaA RFLP types was lower in pigeons (D = 0.88) compared with C. jejuni isolates detected in crows (D = 0.97). Obtained results revealed that C. jejuni are widely prevalent among crows and pigeons, indicating these wild birds as potential infection sources to humans. Further studies are required to determine crows and pigeons role in zoonotic transmission of Campylobacter.

  5. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador

    Science.gov (United States)

    Graham, Jay P.; Vasco, Karla; Trueba, Gabriel

    2016-01-01

    Summary Domestic animals and animal products are the source of pathogenic Campylobacter jejuni and C. coli in industrialized countries, yet little is known about the transmission of these bacteria in developing countries. Guinea pigs (Cavia porcellus) are commonly raised for food in the Andean region of South America, however, limited research has characterized this rodent as a reservoir of zoonotic enteric pathogens. In this study, we examined the prevalence of Campylobacter spp. in 203 fecal samples from domestic animals of 59 households in a semi-rural parish of Quito, Ecuador. Of the twelve animal species studied, guinea pigs showed the highest prevalence of C. jejuni (n = 39/40; 97.5%). Multilocus sequence typing (MLST) was used to characterize the genetic relationship of C. jejuni from domestic animals and 21 sequence types (STs) were identified. The majority of STs from guinea pigs appeared to form new clonal complexes that were not related to STs of C. jejuni isolated from other animal species and shared only a few alleles with other C. jejuni previously characterized. The study identifies guinea pigs as a major reservoir of C. jejuni and suggests that some C. jejuni strains are adapted to this animal species. PMID:27043446

  6. Hyperendemic Campylobacter jejuni in guinea pigs (Cavia porcellus) raised for food in a semi-rural community of Quito, Ecuador.

    Science.gov (United States)

    Graham, Jay P; Vasco, Karla; Trueba, Gabriel

    2016-06-01

    Domestic animals and animal products are the source of pathogenic Campylobacter jejuni and C. coli in industrialized countries, yet little is known about the transmission of these bacteria in developing countries. Guinea pigs (Cavia porcellus) are commonly raised for food in the Andean region of South America, however, limited research has characterized this rodent as a reservoir of zoonotic enteric pathogens. In this study, we examined the prevalence of Campylobacter spp. in 203 fecal samples from domestic animals of 59 households in a semi-rural parish of Quito, Ecuador. Of the twelve animal species studied, guinea pigs showed the highest prevalence of C. jejuni (n = 39/40; 97.5%). Multilocus sequence typing (MLST) was used to characterize the genetic relationship of C. jejuni from domestic animals and 21 sequence types (STs) were identified. The majority of STs from guinea pigs appeared to form new clonal complexes that were not related to STs of C. jejuni isolated from other animal species and shared only a few alleles with other C. jejuni previously characterized. The study identifies guinea pigs as a major reservoir of C. jejuni and suggests that some C. jejuni strains are adapted to this animal species.

  7. Cj1411c GENE OF CAMPYLOBACTER JEJUNI 11168 ENCODES FOR A CYTOCHROME P450 INVOLVED IN BACTERIAL CAPSULE SUGAR METABOLISM

    Directory of Open Access Journals (Sweden)

    N. CORCIONIVOSCHI

    2013-12-01

    Full Text Available After isolation in 1970s, Campylobacter jejuni become the most commonlyrecognized cause of bacterial gastroenteritis in man. In animals is frequently foundin bovines on ovines. Publishing of the genome sequence of Campylobacter jejuni11168 (Parkhill, 2000 revealed the presence of only one cytochrome P450 in anoperon involved in sugar and cell surface biosynthesis. The gene name is Cj1411c, is1359 bp long and encodes 453 aa. The sequence is strictly conserved inCampylobacter jejuni RM221. Similarities with two cytochrome P450s, one formSilicobacter sp. and one form Poloromonas sp., were identified. These two enzymesare known to be involved in ascorbate and aldarate metabolism. The recombinantconstruct allowed the expression of active P450 enzyme with a 450 nm peak whenbinds CO. The protein was purified in proportion of ~ 70 %. By deleting the P450gene from the Campylobacter jejuni 11168 genome clear changes in cellmorphology were identified cells becoming wider and shorter. The capsular sugarprofile of the NCI strain reveals the presence of arabinose which was not found inthe wild type strain. The arabinose was identified by both High Performance LiquidChromatography (HPLC and Nuclear Magnetic Resonance (NMR.

  8. Cj1411c GENE OF CAMPYLOBACTER JEJUNI 11168 ENCODES FOR A CYTOCHROME P450 INVOLVED IN BACTERIAL CAPSULE SUGAR METABOLISM

    Directory of Open Access Journals (Sweden)

    CORCIONIVOSCHI N.

    2007-01-01

    Full Text Available After isolation in 1970s, Campylobacter jejuni become the most commonlyrecognized cause of bacterial gastroenteritis in man. In animals is frequently foundin bovines on ovines. Publishing of the genome sequence of Campylobacter jejuni11168 (Parkhill, 2000 revealed the presence of only one cytochrome P450 in anoperon involved in sugar and cell surface biosynthesis. The gene name is Cj1411c, is1359 bp long and encodes 453 aa. The sequence is strictly conserved inCampylobacter jejuni RM221. Similarities with two cytochrome P450s, one formSilicobacter sp. and one form Poloromonas sp., were identified. These two enzymesare known to be involved in ascorbate and aldarate metabolism. The recombinantconstruct allowed the expression of active P450 enzyme with a 450 nm peak whenbinds CO. The protein was purified in proportion of ~ 70 %. By deleting the P450gene from the Campylobacter jejuni 11168 genome clear changes in cellmorphology were identified cells becoming wider and shorter. The capsular sugarprofile of the NCI strain reveals the presence of arabinose which was not found inthe wild type strain. The arabinose was identified by both High Performance LiquidChromatography (HPLC and Nuclear Magnetic Resonance (NMR.

  9. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome.

    Science.gov (United States)

    Heikema, A P; Islam, Z; Horst-Kreft, D; Huizinga, R; Jacobs, B C; Wagenaar, J A; Poly, F; Guerry, P; van Belkum, A; Parker, C T; Endtz, H P

    2015-09-01

    In about one in a thousand cases, a Campylobacter jejuni infection results in the severe polyneuropathy Guillain-Barré syndrome (GBS). It is established that sialylated lipo-oligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sialylated LOS in stools derived from patients with uncomplicated enteritis implies that additional bacterial factors should be involved. To assess whether the polysaccharide capsule is a marker for GBS, the capsular genotypes of two geographically distinct GBS-associated C. jejuni strain collections and an uncomplicated enteritis control collection were determined. Capsular genotyping of C. jejuni strains from the Netherlands revealed that three capsular genotypes, HS1/44c, HS2 and HS4c, were dominant in GBS-associated strains and capsular types HS1/44c and HS4c were significantly associated with GBS (p 0.05 and p 0.01, respectively) when compared with uncomplicated enteritis. In a GBS-associated strain collection from Bangladesh, capsular types HS23/36c, HS19 and HS41 were most prevalent and the capsular types HS19 and HS41 were associated with GBS (p 0.008 and p 0.02, respectively). Next, specific combinations of the LOS class and capsular genotypes were identified that were related to the occurrence of GBS. Multilocus sequence typing revealed restricted genetic diversity for strain populations with the capsular types HS2, HS19 and HS41. We conclude that capsular types HS1/44c, HS2, HS4c, HS19, HS23/36c and HS41 are markers for GBS. Besides a crucial role for sialylated LOS of C. jejuni in GBS pathogenesis, the identified capsules may contribute to GBS susceptibility.

  10. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles.

    Directory of Open Access Journals (Sweden)

    Jenny Olofsson

    Full Text Available The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81-176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced.

  11. Campylobacter jejuni actively invades the amoeba Acanthamoeba polyphaga and survives within non digestive vacuoles.

    Science.gov (United States)

    Olofsson, Jenny; Axelsson-Olsson, Diana; Brudin, Lars; Olsen, Björn; Ellström, Patrik

    2013-01-01

    The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81-176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced.

  12. Campylobacter jejuni cocultured with epithelial cells reduces surface capsular polysaccharide expression.

    LENUS (Irish Health Repository)

    Corcionivoschi, N

    2012-02-01

    The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide (CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting the existence of a cross talk mechanism that modulates CPS expression during infection.

  13. Antibiotic resistance modulation and modes of action of (--α-pinene in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Jasna Kovač

    Full Text Available The aim of the study was to investigate the mode of action of (--α-pinene in terms of its modulation of antibiotic resistance in Campylobacter jejuni. Broth microdilution and ethidium bromide accumulation assays were used to evaluate the (--α-pinene antimicrobial activity, modulation of antimicrobial resistance, and inhibition of antimicrobial efflux. The target antimicrobial efflux systems were identified using an insertion mutagenesis approach, and C. jejuni adaptation to (--α-pinene was evaluated using DNA microarrays. Knock-out mutants of the key up-regulated transcriptional regulators hspR and hrcA were constructed to investigate their roles in C. jejuni adaptation to several stress factors, including osmolytes, and pH, using Biolog phenotypical microarrays. Our data demonstrate that (--α-pinene efficiently modulates antibiotic resistance in C. jejuni by decreasing the minimum inhibitory concentrations of ciprofloxacin, erythromycin and triclosan by up to 512-fold. Furthermore, (--α-pinene promotes increased expression of cmeABC and another putative antimicrobial efflux gene, Cj1687. The ethidium bromide accumulation was greater in the wild-type strain than in the antimicrobial efflux mutant strains, which indicates that these antimicrobial efflux systems are a target of action of (--α-pinene. Additionally, (--α-pinene decreases membrane integrity, which suggests that enhanced microbial influx is a secondary mode of action of (--α-pinene. Transcriptomic analysis indicated that (--α-pinene disrupts multiple metabolic pathways, and particularly those involved in heat-shock responses. Thus, (--α-pinene has significant activity in the modulation of antibiotic resistance in C. jejuni, which appears to be mediated by multiple mechanisms that include inhibition of microbial efflux, decreased membrane integrity, and metabolic disruption. These data warrant further studies on (--α-pinene to develop its use in the control of antibiotic

  14. Sialylation of campylobacter jejuni lipo-oligosaccharides: Impact on phagocytosis and cytokine production in mice

    OpenAIRE

    Huizinga, Ruth; Easton, Alistair S.; Donachie, Anne M.; Guthrie, Jim; van Rijs, Wouter; Heikema, Astrid; Boon, Louis; Samsom, Janneke N.; Jacobs, Bart C.; Willison, Hugh J.; Goodyear, Carl S.

    2012-01-01

    Background:\\ud \\ud Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and siaload...

  15. Antibiotic susceptibility profiling and virulence potential ofCampylobacter jejuni isolates from different sources in Pakistan

    Institute of Scientific and Technical Information of China (English)

    Fariha Masood Siddiqui; Muhammad Akram; Nighat Noureen; Zobia Noreen; Habib Bokhari

    2015-01-01

    Objective:To determine antibiotic resistance patterns and virulence potential ofCampylobacter jejuni (C. jejuni) isolates from clinical human diarrheal infections, cattle and healthy broilers. Methods:Antibiotic sensitivity patterns ofC. jejuni isolates were determined by Kirby Bauer Disc Diffusion assay. These isolates were then subjected to virulence profiling for the detection ofmapA (membrane-associated protein),cadF (fibronectin binding protein),wlaN (beta-1,3-galactosyltransferase) andneuAB (sialic acid biosynthesis gene). FurtherC. jejuni isolates were grouped by random amplification of polymorphic DNA (RAPD) profiling.Results: A total of 436 samples from poultry (n=88), cattle (n=216) and humans (n=132) from different locations were collected. Results revealed percentage ofC. jejuni isolates were 35.2% (31/88), 25.0% (54/216) and 11.3% (15/132) among poultry, cattle and clinical human samples respectively. Antibiotic susceptibility results showed that similar resistance patterns to cephalothin was ie. 87.0%, 87.1% and 89%among humans, poultry and cattle respectively, followed by sulfamethoxazole+trimethoprim 40.0%, 38.7% and 31.0% in humans, poultry and cattle and Ampicillin 40%, 32% and 20% in humans, poultry and cattle respectively. Beta-lactamase activity was detected in 40.00% humans, 20.37% cattle and 32.25% in poultryC. jejuni isolates. CadF andmapA were present in all poultry, cattle and humanC. jejuni isolates,wlaN was not detected in any isolate andneuAB was found in 9/31 (36%) poultry isolates. RAPD profiling results suggested high diversity ofC. jejuni isolates.Conclusions:Detection of multidrug resistantC. jejuni strains from poultry and cattle is alarming as they can be potential hazard to humans. Moreover, predominant association of virulence factors,cadF andmapA (100 % each) inC. jejuni isolates from all sources andneuAB (36%) with poultry isolates suggest the potential source of transmission of diverse types ofC. jejuni to humans.

  16. L-fucose utilization provides Campylobacter jejuni with a competitive advantage.

    Science.gov (United States)

    Stahl, Martin; Friis, Lorna M; Nothaft, Harald; Liu, Xin; Li, Jianjun; Szymanski, Christine M; Stintzi, Alain

    2011-04-26

    Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including L-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c-cj0490) that is up-regulated in the presence of both L-fucose and mucin and allows for the utilization of L-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of L-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle.

  17. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Javed, Muhammad A; Poshtiban, Somayyeh; Arutyunov, Denis; Evoy, Stephane; Szymanski, Christine M

    2013-01-01

    Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs), which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40) and 90% for C. coli (n = 19). CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP). Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  18. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli.

    Directory of Open Access Journals (Sweden)

    Muhammad A Javed

    Full Text Available Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of foodborne gastroenteritis which is occasionally followed by a debilitating neuropathy known as Guillain-Barré syndrome. Rapid and specific detection of these pathogens is very important for effective control and quick treatment of infection. Most of the diagnostics available for these organisms are time consuming and require technical expertise with expensive instruments and reagents to perform. Bacteriophages bind to their host specifically through their receptor binding proteins (RBPs, which can be exploited for pathogen detection. We recently sequenced the genome of C. jejuni phage NCTC12673 and identified its putative host receptor binding protein, Gp047. In the current study, we localized the receptor binding domain to the C-terminal quarter of Gp047. CC-Gp047 could be produced recombinantly and was capable of agglutinating both C. jejuni and C. coli cells unlike the host range of the parent phage which is limited to a subset of C. jejuni isolates. The agglutination procedure could be performed within minutes on a glass slide at room temperature and was not hindered by the presence of buffers or nutrient media. This agglutination assay showed 100% specificity and the sensitivity was 95% for C. jejuni (n = 40 and 90% for C. coli (n = 19. CC-Gp047 was also expressed as a fusion with enhanced green fluorescent protein (EGFP. Chimeric EGFP_CC-Gp047 was able to specifically label C. jejuni and C. coli cells in mixed cultures allowing for the detection of these pathogens by fluorescent microscopy. This study describes a simple and rapid method for the detection of C. jejuni and C. coli using engineered phage RBPs and offers a promising new diagnostics platform for healthcare and surveillance laboratories.

  19. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Hui; Xia, Xi; Li, Xiaowei; Naren, Gaowa; Fu, Qin; Wang, Yang; Wu, Congming; Ding, Shuangyang; Zhang, Suxia; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong

    2015-02-06

    Campylobacter jejuni, an important foodborne microorganism, poses severe and emergent threats to human health as antibiotic resistance becomes increasingly prevalent. The mechanisms of drug resistance are hard to decipher, and little is known at the metabolic level. Here we apply metabolomic profiling to discover metabolic changes associated with amphenicol (chloramphenicol and florfenicol) resistance mutations of Campylobacter jejuni. An optimized sample preparation method was combined with ultra-high-performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS) and pattern recognition for the analysis of small-molecule biomarkers of drug resistance. UHPLC-triple quadrupole MS operated in multiple reaction monitoring mode was used for quantitative analysis of metabolic features from UHPLC-TOF/MS profiling. Up to 41 differential metabolites involved in glycerophospholipid metabolism, sphingolipid metabolism, and fatty acid metabolism were observed in a chloramphenicol-resistant mutant strain of Campylobacter jejuni. A panel of 40 features was identified in florfenicol-resistant mutants, demonstrating changes in glycerophospholipid metabolism, sphingolipid metabolism, and tryptophan metabolism. This study shows that the UHPLC-MS-based metabolomics platform is a promising and valuable tool to generate new insights into the drug-resistant mechanism of Campylobacter jejuni.

  20. The influence of dissolved oxygen level and medium on biofilm formation by Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2017-02-01

    Campylobacter jejuni survival in aerobic environments has been suggested to be mediated by biofilm formation. Biofilm formation by eight C. jejuni strains under both aerobic and microaerobic conditions in different broths (Mueller-Hinton (MH), Bolton and Brucella) was quantified. The dissolved oxygen (DO) content of the broths under both incubation atmospheres was determined. Biofilm formation for all strains was highest in MH broth under both incubation atmospheres. Four strains had lower biofilm formation in MH under aerobic as compared to microaerobic incubation, while biofilm formation by the other four strains did not differ under the 2 atm. Two strains had higher biofilm formation under aerobic as compared to microaerobic atmospheres in Bolton broth. Biofilm formation by all other strains in Bolton, and all strains in Brucella broth, did not differ under the 2 atm. Under aerobic incubation DO levels in MH > Brucella > Bolton broth. Under microaerobic conditions levels in MH = Brucella > Bolton broth. Levels of DO in MH and Brucella broth were lower under microaerobic conditions but those of Bolton did not differ under the 2 atm. Experimental conditions and especially the DO of broth media confound previous conclusions drawn about aerobic biofilm formation by C. jejuni.

  1. The antimicrobial effect of spice-based marinades against Campylobacter jejuni on contaminated fresh broiler wings.

    Science.gov (United States)

    Zakarienė, Gintarė; Rokaitytė, Anita; Ramonaitė, Sigita; Novoslavskij, Aleksandr; Mulkytė, Kristina; Zaborskienė, Gintarė; Malakauskas, Mindaugas

    2015-03-01

    The antimicrobial effect of spice-based marinades against Campylobacter jejuni on inoculated fresh broiler wings was investigated. Experiments were carried out with 1 strain of C. jejuni and 6 marinades. Four experimental marinades were composed for the study and contained spices (thyme, rosemary, basil, marjoram, and so on) and different combination of bioactive compounds. Two marinades were commercial and contained spices (black pepper, sweet red pepper, and so on) and chemical additives (monosodium glutamate, sodium diacetate, calcium lactate), 1 commercial marinade was also enriched with bioactive compounds (linalool, cinnamaldehyde, lactic acid). Total aerobic bacterial count was examined to estimate the possible effect of tested marinades on the shelf-life of marinated broiler wings. Study revealed that thyme-based marinade was the most effective against C. jejuni on broiler wings and reduced the numbers of campylobacters by 1.04 log colony forming unit (CFU)/g (P ≤ 0.05) during storage for 168 h at 4 °C temperature. Moreover, it was more effective against C. jejuni than commercial marinade with 0.47 log CFU/g (P ≤ 0.05) reduction effect. Both experimental and commercial marinades had very similar effect on the total aerobic bacterial count. Although experimental and commercial marinades had different effect on pH of broiler wings, this parameter did not show a major impact on the antimicrobial effect of tested marinades (P ≥ 0.05). Our study shows that experimental natural thyme-based marinade can reduce numbers of C. jejuni more effectively than tested commercial marinades.

  2. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens

    Directory of Open Access Journals (Sweden)

    Carvalho Carla M

    2010-09-01

    Full Text Available Abstract Background Poultry meat is one of the most important sources of human campylobacteriosis, an acute bacterial enteritis which is a major problem worldwide. Campylobacter coli and Campylobacter jejuni are the most common Campylobacter species associated with this disease. These pathogens live in the intestinal tract of most avian species and under commercial conditions they spread rapidly to infect a high proportion of the flock, which makes their treatment and prevention very difficult. Bacteriophages (phages are naturally occurring predators of bacteria with high specificity and also the capacity to evolve to overcome bacterial resistance. Therefore phage therapy is a promising alternative to antibiotics in animal production. This study tested the efficacy of a phage cocktail composed of three phages for the control of poultry infected with C. coli and C. jejuni. Moreover, it evaluated the effectiveness of two routes of phage administration (by oral gavage and in feed in order to provide additional information regarding their future use in a poultry unit. Results The results indicate that experimental colonisation of chicks was successful and that the birds showed no signs of disease even at the highest dose of Campylobacter administered. The phage cocktail was able to reduce the titre of both C. coli and C. jejuni in faeces by approximately 2 log10 cfu/g when administered by oral gavage and in feed. This reduction persisted throughout the experimental period and neither pathogen regained their former numbers. The reduction in Campylobacter titre was achieved earlier (2 days post-phage administration when the phage cocktail was incorporated in the birds' feed. Campylobacter strains resistant to phage infection were recovered from phage-treated chickens at a frequency of 13%. These resistant phenotypes did not exhibit a reduced ability to colonize the chicken guts and did not revert to sensitive types. Conclusions Our findings provide

  3. Occurrence of Campylobacter jejuni and Campylobacter coli and their biotypes in beef and dairy cattle from the south of Chile Ocorrência de Campylobacter jejuni e Campylobacter coli e seus biotipos em bovinos de corte e de leite no sul do Chile

    Directory of Open Access Journals (Sweden)

    Heriberto Fernández

    2009-09-01

    Full Text Available The prevalence of Campylobacter jejuni and Campylobacter coli and their biotypes in beef and dairy cattle from the South of Chile was established. Campylobacter were statistically more prevalent among beef cattle (35.9% than among dairy cattle (21.3%, being C. jejuni the species most frequently isolated.Foi estabelecida a prevalência de Campylobacter jejuni e Campylobacter coli e seus biotipos, em bovinos de corte e de leite do sul do Chile. Campylobacter foi estatisticamente mais prevalente nos bovinos de corte (35,9% do que nos bovinos de leite (21,3%, sendo C. jejuni a espécie mais frequentemente isolada.

  4. The Cj0588 protein is a Campylobacter jejuni RNA methyltransferase.

    Science.gov (United States)

    Sałamaszyńska-Guz, Agnieszka; Taciak, Bartłomiej; Kwiatek, Agnieszka; Klimuszko, Danuta

    2014-06-06

    TlyA proteins belong to 2'-O-methyltransferases. Methylation is a common posttranscriptional RNA modification. The Campylobacter jejuni Cj0588 protein belongs to the TlyA(I) protein family and is a rRNA methyltransferase. Methylation of ribosomal RNA catalyzed by Cj0588 appears to have an impact on the biology of the cell. Presence of the cj0588 gene in bacteria appears to be important for ribosome stability and virulence properties. Absence of the Cj0588 protein causes accumulation of the 50S ribosomal subunits, reduction in the amount of functional 70S ribosomes and confers increase resistance to capreomycin.

  5. Isolation and Characterization of Campylobacter Strains from Diarrheal Patients in Central and Suburban Bangkok, Thailand.

    Science.gov (United States)

    Samosornsuk, Worada; Asakura, Masahiro; Yoshida, Emi; Taguchi, Takashi; Eampokalap, Bunchuay; Chaicumpa, Wanpen; Yamasaki, Shinji

    2015-01-01

    Campylobacter-induced diarrhea is increasingly recognized worldwide. However, little information is available regarding the Campylobacter strains associated with diarrheal patients in Thailand. In this study, we attempted to isolate Campylobacter strains from diarrheal patients in Thailand and to characterize the species using a cytolethal distending toxin (cdt) gene-based C. jejuni, C. coli, and C. fetus-specific multiplex PCR assay. Campylobacter species were also confirmed using 16S rRNA gene sequencing and hipO gene detection. From 2,500 diarrheal stool specimens, 76 Campylobacter-like organisms were isolated and identified via conventional culture methods. Among these 76 organisms, 73 were identified as Campylobacter species (43 C. jejuni, 29 C. coli, and 1 C. fetus) via multiplex PCR, whereas 3 remained unidentified. Two Campylobacter-like organisms yielded 2 amplicons corresponding to cdt genes from C. jejuni and C. coli. Subsequently, C. jejuni and C. coli were reisolated from each sample. The third isolate was identified as C. hyointestinalis via 16S rRNA gene sequencing. To our knowledge, this is the first report on the isolation of C. hyointestinalis from a diarrheal patient in Thailand. These data indicate that C. jejuni (58%) and C. coli (40%) are prevalent among diarrheal patients in Thailand.

  6. High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat.

    Science.gov (United States)

    Liu, Yang; Betti, Mirko; Gänzle, Michael G

    2012-03-01

    This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressuretreated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°C of E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin-producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.

  7. Campylobacter jejuni y Campylobacter coli en tres grupos de gallinas de diferente origen geográfico del sur de Chile Occurrence of Campylobacter jejuni and Campylobacter coli in three groups of hens of different geographic origin in Southern Chile

    Directory of Open Access Journals (Sweden)

    H. FERNANDEZ

    2000-01-01

    Full Text Available Se estudiaron 300 muestras fecales de gallinas obtenidas en tres sitios geográficos del sur de Chile (comunas de Loncoche, Valdivia y Puerto Montt, para conocer la prevalencia de Campylobacter jejuni y de C. coli en estas aves consideradas como reservorio. La prevalencia de especies termotolerantes del género Campylobacter fue del 25,7%, siendo C. jejuni aislado con una frecuencia del 76,6% y la de C. coli del 23,4%. Fueron encontrados sólo 2 de los 4 biotipos de C. jejuni, siendo aislado el biotipo II con mayor frecuencia (68.8%. En C. coli fueron encontrados los 2 biotipos descritos para esta especie, siendo, también, el biotipo II el más frecuenteIn order to establish the prevalence of Campylobacter jejuni and C. coli, 300 fecal samples obtained from hens in three different geographical places (Loncoche, Valdivia and Puerto Montt cities from Southern Chile were studied. The prevalence of the thermotolerant species of Campylobacter was 25.7%, being Campylobacter jejuni isolated with a frequency of 76.6% and C. coli with 23.4%. Only two of the four biotypes of C. jejuni were found, being biotype II the most frequent one (68.8%. The two biotypes described for C. coli were isolated, and biotype II was also the most frequent (68.8%.

  8. Microbiological diagnosis of infections caused by Campylobacter jejuni and Campylobacter coli in humans

    Directory of Open Access Journals (Sweden)

    Natalia Rokosz

    2014-01-01

    Full Text Available Campylobacter jejuni and Campylobacter coli are Gram-negative, microaerophilic bacteria which are worldwide in distribution, causing a zoonotic disease in humans called campylobacteriosis. These infections are mainly caused by eating contaminated food products, most often improperly prepared poultry meat. Campylobacteriosis usually takes the form of gastroenteritis, or inflammation of the intestines, and the characteristic symptoms are watery-mucous diarrhea often with the presence of blood in stool, nausea, vomiting, abdominal pain and fever. The epidemiological data suggest that in Europe, as well as in North America, bacteria of the genus Campylobacter, especially C. jejuni and C. coli, are the most commonly isolated pathogens in infections of the gastrointestinal tract in humans. Epidemiological data indicate that these organisms are a much more common cause of acute diarrhea, mostly in young children, than Salmonella and Yersinia. The lack of specific symptoms makes the diagnosis of campylobacteriosis necessary to carry out specialized microbiological diagnostics. Because so far these studies are performed in our country only in a few laboratories, the overwhelming number of cases of campylobacteriosis are not recorded in Polish epidemiological statistics. The purpose of this paper is to discuss issues related to the microbiological diagnosis of infections caused by C. jejuni and C. coli. It also describes the basic epidemiological and clinical data, as well as current treatment of campylobacteriosis.

  9. Relationship between Presence of Anti-Campylobacter FliD Protein Antibodies and Campylobacter jejuni Isolation from Broiler Chickens

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis worldwide. Poultry products are regarded as a major source of this bacterium for human infection. Although this bacterium is a commensal in chicken cecal microbiome, Campylobacte...

  10. PFGE, Lior serotype, and antimicrobial resistance patterns among Campylobacter jejuni isolated from travelers and US military personnel with acute diarrhea in Thailand, 1998-2003

    Directory of Open Access Journals (Sweden)

    Serichantalergs Oralak

    2010-11-01

    Full Text Available Abstract Background Campylobacter jejuni is a major cause of gastroenteritis worldwide. In Thailand, several strains of C. jejuni have been isolated and identified as major diarrheal pathogens among adult travelers. To study the epidemiology of C. jejuni in adult travelers and U.S. military personnel with acute diarrhea in Thailand from 1998-2003, strains of C. jejuni were isolated and phenotypically identified, serotyped, tested for antimicrobial susceptibility, and characterized using pulsed-field gel electrophoresis (PFGE. Results A total of 312 C. jejuni isolates were obtained from travelers (n = 46 and U.S. military personnel (n = 266 in Thailand who were experiencing acute diarrhea. Nalidixic acid and ciprofloxacin resistance was observed in 94.9% and 93.0% of the isolates, respectively. From 2001-2003, resistance to tetracycline (81.9%, trimethoprim-sulfamethoxazole (57.9%, ampicillin (28.9%, kanamycin (5.9%, sulfisoxazole (3.9%, neomycin (2.0%, and streptomycin (0.7% was observed. Combined PFGE analysis showed considerable genetic diversity among the C. jejuni isolates; however, four PFGE clusters included isolates from the major Lior serotypes (HL: 36, HL: 11, HL: 5, and HL: 28. The PFGE analysis linked individual C. jejuni clones that were obtained at U.S. military exercises with specific antimicrobial resistance patterns. Conclusions In summary, most human C. jejuni isolates from Thailand were multi-resistant to quinolones and tetracycline. PFGE detected spatial and temporal C. jejuni clonality responsible for the common sources of Campylobacter gastroenteritis.

  11. Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance technique

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Maria E., E-mail: maria.yakovleva@gmail.com [Department of Infectious Diseases and Medical Microbiology, Lund University, 223 62 Lund (Sweden); Moran, Anthony P. [Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway (Ireland); Safina, Gulnara R. [Department of Analytical and Marine Chemistry, University of Gothenburg, 412 96 Gothenburg (Sweden); Wadstroem, Torkel [Department of Infectious Diseases and Medical Microbiology, Lund University, 223 62 Lund (Sweden); Danielsson, Bengt [Acromed Invest AB, Magistratsvaegen 10, 226 43 Lund (Sweden)

    2011-05-23

    Seven Campylobacter jejuni strains were characterised by a lectin typing assay. The typing system was based on a quartz crystal microbalance technique (QCM) with four commercially available lectins (wheat germ agglutinin, Maackia amurensis lectin, Lens culinaris agglutinin, and Concanavalin A), which were chosen for their differing carbohydrate specificities. Initially, the gold surfaces of the quartz crystals were modified with 11-mercaptoundecanoic acid followed by lectin immobilisation using a conventional amine-coupling technique. Bacterial cells were applied for lectin typing without preliminary treatment, and resonant frequency and dissipation responses were recorded. The adhesion of microorganisms on lectin surfaces was confirmed by atomic force microscopy. Scanning was performed in the tapping mode and the presence of bacteria on lectin-coated surfaces was successfully demonstrated. A significant difference in the dissipation response was observed for different C. jejuni strains which made it possible to use this parameter for discriminating between bacterial strains. In summary, the QCM technique proved a powerful tool for the recognition and discrimination of C. jejuni strains. The approach may also prove applicable to strain discrimination of other bacterial species, particularly pathogens.

  12. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Naikare Hemant

    2009-10-01

    Full Text Available Abstract Background During gut colonization, the enteric pathogen Campylobacter jejuni must surmount the toxic effects of reactive oxygen species produced by its own metabolism, the host immune system, and intestinal microflora. Elucidation of C. jejuni oxidative stress defense mechanisms is critical for understanding Campylobacter pathophysiology. Results The mechanisms of oxidative stress defense in C. jejuni were characterized by transcriptional profiling and phenotypic analysis of wild-type and mutant strains. To define the regulon of the peroxide-sensing regulator, PerR, we constructed an isogenic ΔperR mutant and compared its transcriptome profile with that of the wild-type strain. Transcriptome profiling identified 104 genes that belonged to the PerR regulon. PerR appears to regulate gene expression in a manner that both depends on and is independent of the presence of iron and/or H2O2. Mutation of perR significantly reduced motility. A phenotypic analysis using the chick colonization model showed that the ΔperR mutant exhibited attenuated colonization behavior. An analysis of changes in the transcriptome induced by exposure to H2O2, cumene hydroperoxide, or menadione revealed differential expression of genes belonging to a variety of biological pathways, including classical oxidative stress defense systems, heat shock response, DNA repair and metabolism, fatty acid biosynthesis, and multidrug efflux pumps. Mutagenic and phenotypic studies of the superoxide dismutase SodB, the alkyl-hydroxyperoxidase AhpC, and the catalase KatA, revealed a role for these proteins in oxidative stress defense and chick gut colonization. Conclusion This study reveals an interplay between PerR, Fur, iron metabolism and oxidative stress defense, and highlights the role of these elements in C. jejuni colonization of the chick cecum and/or subsequent survival.

  13. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice.

    Directory of Open Access Journals (Sweden)

    Stefan Bereswill

    Full Text Available Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection.To assure stable infection, gnotobiotic (i.e. secondary abiotic IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81-176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.. Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice.We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating

  14. Whole Genome Comparison of Campylobacter jejuni Human Isolates Using a Low-Cost Microarray Reveals Extensive Genetic Diversity

    OpenAIRE

    2001-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne diarrhoeal disease throughout the world, and yet is still a poorly understood pathogen. Whole genome microarray comparisons of 11 C. jejuni strains of diverse origin identified genes in up to 30 NCTC 11168 loci ranging from 0.7 to 18.7 kb that are either absent or highly divergent in these isolates. Many of these regions are associated with the biosynthesis of surface structures including flagella, lipo-oligosaccharide, and the...

  15. Comparative Proteomics and Glycoproteomics Reveal Increased N-Linked Glycosylation and Relaxed Sequon Specificity in Campylobacter jejuni NCTC11168 O

    DEFF Research Database (Denmark)

    Scott, Nichollas E.; Marzook, N. Bishara; Cain, Joel A.;

    2014-01-01

    present at statistically significant altered levels of abundance between variants. Proteins associated with the O variant included adhesins (CadF and FlpA), proteases, capsule biosynthesis, and cell shape determinants as well as six proteins encoded by the Pgl system, including the PglK flippase and Pgl......Campylobacter jejuni is a major cause of bacterial gastroenteritis. C. jejuni encodes a protein glycosylation (Pgl) locus responsible for the N-glycosylation of membrane-associated proteins. We examined two variants of the genome sequenced strain NCTC11168: O, a representative of the original...

  16. Detection of cdtA, cdtB, and cdtC genes in Campylobacter jejuni by multiplex PCR.

    Science.gov (United States)

    Martínez, Irati; Mateo, Estibaliz; Churruca, Estibaliz; Girbau, Cecilia; Alonso, Rodrigo; Fernández-Astorga, Aurora

    2006-02-01

    A multiplex PCR was developed for simultaneous detection of the cytolethal distending toxin (cdt) genes of Campylobacter jejuni. Three primer pairs targeting each one of the cdtA, cdtB and cdtC genes were designed and combined in the same PCR reaction. The assay was evaluated with 100 C. jejuni strains recovered from humans and animals and it was found to be rapid and specific. Two isolates presented several deletions affecting both cdtA and cdtB genes. High prevalence (98%) of the three cdt genes was found among isolates of different geographic origins.

  17. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    Directory of Open Access Journals (Sweden)

    Birk Tina

    2012-08-01

    Full Text Available Abstract Background During the transmission route from poultry to the human host, the major foodborne pathogen C. jejuni may experience many types of stresses, including low pH caused by different acids. However, not all strains are equally sensitive to the stresses. The aim of this study was to investigate the response to acid stress of three sequenced C. jejuni strains with different acid tolerances using HCl and acetic acid. Results Two-dimensional gel electrophoresis was used for proteomic analysis and proteins were radioactively labelled with methionine to identify proteins only related to acid exposure. To allow added radioactive methionine to be incorporated into induced proteins, a modified chemically defined broth was developed with the minimal amount of methionine necessary for satisfactory growth of all strains. Protein spots were analyzed using image software and identification was done with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19, thioredoxin-disulfide (TrxB, a hypothetical protein Cj0706 (Cj0706, molybdenum cofactor biosynthesis protein (MogA, and bacterioferritin (Dps. Strain and acid type dependent differences in the level of response were observed. For strain NCTC 11168, the induced proteins and the regulator fur were analysed at the transcriptomic level using qRT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. Conclusions A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced during acid stress of C. jejuni. Both strain and acid type affected sensitivity and response.

  18. High frequency genetic variation of purine biosynthesis genes is a mechanism of success in Campylobacter jejuni

    Science.gov (United States)

    Phenotypic variation is prevalent among progeny of the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity bestows increased survival to bacterial populations because variable phenotypes ensure some cells will be protected against future s...

