WorldWideScience

Sample records for campylobacter jejuni infection

  1. Experimental Campylobacter Jejuni Infection in Humans

    Science.gov (United States)

    1988-03-01

    Blaser MJI Black RE. Duncan DJ, Amer I. Campylobacter Clements ML, Robins-Brone R, Lim Y-L. Duration of jejuni -specific serum antibodies are elevated in...SUBTITLE 5 FUNDING •4UMBERS Experimental Campylobacter jejuni Infection 86PP6826 in Humans 61102A 30161102BS13 AB6. AUTHOR(S)DA328 Robert E. Black...SUPPLEMENTARY NOTES Contract Title: Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development ൔa• DISTRIBUTION

  2. Update on human Campylobacter jejuni infections.

    Science.gov (United States)

    Kirkpatrick, Beth D; Tribble, David R

    2011-01-01

    The present review will update the reader to the clinical, epidemiological and immunologic advances in the field of human campylobacteriosis. New advances in human campylobacteriosis include an increased appreciation of the role of Campylobacter jejuni in postinfectious sequelae, a broadened understanding of Campylobacter-associated disease burden and the interplay between host immunity and bacterial factors. Antibiotic management has also become more complex: C. jejuni has undergone a rapid increase in resistance to the fluoroquinolone antibiotics and concurrently, postinfectious irritable bowel syndrome has been associated with a longer duration of untreated infection. In anticipation of new candidate C. jejuni vaccines, progress in understanding human immune responses to infection has been made via human experimental infections. These tightly controlled studies have also increased our understanding of the natural history of campylobacteriosis as well as observations of recrudescent infection following treatment with C. jejuni-sensitive antibiotics. As one of the most common agents of bacterial gastroenteritis and a major health burden for both developing world and industrialized nations, Campylobacter infections remain a high priority for research efforts to improve prevention and management. Priorities for the future include vaccine development, pathogen-specific immunity and identification of risk factors for postinfectious sequelae.

  3. Campylobacter jejuni organism (image)

    Science.gov (United States)

    Campylobacter jejuni infection causes cramping, diarrhea, abdominal pain and fever within 2 to 5 days after a person has been exposed to the organism. Campylobacter jejuni is one of the most common bacterial ...

  4. Mouse Models for Campylobacter jejuni Colonization and Infection.

    Science.gov (United States)

    Stahl, Martin; Graef, Franziska A; Vallance, Bruce A

    2017-01-01

    Relevant animal models for Campylobacter jejuni infection have been difficult to establish due to C. jejuni's inability to cause disease in many common animal research models. Fortunately, recent work has proven successful in developing several new and relevant mouse models of C. jejuni infection, including the SIGIRR-deficient mouse strain that develops acute enterocolitis in response to C. jejuni. Here we describe how to properly infect mice with C. jejuni, as well as a number of accompanying histological techniques to aid in studying C. jejuni colonization and infection in mice.

  5. Clinical aspects of Campylobacter jejuni infections in adults.

    OpenAIRE

    Peterson, M C

    1994-01-01

    Campylobacter jejuni is an almost ubiquitous, microaerophilic, gram-negative rod. Outbreaks have been associated with drinking raw milk or contaminated water and eating poultry. Campylobacter jejuni accounts for 3.2% to 6.1% of cases of diarrheal illness in the general population of the United States, and infected patients frequently present with abdominal pain and fever. Less frequently, C jejuni is responsible for bacteremia, septic arthritis, septic abortion, and other extraintestinal infe...

  6. Campylobacter jejuni: exposure assessment and hazard characterization : growth, survival and infectivity of Campylobacter jejuni

    NARCIS (Netherlands)

    Verhoeff-Bakkenes, L.

    2012-01-01

    Campylobacter jejuni, a small, curved or spirally shaped highly motile microorganism, is identified as a major cause of bacterial gastroenteritis throughout the world. Serious complications such as the Guillain-Barré syndrome and reactive arthritis might occasionally follow infection. In this

  7. Does Campylobacter jejuni infection elicit "demyelinating" Guillain-Barre syndrome?

    Science.gov (United States)

    Kuwabara, S; Ogawara, K; Misawa, S; Koga, M; Mori, M; Hiraga, A; Kanesaka, T; Hattori, T; Yuki, N

    2004-08-10

    Campylobacter jejuni enteritis is the most common antecedent infection in Guillain-Barré syndrome (GBS). C. jejuni-related GBS is usually acute motor axonal neuropathy (AMAN), but previous reports described many cases of the demyelinating subtype of GBS (acute inflammatory demyelinating polyneuropathy [AIDP]) after C. jejuni infection. To investigate whether C. jejuni infection elicits AIDP. In 159 consecutive patients with GBS, antibodies against C. jejuni were measured using ELISA. Antecedent C. jejuni infection was determined by the strict criteria of positive C. jejuni serology and a history of a diarrheal illness within the previous 3 weeks. Electrodiagnostic studies were performed weekly for the first 4 weeks, and sequential findings were analyzed. There was evidence of recent C. jejuni infection in 22 (14%) patients. By electrodiagnostic criteria, these patients were classified with AMAN (n = 16; 73%) or AIDP (n = 5; 23%) or as unclassified (n = 1) in the first studies. The five C. jejuni-positive patients with the AIDP pattern showed prolonged motor distal latencies in two or more nerves and had their rapid normalization within 2 weeks, eventually all showing the AMAN pattern. In contrast, patients with cytomegalovirus- or Epstein-Barr virus-related AIDP (n = 13) showed progressive increases in distal latencies in the 8 weeks after onset. Patients with C. jejuni-related Guillain-Barré syndrome can show transient slowing of nerve conduction, mimicking demyelination, but C. jejuni infection does not appear to elicit acute inflammatory demyelinating polyneuropathy.

  8. The influence of age on Campylobacter jejuni infection in chicken.

    Science.gov (United States)

    Han, Zifeng; Pielsticker, Colin; Gerzova, Lenka; Rychlik, Ivan; Rautenschlein, Silke

    2016-09-01

    Campylobacter jejuni (C. jejuni)-host-interaction may be affected by the maturation stage of the chicken's immune system and the developing gut microbiota composition. We compared these parameters between birds C. jejuni-inoculated at day one, 10, 22 and 31 post hatch. The highest C. jejuni-colonization rate and numbers of colony forming units (CFU) were detected in caecal content of day-one-inoculated birds while the lowest was detected in 22-days-old birds. The low bacterial colonization of 22-days-old chickens correlated with the most prominent immune reactions in this age group in comparison to other age groups. Age and C. jejuni-inoculation had a significant effect on lymphocyte numbers and cytokine expression levels in caecum as well as on gut flora composition. Overall, the immune response to C. jejuni is significantly influenced by the age of the infected chickens leading to differences in C. jejuni-colonization pattern between age goups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gene expression profiling of innate immune response to Campylobacter jejuni infection in the bursa of broilers

    Science.gov (United States)

    Campylobacter jejuni (C. jejuni) is a commensal microorganism in chickens, but caused significant health problems in humans. Reduction of C. jejuni colonization in the chicken gut will significantly decrease human campylobacteriosis. To study host response to C. jejuni infection in broilers, both ...

  10. Myocarditis related to Campylobacter jejuni infection: A case report

    Directory of Open Access Journals (Sweden)

    Lee Christine H

    2003-07-01

    Full Text Available Abstract Background Myocarditis can develop as a complication of various infections and is most commonly linked to enterovirus infections. Myocarditis is rarely associated with bacterial infections; salmonellosis and shigellosis have been the most frequently reported bacterial cause. We report a case of myocarditis related to Campylobacter jejuni enteritis. Case Presentation A 30-year-old previously healthy man presented with a history of prolonged chest pain radiating to the jaw and the left arm. Five days prior to the onset of chest pain, he developed bloody diarrhea, fever and chills. Creatine kinase (CK and CK-MB were elevated to 289 U/L and 28.7 μg/L. Troponin I was 30.2 μg/L. The electrocardiogram (ECG showed T wave inversion in the lateral and inferior leads. The chest pain resolved within 24 hours of admission. The patient had a completely normal ECG stress test. The patient was initiated on ciprofloxacin 500 mg po bid when Campylobacter jejuni was isolated from the stool. Diarrhea resolved within 48 hours of initiation of ciprofloxacin. The diagnosis of Campylobacter enteritis and related myocarditis was made based on the clinical and laboratory results and the patient was discharged from the hospital in stable condition. Conclusion Myocarditis can be a rare but severe complication of infectious disease and should be considered as a diagnosis in patients presenting with chest pain and elevated cardiac enzymes in the absence of underlying coronary disease. It can lead to cardiomyopathy and congestive heart failure. There are only a few reported cases of myocarditis associated with Campylobacter infection.

  11. [Microbiological diagnosis of infections caused by Campylobacter jejuni and Campylobacter coli in humans].

    Science.gov (United States)

    Rokosz, Natalia; Rastawicki, Waldemar; Wołkowicz, Tomasz

    2014-01-22

    Campylobacter jejuni and Campylobacter coli are Gram-negative, microaerophilic bacteria which are worldwide in distribution, causing a zoonotic disease in humans called campylobacteriosis. These infections are mainly caused by eating contaminated food products, most often improperly prepared poultry meat. Campylobacteriosis usually takes the form of gastroenteritis, or inflammation of the intestines, and the characteristic symptoms are watery-mucous diarrhea often with the presence of blood in stool, nausea, vomiting, abdominal pain and fever. The epidemiological data suggest that in Europe, as well as in North America, bacteria of the genus Campylobacter, especially C. jejuni and C. coli, are the most commonly isolated pathogens in infections of the gastrointestinal tract in humans. Epidemiological data indicate that these organisms are a much more common cause of acute diarrhea, mostly in young children, than Salmonella and Yersinia. The lack of specific symptoms makes the diagnosis of campylobacteriosis necessary to carry out specialized microbiological diagnostics. Because so far these studies are performed in our country only in a few laboratories, the overwhelming number of cases of campylobacteriosis are not recorded in Polish epidemiological statistics. The purpose of this paper is to discuss issues related to the microbiological diagnosis of infections caused by C. jejuni and C. coli. It also describes the basic epidemiological and clinical data, as well as current treatment of campylobacteriosis.

  12. Microbiological diagnosis of infections caused by Campylobacter jejuni and Campylobacter coli in humans

    Directory of Open Access Journals (Sweden)

    Natalia Rokosz

    2014-01-01

    Full Text Available Campylobacter jejuni and Campylobacter coli are Gram-negative, microaerophilic bacteria which are worldwide in distribution, causing a zoonotic disease in humans called campylobacteriosis. These infections are mainly caused by eating contaminated food products, most often improperly prepared poultry meat. Campylobacteriosis usually takes the form of gastroenteritis, or inflammation of the intestines, and the characteristic symptoms are watery-mucous diarrhea often with the presence of blood in stool, nausea, vomiting, abdominal pain and fever. The epidemiological data suggest that in Europe, as well as in North America, bacteria of the genus Campylobacter, especially C. jejuni and C. coli, are the most commonly isolated pathogens in infections of the gastrointestinal tract in humans. Epidemiological data indicate that these organisms are a much more common cause of acute diarrhea, mostly in young children, than Salmonella and Yersinia. The lack of specific symptoms makes the diagnosis of campylobacteriosis necessary to carry out specialized microbiological diagnostics. Because so far these studies are performed in our country only in a few laboratories, the overwhelming number of cases of campylobacteriosis are not recorded in Polish epidemiological statistics. The purpose of this paper is to discuss issues related to the microbiological diagnosis of infections caused by C. jejuni and C. coli. It also describes the basic epidemiological and clinical data, as well as current treatment of campylobacteriosis.

  13. Association of Campylobacter jejuni infection with childhood Guillain-Barré syndrome: a case-control study.

    Science.gov (United States)

    Kalra, Veena; Chaudhry, Rama; Dua, Tarun; Dhawan, Benu; Sahu, Jitendra K; Mridula, B

    2009-06-01

    A prospective case-control study was conducted to determine the association between Campylobacter jejuni infection and childhood Guillain-Barré syndrome in the Indian population. We found evidence of recent Campylobacter jejuni infection in 27.7% of patients with Guillain-Barré syndrome, as compared with 2.3% in neurological controls (P = .003) and 2.3% in nonneurological controls (P = .003). Of the 15 patients with Campylobacter jejuni infection, 8 (53.3%) reported having had diarrhea within 12 weeks before the onset of the neurologic illness. Our results suggest association between recent Campylobacter jejuni infection and bulbar weakness (P = .043). No statistical difference was observed between the Campylobacter jejuni positive and negative groups with respect to age, other clinical features, albuminocytological dissociation, and residual paralysis at follow-up. It is concluded that subclinical Campylobacter jejuni infection is an important antecedent illness in childhood Guillain-Barré syndrome in the Indian population.

  14. Campylobacter jejuni: enterocolitis and myopericarditis.

    Science.gov (United States)

    Alzand, B S N; Ilhan, M; Heesen, W F; Meeder, J G

    2010-09-24

    Campylobacter jejuni enteritis is the commonest enteric infection in the developed world. There are only few reported cases in the medical literature of cardiac complications associated with C. jejuni enterocolitis, most of the patients in the reported literature were males and most of the cases followed a benign course. Severe left ventricular dysfunction complicated only two cases of C. jejuni myocarditis. We report here a young male with Campylobacter myopericarditis. We believe that this is the first reported case of Campylobacter associated myopericarditis in The Netherlands. The mechanism by which Campylobacter causes myo(peri)carditis remains uncertain, it may be caused by direct bacterial invasion of cardiac tissue, bacterial toxins, circulating immune complexes, or cytotoxic T-cells. Since the number of C. jejuni infection is increasing worldwide, cardiac complications, although rare, are a remarkable manifestation of this pathogen and should be always kept in mind. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  15. Inflammasome activation by Campylobacter jejuni

    NARCIS (Netherlands)

    Bouwman, Lieneke I|info:eu-repo/dai/nl/341590797; de Zoete, Marcel R|info:eu-repo/dai/nl/30483419X; Bleumink-Pluym, Nancy M C; Flavell, Richard A; van Putten, Jos P M|info:eu-repo/dai/nl/069916527

    2014-01-01

    The Gram-negative pathogen Campylobacter jejuni is the most common cause of bacterial foodborne disease worldwide. The mechanisms that lead to bacterial invasion of eukaryotic cells and massive intestinal inflammation are still unknown. In this study, we report that C. jejuni infection of mouse

  16. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

    Directory of Open Access Journals (Sweden)

    Kishan Kumar Nyati

    2013-01-01

    Full Text Available Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS.

  17. Feed can be a source of Campylobacter jejuni infection in broilers.

    Science.gov (United States)

    Alves, M B R; Fonseca, B B; Melo, R T; Mendonça, E P; Nalevaiko, P C; Girão, L C; Monteiro, G P; Silva, P L; Rossi, D A

    2017-02-01

    1. The aim was to determine the importance of a contaminated diet as a possible cause of Campylobacter jejuni infection in broilers. 2. This study evaluated the viability of C. jejuni in both starter and finisher diets and the interference from other mesophilic bacteria in this viability. 3. Starter and finisher samples of broiler diet were deliberately contaminated with 3 or 5 log CFU·g-1 of C. jejuni (NCTC 11351) and then maintained at two different storage temperatures (25°C or 37°C) for 3 or 5 d. 4. C. jejuni survived during this period and, when inoculated at 103 CFU·g-1, multiplied with greater proliferation at a storage temperature of 37°C. There was no relationship between the amount of mesophilic bacteria and C. jejuni viability. 5. This study highlights the importance of the diet in the epidemiology of C. jejuni in broilers.