  19. Cloning and alignment of WaaF gene of Campylobacter jejuni Lulei

    Directory of Open Access Journals (Sweden)

    XING Cong-cong

    2012-04-01

    Full Text Available Objective To clone the WaaF gene of Campylobacter jejuni, and analyse its relationship with WaaF genetic evolution. Methods Amplified WaaF gene of Campylobacter jejuni Lulei by PCR, and constructed pGEM-T-WaaF cloning plasmid. Downloaded five WaaF associated with Guillain-Barré syndrome (GBS and one WaaF not associated with GBS, and then constructed phylogenetic tree. Results pGEM-T-WaaF cloning plasmid was constructed successfully. WaaF presented cluster phenomenon in Campylobacter jejuni associated with GBS. Conclusion WaaF gene of Campylobacter jejuni Lulei is the fragment of 807 bp, and has the nearest relationship with the genetic evolution of Lichang.

  20. Antimicrobial activity of essential oils and five terpenoid compounds against Campylobacter jejuni in pure and mixed culture experiments.

    Science.gov (United States)

    Kurekci, Cemil; Padmanabha, Jagadish; Bishop-Hurley, Sharon L; Hassan, Errol; Al Jassim, Rafat A M; McSweeney, Christopher S

    2013-09-16

    The aim of this study was to examine the antimicrobial potential of three essential oils (EOs: tea tree oil, lemon myrtle oil and Leptospermum oil), five terpenoid compounds (α-bisabolol, α-terpinene, cineole, nerolidol and terpinen-4-ol) and polyphenol against two strains of Campylobacter jejuni (ACM 3393 and the poultry isolate C338), Campylobacter coli and other Gram negative and Gram positive bacteria. Different formulations of neem oil (Azadirachta indica) with these compounds were also tested for synergistic interaction against all organisms. Antimicrobial activity was determined by the use of disc diffusion and broth dilution assays. All EOs tested were found to have strong antimicrobial activity against Campylobacter spp. with inhibitory concentrations in the range 0.001-1% (v/v). Among the single compounds, terpinen-4-ol showed the highest activity against Campylobacter spp. and other reference strains. Based on the antimicrobial activity and potential commerciality of these agents, lemon myrtle oil, α-tops (α-terpineol+cineole+terpinen-4-ol) and terpinen-4-ol were also evaluated using an in vitro fermentation technique to test antimicrobial activity towards C. jejuni in the microbiota from the chicken-caecum. EO compounds (terpinen-4-ol and α-tops) were antimicrobial towards C. jejuni at high doses (0.05%) without altering the fermentation profile. EOs and terpenoid compounds can have strong anti-Campylobacter activity without adversely affecting the fermentation potential of the chicken-caeca microbiota. EOs and their active compounds may have the potential to control C. jejuni colonisation and abundance in poultry.

  1. Dos casos de Enteritis con bacteriemia por Campylobacter jejuni Two cases of enteritis with bacteremia due to Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noemí Borda

    2006-10-01

    Full Text Available Campylobacter es un importante agente causante de enfermedad en el ser humano en nuestro medio. Los casos de bacteriemia ocurren principalmente en pacientes inmunosuprimidos y son debidos frecuentemente a C. fetus. Sin embargo la bacteriemia es un episodio que también se ha observado en pacientes con enteritis por C. jejuni. Referimos dos pacientes con enteritis grave y bacteriemia, ambos con enfermedades concomitantes compatibles con inmunodepresión: uno con síndrome nefrótico de larga data y otro con hepatopatía crónica con cirrosis. Destacamos que los dos casos presentaron hematemesis y uno de ellos, enterorragia. Sugerimos prestar atención a la coloración de Gram durante el subcultivo de los caldos con hemocultivos, en busca de formas características de esta especie, y en ese caso emplear medios de cultivo en microaerofilia a 37 y 42 °C.Campylobacter is an important agent of illness in human beings. Bacteremia occurs principally in the immunocompromissed host and is frequently due to C. fetus. Nevertheless bacteremia also has been observed in patients with enteritis due to C. jejuni. We refer two cases of patients with severe enteritis and bacteremia, both of them with immunosupressive concomitant diseases such as nephrotic syndrome and chronic cirrotic hepatopathy. Both patients presented hemathemesis.

  2. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    Science.gov (United States)

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  3. Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry.

    Science.gov (United States)

    Cean, Ada; Stef, Lavinia; Simiz, Eliza; Julean, Calin; Dumitrescu, Gabi; Vasile, Aida; Pet, Elena; Drinceanu, Dan; Corcionivoschi, Nicolae

    2015-02-01

    This study was performed in order to determine whether human isolated probiotic bacteria can be effective in reducing Campylobacter jejuni infection of chicken intestinal cells, in vitro, and in decreasing its colonization abilities within the chicken gut. Our results show that the probiotic strains Lactobacillus paracasei J. R, L. rhamnosus 15b, L. lactis Y, and L. lactis FOa had a significant effect on C. jejuni invasion of chicken primary cells, with the strongest inhibitory effect detected when a combination of four was administered. In regard to the in vivo effect, using all four strains in one combination prevented mucus colonization in the duodenum and cecum. Moreover, the pathogen load in the lumen of these two compartments was significantly reduced. When probiotics were introduced during the early growth period, the presence of the pathogen in feces was increased (p>0.05), but when they were given during the last week of growth, there was no significant effect. In conclusion, our data indicate that these four new probiotic strains are able to cause modifications in the chicken intestinal mucosa and can reduce the ability of C. jejuni to invade, in vitro, and to colonize, in vivo. These probiotics are now proven to be effective even when introduced in broiler's feed 7 days before slaughter, which makes them cost-effective for the producers.

  4. Natural transformation of Campylobacter jejuni occurs beyond limits of growth

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ligowska, Małgorzata;

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered...

  5. Intestinal Mucus Gel and Secretory Antibody are Barriers to Campylobacter jejuni Adherence to INT 407 Cells

    Science.gov (United States)

    1987-06-01

    An in vitro mucus assay was developed to study the role of mucus gel and secretory immunoglobulin A (sIgA) in preventing attachment of Campylobacter ... jejuni to INT 407 cells. An overlay of rabbit small intestinal mucus was found to impede the attachment of C. jejuni to a monolayer of INT 407 cells

  6. The microbiome structure and Campylobacter jejuni transcriptome in naturally-raised chickens

    Science.gov (United States)

    Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis in humans worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Few transcription factors have been identified, and the...

  7. An optimized binary typing panel improves the typing capability for Campylobacter jejuni.

    Science.gov (United States)

    Huang, Bixing; Zhao, Dong; Fang, Ning-Xia; Hall, Ashleigh; Eglezos, Sofroni; Blair, Barry

    2013-12-01

    Campylobacter jejuni is a frequent bacterial pathogen causing gastroenteritis worldwide. We report here a mathematically optimized combination of 10 loci selected from 2 previously published binary typing panels. The optimized combination offers advantages of higher differentiation capability, simplicity, cost-effectiveness, and portability for routine surveillance and outbreak investigations of C. jejuni.

  8. Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth

    DEFF Research Database (Denmark)

    Vegge, C.S.; Brondsted, L.; Li, Yiping

    2009-01-01

    Campylobacter jejuni is a serious food-borne bacterial pathogen in the developed world. Poultry is a major reservoir, and C. jejuni appears highly adapted to the gastrointestinal tract of birds. Several factors are important for chicken colonization and virulence, including a taxis mechanism...

  9. Bacteriocins reduce Campylobacter jejuni colonization while bacteria producing bacteriocins are ineffective

    Science.gov (United States)

    Broiler chickens are widely considered an important source for human exposure to Campylobacter jejuni because of the high numbers found colonizing the chicken gut and the consequent contamination of processed carcasses. We hoped to intervene in gut colonization by C. jejuni using a defined probioti...

  10. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni

    Science.gov (United States)

    The antibacterial effect of ZnO nanoparticles on Campylobacter jejuni was investigated for cell growth inhibition and inactivation. The results showed that C. jejuni was extremely sensitive to the treatment of ZnO nanoparticles. The minimal inhibitory concentration (MIC) of ZnO nanoparticles to C. j...

  11. Potential of coriander (Coriandrum sativum) oil as a natural antimicrobial compound in controlling Campylobacter jejuni in raw meat.

    Science.gov (United States)

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2010-01-01

    Twelve essential oils were tested in vitro for antimicrobial activities against several strains of Campylobacter jejuni, a pathogen causing food-borne diseases worldwide. Using disk diffusion and minimal inhibitory concentration determination assays, we noted that coriander oil exhibited the strongest antimicrobial activity against all tested strains. The oil had a bactericidal effect on the target bacteria. In evaluating the antimicrobial potency of coriander oil against C. jejuni on beef and chicken meat at 4 degrees C and 32 degrees C, it was found that the oil reduced the bacterial cell load in a dose-dependent manner. The type of meat and temperature did not influence the antimicrobial activity of the oil. This study indicates the potential of coriander oil to serve as a natural antimicrobial compound against C. jejuni in food.

  12. Bacteriostatic and bactericidal activities of 24 antimicrobial agents against Campylobacter fetus subsp. jejuni.

    Science.gov (United States)

    Vanhoof, R; Gordts, B; Dierickx, R; Coignau, H; Butzler, J P

    1980-07-01

    The bacteriostatic and bactericidal activities of 24 antimicrobial agents were tested with the Dynatech MIC 2000 system against 86 strains of Campylobacter fetus subsp. jejuni from human sources. The penicillins (penicillin G, ampicillin, amoxycillin, carbenicillin) had poor activity. Ampicillin and amoxycillin were equally active. Cefotaxime revealed a rather good activity. Erythromycin, gentamicin, tobramycin, amikacin, and furazolidone were the most active compounds. Two strains (2.3%) were resistant to erythromycin. One strain (1.2%) was completely resistant to tobramycin. The tetracyclines (tetracyline, doxycycline, minocycline) were generally effective, but 8% of the strains were totally resistant to them. Minocycline was the most active. Chloramphenicol, thiamphenicol, and clindamycin had good activity. The bacteriostatic and bactericidal distributions for colistin, nalidixic acid, and metronidazole were broad.

  13. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    DEFF Research Database (Denmark)

    Birk, Tina; Wik, Monica Takamiya; Lametsch, René

    2012-01-01

    BACKGROUND: During the transmission route from poultry to the human host, the major foodborne pathogen C. jejuni may experience many types of stresses, including low pH caused by different acids. However, not all strains are equally sensitive to the stresses. The aim of this study was to investig...... (Cj0706), molybdenum cofactor biosynthesis protein (MogA), and bacterioferritin (Dps). Strain and acid type dependent differences in the level of response were observed. For strain NCTC 11168, the induced proteins and the regulator fur were analysed at the transcriptomic level using q......RT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. CONCLUSIONS: A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced...

  14. Temporal induction of pro-inflammatory and regulatory cytokines in human peripheral blood mononuclear cells by Campylobacter jejuni and Campylobacter coli

    Science.gov (United States)

    Kuhnert, Peter

    2017-01-01

    Campylobacter jejuni along with C. coli are major cause of human gastroenteritis worldwide. So far, the human immune response against Campylobacter is not entirely clear. We hypothesize that it is coordinated by an interaction between pro-inflammatory and regulatory cytokines which is influenced by bacterial and host-individual differences. Accordingly, we used peripheral blood mononuclear cells (PBMC) from healthy donors to study the primary systemic immune response to C. jejuni and C. coli. PBMC were stimulated by different strains of C. jejuni and C. coli for three time points (5, 10, 24 hours). The production of the pro-inflammatory (IL-6, IL-8, IFN-γ) and the regulatory (IL-10) cytokines were measured by ELISA. All strains induced higher levels of IL-8 and IL-6 than IFN-γ and IL-10. In contrast to IL-8 and IL-6, IL-10 showed a steeper increase over time. While IFN-γ did not show any further increase between 10 and 24 hours. Interestingly, there was a significant correlation between IL-8 and IL-10 which peaked at 24 hours. Despite the variability of the used bacterial strains, their effect on cytokine production was less pronounced than the inter-person differences. The strongest significant effect of the strain was on the level of IL-10. IL-10 and IL-6 were significantly influenced by strain-person interaction. In conclusion, the systemic immune response to C. coli and C. jejuni is characterized by an early pro-inflammatory reaction with later initiation of regulatory immune response which is influenced mainly by the host, explaining the individual variations in disease severity. Additional work is needed to determine the cellular sources of the produced cytokines as well as the campylobacter molecules that might contribute to this stimulation. PMID:28196097

  15. Recovery of Campylobacter jejuni and Campylobacter coli from inoculated foods by selective enrichment.

    Science.gov (United States)

    Doyle, M P; Roman, D J

    1982-06-01

    A direct enrichment procedure was developed to selectively recover small numbers of Campylobacter jejuni, C. coli, and nalidixic acid-resistant thermophilic Campylobacter from foods. The procedure includes an enrichment medium composed of brucella broth, 7% lysed horse blood, 0.3% sodium succinate, 0.01% cysteine hydrochloride, vancomycin (15 micrograms/ml), trimethoprim (5 micrograms/ml), polymyxin B (20 IU/ml), and cycloheximide (50 micrograms/ml) that is inoculated with 10 or 25 g of food and incubated with agitation under microaerophilic conditions at 42 degrees C for 16 to 18 h. After incubation, the medium is plated directly onto Campy-BAP agar plates (M. J. Blaser et al., Ann. Intern. Med. 91:179-185, 1979), and resulting colonies that resemble Campylobacter are identified by conventional tests. The foods evaluated included raw milk, hamburger, and chicken skin which had aerobic plate counts of 10(5) to 10(9) bacteria/g. The procedure was effective in recovering as few as 0.1 cell of Campylobacter per g of food. Of the 50 isolates of Campylobacter evaluated, all were recovered from raw milk and hamburger at a level of 1 to 4 cells/g, and 41 and 40 isolaes were recovered from the hamburger and milk, respectively, at 0.1 to 0.4 cell/g. The enrichment was least effective for recovering campylobacters from chicken skin, as 7 and 26 of 50 isolates were not recovered at 1 to 4 and 0.1 to 0.4 cell/g, respectively. This new procedure is more rapid, direct, and effective than other enrichment or direct plating procedures for recovering small numbers of campylobacters from foods.

  16. Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens.

    Science.gov (United States)

    Aguiar, Vivian F; Donoghue, Ann M; Arsi, Komala; Reyes-Herrera, Ixchel; Metcalf, Joel H; de los Santos, Fausto S; Blore, Pamela J; Donoghue, Dan J

    2013-05-01

    Campylobacter is the leading cause of gastroenteritis worldwide. Campylobacter is commonly present in the intestinal tract of poultry, and one strategy to reduce enteric colonization is the use of probiotic cultures. This strategy has successfully reduced enteric colonization of Salmonella, but has had limited success against Campylobacter. In an effort to improve the efficacy of probiotic cultures, we developed a novel in vitro screening technique for selecting bacterial isolates with enhanced motility. It is proposed that motility-selected bacteria have the marked ability to reach the same gastrointestinal niche in poultry and competitively reduce C. jejuni. Bacterial isolates were collected from ceca of healthy chickens, and motile isolates were identified and tested for anti-Campylobacter activity. Isolates with these properties were selected for increased motility by passing each isolate 10 times and at each passage selecting bacteria that migrated the farthest during each passage. Three bacterial isolates with the greatest motility (all Bacillus subtilis) were used alone or in combination in two chicken trials. At day of hatch, chicks were administered these isolates alone or in combination (n=10/treatment, two trials), and chicks were orally challenged with a mixture of four different wild-type strains of C. jejuni (∼10(5) CFU/mL) on day 7. Isolate 1 reduced C. jejuni colonization in both of the trials (pCampylobacter colonization was observed in all three trials in the chickens dosed using isolate with enhanced motility compared to the control and unselected isolate. These findings support the theory that the motility enhancement of potential probiotic bacteria may provide a strategy for reduction of C. jejuni in preharvest chickens.

  17. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    Science.gov (United States)

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  18. Evidence that certain clones of Campylobacter jejuni persist during successive broiler flock rotations

    DEFF Research Database (Denmark)

    Petersen, L.; Wedderkopp, A.

    2001-01-01

    Through the national surveillance program for Campylobacter spp,, nine broiler chicken farms that were infected with Campylobacter jejuni in at least five rotations in 1998 were identified. One additional farm, located at the island of Bornholm where divided slaughter is used extensively, was also...

  19. Serotype and genotype diversity and hatchery transmission of Campylobacter jejuni in commercial poultry flocks

    DEFF Research Database (Denmark)

    Petersen, L.; Nielsen, E.M.; On, Stephen L.W.

    2001-01-01

    We investigated the genotype and serotype diversity of Campylobacter coli and C jejuni in two parent flocks of adult hens and their offspring over two rotations in order to evaluate the role of hatchery mediated transmission and/or vertical transmission of campylobacters in broiler flocks. In tot...

  20. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance

    Science.gov (United States)

    Gundogdu, Ozan; da Silva, Daiani T.; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W.; van Vliet, Arnoud H. M.; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes. PMID:28082970

  1. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity.

    Science.gov (United States)

    Dorrell, N; Mangan, J A; Laing, K G; Hinds, J; Linton, D; Al-Ghusein, H; Barrell, B G; Parkhill, J; Stoker, N G; Karlyshev, A V; Butcher, P D; Wren, B W

    2001-10-01

    Campylobacter jejuni is the leading cause of bacterial food-borne diarrhoeal disease throughout the world, and yet is still a poorly understood pathogen. Whole genome microarray comparisons of 11 C. jejuni strains of diverse origin identified genes in up to 30 NCTC 11168 loci ranging from 0.7 to 18.7 kb that are either absent or highly divergent in these isolates. Many of these regions are associated with the biosynthesis of surface structures including flagella, lipo-oligosaccharide, and the newly identified capsule. Other strain-variable genes of known function include those responsible for iron acquisition, DNA restriction/modification, and sialylation. In fact, at least 21% of genes in the sequenced strain appear dispensable as they are absent or highly divergent in one or more of the isolates tested, thus defining 1300 C. jejuni core genes. Such core genes contribute mainly to metabolic, biosynthetic, cellular, and regulatory processes, but many virulence determinants are also conserved. Comparison of the capsule biosynthesis locus revealed conservation of all the genes in this region in strains with the same Penner serotype as strain NCTC 11168. By contrast, between 5 and 17 NCTC 11168 genes in this region are either absent or highly divergent in strains of a different serotype from the sequenced strain, providing further evidence that the capsule accounts for Penner serotype specificity. These studies reveal extensive genetic diversity among C. jejuni strains and pave the way toward identifying correlates of pathogenicity and developing improved epidemiological tools for this problematic pathogen.

  2. Molecular epidemiology and antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli isolates of poultry, swine, and cattle origin collected from slaughterhouses in Hungary.

    Science.gov (United States)

    Schweitzer, Nóra; Dán, Ádám; Kaszanyitzky, Éva; Samu, Péterné; Tóth, Ádám György; Varga, János; Damjanova, Ivelina

    2011-06-01

    Campylobacter spp. are the most common cause of bacterial enteritis in Hungary, and the aim of this study was to identify the distribution, genotypes, and antimicrobial susceptibility of Campylobacter species in the most important food-producing animals at the time of slaughter during 2008 and 2009. Of 1,110 samples, 266 were identified as Campylobacter coli (23.9%) and 143 as C. jejuni (12.9%) by real-time PCR. Resistance to enrofloxacin-ciprofloxacin and nalidixic acid was significant, especially in C. jejuni (73.3%) and C. coli (77.2%) from broilers. Higher erythromycin (P = 0.043) and tetracycline (P = 1.865e-14) resistance rates were found among C. coli isolates (9.7 and 74.1%, respectively) than among C. jejuni isolates (3.1 and 36.6%, respectively). A total of 47 fla short variable region sequences were identified among 73 selected C. coli and C. jejuni isolates, with 35 fla types detected only once. At the nucleotide level, fla types A66 and A21 were the most common. Using the pulsed-field gel electrophoresis method, 66% of strains exhibited unique profiles after Sma I digestion. Forty-two isolates assigned to 18 Sma I clusters were further typed by Kpn I, and of these, 24 were assigned to 10 Kpn I clusters. For isolates in five Kpn I clusters, epidemiological links were observed. Stable C. jejuni and C. coli clones were detected, indicating that further studies involving broiler and human isolates need to be conducted to elucidate the importance of these stable clones in human infections.

  3. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses

    Directory of Open Access Journals (Sweden)

    Maike T. Maziero

    2010-06-01

    Full Text Available Campylobacter jejuni is the most common thermophilic Campylobacter associated with human enteritis in many countries. Broilers and their by-products are the main sources for human enteritis. Refrigeration and freezing are used to control bacterial growth in foods. The effect of these interventions on survival of Campylobacter jejuni is yet not quite understood. This study evaluated the effect of storage temperature on the survival of C. jejuni in chicken meat stored for seven days at 4ºC and for 28 days at -20ºC. The influence of selective enrichment on recovery of Campylobacter was also evaluated. Thirty fresh chicken meat samples were analyzed and 93.3% was contaminated with termotolerant Campylobacter spp. with average count of 3.08 Log10 CFU/g on direct plating. After refrigeration, 53.3% of the analyzed samples tested positive for Campylobacter and the average count was 1.19 Log10 CFU/g. After storage at -20ºC, 36.6% of the samples were positive with a verage count of 0.75 Log10 CFU/g. C. jejuni was detected after enrichment, respectively, in 50% of the fresh, 36.7% of the refrigerated and 33.3% of the frozen meat samples analyzed. No difference was detected for the recovery of C. jejuni from fresh, refrigerated or frozen samples after selective enrichment, showing that this microorganism can survive under the tested storage conditions.

  4. Development of a loop-mediated isothermal amplification assay for rapid, sensitive and specific detection of a Campylobacter jejuni clone.

    Science.gov (United States)

    Luo, Yan; Sahin, Orhan; Dai, Lei; Sippy, Rachel; Wu, Zuowei; Zhang, Qijing

    2012-05-01

    Loop-mediated isothermal amplification (LAMP) assay is a simple, rapid and specific detection method and has been used for detection and identification of different Campylobacter species. In this study, we develop a LAMP assay specific for detection of a particular clone (clone SA) of Campylobacter jejuni, associated with the vast majority of recent sheep abortions in the U.S. Using a set of specific primers for C. jejuni IA3902 (a clone SA isolate) and genomic DNA or boiled cell extract as template, the target DNA was amplified at 63 °C for 50 min in a water bath. A positive reaction was identified visually as white precipitate or fluorescence under UV, and confirmed by gel electrophoresis. Detection limit of the assay was comparable to that of conventional PCR. The LAMP was shown to be specific for detection of clone SA when tested on a number of C. jejuni strains of different genetic backgrounds. Applicability of the LAMP assay for specific detection of clone SA was demonstrated in animal tissues experimentally infected with IA3902 or genetically diverse C. jejuni strains. Since clone SA is the predominant cause of sheep abortions in the U.S. and is a zoonotic pathogen, the LAMP assay may be a valuable detection tool in future epidemiological studies.

  5. Genetic diversity and antimicrobial susceptibility of Campylobacter jejuni isolates associated with sheep abortion in the United States and Great Britain.

    Science.gov (United States)

    Wu, Zuowei; Sippy, Rachel; Sahin, Orhan; Plummer, Paul; Vidal, Ana; Newell, Diane; Zhang, Qijing

    2014-06-01

    Campylobacter infection is a leading cause of ovine abortion worldwide. Historically, genetically diverse Campylobacter fetus and Campylobacter jejuni strains have been implicated in such infections, but since 2003 a highly pathogenic, tetracycline-resistant C. jejuni clone (named SA) has become the predominant cause of sheep abortions in the United States. Whether clone SA was present in earlier U.S. abortion isolates (before 2000) and is associated with sheep abortions outside the United States are unknown. Here, we analyzed 54 C. jejuni isolates collected from U.S. sheep abortions at different time periods and compared them with 42 C. jejuni isolates associated with sheep abortion during 2002 to 2008 in Great Britain, using multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and array-based comparative genomic hybridization (CGH). Although clone SA (ST-8) was present in the early U.S. isolates, it was not as tetracycline resistant (19% versus 100%) or predominant (66% versus 91%) as it was in the late U.S isolates. In contrast, C. jejuni isolates from Great Britain were genetically diverse, comprising 19 STs and lacking ST-8. PFGE and CGH analyses of representative strains further confirmed the population structure of the abortion isolates. Notably, the Great Britain isolates were essentially susceptible to most tested antibiotics, including tetracycline, while the late U.S. isolates were universally resistant to this antibiotic, which could be explained by the common use of tetracyclines for control of sheep abortions in the United States but not in Great Britain. These results suggest that the dominance of clone SA in sheep abortions is unique to the United States, and the use of tetracyclines may have facilitated selection of this highly pathogenic clone.

  6. Host adaption to the bacteriophage carrier state of Campylobacter jejuni.

    Science.gov (United States)

    Brathwaite, Kelly J; Siringan, Patcharin; Connerton, Phillippa L; Connerton, Ian F

    2015-01-01

    The carrier state of the foodborne pathogen Campylobacter jejuni represents an alternative life cycle whereby virulent bacteriophages can persist in association with host bacteria without commitment to lysogeny. Host bacteria exhibit significant phenotypic changes that improve their ability to survive extra-intestinal environments, but exhibit growth-phase-dependent impairment in motility. We demonstrate that early exponential phase cultures become synchronised with respect to the non-motile phenotype, which corresponds with a reduction in their ability to adhere to and invade intestinal epithelial cells. Comparative transcriptome analyses (RNA-seq) identify changes in gene expression that account for the observed phenotypes: downregulation of stress response genes hrcA, hspR and per and downregulation of the major flagellin flaA with the chemotactic response signalling genes cheV, cheA and cheW. These changes present mechanisms by which the host and bacteriophage can remain associated without lysis, and the cultures survive extra-intestinal transit. These data provide a basis for understanding a critical link in the ecology of the Campylobacter bacteriophage.

  7. Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces

    DEFF Research Database (Denmark)

    Keramas, Georgios; Bang, Dang Duong; Lund, Marianne

    2004-01-01

    . detection obtained with DNA microarrays were compared to those obtained by conventional culture and gel electrophoresis. By conventional culture, 60% of the samples were positive for either Campylobacter jejuni or Campylobacter coli. By PCR and capillary electrophoresis, 95% of the samples were positive...... for Campylobacter spp., whereas with DNA microarrays all samples were positive for Campylobacter spp. By application of DNA microarray analysis, the isolates in 4 samples (6%) could not be identified to the species level, whereas by PCR-capillary electrophoresis, the isolates in 12 samples (19%) remained...... unidentified. Interestingly, PCR-capillary electrophoresis analysis revealed that two (3%) of the samples were positive for both C. jejuni and C. coli, while DNA microarray analysis revealed that nine (14%) of the samples were positive for both species. Of 65 samples, 2 samples were identified to contain C...

  8. Does Whipworm Increase the Pathogenicity of Campylobacter jejuni? A Clinical Correlate of an Experimental Observation

    Directory of Open Access Journals (Sweden)

    Jennifer L Shin

    2004-01-01

    Full Text Available Campylobacter jejuni is a leading cause of acute diarrhea worldwide, usually mild and self-limiting. No adequate hypothesis has yet been formulated to explain why in an otherwise healthy host this infection is occasionally severe. In a pig model, C jejuni has been shown to be pathogenic only in the presence of swine whipworm. A human case of life-threatening C jejuni colitis leading to toxic megacolon and acute renal failure, associated with concomitant whipworm (Trichuris suis ova in the feces, is reported. The potential of T suis to potentiate C jejuni in humans deserves further study.

  9. Exploring the chemotatic attraction of Campylobacter jejuni in chicken colonization

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ingmer, Hanne

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world and the bacteria causes millions of gastroenteritis cases each year. The most important reservoir for C. jejuni is the gut of chickens, which are colonized commensally and efficiently by this organism....... Predominantly the mucus filled crypts of the lower gastrointestinal tract of chickens are found to be colonized by C. jejuni, and the bacteria are expected to be attracted to this particular environment by chemotaxis. From the full genome sequence of C. jejuni NCTC11168 several chemotactic proteins...

  10. Novel murine infection models provide deep insights into the "menage a trois" of Campylobacter jejuni, microbiota and host innate immunity.

    Directory of Open Access Journals (Sweden)

    Stefan Bereswill

    Full Text Available BACKGROUND: Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa or murine (mfa microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88(-/-, TRIF(-/-, TLR4(-/-, and TLR9(-/- mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. CONCLUSION/SIGNIFICANCE: We conclude that

  11. Evolution and comparative genomics of Campylobacter jejuni ST-677 clonal complex.

    Science.gov (United States)

    Kivistö, Rauni I; Kovanen, Sara; Skarp-de Haan, Astrid; Schott, Thomas; Rahkio, Marjatta; Rossi, Mirko; Hänninen, Marja-Liisa

    2014-09-04

    Campylobacter is the most common bacterial cause of gastroenteritis in the European Union with over 200,000 laboratory-confirmed cases reported annually. This is the first study to describe findings related to comparative genomics analyses of the sequence type (ST)-677 clonal complex (CC), a Campylobacter jejuni lineage associated with bacteremia cases in humans. We performed whole-genome sequencing, using Illumina HiSeq sequencing technology, on five related ST-677 CC isolates from two chicken farms to identify microevolution taking place at the farms. Our further aim was to identify novel putative virulence determinants from the ST-677 CC genomes. For this purpose, clinical isolates of the same CC were included in comparative genomic analyses against well-known reference strains of C. jejuni. Overall, the ST-677 CC was recognized as a highly clonal lineage with relatively small differences between the genomes. Among the farm isolates differences were identified mainly in the lengths of the homopolymeric tracts in genes related to the capsule, lipo-oligosaccharide, and flagella. We identified genomic features shared with C. jejuni subsp. doylei, which has also been shown to be associated with bacteremia in humans. These included the degradation of the cytolethal distending toxin operon and similarities between the capsular polysaccharide biosynthesis loci. The phase-variable GDP-mannose 4,6-dehydratase (EC 4.2.1.47) (wcbK, CAMP1649), associated with the capsular polysaccharide biosynthesis locus, may play a central role in ST-677 CC conferring acid and serum resistance during different stages of infection. Homology-based searches revealed several additional novel features and characteristics, including two putative type Vb secretion systems and a novel restriction modification/methyltransferase gene cluster, putatively associated with pathogenesis and niche adaptation.

  12. Molecular epidemiology of Campylobacter jejuni infection in Israel-a nationwide study.

    Science.gov (United States)

    Weinberger, M; Moran-Gilad, J; Rokney, A; Davidov, Y; Agmon, V; Peretz, C; Valinsky, L

    2016-12-01

    The incidence of Campylobacter infection in Israel, particularly among children Campylobacter jejuni in Israel over a decade (2003-2012) using multilocus sequence typing (MLST) combined with demographic metadata. Representative clinical isolates (438) from a large national repository together with selected veterinary isolates (74) were subject to MLST. The distribution of age groups, ethnicity and clinical source across various genotypes was evaluated using Poisson modelling. The 512 studied isolates were assigned 126 distinct sequence types (STs) (18.8% novel STs) grouped into 21 clonal complexes (CCs). Most human, poultry and bovine STs clustered together in the leading CCs. Three dominant STs (ST21, ST6608, ST4766) were detected only since 2006. Patients infected with the leading CCs were similarly distributed along densely populated areas. The frequency of blood isolates was higher in patients infected with CC353 (relative rate (RR)=2.0, 95% CI 1.03-3.9, adjusted p value (adj.p) 0.047) and CC42 (RR=4.4, 95% CI 1.7-11.6, adj.p 0.018) and lower with CC257 (RR=0.3, 95% CI 0.1-0.9, adj. p 0.047). The distribution of age groups and ethnicity also varied across the leading CCs. In conclusion, C. jejuni isolates in a national sample appeared highly diverse with a high proportion of new STs. Phylogenic analysis was compatible with poultry and cattle as possible food sources of clinical infection. Demographic characteristics of the infected patients coupled with strain invasiveness across different genotypes revealed a complex epidemiology of C. jejuni transmission in Israel.

  13. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method.

    Science.gov (United States)

    Yamada, Kazuhiro; Ibata, Ami; Suzuki, Masahiro; Matsumoto, Masakado; Yamashita, Teruo; Minagawa, Hiroko; Kurane, Ryuichiro

    2015-01-01

    Campylobacter jejuni is responsible for the majority of Campylobacter infections. As the molecular epidemiological study of outbreaks, pulsed-field gel electrophoresis (PFGE) is performed in general. But PFGE has several problems. PCR binary typing (P-BIT) method is a typing method for Campylobacter spp. that was recently developed, and was reported to have a similar discriminatory power and stability to those of PFGE. We modified the P-BIT method from 18 monoplex PCRs to two multiplex PCR systems (mP-BIT). The same results were obtained from monoplex PCRs using original primers and multiplex PCR in the representative isolates. The mP-BIT can analyze 48 strains at a time by using 96-well PCR systems and can identify C. jejuni because mP-BIT includes C. jejuni marker. The typing of the isolates by the mP-BIT and PFGE demonstrated generally concordant results and the mP-BIT method (D = 0.980) has a similar discriminatory power to that of PFGE with SmaI digest (D = 0.975) or KpnI digest (D = 0.987) as with original article. The mP-BIT method is quick, simple and easy, and comes to be able to perform it at low cost by having become a multiplex PCR system. Therefore, the mP-BIT method with two multiplex PCR systems has high potential for a rapid first-line surveillance typing assay of C. jejuni and can be used for routine surveillance and outbreak investigations of C. jejuni in the future.

  14. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    Directory of Open Access Journals (Sweden)

    Mohamed K. Fakhr

    2013-08-01

    Full Text Available Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL, roxarsone (4–2048 μg/mL, arsenate (16–8,192 μg/mL and arsenite (4–2,048 μg/mL. A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL, roxarsone (512–2,048 μg/mL, and arsenate (128–1,024 μg/mL, but at lower concentrations for arsenite (4–16 μg/mL. Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3, 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR. The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.

  15. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    Science.gov (United States)

    Noormohamed, Aneesa; Fakhr, Mohamed K.

    2013-01-01

    Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL), roxarsone (4–2048 μg/mL), arsenate (16–8,192 μg/mL) and arsenite (4–2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli) were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB) by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL), roxarsone (512–2,048 μg/mL), and arsenate (128–1,024 μg/mL), but at lower concentrations for arsenite (4–16 μg/mL). Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3), 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR). The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates. PMID:23965921

  16. Arsenic resistance and prevalence of arsenic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from retail meats.

    Science.gov (United States)

    Noormohamed, Aneesa; Fakhr, Mohamed K

    2013-08-07

    Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4-2,048 μg/mL), roxarsone (4-2048 μg/mL), arsenate (16-8,192 μg/mL) and arsenite (4-2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli) were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB) by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512-2,048 μg/mL), roxarsone (512-2,048 μg/mL), and arsenate (128-1,024 μg/mL), but at lower concentrations for arsenite (4-16 μg/mL). Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3), 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR). The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.

  17. Prevalence of Campylobacter Jejuni and Coli in Sheep Carcasses by Using

    Directory of Open Access Journals (Sweden)

    Reza Shahrokhabadi

    2013-11-01

    Full Text Available Background: Campylobacter species are common bacterial pathogens causing gastroenteritis in humans worldwide. Materials and Methods: A total of 148 randomly sheep carcasses were sampled by surface section of neck meat taken immediately after slaughter analyzed using microbiological examinations. Results: Campylobacter spp. was isolated from 10.13% meat cultures samples examined. Among these 80% sample were C. jejuni and 20% sample were C. coli. Using PCR assays, the number of positive campylobacters increased to 11.48%. Of these positive samples, 82.35% were C. jejuni and 17.65% were C. coli. Significantly higher prevalence rates of Campylobacter spp. (p<0.05 were found in the meat samples taken in summer (47.05%. Conclusion: The PCR is a reliable and sensitive method which can be used as a diagnostic technique for the detection of campylobacter in lamb samples.

  18. Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model

    Directory of Open Access Journals (Sweden)

    Jin-lin Huang

    2010-01-01

    Full Text Available Campylobacter jejuni is the most common zoonotic bacterium associated with human diarrhea, and chickens are considered to be one of the most important sources for human infection, with no effective prophylactic treatment available. We describe here a prophylactic strategy using chitosan-DNA intranasal immunization to induce specific immune responses. The chitosan used for intranasal administration is a natural mucus absorption enhancer, which results in transgenic DNA expression in chicken nasopharynx. Chickens immunized with chitosan-DNA nanoparticles, which carried a gene for the major structural protein FlaA, produced significantly increased levels of serum anti-Campylobacter jejuni IgG and intestinal mucosal antibody (IgA, compared to those treated with chitosan-DNA (pCAGGS. Chitosan-pCAGGS-flaA intranasal immunization induced reductions of bacterial expellation by 2-3 log10 and 2 log10 in large intestine and cecum of chickens, respectively, when administered with the isolated C. jejuni strain. This study demonstrated that intranasal delivery of chitosan-DNA vaccine successfully induced effective immune response and might be a promising vaccine candidate against C. jejuni infection.

  19. Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3 of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Hossinur Rahman

    2014-01-01

    Full Text Available Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3 to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3 in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study

  20. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    Directory of Open Access Journals (Sweden)

    Fields Joshua A

    2012-10-01

    Full Text Available Abstract Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA.

  1. Distinct Campylobacter jejuni capsular types are related to Guillain-Barré syndrome in The Netherlands and Bangladesh

    Science.gov (United States)

    An infection with the intestinal pathogen Campylobacter jejuni leads to Guillain-Barré syndrome (GBS) in around one in thousand cases. It is established that sialylated lipooligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sia...

  2. The evidence for clonal spreading of quinolone resistance with a particular clonal complex of Campylobacter jejuni.

    Science.gov (United States)

    Kovač, J; Cadež, N; Lušicky, M; Nielsen, E Møller; Ocepek, M; Raspor, P; Možina, S Smole

    2014-12-01

    Campylobacter is the most prevalent cause of bacterial gastroenteritis worldwide and it represents a significant public health risk of increasing severity due to its escalating resistance to clinically important quinolone and macrolide antibiotics. As a zoonotic pathogen Campylobacter is transmitted along the food chain and naturally cycles from environmental waters, feedstuff, animals and food to humans. We determined antibiotic resistance profiles, as well as multilocus sequence types and flaA-SVR types for 52 C. jejuni isolated in Slovenia from human, animal, raw and cured chicken meat and water samples. Twenty-eight different sequence types, arranged in ten clonal complexes, three new allele types and five new sequence types were identified, indicating the relatively high diversity in a small group of strains. The assignment of strains from different sources to the same clonal complexes indicates their transmission along the food supply chain. The most prevalent clonal complex was CC21, which was also the genetic group with 95% of quinolone-resistant strains. Based on the genetic relatedness of these quinolone-resistant strains identified by polymerase chain reaction with a mismatch amplification mutation assay and sequencing of the quinolone resistance-determining region of the gyrA gene, we conclude that the high resistance prevalence observed indicates the local clonal spread of quinolone resistance with CC21.

  3. The abundant free-living amoeba, Acanthamoeba polyphaga, increases the survival of Campylobacter jejuni in milk and orange juice

    OpenAIRE

    Olofsson, Jenny; Griekspoor Berglund, Petra; Olsen, Björn; Ellström, Patrik; Axelsson-Olsson, Diana

    2015-01-01

    Background: Campylobacter jejuni is a common cause of human bacterial diarrhea in most parts of the world. Most C. jejuni infections are acquired from contaminated poultry, milk, and water. Due to health care costs and human suffering, it is important to identify all possible sources of infection. Unpasteurized milk has been associated with several outbreaks of C. jejuni infection. Campylobacter has been identified on fresh fruit, and other gastrointestinal pathogens such as Salmonella, E. co...

  4. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.

    Directory of Open Access Journals (Sweden)

    Robert O Watson

    2008-01-01

    Full Text Available Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni-containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells.

  5. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2014-01-01

    Biofilm formation of Campylobacter jejuni, a major cause of human gastroenteritis, contributes to the survival of this pathogenic bacterium in different environmental niches; however, molecular mechanisms for its biofilm formation have not been fully understood yet. In this study, the role of oxidative stress resistance in biofilm formation was investigated using mutants defective in catalase (KatA), superoxide dismutase (SodB), and alkyl hydroperoxide reductase (AhpC). Biofilm formation was substantially increased in an ahpC mutant compared to the wild type, and katA and sodB mutants. In contrast to the augmented biofilm formation of the ahpC mutant, a strain overexpressing ahpC exhibited reduced biofilm formation. A perR mutant and a CosR-overexpression strain, both of which upregulate ahpC, also displayed decreased biofilms. However, the introduction of the ahpC mutation to the perR mutant and the CosR-overexpression strain substantially enhanced biofilm formation. The ahpC mutant accumulated more total reactive oxygen species and lipid hydroperoxides than the wild type, and the treatment of the ahpC mutant with antioxidants reduced biofilm formation to the wild-type level. Confocal microscopy analysis showed more microcolonies were developed in the ahpC mutant than the wild type. These results successfully demonstrate that AhpC plays an important role in the biofilm formation of C. jejuni.

  6. 23S rRNA gene mutations contributing to macrolide resistance in Campylobacter jejuni and Campylobacter coli

    Science.gov (United States)

    Operon specific 23S rRNA mutations affecting minimum inhibitory concentrations (MICs) of macrolides (erythromycin [ERY], azithromycin [AZM], tylosin [TYL]) and a lincosamide (clindamycin [CLI]) were examined in a collection of Campylobacter jejuni and C. coli isolates. The three copies of the Campy...

  7. Comparison of waaF gene of Guillain-Barré Syndrome-associated Campylobacter jejuni strains%吉兰-巴雷综合征相关空肠弯曲菌waaF基因序列对比研究

    Institute of Scientific and Technical Information of China (English)

    陈娟; 李春岩; 李震中; 白欣立; 刘慧; 李鑫; 赵子春; 刘卫卫; 郭医杰; 邢丛丛

    2011-01-01

    Objective To investigate the pathogenic mechanism of Guillain-Barré Syndrome ( GBS)-associated Campylobacter jejuni ( C.jejuni) and the phyloenic relationship of them.Methods 3 GBS-associated C.jejuni strains were cultured to get genome sequences,the 3 waaF sequences were compared with the NCTC11168 to find the base and amino acid mutations, the change of secondary structure and phylogenic relationship with bioinformatics software.Results The waaF gene of 3 GBS-associated C.jejuni strains all had 960 base pairs.The alignment showed that there were 5 same mutation sites, of which 1081462zhanxingT→A, lulei, qiaoyuntaoT→G caused corresponding amino acid mutation 185D→E, and changes in alpha regions.The genetic distance was near to each other.Conclusions There are same base and amino acid mutation and changes of secondary structure, which may relate with the pathogenesis of GBS.The GBS-associated C.jejuni strains of Hebei province has its regional features.%目的 了解吉兰-巴雷综合征(GBS)相关空肠弯曲菌(C.jejuni) waaF基因核酸及氨基酸序列特征,分析其遗传进化关系.方法 选取3株致GBS C.jejuni菌株,提取其基因组测序.应用生物信息学软件,以NCTC11168序列为参照进行比对,分析waaF基因碱基及相应氨基酸突变、二级结构变化,计算遗传距离.结果 3株致GBS C.jejuni waaF基因均由960个碱基构成,相同碱基突变位点有5个,1081462位zhanxingT→A,lulei、qiaoyuntaoT→G导致相同氨基酸改变:185位D→E,该位点导致α螺旋结构的改变.3株致GBS C.jejuni waaF基因遗传距离较小.结论 GBS相关C.jejuni菌株waaF基因序列存在相同碱基及氨基酸突变及二级结构变化,这可能与C.jejuni致GBS能力的改变相关.河北地区致GBS的C.jejuni在进化上存在聚类现象.

  8. Phage-displayed peptides selected for binding to Campylobacter jejuni are antimicrobial.

    Science.gov (United States)

    Bishop-Hurley, Sharon L; Rea, Philippa J; McSweeney, Christopher S

    2010-10-01

    In developed countries, Campylobacter jejuni is a leading cause of zoonotic bacterial gastroenteritis in humans with chicken meat implicated as a source of infection. Campylobacter jejuni colonises the lower gastrointestinal tract of poultry and during processing is spread from the gastrointestinal tract onto the surface of dressed carcasses. Controlling or eliminating C.jejuni on-farm is considered to be one of the best strategies for reducing human infection. Molecules on the cell surface of C.jejuni interact with the host to facilitate its colonisation and persistence in the gastrointestinal tract of poultry. We used a subtractive phage-display protocol to affinity select for peptides binding to the cell surface of a poultry isolate of C.jejuni with the aim of finding peptides that could be used to control this microorganism in chickens. In total, 27 phage peptides, representing 11 unique clones, were found to inhibit the growth of C.jejuni by up to 99.9% in vitro. One clone was bactericidal, reducing the viability of C.jejuni by 87% in vitro. The phage peptides were highly specific. They completely inhibited the growth of two of the four poultry isolates of C.jejuni tested with no activity detected towards other Gram-negative and Gram-positive bacteria.

  9. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  10. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Science.gov (United States)

    Riazi, Ali; Strong, Philippa C R; Coleman, Russell; Chen, Wangxue; Hirama, Tomoko; van Faassen, Henk; Henry, Matthew; Logan, Susan M; Szymanski, Christine M; Mackenzie, Roger; Ghahroudi, Mehdi Arbabi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  11. Campylobacter jejuni occurrence in chicken fecal samples from small properties in Pelotas, southern of Brazil Ocorrência de Campylobacter jejuni em amostras fecais de galinhas em pequenas propriedades de Pelotas, sul do Brasil

    Directory of Open Access Journals (Sweden)

    Fabiane R. Gomes

    2006-09-01

    Full Text Available The aim of this study was to evaluate the occurrence of thermophilic Campylobacter species in broiler flocks from 26 small properties located near the campus of Federal University of Pelotas, RS, Brazil. A total of 404 chicken fecal samples were analyzed and after isolation, identification and biotyping was performed according to Lior´s scheme. Twenty one strains (5.2% of Campylobacter jejuni biotype II were isolated from animals from seven properties (26.9%, with a variation from 3% to 34.6% among the positive properties. We also analyzed twelve C. jejuni isolates by polymerase chain reaction (PCR, using specific primers that generate a fragment of 402 pb. Our study allowed us to observe that chickens raised in non-industrial establishments without sanitary attention can harbour C. jejuni in their intestinal tract, and by doing so, they could be a serious health risk to humans.O objetivo deste estudo foi avaliar a ocorrência de espécies termofílicas de Campylobacter em galinhas de 26 pequenas propriedades localizadas próximo ao campus da Universidade Federal de Pelotas, RS, Brasil. Um total de 404 amostras fecais de galinhas foram analisadas e após o isolamento, a identificação e a biotipificação foram realizadas de acordo com o esquema de Lior. Vinte e uma amostras (5,2% de Campylobacter jejuni biotipo II foram isoladas de animais de sete propriedades (26,9%, com uma variação de 3,3% a 34,6% entre as propriedades positivas. Primers específicos, que geram um fragmento de 402pb, foram usados em PCR para analisar 12 isolados de C. jejuni. Concluímos que galinhas criadas em estabelecimentos não industriais e sem atenção sanitária, são portadoras de C. jejuni e, desta forma, podem ser consideradas um fator de risco para infecção humana.

  12. Genetic diversity and antibiotic resistance profiles of Campylobacter jejuni isolates from poultry and humans in Turkey.

    Science.gov (United States)

    Abay, Secil; Kayman, Tuba; Otlu, Baris; Hizlisoy, Harun; Aydin, Fuat; Ertas, Nurhan

    2014-05-16

    In this study, the investigation of clonal relations between human and poultry Campylobacter jejuni isolates and the determination of susceptibilities of isolates to various antibiotics were aimed. A total of 200 C. jejuni isolates concurrently obtained from 100 chicken carcasses and 100 humans were genotyped by the Pulsed-Field Gel Electrophoresis (PFGE) and automated Repetitive Extragenic Palindromic PCR (Rep-PCR, DiversiLab system) methods and were tested for their susceptibility to six antibiotics with disk diffusion method. The minimum inhibitory concentration (MIC) values of ciprofloxacin (CI), enrofloxacin (EF) and erythromycin (EM) were evaluated by E-test. By using PFGE 174 of (87.0%) the isolates were able to be typed. The clonally related strains were placed in 35 different clusters and 115 different genotypes were obtained. All of the two hundred isolates could be typed by using Rep-PCR and were divided into 133 different genotypes. One hundred and fourteen clonally related isolates (57.0%) were included in 47 clusters. In disk diffusion test, while the susceptibility rates of AMC and S to human and chicken derived C. jejuni isolates were 84.0%-96.0% and 96.0%-98.0%, respectively, all isolates were susceptible to gentamicin. The resistance rates of human isolates to AMP, NA and TE were detected as 44.0%, 84.0% and 38.0% of the resistances of chicken isolates to these antibiotics were 34.0%, 95.0% and 56.0%, respectively. The MIC values of human and chicken isolates to CI, EF and EM were detected as 81.0-93.0%, 85.0-88.0% and 6.0-7.0%, respectively. The clonal proximity rates were detected between human and poultry origin C. jejuni isolates. The discriminatory power of PFGE and Rep-PCR was similar, with Simpson's diversity indexes of 0.993 and 0.995, respectively. Concordance of the two methods as determined by Adjusted Rand coefficient was 0.198 which showed the low congruence between Rep-PCR and PFGE. High rates of quinolone resistance were detected in

  13. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

    Directory of Open Access Journals (Sweden)

    Kishan Kumar Nyati

    2013-01-01

    Full Text Available Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS.

  14. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    Science.gov (United States)

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  15. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Salt, Louise J; Cross, Kathryn L; Betts, Roy P; van Vliet, Arnoud H M

    2014-11-01

    The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain.

  16. Polyphosphate kinases modulate Campylobacter jejuni outer membrane constituents and alter its capacity to invade and survive in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Pina-Mimbela, Ruby; Madrid, Jesús Arcos; Kumar, Anand; Torrelles, Jordi B; Rajashekara, Gireesh

    2015-12-30

    Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Polyphosphate kinases 1 and 2 (PPK1 and PPK2) regulate several cellular processes, including the biosynthesis of the bacterial cell wall. Despite their importance, whether PPK1 and PPK2 modulate the composition of C. jejuni outer membrane constituents (OMCs) and consequently impact its interaction with host cells remains unknown. Our comparative analysis between C. jejuni wild type, Δppk1, and Δppk2 strains showed qualitative and quantitative differences in the total OMC composition among these strains. Importantly, these OMC variations observed on the C. jejuni polyphosphate kinase mutants are directly related to their capacity to invade, survive, and alter the immune response of intestinal epithelial cells in vitro. Specifically, sub-fractionation of the C. jejuni OMC indicated that OMC proteins are uniquely associated with bacterial invasion, whereas C. jejuni OMC proteins, lipids, and lipoglycans are all associated with C. jejuni intracellular survival. This study provides new insights regarding the function of polyphosphate kinases and their role in C. jejuni infection.

  17. Campylobacter jejuni pdxA affects flagellum-mediated motility to alter host colonization.

    Directory of Open Access Journals (Sweden)

    Hiroshi Asakura

    Full Text Available Vitamin B6 (pyridoxal-5'-phosphate, PLP is linked to a variety of biological functions in prokaryotes. Here, we report that the pdxA (putative 4-hydroxy-L-threonine phosphate dehydrogenase gene plays a pivotal role in the PLP-dependent regulation of flagellar motility, thereby altering host colonization in a leading foodborne pathogen, Campylobacter jejuni. A C. jejuni pdxA mutant failed to produce PLP and exhibited a coincident loss of flagellar motility. Mass spectrometric analyses showed a 3-fold reduction in the main flagellar glycan pseudaminic acid (Pse associated with the disruption of pdxA. The pdxA mutant also exhibited reduced growth rates compared with the WT strain. Comparative metabolomic analyses revealed differences in respiratory/energy metabolism between WT C. jejuni and the pdxA mutant, providing a possible explanation for the differential growth fitness between the two strains. Consistent with the lack of flagellar motility, the pdxA mutant showed impaired motility-mediated responses (bacterial adhesion, ERK1/2 activation, and IL-8 production in INT407 cells and reduced colonization of chickens compared with the WT strain. Overall, this study demonstrated that the pdxA gene affects the PLP-mediated flagellar motility function, mainly through alteration of Pse modification, and the disruption of this gene also alters the respiratory/energy metabolisms to potentially affect host colonization. Our data therefore present novel implications regarding the utility of PLP and its dependent enzymes as potent target(s for the control of this pathogen in the poultry host.

  18. An improved culture method for selective isolation of Campylobacter jejuni from wastewater

    Directory of Open Access Journals (Sweden)

    Jinyong Kim

    2016-08-01

    Full Text Available Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently-available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin, to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR (qRT-PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. In particular, rifampicin supplementation and an increased culture temperature (i.e., 42°C had a decisive effect on the selective enrichment of C. jejuni from wastewater. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater.

  19. Characterization of Campylobacter jejuni and Campylobacter coli genotypes in poultry flocks by restriction fragment length polymorphism (RFLP) analysis.

    Science.gov (United States)

    Carreira, Ana Cláudia; Cunha, Mónica V

    2015-01-01

    We describe a simple, rapid, and discriminatory methodology that allows the routine molecular characterization of Campylobacter jejuni and Campylobacter coli isolates. The proposed approach is built on one of the earliest and simplest molecular typing methods ever, consisting on the analysis of the fragments of different lengths generated by digestion of homologous DNA sequences with specific restriction endonucleases, a process known as restriction fragment length polymorphism (RFLP) analysis. The strategy underneath the workflow reported here is meant to explore the polymorphisms of Campylobacter spp. flaA gene (flaA-RFLP) that allows the local investigation of the genetic diversity and distribution of C. coli and C. jejuni isolates from different sources, namely, chickens' caeca. Although not appropriate for global and long-term epidemiological studies as a single approach, flaA-RFLP analysis can be very useful in surveys limited in space and time and, for specific epidemiological settings, an alternative to more modern and resource-demanding techniques.

  20. Occurrence of Campylobacter jejuni and C. coli on broiler carcasses after chilling in southern Brazil

    Directory of Open Access Journals (Sweden)

    Gustavo Perdoncini

    2015-04-01

    Full Text Available Campylobacter jejuni and C. coli have been associated with gastrointestinal disorders in human beings, due mainly to the consumption of chicken meat. Despite control measures for reducing contamination by these bacteria, the detection of Campylobacter in carcasses after chilling remains high. A total of 105 carcasses were assessed by the horizontal detection method in five federally inspected slaughterhouses in southern Brazil in 2012 and in the first three months of 2013. Campylobacterwas isolated in 37.1% of the carcasses, of which 97.5% contained C. jejuni and 2.5% were infected by C. coli. The rate of positive carcasses across the slaughterhouses ranged from 0 to 71.4%. Determining the occurrence of Campylobacter among flocks is crucial for estimating the microbial load at specific points along the slaughtering process and for minimizing the risk of contamination of end products by Campylobacter.

  1. Can Campylobacter jejuni play a role in development of celiac disease? A hypothesis

    Institute of Scientific and Technical Information of China (English)

    Behnam Sabayan; Farzaneh Foroughinia; Mohammad Hadi Imanieh

    2007-01-01

    environmental factors by the mechanism that molecular mimicry of gangliosides-like epitopes common to both lipo-polysacharide coats of certain strains of Campylobacter jejuni and gangliosides in cell structure of gastrointestinal mucosa may cause an autoimmune response and consequently lead to atrophy and degeneration of mucosa possibly by apoptosis.

  2. [Evaluation of usefulness of commercial recomwell Campylobacter enzyme--linked immunosorbent assays for routine serodiagnosis of Campylobacter jejuni and Campylobacter coli infections].

    Science.gov (United States)

    Rokosz, Natalia; Rastawicki, Waldemar; Jagielski, Marek

    2008-01-01

    The commercially available enzyme-linked immunosorbent assays (ELISA recomWell Campylobacter) from Mikrogen was evaluated for the diagnosis of Campylobacter jejuni and Campylobacter coli infections. Serum samples from 20 healthy controls, 44 persons with symptoms of primary Campylobacter infection and 24 serum samples from patients with Yersinia enterocolitica or Salmonella infections were tested. This ELISA assay detects IgA and IgG antibodies against three recombinant antigens of the Campylobacter jejuni and Campylobacter coli: OMP 18 (18 kDa), PEB4 (31 kDa) and P39 (39 kDa). The healthy controls showed significantly lower antibody titers in all two immunoglobulin classes. The IgA antibodies were diagnosed only in 2 (18.2%) serum samples obtained from patients with bacteriologically confirmed campylobacteriosis. The presence of IgG antibodies was confirmed in 82% of serum samples. Furthermore, we showed that 66.7% of the 33 serum samples obtained from the patients suspected for campylobacteriosis not confirmed by isolation, were positive for IgG and 15.2% for IgA antibodies. We observed also not specific reactions in ELISA recom Well Campylobacter with sera obtained form patients with yersiniosis and salmonelosis. This study demonstrates the usefulness of commercially available assay for the routine diagnosis of Campylobacter infection but with some limitations.

  3. [Research progress in biofilm formation and regulatory mechanism of Campylobacter jejuni].

    Science.gov (United States)

    Wu, Qingping; Zhong, Xian; Zhang, Jumei

    2016-02-04

    Biofilm of Campylobacter jejuni was formed by cross-linking its extracellular secretion, polysaccharides, various extracellular proteins, nucleic acids etc to enhance its survival in hostile environments, especially for detergents, antibiotics and disinfectants. This paper elaborated C. jejuni biofilm formation and regulation mechanisms in the surface properties of the media, temperatures, gas environment, the regulation of gene etc, also analysed and discussed a variety of biofilm removal practical applications. We hope it can provide a reference for studies on biofilm control of C. jejuni.

  4. Defense and adaptation: The complex inter-relationship between Campylobacter jejuni and mucus.

    Directory of Open Access Journals (Sweden)

    Abofu eAlemka

    2012-02-01

    Full Text Available Mucus colonization is the first step towards the establishment of infection and disease by mucosal pathogens. There is an emerging literature implicating specific mucin subtypes and mucin modifications in protecting the host from Campylobacter jejuni infection. However, mucosal pathogens have evolved sophisticated mechanisms to breach the mucus layer and C. jejuni in particular appears to harbor specific adaptations to better colonize intestinal mucus. For example, components of mucus are chemotactic for C. jejuni and the rheological properties of mucus promote motility of the organism. Furthermore, recent studies demonstrate that mucins modulate the pathogenicity of C. jejuni in a species-specific manner and likely help determine whether these bacteria become pathogenic (as in humans, or adopt a commensal mode of existence (as in chickens and other animals. This review focuses on recent advances in understanding the complex interplay between C. jejuni and components of the mucus layer.

  5. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?

    Directory of Open Access Journals (Sweden)

    Tadhg eÓ Cróinín

    2012-03-01

    Full Text Available Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the zipper over the trigger mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.

  6. Humoral immune response to campylobacter jejuni in patients with enterocolitis and Guillain-Barré syndrome

    Directory of Open Access Journals (Sweden)

    Ristić Ljiljana

    2012-01-01

    Full Text Available Campylobacter jejuni is one of the most important causes of diarrheal disease worldwide. In addition, it can cause neurological post-infectious sequels, such as Guillain-Barré syndrome (GBS. Humoral immune response to C. jejuni was monitored in patients with C. jejuni enterocolitis, GBS patients and healthy persons, by ELISA. Statistical significance between patients with enterocolitis and healthy persons, as well as among GBS patients and healthy controls, was proven. Statistical significance in IgA among the examined groups was also noticed. The highest values of IgM were found in the patients with GBS, while the highest values of IgG were found in those with enterocolitis. C. jejuni is a significant cause of antecedent infection in GBS. ELISA techniques can be considered a reliable method in determining the presence of serum antibodies in patients with enterocolitis caused by C. jejuni, as well as in patients with GBS.

  7. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    Science.gov (United States)

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  8. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Jing Han

    2008-06-01

    Full Text Available Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.

  9. Survival at refrigeration and freezing temperatures of Campylobacter coli and Campylobacter jejuni on chicken skin applied as axenic and mixed inoculums.

    Science.gov (United States)

    El-Shibiny, Ayman; Connerton, Phillippa; Connerton, Ian

    2009-05-31

    Campylobacter is considered to be the most common cause of bacterial diarrhoeal illness in the developed world. Many cases are thought to be acquired from consumption of undercooked poultry. The aim of this study was to compare the effect of the rate of cooling on the survival, at 4 degrees C and -20 degrees C, of Campylobacter coli and Campylobacter jejuni strains, inoculated on chicken skin from axenic culture or as mixed inoculums. Strains chilled in a domestic refrigerator varied in their tolerance to storage at 4 degrees C. Statistically significant differences between strains applied as axenic or mixed inoculums were observed for specific strain combinations using two-way ANOVA, including the enhanced survival of antibiotic resistant C. coli 99/367 at 4 degrees C. The use of rapid cooling (at -20 degrees C/min) enhanced the survival of all the Campylobacter strains chilled to 4 degrees C compared to standard refrigeration. Freezing to -20 degrees C reduced viable counts by 2.2-2.6 log10 CFU/cm(2) in 24 h. Rapid cooling to -20 degrees C (at -30 degrees C/min) enhanced the survival of C. coli 99/367 compared to freezing in a domestic freezer. Statistically significant interaction terms between specific strains were observed in mixed inoculums chilled to -20 degrees C by freezing in a domestic freezer and by rapid chilling to -20 degrees C. Rapid chilling of poultry, particularly for 4 degrees C storage may enhance survival of Campylobacter and although this is an issue that affects meat quality, it should be considered by poultry processors.

  10. Prevalence and genotypes of Campylobacter jejuni from urban environmental sources in comparison with clinical isolates from children

    DEFF Research Database (Denmark)

    Ramonaite, Sigita; Kudirkiene, Egle; Tamuleviciene, Egle;

    2014-01-01

    identification of isolates revealed that environmental water and pet samples were mostly contaminated by other Campylobacter spp. than C. jejuni, whereas C. jejuni was the most prevalent species in faecal samples of free-living birds (35.4 %). This species was the dominant cause of campylobacteriosis in children...... (91.5 %). In addition, the diversity of C. jejuni MLST types in free-living birds and children was investigated. Clonal complex (CC) 179 was predominant among free-living urban birds; however, only two isolates from children were assigned to this CC. One dog and one child isolate were assigned...... to the same clonal complex (CC48) and sequence type (ST) 918. The dominant two clonal complexes among the child clinical isolates (CC353 and CC21) were not detected among C. jejuni strains isolated from environmental sources examined in this study. As only two CCs were shared by environmental and child C...

  11. Development of a modified gentamicin protection assay to investigate the interaction between Campylobacter jejuni and Acanthamoeba castellanii ATCC 30010.

    Science.gov (United States)

    Dirks, Brian P; Quinlan, Jennifer J

    2014-05-01

    Campylobacter jejuni is one of the leading causes of diarrheal illness worldwide. It is persistent in the environment and on poultry despite its microaerophilic nature and sensitivity to dessication and pH. Studies have demonstrated that C. jejuni co-incubated with Acanthamoeba spp. may be protected from harmful environmental factors. Research in this area, however has included a range of different methodologies for co-incubation, recovery of bacteria and amoebae, and verification of internalization. In this study a modified gentamicin protection assay (mGPA) was developed with a standardized co-incubation procedure. The mGPA addresses limitations of the traditional GPA by providing quantification of the rate of internalization, or lack of internalization, of C. jejuni by Acanthamoeba castellanii. The mGPA described here utilizes tubes instead of cell culture plates allowing for determination of exact numbers of A. castellanii and C. jejuni to be co-incubated prior to addition to tubes. Additionally, the mGPA allows for the incorporation of C. jejuni-only controls to determine the fate of C. jejuni throughout the assay in the absence of A. castellanii. Using the mGPA it was determined that on average 1.6×10(5) C. jejuni (or 0.006% of initial 1×10(9) inoculum) survive the assay in the absence of A. castellanii. Additionally, results obtained with the mGPA demonstrated that while co-incubation with amoebae sometimes (56% of co-incubations) provided a protective effect for C. jejuni, in other cases it did not provide any protective effect (39% of co-incubations), and in at least one case there was a statistically significant higher recovery of C. jejuni in controls when compared to C. jejuni co-incubated with amoebae. The modified gentamicin protection assay described here allows better quantification of the rate and incidence of internalization of bacteria by amoebae. Use of the standardized mGPA developed here with varying environmental parameters and/or strains

  12. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2009-02-01

    Full Text Available Abstract Background Campylobacter enteritis represents a risk factor for the development of inflammatory bowel disease (IBD via unknown mechanisms. As IBD patients exhibit inflammatory responses to their commensal intestinal microflora, factors that induce translocation of commensal bacteria across the intestinal epithelium may contribute to IBD pathogenesis. This study sought to determine whether Campylobacter induces translocation of non-invasive intestinal bacteria, and characterize underlying mechanisms. Methods Mice were infected with C. jejuni and translocation of intestinal bacteria was assessed by quantitative bacterial culture of mesenteric lymph nodes (MLNs, liver, and spleen. To examine mechanisms of Campylobacter-induced bacterial translocation, transwell-grown T84 monolayers were inoculated with non-invasive Escherichia coli HB101 ± wild-type Campylobacter or invasion-defective mutants, and bacterial internalization and translocation were measured. Epithelial permeability was assessed by measuring flux of a 3 kDa dextran probe. The role of lipid rafts was assessed by cholesterol depletion and caveolin co-localization. Results C. jejuni 81–176 induced translocation of commensal intestinal bacteria to the MLNs, liver, and spleen of infected mice. In T84 monolayers, Campylobacter-induced internalization and translocation of E. coli occurred via a transcellular pathway, without increasing epithelial permeability, and was blocked by depletion of epithelial plasma membrane cholesterol. Invasion-defective mutants and Campylobacter-conditioned cell culture medium also induced E. coli translocation, indicating that C. jejuni does not directly 'shuttle' bacteria into enterocytes. In C. jejuni-treated monolayers, translocating E. coli associated with lipid rafts, and this phenomenon was blocked by cholesterol depletion. Conclusion Campylobacter, regardless of its own invasiveness, promotes the translocation of non-invasive bacteria across

  13. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    Science.gov (United States)

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.

  14. FROM GENE TO PROTEIN – CLONNING, EXPRESSION AND PUFICATION OF A P450 CYTOCHROM FROM Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    N. CORCIONIVOSCHI

    2013-07-01

    Full Text Available Recently, the complete genome sequence of Campylobacter jejuni NCTC 11168 was published revealing the presence of only one open reading frame (Cj1411c encoding for a cytochrome P450, in contrast to 20 found in M. tuberculosis. The gene Cj1411c encodes for a soluble 52.6 kDa protein with a predicted isoelectric point of 9.3. The P450 gene is part of reading frame which hosts genes involved in the synthesis of cell surface components (capsula. Campylobacter capsule are important in adherence, invasion and colonisation of host cells and for maintenance of cell surface charge and serum resistance. These capsule are thought to cause autoimmunity leading to Guillan-Barre and Miller-Fischer syndromes. The structure of the lipoolygosaccharides and capsule polysaccharide was published last year revealing that the strain possessed a type II/III capsule locus found in other microorganisms such Nisseria meningitidis. This project focuses on the cloning and characterisation of the only P450 enzyme of the human pathogen Campylobacter jejuni NCTC 11168. We aim to understand the metabolic role of this P450 cytochrome in order to elucidate its possible use as a new target for drug design. To achieve this aim we have cloned, expressed and purify the product of P450 coding gene.

  15. FROM GENE TO PROTEIN – CLONNING, EXPRESSION AND PUFICATION OF A P450 CYTOCHROM FROM CAMPYLOBACTER JEJUNI

    Directory of Open Access Journals (Sweden)

    N. CORCIONIVOSCHI

    2009-05-01

    Full Text Available Recently, the complete genome sequence of Campylobacter jejuni NCTC 11168 was published revealingthe presence of only one open reading frame (Cj1411c encoding for a cytochrome P450, in contrast to 20found in M. tuberculosis. The gene Cj1411c encodes for a soluble 52.6 kDa protein with a predictedisoelectric point of 9.3. The P450 gene is part of reading frame which hosts genes involved in thesynthesis of cell surface components (capsula. Campylobacter capsule are important in adherence,invasion and colonisation of host cells and for maintenance of cell surface charge and serum resistance.These capsule are thought to cause autoimmunity leading to Guillan-Barre and Miller-Fischersyndromes. The structure of the lipoolygosaccharides and capsule polysaccharide was published last yearrevealing that the strain possessed a type II/III capsule locus found in other microorganisms suchNisseria meningitidis. This project focuses on the cloning and characterisation of the only P450 enzymeof the human pathogen Campylobacter jejuni NCTC 11168. We aim to understand the metabolic role ofthis P450 cytochrome in order to elucidate its possible use as a new target for drug design. To achievethis aim we have cloned, expressed and purify the product of P450 coding gene.

  16. Duration of the vector period of house flies for Campylobacter jejuni estimated by experimental infection series

    DEFF Research Database (Denmark)

    Skovgård, Henrik; Hald, Birthe

    The house fly Musca domestica may act as a vector and transmit Campylobacter to broiler flocks. We determined the duration of the vector period for C. jejuni at various temperatures and inoculation doses. For the temperature experiment, laboratory reared house flies (n = 375) were inoculated with...

  17. Campylobacter jejuni : A brief overview on pathogenicity-associated factors and disease-mediating mechanisms

    NARCIS (Netherlands)

    Dasti, Javid I.; Tareen, A. Malik; Lugert, Raimond; Zautner, Andreas E.; Gross, Uwe

    2010-01-01

    Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines

  18. Consumer food preparation and its implication for survival of Campylobacter jejuni on chicken

    NARCIS (Netherlands)

    Bergsma, N.J.; Fischer, A.R.H.; Asselt, van E.D.; Zwietering, M.H.; Jong, de A.E.I.

    2007-01-01

    Purpose ¿ The disease burden caused by Campylobacter jejuni may be decreased by reduced consumption of undercooked chicken meat. However, little is known about consumer preparation of poultry and the effects of commonly applied cooking times on bacterial inactivation. This study aimed to answer thes

  19. Intracellular pH Campylobacter jejuni when treated with aqueous chlorine dioxide

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Arneborg, Nils;

    2011-01-01

    The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a p...

  20. Characterization and Reactivity of Broiler Chicken Sera to Selected Recombinant Campylobacter jejuni Chemotactic Proteins

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to c...

  1. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque...

  2. Molecular Evidence for Dissemination of Unique Campylobacter jejuni Clones in Curaçao, Netherlands Antilles

    NARCIS (Netherlands)

    Duim, B.; Godschalk, P.C.R.; Braak, N. van den; Dingle, K.E.; Dijkstra, J.R.; Leyde, E.; Plas, J. van der; Colles, F.M.; Endtz, H.P.; Wagenaar, J.A.; Maiden, M.C.J.; Belkum, A. van

    2003-01-01

    Campylobacter jejuni isolates (n = 234) associated with gastroenteritis and the Guillain-Barré syndrome (GBS) in the island of Curaçao, Netherlands Antilles, and collected from March 1999 to March 2000 were investigated by a range of molecular typing techniques. Data obtained by pulsed-field gel ele

  3. Composting poultry manure by fly larvae (Musca domestica) eliminates Campylobacter jejuni from the manure

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Hald, Birthe

    2013-01-01

    Introduction The common house fly, Musca domestica (Md) is an important carrier of zoonotic agents, and Campylobacter jejuni is one that may be transmitted between animals and humans by flies. Colonized animals shed the bacteria in feces where larval stages of Md flies develops. Aim of the present...

  4. Effects of a Campylobacter jejuni infection on the development of the intestinal microflora of broiler chickens

    DEFF Research Database (Denmark)

    Johansen, C. H.; Friis-Holm, Lotte Bjerrum; Finster, K.

    2006-01-01

    The effect of a Campylobacter jejuni colonization on the development of the microflora of the cecum and the ileum of broiler chickens was studied using molecular methods. The infection did affect the development and complexity of the microbial Communities of the ceca, but we found no permanent...

  5. Bacteriophage F336 Recognizes the Capsular Phosphoramidate Modification of Campylobacter jejuni NCTC11168

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; van Alphen, Lieke B.; Harboe, Anne

    2011-01-01

    Bacteriophages infecting the food-borne human pathogen Campylobacter jejuni could potentially be exploited to reduce bacterial counts in poultry prior to slaughter. This bacterium colonizes the intestinal tract of poultry in high numbers, and contaminated poultry meat is regarded as the major...

  6. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni

    Science.gov (United States)

    Campylobacter spp. are the second leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of nearly $2 billion per year. Most human illness associated with campylobacteriosis is due to infection by C. jejuni and chickens are recognized as a reservoir, which could le...

  7. Characterization and Antigenicity of Recombinant Campylobacter jejuni Flagellar Capping Protein FliD

    Science.gov (United States)

    Campylobacter jejuni, a flagellated, spiral-rod Gram-negative bacterium, is the leading pathogen of human acute bacterial gastroenteritis worldwide, and chickens are regarded as a major reservoir of this microorganism. Bacterial flagella, composed of more than 35 proteins, play important roles in c...

  8. Prevalence and Distribution of Campylobacter jejuni in Small-Scale Broiler Operations.

    Science.gov (United States)

    Tangkham, Wannee; Janes, Marlene; LeMieux, Frederick

    2016-01-01

    Campylobacter jejuni has been recognized as one of the most prevalent causes of foodborne bacterial illnesses in humans. Previous studies have focused on the transmission routes of C. jejuni from commercial flock farms to the final retail product. The objective of this study was to determine the prevalence of C. jejuni and Campylobacter spp. in eggshells, live birds, feed, drinking water, and the rearing environment in a small-scale broiler operation. Broilers were raised under two different production systems: (i) environmentally controlled housing and (ii) open-air housing with two replications. Each week, samples were collected from eggshells, bird feces, feed, drinking water, enclosures (vertical walls of bird housing), and feed troughs for enumeration and isolation testing. All samples were plated on modified charcoal-cefoperazone-deoxycholate agar to determine the log CFU per gram and percent prevalence of Campylobacter spp. Isolation of C. jejuni was verified with latex agglutination and hippurate hydrolysis tests. The results from this study suggest that vertical transmission of these bacteria from egg surfaces to newly hatched chicks is not a significant risk factor. The results also suggest that the prevalence of C. jejuni at time of harvest (week 6) was significantly higher (P < 0.05) in the open-air housing broilers than in those in the environmentally controlled housing. Elevated levels of cross-contaminants, especially water and feed, may have played a role in this outcome.