  18. Serologic Evidence of Previous Campylobacter jejuni Infection in Patients with the Guillain-Barre Syndrome

    Science.gov (United States)

    1993-06-15

    Guillain - Barre syndrome . N Engl J Med.1992;326: ular serotype of C. jejuni , Penner type 019, was asso- 1130-6. ciated with...51. with the Guillain -Barrd syndrome who had previous 15. Ropper AN. Campylobacter diarrhea and Guillain - Barre syndrome . C. jejuni infection...with the Guillain - Barre 90PP0820 Syndrome Ban Mishu, M.D.; Amjad A. Ilyas, Ph.D.; Carol L. Koski, M.D.; Francine Vriesendorp, M.D.; Stuart D. Cook,

  19. Study of the infectivity of saline-stored Campylobacter jejuni for day-old chicks

    DEFF Research Database (Denmark)

    Hald, Birthe; Knudsen, Katrine; Lind, Peter

    2001-01-01

    The culturability of three Campylobacter jejuni strains and their infectivity for day-old chicks were assessed following storage of the strains in saline. The potential for colonization of chicks was weakened during the storage period and terminated 3 to 1 weeks before the strains became noncultu......The culturability of three Campylobacter jejuni strains and their infectivity for day-old chicks were assessed following storage of the strains in saline. The potential for colonization of chicks was weakened during the storage period and terminated 3 to 1 weeks before the strains became......-campylobacter outer membrane protein serum antibodies in day-old chicks did not protect the chicks from campylobacter colonization....

  20. [Campylobacter jejuni infection in patient with Guillain-Barré syndrome: a case report].

    Science.gov (United States)

    Kopyta, Ilona; Wardak, Sebastian

    2008-01-01

    The Guillain-Barré syndrome is an acute inflammatory polineuropathy; it's frequency is established at the level of 1,3 cases/ 100 000 persons/ year. The main etiological factors concerned with the GBS occurrence are: Campylobacter jejuni, cytomegalovirus, Epstein-Barre virus, Mycoplasma pneumoniae. The authors present a case of the 15 years old boy with the clinical features of acute motor axonal polineuropathy and confirmed C. jejuni infection. Identification of C. jejuni isolate was based on colony morphology on CCDA plate (OXOID), characteristic motility, catalase, oxidase, hippurate hydrolysis and acetate hydrolysis. The identity of C. jejuni was also confirmed by a specific PCR. According to the authors' knowledge this is the first case of a patient with GBS with confirmed C. jejuni infection reported from Poland.

  1. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni.

    Science.gov (United States)

    Nishiyama, Keita; Seto, Yasuyuki; Yoshioka, Kazuki; Kakuda, Tsutomu; Takai, Shinji; Yamamoto, Yuji; Mukai, Takao

    2014-01-01

    Campylobacter is a normal inhabitant of the chicken gut. Pathogenic infection with this organism in humans is accompanied by severe inflammation of the intestinal mucosal surface. The aim of this study was to evaluate the ability of Lactobacillus gasseri SBT2055 (LG2055) to inhibit the adhesion and invasion of Campylobacter jejuni in vitro and to suppress C. jejuni colonization of chicks in vivo. Pretreatment with LG2055 significantly reduced adhesion to and invasion of a human epithelial cell line, Intestine 407, by C. jejuni 81-176. Methanol (MeOH)-fixed LG2055 also reduced infection by C. jejuni 81-176. However, proteinase K (ProK)-treated LG2055 eliminated the inhibitory effects. Moreover, LG2055 co-aggregated with C. jejuni 81-176. ProK treatment prevented this co-aggregation, indicating that the co-aggregation phenotype mediated by the proteinaceous cell-surface components of LG2055 is important for reducing C. jejuni 81-176 adhesion and invasion. In an in vivo assay, oral doses of LG2055 were administered to chicks daily for 14 days after oral inoculation with C. jejuni 81-176. At 14 days post-inoculation, chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. Reduction in the number of C. jejuni 81-176 cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni 81-176. In addition, the results of the chick colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages.

  2. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    Full Text Available Campylobacter is a normal inhabitant of the chicken gut. Pathogenic infection with this organism in humans is accompanied by severe inflammation of the intestinal mucosal surface. The aim of this study was to evaluate the ability of Lactobacillus gasseri SBT2055 (LG2055 to inhibit the adhesion and invasion of Campylobacter jejuni in vitro and to suppress C. jejuni colonization of chicks in vivo. Pretreatment with LG2055 significantly reduced adhesion to and invasion of a human epithelial cell line, Intestine 407, by C. jejuni 81-176. Methanol (MeOH-fixed LG2055 also reduced infection by C. jejuni 81-176. However, proteinase K (ProK-treated LG2055 eliminated the inhibitory effects. Moreover, LG2055 co-aggregated with C. jejuni 81-176. ProK treatment prevented this co-aggregation, indicating that the co-aggregation phenotype mediated by the proteinaceous cell-surface components of LG2055 is important for reducing C. jejuni 81-176 adhesion and invasion. In an in vivo assay, oral doses of LG2055 were administered to chicks daily for 14 days after oral inoculation with C. jejuni 81-176. At 14 days post-inoculation, chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. Reduction in the number of C. jejuni 81-176 cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni 81-176. In addition, the results of the chick colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages.

  3. Guillain-Barré Syndrome and Campylobacter jejuni Infection: A Review

    Directory of Open Access Journals (Sweden)

    Nurun Nahar Mawla

    2014-01-01

    Full Text Available Guillain-Barré syndrome (GBS, a neurologic disease that produces ascending paralysis, affects people all over the world. Acute infectious illness precedes 50%-75% of the GBS cases. Although many infectious agents have been associated with GBS, the strongest documented association is with Campylobacter infection. The first line of evidence supporting Campylobacter infection as a trigger of GBS is anecdotal reports. The second line of evidence is serological surveys, which have demonstrated that sera from GBS patients contain anti Campylobacter jejuni antibodies, consistent with recent infection. Finally, culture studies have proven that a high proportion of GBS patients have C. jejuni in their stools at the time of onset of neurological symptoms. One of every 1058 Campylobacter infections results in GBS. Sialic acid containing lipooligosaccharides (LOS biosynthesis gene locus are associated with GBS and the expression of ganglioside mimicking structures. GM1a was the most prevalent ganglioside mimic in GBS associated strains. Molecular mimicry between C. jejuni LOS and gangliosides in human peripheral nerves, and cross-reactive serum antibody precipitate the majority of GBS cases in Bangladesh, like worldwide.

  4. Relapsing Campylobacter jejuni Systemic Infections in a Child with X-Linked Agammaglobulinemia

    Directory of Open Access Journals (Sweden)

    Paola Ariganello

    2013-01-01

    Full Text Available X-linked agammaglobulinemia (XLA is a primary immunodeficiency of the humoral compartment, due to a mutation in the Bruton tyrosine kinase (BTK gene, characterized by a severe defect of circulating B cells and serum immunoglobulins. Recurrent infections are the main clinical manifestations; although they are especially due to encapsulated bacteria, a specific association with Campylobacter species has been reported. Here, we report the case of a boy with XLA who presented with relapsing Campylobacter jejuni systemic infections. His clinical history supports the hypothesis of the persistence of C. jejuni in his intestinal tract. Indeed, as previously reported, XLA patients may become chronic intestinal carriers of Campylobacter, even in absence of symptoms, with an increased risk of relapsing bacteraemia. The humoral defect is considered to be crucial for this phenomenon, as well as the difficulties to eradicate the pathogen with an appropriate antibiotic therapy; drug resistance is raising in Campylobacter species, and the appropriate duration of treatment has not been established. C. jejuni should always be suspected in XLA patients with signs and symptoms of systemic infection, and treatment should be based on antibiogram to assure the eradication of the pathogen.

  5. Glycoconjugates play a key role in Campylobacter jejuni infection: Interactions between host and pathogen.

    Directory of Open Access Journals (Sweden)

    Christopher James Day

    2012-02-01

    Full Text Available Glycan based interactions between host and pathogen are critical in many bacterial and viral diseases. Glycan interactions range from initial receptor based adherence to protecting the infective agent from the host’s immune response through molecular mimicry. Campylobacter jejuni is an ideal model for studying the role of glycans in host-pathogen interactions, as well as the role of bacterial surface glycoconjugates in infection.Using glycan array analysis, C. jejuni has been shown to interact with a wide range of host glycoconjugates. Mannose and sialic acid residues appear to play a role in initial interactions between host and pathogen following environmental exposure, whereas fucose and galactose based interactions are likely to be required for prolonged colonisation. Other studies have highlighted potential decoy receptor type interactions between host’s intestinal mucins and C. jejuni, demonstrating the importance of host glycoproteins as defence against C. jejuni infection as well as the role for glycoconjugates found in human breast milk in protection of breast feeding infants from infection with C. jejuni.C. jejuni can produce N- and O-linked glycoproteins, capsular polysaccharide (CPS and/or lipooligosaccahride (LOS which results in C. jejuni presenting its own diverse sugar coated displays on the cell surface. Bacterial glycans play an important and versatile role in infection and disease. Of these, the best understood is the molecular mimicry of human gangliosides presented by C. jejuni’s LOS and its link to the onset of autoimmune neuropathies such as the Guillain Barre Syndrome (GBS. However, the role of glycoconjugates presented by C. jejuni extends beyond expression of sialylated ganglioside structures involved in initiation of GBS. Expression of surface glycans by C. jejuni may also relate to the ability of this organism to interact with the glycoproteins for initial host-pathogen interactions and continued infectivity.

  6. Using Galleria mellonella as an Infection Model for Campylobacter jejuni Pathogenesis.

    Science.gov (United States)

    Askoura, Momen; Stintzi, Alain

    2017-01-01

    Nonmammalian model systems of infection have been employed recently to study bacterial virulence. For instance, Galleria mellonella (the greater wax moth) has been shown to be susceptible to infection by many bacterial pathogens including the enteric pathogen Campylobacter jejuni. In contrast to the traditional animal models for C. jejuni such as the chick colonization model and ferret diarrheal model, the Galleria mellonella infection model has the advantages of lower cost, ease of use and no animal breeding is required. However, injecting the larvae with bacteria requires care to avoid killing of larvae, which could lead to misleading results. Here, we describe the infection of G. mellonella larvae by C. jejuni and how to record/interpret results.

  7. The natural antimicrobial carvacrol inhibits Campylobacter jejuni motility and infection of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieke B van Alphen

    Full Text Available BACKGROUND: Natural compounds with anti-microbial properties are attractive reagents to reduce the use of conventional antibiotics. Carvacrol, the main constituent of oregano oil, inhibits the growth of a variety of bacterial foodborne pathogens. As concentrations of carvacrol may vary in vivo or when used in animal feed, we here investigated the effect of subinhibitory concentrations of the compound on major virulence traits of the principal bacterial foodborne pathogen Campylobacter jejuni. METHODS/PRINCIPAL FINDINGS: Motility assays revealed that subinhibitory concentrations of carvacrol inhibited the motility of C. jejuni without affecting bacterial growth. Immunoblotting and electron microscopy showed that carvacrol-treated C. jejuni still expressed flagella. The loss of motility was not caused by reduced intracellular ATP levels. In vitro infection assays demonstrated that subinhibitory concentrations of carvacrol also abolished C. jejuni invasion of human epithelial cells. Bacterial uptake of invasive Escherichia coli was not blocked by carvacrol. Exposure of C. jejuni to carvacrol prior to infection also inhibited cellular infection, indicating that the inhibition of invasion was likely caused by an effect on the bacteria rather than inhibition of epithelial cell function. CONCLUSIONS/SIGNIFICANCE: Bacterial motility and invasion of eukaryotic cells are considered key steps in C. jejuni infection. Our results indicate that subinhibitory concentrations of carvacrol effectively block these virulence traits by interfering with flagella function without disturbing intracellular ATP levels. These results broaden the spectrum of anti-microbial activity of carvacrol and support the potential of the compound for use in novel infection prevention strategies.

  8. Campylobacter jejuni Motility Is Required for Infection of the Flagellotropic Bacteriophage F341

    Science.gov (United States)

    Baldvinsson, Signe Berg; Sørensen, Martine C. Holst; Vegge, Christina S.; Clokie, Martha R. J.

    2014-01-01

    Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor. PMID:25261508

  9. Campylobacter jejuni infection suppressed Cl⁻ secretion induced by CFTR activation in T-84 cells.

    Science.gov (United States)

    Negoro, Sachie; Shimohata, Takaaki; Hatayama, Syo; Sato, Yuri; Matsumoto, Mari; Iba, Hitomi; Aihara, Mutsumi; Uebanso, Takashi; Hamada, Yasuhiro; Nishikawa, Yoshikazu; Yamasaki, Shinji; Mawatari, Kazuaki; Takahashi, Akira

    2014-11-01

    Campylobacter jejuni causes foodborne disease associated with abdominal pain, gastroenteritis, and diarrhea. These symptoms are induced by bacterial adherence and invasion of host epithelial cells. C. jejuni infection can occur with a low infective dose, suggesting that C. jejuni may have evolved strategies to cope with the bacterial clearance system in the gastrointestinal tract. The mucosa layer is the first line of defense against bacteria. Mucus conditions are maintained by water and anion (especially Cl(-)) movement. Cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl(-) channel transporting Cl(-) to the lumen. Mutations in CFTR result in dehydrated secreted mucus and bacterial accumulation in the lungs, and recent studies suggest that closely related pathogenic bacteria also may survive in the intestine. However, the relationship between C. jejuni infection and CFTR has been little studied. Here, we used an (125)I(-) efflux assay and measurement of short-circuit current to measure Cl(-) secretion in C. jejuni-infected T-84 human intestinal epithelial cells. The basic state of Cl(-) secretion was unchanged by C. jejuni infection, but CFTR activator was observed to induce Cl(-) secretion suppressed in C. jejuni-infected T-84 cells. The suppression of activated Cl(-) secretion was bacterial dose-dependent and duration-dependent. A similar result was observed during infection with other C. jejuni strains. The mechanism of suppression may occur by affecting water movement or mucus condition in the intestinal tract. A failure of mucus barrier function may promote bacterial adhesion or invasion of host intestinal epithelial cells, thereby causing bacterial preservation in the host intestinal tract. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Morphologic observations of experimental Campylobacter jejuni infection in the hamster intestinal tract.

    Science.gov (United States)

    Humphrey, C. D.; Montag, D. M.; Pittman, F. E.

    1986-01-01

    The authors have developed a model for the diarrhea and intestinal lesions seen in Campylobacter jejuni enterocolitis by colonizing the hamster ileum and cecum with C jejuni. Erythematous inflammation of the ileum and cecum and distention of the cecum with fluid were observed at autopsy. The cecal mucosa appeared edematous. Epithelial abnormalities observed by light microscopy included focal edema, occasional hyperplasia, diffuse hyperemia, and infiltration of the lamina propria with leukocytes. C jejuni-like bacteria penetrated the epithelium and were seen in the lamina propria of infected animals but not in uninfected controls. Diverse microvillus lesions, including elongation, shortening, blebbing, and denudation, were seen by transmission electron microscopy. Occasional cytoplasmic aberrations included vacuoles, some containing C jejuni-like bacteria, swollen endoplasmic reticulum, and enlarged mitochondria. Campylobacter structures were vibrio and S-shaped types. Some C jejuni organisms had corrugated screwlike structures wrapped around their circumferences. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:3942198

  11. Effects of a Campylobacter jejuni infection on the development of the intestinal microflora of broiler chickens

    DEFF Research Database (Denmark)

    Johansen, C. H.; Friis-Holm, Lotte Bjerrum; Finster, K.

    2006-01-01

    The effect of a Campylobacter jejuni colonization on the development of the microflora of the cecum and the ileum of broiler chickens was studied using molecular methods. The infection did affect the development and complexity of the microbial Communities of the ceca, but we found no permanent ef....... Some of these DGGE bands could be affiliated with Lactobacillus reuteri, Clostridium perfringens, and the genus Klebsiella....

  12. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study

    NARCIS (Netherlands)

    Doorduyn, Y.; Brandhof, van den W.E.; Duynhoven, van Y.T.H.P.; Breukink, B.J.; Wagenaar, J.A.; Pelt, van W.

    2010-01-01

    A case-control study comprising 1315 Campylobacter jejuni cases, 121 Campylobacter coli cases and 3409 frequency-matched controls was conducted in The Netherlands in 2002-2003. Risk factors for both C. jejuni and C. coli enteritis were consumption of undercooked meat and barbecued meat, ownership of

  13. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    Science.gov (United States)

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  14. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice.