  9. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Boisen, Nadia [University of Virginia School of Medicine

    2011-01-01

    The role of Campylobacter jejuni cytolethal distending toxin (CDT) on clinical outcome after gastroenteritis was investigated. Clinical data, blood serum samples, and Campylobacter spp. isolated, from each of 30 patients were collected over a period of 6 months. The CDT encoding genes, cdtABC, characterized by PCR, revealed that all but one of the C. jejuni strains had the wild-type sequence. Sequencing of cdtABC from this strain showed two major deletions. From all of the strains, CDT titers were determined, and toxin neutralizing antibodies were documented using an in vitro assay. Three of the thirty clinical isolates, including the one with the mutant cdtABC coding genes, did not have a detectable CDT activity. Analyzing the relationship between CDT titer, serum neutralization of CDT, and the clinical outcome showed that campylobacteriosis caused by CDT-negative strains was clinically indistinguishable from that of patients infected with an isolate that produced high levels of CDT. These results suggest that CDT does not solely determine severity of infection and clinical outcome.

  10. Tight junction changes in epithelial cells by Campylobacter jejuni and non-jejuni Campylobacter species

    DEFF Research Database (Denmark)

    Bücker, Roland; Nielsen, Hans Linde; Krüg, S;

    in Ussing chambers. Tight junction (TJ) protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29...

  11. Antibiotic resistance profile and RAPD analysis of Campylobacter jejuni isolated from vegetables farms and retail markets

    Institute of Scientific and Technical Information of China (English)

    John Yew Huat Tang; Mohd Ikhsan Khalid; Syazana Aimi; Che Abdullah Abu-Bakar; Son Radu

    2016-01-01

    Objective: To investigate antibiotic resistance profile and characterize Campylobacter jejuni (C. jejuni) isolates using random amplified polymorphic DNA (RAPD) analysis. Methods: Ninety eight C. jejuni isolates from farms and retail outlets were screened against 10 antibiotics commonly used clinically and agriculturally by using disk diffusion method. RAPD analysis was done to characterize 98 C. jejuni isolates. Results: Fifty-one percent of the isolates had multiple antibiotic resistance index 0.2 and below. This indicated that the isolates in the vegetables were not from the high risk environment or extensive farming practices. C. jejuni isolates found resistant towards penicillin G (93%), vancomycin (86%), ampicillin (35%), erythromycin (28%), genta-mycin (4%), amikacin (3%), enrofloxacin (1%), norfloxacin (1%) and no resistance to-wards ciprofloxacin. RAPD clustering analysis showed that the contamination of C. jejuni in vegetables was likely due to cross contamination at retail markets. Conclusions: C. jejuni contamination in vegetables at retail markets was due to cross contamination. Current finding proved that C. jejuni in small scale vegetables production was less expose towards antibiotic abuse.

  12. Antibiotic resistance profile and RAPD analysis of Campylobacter jejuni isolated from vegetables farms and retail markets

    Institute of Scientific and Technical Information of China (English)

    John Yew Huat Tang; Mohd Ikhsan Khalid; Syazana Aimi; Che Abdullah Abu-Bakar; Son Radu

    2016-01-01

    Objective:To investigate antibiotic resistance profile and characterize Campylobacter jejuni(C.jejuni) isolates using random amplified polymorphic DNA(RAPD) analysis.Methods:Ninety eight C.jejuni isolates from farms and retail outlets were screened against 10 antibiotics commonly used clinically and agriculturally by using disk diffusion method.RAPD analysis was done to characterize 98 C.jejuni isolates.Results:Fifty-one percent of the isolates had multiple antibiotic resistance index 0.2 and below.This indicated that the isolates in the vegetables were not from the high risk environment or extensive farming practices.C.jejuni isolates found resistant towards penicillin G(93%),vancomycin(86%),ampicillin(35%),erythromycin(28%),gentamycin(4%),amikacin(3%),enrofloxacin(1%),norfloxacin(1%) and no resistance towards ciprofloxacin.RAPD clustering analysis showed that the contamination of C.jejuni in vegetables was likely due to cross contamination at retail markets.Conclusions:C.jejuni contamination in vegetables at retail markets was due to cross contamination.Current finding proved that C.jejuni in small scale vegetables production was less expose towards antibiotic abuse.

  13. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products

    Directory of Open Access Journals (Sweden)

    Soo Hyeon Hong

    2016-06-01

    Full Text Available The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite. Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low.

  14. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products.

    Science.gov (United States)

    Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun

    2016-06-09

    The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low.

  15. Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni.

    Science.gov (United States)

    Wang, Liping; Jeon, Byeonghwa; Sahin, Orhan; Zhang, Qijing

    2009-08-01

    Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility of Campylobacter spp. to other antimicrobials. In this study, we identified a four-gene operon that contributes to arsenic resistance in Campylobacter. This operon encodes a putative membrane permease (ArsP), a transcriptional repressor (ArsR), an arsenate reductase (ArsC), and an efflux protein (Acr3). PCR analysis of various clinical C. jejuni isolates indicated a significant association of this operon with elevated resistance to arsenite and arsenate. Gene-specific mutagenesis confirmed the role of the ars operon in conferring arsenic resistance. It was further shown that this operon is subject to regulation by ArsR, which directly binds to the ars promoter and inhibits the transcription of the operon. Arsenite inhibits the binding of ArsR to the ars promoter DNA and induces the expression of the ars genes. Mutation of the ars genes did not affect the susceptibility of C. jejuni to commonly used antibiotics. These results identify the ars operon as an important mechanism for arsenic resistance and sensing in Campylobacter.

  16. Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Hannula, Minna; Hänninen, Marja-Liisa

    2008-07-01

    The CmeABC efflux pump plays an important role in the antimicrobial resistance of Campylobacter jejuni and Campylobacter coli. The aim of this investigation was to study the effect of putative efflux pump inhibitors, phenyl-arginine-beta-naphthylamide (PAbetaN) and 1-(1-naphthylmethyl)-piperazine (NMP), as well as the effect of putative efflux pump inducers, sodium salicylate and sodium deoxycholate, on the MIC levels of erythromycin, ciprofloxacin, kanamycin, tetracycline and rifampicin for C. jejuni and C. coli. Our results indicated that susceptibility to erythromycin and rifampicin increased, respectively, 8- to 32- and 8- to 64-fold in the presence of PAbetaN and to a lesser extent in the presence of NMP. Salicylate produced a 2- to 4-fold increase in ciprofloxacin MIC values, whereas little effect was observed in the presence of deoxycholate.

  17. Assess the prevalence rate of Campylobacter genus and Campylobacter jejuni species in raw milk collected from the Amol City by Multiplex- Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Ali Dabiri

    2016-03-01

    Full Text Available Background & Objective: Campylobacter can be transmitted through the raw milk. The purpose of this study was to determine the prevalence of Campylobacter genus and Campylobacter jejuni (C. jejuni species in raw milk samples. Materials & Methods: In this study, 72 samples of raw milk were collected of the platforms milk in the Amol city in summer. Phenotypic identification of Campylobacter genus and C. jejuni species using microbiology laboratory methods and molecular identification of this bacterium using Multiplex- Polymerase Chain Reaction (M-PCR were performed. The data was calculated using the SPSS 16.0 software and the Fisher's exact test (p < 0.05. Results: Among the 72 samples, 13.88% of samples were contaminated with C. jejuni and 2.77% were contaminated with Campylobacter genus. The highest prevalence rate for this bacterium was in July (20.83% and the lowest prevalence rate was in September (12.5%. The significant difference between the prevalence of the Campylobacter genus and C. jejuni species in raw milk samples in various months of summer was not observed (p = 0.07. Conclusion: This study showed the raw milk contamination with Campylobacter, and thereby the sanitation in the dairy food production places and the use of fast and accurate method to identify this bacterium is important.

  18. Guillain-Barré syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b Antibodies in rabbits.

    NARCIS (Netherlands)

    M.A. de Klerk; H.P. Endtz (Hubert); B.C. Jacobs (Bart); J.D. Laman (Jon); F.G.A. van der Meché (Frans); P.A. van Doorn (Pieter); C.W. Ang (Wim)

    2001-01-01

    textabstractCampylobacter jejuni infections are thought to induce antiganglioside antibodies in patients with Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS) by molecular mimicry between C. jejuni lipopolysaccharides (LPS) and gangliosides. We used purifi

  19. Method-dependent variability in determination of prevalence of Campylobacter jejuni and Campylobacter coli in Canadian retail poultry.

    Science.gov (United States)

    Carrillo, Catherine D; Plante, Daniel; Iugovaz, Irène; Kenwell, Robyn; Bélanger, Ghislaine; Boucher, Francine; Poulin, Nathalie; Trottier, Yvon-Louis

    2014-10-01

    Campylobacter is the most frequent cause of bacterial gastroenteritis in Canada, and the illness is commonly associated with poultry consumption. Whereas Canadian retail poultry is often contaminated with campylobacters, studies on the prevalence of this organism are inconsistent due to variability in sampling and microbiological methodology. To determine the current microbiological status of Canadian poultry, and to evaluate two commonly used microbiological methods, 348 raw poultry samples were collected at retail across Canada over a period of 3 years (2007 to 2010) and were analyzed for the presence of thermophilic Campylobacter species. The overall prevalence of Campylobacter spp. was found to be 42.8% by a combination of the two testing methods, with 33.9% of the samples positive for C. jejuni, 3.7% of the samples positive for C. coli, and 5.2% of the samples positive for both. Variability in Campylobacter spp. prevalence was observed in samples obtained from different regions across Canada and from poultry with or without skin, but this was not statistically significant. In co-contaminated samples, C. jejuni was preferentially recovered from Preston agar compared with mCCDA and Campy-Cefex agar, with an increase in recovery of C. coli on all selective media after 48 h of enrichment. A subset of 214 of the poultry rinses were analyzed by both Health Canada's standard method, MFLP-46 (enrichment in Park and Sanders broth), and a second method requiring enrichment in Bolton broth. Significantly more positive samples were obtained with the MFLP-46 method (40.6%) than with the alternate method (35.0%). This improved recovery with MFLP-46 may be due to the omission of cycloheximide from this method. These results demonstrate that determination of prevalence of Campylobacter spp. on poultry products may be significantly impacted by the choice of microbiological methods used. Canadian poultry continues to be a source of exposure to Campylobacter spp.

  20. cj0371: a novel virulence-associated gene of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Xueqing Du

    2016-07-01

    Full Text Available Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity.

  1. Isolation of a gene that is involved in Campylobacter jejuni 81116 cytotoxin activation.

    Science.gov (United States)

    Liu, Kaiyan; Fry, Benjamin N; Coloe, Peter J

    2007-02-01

    Cytotoxin fractions were isolated from Campylobacter jejuni 81116 and semi-purified by size-exclusion liquid chromatography. The fraction showing the strongest toxicity was injected into mice to produce antiserum. The antiserum was used to screen a C. jejuni 81116 cosmid library. Nine genes were identified in overlapping cosmid inserts that induced reactivity with the antiserum. One of these genes showed high similarity to a periplasmic protein of unknown function and its isogenic mutant showed decreased toxicity compared to the C. jejuni 81116 wild type. This gene contains a Gram-negative bacterial RTX toxin-activating protein C signature, which suggests it may play a role in C. jejuni 81116 cytotoxin activation.

  2. Intracellular pH as an indicator of viability and resuscitation of Campylobacter jejuni after decontamination with lactic acid

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Nielsen, Dennis Sandris;

    2009-01-01

    The aim of the study was to determine intracellular pH (pH(i)) as an indicator of the physiological state of two Campylobacter jejuni strains (603 and 608) at the single cell level after bactericidal treatment with lactic acid (3% v/v lactic acid, pH 4.0, 0.85% w/v NaCl) and during recovery and s...

  3. Epitope mapping of campylobacter jejuni flagellar capping protein (FliD) by chicken (gallus gallus domesticus) sera

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis worldwide. The flagellum, composed of more than 35 proteins, is responsible for colonization of C. jejuni in the host gastrointestinal tract as well as inducing protective antibod...

  4. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine

    DEFF Research Database (Denmark)

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G

    2012-01-01

    Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates...

  5. Seroprevalence in chickens against campylobacter jejuni flagellar capping protein (FliD) in selected areas of the U.S

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis. Poultry products are regarded as a major source for human infection with this microorganism. We have demonstrated that the flagellar capping protein (FliD) of C. jejuni is highl...

  6. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis.

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier); A.F. van Belkum (Alex); J.A. Wagenaar (Jaap); Y. Doorduyn; R. Achterberg; H.P. Endtz (Hubert)

    2006-01-01

    textabstractThe main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a

  7. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope

    Science.gov (United States)

    As a leading cause of foodborne bacterial gastroenteritis, Campylobacter jejuni is a significant human pathogen. C. jejuni lives commensally in the gastrointestinal tract of animals, but tolerates variable environments during transit to a susceptible host. A two-component regulatory system, CprRS, w...

  8. Updated Campylobacter jejuni capsule PCR multiplex typing system and its application to clinical isolates from south and southeast Asia

    Science.gov (United States)

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as gold standard for C. jejuni typing. A preliminary multiple...

  9. Campylobacter jejuni Gene Expression in the Chick Cecum: Evidence for Adaptation to a Low-Oxygen Environment

    Science.gov (United States)

    Woodall, C. A.; Jones, M. A.; Barrow, P. A.; Hinds, J.; Marsden, G. L.; Kelly, D. J.; Dorrell, N.; Wren, B. W.; Maskell, D. J.

    2005-01-01

    Transcriptional profiling of Campylobacter jejuni during colonization of the chick cecum identified 59 genes that were differentially expressed in vivo compared with the genes in vitro. The data suggest that C. jejuni regulates electron transport and central metabolic pathways to alter its physiological state during establishment in the chick cecum. PMID:16041056

  10. Increased incidence of Campylobacter jejuni-associated Guillain-Barré syndromes in the Greater Paris area.

    Science.gov (United States)

    Sivadon-Tardy, V; Porcher, R; Orlikowski, D; Ronco, E; Gault, E; Roussi, J; Durand, M-C; Sharshar, T; Annane, D; Raphael, J-C; Megraud, F; Gaillard, J-L

    2014-08-01

    The role of Campylobacter jejuni as the triggering agent of Guillain-Barré syndrome (GBS) has not been reassessed since the end of the 1990s in France. We report that the number of C. jejuni-related GBS cases increased continuously between 1996 and 2007 in the Paris region (mean annual increment: 7%, P = 0·007).

  11. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni.

    Science.gov (United States)

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.

  12. Comparative quantification of Campylobacter jejuni from environmental samples using traditional and molecular biological techniques.

    Science.gov (United States)

    Rothrock, Michael J; Cook, Kimberly L; Bolster, Carl H

    2009-06-01

    Campylobacter jejuni is one of the most common causes of gastroenteritis in the world. Given the potential risks to human, animal, and environmental health, the development and optimization of methods to quantify this important pathogen in environmental samples is essential. Two of the most commonly used methods for quantifying C. jejuni are selective plate counting and quantitative real-time PCR (qPCR). Unfortunately, little comparative research has been performed to evaluate the accuracy of these methods for quantification of C. jejuni in aqueous and solid matricies. In this study, the limit of detection and the level of resolution obtained using these 2 methods was evaluated for C. jejuni and compared with that of the common indicator organism Escherichia coli. The use of selective plate count media for quantification of C. jejuni resulted in a 0.7-1.2 log underestimation of cell concentrations, compared with qPCR in both water and column leachate samples, whereas E. coli concentrations were found to be similar with either technique. For C. jejuni, only the qPCR assay accurately measured 2-fold changes in cell concentrations in water samples, whereas concentrations of E. coli were accurately measured regardless of method. Based on these data, qPCR assays were found to be more accurate than selective plate counts for quantification of C. jejuni from environmental samples.

  13. ERIC-PCR Genotyping of Some Campylobacter jejuni Isolates of Chicken and Human Origin in Egypt.

    Science.gov (United States)

    Ahmed, Heba A; El Hofy, Fatma I; Ammar, Ahmed M; Abd El Tawab, Ashraf A; Hefny, Ahmed A

    2015-12-01

    The public health importance of the genus Campylobacter is attributed to several species causing diarrhea in consumers. Poultry and their meat are considered the most important sources of human campylobacteriosis. In this study, 287 samples from chicken (131 cloacal swabs, 39 chicken skin, 78 chicken meat, and 39 cecal parts) obtained from retail outlets as well as 246 stool swabs from gastroenteritis patients were examined. A representative number of the biochemically identified Campylobacter jejuni isolates were identified by real-time PCR, confirming the identification of the isolates as C. jejuni. Genotyping of the examined isolates (n = 31) by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) revealed a high discriminatory index of ERIC-PCR (D = 0.948), dividing C. jejuni isolates of chicken and human origins into 18 profiles and four clusters. The 18 profiles obtained indicated the heterogeneity of C. jejuni. Dendrogram analysis showed that four clusters were generated; all human isolates fell into clusters I and III. These observations further support the existence of a genetic relationship between human and poultry isolates examined in the present study. In conclusion, the results obtained support the speculation that poultry and poultry meat have an important role as sources of infection in the acquisition of Campylobacter infection in humans.

  14. Genetic Diversity of Campylobacter jejuni and Campylobacter coli Isolates from Conventional Broiler Flocks and the Impacts of Sampling Strategy and Laboratory Method.

    Science.gov (United States)

    Vidal, A B; Colles, F M; Rodgers, J D; McCarthy, N D; Davies, R H; Maiden, M C J; Clifton-Hadley, F A

    2016-04-01

    The genetic diversity of Campylobacter jejuni and Campylobacter coliisolates from commercial broiler farms was examined by multilocus sequence typing (MLST), with an assessment of the impact of the sample type and laboratory method on the genotypes of Campylobacter isolated. A total of 645C. jejuniand 106C. coli isolates were obtained from 32 flocks and 17 farms, with 47 sequence types (STs) identified. The Campylobacter jejuniisolates obtained by different sampling approaches and laboratory methods were very similar, with the same STs identified at similar frequencies, and had no major effect on the genetic profile of Campylobacter population in broiler flocks at the farm level. ForC. coli, the results were more equivocal. While some STs were widely distributed within and among farms and flocks, analysis of molecular variance (AMOVA) revealed a high degree of genetic diversity among farms forC. jejuni, where farm effects accounted for 70.5% of variance, and among flocks from the same farm (9.9% of variance for C. jejuni and 64.1% forC. coli). These results show the complexity of the population structure of Campylobacterin broiler production and that commercial broiler farms provide an ecological niche for a wide diversity of genotypes. The genetic diversity of C. jejuni isolates among broiler farms should be taken into account when designing studies to understand Campylobacter populations in broiler production and the impact of interventions. We provide evidence that supports synthesis of studies on C. jejuni populations even when laboratory and sampling methods are not identical.

  15. Relapsing Campylobacter jejuni Systemic Infections in a Child with X-Linked Agammaglobulinemia

    Directory of Open Access Journals (Sweden)

    Paola Ariganello

    2013-01-01

    Full Text Available X-linked agammaglobulinemia (XLA is a primary immunodeficiency of the humoral compartment, due to a mutation in the Bruton tyrosine kinase (BTK gene, characterized by a severe defect of circulating B cells and serum immunoglobulins. Recurrent infections are the main clinical manifestations; although they are especially due to encapsulated bacteria, a specific association with Campylobacter species has been reported. Here, we report the case of a boy with XLA who presented with relapsing Campylobacter jejuni systemic infections. His clinical history supports the hypothesis of the persistence of C. jejuni in his intestinal tract. Indeed, as previously reported, XLA patients may become chronic intestinal carriers of Campylobacter, even in absence of symptoms, with an increased risk of relapsing bacteraemia. The humoral defect is considered to be crucial for this phenomenon, as well as the difficulties to eradicate the pathogen with an appropriate antibiotic therapy; drug resistance is raising in Campylobacter species, and the appropriate duration of treatment has not been established. C. jejuni should always be suspected in XLA patients with signs and symptoms of systemic infection, and treatment should be based on antibiogram to assure the eradication of the pathogen.

  16. Effect of propionic acid on Campylobacter jejuni attached to chicken skin during refrigerated storage.

    Science.gov (United States)

    González-Fandos, Elena; Maya, Naiara; Pérez-Arnedo, Iratxe

    2015-09-01

    The ability of propionic acid to reduce Campylobacter jejuni on chicken legs was evaluated. Chicken legs were inoculated with Campylobacter jejuni. After dipping legs in either water (control), 1% or 2% propionic acid solution (vol/vol), they were stored at 4ºC for 8 days. Changes in C. jejuni, psychrotrophs and Pseudomonas counts were evaluated. Washing in 2% propionic acid significantly reduced C. jejuni counts compared to control legs, with a decrease of about 1.62 log units after treatment. Treatment of chicken legs with 1 or 2% propionic acid significantly reduced numbers of psychrotrophs 1.01 and 1.08 log units and Pseudomonas counts 0.75 and 0.96 log units, respectively, compared to control legs. The reduction in psychrotrophs and Pseudomonas increased throughout storage. The highest reductions obtained for psychrotrophs and Pseudomonas counts in treated legs were reached at the end of storage, day 8, being 3.3 and 2.93 log units, respectively, compared to control legs. Propionic acid treatment was effective in reducing psychrotrophs and Pseudomonas counts on chicken legs throughout storage. It is concluded that propionic acid is effective for reducing C. jejuni populations in chicken.

  17. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets.

    Science.gov (United States)

    Guyard-Nicodème, Muriel; Rivoal, Katell; Houard, Emmanuelle; Rose, Valérie; Quesne, Ségolène; Mourand, Gwenaëlle; Rouxel, Sandra; Kempf, Isabelle; Guillier, Laurent; Gauchard, Françoise; Chemaly, Marianne

    2015-06-16

    Campylobacter was detected in 76% of broiler meat products collected in retail outlets during a monitoring plan carried out in France throughout 2009. Campylobacter jejuni was the most prevalent species (64.7% of products being contaminated). The 175 C. jejuni isolates collected were characterized. MLST typing results confirmed substantial genetic diversity as the 175 C. jejuni isolates generated 76 sequence types (STs). The ST-21, ST-45 and ST-464 complexes predominated accounting for 43% of all isolates. A class-specific PCR to screen the sialylated lipooligosaccharide (LOS) locus classes A, B and C showed that 50.3% of the C. jejuni isolates harbored sialylated LOS. The antimicrobial resistance profiles established using a subset of 97 isolates showed that resistance to tetracycline was the most common (53.6%), followed with ciprofloxacin and nalidixic acid (32.9%, and 32.0% respectively). All the tested isolates were susceptible to erythromycin, chloramphenicol and gentamicin. Clear associations were demonstrated between certain clonal complexes and LOS locus classes and between certain clonal complexes and antimicrobial resistance. This work paints a representative picture of C. jejuni isolated from poultry products circulating in France, providing data on STs, LOS locus classes and antibiotic resistance profiles in isolates recovered from products directly available to the consumer.

  18. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  19. Distribution of serotypes of Campylobacter jejuni and C-coli from Danish patients, poultry, cattle and swine

    DEFF Research Database (Denmark)

    Nielsen, Eva Møller; Engberg, Jørgen; Madsen, Mogens

    1997-01-01

    The number of human cases of enteritis caused by Campylobacter jejuni and C. coli is increasing in Denmark and other European countries. No systematic typing has earlier been performed on Campylobacter isolates of Danish origin. The primary purpose of this study was to provide a serotype distribu...

  20. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter

    Directory of Open Access Journals (Sweden)

    Shaun Smith

    2016-06-01

    Full Text Available Introduction: Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Materials and methods: Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85% and low (≤70% relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. Results and discussion: C. jejuni survived significantly longer (P≤0.01 in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter

  1. Multilocus sequence types of Finnish bovine Campylobacter jejuni isolates and their attribution to human infections

    Directory of Open Access Journals (Sweden)

    Corander Jukka

    2010-07-01

    Full Text Available Abstract Background Campylobacter jejuni is the most common bacterial cause of human gastroenteritis worldwide. Due to the sporadic nature of infection, sources often remain unknown. Multilocus sequence typing (MLST has been successfully applied to population genetics of Campylobacter jejuni and mathematical modelling can be applied to the sequence data. Here, we analysed the population structure of a total of 250 Finnish C. jejuni isolates from bovines, poultry meat and humans collected in 2003 using a combination of Bayesian clustering (BAPS software and phylogenetic analysis. Results In the first phase we analysed sequence types (STs of 102 Finnish bovine C. jejuni isolates by MLST and found a high diversity totalling 50 STs of which nearly half were novel. In the second phase we included MLST data from domestic human isolates as well as poultry C. jejuni isolates from the same time period. Between the human and bovine isolates we found an overlap of 72.2%, while 69% of the human isolates were overlapping with the chicken isolates. In the BAPS analysis 44.3% of the human isolates were found in bovine-associated BAPS clusters and 45.4% of the human isolates were found in the poultry-associated BAPS cluster. BAPS reflected the phylogeny of our data very well. Conclusions These findings suggest that bovines and poultry were equally important as reservoirs for human C. jejuni infections in Finland in 2003. Our results differ from those obtained in other countries where poultry has been identified as the most important source for human infections. The low prevalence of C. jejuni in poultry flocks in Finland could explain the lower attribution of human infection to poultry. Of the human isolates 10.3% were found in clusters not associated with any host which warrants further investigation, with particular focus on waterborne transmission routes and companion animals.

  2. Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O.

    Science.gov (United States)

    Scott, Nichollas E; Marzook, N Bishara; Cain, Joel A; Solis, Nestor; Thaysen-Andersen, Morten; Djordjevic, Steven P; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2014-11-07

    Campylobacter jejuni is a major cause of bacterial gastroenteritis. C. jejuni encodes a protein glycosylation (Pgl) locus responsible for the N-glycosylation of membrane-associated proteins. We examined two variants of the genome sequenced strain NCTC11168: O, a representative of the original clinical isolate, and GS, a laboratory-adapted relative of O. Comparative proteomics by iTRAQ and two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS) allowed the confident identification of 1214 proteins (73.9% of the predicted C. jejuni proteome), of which 187 were present at statistically significant altered levels of abundance between variants. Proteins associated with the O variant included adhesins (CadF and FlpA), proteases, capsule biosynthesis, and cell shape determinants as well as six proteins encoded by the Pgl system, including the PglK flippase and PglB oligosaccharyltransferase. Lectin blotting highlighted specific glycoproteins more abundant in NCTC11168 O, whereas others remained unaltered. Hydrophilic interaction liquid chromatography (HILIC) and LC-MS/MS identified 30 completely novel glycosites from 15 proteins. A novel glycopeptide from a 14 kDa membrane protein (Cj0455c) was identified that did not contain the C. jejuni N-linked sequon D/E-X-N-X-S/T (X ≠ Pro) but that instead contained a sequon with leucine at the -2 position. Occupied atypical sequons were also observed in Cj0958c (OxaA; Gln at the -2 position) and Cj0152c (Ala at the +2 position). The relative O and GS abundances of 30 glycopeptides were determined by label-free quantitation, which revealed a >100-fold increase in the atypical glycopeptide from Cj0455c in isolate O. Our data provide further evidence for the importance of the Pgl system in C. jejuni.

  3. Campylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment

    Directory of Open Access Journals (Sweden)

    Helen L Brown

    2015-07-01

    Full Text Available Biofilms make an important contribution to survival and transmission of bacterial pathogens in the food chain. The human pathogen Campylobacter jejuni is known to form biofilms in vitro in food chain-relevant conditions, but the exact roles and composition of the extracellular matrix are still not clear. Extracellular DNA has been found in many bacterial biofilms and can be a major component of the extracellular matrix. Here we show that extracellular DNA is also an important component of the C. jejuni biofilm when attached to stainless steel surfaces, in aerobic conditions and on conditioned surfaces. Degradation of extracellular DNA by exogenous addition of DNase I led to rapid biofilm removal, without loss of C. jejuni viability. Following treatment of a surface with DNase I, C. jejuni was unable to re-establish a biofilm population within 48 hr. Similar results were obtained by digesting extracellular DNA with restriction enzymes, suggesting the need for high molecular weight DNA. Addition of C. jejuni genomic DNA containing an antibiotic resistance marker resulted in transfer of the antibiotic resistance marker to susceptible cells in the biofilm, presumably by natural transformation. Taken together, this suggest that eDNA is not only an important component of C. jejuni biofilms and subsequent food chain survival of C. jejuni, but may also contribute to the spread of antimicrobial resistance in C. jejuni. The degradation of extracellular DNA with enzymes such as DNase I is a rapid method to remove C. jejuni biofilms, and is likely to potentiate the activity of antimicrobial treatments and thus synergistically aid disinfection treatments.

  4. Identification of Multiple Subtypes of Campylobacter jejuni in Chicken Meat and the Impact on Source Attribution

    Directory of Open Access Journals (Sweden)

    John A. Hudson

    2013-09-01

    Full Text Available Most source attribution studies for Campylobacter use subtyping data based on single isolates from foods and environmental sources in an attempt to draw epidemiological inferences. It has been suggested that subtyping only one Campylobacter isolate per chicken carcass incurs a risk of failing to recognise the presence of clinically relevant, but numerically infrequent, subtypes. To investigate this, between 21 and 25 Campylobacter jejuni isolates from each of ten retail chicken carcasses were subtyped by pulsed-field gel electrophoresis (PFGE using the two restriction enzymes SmaI and KpnI. Among the 227 isolates, thirteen subtypes were identified, the most frequently occurring subtype being isolated from three carcasses. Six carcasses carried a single subtype, three carcasses carried two subtypes each and one carcass carried three subtypes. Some subtypes carried by an individual carcass were shown to be potentially clonally related. Comparison of C. jejuni subtypes from chickens with isolate subtypes from human clinical cases (n = 1248 revealed seven of the thirteen chicken subtypes were indistinguishable from human cases. None of the numerically minor chicken subtypes were identified in the human data. Therefore, typing only one Campylobacter isolate from individual chicken carcasses may be adequate to inform Campylobacter source attribution.

  5. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  6. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    and quantification of viable Campylobacter jejuni directly from chicken faecal samples. The results of this method anda DNA-based quantitative real-time PCR (qPCR) method were compared with those of a bacterial culture method. Using bacterial culture andRT-qPCR methods, viable C. jejuni cells could be detected......Campylobacter spp. is the most common cause of bacterial diarrhoea in humans worldwide. Therefore, rapid and reliable methods fordetection and quantification of this pathogen are required. In this study, we have developed a reverse transcription quantitative real-time PCR(RT-qPCR) for detection...... for up to 5 days in both the C. jejuni spiked and the naturally contaminated faecalsamples. We found that no RT-qPCR signals were obtained when viable C. jejuni cells could not be counted by the culture method. In contrast,using a DNA-based qPCR method, dead or non-viable Campylobacter cells were...

  7. Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach.

    Science.gov (United States)

    Ulasi, Gloria N; Creese, Andrew J; Hui, Sam Xin; Penn, Charles W; Cooper, Helen J

    2015-08-01

    Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O-glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom-up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.

  8. Quantifying Transmission of Campylobacter jejuni in Commercial Broiler Flocks

    NARCIS (Netherlands)

    Gerwe, van T.; Miflin, J.K.; Templeton, J.M.; Bouma, A.; Wagenaar, J.A.; Jacobs-Reitsma, W.F.; Stegeman, A.; Klinkenberg, D.

    2009-01-01

    Since meat from poultry colonized with Campylobacter spp. is a major cause of bacterial gastroenteritis, human exposure should be reduced by, among other things, prevention of colonization of broiler flocks. To obtain more insight into possible sources of introduction of Campylobacter into broiler f

  9. Role of flgA for Flagellar Biosynthesis and Biofilm Formation of Campylobacter jejuni NCTC11168.

    Science.gov (United States)

    Kim, Joo-Sung; Park, Changwon; Kim, Yun-Ji

    2015-11-01

    The complex roles of flagella in the pathogenesis of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are important. Compared with the wild-type, an insertional mutation of the flgA gene (cj0769c) demonstrated significant decrease in the biofilm formation of C. jejuni NCTC11168 on major food contact surfaces, such as polystyrene, stainless steel, and borosilicate glass. The flgA mutant was completely devoid of flagella and non-motile whereas the wild-type displayed the full-length flagella and motility. In addition, the biofilm formation of the wild-type was inversely dependent on the viscosity of the media. These results support that flagellar-mediated motility plays a significant role in the biofilm formation of C. jejuni NCTC11168. Moreover, our adhesion assay suggests that it plays an important role during biofilm maturation after initial attachment. Furthermore, C. jejuni NCTC11168 wild-type formed biofilm with a net-like structure of extracellular fiber-like material, but such a structure was significantly reduced in the biofilm of the flgA mutant. It supports that the extracellular fiber-like material may play a significant role in the biofilm formation of C. jejuni. This study demonstrated that flgA is essential for flagellar biosynthesis and motility, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

  10. The abundant free-living amoeba, Acanthamoeba polyphaga, increases the survival of Campylobacter jejuni in milk and orange juice

    Directory of Open Access Journals (Sweden)

    Jenny Olofsson

    2015-09-01

    Full Text Available Background: Campylobacter jejuni is a common cause of human bacterial diarrhea in most parts of the world. Most C. jejuni infections are acquired from contaminated poultry, milk, and water. Due to health care costs and human suffering, it is important to identify all possible sources of infection. Unpasteurized milk has been associated with several outbreaks of C. jejuni infection. Campylobacter has been identified on fresh fruit, and other gastrointestinal pathogens such as Salmonella, E. coli O157:H7 and Cryptosporidium have been involved in fruit juice outbreaks. C. jejuni is sensitive to the acidic environment of fruit juice, but co-cultures with the amoeba, Acanthamoeba polyphaga, have previously been shown to protect C. jejuni at low pH. Methods: To study the influence of A. polyphaga on the survival of C. jejuni in milk and juice, the bacteria were incubated in the two products at room temperature and at 4°C with the following treatments: A C. jejuni preincubated with A. polyphaga before the addition of product, B C. jejuni mixed with A. polyphaga after the addition of product, and C C. jejuni in product without A. polyphaga. Bacterial survival was assessed by colony counts on blood agar plates. Results: Co-culture with A. polyphaga prolonged the C. jejuni survival both in milk and juice. The effect of co-culture was most pronounced in juice stored at room temperature. On the other hand, A. polyphaga did not have any effect on C. jejuni survival during pasteurization of milk or orange juice, indicating that this is a good method for eliminating C. jejuni in these products. Conclusion: Amoebae-associated C. jejuni in milk and juice might cause C. jejuni infections.

  11. High-throughput sequencing of Campylobacter jejuni insertion mutant libraries reveals mapA as a fitness factor for chicken colonization.

    Science.gov (United States)

    Johnson, Jeremiah G; Livny, Jonathan; Dirita, Victor J

    2014-06-01

    Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.

  12. Detection of alpha- and beta-hemolytic-like activity from Campylobacter jejuni.

    OpenAIRE

    Misawa, N; Hirayama, K.; Itoh, K.; Takahashi, E.

    1995-01-01

    Alpha-hemolytic-like activity from Campylobacter jejuni was clearly apparent when the medium pH ranged from 6.0 to 6.5, but the hemolytic zones disappeared when the pH of the medium increased. Beta-hemolytic-like activity just beneath the bacterial growth appeared after prolonged incubation. The hemolytic activity was not influenced by the species of blood.

  13. Superoxide dismutase SodB is a protective antigen against Campylobacter jejuni colonisation in chickens.

    Science.gov (United States)

    Chintoan-Uta, Cosmin; Cassady-Cain, Robin L; Al-Haideri, Halah; Watson, Eleanor; Kelly, David J; Smith, David G E; Sparks, Nick H C; Kaiser, Pete; Stevens, Mark P

    2015-11-17

    Campylobacter is the leading cause of foodborne diarrhoeal illness in the developed world and consumption or handling of contaminated poultry meat is the principal source of infection. Strategies to control Campylobacter in broilers prior to slaughter are urgently required and are predicted to limit the incidence of human campylobacteriosis. Towards this aim, a purified recombinant subunit vaccine based on the superoxide dismutase (SodB) protein of C. jejuni M1 was developed and tested in White Leghorn birds. Birds were vaccinated on the day of hatch and 14 days later with SodB fused to glutathione S-transferase (GST) or purified GST alone. Birds were challenged with C. jejuni M1 at 28 days of age and caecal Campylobacter counts determined at weekly intervals. Across three independent trials, the vaccine induced a statistically significant 1 log10 reduction in caecal Campylobacter numbers in vaccinated birds compared to age-matched GST-vaccinated controls. Significant induction of antigen-specific serum IgY was detected in all vaccinated birds, however the magnitude and timing of SodB-specific IgY did not correlate with lower numbers of C. jejuni. Antibodies from SodB-vaccinated chickens detected the protein in the periplasm and not membrane fractions or on the bacterial surface, suggesting that the protection observed may not be strictly antibody-mediated. SodB may be useful as a constituent of vaccines for control of C. jejuni infection in broiler birds, however modest protection was observed late relative to the life of broiler birds and further studies are required to potentiate the magnitude and timing of protection.

  14. Superoxide dismutase SodB is a protective antigen against Campylobacter jejuni colonisation in chickens

    Science.gov (United States)

    Chintoan-Uta, Cosmin; Cassady-Cain, Robin L.; Al-Haideri, Halah; Watson, Eleanor; Kelly, David J.; Smith, David G.E.; Sparks, Nick H.C.; Kaiser, Pete; Stevens, Mark P.

    2015-01-01

    Campylobacter is the leading cause of foodborne diarrhoeal illness in the developed world and consumption or handling of contaminated poultry meat is the principal source of infection. Strategies to control Campylobacter in broilers prior to slaughter are urgently required and are predicted to limit the incidence of human campylobacteriosis. Towards this aim, a purified recombinant subunit vaccine based on the superoxide dismutase (SodB) protein of C. jejuni M1 was developed and tested in White Leghorn birds. Birds were vaccinated on the day of hatch and 14 days later with SodB fused to glutathione S-transferase (GST) or purified GST alone. Birds were challenged with C. jejuni M1 at 28 days of age and caecal Campylobacter counts determined at weekly intervals. Across three independent trials, the vaccine induced a statistically significant 1 log10 reduction in caecal Campylobacter numbers in vaccinated birds compared to age-matched GST-vaccinated controls. Significant induction of antigen-specific serum IgY was detected in all vaccinated birds, however the magnitude and timing of SodB-specific IgY did not correlate with lower numbers of C. jejuni. Antibodies from SodB-vaccinated chickens detected the protein in the periplasm and not membrane fractions or on the bacterial surface, suggesting that the protection observed may not be strictly antibody-mediated. SodB may be useful as a constituent of vaccines for control of C. jejuni infection in broiler birds, however modest protection was observed late relative to the life of broiler birds and further studies are required to potentiate the magnitude and timing of protection. PMID:26458797

  15. In vitro phagocytosis and intracellular survival of Campylobacter jejuni with phagocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiehlbauch, J.A.

    1986-01-01

    In vitro phagocytosis and intracellular survival of Campylobacter jejuni was studied using three types of mononuclear phagocytes: a J774G8 peritoneal macrophage line, resident BABL/c peritoneal macrophages and human peripheral blood monocytes. In phagocytosis assays using CFU determinations, phagocytosis increased steadily over an 8 hr time period. Results obtained using a /sup 51/Cr assay indicated no consistent significant difference between phagocytosis of C. jejuni between the three mononuclear phagocytes or PMN's and that maximum infection occurred prior to 0.5 hr and maintained throughout the 4 hr assay. Further investigation of the mechanism of attachment and entry of C. jejuni revealed this process required the expenditure of energy by the phagocyte, but was not inhibited by inhibitors of microfilament functions. In addition, phagocytosis was enhanced by the presence of 20% FCS,

  16. Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens.

    Science.gov (United States)

    Kurekci, Cemil; Al Jassim, Rafat; Hassan, Errol; Bishop-Hurley, Sharon L; Padmanabha, Jagadish; McSweeney, Christopher S

    2014-09-01

    The aim of this work was to test the potential use of plant-derived extracts and compounds to control Campylobacter jejuni in broiler chickens. Over a 7-wk feeding period, birds were fed a commercial diet with or without plant extracts (Acacia decurrens, Eremophila glabra), essential oil [lemon myrtle oil (LMO)], plant secondary compounds [terpinene-4-ol and α-tops (including α-terpineol, cineole, and terpinene-4-ol)], and the antibiotic virginiamycin. Traditional culture and real-time quantitative PCR techniques were used to enumerate the numbers of C. jejuni in chicken fecal and cecal samples. In addition, BW and feed intake were recorded weekly for the calculation of BW gain and feed conversion ratio. The mean log10 counts of C. jejuni were similar (P > 0.05) across treatments. However, significantly lower levels of fecal Campylobacter counts (P 0.05) in BW gain were obtained for dietary supplementation, except for the E. glabra extract, which had a negative impact (P < 0.001) on BW, resulting in sporadic death. Results from this study suggest that supplemental natural compounds used in the current study did not reduce the shedding of C. jejuni to desired levels.

  17. High-Voltage Electroporation of Bacteria: Genetic Transformation of Campylobacter jejuni with Plasmid DNA

    Science.gov (United States)

    Miller, Jeff F.; Dower, William J.; Tompkins, Lucy S.

    1988-02-01

    Electroporation permits the uptake of DNA by mammalian cells and plant protoplasts because it induces transient permeability of the cell membrane. We investigated the utility of high-voltage electroporation as a method for genetic transformation of intact bacterial cells by using the enteric pathogen Campylobacter jejuni as a model system. This report demonstrates that the application of high-voltage discharges to bacterial cells permits genetic transformation. Our method involves exposure of a Campylobacter cell suspension to a high-voltage exponential decay discharge (5-13 kV/cm) for a brief period of time (resistance-capacitance time constant = 2.4-26 msec) in the presence of plasmid DNA. Electrical transformation of C. jejuni results in frequencies as high as 1.2 × 106 transformants per μ g of DNA. We have investigated the effects of pulse amplitude and duration, cell growth conditions, divalent cations, and DNA concentration on the efficiency of transformation. Transformants of C. jejuni obtained by electroporation contained structurally intact plasmid molecules. In addition, evidence is presented that indicates that C. jejuni possesses DNA restriction and modification systems. The use of electroporation as a method for transforming other bacterial species and guidelines for its implementation are also discussed.

  18. Campylobacter jejuni: A rare agent in a child with peritoneal dialysis-related peritonitis.

    Science.gov (United States)

    Tural Kara, Tugce; Yilmaz, Songul; Ozdemir, Halil; Birsin Ozcakar, Zeynep; Derya Aysev, Ahmet; Ciftci, Ergin; Ince, Erdal

    2016-10-01

    La peritonitis es un problema grave en los niños que reciben diálisis peritoneal. La bacteria Campylobacter jejuni es una causa infrecuente de peritonitis. Un niño de 10 años de edad con insuficiencia renal terminal causada por síndrome urémico hemolítico atípico ingresó a nuestro hospital con dolor abdominal y fiebre. El líquido de la diálisis peritoneal era turbio; en el examen microscópico se observaron leucocitos abundantes. Se inició tratamiento con cefepime intraperitoneal. En el cultivo del líquido peritoneal se aisló Campylobacter jejuni, por lo que se agregó claritromicina oral al tratamiento. Al finalizar el tratamiento, el resultado del cultivo del líquido peritoneal era negativo. Hasta donde sabemos, no se había informado previamente peritonitis por C. jejuni en niños. Conclusión. Si bien la peritonitis por C. jejuni es rara en los niños, debe considerarse como factor etiológico de la peritonitis.

  19. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieneke I Bouwman

    Full Text Available Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.

  20. Acute Pancreatitis in Association with Campylobacter jejuni- Associated Diarrhea in a 15-Year-Old with CFTR Mutations: Is There a Link?

    OpenAIRE

    Leena Kandula; Lowe, Mark E.; Seema Khan; Whitcomb, David C.

    2006-01-01

    Context: Acute pancreatitis has occasionally been reported in association with Campylobacter jejuni infection in humans. However, the mechanism linking Campylobacter jejuni infection and pancreatitis isunclear. Acute pancreatitis in association with an infectious illness may be related to underlying genetic mutations. For instance, studies show that mutations in the cystic fibrosis transmembrane conductance regulator gene increase the susceptibility for acute and chronic pancreatitis. Case re...

  1. Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies

    DEFF Research Database (Denmark)

    Gill, Carson; Bahrndorff, Simon; Lowenberger, Carl

    2016-01-01

    The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been inges...

  2. Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.

    Science.gov (United States)

    Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H

    2013-01-09

    Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system.

  3. Role of capsular modified heptose in the virulence of Campylobacter jejuni.

    Science.gov (United States)

    Wong, Anthony; Lange, Dirk; Houle, Sebastien; Arbatsky, Nikolay P; Valvano, Miguel A; Knirel, Yuriy A; Dozois, Charles M; Creuzenet, Carole

    2015-06-01

    The Campylobacter jejuni capsular polysaccharide is important for virulence and often contains a modified heptose. In strain ATCC 700819 (a.k.a. NCTC 11168), the modified heptose branches off from the capsular backbone and is directly exposed to the environment. We reported previously that the enzymes encoded by wcaG, mlghB and mlghC are involved in heptose modification. Here, we show that inactivation of any of these genes leads to production of capsule lacking modified heptose and alters the transcription of other capsule modification genes differentially. Inactivation of mlghB or mlghC, but not of wcaG, decreased susceptibility to bile salts and abrogated invasion of intestinal cells. All mutants showed increased sensitivity to serum killing, especially wcaG::cat, and had defects in colonization and persistence in chicken intestine, but did not show significant differences in adhesion, phagocytosis and intracellular survival in murine macrophages. Together, our findings suggest that the capsular heptose modification pathway contributes to bacterial resistance against gastrointestinal host defenses and supports bacterial persistence via its role in serum resistance and invasion of intestinal cells. Our data further suggest a dynamic regulation of expression of this pathway in the gastrointestinal tract.

  4. Comparison of electrophoretic protein profiles of Campylobacter jejuni subsp. jejuni isolated from different animal species Comparação dos perfis eletroforéticos de proteínas de Campylobacter jejuni subsp. jejuni isoladas de diferentes espécies animais

    Directory of Open Access Journals (Sweden)

    Eliana Scarcelli

    2001-12-01

    Full Text Available Electrophoretic protein profiles of Campylobacter jejuni subsp. jejuni strains isolated from feces of seven animal species, including man, were compared. Fourteen strains (two from each species plus two human strains and the reference one, were ruptured by ultrasound and their total soluble proteins were analyzed by SDS-PAGE technique in a 12% polyacrylamide gel with computerized densitometric reading by the molecular analyst software. All the strains had bands in common that correspond to 45 and 66 Kda molecular weight. The disagreement corresponded to a 97 to 200 Kda molecular weight region. From the 17 strains, 13 (76.5%, were classified as biotype I, three (17.6% as biotype II and one (5.8% as biotype III. Since protein extracts were obtained from cells grown under identical conditions, and thus, able to express the same phenotype, this disagreement region could be related to different genotypes or serotypes.Perfis eletroforéticos de proteínas de cepas Campylobacter jejuni subsp. jejuni isoladas de fezes de diferentes espécies animais, inclusive o homem, foram comparados. Quatorze cepas (duas de cada espécie mais duas cepas de origem humana e a cepa de referência foram rompidas por ultra-som e suas proteínas solúveis totais analisadas através das técnicas de SDS-PAGE em gel de poliacrilamida a 12% e análise densitométrica. Todas as cepas tinham em comum bandas que migraram em regiões que correspondiam ao peso molecular de 45 e 66 Kda. As regiões discordantes correspondiam principalmente às regiões entre 97 e 200 Kda. Das 17 cepas, 13 (76.5%, foram classificadas como biotipo I, três (17.6% como biotipo II e uma (5.8% como biotipo III. Uma vez que os extratos de proteínas foram obtidos de células que se desenvolveram sob condições idênticas, possibilitando a expressão do mesmo fenótipo, estas regiões protéicas discordantes poderiam estar relacionadas a diferentes sorotipos ou genótipos.

  5. Antigenic protein synthesis of Campylobacter jejuni in contact with chicken cells

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Bang, Dang D.; Li, Yiping

    to the environment of the avian gastrointestinal tract. Consequently, the most important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently without causing disease in the birds. Upon co-cultivation with mammalian cells, C. jejuni secrete specific Cia proteins, which are required...... the synthesis of antigenic C. jejuni proteins upon cultivation with chicken cells. Two strains of C. jejuni (the human isolate NCTC11168 and the chicken isolate DVI-SC11) were incubated with primary intestinal chicken cells and subsequently used to raise antisera in rabbits. Negative controls were carried out...... in parallel. These antisera were tested by Western blotting against C. jejuni total protein as well as periplasmic-, surface- and extracellular protein fractions. A unique antibody reaction was discovered to a protein from samples, which had been cultivated with chicken cells. The identity of this protein...

  6. Campylobacter infection

    Science.gov (United States)

    ... in the small intestine from a bacteria called Campylobacter jejuni . It is a type of food poisoning. Causes ... testing for white blood cells Stool culture for Campylobacter jejuni Treatment The infection almost always goes away on ...

  7. Messenger RNA expression of chicken CLOCK gene in the response to Campylobacter jejuni inoculation.

    Science.gov (United States)

    Liu, Xiaoyi; Liu, Liying; Zhang, Maozhi; Yang, Ning; Qi, Yukai; Sun, Yu; Li, Xianyao

    2015-09-01

    Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial gastroenteritis worldwide. Previous research has shown that circadian rhythm plays a critical role in host response to C. jejuni colonization. The CLOCK gene is one of the core genes regulating circadian rhythms and shows significant expression on 7 d post-C. jejuni inoculation. The objective of this study was to investigate temporal and spatial expression of chicken CLOCK gene post-C. jejuni inoculation. Cecal and splenic RNA were isolated from 2 distinct chicken breeds and used to compare the mRNA expression of CLOCK gene between inoculated and noninoculated chickens within each breed and between breeds within each of inoculated and noninoculated groups. Our results showed that the CLOCK gene was significantly down-regulated at 20 h postinoculation (hpi) in cecum and spleen in Jiningbairi chicken. CLOCK gene was significantly down-regulated at 4 and 16 hpi and up-regulated at 8 hpi in cecum and spleen in specific pathogen free white leghorn noninoculated chicken. The findings suggested that expression of CLOCK gene was significantly changed post C. jejuin inoculation. This change was affected by genetic background, tissue, and time points postinoculation.

  8. Use of a Rabbit Soft Tissue Chamber Model to Investigate Campylobacter jejuni - Host Interactions

    Directory of Open Access Journals (Sweden)

    Annika eFlint

    2010-11-01

    Full Text Available Despite the prevalence of C. jejuni as an important food borne pathogen, the microbial factors governing its infection process are poorly characterized. In this study, we developed a novel rabbit soft tissue chamber model to investigate C. jejuni interactions with its host. The in vivo transcriptome profile of C. jejuni was monitored as a function of time post-infection by competitive microarray hybridization with cDNA obtained from C. jejuni grown in vitro. Genome-wide expression analysis identified 449 genes expressed at significantly different levels in vivo. Genes implicated to play important roles in early colonization of C. jejuni within the tissue chamber include up-regulation of genes involved in ribosomal protein synthesis and modification, heat shock response, and primary adaptation to the host environment (DccSR regulon. Genes encoding proteins involved in the TCA cycle and flagella related components were found to be significantly down regulated during early colonization. Oxidative stress defense and stringent response genes were found to be maximally induced during the acute infectious phase. Overall, these findings reveal possible mechanisms involved in adaptation of Campylobacter to the host.

  9. Synthesis and immunodetection of 6-O-methyl-phosphoramidyl-α-D-galactose: a Campylobacter jejuni antigenic determinant.

    Science.gov (United States)

    Jiao, Yuening; Ma, Zuchao; Ewing, Cheryl P; Guerry, Patricia; Monteiro, Mario A

    2015-12-11

    Campylobacter jejuni is a leading cause of traveler's diarrhea. Previously, we have shown that a C. jejuni capsule polysaccharide (CPS) conjugate vaccine can fully prevent C.jejuni diarrhea in non-human primates. C.jejuni CPSs are decorated with non-stoichiometric amounts of O-methyl phosphoramidate (MeOPN) units that are key serospecific markers. In the case of C.jejuni serotype complex HS23/36, the MeOPN are at positions 2 and 6 of the CPS galactose (Gal). We describe here the synthesis of the p-methoxyphenyl glycoside of MeOPN→6-α-D-Galp, and its immunodetection by antisera raised by C.jejuni CPS conjugates with MeOPN at primary positions. The synthetic approach in this work served as the foundation for a similar MeOPN→6-Gal construct used in a conjugate vaccine, whose synthesis, immunogenicity and efficacy will be described elsewhere.

  10. AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    Directory of Open Access Journals (Sweden)

    Winzer Klaus

    2009-10-01

    Full Text Available Abstract Background Campylobacter jejuni contains a homologue of the luxS gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2 in Vibrio harveyi and Vibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling C. jejuni gene expression when it is produced at high levels during mid exponential growth phase. Results AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-α. Consistent with previous studies, the luxS mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-α and MHB. Microarray analysis of genes differentially expressed in wild type and luxS mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the luxS mutant, growing exponentially in either MHB or MEM-α did not induce any transcriptional changes as analysed by microarray. Conclusion Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in C. jejuni strain NCTC 11168 under the growth conditions used, and that the effects of the luxS mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.

  11. Transducer like proteins of Campylobacter jejuni 81-176: role in chemotaxis and colonization of the chicken gastrointestinal tract.

    Science.gov (United States)

    Chandrashekhar, Kshipra; Gangaiah, Dharanesh; Pina-Mimbela, Ruby; Kassem, Issmat I; Jeon, Byeong H; Rajashekara, Gireesh

    2015-01-01

    Transducer Like Proteins (Tlps), also known as methyl accepting chemotaxis proteins (MCP), enable enteric pathogens to respond to changing nutrient levels in the environment by mediating taxis toward or away from specific chemoeffector molecules. Despite recent advances in the characterization of chemotaxis responses in Campylobacter jejuni, the impact of Tlps on the adaptation of this pathogen to disparate niches and hosts is not fully characterized. The latter is particularly evident in the case of C. jejuni 81-176, a strain that is known to be highly invasive. Furthermore, the cytoplasmic group C Tlps (Tlp5, 6, and 8) were not extensively evaluated. Here, we investigated the role of C. jejuni 81-176 Tlps in chemotaxis toward various substrates, biofilm formation, in vitro interaction with human intestinal cells, and chicken colonization. We found that the Δtlp6 and Δtlp10 mutants exhibited decreased chemotaxis toward aspartate, whereas the Δtlp6 mutant displayed a decreased chemotaxis toward Tri-Carboxylic Acid (TCA) cycle intermediates such as pyruvate, isocitrate, and succinate. Our findings also corroborated that more than one Tlp is involved in mediating chemotaxis toward the same nutrient. The deletion of tlps affected important phenotypes such as motility, biofilm formation, and invasion of human intestinal epithelial cells (INT-407). The Δtlp8 mutant displayed increased motility in soft agar and showed decreased biofilm formation. The Δtlp8 and Δtlp9 mutants were significantly defective in invasion in INT-407 cells. The Δtlp10 mutant was defective in colonization of the chicken proximal and distal gastrointestinal tract, while the Δtlp6 and Δtlp8 mutants showed reduced colonization of the duodenum and jejunum. Our results highlight the importance of Tlps in C. jejuni's adaptation and pathobiology.

  12. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq.

    Directory of Open Access Journals (Sweden)

    Michael E Taveirne

    Full Text Available Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5' untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host.

  13. Campylobacter jejuni colonization and population structure in urban populations of ducks and starlings in New Zealand.

    Science.gov (United States)

    Mohan, Vathsala; Stevenson, Mark; Marshall, Jonathan; Fearnhead, Paul; Holland, Barbara R; Hotter, Grant; French, Nigel P

    2013-08-01

    A repeated cross-sectional study was conducted to determine the prevalence of Campylobacter spp. and the population structure of C. jejuni in European starlings and ducks cohabiting multiple public access sites in an urban area of New Zealand. The country's geographical isolation and relatively recent history of introduction of wild bird species, including the European starling and mallard duck, create an ideal setting to explore the impact of geographical separation on the population biology of C. jejuni, as well as potential public health implications. A total of 716 starling and 720 duck fecal samples were collected and screened for C. jejuni over a 12 month period. This study combined molecular genotyping, population genetics and epidemiological modeling and revealed: (i) higher Campylobacter spp. isolation in starlings (46%) compared with ducks (30%), but similar isolation of C. jejuni in ducks (23%) and starlings (21%), (ii) significant associations between the isolation of Campylobacter spp. and host species, sampling location and time of year using logistic regression, (iii) evidence of population differentiation, as indicated by FST , and host-genotype association with clonal complexes CC ST-177 and CC ST-682 associated with starlings, and clonal complexes CC ST-1034, CC ST-692, and CC ST-1332 associated with ducks, and (iv) greater genetic diversity and genotype richness in ducks compared with starlings. These findings provide evidence that host-associated genotypes, such as the starling-associated ST-177 and ST-682, represent lineages that were introduced with the host species in the 19th century. The isolation of sequence types associated with human disease in New Zealand indicate that wild ducks and starlings need to be considered as a potential public health risk, particularly in urban areas.

  14. Identification of a novel G2073A mutation in 23S rRNA in amphenicol-selected mutants of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Licai Ma

    Full Text Available OBJECTIVES: This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture. METHODS: Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations. RESULTS: C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides. CONCLUSIONS: This study identifies a novel point mutation (G2073A in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.

  15. Characterization of Campylobacter jejuni DNA gyrase as the target of quinolones.

    Science.gov (United States)

    Changkwanyeun, Ruchirada; Usui, Masaru; Kongsoi, Siriporn; Yokoyama, Kazumasa; Kim, Hyun; Suthienkul, Orasa; Changkaew, Kanjana; Nakajima, Chie; Tamura, Yutaka; Suzuki, Yasuhiko

    2015-08-01

    Quinolones have long been used as the first-line treatment for Campylobacter infections. However, an increased resistance to quinolones has raised public health concerns. The development of new quinolone-based antibiotics with high activity is critical for effective, as DNA gyrase, the target of quinolones, is an essential enzyme for bacterial growth in several mechanisms. The evaluation of antibiotic activity against Campylobacter jejuni largely relies on drug susceptibility tests, which require at least 2 days to produce results. Thus, an in vitro method for studying the activity of quinolones against the C. jejuni DNA gyrase is preferred. To identify potent quinolones, we investigated the interaction of C. jejuni DNA gyrase with a number of quinolones using recombinant subunits. The combination of purified subunits exhibited DNA supercoiling activity in an ATP dependent manner. Drug concentrations that inhibit DNA supercoiling by 50% (IC50s) of 10 different quinolones were estimated to range from 0.4 (sitafloxacin) to >100 μg/mL (nalidixic acid). Sitafloxacin showed the highest inhibitory activity, and the analysis of the quinolone structure-activity relationship demonstrated that a fluorine atom at R-6 might play the important role in the inhibitory activity against C. jejuni gyrase. Measured quinolone IC50s correlated well with minimum inhibitory concentrations (R = 0.9943). These suggest that the in vitro supercoiling inhibition assay on purified recombinant C. jejuni DNA gyrase is a useful and predictive technique to monitor the antibacterial potency of quinolones. And furthermore, these data suggested that sitafloxacin might be a good candidate for clinical trials on campylobacteriosis.

  16. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available CosR (Campylobacter oxidative stress regulator; Cj0355c is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.

  17. Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice

    Directory of Open Access Journals (Sweden)

    Wolf John E

    2009-03-01

    Full Text Available Abstract Background Campylobacter jejuni infection produces a spectrum of clinical presentations in humans – including asymptomatic carriage, watery diarrhea, and bloody diarrhea – and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different C. jejuni strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model. Results In the comparative study, C57BL/6 interleukin-10-/- mice were infected with seven genetically distinct C. jejuni strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to C. jejuni 11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in C. jejuni pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an ~12% fat diet to an ~6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment. Conclusion C. jejuni strain genetic background and adaptation of the strain to the host by serial passage

  18. Isolation, identification and antibiotic resistance of Campylobacter strains isolated from domestic and free-living pigeons.

    Science.gov (United States)

    Dudzic, A; Urban-Chmiel, R; Stępień-Pyśniak, D; Dec, M; Puchalski, A; Wernicki, A

    2016-04-01

    1. The aim of this study was to evaluate the occurrence of Campylobacter spp. in domestic and free-living pigeons and to evaluate the antibiotic resistance profiles. 2. The material consisted of cloacal swabs obtained from 108 homing pigeons and fresh faeces from 72 wild birds from Lublin and its vicinity. The identification of strains isolated on differential/selective media for Campylobacter spp. was carried out by MALDI-TOF and PCR. The susceptibility to antibiotics was evaluated by minimum inhibitory concentration (MIC) in Mueller-Hinton broth. 3. A total of 35 strains of Campylobacter spp. were isolated; 27 were identified as Campylobacter jejuni and 8 as Campylobacter coli. Over half of the isolates were resistant to erythromycin and streptomycin, 40% of strains were resistant to tetracycline and ampicillin and 37% isolates were resistant to amoxicillin. Resistance to two or more antibiotics was observed in all strains tested. 4. The results indicate that both domestic and free-living pigeons are reservoirs for bacteria of the genus Campylobacter, which are characterised by varied and growing resistance to commonly used antibiotics.

  19. Ganglioside GM1 mimicry in Campylobacter strains from sporadic infections in the United States.

    Science.gov (United States)

    Nachamkin, I; Ung, H; Moran, A P; Yoo, D; Prendergast, M M; Nicholson, M A; Sheikh, K; Ho, T; Asbury, A K; McKhann, G M; Griffin, J W

    1999-05-01

    To determine whether GM1-like epitopes in Campylobacter species are specific to O serotypes associated with Guillain-Barré syndrome (GBS) or whether they are frequent among random Campylobacter isolates causing enteritis, 275 random enteritis-associated isolates of Campylobacter jejuni were analyzed. To determine whether GM1-like epitopes in Campylobacter species are specific to O serotypes associated with Guillan-Barre syndrome (GBS) or whether they are frequent among random Campylobacter isolates causing enteritis, 275 enteritis-associated isolates, randomly collected in the United States, were analyzed using a cholera-toxin binding assay [corrected]. Overall, 26.2% of the isolates were positive for the GM1-like epitope. Of the 36 different O serotypes in the sample, 21 (58.3%) contained no strains positive for GM1, whereas in 6 serotypes (16.7%), >50% of isolates were positive for GM1. GBS-associated serotypes were more likely to contain strains positive for GM1 than were non-GBS-associated serotypes (37.8% vs. 15.1%, P=.0116). The results suggest that humans are frequently exposed to strains exhibiting GM1-like mimicry and, while certain serotypes may be more likely to possess GM1-like epitopes, the presence of GM1-like epitopes on Campylobacter strains does not itself trigger GBS.

  20. High-resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni.

    Science.gov (United States)

    Price, Erin P; Smith, Helen; Huygens, Flavia; Giffard, Philip M

    2007-05-01

    A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species.

  1. Air samplings in a Campylobacter jejuni positive laying hen flock.

    Science.gov (United States)

    Ahmed, Marwa Fawzy El Metwaly; Schulz, Jochen; Hartung, Joerg

    2013-01-01

    The air in laying hen houses contains high concentrations of airborne bacteria. The numbers of these bacteria can be influenced by the efficiency of the chosen sampling method. In the presented study, AGI-30 Impingers and the Coriolis(®)µ air Sampler were compared in terms of their efficiency in sampling aerobic mesophilic bacteria in a laying hen house. Measurements were conducted in a laying hen flock with high prevalences of C. jejuni in order to investigate if culturable cells of this organism can also be detected by the applied methods. Airborne dust was also analyzed for the presence of C. jejuni specific DNA to assess the possible occurrence of non-culturable C. jejuni in the hen house air. The numbers of mesophilic airborne bacteria ranged from 8 × 10(4) - 2 × 10(6) CFU/m(-3) when sampled using AGI-30 Impingers, and from 2 × 10(5) - 4 × 10(6) CFU/m -3 when sampled using a Coriolis(®)µ air Sampler. The concentrations detected simultaneously by both devices correlated well (rPearson = 0.755), but the Coriolis(®)µ air Sampler showed a significantly higher sampling efficiency (phen house air, and in future it should be verified whether sampling stress of the air sampling methods could induce the non-culturable state.

  2. Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry.

    Science.gov (United States)

    Buckley, Anthony M; Wang, Jinhong; Hudson, Debra L; Grant, Andrew J; Jones, Michael A; Maskell, Duncan J; Stevens, Mark P

    2010-01-22

    Campylobacter jejuni is a zoonotic bacterial pathogen of worldwide importance. It is estimated that 460,000 human infections occur in the United Kingdom per annum and these involve acute enteritis and may be complicated by severe systemic sequelae. Such infections are frequently associated with the consumption of contaminated poultry meat and strategies to control C. jejuni in poultry are expected to limit pathogen entry into the food chain and the incidence of human disease. Toward this aim, a total of 840 Light Sussex chickens were used to evaluate a Salmonella enterica serovar Typhimurium DeltaaroA vaccine expressing the C. jejuni amino acid binding protein CjaA as a plasmid-borne fusion to the C-terminus of fragment C of tetanus toxin. Chickens were given the vaccine at 1-day-old and two weeks later by oral gavage, then challenged after a further two weeks with C. jejuni. Across six biological replicates, statistically significant reductions in caecal C. jejuni of c. 1.4log(10) colony-forming units/g were observed at three and four weeks post-challenge relative to age-matched unvaccinated birds. Protection was associated with the induction of CjaA-specific serum IgY and biliary IgA. Protection was not observed using a vaccine strain containing the empty plasmid. Vaccination with recombinant CjaA subcutaneously at the same intervals significantly reduced the caecal load of C. jejuni at three and four weeks post-challenge. Taken together these data imply that responses directed against CjaA, rather than competitive or cross-protective effects mediated by the carrier, confer protection. The impact of varying parameters on the efficacy of the S. Typhimurium DeltaaroA vaccine expressing TetC-CjaA was also tested. Delaying the age at primary vaccination had little impact on protection or humoral responses to CjaA. The use of the parent strain as carrier or changing the attenuating mutation of the carrier to DeltaspaS or DeltassaU enhanced the protective effect

  3. Molecular Typing of Fluoroquinolone-Resistant Campylobacter jejuni Isolated from Broilers in Japan Using Multilocus Sequence Typing and Pulsed-Field Gel Electrophoresis.

    Science.gov (United States)

    Ozawa, Manao; Hiki, Mototaka; Kawanishi, Michiko; Abo, Hitoshi; Kojima, Akemi; Asai, Tetsuo; Hamamoto, Shuichi

    2016-01-01

    Fluoroquinolone-resistant Campylobacter jejuni isolates from broilers in Japan were characterized using multilocus sequence typing and pulsed-field gel electrophoresis (PFGE) in order to elucidate the genetic relationship between these strains. Forty-three of the isolates were classified into 20 sequence types and were clustered into 21 PFGE types with 70% similarity. The most dominant clonal complex (CC) was CC-21 (41.9%). Diverse PFGE patterns were observed within the same CC, but the combined analysis of PFGE type and CC revealed that the strains with the same combination were isolated from the same district or neighboring districts. On the other hand, strains with the same combination pattern were also isolated from geographically distant districts. Our results elucidate two possible reasons for the prevalence of fluoroquinolone-resistant C. jejuni among broiler farms: (1) the resistant C. jejuni is clonally disseminated within the limited area, and (2) susceptible C. jejuni acquired fluoroquinolone resistance during the use of fluoroquinolone on the farms.

  4. Virulence gene expression, adhesion and invasion of Campylobacter jejuni exposed to oxidative stress (H2O2).

    Science.gov (United States)

    Koolman, Leonard; Whyte, Paul; Burgess, Catherine; Bolton, Declan

    2016-03-02

    Studies were undertaken to investigate the effect of oxidative stress conditions (exposure to hydrogen peroxide, H2O2) on [1] the expression of 14 Campylobacter jejuni virulence-associated genes associated with motility and/or invasion (flaA, flaB, flhA, flhB, ciaB, iamA), adhesion (cadF), cytotoxin production (cdtA, cdtB, cdtC) as well as some of the regulators of these genes (rpoN, fliA, luxS, cj1000), in 10 C. jejuni strains (5 poultry and 5 human) and [2] the ability of these cells to adhere to and invade Caco-2 cells. Using 16S rRNA as the reference gene (preliminary research demonstrated that this gene was stably expressed), the expression of the 14 virulence associated genes was investigated under normal and oxidative stress conditions using reverse transcription PCR. A Caco-2 cell tissue culture assay was used to examine adhesion and invasion. The response to oxidative stress was strain-dependent. Two strains showed significant (p<0.05) up or down regulation in 7 of the 14 genes tested, while only 1-2 genes were affected in the remaining strains. Expression of cadF was significantly (p<0.05) changed in all strains, cdt B in 4 strains and cj1000 in 3 strains. Expression of the remaining genes was either unaffected or significantly altered in 1-2 strains. NCTC 11168 completely lost the ability to adhere to and invade Caco-2 cells. One other strain also demonstrated reduced adherence while two others were unable to invade Caco-2 cells after exposure to oxidative stress conditions. In contrast strain 7, a poultry isolate, showed increased invasion. It was concluded that oxidative stress affects expression of C. jejuni virulence genes in a strain-dependent manner, CadF may have a secondary survival function and the cdtB gene may have a different promoter than cdtA and cdtC.

  5. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays.

    Science.gov (United States)

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-11-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.

  6. Interaction effects between sender and receiver processes in indirect transmission of Campylobacter jejuni between broilers

    Directory of Open Access Journals (Sweden)

    van Bunnik Bram AD

    2012-07-01

    Full Text Available Abstract Background Infectious diseases in plants, animals and humans are often transmitted indirectly between hosts (or between groups of hosts, i.e. via some route through the environment instead of via direct contacts between these hosts. Here we study indirect transmission experimentally, using transmission of Campylobacter jejuni (C. jejuni between spatially separated broilers as a model system. We distinguish three stages in the process of indirect transmission; (1 an infectious “sender” excretes the agent, after which (2 the agent is transported via some route to a susceptible “receiver”, and subsequently (3 the receiver becomes colonised by the agent. The role of the sender and receiver side (stage 1 and stage 3 was studied here by using acidification of the drinking water as a modulation mechanism. Results In the experiment one control group and three treatment groups were monitored for the presence of C. jejuni by taking daily cloacal swabs. The three treatments consisted of acidification of the drinking water of the inoculated animals (the senders, acidification of the drinking water of the susceptible animals (the receivers or acidification of the drinking water of both inoculated and susceptible animals. In the control group 12 animals got colonised out of a possible 40, in each treatment groups 3 animals out of a possible 40 were found colonised with C. jejuni. Conclusions The results of the experiments show a significant decrease in transmission rate (β between the control groups and treatment groups (p

  7. Comparison of epidemiologically linked Campylobacter jejuni isolated from human and poultry sources.

    Science.gov (United States)

    Lajhar, S A; Jennison, A V; Patel, B; Duffy, L L

    2015-12-01

    Campylobacter jejuni is responsible for most foodborne bacterial infections worldwide including Australia. The aim of this study was to investigate a combination of typing methods in the characterization of C. jejuni isolated from clinical diarrhoeal samples (n = 20) and chicken meat (n = 26) in order to identify the source of infection and rank isolates based on their relative risk to humans. Sequencing of the flaA short variable region demonstrated that 86% of clinical isolates had genotypes that were also found in chicken meat. A polymerase chain reaction binary typing system identified 27 different codes based on the presence or absence of genes that have been reported to be associated with various aspects of C. jejuni pathogenicity, indicating that not all isolates may be of equal risk to human health. The lipooligosaccharide (LOS) of the C. jejuni isolates was classified into six classes (A, B, C, E, F, H) with 10·4% remaining unclassified. The majority (72·7%) of clinical isolates possessed sialylated LOS classes. Sialylated LOS classes were also detected in chicken isolates (80·7%). Antimicrobial tests indicated a low level of resistance, with no phenotypic resistance found to most antibiotics tested. A combination of typing approaches was useful to assign isolates to a source of infection and assess their risk to humans.

  8. Campylobacter serology test

    Science.gov (United States)

    ... time the skin is broken) Images Blood test Campylobacter jejuni organism References Allos BM. Campylobacter infections. In: Goldman ... chap 303. Allos BM, Iovine NM, Blaser MJ. Campylobacter jejuni and related species. In: Bennett JE, Dolin R, ...

  9. Molecular identification of Campylobacter jejuni and coli from chicken, calves and dogs to determine its potential threat on human being

    Science.gov (United States)

    Begum, Sonuwara; Sekar, M.; Gunaseelan, L.; Gawande, Monica; Suganya, G.; Malar, P. Annal Selva; Karthikeyan, A.

    2015-01-01

    Aim: Campylobacter is an emerging zoonotic pathogen and one of the leading cause of foodborne infection worldwide and it has been isolated from a variety of animal species. The aim of this study was to identify Campylobacter jejuni and Campylobacter coli from dogs, calves, and poultry using polymerase chain reaction (PCR). Methodology: A total of 104 number of samples comprising cloacal swab from poultry (38), a rectal swab from dogs (40), and calves (26) were collected for the isolation of thermophilic Campylobacters using conventional culture method. PCR was used for identification of mapA gene for C.jejuni and ceuE for C.coli. Results: The overall presence of Campylobacter was found to be 67(64.42%) from the samples, out of which 6 isolates belongs to C. jejuni species, were 5(18.51%) from chicken and 1(4.17%) from dog was recorded and about 17 isolates belongs to C. coli species were 9(33.33%), 6 (25%), and 1(9.09%) from chicken, dog and calves was recorded. Conclusion: Results suggested that Campylobacter reservoirs chicken, calves and pet dogs can play a role as the source of infection to human beings and PCR can be an ideal tool for molecular confirmation at the species level. PMID:27047055

  10. A PAS Domain-Containing Regulator Controls Flagella-Flagella Interactions in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Mark eReuter

    2015-07-01

    Full Text Available The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confermotility, which is essential for virulence. The flagella of C. jejuni are posttranslationallymodified, but how this process is controlled is not well understood. Inthis work, we have identified a novel PAS-domain containing regulatory system, whichmodulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene,encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in thegeneration of a tightly associated 'cell-train' morphotype, where up to four cells wereconnected by their flagella. The morphotype was fully motile, resistant to vortexing,accompanied by increased autoagglutination, and was not observed in aflagellated cells.The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein,which comprises of a single endoribonuclease L-PSP domain. Comparative genomicsshowed that cj1387c (yheO orthologs in bacterial genomes are commonly linked to anadjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing anothercj1388-like gene (cj0327. Inactivation of the cj1388 and cj0327 genes resulted indecreased autoagglutination in Tween-20-supplemented media. The Δcj1388 andΔcj0327 mutants were also attenuated in a Galleria larvae-based infection model.Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388dimerisation in non-reducing conditions, and resulted in decreased autoagglutination inthe presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate posttranslationalmodification of the flagella through yet unidentified mechanisms, andpropose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, andthe Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively.