    Science.gov (United States)

    Bereswill, Stefan; Alutis, Marie E; Grundmann, Ursula; Fischer, André; Göbel, Ulf B; Heimesaat, Markus M

    2016-01-01

    Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection. To assure stable infection, gnotobiotic (i.e. secondary abiotic) IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81-176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.). Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice. We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating pathogen

  15. Campylobacter jejuni strategies to evade hostile environments

    NARCIS (Netherlands)

    Vaezirad, M.M.|info:eu-repo/dai/nl/311482384

    2017-01-01

    Campylobacter jejuni is the most common cause of human bacterial foodborne disease in the western world. Each year hundreds of millions of cases of Campylobacter infection occur worldwide. After a few weeks, the infection may be followed by serious auto-immune diseases like the Guillain-Barre

  16. Host resistance to primary and secondary Campylobacter jejuni infections in C57Bl/6 mice.

    Science.gov (United States)

    Vucković, Darinka; Abram, Maja; Bubonja, Marina; Wraber, Branka; Dorić, Miljenko

    2006-01-01

    Campylobacter jejuni has been known as a main causative agent of human enterocolitis for more than 30 years. This has prompted the research on defence mechanisms of the host involved. Although the humoral immune response to C. jejuni has been addressed in many studies, relatively little is known about the role of T lymphocytes in campylobacteriosis. The current study was based on in vivo T-cell subsets depletion to evaluate the role of CD4+ and CD8+ T lymphocytes in disseminated C. jejuni infection in C57BL/6 mice. Depletion of either CD8+ or CD4+ cells did not change the overall infection kinetics of primary campylobacteriosis. To assess the role of T cells in acquired immunity that develops during primary infection in C57BL/6 mice, in vivo depletions were performed during reinfection. Depletion of CD4+ cells did not have any effect on secondary infection kinetics, whereas depletion of CD8+ cells resulted in secondary liver infection that failed to resolve during the observed period. This study showed that both CD8+ and CD4+ T cells contribute to protection of C57BL/6 mice against C. jejuni. However, the predominant role resides in the CD8+ cell subpopulation. The exact mechanisms by which CD8+ cells operate during the course of campylobacteriosis will be the subject of our further research.

  17. Epidemiological aspects of Campylobacter jejuni enteritis.

    OpenAIRE

    Norkrans, G.; Svedhem, A.

    1982-01-01

    An epidemiological study on Campylobacter jejuni enterocolitis was performed in an urban Swedish community. The study included 55 patients gathered during a six-month period. Forty-one of the 55 patients (75%) were infected outside Sweden. Campylobacter enterocolitis was rare among children within the country. Patients infected in Sweden had eaten chicken significantly more often than a corresponding control group. Seven out of nine chicken consuming campylobacter patients also had prepared t...

  18. Campylobacter jejuni in commercial eggs

    Directory of Open Access Journals (Sweden)

    Belchiolina Beatriz Fonseca

    2014-01-01

    Full Text Available This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health.

  19. Complete Genomic Sequence of Campylobacter jejuni subsp. jejuni HS:19 Strain RM1285 Isolated from Packaged Chicken

    OpenAIRE

    Parker, Craig; Huynh, S; Heikema, Astrid

    2016-01-01

    textabstractPoultry products serve as the main source of Campylobacter jejuni subsp. jejuni infections in humans. C. jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome. This study describes the genome of C. jejuni subsp. jejuni HS:19 strain RM1285, isolated from packaged chicken in California.

  20. Campylobacter jejuni motility is required for infection of the flagellotropic bacteriophage F341

    DEFF Research Database (Denmark)

    Baldvinsson, Signe Berg; Sørensen, Martine Camilla Holst; Vegge, Christina Skovgaard

    2014-01-01

    Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule....... In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption...... assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data...

  1. Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens

    Directory of Open Access Journals (Sweden)

    Martine Camilla Holst Sørensen

    2012-02-01

    Full Text Available Bacteriophages are estimated to be the most abundant entities on earth and can be found in every niche where their bacterial hosts reside. The initial interaction between phages and Campylobacter jejuni, a common coloniser of poultry intestines and a major source of foodborne bacterial gastroenteritis in humans, is not well understood. Recently, we isolated and characterised a phage F336 resistant variant of C. jejuni NCTC11168 called 11168R. Comparisons of 11168R with the wildtype lead to the identification of a novel phage receptor, the phase variable O-methyl phosphoramidate (MeOPN moiety of the C. jejuni capsular polysaccharide (CPS. In this study we demonstrate that the 11168R strain has gained cross-resistance to four other phages in our collection (F198, F287, F303 and F326. The reduced plaquing efficiencies suggested that MeOPN is recognized as a receptor by several phages infecting C. jejuni. To further explore the role of CPS modifications in C. jejuni phage recognition and infectivity, we tested the ability of F198, F287, F303, F326 and F336 to infect different CPS variants of NCTC11168, including defined CPS mutants. These strains were characterised by high-resolution magic angle spinning NMR spectroscopy. We found that in addition to MeOPN, the phase variable 3-O-Me and 6-O-Me groups of the NCTC11168 CPS structure may influence the plaquing efficiencies of the phages. Furthermore, co-infection of chickens with both C. jejuni NCTC11168 and phage F336 resulted in selection of resistant C. jejuni bacteria, which either lack MeOPN or gain 6-O-Me groups on their surface, demonstrating that resistance can be acquired in vivo. In summary, we have shown that phase variable CPS structures modulate phage infectivity in C. jejuni and suggest that the constant phage predation in the avian gut selects for changes in these structures leading to a continuing phage-host co-evolution.

  2. Recrudescent Campylobacter jejuni infection in an immunocompetent adult following experimental infection with a well-characterized organism.

    Science.gov (United States)

    Baqar, Shahida; Tribble, David R; Carmolli, Marya; Sadigh, Katrin; Poly, Frederic; Porter, Chad; Larsson, Catherine J; Pierce, Kristen K; Guerry, Patricia; Darsley, Michael; Kirkpatrick, Beth

    2010-01-01

    The recrudescence of infection with Campylobacter jejuni after appropriate antibiotic treatment has not been previously reported in an immunocompetent adult. We present the complete clinical, microbiologic, and immunologic evaluation of a closely monitored healthy male with recrudescent C. jejuni infection occurring in the absence of immunodeficiency following experimental infection with a well-characterized strain. After antibiotic treatment, the initial infection was clinically cleared and microbiologically undetectable. Subsequently, two episodes of recrudescence occurred, with no change in in vitro antibiotic sensitivity being detected. The immune responses of the individual were compared to those of other participants in the experimental infection study: innate immune responses, including fecal cytokines and C-reactive protein, were intact; however, measures of Campylobacter-specific adaptive immune responses were absent, including serum antibodies, antibody-secreting cells, and in vitro gamma interferon responses. No primary or secondary immunodeficiency was identified. Recrudescent Campylobacter infections after treatment may be more common than has previously been appreciated. This work adds to our understanding of the human immune response to natural Campylobacter infection and reiterates the importance of pathogen-specific adaptive immune responses to this globally important pathogen.

  3. Recrudescent Campylobacter jejuni Infection in an Immunocompetent Adult following Experimental Infection with a Well-Characterized Organism▿ †

    Science.gov (United States)

    Baqar, Shahida; Tribble, David R.; Carmolli, Marya; Sadigh, Katrin; Poly, Frederic; Porter, Chad; Larsson, Catherine J.; Pierce, Kristen K.; Guerry, Patricia; Darsley, Michael; Kirkpatrick, Beth

    2010-01-01

    The recrudescence of infection with Campylobacter jejuni after appropriate antibiotic treatment has not been previously reported in an immunocompetent adult. We present the complete clinical, microbiologic, and immunologic evaluation of a closely monitored healthy male with recrudescent C. jejuni infection occurring in the absence of immunodeficiency following experimental infection with a well-characterized strain. After antibiotic treatment, the initial infection was clinically cleared and microbiologically undetectable. Subsequently, two episodes of recrudescence occurred, with no change in in vitro antibiotic sensitivity being detected. The immune responses of the individual were compared to those of other participants in the experimental infection study: innate immune responses, including fecal cytokines and C-reactive protein, were intact; however, measures of Campylobacter-specific adaptive immune responses were absent, including serum antibodies, antibody-secreting cells, and in vitro gamma interferon responses. No primary or secondary immunodeficiency was identified. Recrudescent Campylobacter infections after treatment may be more common than has previously been appreciated. This work adds to our understanding of the human immune response to natural Campylobacter infection and reiterates the importance of pathogen-specific adaptive immune responses to this globally important pathogen. PMID:19923572

  4. Molecular epidemiology of Campylobacter jejuni infection in Israel-a nationwide study.

    Science.gov (United States)

    Weinberger, M; Moran-Gilad, J; Rokney, A; Davidov, Y; Agmon, V; Peretz, C; Valinsky, L

    2016-12-01

    The incidence of Campylobacter infection in Israel, particularly among children Campylobacter jejuni in Israel over a decade (2003-2012) using multilocus sequence typing (MLST) combined with demographic metadata. Representative clinical isolates (438) from a large national repository together with selected veterinary isolates (74) were subject to MLST. The distribution of age groups, ethnicity and clinical source across various genotypes was evaluated using Poisson modelling. The 512 studied isolates were assigned 126 distinct sequence types (STs) (18.8% novel STs) grouped into 21 clonal complexes (CCs). Most human, poultry and bovine STs clustered together in the leading CCs. Three dominant STs (ST21, ST6608, ST4766) were detected only since 2006. Patients infected with the leading CCs were similarly distributed along densely populated areas. The frequency of blood isolates was higher in patients infected with CC353 (relative rate (RR)=2.0, 95% CI 1.03-3.9, adjusted p value (adj.p) 0.047) and CC42 (RR=4.4, 95% CI 1.7-11.6, adj.p 0.018) and lower with CC257 (RR=0.3, 95% CI 0.1-0.9, adj. p 0.047). The distribution of age groups and ethnicity also varied across the leading CCs. In conclusion, C. jejuni isolates in a national sample appeared highly diverse with a high proportion of new STs. Phylogenic analysis was compatible with poultry and cattle as possible food sources of clinical infection. Demographic characteristics of the infected patients coupled with strain invasiveness across different genotypes revealed a complex epidemiology of C. jejuni transmission in Israel. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Risk factors associated with Campylobacter jejuni infections in Curacao, Netherlands Antilles

    NARCIS (Netherlands)

    H.P. Endtz (Hubert); L. de Haan (Lidewij); R. van Koningsveld (Rinske); Y. Halabi; N.P.W.C.J. van den Braak (Nicole); B.I. Kesztyus; C.W. Ang (Wim); I. Gerstenbluth; E. Leyde; A. Ott (Alewijn); F.G. Rodgers; R.P.A.J. Verkooyen (Roel); D.L. Woodward; A.F. van Belkum (Alex); L.J. Price; H. West; P.C.R. Godschalk (Peggy)

    2003-01-01

    textabstractA steady increase in the incidence of Guillain-Barre syndrome (GBS) with a seasonal preponderance, almost exclusively related to Campylobacter jejuni, and a rise in the incidence of laboratory-confirmed Campylobacter enteritis have been reported from Curacao,

  6. Assessment of chicken protection against Campylobacter jejuni infection by immunization with avirulent Salmonella enterica sv. Typhimurium strain producing Campylobacter CjaD/Pal protein

    Directory of Open Access Journals (Sweden)

    Łaniewski P

    2012-08-01

    Full Text Available Pawel Laniewski,1 Malgorzata Lis,2 Agnieszka Wyszynska,1 Pawel Majewski,3 Renata Godlewska,1 Elzbieta Katarzyna Jagusztyn-Krynicka11Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland; 2Biowet Pulawy Ltd, Pulawy, Poland; 3Department of Vertebrate Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, PolandAbstract: Campylobacter jejuni is a major food-borne pathogen, causing gastroenteritis worldwide. Chickens are considered to be one of the most common sources of human C. jejuni infection in developed countries. Campylobacter CjaD/Pal protein (annotated as Cj0113 in C. jejuni strain NCTC11168 is a highly immunogenic, membrane-located antigen, conserved among different strains, with the potential to provide broad protection against C. jejuni colonization. The present study examines the immunogenicity and the general efficacy of avirulent S. enterica sv. Typhimurium Δcrp Δcya expressing C. jejuni CjaD as a chicken vaccine against Campylobacter colonization. The high copy number plasmid pYA3341 Asd+ was used as a cloning vector. Here, 1- and 14-day old chickens were orally immunized with a delivery vector strain, expressing C. jejuni CjaD. Two weeks later, they were challenged with a wild-type C. jejuni strain isolated from chicken carcasses. This schedule of immunization induced significant levels of serum-specific IgG as well as mucosal intestinal sIgA as measured by ELISA tests using Campylobacter membrane proteins as a coating antigen. Nevertheless, protection experiments did not result in significant reduction of colonization of vaccinated birds relative to nonvaccinated birds.Keywords: Campylobacter, cjaD, immunization, Pal

  7. Compuesto bactericida contra Campylobacter jejuni

    OpenAIRE

    Gañan, M.; Carrascosa, Alfonso V.; Martínez-Rodríguez, Adolfo J.

    2008-01-01

    Compuesto bactericida contra Campylobacter jejuni. Uso de algunos compuestos fenólicos como agentes antibacterianos contra C jejuni. Además de sus usos para conservación de alimentos, suplemento alimenticio para animales y para la elaboración de una composición farmacéutica para el tratamiento de enfermedades causadas por C. jejuni, debido a su actividad frente a este microorganismos.

  8. Lipooligosaccharide of Campylobacter jejuni

    Science.gov (United States)

    Houliston, R. Scott; Vinogradov, Evgeny; Dzieciatkowska, Monika; Li, Jianjun; St. Michael, Frank; Karwaski, Marie-France; Brochu, Denis; Jarrell, Harold C.; Parker, Craig T.; Yuki, Nobuhiro; Mandrell, Robert E.; Gilbert, Michel

    2011-01-01

    Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome. We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host glycolipid/glycoprotein mimics within its LOS. P blood group and paragloboside (lacto-N-neotetraose) antigen mimicry is exhibited by RM1221, a strain isolated from a poultry source. RM1503, a gastroenteritis-associated strain, expresses lacto-N-biose and sialyl-Lewis c units, the latter known as the pancreatic tumor-associated antigen, DU-PAN-2 (or LSTa). C. jejuni GC149, a Guillain-Barré syndrome-associated strain, expresses an unusual sialic acid-containing hybrid oligosaccharide with similarity to both ganglio and Pk antigens and can, through phase variation of its LOS biosynthesis genes, display GT1a or GD3 ganglioside mimics. We show that the sialyltransferase CstII and the galactosyltransferase CgtD are involved in the synthesis of multiple mimic types, with LOS structural diversity achieved through evolving allelic substrate specificity. PMID:21257763

  9. Association study between an outbreak of Guillain-Barre syndrome in Jilin, China, and preceding Campylobacter jejuni infection.

    Science.gov (United States)

    Zhang, Maojun; Li, Qun; He, Lihua; Meng, Fanliang; Gu, Yixin; Zheng, Minghuan; Gong, Yunwei; Wang, Ping; Ruan, Feng; Zhou, Lei; Wu, Jing; Chen, Li; Fitzgerald, Collette; Zhang, Jianzhong

    2010-08-01

    From June to July 2007, 36 cases of Guillain-Barre syndrome (GBS) occurred in a township in north China. Serological study and bacteria culture were performed to investigate the association between preceding Campylobacter jejuni infection and this GBS outbreak. Anti-C. jejuni antibodies were found in significantly higher numbers of GBS patients (IgM 84%, IgG 87.5%) than in healthy inspection cases (IgM 33%, IgG 27%). IgG anti-GM1 was the dominant anti-ganglioside antibody among the GBS patients. Seven C. jejuni isolates (four from human stool and three from poultry specimens taken from the patients' houses) were obtained. Serotyping and molecular analysis were used to investigate the genetic relatedness among these C. jejuni isolates. The four human isolates, collected from residents of the same district, were indistinguishable by both pulsed-field gel electrophoresis and multilocus sequence typing, suggesting these patients had a common source of infection. A new sequence type, sequence type-2993, was assigned to the human C. jejuni isolates, three of which belonged to Penner serotype heat-stable (HS):41. Both serotype and molecular subtype of the human C. jejuni isolates were different from those of isolates obtained from poultry specimens. Our results suggest that the antecedent C. jejuni infection triggered this GBS outbreak in China.