  11. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Andrew Cameron

    Full Text Available Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.

  12. Padronização de PCR tradicional e em tempo real para detecção de Campylobacter jejuni e Campylobacter coli em alimentos

    OpenAIRE

    Kérley Braga Pereira Bento

    2010-01-01

    Campylobacter jejuni e Campylobacter coli são freqüentemente associadas à campilobacteriose humana, com mais de 80% das infecções causadas por C. jejuni. A infecção é esporádica e os surtos são raros. Além de gastrenterite, C. jejuni também tem sido associada a doenças auto-imunes pós-infecção, incluindo artrite, síndrome de Guillain-Barré (SGB), síndrome de Miller-Fisher e síndrome de Reiter. Aves e produtos avícolas têm sido implicados como os principais veículos para a infecção por Campylo...

  13. 空肠弯曲杆菌ERIC-PCR分型技术研究%Study on construction and application of ERIC-PCR method for typing Campylobacter jejuni

    Institute of Scientific and Technical Information of China (English)

    唐梦君; 高玉时; 张小燕; 陆俊贤; 施祖灏; 唐修君; 陈大伟

    2013-01-01

    目的:建立空肠弯曲杆菌肠杆菌科基因间重复一致序列PCR(ERIC-PCR)的分子分型技术,快速分析空肠弯曲杆菌指纹谱。方法本研究提取空肠弯曲杆菌ATCC33560的基因组DNA作为模板,采用对优化项目设置梯度其它条件不变的方法,对ERIC-PCR反应中的模板量、引物浓度和退火温度等进行优化,建立空肠弯曲杆菌的ERIC-PCR分型技术,并采用该技术对20株空肠弯曲杆菌的指纹图谱进行了分析。结果 ERIC-PCR反应体系中DNA模板量96ng/25μL,ERIC1、ERIC2引物浓度各0.8μmol/L,退火温度40℃时,指纹图谱条带清晰、明亮;20株空肠弯曲杆菌临床分离株ERIC-PCR指纹图谱差异较大,可在160bp~32000bp范围内出现2条~13条条带,分为14型。结论研究显示成功建立了空肠弯曲杆菌ERIC-PCR指纹图谱分型技术,应用该方法可从分子水平上对空肠弯曲杆菌基因组DNA进行快速指纹图谱分析,具有简便和快速等优点,能够为空肠弯曲杆菌流行病学调查提供科学依据。%Objective To generate an efifcient enterobacterial repetitive intergenic consensus sequence (ERIC-PCR) typing and analyze molecular type of different food-borne Campylobacter jejuni.Method Genomic DNA of Campylo-bacter jejuni reference strain ATCC33560 was used as the template for PCR. Target sequences in Campylobacter jejuni genomic DNA were amplified with the primers designed according to the reference. To obtain optimum fingerprint maps,template and primer concentration of the reaction system and annealing temperature of PCR,the factors to be optimized were designed in different concentration grads and other factors were ifxed. Then 20 Campylobacter jejuni isolates were classiifed by PCR.Result The optimal concentration of template DNA was 96ng/25mL,the concentration of primers was 0.8mmol/L each primer and annealing temperature of PCR was 40 ℃.The ERIC-PCR ifngerprint maps of different isolates

  14. Cepas de Campylobacter jejuni resistentes a quinolonas aisladas de humanos, gallinas y pollos

    OpenAIRE

    Rodolfo Notario; Noemí Borda; Telma Gambandé; Joaquín Bermejo; Adriana Ponessa; Virginia Toledo

    2011-01-01

    Se compararon 8 aislamientos de Campylobacter jejuni provenientes de humanos con enfermedad diarreica aguda, con 23 aislamientos de cloaca de gallinas y pollos obtenidos de zonas próximas a la ciudad de Rosario, todos resistentes a la ciprofloxacina. Las muestras se sembraron en agar selectivo y se incubaron en microaerofilia a 42 °C. Las colonias se identificaron con el método tradicional. Los aislamientos se conservaron a -70 °C en caldo cerebro corazón con 17% v/v de glicerina. La clonalid...

  15. Characterization of a Plasmid-Encoded Type IV Secretion System in Campylobacter jejuni 81-176

    Science.gov (United States)

    2004-01-01

    aliquots and washed with one ml of either arylsulphatase buffer 1 (0.1 M Tris, pH 7.2) or arylsulphatase buffer 2 (2 mM tyramine , 0.1 M Tris, pH 7.2...carbon source and tyramine on its synthesis. J Bacteriol 139:80-87. 107 Hendrixson, D. R. and V. J. DiRita. 2003. Transcription of sigma54...Rutherford, A.H. van Vliet, S. Whitehead, and B.G. Barrell. 2000. The complete genome sequence of the food -borne pathogen Campylobacter jejuni reveals

  16. Campylobacter jejuni contamination of broiler carcasses: Population dynamics and genetic profiles at slaughterhouse level.

    Science.gov (United States)

    Gruntar, Igor; Biasizzo, Majda; Kušar, Darja; Pate, Mateja; Ocepek, Matjaž

    2015-09-01

    Six slaughter batches deriving from six typical industrial broiler flocks were examined for the presence, quantity and genetic characteristics of contaminating Campylobacter jejuni (C. jejuni) during various stages of slaughtering and carcass processing. To assess the contamination dynamics of the carcasses, the analyses were always conducted on neck-skin samples from the same pre-selected and carefully marked carcasses in each batch. The skin samples were taken sequentially at three successive slaughter-line locations in the evisceration room, after three-day refrigeration and after three-day freezing procedure. Caecal samples from the same animals were also tested, as well as samples from the slaughterhouse environment before and after slaughtering. The samples were analysed by the ISO10272 isolation method; campylobacters from neck-skin samples were also quantified. Isolates were species-identified and genotyped by pulsed-field gel electrophoresis (PFGE). On average, the highest C. jejuni skin contamination was detected at the first sampling point (post-plucking), suggesting that the majority of Campylobacter contamination actually occurs before the entrance to the eviscerating room, probably during the preceding plucking stage. In two out of five positive batches, an additional increase in contamination was recorded after the evisceration step. An evident trend of increasing contamination level was detected when successive batches were compared at each of two initial sampling sites in the evisceration room, indicating an accumulation of contaminating C. jejuni at some point before the evisceration room. Three-day refrigeration and three-day freezing caused a 4.5- and 142-fold drop in mean C. jejuni CFU counts, respectively. All pre-slaughtering samples from the slaughterhouse environment were negative and all post-slaughtering samples, except water from the scalding tank, were positive. Pulsotypes were limited: altogether five different types were detected

  17. Impact of Campylobacter jejuni cj0268c knockout mutation on intestinal colonization, translocation, and induction of immunopathology in gnotobiotic IL-10 deficient mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Although Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden, the underlying molecular mechanisms of induced intestinal immunopathology are still not well understood. We have recently generated a C. jejuni mutant strain NCTC11168::cj0268c, which has been shown to be involved in cellular adhesion and invasion. The immunopathological impact of this gene, however, has not been investigated in vivo so far. METHODOLOGY/PRINCIPAL FINDINGS: Gnotobiotic IL-10 deficient mice were generated by quintuple antibiotic treatment and perorally infected with C. jejuni mutant strain NCTC11168::cj0268c, its complemented version (NCTC11168::cj0268c-comp-cj0268c, or the parental strain NCTC11168. Kinetic analyses of fecal pathogen loads until day 6 post infection (p.i. revealed that knockout of cj0268c did not compromise intestinal C. jejuni colonization capacities. Whereas animals irrespective of the analysed C. jejuni strain developed similar clinical symptoms of campylobacteriosis (i.e. enteritis, mice infected with the NCTC11168::cj0268c mutant strain displayed significant longer small as well as large intestinal lengths indicative for less distinct C. jejuni induced pathology when compared to infected control groups at day 6 p.i. This was further supported by significantly lower apoptotic and T cell numbers in the colonic mucosa and lamina propria, which were paralleled by lower intestinal IFN-γ and IL-6 concentrations at day 6 following knockout mutant NCTC11168::cj0268c as compared to parental strain infection. Remarkably, less intestinal immunopathology was accompanied by lower IFN-γ secretion in ex vivo biopsies taken from mesenteric lymphnodes of NCTC11168::cj0268c infected mice versus controls. CONCLUSION/SIGNIFICANCE: We here for the first time show that the cj0268c gene is involved in mediating C. jejuni induced immunopathogenesis in vivo. Future studies will provide further

  18. Effects of low-level ciprofloxacin challenge in the in vitro development of ciprofloxacin resistance in Campylobacter jejuni.

    Science.gov (United States)

    Hannula, Minna; Hänninen, Marja-Liisa

    2008-09-01

    The effects on MIC values and the selection of different base substitutions in the quinolone resistance determining region (QRDR) of gyrA were studied on initially ciprofloxacin-susceptible Campylobacter jejuni strains by challenging them to 0.125 mg/L of ciprofloxacin. This ciprofloxacin challenge selected variants with ciprofloxacin MIC levels up to 32 mg/L. Repeated experiments under identical conditions resulted in different responses in MIC levels and alterations in the QRDR of gyrA. A characteristic outcome to ciprofloxacin challenges was the appearance of double peaks in the sequencing chromatograms of QRDR. This finding suggested the coexistence of subpopulations possessing Thr86 --> Ile and/or Asp90 --> Asn mutations alongside the unmutated parent population. In some cases, bacterial variants expressing ciprofloxacin-resistant phenotypes possessed no mutations in their QRDR. These variants were prone to regain susceptibility to ciprofloxacin rapidly after the removal of the selection pressure, whereas the QRDR-mutated variants persisted over several subcultivations in a medium without ciprofloxacin. In conclusion, a low ciprofloxacin concentration of 0.125 mg/L selects a variety of QRDR mutations and also a QRDR-independent resistance mechanism, which may coexist with each other in a C. jejuni population. Persistent ciprofloxacin challenge selects Thr86 --> Ile and/or Asp90 --> Asn mutants.

  19. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    Science.gov (United States)

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-02

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli.

  20. Using Major Outer Membrane Protein Typing as an Epidemiological Tool To Investigate Outbreaks Caused by Milk-Borne Campylobacter jejuni Isolates in California

    Science.gov (United States)

    Mandrell, Robert E.; Yuan, Jean; Bates, Anna; Manalac, Rosa; Mohle-Boetani, Janet; Kimura, Akiko; Lidgard, Janice; Miller, William G.

    2013-01-01

    We describe using major outer membrane protein (MOMP) typing as a screen to compare the Campylobacter jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milk-borne campylobacteriosis outbreak investigations in California. The genetic relatedness of clinical and environmental strains with identical or closely related porA sequences was confirmed by multilocus sequence typing and pulsed-field gel electrophoresis analysis. The first outbreak involved 1,644 C. jejuni infections at 11 state correctional facilities and was associated with consumption of pasteurized milk supplied by an on-site dairy (dairy A) at a prison in the central valley. The second outbreak involved eight confirmed and three suspect C. jejuni cases linked to consumption of commercial raw milk and raw chocolate colostrum at another central valley dairy (dairy B). Both dairies bottled fluid milk on the farm and distributed the finished product to off-site locations. Altogether, C. jejuni was isolated from 7 of 15 (46.7%) bovine fecal, 12 of 20 (60%) flush alley water, and 1 of 20 (5%) lagoon samples collected on dairy A. At dairy B, C. jejuni was cultured from 9 of 26 (34.6%) bovine fecal samples. Environmental strains indistinguishable from the clinical outbreak strains were found in five flush alley water samples (dairy A) and four bovine fecal samples (dairy B). The findings demonstrate that MOMP typing is a useful tool to triage environmental isolates prior to conducting more labor-intensive molecular typing methods. PMID:23115263

  1. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Bui Xuan

    2012-10-01

    Full Text Available Abstract Background Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre-exposure to heat, starvation, oxidative or osmotic stresses encountered in the environment may affect the subsequent interaction of C. jejuni with free-living protozoa. To test this hypothesis, we examined the impact of environmental stress on expression of virulence-associated genes (ciaB, dnaJ, and htrA of C. jejuni and on its uptake by and intracellular survival within Acanthamoeba castellanii. Results Heat, starvation and osmotic stress reduced the survival of C. jejuni significantly, whereas oxidative stress had no effect. Quantitative RT-PCR experiments showed that the transcription of virulence genes was slightly up-regulated under heat and oxidative stresses but down-regulated under starvation and osmotic stresses, the htrA gene showing the largest down-regulation in response to osmotic stress. Pre-exposure of bacteria to low nutrient or osmotic stress reduced bacterial uptake by amoeba, but no effect of heat or oxidative stress was observed. Finally, C. jejuni rapidly lost viability within amoeba cells and pre-exposure to oxidative stress had no significant effect on intracellular survival. However, the numbers of intracellular bacteria recovered 5 h post-gentamicin treatment were lower with starved, heat treated or osmotically stressed bacteria than with control bacteria. Also, while ~1.5 × 103 colony forming unit/ml internalized bacteria could typically be recovered 24 h post-gentamicin treatment with control bacteria, no starved, heat treated or osmotically stressed bacteria could be recovered at this time point. Overall, pre-exposure of C. jejuni to environmental stresses did not promote intracellular survival in A. castellanii

  2. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive.

    Directory of Open Access Journals (Sweden)

    Alexandre Thibodeau

    Full Text Available Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05. Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.

  3. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  4. Transducer Like Proteins of Campylobacter jejuni 81-176: Role in chemotaxis and colonization of the chicken gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Gireesh eRajashekara

    2015-05-01

    Full Text Available Transducer Like Proteins (Tlps, also known as Methyl accepting chemotaxis proteins (MCP, enable enteric pathogens to respond to changing nutrient levels in the environment by mediating taxis towards or away from specific chemoeffector molecules such as nutrients. Despite recent advances in the characterization of chemotaxis responses in Campylobacter jejuni, the impact of Tlps on the adaptation of this pathogen to disparate niches and hosts is not fully characterized. The latter is particularly evident in the case of C. jejuni 81-176, a strain that is known to be highly invasive. Furthermore, the cytoplasmic group C Tlps (Tlp5, 6, and 8 was not extensively evaluated. Here, we investigated the role of C. jejuni 81-176 Tlps in chemotaxis towards various substrates, biofilm formation, in vitro interaction with human intestinal cells, and chicken colonization. We found that the ∆tlp6 and ∆tlp10 mutants exhibited decreased chemotaxis towards aspartate whereas the ∆tlp6 mutant displayed a decreased chemotaxis towards Tri-Carboxylic Acid (TCA cycle intermediates such as pyruvate, isocitrate, and succinate. Our findings also corroborated that more than one Tlp is involved in mediating chemotaxis towards the same nutrient. The deletion of tlps affected important phenotypes such as motility, biofilm formation, and invasion of human intestinal epithelial cells (INT-407. The ∆tlp8 mutant displayed increased motility in soft agar and showed decreased biofilm formation. The ∆tlp8 and ∆tlp9 mutants were significantly defective in invasion in INT-407 cells. The ∆tlp10 mutant was defective in colonization of the chicken proximal and distal gastrointestinal tract, while the ∆tlp6 and ∆tlp8 mutants showed reduced colonization of the duodenum and jejunum. Our results highlight the importance of Tlps in C. jejuni’s adaptation and pathobiology.

  5. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    Science.gov (United States)

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  6. Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Dharanesh Gangaiah

    Full Text Available BACKGROUND: Inorganic polyphosphate (poly P plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Deltappk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Deltappk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Deltappk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. CONCLUSIONS/SIGNIFICANCE: Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.

  7. Quantification of Campylobacter jejuni cross-contamination via hands, cutlery, and cutting board during preparation of a chicken fruit salad

    NARCIS (Netherlands)

    Verhoeff-Bakkenes, L.; Beumer, R.R.; Jonge, de R.; Leusden, van F.M.; Jong, de A.E.I.

    2008-01-01

    Using artificially contaminated chicken, the quantitative overall effect of Campylobacter jejuni cross-contamination, either via cutlery, cutting board, or hands, on the microbiological quality of a chicken salad was tested to identify the most critical transfer route. The end contamination level of

  8. Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: role of amoeba-mediated depletion of dissolved oxygen

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Winding, Anne; Qvortrup, Klaus

    2012-01-01

    Campylobacter jejuni is a major cause of infectious diarrhoea worldwide but relatively little is known about its ecology. In this study, we examined its interactions with Acanthamoeba castellanii, a protozoan suspected to serve as a reservoir for bacterial pathogens. We observed rapid degradation...

  9. A Deep-Rough Mutant of Campylobacter Jejuni 81-176 Is Noninvasive for Intestinal Epithelial Cells

    Science.gov (United States)

    2004-04-01

    worldwide (7, 17). In addition, C. jejuni is associated with the development of a devastating neurological disorder, Guillain -Barré syndrome, perhaps... Guillain -Barré syndrome. J. Infect. Dis. 178:1549–1550. 17. Oberhelman, R., and D. Taylor. 2000. Campylobacter infections in develop- ing countries

  10. Prevalence and diversity of Campylobacter jejuni in pig herds on farms with and without cattle or poultry

    DEFF Research Database (Denmark)

    Boes, J.; Nersting, L.; Nielsen, Eva;

    2005-01-01

    The prevalence and diversity of Campylobacter jejuni was investigated in pig herds on farms with and without cattle or poultry production. A bacteriological screening of pig cecal samples from 247 finisher herds was carried out at the slaughterhouse. Subsequently, a follow-up study was conducted ...

  11. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    Science.gov (United States)

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  12. Campylobacter jejuni, an uncommon cause of splenic abscess diagnosed by 16S rRNA gene sequencing.

    Science.gov (United States)

    Seng, Piseth; Quenard, Fanny; Menard, Amélie; Heyries, Laurent; Stein, Andreas

    2014-12-01

    Splenic abscess is a rare disease that primarily occurs in patients with splenic trauma, endocarditis, sickle cell anemia, or other diseases that compromise the immune system. This report describes a culture-negative splenic abscess in an immunocompetent patient caused by Campylobacter jejuni, as determined by 16S rRNA gene sequencing.

  13. RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35 box

    DEFF Research Database (Denmark)

    Petersen, Lise; Larsen, Thomas S.; Ussery, David W.

    2003-01-01

    We have used a hidden Markov model (HMM) to identify the consensus sequence of the RpoD promoters in the genome of Campylobacter jejuni. The identified promoter consensus sequence is unusual compared to other bacteria, in that the region upstream of the TATA-box does not contain a conserved -35...

  14. Pyruvate relieves the necessity of high induction levels of catalase and enables Campylobacter jejuni to grow under fully aerobic conditions

    NARCIS (Netherlands)

    Verhoeff-Bakkenes, L.; Arends, A.P.; Snoep, J.L.; Zwietering, M.H.; Jonge, de R.

    2008-01-01

    Aims: Several cases of campylobacteriosis reported worldwide seemingly conflict with the strict growth requirements and sensitivity to environmental stress of Campylobacter jejuni. In this study, the need for a micro-aerobic environment [dissolved oxygen tension (DOT): 0·1¿90%; 100% air saturation)

  15. Control of VTEC O157 and Campylobacter jejuni/coli on cattle farms : Effective interventions and implementation

    NARCIS (Netherlands)

    Ellis-Iversen, J

    2009-01-01

    Verocytotoxogenic E. coli O157 (VTEC O157) and Campylobacter jejuni/coli are zoonotic pathogens of public health importance, which are commonly carried and shed by cattle. Control at farm level needed isto limit shedding and contamination of the environment and the human food chain. On- farm risk fa

  16. L-Fucose metabolism in camplobacter jejuni

    Science.gov (United States)

    Campylobacter jejuni is a gastrointestinal pathogen once considered asaccharolytic, but now known to metabolize fucose. Strains with the fuc locus encode enzymes for fucose uptake and metabolism and show a competitive colonization advantage in the piglet disease model. C. jejuni NCTC11168 shows redu...

  17. Establishment and application of loop-mediated isothermal amplification method for rapid detection of Campylobacter jejuni%空肠弯曲杆菌LAMP检测方法的建立及初步应用

    Institute of Scientific and Technical Information of China (English)

    唐梦君; 周生; 张小燕; 唐修君; 顾荣; 高玉时

    2012-01-01

    In order to establish a method of loop-mediated isothermal amplification (LAMP) for detection of Campylobacter jejuni , specific loop-mediated isothermal amplification primers were designed, and a novel and highly specific loop-mediated isothermal amplification assay for the sensitive and rapid detection of Campylobacter jejuni were developed. According to Campylobacter jejuni gyrA gene sequences published on GenBank, the natural infection rate of Campylobacter jejuni was tested in ten chicken breeds. The results show that the products of LAMP demonstrated the typical ladder patterns and digested fragments were found with the predicted sizes. Sensitivity of the LAMP assay for direct detection of Campylobacter jejuni in pure cultures was 20 cfu/mL. It was 10-fold more sensitive than that of the conventional PCR assay. The assay identified Campylobacter jejuni correctly, but did not detect 7 non-Campylobacter jejuni strains. The natural infection rate of Campylobacter jejuni was 6%-90% in the ten chicken breeds. The LAMP assay is a sensitive, rapid and simple tool for the detection of Campylobacter jejuni and will play a role in clinical detection.%目的 建立一种灵敏的环介导等温扩增方法(Loop-mediated Isothermal Amplification,LAMP)用于空肠弯曲杆菌(Campylobacter jejuni)的快速检测.方法 根据已公布的空肠弯曲杆菌旋转酶基因(gyrA)设计引物,建立并优化LAMP反应体系,对检测方法的特异性和灵敏度进行验证,并运用该方法对我国不同地方鸡种空肠弯曲杆菌的携带率进行调查.结果 该方法能扩增出典型的梯形条带,且扩增产物的酶切鉴定结果与理论值相符;对单增李斯特菌等8株实验菌株进行检测,仅空肠弯曲杆菌的LAMP结果为阳性;该方法检测空肠弯曲杆菌纯培养物的灵敏度为20 cfu/mL,高于常规PCR;不同地方鸡种空肠弯曲杆菌携带率介于6%~90%之间,差异显著.结论 本试验建立的空肠弯曲杆菌LAMP检测

  18. An enhanced technique combining pre-enrichment and passive filtration increases the isolation efficiency of Campylobacter jejuni and Campylobacter coli from water and animal fecal samples.

    Science.gov (United States)

    Jokinen, Cassandra C; Koot, Jacqueline M; Carrillo, Catherine D; Gannon, Victor P J; Jardine, Claire M; Mutschall, Steven K; Topp, Edward; Taboada, Eduardo N

    2012-12-01

    Improved isolation techniques from environmental water and animal samples are vital to understanding Campylobacter epidemiology. In this study, the efficiency of selective enrichment in Bolton Broth (BB) followed by plating on charcoal cefoperazone deoxycholate agar (CCDA) (conventional method) was compared with an approach combining BB enrichment and passive filtration (membrane method) adapted from a method previously developed for testing of broiler meat, in the isolation of thermophilic campylobacters from surface water and animal fecal samples. The conventional method led to recoveries of Campylobacter from 36.7% of the water samples and 78.0% of the fecal samples and similar numbers, 38.3% and 76.0%, respectively, were obtained with the membrane method. To investigate the genetic diversity of Campylobacter jejuni and Campylobacter coli obtained by these two methods, isolates were analyzed using Comparative Genomic Fingerprinting, a high-resolution subtyping technique. The conventional and membrane methods yielded similar numbers of Campylobacter subtypes from water (25 and 28, respectively) and fecal (15 and 17, respectively) samples. Although there was no significant difference in recovery rates between the conventional and membrane methods, a significant improvement in isolation efficiency was obtained by using the membrane method, with a false-positive rate of 1.6% compared with 30.7% obtained using the conventional method. In conclusion, although the two methods are comparable in sensitivity, the membrane method had higher specificity, making it a cost-effective procedure for the enhanced isolation of C. jejuni and C. coli from water and animal fecal samples.

  19. Contribution of amino acid catabolism to the tissue specific persistence of Campylobacter jejuni in a murine colonization model.

    Directory of Open Access Journals (Sweden)

    Dirk Hofreuter

    Full Text Available Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the invitro and invivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.

  20. Survival of Campylobacter jejuni in co-culture with Acanthamoeba castellanii: role of amoeba-mediated depletion of dissolved oxygen.

    Science.gov (United States)

    Bui, Xuan Thanh; Winding, Anne; Qvortrup, Klaus; Wolff, Anders; Bang, Dang Duong; Creuzenet, Carole

    2012-08-01

    Campylobacter jejuni is a major cause of infectious diarrhoea worldwide but relatively little is known about its ecology. In this study, we examined its interactions with Acanthamoeba castellanii, a protozoan suspected to serve as a reservoir for bacterial pathogens. We observed rapid degradation of intracellular C.jejuni in A.castellanii 5 h post gentamicin treatment at 25°C. Conversely, we found that A.castellanii promoted the extracellular growth of C.jejuni in co-cultures at 37°C in aerobic conditions. This growth-promoting effect did not require amoebae - bacteria contact. The growth rates observed with or without contact with amoeba were similar to those observed when C.jejuni was grown in microaerophilic conditions. Preconditioned media prepared with live or dead amoebae cultivated with or without C.jejuni did not promote the growth of C.jejuni in aerobic conditions. Interestingly, the dissolved oxygen levels of co-cultures with or without amoebae - bacteria contact were much lower than those observed with culture media or with C.jejuni alone incubated in aerobic conditions, and were comparable with levels obtained after 24 h of growth of C.jejuni under microaerophilic conditions. Our studies identified the depletion of dissolved oxygen by A.castellanii as the major contributor for the observed amoeba-mediated growth enhancement.

  1. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.

    Science.gov (United States)

    Sarjit, Amreeta; Wang, Yi; Dykes, Gary A

    2015-04-01

    Gallic acid has been suggested as a potential antimicrobial for the control of Campylobacter but its effectiveness is poorly studied. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of gallic acid against Campylobacter jejuni (n = 8) and Campylobacter coli (n = 4) strains was determined. Gallic acid inhibited the growth of five C. jejuni strains and three C. coli strains (MIC: 15.63-250 μg mL(-1)). Gallic acid was only bactericidal to two C. coli strains (MBC: 125 and 62.5 μg mL(-1)). The mechanism of the bactericidal effect against these two strains (and selected non-susceptible controls) was investigated by determining decimal reduction times and by monitoring the loss of cellular content and calcium ions, and changes in cell morphology. Gallic acid did not result in a loss of cellular content or morphological changes in the susceptible strains as compared to the controls. Gallic acid resulted in a loss of calcium ions (0.58-1.53 μg mL(-1) and 0.54-1.17 μg mL(-1), respectively, over a 180 min period) from the susceptible strains but not the controls. Gallic acid is unlikely to be an effective antimicrobial against Campylobacter in a practical sense unless further interventions to ensure an effective bactericidal mode of action against all strains are developed.

  2. Development of a rapid and sensitive method combining a cellulose ester microfilter and a real-time quantitative PCR assay to detect Campylobacter jejuni and Campylobacter coli in 20 liters of drinking water or low-turbidity waters.

    Science.gov (United States)

    Tissier, Adeline; Denis, Martine; Hartemann, Philippe; Gassilloud, Benoît

    2012-02-01

    Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.

  3. Campylobacter jejuni carbon starvation protein A (CstA) is involved in peptide utilization, motility and agglutination, and has a role in stimulation of dendritic cells.

    Science.gov (United States)

    Rasmussen, J J; Vegge, C S; Frøkiær, H; Howlett, R M; Krogfelt, K A; Kelly, D J; Ingmer, H

    2013-08-01

    Campylobacter jejuni is the most frequent cause of severe gastroenteritis in the developed world. The major symptom of campylobacteriosis is inflammatory diarrhoea. The molecular mechanisms of this infection are poorly understood compared to those of less frequent disease-causing pathogens. In a previous study, we identified C. jejuni proteins that antibodies in human campylobacteriosis patients reacted with. One of the immunogenic proteins identified (Cj0917) displays homology to carbon starvation protein A (CstA) from Escherichia coli, where this protein is involved in the starvation response and peptide uptake. In contrast to many bacteria, C. jejuni relies on amino acids and organic acids for energy, but in vivo it is highly likely that peptides are also utilized, although their mechanisms of uptake are unknown. In this study, Biolog phenotype microarrays have been used to show that a ΔcstA mutant has a reduced ability to utilize a number of di- and tri-peptides as nitrogen sources. This phenotype was restored through genetic complementation, suggesting CstA is a peptide uptake system in C. jejuni. Furthermore, the ΔcstA mutant also displayed reduced motility and reduced agglutination compared to WT bacteria; these phenotypes were also restored through complementation. Murine dendritic cells exposed to UV-killed bacteria showed a reduced IL-12 production, but the same IL-10 response when encountering C. jejuni ΔcstA compared to the WT strain. The greater Th1 stimulation elicited by the WT as compared to ΔcstA mutant cells indicates an altered antigenic presentation on the surface, and thus an altered recognition of the mutant. Thus, we conclude that C. jejuni CstA is important not only for peptide utilization, but also it may influence host-pathogen interactions.

  4. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress.

    Science.gov (United States)

    Feng, Jinsong; Lamour, Guillaume; Xue, Rui; Mirvakliki, Mehr Negar; Hatzikiriakos, Savvas G; Xu, Jie; Li, Hongbin; Wang, Shuo; Lu, Xiaonan

    2016-12-05

    Campylobacter jejuni is a microaerophilic pathogen and leading cause of human gastroenteritis. The presence of C. jejuni encased in biofilms found in meat and poultry processing facilities may be the major strategy for its survival and dissemination in aerobic environment. In this study, Staphylococcus aureus, Salmonella enterica, or Pseudomonas aeruginosa was mixed with C. jejuni F38011 as a culture to form dual-species biofilms. After 4days' exposure to aerobic stress, no viable C. jejuni cells could be detected from mono-species C. jejuni biofilm. In contrast, at least 4.7logCFU/cm(2) of viable C. jejuni cells existed in some dual-species biofilms. To elucidate the mechanism of protection mode, chemical, physical and morphological features of biofilms were characterized. Dual-species biofilms contained a higher level of extracellular polymeric substances with a more diversified chemical composition, especially for polysaccharides and proteins, than mono-species C. jejuni biofilm. Structure of dual-species biofilms was more compact and their surface was >8 times smoother than mono-species C. jejuni biofilm, as indicated by atomic force microscopy. Under desiccation stress, water content of dual-species biofilms decreased slowly and remained at higher levels for a longer time than mono-species C. jejuni biofilm. The surface of all biofilms was hydrophilic, but total surface energy of dual-species biofilms (ranging from 52.5 to 56.2mJ/m(2)) was lower than that of mono-species C. jejuni biofilm, leading to more resistance to wetting by polar liquids. This knowledge can aid in developing intervention strategies to decrease the survival and dispersal of C. jejuni into foods or environment.

  5. Campylobacter jejuni colonization in wild birds: results from an infection experiment.

    Directory of Open Access Journals (Sweden)

    Jonas Waldenström

    Full Text Available Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations.

  6. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants.

    Science.gov (United States)

    Barrero-Tobon, Angelica M; Hendrixson, David R

    2014-09-01

    The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.

  7. In vitro susceptibility of Campylobacter jejuni from Kuwait to tigecycline & other antimicrobial agents

    Directory of Open Access Journals (Sweden)

    M John Albert

    2013-01-01

    Full Text Available Background & objectives: There is an increasing frequency of resistance of Campylobacter jejuni to antimicrobial agents making treatment difficult. In this study, the in vitro susceptibility of C. jejuni isolates collected over an eight year period was tested against tigecycline, a glycylcycline, the previously tested antimicrobial agents in Kuwait, ciprofloxacin, erythromycin and tetracycline, and other antimicrobial agents not previously tested in Kuwait, amoxicillin-clavulanic acid, gentamicin, imipenem and meropenem. Methods: A total of 97 C. jejuni isolates from diarrhoeal stools of Kuwaiti patients during 2002-2010 were studied for susceptibility to the above antimicrobial agents by E test. Results: Erythromycin resistance increased from 5.0 per cent in 2002-2003 to 13.8 per cent in 2007-2010. The figures for ciprofloxacin resistance for the same periods were 53 and 65.5 per cent, respectively. Tetracycline resistance increased from 40.0 per cent in 2003-2006 to 62.1 per cent in 2007-2010 (P=0.05. However, all isolates were uniformly susceptible to tigecycline and other antimicrobial agents. Interpretation & conclusions: There was a progressive increase in the prevalence of resistance to ciprofloxacin, erythromycin and tetracycline. As all isolates were uniformly susceptible to tigecycline, this antimicrobial agent can be considered as a potential candidate for treatment in clinical studies.

  8. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling.

    Science.gov (United States)

    Corcionivoschi, Nicolae; Alvarez, Luis A J; Sharp, Thomas H; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G; Bourke, Billy

    2012-07-19

    Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling.

  9. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro

    Science.gov (United States)

    Salmonella Enteritidis and Campylobacter jejuni are two major food-borne pathogens that are transmitted through poultry products. These pathogens colonize the chicken cecum leading, to contamination of carcasses during slaughter and subsequent processing operations. We investigated the antimicrobial...

  10. Acute Pancreatitis in Association with Campylobacter jejuni- Associated Diarrhea in a 15-Year-Old with CFTR Mutations: Is There a Link?

    Directory of Open Access Journals (Sweden)

    Leena Kandula

    2006-09-01

    Full Text Available Context: Acute pancreatitis has occasionally been reported in association with Campylobacter jejuni infection in humans. However, the mechanism linking Campylobacter jejuni infection and pancreatitis isunclear. Acute pancreatitis in association with an infectious illness may be related to underlying genetic mutations. For instance, studies show that mutations in the cystic fibrosis transmembrane conductance regulator gene increase the susceptibility for acute and chronic pancreatitis. Case report :We describe a patient with Campylobacter jejuni infection who developed acute pancreatitis in the setting of an underlying cystic fibrosis transmembrane conductance regulator gene mutation. Discussion :In this patient with an underlying mutation in the CFTR gene, we propose that the interaction between the mutant gene and an environmental factor, Campylobacter jejuni infection, resulted in pancreatitis.

  11. Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Mark Reuter

    Full Text Available The coupling of environmental sensing to flagella-mediated directed motility allows bacteria to move to optimum environments for growth and survival, either by sensing external stimuli (chemotaxis or monitoring internal metabolic status (energy taxis. Sensing is mediated by transducer-like proteins (Tlp, either located in the membrane or in the cytoplasm, which commonly influence motility via the CheA-CheY chemotaxis pathway. In this study we have investigated the role of PAS-domain-containing intracellular Tlp-sensors in energy taxis of the food-borne pathogen Campylobacter jejuni, using plate- and tube-based assays utilising the conversion of the redox indicator dyes triphenyl tetrazolium chloride (TTC and resazurin. Inactivation of the genes encoding the Campylobacter Energy Taxis system (CetA (Tlp9 and CetB (Aer2 in C. jejuni strain NCTC 11168 resulted in reduced taxis. Inactivation of the cj1191c gene, encoding the CetB homolog CetC (Aer1, did not affect taxis per se, but the cetC gene complemented a cetB mutant in trans, indicating that CetC can form a functional signal transduction complex with CetA in the absence of CetB. Inactivation of both CetB and CetC resulted in greatly reduced taxis confirming the role of CetC in energy taxis. Inactivation of the cj1110c gene, encoding Tlp8 (CetZ, a cytoplasmic sensor with two PAS-domains, resulted in increased taxis, a phenotype opposite to that of CetAB. Inactivation of the cheA gene resulted in the same overall phenotype as the cetAB mutant in both wild-type and cetZ backgrounds, suggesting that both systems use the CheA system for signal transduction. Absence of both CetAB and CetZ resulted in the cetAB taxis phenotype, suggesting that CetZ is subordinate to CetAB. In conclusion, we present evidence that C. jejuni balances the input from two counteracting PAS-domain-containing sensory systems to position itself for optimal usage of energy resources.

  12. A novel Campylobacter jejuni sequence type from a culture-negative patient in the Gambia.

    Directory of Open Access Journals (Sweden)

    Gerard A J Morris

    Full Text Available The introduction of molecular diagnostic methods is crucial for improved understanding of the aetiology and epidemiology of bacterial infections in communities in resource poor settings. A blood sample from a 7 month old patient diagnosed with malaria in 2001 in a Gambian outpatient clinic was reported as culture negative after it was subjected to traditional bacterial culture protocols. We re-addressed the analysis of the blood sample from this case more recently (after 6.5 years in archival storage in pilot work establishing 16S rRNA PCR in our molecular laboratory. Initial 16S rRNA PCR results confirmed the presence of bacterial DNA in the sample. 16S rRNA sequence analysis identified the organism as Campylobacter spp. In light of the molecular evidence we successfully grew the organism using appropriate culture conditions and subsequently biochemically confirmed that the isolate was Campylobacter jejuni. PCR and DNA sequencing of a set of seven C. jejuni housekeeping genes and in silico Multilocus Sequence Typing (MLST analysis revealed that the isolate exhibits a novel sequence type (ST of C. jejuni (ST 2928 and belongs to ST-443 clonal complex. This study demonstrates the potential for molecular tools to enhance the diagnosis of bacterial infections, which remain a major killer globally, not least in children in the developing world. Improvements in diagnostics are needed, and will be important not only for sick individuals but also for populations, where better measures of disease burden will contribute significantly to the improvement of public health policy.

  13. Investigation and resistance analysis of Campylobacter jejuni in broiler%鸡源空肠弯曲菌调查与耐药性分析

    Institute of Scientific and Technical Information of China (English)

    孙桂霞; 徐世文

    2015-01-01

    Campylobacter jejuni is a kind of pathogenic bacteria which cause serious damage to the human and animal health. To understand the epidemiological and drug resistance of Campylobacter jejuni in broiler of Harbin, the present study investigated the infection status of Campylobacter jejuni in broiler in Harbin and its surrounding area, meanwhile, detected the drug resistance and expression of resistant genes. The results showed that the average infections of chicken farms were 35.67%. Campylobacter jejuni had different degrees of antibiotic resistance to 13 kinds of antibiotics, which the antibiotic resistance of tetracycline and ampicil in sodium were 100%, while there were multiple drug resistance. The highest drug-resistant spectrums were 11, while the detection rate of bacterial strain was 14.95%. 57.94%bacterial strain contained tetA, tetB, tetC, blaCTX-M, blaTEM and blaNDM-1 genes, that the detection rate were 57.94%, 66.36%, 28.97%, 42.99%, 55.14% and 8.41%, respectively. However, the present study didn't detect tetD and blaSHV-1 genes. The results showed that the infections of Campylobacter jejuni in chicken farms of Harbin were occured commonly, while there were multiple drug resistance. It provided the basis for effective prevention and treatment of Campylobacter jejuni.%空肠弯曲菌是严重危害人畜健康的病原菌,为了解哈尔滨市肉鸡源性空肠弯曲菌流行病学和耐药性,研究调查哈尔滨市周边肉鸡场空肠弯曲菌感染状况,通过耐药性和耐药基因检测,发现鸡场平均感染率为35.67%,对13种抗生素均有不同程度耐药性,四环素和氨苄西林钠达100%,存在多重耐药性,最高耐药谱达11个,检出菌株率为14.95%.57.94%菌株携带tetA、tetB、tetC、blaCTX-M、blaTEM和blaNDM-1基因,检出率分别为57.94%、66.36%、28.97%、42.99%、55.14%和8.41%,而tetD和blaSHV-1基因未检出.结果表明,哈尔滨市肉鸡场空肠弯曲菌感染普遍,存在多重耐药并携带多种耐药

  14. Development of a Chemically Defined Medium suitable for [35S]-methionine labeling of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Birk, Tina; Rosenquist, Hanne; Knøchel, Susanne

    Campylobacter jejuni is a micro-aerobic foodborne pahtogenic bacteria generally regarded as one of the major causes of gastroenteritis in humans worlwoide. Consumption and handling of fresh poultry meat are considered the primary sources of campylobacteriosis in Denmark.......Campylobacter jejuni is a micro-aerobic foodborne pahtogenic bacteria generally regarded as one of the major causes of gastroenteritis in humans worlwoide. Consumption and handling of fresh poultry meat are considered the primary sources of campylobacteriosis in Denmark....

  15. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    OpenAIRE

    Fields Joshua A; Thompson Stuart A

    2012-01-01

    Abstract Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previou...

  16. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms

    DEFF Research Database (Denmark)

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller

    2016-01-01

    to study the factors influencing the prevalence in wild birds according to their ecological guild. In total, 1607 individual wild bird cloacal swab samples and 386 livestock manure samples were cultured for Campylobacter spp. according to the Nordic Committee on Food Analysis method NMKL 119.Results......: The highest Campylobacter spp. prevalence was seen in 110 out of 178 thrushes (61.8 %), of which the majority were Common Blackbird (Turdus merula), and in 131 out of 616 sparrows (21.3 %), a guild made up of House Sparrow (Passer domesticus) and Eurasian Tree Sparrow (Passer montanus). In general, birds.......54), and between the prevalence (%) of C. coli in wild birds and the proportions (%) of C. coli in manure on pig farms (R-2 = 0.62).Conclusions: The ecological guild of wild birds influences the prevalence of Campylobacter spp. through the behavioural patterns of the birds. More specifically, wild birds eating...

  17. Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni.

    Science.gov (United States)

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A; Nair, Sean P; Sadiq, Sohaib; Williams, Lisa K; Trantham, Emma K; Stephenson, Holly; Wren, Brendan W; Bajaj-Elliott, Mona; Cogan, Tristan A; Laws, Andrew P; Wade, Jim; Dorrell, Nick; Allan, Elaine

    2015-12-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism.

  18. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Vegge, Christina Skovgaard; Skórko-Glonek, Joanna;

    2011-01-01

    The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope such as HtrA and SurA. HtrA displays both chaperone and protease activity......, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone...... activity is sufficient for growth at high temperature or oxidative stress, whereas the HtrA protease activity is only essential at conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat-shock response even at optimal...

  19. Comparison of Campylobacter jejuni pulsotypes isolated from humans and poultry in Split and Dalmatia County, Croatia.

    Science.gov (United States)

    Kovačić, Ana; Carev, Merica; Tripković, Ingrid; Srečec, Siniša; Siško-Kraljević, Katarina

    2015-01-01

    Consumption of poultry is considered to be an important source of human infection with Campylobacter. In the period from 2008 to 2010, 50 isolates of Campylobacter jejuni from human faeces were analysed and compared with 61 isolates from poultry by pulsed field gel electrophoresis using SmaI and KpnI. Based on the analysis of SmaI macrorestriction profiles, 86 isolates (77.5 %) were assigned to 15 S clusters: 31 (62 %) from humans and 55 from poultry (90.2 %). Altogether 21 isolates (19 %) exhibited macrorestriction profiles common to both humans and poultry after restriction with SmaI and KpnI. A total of five identical pulsotypes were isolated from both poultry and patients and one of them appeared in eight different locations in the time interval of one year. These results indicate that poultry could be an important source of Campylobacter infection in Split and Dalmatia County which is the biggest County in Croatia and the most important tourist destination.

  20. Analysis of the activity and regulon of the two-component regulatory system encoded by Cjj1484 and Cjj1483 of Campylobacter jejuni

    Science.gov (United States)

    Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...

  1. O-METHYL PHOSPHORAMIDATE MODIFICATIONS ON THE CAPSULAR POLYSACCHARIDE OF CAMPYLOBACTER JEJUNI ARE INVOLVED IN SERUM RESISTANCE, INFECTION, AND INSECTICIDAL ACTIVITY

    Science.gov (United States)

    Campylobacter jejuni is the most commonly reported cause of bacterial foodborne illness in North America. C. jejuni decorates its surface polysaccharides with a variety of variable phosphorylated structures, including O-methyl phosphoramidate (MeOPN) modifications on the capsular polysaccharide. Alt...

  2. In vitro susceptibility to antimicrobial agents and ultrastructural characteristics related to swimming motility and drug action in Campylobacter jejuni and C. coli.

    Science.gov (United States)

    Yabe, Shizuka; Higuchi, Wataru; Takano, Tomomi; Razvina, Olga; Iwao, Yasuhisa; Isobe, Hirokazu; Yamamoto, Tatsuo

    2010-06-01

    Campylobacter jejuni has recently been noted as the most common cause of bacterial food-borne diseases in Japan. In this study, we examined in vitro susceptibility to 36 antimicrobial agents of 109 strains of C. jejuni and C. coli isolated from chickens and patients with enteritis or Guillain-Barré syndrome from 1996 to 2009. Among these agents, carbapenems (imipenem, meropenem, panipenem, and biapenem) showed the greatest activity [minimal inhibitory concentration (MIC)(90), 0.03-0.125 microg/ml]. This was followed by sitafloxacin (MIC(90), 0.25 microg/ml), furazolidone and azithromycin (MIC(90), 0.5 microg/ml), gentamicin and clindamycin (MIC(90), 1 microg/ml), and clavulanic acid (beta-lactamase inhibitor; MIC(90), 2 microg/ml). All or most strains were resistant to aztreonam, sulfamethoxazole, and trimethoprim. Marked resistance was also observed for levofloxacin and tetracyclines. Resistance was not present for macrolides and rare for clindamycin. C. jejuni (and C. coli) exhibited high swimming motility and possessed a unique end-side (cup-like) structure at both ends, in contrast to Helicobacter pylori and Vibrio cholerae O1 and O139. The morphology of C. jejuni (and C. coli) changed drastically after exposure to imipenem (coccoid formation), meropenem (bulking and slight elongation), and sitafloxacin (marked elongation), and exhibited reduced motility. In the HEp-2 cell adherence model, unusually elongated bacteria were also observed for sitafloxacin. The data suggest that although resistance to antimicrobial agents (e.g., levofloxacin) has continuously been noted, carbapenems, sitafloxacin, and others such as beta-lactamase inhibitors alone showed good in vitro activity and that C. jejuni (and C. coli) demonstrated a unique ultrastructural nature related to high swimming motility and drug action.

  3. The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture

    Directory of Open Access Journals (Sweden)

    Stern NJ

    2006-06-01

    Full Text Available Abstract Background There has been a recent resurgent interest in bacteriophage biology. Research was initiated to examine Campylobacter jejuni-specific bacteriophage in the Russian Federation to develop alternative control measures for this pathogen. Results A C. jejuni flagellum-specific phage PV22 from Proteus vulgaris was identified in sewage drainage. This phage interacted with C. jejuni by attachment to flagella followed by translocation of the phage to the polar region of the bacterium up to the point of DNA injection. Electron microscopic examination revealed adsorption of PV22 on C. jejuni flagella after a five minute incubation of the phage and bacteria. A different phenomenon was observed after incubating the mix under the same conditions, but for twenty minutes or longer. Phage accumulated primarily on the surface of cells at sites where flagella originated. Interestingly, PV22 did not inject DNA into C. jejuni and PV22 did not produce lytic plaques on medium containing C. jejuni cells. The constant of velocity for PV22 adsorption on cells was 7 × 10-9 ml/min. Conclusion It was demonstrated that a bacteriophage that productively infects P. vulgaris was able to bind C. jejuni and by a spot test that the growth of C. jejuni was reduced relative to control bacteria in the region of phage application. There may be two interesting applications of this effect. First, it may be possible to test phage PV22 as an antimicrobial agent to decrease C. jejuni colonization of the chicken intestine. Second, the phage could potentially be utilized for investigating biogenesis of C. jejuni flagella.

  4. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli

    NARCIS (Netherlands)

    Mughini-Gras, Lapo; Penny, Christian; Ragimbeau, Catherine; Schets, Franciska M.; Blaak, Hetty; Duim, Birgitta; Wagenaar, Jaap A.; Boer, de Albert; Cauchie, Henry-Michel; Mossong, Joel; Pelt, Van Wilfrid

    2016-01-01

    Campylobacter is the most common causative agent of human bacterial gastroenteritis and is frequently found in surface water, where it indicates recent contamination with animal faeces, sewage effluent, and agricultural run-off. The contribution of different animal reservoirs to surface water contam

  5. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms

    DEFF Research Database (Denmark)

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller;

    2016-01-01

    Background: Reducing the occurrence of campylobacteriosis is a food safety issue of high priority, as in recent years it has been the most commonly reported zoonosis in the EU. Livestock farms are of particular interest, since cattle, swine and poultry are common reservoirs of Campylobacter spp...

  6. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms

    DEFF Research Database (Denmark)

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller;

    2016-01-01

    Background: Reducing the occurrence of campylobacteriosis is a food safety issue of high priority, as in recent years it has been the most commonly reported zoonosis in the EU. Livestock farms are of particular interest, since cattle, swine and poultry are common reservoirs of Campylobacter spp. ...

  7. Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons.

    Science.gov (United States)

    Churruca, E; Girbau, C; Martínez, I; Mateo, E; Alonso, R; Fernández-Astorga, A

    2007-06-10

    A nucleic acid sequence-based amplification (NASBA) assay based on molecular beacons was used for real-time detection of Campylobacter jejuni and Campylobacter coli in samples of chicken meat. A set of specific primers and beacon probe were designed to target the 16S rRNA of both species. The real-time NASBA protocol including the RNA isolation was valid for both of the cell suspensions in buffered saline and the artificially contaminated chicken meat samples. The presence of rRNA could be correlated with cellular viability, following inactivation of the bacteria by heating, in inoculated chicken meat samples but not in RNase-free cell suspensions.

  8. Isolation of Campylobacter jejuni from cloaca and cecum content of chicken broilers bred in intensive systems in the Western part of Romani

    Directory of Open Access Journals (Sweden)

    Ada Cean

    2013-10-01

    Full Text Available Campylobacter spp., belongs to the group of thermo-tolerant bacteria, and is the most frequent cause of gastrointestinal diseases in humans following consumption of poorly cooked chicken meat. The aim of our study was to test the common methodology for isolation of Campylobacter jejuni species from cloaca and cecum content of chicken broilers breed in intensive systems in Western part of Romania. The experiments were conducted during July –September 2013. As biological material we used chicken broilers from 6 intensive breeding facilities from the West part of Romania, from which cloaca swabs and cecum content were recovered as samples. Bacteria isolation was performed by inseminating Petri dish with Muller Hinton Agar media, after bacterial growth, they were subculture on Muller-Hinton Agar with Skirrow. The bacteria were tested by Gram staining and Oxidase test. Bacterial growth was detected from all samples when grown on Mueller-Hinton Agar, but when the bacteria was passed on Muller Hinton Agar with selective supplement (Skirrow 27 out of 36 samples remained positive (75,0%. With respect to the sample origin 13 (72.2% samples from cloaca swab and 14 (77.7% from cecum content grown on campylobacter selective media. All samples from Muller-Hinton supplemented with Skirrow tested negative for Gram staining and positive for oxidase test. We have successfully isolated Campylobacter spp., strains from farms and private producers in the western part of Romania.

  9. Comparative genomic assessment of Multi-Locus Sequence Typing: rapid accumulation of genomic heterogeneity among clonal isolates of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Nash John HE

    2008-08-01

    Full Text Available Abstract Background Multi-Locus Sequence Typing (MLST has emerged as a leading molecular typing method owing to its high ability to discriminate among bacterial isolates, the relative ease with which data acquisition and analysis can be standardized, and the high portability of the resulting sequence data. While MLST has been successfully applied to the study of the population structure for a number of different bacterial species, it has also provided compelling evidence for high rates of recombination in some species. We have analyzed a set of Campylobacter jejuni strains using MLST and Comparative Genomic Hybridization (CGH on a full-genome microarray in order to determine whether recombination and high levels of genomic mosaicism adversely affect the inference of strain relationships based on the analysis of a restricted number of genetic loci. Results Our results indicate that, in general, there is significant concordance between strain relationships established by MLST and those based on shared gene content as established by CGH. While MLST has significant predictive power with respect to overall genome similarity of isolates, we also found evidence for significant differences in genomic content among strains that would otherwise appear to be highly related based on their MLST profiles. Conclusion The extensive genomic mosaicism between closely related strains has important implications in the context of establishing strain to strain relationships because it suggests that the exact gene content of strains, and by extension their phenotype, is less likely to be "predicted" based on a small number of typing loci. This in turn suggests that a greater emphasis should be placed on analyzing genes of clinical interest as we forge ahead with the next generation of molecular typing methods.

  10. Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection.

    Directory of Open Access Journals (Sweden)

    Elisabeth Lippert

    Full Text Available Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-; NF-kappaB(EGFP mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA. NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice developed mild (day 5 and severe (day 14 ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.

  11. Functional characterization of exopolyphosphatase/guanosine pentaphosphate phosphohydrolase (PPX/GPPA) of Campylobacter jejuni.

    Science.gov (United States)

    Malde, Anandkumar; Gangaiah, Dharanesh; Chandrashekhar, Kshipra; Pina-Mimbela, Ruby; Torrelles, Jordi B; Rajashekara, Gireesh

    2014-05-15

    The inorganic polyphosphate (poly-P) is a key regulator of stress responses and virulence in many bacterial pathogens including Campylobacter jejuni. The role of exopolyphosphatases/guanosine pentaphosphate (pppGpp) phosphohydrolases (PPX/GPPA) in poly-P homeostasis and C. jejuni pathobiology remains unexplored. Here, we analyzed deletion mutants (∆ppx1, ∆ppx2) and the double knockout mutant (dkppx), all ∆ppx mutants exhibited increased capacity to accumulate poly-P; however only ∆ppx1 and dkppx mutants showed decreased accumulation of ppGpp, an alarmone molecule that regulates stringent response in bacteria, suggesting potential dual role for PPX1/GPPA. Nutrient survival defect of ∆ppx mutants was rescued by the supplementation of specific amino acids implying that survival defect may be associated with decreased ppGpp and/ or increased poly-P in ∆ppx mutants. The ppk1 and spoT were upregulated in both ∆ppx1 and ∆ppx2 suggesting a compensatory role for SpoT and Ppk1 in poly-P and ppGpp homeostasis. The lack of ppx genes resulted in defects in motility, biofilm formation, nutrient stress survival, invasion and intracellular survival indicating that maintaining a certain level of poly-P is critical for ppx genes in C. jejuni pathophysiology. Both ppx1 and ppx2 mutants were resistant to human complement-mediated killing; however, the dkppx mutant was sensitive. The serum susceptibility did not occur in the presence of MgCl 2 and EGTA suggesting an involvement of the classical or lectin pathway of complement mediated killing. Interestingly, the chicken serum did not have any effect on the ∆ppx mutants' survival. The observed serum susceptibility was not related to C. jejuni surface capsule and lipooligosaccharide structures. Our study underscores the importance of PPX/GPPA proteins in poly-P and ppGpp homeostasis, two critical molecules that modulate environmental stress responses and virulence in C. jejuni.

  12. Serologic host response to Helicobacter pylori and Campylobacter jejuni in socially housed Rhesus macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Kienesberger Sabine

    2012-08-01

    Full Text Available Abstract Background Helicobacter pylori are successful colonizers of the human gastric mucosa. Colonization increases the risk of peptic ulcer disease and adenocarcinoma. However, potential benefits of H. pylori colonization include protection against early-onset asthma and against gastrointestinal infections. Campylobacter jejuni are a leading cause of bacterial diarrhea and complications include Guillain-Barré syndrome. Here, we describe the development of reliable serological assays to detect antibodies against those two bacteria in Rhesus macaques and investigated their distribution within a social group of monkeys. Methods Two cohorts of monkeys were analyzed. The first cohort consisted of 30 monkeys and was used to establish an enzyme-linked immunosorbent assay (ELISA for H. pylori antibodies detection. To evaluate colonization of those macaques, stomach biopsies were collected and analyzed for the presence of H. pylori by histology and culture. C. jejuni ELISAs were established using human serum with known C. jejuni antibody status. Next, plasma samples of the 89 macaques (Cohort 2 were assayed for antibodies and then statistically analyzed. Results An H. pylori IgG ELISA, which was 100% specific and 93% sensitive, was established. In contrast, the IgA ELISA was only 82% specific and 61% sensitive. The CagA IgG assay was 100% sensitive and 61% of the macaques were positive. In cohort 2, 62% macaques were H. pylori sero-positive and 52% were CagA positive. The prevalence of H. pylori IgG and CagA IgG increased with monkey age as described for humans. Of the 89 macaques 52% showed IgG against C. jejuni but in contrast to H. pylori, the sero-prevalence was not associated with increasing age. However, there was a drop in the IgG (but not in IgA mean values between infant and juvenile macaques, similar to trends described in humans. Conclusions Rhesus macaques have widespread exposure to H. pylori and C. jejuni, reflecting their social

  13. PCR-based restriction fragment length polymorphism (RFLP) analysis of Campylobacter jejuni isolates from humans, chickens and dogs in northern Taiwan.

    Science.gov (United States)

    Tsai, Hsiang-Jung; Huang, Huang-Chi; Tsai, Huei-Lin; Chang, Cha-Chin

    2006-08-01

    Two hundred and twenty strains of Campylobacter jejuni (70 human, 51 canine and 99 chicken strains) were isolated from September 2003 to September 2004 in northern Taiwan. These strains were subtyped by PCR-RFLP analysis of the flagellin (FlaA) gene. On the basis of restrictive digest, six types were identified with AfaI, seven types with MboI and five types with HaeIII. With the combination of these three enzymes, 47 distinct PCR-RFLP patterns were observed-25 each from human and chicken isolates, and 9 from canine isolates. In human strains, the most frequently occurring types were Cj-28 (14.3%), Cj-17 (10%), Cj-16 (8.6%), Cj-37 (7.1%) and Cj-46 (7.1%). In canine strains, the most prevalent types were Cj-1 (33.3%), Cj-26 (19.6%), Cj-3 (15.7%), Cj-2 (9.8%) and Cj-10 (9.8%). In chicken strains, the most frequently occurring types were Cj-46 (40.4%), Cj-29 (9.1%), Cj-45 (7.1%) and Cj-41 (5.1%). The results suggest that poultry is a source, but not the sole source, of C. jejuni infection in humans. Two RFLP types, Cj-17 and Cj-37, frequently occurring in human isolates in this study have also been found to be prevalent in human isolates in Japan, China and the Czech Republic, indicating a possible international clonal spread.

  14. FROM GENE TO PROTEIN – CLONNING, EXPRESSION AND PUFICATION OF A P450 CYTOCHROM FROM CAMPYLOBACTER JEJUNI

    OpenAIRE

    2009-01-01

    Recently, the complete genome sequence of Campylobacter jejuni NCTC 11168 was published revealing the presence of only one open reading frame (Cj1411c) encoding for a cytochrome P450, in contrast to 20 found in M. tuberculosis. The gene Cj1411c encodes for a soluble 52.6 kDa protein with a predicted isoelectric point of 9.3. The P450 gene is part of reading frame which hosts genes involved in the synthesis of cell surface components (capsula). Campylobacter capsule are important in adherence,...

  15. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas;

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing...... of thermotolerant Campylobacter. A subset of isolates, initially discriminated by flaA sequencing, was further subjected to multilocus sequence typing (MLST). The findings of this study revealed flaA sequencing to have a slightly higher discriminatory power than FTIR indicated by a Simpsons diversity index of 0...

  16. Cj1386, an atypical hemin-binding protein, mediates hemin trafficking to KatA in Campylobacter jejuni.

    Science.gov (United States)

    Flint, Annika; Stintzi, Alain

    2015-03-01

    Catalase enzymes detoxify H2O2 by the dismutation of H2O2 into O2 and H2O through the use of hemin cofactors. While the structure and biochemical properties of catalase enzymes have been well characterized over many decades of research, it remained unclear how catalases acquire hemin. We have previously reported that Cj1386 is essential for ensuring proper hemin content in Campylobacter jejuni catalase (KatA) (A. Flint, Y. Q. Sun, and A. Stintzi, J Bacteriol 194: 334-345, 2012). In this report, an in-depth molecular characterization of Cj1386 was performed to elucidate the mechanistic details of this association. Coimmunoprecipitation assays revealed that KatA-Cj1386 transiently interact in vivo, and UV-visible spectroscopy demonstrated that purified Cj1386 protein binds hemin. Furthermore, hemin titration experiments determined that hemin binds to Cj1386 in a 1:1 ratio with hexacoordinate hemin binding. Mutagenesis of potential hemin-coordinating residues in Cj1386 showed that tyrosine 57 was essential for hemin coordination when Cj1386 was overexpressed in Escherichia coli. The importance of tyrosine 57 in hemin trafficking in vivo was confirmed by introducing the cj1386(Y57A) allele into a C. jejuni Δcj1386 mutant background. The cj1386(Y57A) mutation resulted in increased sensitivity toward H2O2 relative to the wild type, suggesting that KatA was not functional in this strain. In support of this finding, KatA immunoprecipitated from the Δcj1386+cj1386(Y57A) mutant had significantly reduced hemin content compared to that of the cj1386(WT) background. Overall, these findings indicate that Cj1386 is involved in directly trafficking hemin to KatA and that tyrosine 57 plays a key role in this function.

  17. Faecal contamination of a municipal drinking water distribution system in association with Campylobacter jejuni infections.

    Science.gov (United States)

    Pitkänen, Tarja; Miettinen, Ilkka T; Nakari, Ulla-Maija; Takkinen, Johanna; Nieminen, Kalle; Siitonen, Anja; Kuusi, Markku; Holopainen, Arja; Hänninen, Marja-Liisa

    2008-09-01

    After heavy rains Campylobacter jejuni together with high counts of Escherichia coli, other coliforms and intestinal enterococci were detected from drinking water of a municipal distribution system in eastern Finland in August 2004. Three patients with a positive C. jejuni finding, who had drunk the contaminated water, were identified and interviewed. The pulsed-field gel electrophoresis (PFGE) genotypes from the patient samples were identical to some of the genotypes isolated from the water of the suspected contamination source. In addition, repetitive DNA element analysis (rep-PCR) revealed identical patterns of E. coli and other coliform isolates along the distribution line. Further on-site technical investigations revealed that one of the two rainwater gutters on the roof of the water storage tower had been in an incorrect position and rainwater had flushed a large amount of faecal material from wild birds into the drinking water. The findings required close co-operation between civil authorities, and application of cultivation and genotyping techniques strongly suggested that the municipal drinking water was the source of the infections. The faecal contamination associated with failures in cleaning and technical management stress the importance of instructions for waterworks personnel to perform maintenance work properly.

  18. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Shi, Feng [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Gu, Ruoyu; Li, Ming [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDermott, Gerry [Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143 (United States); Yu, Edward W., E-mail: ewyu@iastate.edu [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Zhang, Qijing [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States)

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  19. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT from Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Uhlin Bernt

    2009-10-01

    Full Text Available Abstract Background Background: Cytolethal distending toxin (CDT is one of the well-characterized virulence factors of Campylobacter jejuni, but it is unknown how CDT becomes surface-exposed or is released from the bacterium to the surrounding environment. Results Our data suggest that CDT is secreted to the bacterial culture supernatant via outer membrane vesicles (OMVs released from the bacteria. All three subunits (the CdtA, CdtB, and CdtC proteins were detected by immunogold labeling and electron microscopy of OMVs. Subcellular fractionation of the bacteria indicated that, apart from the majority of CDT detected in the cytoplasmic compartment, appreciable amounts (20-50% of the cellular pool of CDT proteins were present in the periplasmic compartment. In the bacterial culture supernatant, we found that a majority of the extracellular CDT was tightly associated with the OMVs. Isolated OMVs could exert the cell distending effects typical of CDT on a human intestinal cell line, indicating that CDT is present there in a biologically active form. Conclusion Our results strongly suggest that the release of outer membrane vesicles is functioning as a route of C. jejuni to deliver all the subunits of CDT toxin (CdtA, CdtB, and CdtC to the surrounding environment, including infected host tissue.

  20. Increased efficiency of Campylobacter jejuni N-oligosaccharyltransferase PglB by structure-guided engineering.

    Science.gov (United States)

    Ihssen, Julian; Haas, Jürgen; Kowarik, Michael; Wiesli, Luzia; Wacker, Michael; Schwede, Torsten; Thöny-Meyer, Linda

    2015-04-01

    Conjugate vaccines belong to the most efficient preventive measures against life-threatening bacterial infections. Functional expression of N-oligosaccharyltransferase (N-OST) PglB of Campylobacter jejuni in Escherichia coli enables a simplified production of glycoconjugate vaccines in prokaryotic cells. Polysaccharide antigens of pathogenic bacteria can be covalently coupled to immunogenic acceptor proteins bearing engineered glycosylation sites. Transfer efficiency of PglBCj is low for certain heterologous polysaccharide substrates. In this study, we increased glycosylation rates for Salmonella enterica sv. Typhimurium LT2 O antigen (which lacks N-acetyl sugars) and Staphylococcus aureus CP5 polysaccharides by structure-guided engineering of PglB. A three-dimensional homology model of membrane-associated PglBCj, docked to the natural C. jejuni N-glycan attached to the acceptor peptide, was used to identify potential sugar-interacting residues as targets for mutagenesis. Saturation mutagenesis of an active site residue yielded the enhancing mutation N311V, which facilitated fivefold to 11-fold increased in vivo glycosylation rates as determined by glycoprotein-specific ELISA. Further rounds of in vitro evolution led to a triple mutant S80R-Q287P-N311V enabling a yield improvement of S. enterica LT2 glycoconjugates by a factor of 16. Our results demonstrate that bacterial N-OST can be tailored to specific polysaccharide substrates by structure-guided protein engineering.

  1. Lipooligosaccharide locus class of Campylobacter jejuni: sialylation is not needed for invasive infection.

    Science.gov (United States)

    Ellström, P; Feodoroff, B; Hänninen, M-L; Rautelin, H

    2014-06-01

    Campylobacter jejuni is a highly diverse enteropathogen that is commonly detected worldwide. It can sometimes cause bacteraemia, but the bacterial characteristics facilitating bloodstream infection are not known. A total of 73 C. jejuni isolates, consecutively collected from blood-borne infections during a 10-year period all over Finland and for which detailed clinical information of the patients were available, were included. We screened the isolates by PCR for the lipooligosaccharide (LOS) locus class and for the presence of the putative virulence genes ceuE, ciaB, fucP, and virB11. The isolates were also tested for γ-glutamyl transpeptidase production. The results were analysed with respect to the clinical characteristics of the patients, and the multilocus sequence types (MLSTs) and serum resistance of the isolates. LOS locus classes A, B, and C, which carry genes for sialylation of LOS, were detected in only 23% of the isolates. These isolates were not more resistant to human serum than those with the genes of non-sialylated LOS locus classes, but were significantly more prevalent among patients with underlying diseases (p 0.02). The fucose permease gene fucP was quite uncommon, but was associated with the isolates with the potential to sialylate LOS (p <0.0001). LOS locus classes and some of the putative virulence factors were associated with MLST clonal complexes. Although some of the bacterial characteristics studied here have been suggested to be important for the invasiveness of C. jejuni, they did not explain why the clinical isolates in the present study were able to cause bacteraemia.

  2. Specificity of Campylobacter jejuni Adhesin PEB3 for Phosphates and Structural Differences among Its Ligand Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Min, Tongpil; Vedadi, Masoud; Watson, David C.; Wasney, Gregory A.; Munger, Christine; Cygler, Miroslaw; Matte, Allan; Young, N. Martin; (NRCC); (McGill); (Toronto)

    2009-04-22

    PEB3 is a glycoprotein adhesin from Campylobacter jejuni whose structure suggested a role in transport. We have investigated potential ligands for PEB3 and characterized their binding properties using biophysical methods in solution and by X-ray crystallography. A thermal aggregation assay of PEB3 with a library of physiological compounds identified three possible ligands [3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP), and aconitate], which stabilized wild-type PEB3 but did not stabilize either a PEB3 form containing two mutations at the ligand-binding site, T138A/S139A, or a second PEB3 mutant, K135E, at a site {approx}14 {angstrom} away. Fluorescence titration experiments and cocrystal structures with various ligands were used to characterize the binding of 3-PG, PEP, and phosphate to PEB3. Further, a C. jejuni growth experiment in minimal medium supplemented with 3-PG showed that this molecule enhances the growth of wild-type C. jejuni, but not of the PEB3 mutants. Crystallographic analysis of PEB3 complexes revealed that the Ser171-Gln180 region in the presence of 3-PG or other phosphates is helical and similar to those of other transport proteins, but it is nonhelical when citrate is bound. The K135E mutation resulted in expression of a more highly glycosylated form of PEB3 in vivo, and its crystal structure showed the conformation of the first two residues of the glycan. On the basis of our findings, we suggest that PEB3 is a transport protein that may function in utilization of 3-PG or other phosphate-containing molecules from the host.

  3. The effect of probiotics on broiler growth and intestinal morphology when used to prevent Campylobacter jejuni colonization

    Directory of Open Access Journals (Sweden)

    Lavinia Ştef

    2015-05-01

    Full Text Available The aim of this work was to establish the effect of probiotic microorganisms on growth performance and intestinal changes caused by Campylobacter jejuni colonization.In this respect, we used four probiotic microorganisms, namely: Lactobacillus paracasei JR, L. rhamnosus 15b, Y L. lactis and L. lactis FOA.The administration of probiotic microorganisms in different combinations and in different periods of growth does not significantly influence the bioproductive indices of broilers,that is,the total gain, feed intake and FCR (p>0.05. After studying the intestinal mucosa, it was concluded that the four microorganisms administered in broilers’s food determineschanges in the mucosa, inhibiting the development of Campylobacter jejuni,by the presence of smaller caliciform cells and the presence ofreduced leukocyte infiltration in the chorion of the mucosal.

  4. Membrane integrity of Campylobacter jejuni subjected to high pressure is pH-dependent

    Science.gov (United States)

    Lerasle, M.; Guillou, S.; Simonin, H.; Laroche, M.; de Lamballerie, M.; Federighi, M.

    2012-03-01

    Our study focuses on a foodborne pathogen, Campylobacter, which is responsible for the most frequent bacterial enteritis worldwide. Membrane integrity of Campylobacter jejuni NCTC 11168 cells treated at high pressure (300 MPa, 20°C, 10 min) at pH 7.0 and pH 5.6 was measured by fluorescence spectroscopy of propidium iodide (PI) uptake. The percentage of membrane-damaged cells by high pressure, in which PI is allowed to penetrate, was determined using two calibration methods based on the PI fluorescence signal obtained with cells killed either by a heat treatment (80°C for 15 min) or by a pressure treatment (400 MPa, 20°C, 10 min). Both calibrations were shown to be statistically different (P<0.05), particularly at acidic pH, suggesting that a difference in the penetration of PI into bacterial cells might depend on the mode of cell inactivation. These results corroborate the fact that the mechanism of microbial inactivation by high pressure is pH-dependent.

  5. Acute disseminated encephalomyelitis following Campylobacter jejuni gastroenteritis: Case report and review of the literature.

    Science.gov (United States)

    Marziali, Simone; Picchi, Eliseo; Di Giuliano, Francesca; Altobelli, Simone; Mataluni, Giorgia; Marfia, Girolama; Garaci, Francesco; Floris, Roberto

    2017-02-01

    We describe a case of a 25-year-old male with a diagnosis of acute disseminated encephalomyelitis (ADEM) following infection with Campylobacter jejuni, which is implicated in various human pathologies regarding the central nervous system (CNS) with acute course like Guillain-Barré syndrome (GBS), Miller-Fisher syndrome (MFS), Bickerstaff's brainstem encephalitis (BEE), acute transverse myelitis (ATM) as well as ADEM. These conditions are caused by cross-reactivity between Campylobacter's epitopes and cells of the CNS that causes an immunomediated inflammatory demyelination of the CNS. In the acute phase, magnetic resonance (MR) can detect pathologic signal intensity at the CNS with areas of pathologic contrast enhancement at cortical and spinal white matter that normalize over time or can be stable. These findings can be associated with edema in parts of the CNS. The lesions typically appear at different times during the disease course and also can have a different evolution. Our purpose therefore was to describe the clinical course and MR findings of this case and perform a critical review of the literature.

  6. Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni.

    Science.gov (United States)

    Al-Haideri, Halah; White, Michael A; Kelly, David J

    2016-02-01

    Campylobacter jejuni, the leading cause of human bacterial gastroenteritis, requires low environmental oxygen and high carbon dioxide for optimum growth, but the molecular basis for the carbon dioxide requirement is unclear. One factor may be inefficient conversion of gaseous CO2 to bicarbonate, the required substrate of various carboxylases. Two putative carbonic anhydrases (CAs) are encoded in the genome of C. jejuni strain NCTC 11168 (Cj0229 and Cj0237). Here, we show that the deletion of the cj0237 (canB) gene alone prevents growth in complex media at low (1% v/v) CO2 and significantly reduces the growth rate at high (5% v/v) CO2. In minimal media incubated under high CO2, the canB mutant grew on L-aspartate but not on the key C3 compounds L-serine, pyruvate and L-lactate, showing that CanB is crucial in bicarbonate provision for pyruvate carboxylase-mediated oxaloacetate synthesis. Nevertheless, purified CanB (a dimeric, anion and acetazolamide sensitive, zinc-containing type II beta-class enzyme) hydrates CO2 actively only above pH 8 and with a high Km (∼ 34 mM). At typical cytoplasmic pH values and low CO2, these kinetic properties might limit intracellular bicarbonate availability. Taken together, our data suggest CanB is a major contributor to the capnophilic growth phenotype of C. jejuni.