  10. Campylobacter jejuni : An emerging pathogen

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-01-01

    Full Text Available Campylobacter jejuni is a major cause of food-borne diarrhea in many countries. However, in some countries, a number of cases were undetected because of the inappropriate detection method and ignorance. Although C. jejuni usually does not cause death in health adults, it can be deadly for immunocompromised persons (Pigrau, et al., 1997. Although thought to be very susceptible in several conditions, C. jejuni in fact is quite prevalent in nature. It can easily cause sporadic cases and outbreaks resulting in economic loss. This review covers three major parts: clinical aspects of Campylobacteriosis, C. jejuni reservoirs and transmission, and methods for detection.

  11. Survey of extra-intestinal immune responses in asymptomatic long-term Campylobacter jejuni-infected mice.

    Science.gov (United States)

    Heimesaat, Markus M; Haag, Lea-Maxie; Fischer, André; Otto, Bettina; Kühl, Anja A; Göbel, Ulf B; Bereswill, Stefan

    2013-09-01

    Campylobacter jejuni is among the most frequently reported bacterial pathogens causing diarrhea in humans worldwide. We recently reported a murine infection model mimicking key features of human campylobacteriosis. Six days following oral C. jejuni infection immediately after weaning, infant mice developed acute enterocolitis resolving within 2 weeks. Thereafter, C. jejuni could still be isolated from the intestines of asymptomatic mice at low levels accompanied by distinct immune responses, both at intestinal and extra-intestinal locations. We here show that, at day 103 post infection (p.i.), long-term C. jejuni-infected mice exhibited higher numbers of T lymphocytes in liver, lung, kindneys, and cardiac muscle as compared to uninfected controls. In addition, B lymphocytes were slightly higher, but macrophage numbers were significantly lower in liver and lung of C. jejuni-infected versus naive mice. As compared to uninfected control animals, proliferating cells were significantly lower in liver, lung, kidneys, cardiac muscle, and spleen at day 103 p.i., whereas more apoptotic cells were abundant in the spleen with predominance in the red pulp. This study underlines that post-infectious, immunological sequelae at extra-intestinal locations are of importance even in asymptomatic long-term C. jejuni carriers and need to be further studied in order to unravel the underlying molecular mechanisms.

  12. Autoimmunity Links Vinculin to the Pathophysiology of Chronic Functional Bowel Changes Following Campylobacter jejuni Infection in a Rat Model.

    Science.gov (United States)

    Pimentel, Mark; Morales, Walter; Pokkunuri, Venkata; Brikos, Constantinos; Kim, Sun Moon; Kim, Seong Eun; Triantafyllou, Konstantinos; Weitsman, Stacy; Marsh, Zachary; Marsh, Emily; Chua, Kathleen S; Srinivasan, Shanthi; Barlow, Gillian M; Chang, Christopher

    2015-05-01

    Acute gastroenteritis can precipitate irritable bowel syndrome (IBS) in humans. Cytolethal distending toxin is common to all pathogens causing gastroenteritis. Its active subunit, CdtB, is associated with post-infectious bowel changes in a rat model of Campylobacter jejuni infection, including small intestinal bacterial overgrowth (SIBO). To evaluate the role of host antibodies to CdtB in contributing to post-infectious functional sequelae in this rat model. Ileal tissues from non-IBS human subjects, C. jejuni-infected and control rats were immunostained with antibodies to CdtB, c-Kit, S-100, PGP 9.5 and vinculin. Cytosolic and membrane proteins from mouse enteric neuronal cell lysates were immunoprecipitated with anti-CdtB and analyzed by mass spectrometry. ELISAs were performed on rat cardiac serum using CdtB or vinculin as antigens. Anti-CdtB antibodies bound to a cytosolic protein in interstitial cells of Cajal (ICC) and myenteric ganglia in C. jejuni-infected and naïve rats and human subjects. Mass spectrometry identified vinculin, confirmed by co-localization and ELISAs. Anti-CdtB antibodies were higher in C. jejuni-infected rats (1.27 ± 0.15) than controls (1.76 ± 0.12) (P jejuni-infected rats (0.058 ± 0.053) versus controls (0.087 ± 0.023) (P = 0.0001), with greater reductions in rats with two C. jejuni infections (P = 0.0001) and rats that developed SIBO (P = 0.001). Host anti-CdtB antibodies cross-react with vinculin in ICC and myenteric ganglia, required for normal gut motility. Circulating antibody levels and loss of vinculin expression correlate with number of C. jejuni exposures and SIBO, suggesting that effects on vinculin are important in the effects of C. jejuni infection on the host gut.

  13. Faecal contamination of a municipal drinking water distribution system in association with Campylobacter jejuni infections.

    Science.gov (United States)

    Pitkänen, Tarja; Miettinen, Ilkka T; Nakari, Ulla-Maija; Takkinen, Johanna; Nieminen, Kalle; Siitonen, Anja; Kuusi, Markku; Holopainen, Arja; Hänninen, Marja-Liisa

    2008-09-01

    After heavy rains Campylobacter jejuni together with high counts of Escherichia coli, other coliforms and intestinal enterococci were detected from drinking water of a municipal distribution system in eastern Finland in August 2004. Three patients with a positive C. jejuni finding, who had drunk the contaminated water, were identified and interviewed. The pulsed-field gel electrophoresis (PFGE) genotypes from the patient samples were identical to some of the genotypes isolated from the water of the suspected contamination source. In addition, repetitive DNA element analysis (rep-PCR) revealed identical patterns of E. coli and other coliform isolates along the distribution line. Further on-site technical investigations revealed that one of the two rainwater gutters on the roof of the water storage tower had been in an incorrect position and rainwater had flushed a large amount of faecal material from wild birds into the drinking water. The findings required close co-operation between civil authorities, and application of cultivation and genotyping techniques strongly suggested that the municipal drinking water was the source of the infections. The faecal contamination associated with failures in cleaning and technical management stress the importance of instructions for waterworks personnel to perform maintenance work properly.

  14. Dynamics of Dual Infection with Campylobacter jejuni Strains in Chickens Reveals Distinct Strain-to-Strain Variation in Infection Ecology

    Science.gov (United States)

    Wigley, Paul; Humphrey, Suzanne; Kemmett, Kirsty; Lacharme-Lora, Lizeth; Humphrey, Tom; Williams, Nicola

    2014-01-01

    Although multiple genotypes of Campylobacter jejuni may be isolated from the same commercial broiler flock, little is known about the infection dynamics of different genotypes within individuals or their colonization sites within the gut. Single experimental infections with C. jejuni M1 (sequence type 137, clonal complex 45) and C. jejuni 13126 (sequence type 21, clonal complex 21) revealed that 13126 colonized the ceca at significantly higher levels. The dissemination and colonization sites of the two C. jejuni strains then were examined in an experimental broiler flock. Two 33-day-old broiler chickens were infected with M1 and two with 13126, and 15 birds were left unchallenged. Cloacal swabs were taken postinfection to determine the colonization and shedding of each strain. By 2 days postinfection (dpi), 8/19 birds were shedding M1 whereas none were shedding 13126. At 8 dpi, all birds were shedding both strains. At 18 dpi, liver and cecal levels of each isolate were quantified, while in 10 birds they also were quantified at nine sites throughout the gastrointestinal (GI) tract. 13126 was found throughout the GI tract, while M1 was largely restricted to the ceca and colon. The livers of 7/19 birds were culture positive for 13126 only. These data show that 13126 has a distinctly different infection biology than strain M1. It showed slower colonization of the lower GI tract but was more invasive and able to colonize at a high level throughout the GI tract. The finding that C. jejuni strains have markedly different infection ecologies within the chicken has implications for control in the poultry industry and suggests that the contamination risk of edible tissues is dependent on the isolate involved. PMID:25107966

  15. Media for Campylobacter jejuni and other campylobacters

    NARCIS (Netherlands)

    Mossel, D.A.A.

    1985-01-01

    Despite their recent elaboration and the many variations in antibiotic combinations designed to attain selectivity, highly selective liquid and solid culture media for Campylobacter jejuni have proved satisfactory provided they are incubated at about 42°C and in a microaerophilic atmosphere such as

  16. Infection-induced antibodies against the major outer membrane protein of Campylobacter jejuni mainly recognize conformational epitopes.

    Science.gov (United States)

    Huang, Shouxiong; Sahin, Orhan; Zhang, Qijing

    2007-07-01

    The major outer membrane protein (MOMP) of Campylobacter jejuni is an abundant surface protein with a pore-forming function and may be a potential candidate for vaccine development. Despite the fact that MOMP is immunogenic and the recombinant MOMP (rMOMP) can be readily produced in Escherichia coli, the nature of the antibody response to MOMP during in vivo infection is not well understood. In this study, various methods involving detergent replacement and liposome reconstitution were used to refold rMOMP, and antibody responses to MOMP elicited in Campylobacter-colonized chickens were evaluated using sera from chickens either naturally or experimentally infected by C. jejuni. The results demonstrated that proteoliposomes restored the reactivity of rMOMP to rabbit antibodies elicited by native MOMP, indicating the recovery of native MOMP conformation by this refolding method. Importantly, sera from naturally or experimentally infected chickens reacted weakly with denatured rMOMP, but strongly with rMOMP reconstituted in proteoliposome, suggesting that the chicken antibody response to MOMP is predominantly directed against conformational epitopes. These observations provide direct evidence for conformation-dependent humoral responses to MOMP induced by Campylobacter infection, demonstrate that C. jejuni MOMP is immunogenic in its natural host and suggest that proteoliposomes may be potentially used for the evaluation of rMOMP-based vaccines.

  17. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS: 19 strain RM1285 isolated from packaged chicken

    NARCIS (Netherlands)

    C.T. Parker (Craig); Huynh, S. (Steven); A.P. Heikema (Astrid)

    2016-01-01

    textabstractPoultry products serve as the main source of Campylobacter jejuni subsp. jejuni infections in humans. C. jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome. This study describes the genome of C.

  18. Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection.

    Directory of Open Access Journals (Sweden)

    Elisabeth Lippert

    2009-10-01

    Full Text Available Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-; NF-kappaB(EGFP mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA. NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice developed mild (day 5 and severe (day 14 ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.

  19. Campylobacter jejuni infection of infant mice: acute enterocolitis is followed by asymptomatic intestinal and extra-intestinal immune responses.

    Science.gov (United States)

    Haag, L-M; Fischer, A; Otto, B; Grundmann, U; Kühl, A A; Göbel, U B; Bereswill, S; Heimesaat, M M

    2012-03-01

    Campylobacter (C.) jejuni is among the leading bacterial agents causing enterocolitis worldwide. Despite the high prevalence of C. jejuni infections and its significant medical and economical consequences, intestinal pathogenesis is poorly understood. This is mainly due to the lack of appropriate animal models. In the age of 3 months, adult mice display strong colonization resistance (CR) against C. jejuni. Previous studies underlined the substantial role of the murine intestinal microbiota in maintaining CR. Due to the fact that the host-specific gut flora establishes after weaning, we investigated CR against C. jejuni in 3-week-old mice and studied intestinal and extra-intestinal immunopathogenesis as well as age dependent differences of the murine colon microbiota. In infant animals infected orally immediately after weaning C. jejuni strain B2 could stably colonize the gastrointestinal tract for more than 100 days. Within six days following infection, infant mice developed acute enterocolitis as indicated by bloody diarrhea, colonic shortening, and increased apoptotic cell numbers in the colon mucosa. Similar to human campylobacteriosis clinical disease manifestations were self-limited and disappeared within two weeks. Interestingly, long-term C. jejuni infection was accompanied by distinct intestinal immune and inflammatory responses as indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils, as well as apoptotic cells in the colon mucosa. Strikingly, C. jejuni infection also induced a pronounced influx of immune cells into extra-intestinal sites such as liver, lung, and kidney. Furthermore, C. jejuni susceptible weaned mice harbored a different microbiota as compared to resistant adult animals. These results support the essential role of the microflora composition in CR against C. jejuni and demonstrate that infant mouse models resemble C. jejuni mediated immunopathogenesis including the characteristic self-limited enterocolitis

  20. Human and chicken antibodies to gangliosides following infection by Campylobacter jejuni.

    Science.gov (United States)

    Usuki, Seigo; Taguchi, Kyoji; Cawthraw, Shaun A; Shibata, Keiko; Ariga, Toshio; Newell, Diane G; Yu, Robert K

    2006-07-01

    Campylobacteriosis is frequently associated with Guillain-Barré syndrome. Poultry are frequently highly colonized with Campylobacter jejuni and are a major foodborne vehicle for campylobacteriosis. In this study, high titer anti-GM1 antibodies were found in the serum of a laboratory worker who developed campylobacteriosis. The microbiologically confirmed strain VLA2/18 (non-serotyped) was isolated from the worker and subsequently inoculated into chickens, resulting in high titers of serum antibodies to GM1. However, none of the immunized chickens in our study showed any noticeable neurological symptoms, such as paralysis or cramping. High titer anti-GM1 antibodies in chicken and human sera strongly inhibited spontaneous muscle action potential in an in vitro system of spinal cord and muscle cell co-culture. In addition, infection of chickens with C. jejuni strains 81116 (HS6) and 99/419 (HS21) or immunization with purified GM1, GM2, and GM3 resulted in elevation of serum anti-ganglioside antibodies with an inhibitory effect on spontaneous muscle action potential. Immunoabsorption studies demonstrated that this inhibitory activity is due to anti-ganglioside antibodies. On the other hand, anti-GM1 is the only specific human serum antibody to induce an inhibitory effect on neuromuscular junctions. Chicken anti-GM1 antibodies showed a strong inhibitory effect, but anti-GM2 and -GM3 had weaker activities. Taken together, our data suggest that campylobacteriosis in chickens may provide a strong link between infection and the development of anti-ganglioside antibody-mediated peripheral nerve dysfunctions.

  1. Acute myocarditis secondary to Campylobacter jejuni enterocolitis.

    Science.gov (United States)

    Turley, A J; Crilley, J G; Hall, J A

    2008-10-01

    Myocarditis is a rare condition that can mimic an acute coronary syndrome (ACS). We present the case of a 24-year-old male with Noonan syndrome who presented with a diarrhoeal pro-dromal illness, acute onset chest pain, elevated cardiac biomarkers and an abnormal ECG with ST elevation in the absence of obstructive coronary artery disease. The patient had acute myocarditis secondary to Campylobacter jejuni enterocolitis. Infective myocarditis is most commonly due to a viral infection. Myocarditis is very rarely due to a bacterial infection with only isolated reports of myocarditis induced by Campylobacter jejuni infection. At follow-up he remains well. Myocarditis should be considered in all patients presenting with acute onset chest pain and elevated cardiac biomarkers.

  2. [Investigation of campylobacter jejuni infection in children with diarrhea in Guangzhou].

    Science.gov (United States)

    Xie, Yong-Qiang; Zhou, Zhen-Wen; Guo, Yan; Deng, Qiu-Lian; Huang, Yong

    2009-06-01

    To investigate the incidence of campylobacter jejuni (CJ) infection and the drug resistance of CJ in children with diarrhea in Guangzhou. The fecal samples of 3,351 children with diarrhea between July 2005 and June 2008 were collected for CJ culture. The species of CJ strains were identified by Lior methods. The drug susceptibility tests were performed by the Kirby-Bauer method. Two hundred and sixty-seven CJ strains (8.0%) were isolated from 3,351 samples. The children at age of 1 month to 1 year were susceptible to CJ, accounting for 91.0%. A higher incidence of CJ infection (76.8%) was found in summer and autumn. The CJ strains were susceptible to imipenem, amikacin, cefoperazone/sulbactam, chloramphenicol, macrolides and lincomycins. Parts of CJ strains (20%-40%) were resistant to ampicillin, quinolones and ambramycin. All CJ strains were resistant to sulfamethoxazole/trimethoprim and cefditoren. Two hundred and one strains (75.3%) were CJ biotype I. CJ is an important pathogen of diarrhea in children from Guangzhou. CJ is resistant to some antibiotics used often in clinical practice, and so it is thus important to use antibiotics based on the results of drug susceptibility tests in children with CJ infection.

  3. A case of myopericarditis associated to Campylobacter jejuni infection in the southern hemisphere

    Directory of Open Access Journals (Sweden)

    Alberto Fica

    Full Text Available Myopericarditis is an infrequent complication of acute diarrheal illness due to Campylobacter jejuni, and it has been mainly reported in developed nations. The first case detected in Chile - an upper-middle income country -, that is coincidental with the increasing importance of acute gastroenteritis associated to this pathogen, is described. Recognition of this agent in stools requires special laboratory techniques not widely available, and it was suspected when a young patient presented with acute diarrhea, fever, and chest pain combined with electrocardiogram (EKG abnormalities and elevated myocardial enzymes. C. jejuni myopericarditis can easily be suspected but its detection requires dedicated laboratory techniques.

  4. Epidemiological aspects of Campylobacter jejuni enteritis.

    Science.gov (United States)

    Norkrans, G.; Svedhem, A.

    1982-01-01

    An epidemiological study on Campylobacter jejuni enterocolitis was performed in an urban Swedish community. The study included 55 patients gathered during a six-month period. Forty-one of the 55 patients (75%) were infected outside Sweden. Campylobacter enterocolitis was rare among children within the country. Patients infected in Sweden had eaten chicken significantly more often than a corresponding control group. Seven out of nine chicken consuming campylobacter patients also had prepared the fresh chicken alone, and none of their family members became ill. Thus the preparation of food contaminated with Campylobacter seems to elevate the risk for contracting the disease. Sick household pets transmitted the campylobacter infection to two patients. Forty-six of the patients had a total of 85 close household members. Three definite secondary cases were found. There was no evidence of transmission of Campylobacter by food prepared by two cooks who were working while still being asymptomatic excreters. Clinical reinfection with Campylobacter was observed in one patient. No patients became long-term carriers of Campylobacter. PMID:7097000

  5. Virulence strategies of Campylobacter jejuni

    NARCIS (Netherlands)

    Alphen, Lieke van

    2007-01-01

    Campylobacter jejuni is recognized as the leading cause of bacterial foodborne disease, causing approximately 400 million human cases of enterocolitis world wide each year. Many cases can be attributed to foreign travel, making it one of the most important causative agents of traveller's diarrhea.

  6. Point source outbreaks of Campylobacter jejuni infection--are they more common than we think and what might cause them?

    Science.gov (United States)

    Gillespie, I A; O'Brien, S J; Adak, G K; Tam, C C; Frost, J A; Bolton, F J; Tompkins, D S

    2003-06-01

    Despite being the commonest bacterial cause of infectious intestinal disease (IID) in England and Wales, outbreaks of campylobacter infection are rarely reported. However, data from the Campylobacter Sentinel Surveillance Scheme suggested that outbreaks might be more common than was previously suspected, since a high proportion of cases reported other illness in the home or in the community at the same time as their illness. To identify factors that might lead to these apparent outbreaks, the exposures of cases of Campylobacter jejuni infection reporting other illness, either in the home or the community, were compared with those for cases not reporting other illness using case-case methodology. Illness in the home was associated with consuming organic meats in the winter, having contact with a pet suffering from diarrhoea or visiting a farm in the 2 weeks before the onset of symptoms. Illness in the community was associated with the consumption of foods in restaurants or drinking unpasteurized milk. Prevention of campylobacter infection requires that better methods of outbreak detection and investigation are developed, which in turn should lead to a better understanding of risk factors.

  7. Heterogeneity in the Infection Biology of Campylobacter jejuni Isolates in Three Infection Models Reveals an Invasive and Virulent Phenotype in a ST21 Isolate from Poultry.

    Science.gov (United States)

    Humphrey, Suzanne; Lacharme-Lora, Lizeth; Chaloner, Gemma; Gibbs, Kirsty; Humphrey, Tom; Williams, Nicola; Wigley, Paul

    2015-01-01

    Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21) showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health.

  8. Heterogeneity in the Infection Biology of Campylobacter jejuni Isolates in Three Infection Models Reveals an Invasive and Virulent Phenotype in a ST21 Isolate from Poultry.

    Directory of Open Access Journals (Sweden)

    Suzanne Humphrey

    Full Text Available Although Campylobacter is the leading cause of bacterial foodborne gastroenteritis in the world and the importance of poultry as a source of infection is well understood we know relatively little about its infection biology in the broiler chicken. Much of what we know about the biology of Campylobacter jejuni is based on infection of inbred or SPF laboratory lines of chickens with a small number of isolates used in most laboratory studies. Recently we have shown that both the host response and microbial ecology of C. jejuni in the broiler chicken varies with both the host-type and significantly between C. jejuni isolates. Here we describe heterogeneity in infection within a panel of C. jejuni isolates in two broiler chicken breeds, human intestinal epithelial cells and the Galleria insect model of virulence. All C. jejuni isolates colonised the chicken caeca, though colonisation of other parts of the gastrointestinal tract varied between isolates. Extra-intestinal spread to the liver varied between isolates and bird breed but a poultry isolate 13126 (sequence type 21 showed the greatest levels of extra-intestinal spread to the liver in both broiler breeds with over 70% of birds of the fast growing breed and 50% of the slower growing breed having C. jejuni in their livers. Crucially 13126 is significantly more invasive than other isolates in human intestinal epithelial cells and gave the highest mortality in the Galleria infection model. Taken together our findings suggest that not only is there considerable heterogeneity in the infection biology of C. jejuni in avian, mammalian and alternative models, but that some isolates have an invasive and virulent phenotype. Isolates with an invasive phenotype would pose a significant risk and increased difficulty in control in chicken production and coupled with the virulent phenotype seen in 13126 could be an increased risk to public health.

  9. Genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 Penner serotype reference strain RM3420

    NARCIS (Netherlands)

    C.T. Parker (Craig); Huynh, S. (Steven); A.P. Heikema (Astrid)

    2017-01-01

    textabstractCampylobacter jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Penner serotype HS:19 is among several capsular types shown to be markers for GBS. This study describes the genome of C.

  10. Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain

    Science.gov (United States)

    Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...

  11. Key Role of Capsular Polysaccharide in the Induction of Systemic Infection and Abortion by Hypervirulent Campylobacter jejuni.

    Science.gov (United States)

    Sahin, Orhan; Terhorst, Samantha A; Burrough, Eric R; Shen, Zhangqi; Wu, Zuowei; Dai, Lei; Tang, Yizhi; Plummer, Paul J; Ji, Ju; Yaeger, Michael J; Zhang, Qijing

    2017-06-01

    Campylobacter jejuni is a zoonotic pathogen, and a hypervirulent clone, named clone SA, has recently emerged as the predominant cause of ovine abortion in the United States. To induce abortion, orally ingested Campylobacter must translocate across the intestinal epithelium, spread systemically in the circulation, and reach the fetoplacental tissue. Bacterial factors involved in these steps are not well understood. C. jejuni is known to produce capsular polysaccharide (CPS), but the specific role that CPS plays in systemic infection and particularly abortion in animals remains to be determined. In this study, we evaluated the role of CPS in bacteremia using a mouse model and in abortion using a pregnant guinea pig model following oral challenge. Compared with C. jejuni NCTC 11168 and 81-176, a clone SA isolate (IA3902) resulted in significantly higher bacterial counts and a significantly longer duration of bacteremia in mice. The loss of capsule production via gene-specific mutagenesis in IA3902 led to the complete abolishment of bacteremia in mice and abortion in pregnant guinea pigs, while complementation of capsule expression almost fully restored these phenotypes. The capsule mutant strain was also impaired for survival in guinea pig sera and sheep blood. Sequence-based analyses revealed that clone SA possesses a unique CPS locus with a mosaic structure, which has been stably maintained in all clone SA isolates derived from various hosts and times. These findings establish CPS as a key virulence factor for the induction of systemic infection and abortion in pregnant animals and provide a viable candidate for the development of vaccines against hypervirulent C. jejuni. Copyright © 2017 American Society for Microbiology.

  12. Human Volunteer Studies with Campylobacter jejuni

    Science.gov (United States)

    1993-01-01

    AD-A271 892 1 April 1993 Reprint Human Volunteer Studies with Campylobacter jejuni Army Project Order 90PP0820 Robert E. Black, Daniel Perlman, Mary...the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development Approved for public release; distribution unlimited NTxxeISfl RFor...C. jejuni results in diarrhea cosa visualized on a microscopic study of rectal with fecal leukocytes and blood, similar to nat- biopsy specimens

  13. Campylobacter Infections

    Science.gov (United States)

    Campylobacter infection is a common foodborne illness. You usually get it from eating contaminated food, especially raw ... reactive arthritis or Guillain-Barre syndrome. To prevent Campylobacter infection, cook poultry thoroughly. Use a separate cutting ...

  14. Campylobacter jejuni enterocolitis presenting as inflammatory bowel disease.

    Science.gov (United States)

    Quondamcarlo, C; Valentini, G; Ruggeri, M; Forlini, G; Fenderico, P; Rossi, Z

    2003-10-01

    We report a case of Campylobacter jejuni enterocolitis presenting as inflammatory bowel disease in a 19-year old woman. After a useless course of corticosteroids, ceftazidime and metronidazole, she was successfully treated with erythromicin. Campylobacter species represent an important cause of gastroenteritis in children and adults. The rate of Campylobacter isolation is 5-6 per 100,000 persons. This rate, however, grossly understimates the actual number of Campylobacter infections. In most cases, Campylobacter enteritis is a self-limiting disease, rarely associated with severe complications. Our case demonstrates the difficulty in distinguishing inflammatory bowel disease (Crohn's disease or ulcerative colitis) at onset from atypical infectious colitis. Unfortunately, corticosteroids (necessary for the treatment of inflammatory bowel disease) may exacerbate infectious etiologies. Campylobacter jejuni should be ruled out when assessing inflammatory bowel diseases at onset (as during flare-ups), especially if corticosteroids or immunosuppressive therapies are required.

  15. Binational outbreak of Guillain-Barré syndrome associated with Campylobacter jejuni infection, Mexico and USA, 2011.

    Science.gov (United States)

    Jackson, B R; Zegarra, J Alomía; López-Gatell, H; Sejvar, J; Arzate, F; Waterman, S; Núñez, A Sánchez; López, B; Weiss, J; Cruz, R Quintero; Murrieta, D Y López; Luna-Gierke, R; Heiman, K; Vieira, A R; Fitzgerald, C; Kwan, P; Zárate-Bermúdez, M; Talkington, D; Hill, V R; Mahon, B

    2014-05-01

    In June 2011, a cluster of suspected cases of Guillain-Barré syndrome (GBS), which can follow Campylobacter jejuni infection, was identified in San Luis Río Colorado (SLRC), Sonora, Mexico and Yuma County, Arizona, USA. An outbreak investigation identified 26 patients (18 from Sonora, eight from Arizona) with onset of GBS 4 May-21 July 2011, exceeding the expected number of cases (n = 1-2). Twenty-one (81%) patients reported antecedent diarrhoea, and 61% of 18 patients tested were seropositive for C. jejuni IgM antibodies. In a case-control study matched on age group, sex, ethnicity, and neighbourhood of residence, all Arizona GBS patients travelled to SLRC during the exposure period vs. 45% of matched controls (matched odds ratio 8·1, 95% confidence interval 1·5-∞). Exposure information and an environmental assessment suggested that GBS cases resulted from a large outbreak of C. jejuni infection from inadequately disinfected tap water in SLRC. Binational collaboration was essential in investigating this cross-border GBS outbreak, the first in mainland North America since 1976.

  16. Genomic Insights into Campylobacter jejuni Virulence and Population Genetics

    Directory of Open Access Journals (Sweden)

    Zuowei Wu

    2016-11-01

    Full Text Available Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.

  17. Importance of Campylobacter jejuni for Food Safety and Public Health

    Directory of Open Access Journals (Sweden)

    Omer Cakmak

    2010-04-01

    Full Text Available Campylobacter spp. are microorganisms that can be found in nature in the entire domestic and wild animal’s intestinal flora including the poultry and the sea animals. Campylobacter can better colonize in the poultry than the other animals. Campylobacter jejuni is an important pathogen among the thermophilic Campylobacter spp. whose growth temperature’s are different than the other Campylobacter spp. and can cause serious gastroenteritis in human beings which in some cases ended up with death. Human beings are generally infected with C. jejuni mainly because of the poultry meat and products and rarely because of the red meat which are contaminated during preparation and serving stages. Inadequate cooking, consumption of poorly chlorinated drinking water or unpasteurized milk are other infection sources of C. jejuni. Campylobacteriosis especially affect children under 5 years of age and reported to be a zoonotic illness that cause acute gastroenteritis in human. In many countries, food sourced C. jejuni infections were reported to occur more frequently than Salmonella spp. infections. In order to avoid Campylobacter infections, it is very important to enforce food security programmes and HACCP like systems during growth, slaughterhouses and point of sales stages. Also adequate cooking of the products, hygiene of the kitchen and personnel are important. [TAF Prev Med Bull 2010; 9(2.000: 157-166

  18. Campylobacter Infections

    Science.gov (United States)

    ... are the most common Campylobacter species associated with diarrhea . Common ways that a child can get the ... and Symptoms Illness caused by Campylobacter infections includes diarrhea, stomach pain, and fever. Blood may be present ...

  19. Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Liu

    Full Text Available Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways.

  20. Multiplex PCR Assay for Identifi cation and Differentiation of Campylobacter jejuni and Campylobacter coli Isolates.

    Science.gov (United States)

    Pavlova, Maria R; Dobreva, Elina G; Ivanova, Katucha I; Asseva, Galina D; Ivanov, Ivan N; Petrov, Peter K; Velev, Valeri R; Tomova, Ivelina I; Tiholova, Maida M; Kantardjiev, Todor V

    2016-01-01

    Campylobacter spp. are important causative agents of gastrointestinal infections in humans. The most frequently isolated strains of this bacterial genus are Campylobacter jejuni and Campylobacter coli. To date, genetic methods for bacterial identification have not been used in Bulgaria. We optimized the multiplex PSR assay to identify Campylobacter spp. and differentiate C. jejuni from C. coli in clinical isolates. We also compared this method with the routinely used biochemical methods. To identify Campylobacter spp. and discriminate C. coli from C. jejuni in clinical isolates using multiplex PCR assay. Between February 2014 and January 2015 we studied 93 stool samples taken from patients with diarrheal syndrome and identified 40 species of Campylobacter spp. in them. The clinical material was cultured in microaerophilic atmosphere, the isolated strains being biochemically diff erentiated (hydrolysis of sodium hippurate for C. jejuni, and hydrolysis of indoxyl acetate for C. coli). DNA was isolated from the strains using QiaAmp MiniKit (QIAGEN, Germany). Twenty strains were tested with multiplex PCR for the presence of these genes: cadF, characteristic for Campylobacter spp., hipO for C. jejuni and asp for C. coli. The biochemical tests identified 16 strains of C. jejuni, 3 strains of C. coli, and 1 strain of C. upsaliensis. After the multiplex PCR assay the capillary gel electrophoresis confirmed 16 strains of C. jejuni, 2 strains of C. coli and 2 strains of Campylobacter spp. - because of the presence of the gene cadF. C. jejuni has the gene hipO, and it is possible that this gene may not be expressed in the biochemical differentiation yielding a negative reaction as a result. In comparison, we can conclude that the genetic differentiation is a more accurate method than the biochemical tests. The multiplex PCR assay is a fast, accurate method for identifi cation of Campylobacter spp. which makes it quite necessary in the clinical diagnostic practice.

  1. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  2. Small Intestinal Pro-Inflammatory Immune Responses Following Campylobacter Jejuni Infection of Secondary Abiotic IL-10-/- Mice Lacking Nucleotide-Oligomerization-Domain-2.