  7. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik;

    2012-01-01

    . aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria...... (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni...... grown on R-2A agar and an average of 83% for bacteria grown on yeast extract agar when dead A. aquaticus were present compared to no and living A. aquaticus present. A. aquaticus associated E. coli, K. pneumoniae and C. jejuni were measured (up to 25 per living and 500 per dead A. aquaticus) and so were...

  8. The Polysaccharide Capsule of Campylobacter jejuni 81-176 Modulates the Host Immune Response

    Science.gov (United States)

    2012-12-17

    antibiotics as appropriate. For serum resistance assays, 74 strains were grown in biphasic MH cultures for 18-20 h at 37oC. For mouse 75 infection...growth during 189 incubation, and other antibiotics used in the media for cell propagation were 190 omitted in the assay. After 18 h incubation...in C. jejuni colonization of chickens (2, 16). 315 Following restimulation, IL-17 production by CD4+ LPLs was reduced in 316 mice colonized by C

  9. Genotypic characterisation and cluster analysis of Campylobacter jejuni isolates from domestic pets, human clinical cases and retail food

    Directory of Open Access Journals (Sweden)

    Acke Els

    2011-03-01

    Full Text Available Abstract The genetic similarity of Campylobacter jejuni isolates from pets, compared to human clinical cases and retail food isolates collected in Ireland over 2001-2006 was investigated by cluster analysis of pulsed-field gel electrophoresis (PFGE fingerprinting profiles. Comparison of the PFGE profiles of 60 pet isolates and 109 human isolates revealed that seven (4.1% profiles were grouped in clusters including at least one human and one pet C. jejuni isolate. In total six (1.6% of 60 pet and 310 food profiles were in clusters with at least one food and one pet C. jejuni isolate. The detection of only a small number of genetically indistinguishable isolates by PFGE profile cluster analysis from pets and from humans with enteritis in this study suggests that pets are unlikely to be an important reservoir for human campylobacteriosis in Ireland. However, genetically indistinguishable isolates were detected and C. jejuni from pets may circulate and may contribute to clinical infections in humans. In addition, contaminated food fed to pets may be a potential source of Campylobacter infection in pets, which may subsequently pose a risk to humans.

  10. Divergent distribution of the sensor kinase CosS in non-thermotolerant campylobacter species and its functional incompatibility with the response regulator CosR of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available Two-component signal transduction systems are commonly composed of a sensor histidine kinase and a cognate response regulator, modulating gene expression in response to environmental changes through a phosphorylation-dependent process. CosR is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a major foodborne pathogenic species causing human gastroenteritis. Although CosR is a response regulator, its cognate sensor kinase has not been identified in C. jejuni. In this study, DNA sequence analysis of the cosR flanking regions revealed that a gene encoding a putative sensor kinase, which we named cosS, is prevalent in non-thermotolerant Campylobacter spp., but not in thermotolerant campylobacters. Phosphorylation assays indicated that C. fetus CosS rapidly autophosphorylates and then phosphorylates C. fetus CosR, suggesting that the CosRS system constitutes a paired two-component signal transduction system in C. fetus. However, C. fetus CosS does not phosphorylate C. jejuni CosR, suggesting that CosR may have different regulatory cascades between thermotolerant and non-thermotolerant Campylobacter species. Comparison of CosR homolog amino acid sequences showed that the conserved phosphorylation residue (D51, which is present in all non-thermotolerant Campylobacter spp., is absent from the CosR homologs of thermotolerant Campylobacter species. However, C. jejuni CosR was not phosphorylated by C. fetus CosS even after site-directed mutagenesis of N51D, implying that C. jejuni CosR may possibly function phosphorylation-independently. In addition, the results of cosS mutational analysis indicated that CosS is not associated with the temperature dependence of the Campylobacter spp. despite its unique divergent distribution only in non-thermotolerant campylobacters. The findings in this study strongly suggest that thermotolerant and non-thermotolerant Campylobacter spp. have different signal sensing mechanisms

  11. Characteristics of Lipo-Oligosaccharide Loci of Campylobacter jejuni Isolates Associated with Guillain-Barré Syndrome from Hebei, China

    Directory of Open Access Journals (Sweden)

    Jian-Zhong Zhang

    2010-03-01

    Full Text Available Ganglioside mimicry by C. jejuni lipo-oligosaccharides (LOS could induce the production of autoantibodies against gangliosides and the development of Guillain-Barré syndrome (GBS. The LOS biosynthesis region exhibits significant variation with different strains. Using PCR amplifications of genes from published LOS loci and sequencing the LOS biosynthesis loci, the eight GBS-associated C. jejuni strains from HeBei could be classified into four classes. The expression of sialylated LOS structures (class A or non-sialylated LOS structures(class F, H and P in the C. jejuni LOS is considered to be two different factors for the induction of GBS.

  12. Peripheral CD4+ T cell cytokine responses following human challenge and re-challenge with Campylobacter jejuni.

    Science.gov (United States)

    Fimlaid, Kelly A; Lindow, Janet C; Tribble, David R; Bunn, Janice Y; Maue, Alexander C; Kirkpatrick, Beth D

    2014-01-01

    Campylobacter jejuni is a leading cause of human gastroenteritis worldwide; however, our understanding of the human immune response to C. jejuni infection is limited. A previous human challenge model has shown that C. jejuni elicits IFNγ production by peripheral blood mononuclear cells, a response associated with protection from clinical disease following re-infection. In this study, we investigate T lymphocyte profiles associated with campylobacteriosis using specimens from a new human challenge model in which C. jejuni-naïve subjects were challenged and re-challenged with C. jejuni CG8421. Multiparameter flow cytometry was used to investigate T lymphocytes as a source of cytokines, including IFNγ, and to identify cytokine patterns associated with either campylobacteriosis or protection from disease. Unexpectedly, all but one subject evaluated re-experienced campylobacteriosis after re-challenge. We show that CD4+ T cells make IFNγ and other pro-inflammatory cytokines in response to infection; however, multifunctional cytokine response patterns were not found. Cytokine production from peripheral CD4+ T cells was not enhanced following re-challenge, which may suggest deletion or tolerance. Evaluation of alternative paradigms or models is needed to better understand the immune components of protection from campylobacteriosis.

  13. Peripheral CD4+ T cell cytokine responses following human challenge and re-challenge with Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Kelly A Fimlaid

    Full Text Available Campylobacter jejuni is a leading cause of human gastroenteritis worldwide; however, our understanding of the human immune response to C. jejuni infection is limited. A previous human challenge model has shown that C. jejuni elicits IFNγ production by peripheral blood mononuclear cells, a response associated with protection from clinical disease following re-infection. In this study, we investigate T lymphocyte profiles associated with campylobacteriosis using specimens from a new human challenge model in which C. jejuni-naïve subjects were challenged and re-challenged with C. jejuni CG8421. Multiparameter flow cytometry was used to investigate T lymphocytes as a source of cytokines, including IFNγ, and to identify cytokine patterns associated with either campylobacteriosis or protection from disease. Unexpectedly, all but one subject evaluated re-experienced campylobacteriosis after re-challenge. We show that CD4+ T cells make IFNγ and other pro-inflammatory cytokines in response to infection; however, multifunctional cytokine response patterns were not found. Cytokine production from peripheral CD4+ T cells was not enhanced following re-challenge, which may suggest deletion or tolerance. Evaluation of alternative paradigms or models is needed to better understand the immune components of protection from campylobacteriosis.

  14. Analysis of Campylobacter jejuni infection in the gnotobiotic piglet and genome-wide identification of bacterial factors required for infection

    Science.gov (United States)

    de Vries, Stefan P. W.; Linn, Aileen; Macleod, Kareen; MacCallum, Amanda; Hardy, Simon P.; Douce, Gill; Watson, Eleanor; Dagleish, Mark P.; Thompson, Hal; Stevenson, Andy; Kennedy, David; Baig, Abiyad; Coward, Chris; Maskell, Duncan J.; Smith, David G. E.; Grant, Andrew J.; Everest, Paul

    2017-01-01

    To investigate how Campylobacter jejuni causes the clinical symptoms of diarrhoeal disease in humans, use of a relevant animal model is essential. Such a model should mimic the human disease closely in terms of host physiology, incubation period before onset of disease, clinical signs and a comparable outcome of disease. In this study, we used a gnotobiotic piglet model to study determinants of pathogenicity of C. jejuni. In this model, C. jejuni successfully established infection and piglets developed an increased temperature with watery diarrhoea, which was caused by a leaky epithelium and reduced bile re-absorption in the intestines. Further, we assessed the C. jejuni genes required for infection of the porcine gastrointestinal tract utilising a transposon (Tn) mutant library screen. A total of 123 genes of which Tn mutants showed attenuated piglet infection were identified. Our screen highlighted a crucial role for motility and chemotaxis, as well as central metabolism. In addition, Tn mutants of 14 genes displayed enhanced piglet infection. This study gives a unique insight into the mechanisms of C. jejuni disease in terms of host physiology and contributing bacterial factors. PMID:28281647

  15. Use of Direct LAMP Screening of Broiler Fecal Samples for Campylobacter jejuni and Campylobacter coli in the Positive Flock Identification Strategy.

    Science.gov (United States)

    Sabike, Islam I; Uemura, Ryoko; Kirino, Yumi; Mekata, Hirohisa; Sekiguchi, Satoshi; Okabayashi, Tamaki; Goto, Yoshitaka; Yamazaki, Wataru

    2016-01-01

    Rapid identification of Campylobacter-positive flocks before slaughter, following freezing and heat treatment for the Campylobacter-positive carcasses at the slaughterhouses is an effective control strategy against foodborne campylobacteriosis. We evaluated a loop-mediated isothermal amplification (LAMP) assay for the direct screening of naturally contaminated chicken cloacal swabs for C. jejuni/C. coli to compare this assay with conventional quantitative culture methods. In a comparison study of 165 broilers, the LAMP assay showed 82.8% (48/58 by conventional culture) sensitivity, 100% (107/107) specificity, 100% (48/48) positive predictive value (PPV), and 91.5% (107/117) negative predictive value (NPV). In a comparison of 55 flocks, LAMP showed 90.5% (19/21) sensitivity, 100% (34/34) specificity, 100% (19/19) PPV, and 94.4% (34/36) NPV. In the cumulative total of 28 farm-level comparisons, LAMP showed 100% (12/12) sensitivity, 100% (16/16) specificity, 100% (12/12) PPV, and 100% (16/16) NPV. The LAMP assay required less than 90 min from the arrival of the fecal samples to final results in the laboratory. This suggests that the LAMP assay will facilitate the identification of C. jejuni/C. coli-positive broiler flocks at the farm level or in slaughterhouses before slaughtering, which would make it an effective tool in preventing the spread of Campylobacter contamination.

  16. Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni.

    Science.gov (United States)

    Atack, John M; Kelly, David J

    2008-08-01

    The microaerophilic food-borne pathogen Campylobacter jejuni is exposed to highly variable oxygen concentrations during its life cycle and employs a variety of protection mechanisms to resist oxidative stress. However, not all of the enzymes that mediate such protection have yet been identified. Two genes in strain NCTC 11168, Cj0637c and Cj1112c, are predicted to encode unrelated methionine sulphoxide reductases, which may repair oxidized methionine residues in proteins and thus contribute to oxidative stress defence. Cj0637 and Cj1112 were overexpressed, purified and shown by a coupled thioredoxin-thioredoxin reductase-NADPH assay to catalyse the stereospecific reduction of the S and R diastereoisomers, respectively, of the model compound methyl p-tolyl sulphoxide. Cj0637 is thus identified as MsrA and Cj1112 as MsrB. The contribution of these enzymes to oxidative and nitrosative stress resistance in C. jejuni was assessed by phenotypic analysis of a set of isogenic msrA, msrB and msrA/B insertion mutants. As RT-PCR data suggested a polar effect on Cj1111c in the msrB mutant, an msrB/msrB(+) merodiploid complementation strain was also constructed. The msrA/B strain was severely growth inhibited under standard microaerobic conditions, whereas the msrA and msrB strains grew normally. Agar plate disc diffusion assays showed that all mutants displayed increased sensitivity to hydrogen peroxide, organic peroxide, superoxide, and nitrosative and disulphide stress, but quantitative cell viability assays showed that the msrA/B double mutant was markedly more sensitive to both oxidative and nitrosative stress. All of the stress-sensitivity phenotypes observed for the msrB mutant were restored to wild-type in the msrB/msrB(+) merodiploid. It is concluded that MsrA and MsrB make a significant contribution to the protection of C. jejuni against oxidative and nitrosative stress.

  17. Microbiota Composition and Immune Responses During Campylobacter Jejuni Infection in Conventionally Colonized IL-10–/– Mice Lacking Nucleotide Oligomerization Domain 2

    Science.gov (United States)

    Heimesaat, Markus M.; Grundmann, Ursula; Alutis, Marie E.; Fischer, André; Bereswill, Stefan

    2016-01-01

    Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10–/– mice lacking NOD2 and IL-10–/– controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2–/– IL-10–/– mice exhibited less fecal bifidobacteria and lactobacilli than IL-10–/– counterparts after infection. Interestingly, NOD2–/– IL-10–/– mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10–/– animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2–/– IL-10–/– mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2–/– IL-10–/– mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10–/– as compared to NOD2–/– IL-10–/– mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10–/– mice in a time-dependent manner.

  18. Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Jong-Chul eKim

    2015-02-01

    Full Text Available Campylobacter jejuni is an important foodborne pathogen. The molecular mechanisms for the regulation of oxidative stress resistance have not yet been understood fully in this bacterium. In this study, we investigated how PerR (peroxide stress regulator modulates the transcriptional regulation of both peroxide and superoxide resistance genes in C. jejuni, particularly under oxidative stress conditions. The transcriptional levels of ahpC, katA, and sodB were substantially increased by aeration and oxidant exposure. Interestingly, a perR mutation completely abrogated the transcriptional response of ahpC, katA and sodB to oxidants. Furthermore, we demonstrated that perR transcription was reduced by aeration and oxidant exposure. In contrast to the unique role of PerR homologs in peroxide stress regulation in other bacteria, interestingly, C. jejuni PerR directly regulates the transcription of sodB, the most important gene in superoxide defense, as evidenced by the alteration of sodB transcription by the perR mutation and direct binding of rPerR to the sodB promoter. In addition, we also observed notable morphological changes in C. jejuni from spiral rods to coccoid morphology under aerobic conditions. Based on the intracellular ATP levels, C. jejuni entered a viable-but-non-culturable state under aerobic conditions. These findings clearly demonstrate that C. jejuni possesses a unique regulatory mechanism of oxidative stress defense that does not specifically distinguish between peroxide and superoxide defense, and PerR plays a pivotal role in this non-selective regulation of oxidative stress resistance in C. jejuni.

  19. Rapid identification of novel immunodominant proteins and characterization of a specific linear epitope of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sebastian Hoppe

    Full Text Available Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium's pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is

  20. Rapid Identification of Novel Immunodominant Proteins and Characterization of a Specific Linear Epitope of Campylobacter jejuni

    Science.gov (United States)

    Hoppe, Sebastian; Bier, Frank F.; Nickisch-Rosenegk, Markus v.

    2013-01-01

    Campylobacter jejuni remains one of the major gut pathogens of our time. Its zoonotic nature and wide-spread distribution in industrialized countries calls for a quick and reliable diagnostic tool. Antibody-based detection presents a suitable means to identify pathogenic bacteria. However, the knowledge about immunodominant targets is limited. Thus, an approach is presented, which allows for the rapid screening of numerous cDNA derived expression clones to identify novel antigens. The deeper understanding of immunodominant proteins assists in the design of diagnostic tools and furthers the insight into the bacterium’s pathogenicity as well as revealing potential candidates for vaccination. We have successfully screened 1536 clones of an expression library to identify 22 proteins that have not been described as immunodominant before. After subcloning the corresponding 22 genes and expression of full-length proteins, we investigated the immunodominant character by microarrays and ELISA. Subsequently, seven proteins were selected for epitope mapping. For cj0669 and cj0920c linear epitopes were identified. For cj0669, specificity assays revealed a specific linear epitope site. Consequently, an eleven amino acid residue sequence TLIKELKRLGI was analyzed via alanine scan, which revealed the glycine residue to be significant for binding of the antibody. The innovative approach presented herein of generating cDNAs of prokaryotes in combination with a microarray platform rendering time-consuming purification steps obsolete has helped to illuminate novel immunodominant proteins of C.jejuni. The findings of a specific linear epitope pave the way for a plethora of future research and the potential use in diagnostic applications such as serological screenings. Moreover, the current approach is easily adaptable to other highly relevant bacteria making it a formidable tool for the future discovery of antigens and potential biomarkers. Consequently, it is desirable to simplify

  1. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    Science.gov (United States)

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  2. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB

    Directory of Open Access Journals (Sweden)

    Ihssen Julian

    2012-09-01

    Full Text Available Abstract Background Protein glycosylation is of fundamental importance in many biological systems. The discovery of N-glycosylation in bacteria and the functional expression of the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli enabled the production of engineered glycoproteins and the study of the underlying molecular mechanisms. A particularly promising application for protein glycosylation in recombinant bacteria is the production of potent conjugate vaccines where polysaccharide antigens of pathogenic bacteria are covalently bound to immunogenic carrier proteins. Results In this study capsular polysaccharides of the clinically relevant pathogen Staphylococcus aureus serotype 5 (CP5 were expressed in Escherichia coli and linked in vivo to a detoxified version of Pseudomonas aeruginosa exotoxin (EPA. We investigated which amino acids of the periplasmic domain of PglB are crucial for the glycosylation reaction using a newly established 96-well screening system enabling the relative quantification of glycoproteins by enzyme-linked immunosorbent assay. A random mutant library was generated by error-prone PCR and screened for inactivating amino acid substitutions. In addition to 15 inactive variants with amino acid changes within the previously known, strictly conserved WWDYG motif of N-oligosaccharyltransferases, 8 inactivating mutations mapped to a flexible loop in close vicinity of the amide nitrogen atom of the acceptor asparagine as revealed in the crystal structure of the homologous enzyme C. lari PglB. The importance of the conserved loop residue H479 for glycosylation was confirmed by site directed mutagenesis, while a change to alanine of the adjacent, non-conserved L480 had no effect. In addition, we investigated functional requirements in the so-called MIV motif of bacterial N-oligosaccharyltransferases. Amino acid residues I571 and V575, which had been postulated to interact with the acceptor peptide, were

  3. Tracing Back Clinical Campylobacter jejuni in the Northwest of Italy and Assessing Their Potential Source

    Science.gov (United States)

    Di Giannatale, Elisabetta; Garofolo, Giuliano; Alessiani, Alessandra; Di Donato, Guido; Candeloro, Luca; Vencia, Walter; Decastelli, Lucia; Marotta, Francesca

    2016-01-01

    Food-borne campylobacteriosis is caused mainly by the handling or consumption of undercooked chicken meat or by the ingestion of contaminated raw milk. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritize food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to our understanding of their epidemiology and population structure. We molecularly characterized 56 Campylobacter jejuni isolates (31 from patients hospitalized with gastroenteritis, 17 from raw milk samples, and 8 from chicken samples) using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) in order to trace the source of the disease. We also used a population genetic approach to investigate the source of the human cases from six different reservoirs of infection. MLST identified 25 different sequence types and 11 clonal complexes (CCs) (21, 658, 206, 353, 443, 48, 61, 257, 1332, 354, 574) and these included several alleles not cited previously in the PubMLST international database. The most prevalent CCs were 21, 206, and 354. PFGE showed 34 pulsotypes divided between 28 different clusters. At the fine scale, by means of PFGE and MLST, only two human cases were linked to raw milk, while one case was linked to chicken meat. The investigation revealed the presence of several genotypes among the human isolates, which probably suggests multiple foci for the infections. Finally, the source attribution model we used revealed that most cases were attributed to chicken (69.75%) as the main reservoir in Italy, followed to a lesser extent by the following sources: cattle (8.25%); environment (6.28%); wild bird (7.37%); small ruminant (5.35%), and pork (2.98%). This study confirms the importance of correlating epidemiological investigations with molecular epidemiological data to better understand the dynamics of infection. PMID:27379033

  4. The ultrastructure and ATPase nature of polar membrane in Campylobacter jejuni.

    Science.gov (United States)

    Brock, F M; Murray, R G

    1988-05-01

    Polar membrane in Campylobacter jejuni has been visualized on membrane vesicles. It was composed of doughnut-shaped particles 5-6 nm in diameter, with stalks, arranged in a hexagonal array. This structure was stabilized on the membrane by a high ionic strength buffer in the presence of 2-mercaptoethanol. Histochemical staining indicated localized ATPase activity at the poles of the cells. An ATPase with distinctive properties has been isolated and purified from this organism; it gives a specific activity of approximately 0.3 units/mg of protein. Electron microscopy showed doughnut-shaped particles 5-6 nm in diameter. Nondissociating and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed, respectively, a single band with ATPase activity and a molecular weight of ca. 75,000 Da. The enzyme was cold labile and activity was abolished by trypsin. Dicyclohexylcarbodiimide inhibited the membrane-bound form of the enzyme, but did not inhibit the soluble form. Oligomycin had no inhibitory activity on either form of the enzyme. The enzyme specifically hydrolysed ATP, but other nucleotide substrates were not degraded. The enzyme was activated by Mg2+ and inhibited by Ca2+, whereas other ions had no effect on activity. Antibodies prepared to this enzyme bound to the polar regions of whole cells as shown by protein A - colloidal gold immunoelectron microscopy. The antibodies to this ATPase cross reacted (shown by Western blotting) with four proteins from a whole-cell extract of this organism, two proteins in Aquaspirillum serpens MW5, and three proteins from Escherichia coli K12. They did not cross-react with any proteins from Spirillum volutans, Methanococcus voltae, Vibrio cholerae, or rat liver mitochondria. Antibodies raised against the F1-ATPase of E. coli K12 cross reacted with six proteins in a whole-cell extract of this organism, and one protein species in each of the whole-cell extracts of V. cholera, A. serpens MW5, S. volutans

  5. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections.

    Science.gov (United States)

    Dearlove, Bethany L; Cody, Alison J; Pascoe, Ben; Méric, Guillaume; Wilson, Daniel J; Sheppard, Samuel K

    2016-03-01

    Campylobacter jejuni and Campylobacter coli are the biggest causes of bacterial gastroenteritis in the developed world, with human infections typically arising from zoonotic transmission associated with infected meat. Because Campylobacter is not thought to survive well outside the gut, host-associated populations are genetically isolated to varying degrees. Therefore, the likely origin of most strains can be determined by host-associated variation in the genome. This is instructive for characterizing the source of human infection. However, some common strains, notably isolates belonging to the ST-21, ST-45 and ST-828 clonal complexes, appear to have broad host ranges, hindering source attribution. Here whole-genome sequencing has the potential to reveal fine-scale genetic structure associated with host specificity. We found that rates of zoonotic transmission among animal host species in these clonal complexes were so high that the signal of host association is all but obliterated, estimating one zoonotic transmission event every 1.6, 1.8 and 12 years in the ST-21, ST-45 and ST828 complexes, respectively. We attributed 89% of clinical cases to a chicken source, 10% to cattle and 1% to pig. Our results reveal that common strains of C. jejuni and C. coli infectious to humans are adapted to a generalist lifestyle, permitting rapid transmission between different hosts. Furthermore, they show that the weak signal of host association within these complexes presents a challenge for pinpointing the source of clinical infections, underlining the view that whole-genome sequencing, powerful though it is, cannot substitute for intensive sampling of suspected transmission reservoirs.

  6. Development of A PCR-ELISA Assay for the Detection of Campylobacter jejuni%空肠弯曲杆菌PCR-ELISA检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    唐梦君; 周生; 张小燕; 唐修君; 蒲俊华; 高玉时

    2013-01-01

    A polymerase chain reaction (PCR) assay was developed based on a solution-hybridization colorimetric end-point detection format (PCR-ELISA) for the detection of C.jejuni.PCR primers were designed to target gyrA gene.Digoxygenin-labelled probes were investigated for the detection of biotin-labelled PCR products from C.jejuni using the PCR-ELISA format.The specificity of the assay was investigated.The results showed that only expected fragments of C.jejuni strains were successfully amplified,whereas the Escherichia coli,Salmonella,L.rnonocytogenes and a range of unrelated organisms were negative.The PCR-ELISA assay and probes were demonstrated to be specific for C.jejuni.The detection threshold value is 2 fg.The sensitivity of the PCR-ELISA assay was demonstrated to be 10-fold more sensitive than a gel-based PCR method using the same primers.The detection limit of feces simulated samples was 50 cfu/mL.Results of detecting C.jejuni in one hundred samples in feces in chicken showed that positive rate was 69% by PCR-ELISA methods whereas it was 60% by PCR.This PCR-ELISA assay is sensitive,specific and has the potential to apply in the field of risk assessment of food-borne pathogens and of the large-scale detection researches.%针对空肠弯曲杆菌(Campylobacter jejuni)旋转酶基因(gyrA gene)设计特异性引物和探针,将生物素和地高辛分别标记上游引物5'端和核酸探针3 '端,并对反应条件进行优化,建立空肠弯曲杆菌PCR-ELISA检测方法.结果表明:该方法能特异的检测空肠弯曲杆菌基因组DNA,检测阈值为2fg,敏感性是常规PCR的10倍.对模拟泄殖腔样本进行检测,检测限为50 cfu/mL.对100份临床样品进行检测,PCR和PCR-ELISA方法阳性检出率分别为60%和69%.

  7. The influence of feeding crimped kernel maize silage on growth performance and intestinal colonization with Campylobacter jejuni of broilers.

    Science.gov (United States)

    Ranjitkar, Samir; Engberg, Ricarda Margarete

    2016-01-01

    An infection trial and a production trial over 35 days were conducted in parallel to study the influence of feeding crimped kernel maize silage (CKMS) on the intestinal Campylobacter jejuni colonization and broiler performance, respectively. The CKMS was used at dietary inclusion levels of 15% and 30% in maize-based diets. Broilers were orally inoculated with 2 × 10(5) log cfu/ml C. jejuni on day 14. Four birds from each pen were randomly selected and killed by cervical dislocation on days 3, 6, 9, 14 and 21 post infection and intestinal contents from ileum, caeca and rectum as well as liver samples were taken. Body weight and feed consumption of broilers were registered on days 13, 22 and 35. On day 35, litter dry matter (DM) was measured and the condition of the foot pads was evaluated. There was no significant effect of CKMS on the colonization of C. jejuni. Body weight of the broilers supplemented with 15% CKMS was comparable with the control maize-based feed, whereas addition of 30% CKMS reduced broiler body weight (P < 0.001). However, DM intake and feed conversion ratio were the same in all three dietary treatments. Furthermore, the foot pad condition of broilers significantly improved with the inclusion of CKMS on broiler diets as a result of a higher DM content in the litter material. It is concluded that CKMS did not influence intestinal Campylobacter colonization, but improved the foot pad health of broilers.

  8. Emergencia a la resistencia antibiótica en cepas de Campylobacter jejuni aisladas de carne de pollo

    OpenAIRE

    Giacoboni, Gabriela; Cerdá, Raúl Oscar; López, C.

    2001-01-01

    Se estudió la resistencia de Campylobacter jejuni a 2 de los antimicrobianos más utilizados para la terapia humana y animal (eritromicina y norfloxacina) a partir de cepas aisladas de carcasas y menudencias de pollo. En 42 (35%) de las 120 muestras procesadas se aisló la especie Campylobacter jejuni biotipo II de Lior. Se seleccionaron 28 cepas por su resistencia al ácido nalidíxico (disco de 30 µg) para probar la susceptibilidad a la norfloxacina y eritromicina. El 71,4% (20) de las cepas re...

  9. Crystal Structure and Catalytic Mechanism of PglD from Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, N.; Imperiali, B

    2008-01-01

    The carbohydrate 2, 4-diacetamido-2, 4, 6-trideoxy-{alpha}-d-glucopyranose (BacAc2) is found in a variety of eubacterial pathogens. In Campylobacter jejuni, PglD acetylates the C4 amino group on UDP-2-acetamido-4-amino-2, 4, 6-trideoxy-a-d-glucopyranose (UDP-4-amino-sugar) to form UDP-BacAc2. Sequence analysis predicts PglD to be a member of the left-handed {Beta} helix family of enzymes. However, poor sequence homology between PglD and left-handed {Beta} helix enzymes with existing structural data precludes unambiguous identification of the active site. The co-crystal structures of PglD in the presence of citrate, acetyl coenzyme A, or the UDP-4-amino-sugar were solved. The biological assembly is a trimer with one active site formed between two protomers. Residues lining the active site were identified, and results from functional assays on alanine mutants suggest His-125 is critical for catalysis, whereas His-15 and His-134 are involved in substrate binding. These results are discussed in the context of implications for proteins homologous to PglD in other pathogens.

  10. Validation according to ISO 16140:2003 of a commercial real-time PCR-based method for detecting Campylobacter jejuni, C. coli, and C. lari in foods.

    Science.gov (United States)

    Vencia, W; Nogarol, C; Bianchi, D M; Gallina, S; Zuccon, F; Adriano, D; Gramaglia, M; Decastelli, L

    2014-05-02

    Campylobacteriosis was the most frequently reported zoonosis in the European Union (EU) in 2010, with Campylobacter jejuni, Campylobacter coli, and Campylobacter lari as the most frequently reported species in foodborne outbreaks (FBOs). Relatively sensitive to environmental factors, these species may be present in low numbers. In line with EU policy for food control and FBO detection and in view of the need to reduce response time, we validated an alternative molecular method according to ISO 16140:2003 which establishes the general principle and technical protocol for the validation of alternative methods in the microbiological analysis of food. We used a qualitative real-time PCR commercial kit for the detection of C. jejuni, C. coli, and C. lari in two food categories "fruit and vegetable-based products" and "dairy products". The validation protocol comprises two phases: the first is a method comparison study of the alternative method against the reference method, and the second is an interlaboratory study of each of the two methods. In the first step, ISO 16140:2003 validation examines the following parameters: limit of detection (LOD); relative accuracy, relative specificity and sensitivity; relative detection level (RDL); and inclusivity and exclusivity. Except for LOD, inclusivity and exclusivity, the other steps were performed against the reference method (ISO 10272:2006). The LOD of the real-time PCR method was set at 4CFU/25g or mL for both food categories. Relative accuracy (98.33%), specificity (96.77%), and sensitivity (100%) were recorded for the food category "fruit and vegetable-based products" and 93.3%, 88.24%, 100%, respectively, for "dairy products". The RDL according to Fisher's exact test was p=1 for both food categories, for each level, and each food/strain combination. The interlaboratory study results showed correct identification of all 24 blind samples with both methods by all the participating laboratories. The results show that this

  11. Specific Detection of Campylobacter Jejuni and Campylobacter Coli by Using Polymerase Chain Reaction

    Science.gov (United States)

    1992-10-01

    D2676 CDC C. cryaerophila ( Arcobacter cryoaerophilus) 1 D2792 (type strain) CDC C. hyoinestinilis 3 D2189 CDC D2411 (porcine) CDC D1932 (type...polymerase descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. chain reaction for the detection of Mycobacterium leprae. 1. Bacteriol. 41:451-455

  12. Detection of seven virulence and toxin genes of Campylobacter jejuni isolates from Danish turkeys by PCR and cytolethal distending toxin production of the isolates

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Borck, Birgitte; Nielsen, Eva Møller;

    2004-01-01

    A total of 117 Campylobacter jejuni isolates from Danish turkeys were tested for the presence of seven virulence and toxin genes by PCR. One hundred seventeen (100%) isolates were positive for flaA, cadF, and ceuE gene primers. One hundred three (88%) isolates were positive for cdt gene cluster P...... turkeys and calls for further investigation for the elimination of Campylobacter infection in industrial turkey production and in industrial food chains....

  13. The Campylobacter jejuni MarR-like transcriptional regulators RrpA and RrpB both influence bacterial responses to oxidative and aerobic stresses

    Directory of Open Access Journals (Sweden)

    Ozan eGundogdu

    2015-07-01

    Full Text Available The ability of the human intestinal pathogen Campylobacter jejuni to respond to oxidative stress is central to bacterial survival both in vivo during infection and in the environment. Re-annotation of the C. jejuni NCTC11168 genome revealed the presence of two MarR-type transcriptional regulators Cj1546 and Cj1556, originally annotated as hypothetical proteins, which we have designated RrpA and RrpB (regulator of response to peroxide respectively. Previously we demonstrated a role for RrpB in both oxidative and aerobic (O2 stress and that RrpB was a DNA binding protein with auto-regulatory activity, typical of MarR-type transcriptional regulators. In this study, we show that RrpA is also a DNA binding protein and that a rrpA mutant in strain 11168H exhibits increased sensitivity to hydrogen peroxide oxidative stress. Mutation of either rrpA or rrpB reduces catalase (KatA expression. However a rrpAB double mutant exhibits higher levels of resistance to hydrogen peroxide oxidative stress, with levels of KatA expression similar to the wild-type strain. Neither the rrpA nor rrpB mutant exhibits any significant difference in sensitivity to either cumene hydroperoxide or menadione oxidative stresses, but both mutants exhibit a reduced ability to survive aerobic (O2 stress, enhanced biofilm formation and reduced virulence in the Galleria mellonella infection model. The rrpAB double mutant exhibits wild-type levels of biofilm formation and wild-type levels of virulence in the Galleria mellonella infection model. Together these data indicate a role for both RrpA and RrpB in the C. jejuni peroxide oxidative and aerobic (O2 stress responses, enhancing bacterial survival in vivo and in the environment.

  14. Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli.

    Science.gov (United States)

    Srichaisupakit, Akkaraphol; Ohashi, Takao; Fujiyama, Kazuhito

    2014-09-01

    Campylobacter jejuni is a human enteropathogenic bacterium possessing an N-glycosylation system. In this work, a protein glycosylation (pgl) operon conferring prokaryotic N-glycosylation in C. jejuni JCM 2013 was cloned and identified. Fourteen open reading frames (ORFs) were found in the pgl operon. The operon organization was similar to that of C. jejuni NCTC 11168, with 98% and 99% identities in overall nucleotide sequence and amino acid sequence, respectively. The pgl operon was heterologously co-expressed with model protein CmeA in the Escherichia coli BL21 ΔwaaL mutant. The immuno- and lectin-blotting analysis indicated the protein glycosylation on the recombinant CmeA. In addition, to analyze the glycan composition, the recombinant CmeA was purified and subjected to in-gel trypsin digestion followed by mass spectrometry analysis. The mass spectrometry analysis showed the presence of the N-acetylhexosamine residue at the reducing end but not the predicted di-N-acetylbacillosamine (diNAcBac) residue. Further glycan structural study using the conventional fluorophore-labeling method revealed the GalNAcα-GalNAcα-(Hex-)HexNAc-HexNAc-HexNAc-HexNAc structure. Transcriptional analysis showed that UDP-diNAcBac synthases and diNAcBac transferase are transcribed but might not function in the constructed system. In conclusion, a pgl operon from C. jejuni JCM 2013 successfully functioned in E. coli, resulting in the observed prokaryotic glycosylation.

  15. CapA, an autotransporter protein of Campylobacter jejuni, mediates association with human epithelial cells and colonization of the chicken gut.

    Science.gov (United States)

    Ashgar, Sami S A; Oldfield, Neil J; Wooldridge, Karl G; Jones, Michael A; Irving, Greg J; Turner, David P J; Ala'Aldeen, Dlawer A A

    2007-03-01

    Two putative autotransporter proteins, CapA and CapB, were identified in silico from the genome sequence of Campylobacter jejuni NCTC11168. The genes encoding each protein contain homopolymeric tracts, suggestive of phase variation mediated by a slipped-strand mispairing mechanism; in each case the gene sequence contained frameshifts at these positions. The C-terminal two-thirds of the two genes, as well as a portion of the predicted signal peptides, were identical; the remaining N-terminal portions were gene specific. Both genes were cloned and expressed; recombinant polypeptides were purified and used to raise rabbit polyclonal monospecific antisera. Using immunoblotting, expression of the ca.116-kDa CapA protein was demonstrated for in vitro-grown cells of strain NCTC11168, for 4 out of 11 recent human fecal isolates, and for 2 out of 8 sequence-typed strains examined. Expression of CapB was not detected for any of the strains tested. Surface localization of CapA was demonstrated by subcellular fractionation and immunogold electron microscopy. Export of CapA was inhibited by globomycin, reinforcing the bioinformatic prediction that the protein is a lipoprotein. A capA insertion mutant had a significantly reduced capacity for association with and invasion of Caco-2 cells and failed to colonize and persist in chickens, indicating that CapA plays a role in host association and colonization by Campylobacter. In view of this demonstrated role, we propose that CapA stands for Campylobacter adhesion protein A.

  16. Campylobacter jejuni fatty acid synthase II: Structural and functional analysis of [beta]-hydroxyacyl-ACP dehydratase (FabZ)

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae; Yeo, Hye-Jeong; (Houston)

    2009-08-14

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide a framework for investigation on roles of FAS II in C. jejuni virulence

  17. The influence of feeding crimped kernel maize silage on growth performance and intestinal colonization with Campylobacter jejuni in broilers

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Engberg, Ricarda Greuel

    2016-01-01

    An infection trial and a production trial over 35 days were conducted in parallel to study the influence of feeding crimped kernel maize silage (CKMS) on the intestinal Campylobacter jejuni colonization and broiler performance, respectively. The CKMS