    Science.gov (United States)

    Heimesaat, Markus M; Grundmann, Ursula; Alutis, Marie E; Fischer, André; Bereswill, Stefan

    2017-06-01

    Host immune responses are crucial for combating enteropathogenic infections including Campylobacter jejuni. Within 1 week following peroral C. jejuni infection, secondary abiotic IL-10-/- mice develop severe immunopathological sequelae affecting the colon (ulcerative enterocolitis). In the present study, we addressed whether pathogen-induced pro-inflammatory immune responses could also be observed in the small intestines dependent on the innate receptor nucleotide-oligomerization-domain-protein 2 (Nod2). Within 7 days following peroral infection, C. jejuni stably colonized the gastrointestinal tract of both IL-10-/- mice lacking Nod2 (Nod2-/- IL-10-/-) and IL-10-/- controls displaying bloody diarrhea with similar frequencies. Numbers of apoptotic and regenerating epithelial cells increased in the small intestines of C. jejuni-infected mice of either genotype that were accompanied by elevated ileal T and B lymphocyte counts. Notably, ileal T cell numbers were higher in C. jejuni-infected Nod2-/- IL-10-/- as compared to IL-10-/- counterparts. Furthermore, multifold increased concentrations of pro-inflammatory cytokines including IFN-γ, TNF, and MCP-1 could be measured in small intestinal ex vivo biopsies derived from C. jejuni-infected mice of either genotype. In conclusion, C. jejuni-induced pro-inflammatory immune responses affected the small intestines of both Nod2-/- IL-10-/- and IL-10-/- mice, whereas ileal T lymphocyte numbers were even higher in the former.

  3. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.

    Science.gov (United States)

    Stahl, Martin; Ries, Jenna; Vermeulen, Jenny; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M; Badayeva, Yuliya; Turvey, Stuart E; Gaynor, Erin C; Li, Xiaoxia; Vallance, Bruce A

    2014-07-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-)), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/-) mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/-) mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-)/Sigirr(-/-) mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-)/Sigirr(-/-) mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/-) mice as an exciting and relevant animal model for

  4. A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

    Science.gov (United States)

    Stahl, Martin; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M.; Badayeva, Yuliya; Turvey, Stuart E.; Gaynor, Erin C.; Li, Xiaoxia; Vallance, Bruce A.

    2014-01-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal

  5. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.

    Directory of Open Access Journals (Sweden)

    Martin Stahl

    2014-07-01

    Full Text Available Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-, a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/- mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM and motility/flagella (flaA. We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/- mice, focusing on the roles played by Toll-like receptors (TLR 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-/Sigirr(-/- mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-/Sigirr(-/- mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/- mice as an exciting and relevant animal model for

  6. [Campylobacter jejuni and cytomegalovirus (CMV) infections in patients with the Guillain-Barre syndrome].

    Science.gov (United States)

    Orlikowski, D; Quijano-Roy, S; Sivadon-Tardy, V; Raphael, J-C; Gaillard, J-L

    2006-12-01

    Guillain-Barre syndrome (GBS) is a rare disease triggered by postinfectious mechanisms. The disease concerns all ages, and is widely distributed around the world. The principal risks are respiratory failure, especially during the initial phase of the disease, and persisting deficit at long term. Among the infectious known agents, Campylobacter jejuni and CMV represent more than 40% of GBS causes. The clinical presentation, and the long-term prognosis of GBS related to these two etiologies are different. The physiopathological mechanisms of the nervous attack are probably also different. There is no proof, at this time, that anti-infectious treatment can improve the prognosis. The treatment is based on the early use of immunomodulatory treatments like intravenous immunoglobulins or plasma exchanges.

  7. Survey of Campylobacter jejuni and Campylobacter coli in different taxa and ecological guilds of migratory birds

    Directory of Open Access Journals (Sweden)

    Alessandro Fioretti

    2010-01-01

    Full Text Available A total of 169 faecal samples were collected from migrating birds, belonging to the Order of Passeriformes, in Campania region in order to isolate Campylobacter spp. Campylobacter spp. were isolated from 39 of the 169 birds examined (23.1%. Among these 36 were identified as C. jejuni and the remaining strains were identified as Campylobacter coli. Given the high isolation rates wild birds could be considered natural reservoir of infection.

  8. Survey of Campylobacter jejuni and Campylobacter coli in different taxa and ecological guilds of migratory birds

    Directory of Open Access Journals (Sweden)

    Mariangela Sensale

    2006-01-01

    Full Text Available A total of 169 faecal samples were collected from migrating birds, belonging to the Order of Passeriformes, in Campania region in order to isolate Campylobacter spp. Campylobacter spp. were isolated from 39 of the 169 birds examined (23.1%. Among these 36 were identified as C. jejuni and the remaining strains were identified as Campylobacter coli. Given the high isolation rates wild birds could be considered natural reservoir of infection.

  9. Isolation of Campylobacter jejuni from raw milk.

    OpenAIRE

    Lovett, J; Francis, D W; Hunt, J. M.

    1983-01-01

    Campylobacter jejuni was isolated from raw milk by a method that can routinely detect less than or equal to 1 organism per ml. This procedure was used in a survey of 195 separate farms and showed a 1.5% incidence of C. jejuni in milk from bulk tanks.

  10. Multi drug resistance of campylobacter jejuni and campylobacter coli to tested antibiotics in strains originating from humans, poultry and swine

    Directory of Open Access Journals (Sweden)

    Tambur Zoran Ž.

    2010-01-01

    Full Text Available Thermophilic Campylobacter are among the most common cause of bacterial enteritis in humans. Food animals are considered one of the most important sources of Campylobacter causing infections in man. Campylobacter infection is clinically mild and resolves spontaneously. In severe or long-lasting cases, treatment with antibiotics is necessary. Resistance of Campylobacter spp. to drugs used in treatment of infection is a matter of concern. The aim of this paper is to determine presence of multi drug resistant strains of Campylobacter jejuni and Campylobacter coli isolated from animals and man. Material for testing was obtained by scraping the cecum surface from boilers, pig cecum and colon, and human feces. For isolation Campylobacter jejuni and Campylobacter coli microaerophilic conditions, temperature of 42°C and antibiotic supplement were required to inhibit the growth of other intestinal bacteria. In this research, for sensitivity testing of Campylobacter jejuni and Campylobacter coli three different methods were used: disc diffusion test, E-test, and dilution agar method. A total of 55 strains of Campylobacter jejuni and Campylobacter coli. Out of the total, 24 strains originated from man, 16 from broilers were isolated, and 15 from pigs. Multidrug resistance was determined in cases when the strains were resistant to two or more antibiotics. Applying E-test, we detected that the largest number of Campylobacter jejuni were multi drug resistant to two antibiotics (41.2%, and three antibiotics (11.8%. Applying disc diffusion method it was detected that 5.9% of Campylobacter jejuni from man was resistant to four tested antibiotics. Applying all three methods, it was detected that the largest number of Campylobacter strains was resistant to two antibiotics and three antibiotics. Applying disc diffusion method it was detected that 50% of Campylobacter coli strains from pigs were resistant to three tested antibiotics.

  11. Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species.

    Science.gov (United States)

    Richards, Vincent P; Lefébure, Tristan; Pavinski Bitar, Paulina D; Stanhope, Michael J

    2013-03-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosaccharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain-Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Comparative characterization of the virulence gene clusters (lipooligosacharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species

    Science.gov (United States)

    Richards, Vincent P.; Lefébure, Tristan; Pavinski Bitar, Paulina D.; Stanhope, Michael J.

    2013-01-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosacharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking. PMID:23279811

  13. The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice

    Directory of Open Access Journals (Sweden)

    Markus M. Heimesaat

    2014-06-01

    Full Text Available Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden. C. jejuni can cross the intestinal epithelial barrier as visualised in biopsies derived from human patients and animal models, however, the underlying molecular mechanisms and associated immunopathology are still not well understood. We have recently shown that the secreted serine protease HtrA plays a key role in C. jejuni cellular invasion and transmigration across polarised epithelial cells in vitro. In the present in vivo study we investigated the role of HtrA during C. jejuni infection of mice. We used the gnotobiotic IL-10-/- mouse model to study campylobacteriosis following peroral infection with the C. jejuni wild-type strain NCTC11168 and the isogenic, non-polar NCTC11168ΔhtrA deletion mutant. Six days post infection (p.i. with either strain mice harboured comparable intestinal C. jejuni loads, whereas ulcerative enterocolitis was less pronounced in mice infected with the ΔhtrA mutant strain. Moreover, ΔhtrA mutant infected mice displayed lower apoptotic cell numbers in the large intestinal mucosa, less colonic accumulation of neutrophils, macrophages and monocytes, lower large intestinal nitric oxide, IFN-γ and IL-6 as well as lower TNF-α and IL-6 serum concentrations as compared to wild-type strain infected mice at day 6 p.i. Notably, immunopathological responses were not restricted to the intestinal tract given that liver and kidneys exhibited mild histopathological changes six days p.i. with either C. jejuni strain. We also found that hepatic and renal nitric oxide levels or renal TNF-α concentrations were lower in the ΔhtrA mutant as compared to wild-type strain infected mice. In conclusion, we show here that the C. jejuni HtrA protein plays a pivotal role in inducing host cell apoptosis and immunopathology during murine campylobacteriosis in the gut in vivo.

  14. The role of serine protease HtrA in acute ulcerative enterocolitis and extra-intestinal immune responses during Campylobacter jejuni infection of gnotobiotic IL-10 deficient mice.

    Science.gov (United States)

    Heimesaat, Markus M; Alutis, Marie; Grundmann, Ursula; Fischer, André; Tegtmeyer, Nicole; Böhm, Manja; Kühl, Anja A; Göbel, Ulf B; Backert, Steffen; Bereswill, Stefan

    2014-01-01

    Campylobacter jejuni infections have a high prevalence worldwide and represent a significant socioeconomic burden. C. jejuni can cross the intestinal epithelial barrier as visualized in biopsies derived from human patients and animal models, however, the underlying molecular mechanisms and associated immunopathology are still not well understood. We have recently shown that the secreted serine protease HtrA (high temperature requirement A) plays a key role in C. jejuni cellular invasion and transmigration across polarized epithelial cells in vitro. In the present in vivo study we investigated the role of HtrA during C. jejuni infection of mice. We used the gnotobiotic IL-10(-/-) mouse model to study campylobacteriosis following peroral infection with the C. jejuni wild-type (WT) strain NCTC11168 and the isogenic, non-polar NCTC11168ΔhtrA deletion mutant. Six days post infection (p.i.) with either strain mice harbored comparable intestinal C. jejuni loads, whereas ulcerative enterocolitis was less pronounced in mice infected with the ΔhtrA mutant strain. Moreover, ΔhtrA mutant infected mice displayed lower apoptotic cell numbers in the large intestinal mucosa, less colonic accumulation of neutrophils, macrophages and monocytes, lower large intestinal nitric oxide, IFN-γ, and IL-6 as well as lower TNF-α and IL-6 serum concentrations as compared to WT strain infected mice at day 6 p.i. Notably, immunopathological responses were not restricted to the intestinal tract given that liver and kidneys exhibited mild histopathological changes 6 days p.i. with either C. jejuni strain. We also found that hepatic and renal nitric oxide levels or renal TNF-α concentrations were lower in the ΔhtrA mutant as compared to WT strain infected mice. In conclusion, we show here that the C. jejuni HtrA protein plays a pivotal role in inducing host cell apoptosis and immunopathology during murine campylobacteriosis in the gut in vivo.

  15. Sialylation of campylobacter jejuni lipo-oligosaccharides: Impact on phagocytosis and cytokine production in mice

    NARCIS (Netherlands)

    R. Huizinga (Ruth); A.S. Easton (Alistair); A.M. Donachie (Anne); J. Guthrie (Jim); W. van Rijs (Wouter); A.P. Heikema (Astrid); L. Boon (Louis); J.N. Samsom (Janneke); B.C. Jacobs (Bart); H.J. Willison (Hugh); C.S. Goodyear (Carl)

    2012-01-01

    textabstractBackground: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS

  16. It is all about flagellin : Towards development of a Campylobacter jejuni flagellin-based vaccine

    NARCIS (Netherlands)

    Radomska, K.A.|info:eu-repo/dai/nl/41331846X

    2017-01-01

    Campylobacter jejuni is the most common cause of foodborne bacterial diarrhea in humans worldwide. C. jejuni is highly prevalent in livestock, poultry in particular. The most common source of human infection is C. jejuni-contaminated poultry meat products. The main objective of the work described in

  17. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome

    NARCIS (Netherlands)

    Heikema, A P; Islam, Z; Horst-Kreft, D; Huizinga, R; Jacobs, B C; Wagenaar, J A; Poly, F; Guerry, P; van Belkum, A; Parker, C T; Endtz, H P

    In about one in a thousand cases, a Campylobacter jejuni infection results in the severe polyneuropathy Guillain-Barré syndrome (GBS). It is established that sialylated lipo-oligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with

  18. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...

  19. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    Science.gov (United States)

    Heimesaat, M M; Plickert, R; Fischer, A; Göbel, U B; Bereswill, S

    2013-03-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.

  20. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 strain RM1285 that was isolated from packaged chicken

    Science.gov (United States)

    Poultry products serve as the main source of Campylobacter jejuni subsp. jejuni (Cjj) infections in humans. Cjj infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome (GBS). This study describes the genome of Cjj HS:19 strain RM1285 isol...

  1. Reducing Campylobacter jejuni colonization of poultry via vaccination.

    Science.gov (United States)

    Neal-McKinney, Jason M; Samuelson, Derrick R; Eucker, Tyson P; Nissen, Mark S; Crespo, Rocio; Konkel, Michael E

    2014-01-01

    Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs) would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization.

  2. Reducing Campylobacter jejuni colonization of poultry via vaccination.

    Directory of Open Access Journals (Sweden)

    Jason M Neal-McKinney

    Full Text Available Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization.

  3. Reducing Campylobacter jejuni Colonization of Poultry via Vaccination

    Science.gov (United States)

    Neal-McKinney, Jason M.; Samuelson, Derrick R.; Eucker, Tyson P.; Nissen, Mark S.; Crespo, Rocio; Konkel, Michael E.

    2014-01-01

    Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs) would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization. PMID:25474206

  4. Pentavalent Single-Domain Antibodies Reduce Campylobacter jejuni Motility and Colonization in Chickens

    OpenAIRE

    Ali Riazi; Strong, Philippa C. R.; Russell Coleman; Wangxue Chen; Tomoko Hirama; Henk van Faassen; Matthew Henry; Logan, Susan M; Szymanski, Christine M.; Roger Mackenzie; Mehdi Arbabi Ghahroudi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonizati...

  5. Novel murine infection models provide deep insights into the "ménage à trois" of Campylobacter jejuni, microbiota and host innate immunity.

    Directory of Open Access Journals (Sweden)

    Stefan Bereswill

    Full Text Available BACKGROUND: Although Campylobacter jejuni-infections have a high prevalence worldwide and represent a significant socioeconomic burden, it is still not well understood how C. jejuni causes intestinal inflammation. Detailed investigation of C. jejuni-mediated intestinal immunopathology is hampered by the lack of appropriate vertebrate models. In particular, mice display colonization resistance against this pathogen. METHODOLOGY/PRINCIPAL FINDINGS: To overcome these limitations we developed a novel C. jejuni-infection model using gnotobiotic mice in which the intestinal flora was eradicated by antibiotic treatment. These animals could then be permanently associated with a complete human (hfa or murine (mfa microbiota. After peroral infection C. jejuni colonized the gastrointestinal tract of gnotobiotic and hfa mice for six weeks, whereas mfa mice cleared the pathogen within two days. Strikingly, stable C. jejuni colonization was accompanied by a pro-inflammatory immune response indicated by increased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells, as well as increased concentrations of TNF-α, IL-6, and MCP-1 in the colon mucosa of hfa mice. Analysis of MyD88(-/-, TRIF(-/-, TLR4(-/-, and TLR9(-/- mice revealed that TLR4- and TLR9-signaling was essential for immunopathology following C. jejuni-infection. Interestingly, C. jejuni-mutant strains deficient in formic acid metabolism and perception induced less intestinal immunopathology compared to the parental strain infection. In summary, the murine gut flora is essential for colonization resistance against C. jejuni and can be overcome by reconstitution of gnotobiotic mice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by host TLR4 and TLR9, respectively, plays a key role in immunopathology. Finally, the host immune response is tightly coupled to bacterial formic acid metabolism and invasion fitness. CONCLUSION/SIGNIFICANCE: We conclude that

  6. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum

    Energy Technology Data Exchange (ETDEWEB)

    Sosula, L.; Nicholls, E.M.; Skeen, M.

    1988-04-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and natural animal and human Campylobacter infections.

  7. Identification of Campylobacter jejuni Proteins Recognized by Maternal Antibodies of Chickens▿ †

    OpenAIRE

    Shoaf-Sweeney, Kari D.; Larson, Charles L.; Tang, Xiaoting; Konkel, Michael E.

    2008-01-01

    Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with mater...

  8. Natural transformation of Campylobacter jejuni occurs beyond limits of growth.

    Science.gov (United States)

    Vegge, Christina S; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni.

  9. High Prevalence and Genetic Diversity of Campylobacter jejuni in Wild Crows and Pigeons.

    Science.gov (United States)

    Ramonaitė, Sigita; Novoslavskij, Aleksandr; Zakarienė, Gintarė; Aksomaitienė, Jurgita; Malakauskas, Mindaugas

    2015-11-01

    The occurrence, seasonal variation and genetic diversity of Campylobacter spp. in pigeons and crows over a 1-year period were evaluated. Campylobacter spp. were isolated from 166 (34.6 %) out of 480 wild bird faecal samples. The occurrence of Campylobacter spp. in faecal samples was higher among crows (39.2 %) than pigeons (30.0 %), (P Campylobacter jejuni was the most common species detected among wild bird faecal samples (98.2 %). Meanwhile, Campylobacter coli prevalence in wild bird faecal samples was low-6 %. The Simpson's diversity index of C. jejuni flaA RFLP types was lower in pigeons (D = 0.88) compared with C. jejuni isolates detected in crows (D = 0.97). Obtained results revealed that C. jejuni are widely prevalent among crows and pigeons, indicating these wild birds as potential infection sources to humans. Further studies are required to determine crows and pigeons role in zoonotic transmission of Campylobacter.

  10. PRESENCE OF RESISTANCE IN CAMPYLOBACTER JEJUNI AND CAMPYLOBACTER COLI

    Directory of Open Access Journals (Sweden)

    Branislava Kocić

    2009-04-01

    Full Text Available There are 18 species belonging to the genus of Campylobacter (rRNK group I, of which thermophilic ones are the following: Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis. The aim of our research was to determine the sensitivity of Campylobacter species, isolated from human feces, to antibiotics being used in practice. The study involved 50 human strains of C. jejuni/coli isolated from feces in the Center for Microbiology in the Public Health Institute Nis. Sensitivity was tested by applying the disk diffusion method on seven antibiotics (erythromycin, gentamicin, tetracycline, ciprofloxacin, hloramphenicol, cephalexin and nalidixic acid. Our results showed low resistance to erythromycin, gentamicin and tetracycline (2%, which corresponds to the studies conducted in the world. Moreover, these findings indicate that erythromycin may be considered the drug of choice in the treatment of Campylobacter diarrhea in this region. Resistance to fluoroquinolone and nalidixic acid was 44%, and C. coli showed higher resistance compared to C. jejuni, though statistical significance was not proved.

  11. Nutrient Acquisition and Metabolism by Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Martin eStahl

    2012-02-01

    Full Text Available The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar L-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron-sulphur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments.

  12. Serotyping of Campylobacter jejuni/coli.

    OpenAIRE

    Abbott, J. D.; Dale, B.; Eldridge, J.; Jones, D. M.; Sutcliffe, E M

    1980-01-01

    Antisera were prepared from strains of Campylobacter jejuni/coli isolated from patients in six outbreaks of enteritis. Bactericidal antibodies, and agglutinating antibodies to heat-labile and heat-stable antigens, were demonstrated. These reactions were used to type a number of strains isolated from patients in each outbreak, and to distinguish 'epidemic' from 'non-epidemic' strains.

  13. Enteritis caused by Campylobacter jejuni followed by acute motor axonal neuropathy: a case report

    Directory of Open Access Journals (Sweden)

    Babić Tatjana

    2010-03-01

    Full Text Available Abstract Introduction Campylobacter species represent the main cause of bacterial diarrhea in developed countries and one of the most frequent causes of enterocolitis in developing ones. In some patients, Campylobacter jejuni infection of the gastrointestinal tract has been observed as an antecedent illness of acute motor axonal neuropathy, a variant of Guillain-Barré syndrome. Case presentation We present a case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni, biotype II, heat stable serotype O:19. A 46-year-old Caucasian man developed acute motor neuropathy 10 days after mild intestinal infection. The proximal and distal muscle weakness of his upper and lower extremities was associated with serum antibodies to Campylobacter jejuni and antibodies to ganglioside GM1. The electromyographic signs of neuropathic muscle action potentials with almost normal nerve conduction velocities indicated axonal neuropathy. Our patient's clinical and electrophysiological features fulfilled criteria for the diagnosis of an acute motor axonal neuropathy, a subtype of Guillain-Barré syndrome. Conclusion As this is the first case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni reported from the Balkan area, the present findings indicate the need for systematic studies and further clinical, epidemiological and microbiological investigations on the prevalence of Campylobacter jejuni and its heat stable serotypes in the etiology of Guillain-Barré syndrome and other post-infectious sequelae.

  14. Enteritis caused by Campylobacter jejuni followed by acute motor axonal neuropathy: a case report.

    Science.gov (United States)

    Miljković-Selimović, Biljana; Lavrnić, Dragana; Morić, Olga; Ng, Lai-King; Price, Lawrence; Suturkova, Ljubica; Kocic, Branislava; Babić, Tatjana; Ristić, Ljiljana; Apostolski, Slobodan

    2010-03-31

    Campylobacter species represent the main cause of bacterial diarrhea in developed countries and one of the most frequent causes of enterocolitis in developing ones. In some patients, Campylobacter jejuni infection of the gastrointestinal tract has been observed as an antecedent illness of acute motor axonal neuropathy, a variant of Guillain-Barré syndrome. We present a case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni, biotype II, heat stable serotype O:19. A 46-year-old Caucasian man developed acute motor neuropathy 10 days after mild intestinal infection. The proximal and distal muscle weakness of his upper and lower extremities was associated with serum antibodies to Campylobacter jejuni and antibodies to ganglioside GM1. The electromyographic signs of neuropathic muscle action potentials with almost normal nerve conduction velocities indicated axonal neuropathy. Our patient's clinical and electrophysiological features fulfilled criteria for the diagnosis of an acute motor axonal neuropathy, a subtype of Guillain-Barré syndrome. As this is the first case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni reported from the Balkan area, the present findings indicate the need for systematic studies and further clinical, epidemiological and microbiological investigations on the prevalence of Campylobacter jejuni and its heat stable serotypes in the etiology of Guillain-Barré syndrome and other post-infectious sequelae.

  15. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis.

    Science.gov (United States)

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A

    2015-01-01

    Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates.

  16. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis.

    Directory of Open Access Journals (Sweden)

    Banya Banowary

    Full Text Available Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR and high resolution melt (HRM curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO of C. jejuni and putative aspartokinase (asp gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours technique for differentiation between C. jejuni and C. coli isolates.

  17. Molecular characterization of Campylobacter jejuni from patients with Guillain-Barré and Miller Fisher syndromes

    NARCIS (Netherlands)

    H.P. Endtz (Hubert); F.G. Rodgers; W.M. Johnson; A.F. van Belkum (Alex); J.A. Wagenaar (Jaap); H.A. Verbrugh (Henri); B.C. Jacobs (Bart); C.W. Ang (Wim); N.P.W.C.J. van den Braak (Nicole); B. Duim; A. Rigter; L.J. Price; D.L. Woodward

    2000-01-01

    textabstractCampylobacter jejuni has been identified as the predominant cause of antecedent infection in Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS). The risk of developing GBS or MFS may be higher after infection with specific C. jejuni types. To

  18. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates

    Directory of Open Access Journals (Sweden)

    Virginie eDufour

    2012-04-01

    Full Text Available Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes.We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC and benzyl-isothiocyanate (BITC, against 24 C. jejuni isolates from chicken feces, human infections and contaminated foods, as well as two reference strains NCTC11168 and 81-176.Both AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 2.5 to 5 g mL-1 compared to AITC (MIC of 50 to 200 g mL-1. Interestingly, the 24 C. jejuni isolates could be classified in 3 groups according to their sensitivity levels to both compounds, suggesting that AITC and BITC shared identical activity mechanisms and consequently faced similar resistance processes in bacterial cells.The sensitivity levels of C. jejuni strains against isothiocyanates were neither correlated with the presence of a GGT (-Glutamyl Transpeptidase encoding gene in the genome nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to WT when exposed to ITC.

  19. Absence of Nucleotide-Oligomerization-Domain-2 Is Associated with Less Distinct Disease in Campylobacter jejuni Infected Secondary Abiotic IL-10 Deficient Mice.

    Science.gov (United States)

    Heimesaat, Markus M; Grundmann, Ursula; Alutis, Marie E; Fischer, André; Bereswill, Stefan

    2017-01-01

    Human Campylobacter jejuni-infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10-/- (Nod2-/- IL-10-/-) mice and IL-10-/- counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81-176 infection, Nod2 mRNA was down-regulated in the colon of secondary abiotic IL-10-/- and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and systemic translocation properties of C. jejuni. Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni-infection of both Nod2-/- IL-10-/- and IL-10-/- mice, whereas expression levels were lower in infected, but also naive Nod2-/- IL-10-/- mice as compared to respective IL-10-/- controls. Remarkably, C. jejuni-infected Nod2-/- IL-10-/- mice were less compromised than IL-10-/- counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2-/- IL-10-/- as compared to IL-10-/- mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2-/- IL-10-/- as compared to IL10-/- counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels were up-regulated, IL-18 mRNA was down

  20. Relationship between Presence of Anti-Campylobacter FliD Protein Antibodies and Campylobacter jejuni Isolation from Broiler Chickens

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis worldwide. Poultry products are regarded as a major source of this bacterium for human infection. Although this bacterium is a commensal in chicken cecal microbiome, Campylobacte...

  1. [The hemolytic-uremic syndrome in enterocolitis caused by Campylobacter jejuni].

    Science.gov (United States)

    Dolezel, Z; Stejskal, J; Dostálková, D

    1993-11-01

    In the submitted case-history the authors describe the clinical course of haemolytic-uraemic syndrome (HUS) during Campylobacter infection in a two-year-old boy. On the described case the authors wish to confirm that in the manifestation of HUS in childhood not only infections caused by the usual microbial agents can participate but also Campylobacter jejuni.

  2. Colonization factors of Campylobacter jejuni in the chicken gut

    Science.gov (United States)

    2011-01-01

    Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development. PMID:21714866

  3. Colonization factors of Campylobacter jejuni in the chicken gut

    Directory of Open Access Journals (Sweden)

    Hermans David

    2011-06-01

    Full Text Available Abstract Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.

  4. Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni in cynomolgus monkeys (Macaca fascicularis) and eradication regimens.

    Science.gov (United States)

    Koga, Tetsufumi; Aoki, Wataru; Mizuno, Takashi; Wakazono, Kuniko; Ohno, Junki; Nakai, Tsunehiro; Nomiya, Takao; Fujii, Miki; Fusegawa, Keiichi; Kinoshita, Kazuya; Hamada, Takakazu; Ikeda, Yoshinori

    2017-02-01

    Campylobacter spp. are zoonotic pathogens, however, knowledge about their presence and antimicrobial resistance in nonhuman primates is limited. Our animal facility purchased cynomolgus monkeys (Macaca fascicularis) from various Asian countries: China, Cambodia, Indonesia, the Philippines, and Vietnam. Colonization by Campylobacter spp. was investigated in 238 of the monkeys from 2009 to 2012 and antimicrobial susceptibility testing was carried out for these isolates. Furthermore, we eradicated these pathogens from these monkeys. Campylobacter spp. were isolated from 47 monkeys from three specific countries: China, Cambodia, and Indonesia, with respective isolation rates of 15%, 36%, and 67%. Two monkeys, which were each infected with Campylobacter jejuni and Campylobacter coli, showed clinical symptoms of diarrhea and bloody feces. In total, 41 isolates of C. coli and 17 isolates of C. jejuni were detected. Antimicrobial susceptibility varied: in the monkeys from China, erythromycin (ERY)-, tetracycline (TET)-, and ciprofloxacin-resistant C. coli, in the monkeys from Cambodia, amoxicillin-intermediate, TET- and ciprofloxacin-resistant C. coli and amoxicillin- and ciprofloxacin-resistant C. jejuni, and in the monkeys from Indonesia, ciprofloxacin-resistant C. coli and TET- and ciprofloxacin-resistant C. jejuni were common (>75%). Multiresistant isolates of C. coli were found in monkeys from all countries and multiresistant isolates of C. jejuni were found in monkeys from Indonesia. The eradication rate with azithromycin was comparable to that with gentamicin (GEN) by oral administration, and was higher than those with amoxicillin-clavulanic acid (AMC) and chloramphenicol (CHL). From the perspective of zoonosis, we should acknowledge multiresistant Campylobacter spp. isolated from the monkeys as a serious warning. Copyright © 2015. Published by Elsevier B.V.

  5. Selective gelatinase inhibition reduces apoptosis and pro-inflammatory immune cell responses in Campylobacter jejuni-infected gnotobiotic IL-10 deficient mice.

    Science.gov (United States)

    Alutis, M E; Grundmann, U; Fischer, A; Kühl, A A; Bereswill, S; Heimesaat, M M

    2014-12-01

    Increased levels of the matrix metalloproteinases-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in intestinal inflammation. We have recently shown that selective gelatinase blockage by the synthetic compound RO28-2653 ameliorates acute murine ileitis and colitis. We here investigated whether RO28-2653 exerts anti-inflammatory effects in acute Campylobacter jejuni-induced enterocolitis of gnotobiotic IL-10(-/-) mice generated following antibiotic treatment. Mice were perorally infected with C. jejuni (day 0) and either treated with RO28-2653 (75 mg/kg body weight/day) or placebo from day 1 until day 6 post infection (p.i.) by gavage. Irrespective of the treatment, infected mice displayed comparable pathogen loads within the gastrointestinal tract. Following RO28-2653 administration, however, infected mice exhibited less severe symptoms such as bloody diarrhea as compared to placebo controls. Furthermore, less distinct apoptosis but higher numbers of proliferating cells could be detected in the colon of RO28-2653-treated as compared to placebo-treated mice at day 7 p.i. Remarkably, gelatinase blockage resulted in lower numbers of T- and B-lymphocytes as well as macrophages and monocytes in the colonic mucosa of C. jejuni-infected gnotobiotic IL-10(-/-) mice. Taken together, synthetic gelatinase inhibition exerts anti-inflammatory effects in experimental campylobacteriosis.

  6. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni

    NARCIS (Netherlands)

    Radomska, Katarzyna A; Vaezirad, Mahdi M; Verstappen, Koen M; Wösten, Marc M S M; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the

  7. Natural transformation of Campylobacter jejuni occurs beyond limits of growth

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ligowska, Małgorzata

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered...

  8. Chicken immune response after in ovo Immunization with Chimeric TLR5 activating flagellin of campylobacter jejuni

    NARCIS (Netherlands)

    Radomska, Katarzyna A.; Vaezirad, Mahdi M.; Verstappen, Koen M.; Wösten, Marc M.S.M.; Wagenaar, Jaap A.; Putten, van Jos P.M.

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the

  9. Antimicrobial wash with Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni on chicken skin

    Science.gov (United States)

    Campylobacter jejuni is a major foodborne pathogen that causes severe enteritis in humans largely due to consumption of contaminated poultry products. Reducing C. jejuni contamination on chicken carcasses would reduce subsequent human infections. This study investigated the efficacy of Trans-cinnama...

  10. FliD. : Exploring the flagellar tip protein as a target against Campylobacter jejuni

    NARCIS (Netherlands)

    Freitag, C.M.

    2017-01-01

    Campylobacter jejuni is most common bacterial agent causing human diarrhea. Symptoms can range from mild colitis to severe bloody enteritis with abdominal cramping. Chickens represent the main reservoir of C. jejuni and contaminated meat products are an important source of human infection. In order

  11. Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice.

    Science.gov (United States)

    Bell, Julia A; St Charles, Jessica L; Murphy, Alice J; Rathinam, Vijay A K; Plovanich-Jones, Anne E; Stanley, Erin L; Wolf, John E; Gettings, Jenna R; Whittam, Thomas S; Mansfield, Linda S

    2009-03-18

    Campylobacter jejuni infection produces a spectrum of clinical presentations in humans--including asymptomatic carriage, watery diarrhea, and bloody diarrhea--and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different C. jejuni strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model. In the comparative study, C57BL/6 interleukin-10-/- mice were infected with seven genetically distinct C. jejuni strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to C. jejuni 11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in C. jejuni pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an approximately 12% fat diet to an approximately 6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment. C. jejuni strain genetic background and adaptation of the strain to the host by serial passage contribute to differences in disease

  12. Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice

    Directory of Open Access Journals (Sweden)

    Wolf John E

    2009-03-01

    Full Text Available Abstract Background Campylobacter jejuni infection produces a spectrum of clinical presentations in humans – including asymptomatic carriage, watery diarrhea, and bloody diarrhea – and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different C. jejuni strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model. Results In the comparative study, C57BL/6 interleukin-10-/- mice were infected with seven genetically distinct C. jejuni strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to C. jejuni 11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in C. jejuni pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an ~12% fat diet to an ~6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment. Conclusion C. jejuni strain genetic background and adaptation of the strain to the host by serial passage

  13. Complete genome sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) isolated from patients with Guillain-Barré syndrome

    NARCIS (Netherlands)

    C.T. Parker (Craig); Huynh, S. (Steven); A.P. Heikema (Astrid); Cooper, K.K. (Kerry K.); W.G. Miller (William)

    2015-01-01

    textabstractInfections with Campylobacter jejuni subsp. jejuni are a leading cause of foodborne gastroenteritis and the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the genomes of C. jejuni subsp. jejuni HS:41 strains RM3196 (233.94) and RM3197 (308.95) that

  14. Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction.

    OpenAIRE

    Oyofo, B A; Thornton, S A; Burr, D H; Trust, T J; Pavlovskis, O R; Guerry, P

    1992-01-01

    Development of a routine detection assay for Campylobacter jejuni and Campylobacter coli in clinical specimens was undertaken by using the polymerase chain reaction (PCR). An oligonucleotide primer pair from a conserved 5' region of the flaA gene of C. coli VC167 was used to amplify a 450-bp region by PCR. The primer pair specifically detected 4 strains of C. coli and 47 strains of C. jejuni; but it did not detect strains of Campylobacter fetus, Campylobacter lari, Campylobacter upsaliensis, ...

  15. Campylobacter jejuni enterocolitis. A clinicopathologic study.

    Science.gov (United States)

    Colgan, T; Lambert, J R; Newman, A; Luk, S C

    1980-11-01

    Sixteen patients with diarrhea due to Campylobacter jejuni seen within a one-year period at a general hospital were studied to review the clinical and pathological features of this illness. Campylobacter jejuni causes an acute diarrheal illness often associated with fever, delayed-onset hematochezia, and severe abdominal pain. Roentgenographically, one may see colonic and ileal ulceration. Sigmoidoscopically, the rectal appearance is similar to that from acute idiopathic ulcerative colitis, while rectal biopsy specimens show preservation of glandular architecture and a range of focal inflammatory changes. These changes are most severe in patients with a history of frank blood in stool, provided the specimens are taken within the first week of illness. No correlation between stool frequency, abdominal pain, or fever and the severity of proctitis in rectal biopsy specimens can be drawn, which suggests that the pathogenic determinants for thesse clinical manifestations may not be in the rectum, but higher in the colon or in the small intestine.

  16. Natural transformation of Campylobacter jejuni occurs beyond limits of growth.

    Directory of Open Access Journals (Sweden)

    Christina S Vegge

    Full Text Available Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni.

  17. Distinct Campylobacter jejuni capsular types are related to Guillain-Barré syndrome in The Netherlands and Bangladesh

    Science.gov (United States)

    An infection with the intestinal pathogen Campylobacter jejuni leads to Guillain-Barré syndrome (GBS) in around one in thousand cases. It is established that sialylated lipooligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sia...

  18. The impact of serine protease HtrA in apoptosis, intestinal immune responses and extra-intestinal histopathology during Campylobacter jejuni infection of infant mice.

    Science.gov (United States)

    Heimesaat, Markus M; Fischer, André; Alutis, Marie; Grundmann, Ursula; Boehm, Manja; Tegtmeyer, Nicole; Göbel, Ulf B; Kühl, Anja A; Bereswill, Stefan; Backert, Steffen

    2014-01-01

    Campylobacter jejuni has emerged as a leading cause of bacterial enterocolitis. The serine protease HtrA has been shown to be a pivotal, novel C. jejuni virulence factor involved in cell invasion and transmigration across polarised epithelial cells in vitro. However, the functional relevance of the htrA gene for the interaction of C. jejuni with the host immune system in the infant mouse infection model has not been investigated so far. Here we studied the role of C. jejuni htrA during infection of 3-weeks-old infant mice. Immediately after weaning, conventional wild-type mice were perorally infected with the NCTC11168∆htrA mutant (∆htrA) or the parental wild-type strain. Approximately one third of infected infant mice suffered from bloody diarrhea until day 7 post infection (p.i.), whereas colonic histopathological changes were rather moderate but comparable between the two strains. Interestingly, parental, but not ∆htrA mutant infected mice, displayed a multifold increase of apoptotic cells in the colonic mucosa at day 7 p.i., which was paralleled by higher colonic levels of pro-inflammatory cytokines such as TNF-α and IFN-γ and the matrix-degrading enzyme matrixmetalloproteinase-2 (MMP-2). Furthermore, higher numbers of proliferating cells could be observed in the colon of ∆htrA infected mice as compared to the parental wild-type strain. Remarkably, as early as 7 days p.i. infant mice also exhibited inflammatory changes in extra-intestinal compartments such as liver, kidneys and lungs, which were less distinct in kidneys and lungs following ∆htrA versus parental strain infection. However, live C. jejuni bacteria could not be found in these organs, suggesting the induction of systemic effects during intestinal infection. Upon C. jejuni ∆htrA strain infection of infant mice, intestinal and extra-intestinal pro-inflammatory immune responses were ameliorated in the infant mouse model system. Future studies will shed further light onto the molecular

  19. Neonatal sepsis by Campylobacter jejuni : Genetically proven transmission from a household puppy

    NARCIS (Netherlands)

    Wolfs, TFW; Duim, B; Geelen, SPM; Rigter, A; Thomson-Carter, F; Fleer, A; Wagenaar, JA

    2001-01-01

    We report a case of neonatal Campylobacter jejuni sepsis in a 3-week-old infant who acquired the infection through transmission from a recently acquired household puppy. Genotyping of Campylobacter strains obtained from puppy and child resulted in highly homogenous findings. This represents the

  20. Guillain-Barré syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b Antibodies in rabbits.

    NARCIS (Netherlands)

    M.A. de Klerk; H.P. Endtz (Hubert); B.C. Jacobs (Bart); J.D. Laman (Jon); F.G.A. van der Meché (Frans); P.A. van Doorn (Pieter); C.W. Ang (Wim)

    2001-01-01

    textabstractCampylobacter jejuni infections are thought to induce antiganglioside antibodies in patients with Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS) by molecular mimicry between C. jejuni lipopolysaccharides (LPS) and gangliosides. We used

  1. Loop-Mediated Isothermal Amplification (LAMP) for Detection of Campylobacter jejuni and C. coli in Thai Children with Diarrhea.

    Science.gov (United States)

    Pham, Ngan Thi Kim; Trinh, Quang Duy; Khamrin, Pattara; Ukarapol, Nuthapong; Kongsricharoern, Tipachan; Yamazaki, Wataru; Komine-Aizawa, Shihoko; Okitsu, Shoko; Maneekarn, Niwat; Hayakawa, Satoshi; Ushijima, Hiroshi

    2015-01-01

    Campylobacter species are common causes of bacterial diarrhea, and Campylobacter jejuni and C. coli are known as the predominant causative agents in humans. Recent studies suggested that loop-mediated isothermal amplification (LAMP) is an efficient and practical tool for rapid detection of C. jejuni and C. coli in clinical samples. We used LAMP to screen 151 stool samples for Campylobacter; these samples were collected in 2012 from Thai children with diarrhea. The PCR method discriminated C. jejuni and C. coli among the detected Campylobacter strains; these species were subjected to sequencing of the hipO gene (in C. jejuni) or the ask gene (in C. coli). The results suggest that the prevalence of Campylobacter infection among Thai children with diarrhea is 8.6%, and C. jejuni is the most prevalent species.

  2. New, extended biotyping scheme for Campylobacter jejuni, Campylobacter coli, and "Campylobacter laridis".

    OpenAIRE

    Lior, H.

    1984-01-01

    A biotyping scheme using improved media and methods for the detection of hippurate hydrolysis, rapid H2S production, and DNA hydrolysis was applied to 1,826 cultures of Campylobacter jejuni, Campylobacter coli and "Campylobacter laridis" isolates from human and nonhuman sources. Four biotypes were identified among C. jejuni: 57.3% of the isolates belonged to biotype I; 36.0%, to biotype II; 4.0%, to biotype III; and 2.7%, to biotype IV. C. coli organisms were differentiated into biotype I (67...

  3. Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens.

    Science.gov (United States)

    Shoaf-Sweeney, Kari D; Larson, Charles L; Tang, Xiaoting; Konkel, Michael E

    2008-11-01

    Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with maternal antibodies generated against the S3B strain of C. jejuni provided protection against Campylobacter colonization (O. Sahin, N. Luo, S. Huang, and Q. Zhang, Appl. Environ. Microbiol. 69:5372-5379, 2003). We obtained serum samples, collectively referred to as the C. jejuni S3B-SPF sera, from the previous study. These sera were determined to contain maternal antibodies that reacted against C. jejuni whole-cell lysates as judged by enzyme-linked immunosorbent assay. The antigens recognized by the C. jejuni S3B-SPF antibodies were identified by immunoblot analysis, coupled with mass spectrometry, of C. jejuni outer membrane protein extracts. This approach led to the identification of C. jejuni proteins recognized by the maternal antibodies, including the flagellin proteins and CadF adhesin. In vitro assays revealed that the C. jejuni S3B-SPF sera retarded the motility of the C. jejuni S3B homologous strain but did not retard the motility of a heterologous strain of C. jejuni (81-176). This finding provides a possible mechanism explaining why maternal antibodies confer enhanced protection against challenge with a homologous strain compared to a heterologous strain. Collectively, this study provides a list of C. jejuni proteins against which protective antibodies are generated in hens and passed to chicks.

  4. Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model

    Science.gov (United States)

    Shang, Yuwei; Ren, Fangzhe; Song, Zhaojun; Li, Qiuchun; Zhou, Xiaohui; Wang, Xiaobo; Xu, Zhonglan; Bao, Guangyu; Wan, Ting; Lei, Tianyao; Wang, Nan; Jiao, Xin-an; Huang, Jinlin

    2016-01-01

    A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens. PMID:27357336

  5. Post-genome Analysis of the Foodborne Pathogen Campylobacter jejuni

    Science.gov (United States)

    Kay, Emily J.; Gundogdu, Ozan; Wren, Brendan

    The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter and Wolinella genuses. Campylobacter species are Gram-negative, curved rod shaped or spiral and are motile (via polar flagella).

  6. Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions

    NARCIS (Netherlands)

    Chaveerach, P.; Huurne, ter A.A.H.M.; Lipman, L.J.A.; Knapen, van F.

    2003-01-01

    The culturability of 10 strains of Campylobacter jejuni and Campylobacter coli was studied after the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells could not survive 2 h under acid conditions (formic acid at pH 4). The 10 Campylobacter strains could not be

  7. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection

    Directory of Open Access Journals (Sweden)

    Wageha Awad

    2016-11-01

    Full Text Available Despite the importance of gut microbiota for broiler performance and health little is known about the composition of this ecosystem, its development and responds towards bacterial infections. Therefore, the current study was conducted to address the composition and structure of the microbial community in broiler chickens in a longitudinal study from day 1 to day 28 of age in the gut content and on the mucosa. Additionally, the consequences of a Campylobacter (C. jejuni infection on the microbial community were assessed. The composition of the gut microbiota was analyzed with 16S rRNA gene targeted Illumina MiSeq sequencing. Sequencing of 130 samples yielded 51,825,306 quality-controlled sequences, which clustered into 8,285 operational taxonomic units (OTUs; 0.03 distance level representing 24 phyla. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and Tenericutes were the main components of the gut microbiota, with Proteobacteria and Firmicutes being the most abundant phyla (between 95.0-99.7% of all sequences at all gut sites. Microbial communities changed in an age-dependent manner. Whereas young birds had more Proteobacteria, Firmicutes and Tenericutes dominated in older birds (> 14 days old. In addition, 28 day old birds had more diverse bacterial communities than young birds. Furthermore, numerous significant differences in microbial profiles between the mucosa and luminal content of the small and large intestine were detected, with some species being strongly associated with the mucosa whereas others remained within the luminal content of the gut. Following oral infection of 14 day old broiler chickens with 1 × 108 CFU of C. jejuni NCTC 12744, it was found that C. jejuni heavily colonized throughout the small and large intestine. Moreover, C. jejuni colonization was associated with an alteration of the gut microbiota with infected birds having a significantly lower abundance of Escherichia (E. coli at different gut sites. On the

  8. Substrate utilization by Campylobacter jejuni and Campylobacter coli

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, H.N.; Rollins, D.M.; Weiss, E.

    1986-10-01

    An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO/sub 2/ formation from four /sup 14/C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. The cells were incubated with 0.02 M glutamate, glutamine, ..cap alpha..-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with /sup 2/chemically bond-ketoglutarate, was an immediate burst of CO/sub 2/ production followed by CO/sub 2/ evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO/sub 2/ production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and ..cap alpha..-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.

  9. Isolation and detection of Campylobacter jejuni from chicken fecal samples by immunomagnetic separation–PCR

    DEFF Research Database (Denmark)

    Le Ly, Tram Thuy; Cao, Cuong; Høgberg, Jonas

    2012-01-01

    Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal...... specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity...... of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 μm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection...

  10. Guillain Barré Syndrome is induced in Non-Obese Diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics.

    Science.gov (United States)

    St Charles, J L; Bell, J A; Gadsden, B J; Malik, A; Cooke, H; Van de Grift, L K; Kim, H Y; Smith, E J; Mansfield, L S

    2017-02-01

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis linked to several serious autoimmune sequelae such as the peripheral neuropathies Guillain Barré syndrome (GBS) and Miller Fisher syndrome (MFS). We hypothesized that GBS and MFS can result in NOD wild type (WT) mice or their congenic interleukin (IL)-10 or B7-2 knockouts secondary to C. jejuni infection. Mice were gavaged orally with C. jejuni strains HB93-13 and 260.94 from patients with GBS or CF93-6 from a patient with MFS and assessed for clinical neurological signs and phenotypes, anti-ganglioside antibodies, and cellular infiltrates and lesions in gut and peripheral nerve tissues. Significant increases in autoantibodies against single gangliosides (GM1, GQ1b, GD1a) occurred in infected NOD mice of all genotypes, although the isotypes varied (NOD WT had IgG1, IgG3; NOD B7-2-/- had IgG3; NOD IL-10-/- had IgG1, IgG3, IgG2a). Infected NOD WT and NOD IL-10-/- mice also produced anti-ganglioside antibodies of the IgG1 isotype directed against a mixture of GM1/GQ1b gangliosides. Phenotypic tests showed significant differences between treatment groups of all mouse genotypes. Peripheral nerve lesions with macrophage infiltrates were significantly increased in infected mice of NOD WT and IL-10-/- genotypes compared to sham-inoculated controls, while lesions with T cell infiltrates were significantly increased in infected mice of the NOD B7-2-/- genotype compared to sham-inoculated controls. In both infected and sham inoculated NOD IL-10-/- mice, antibiotic treatment exacerbated neurological signs, lesions and the amount and number of different isotypes of antiganglioside autoantibodies produced. Thus, inducible mouse models of post-C. jejuni GBS are feasible and can be characterized based on evaluation of three factors-onset of GBS clinical signs/phenotypes, anti-ganglioside autoantibodies and nerve lesions. Based on these factors we characterized 1) NOD B-7-/- mice as an acute inflammatory

  11. Absence of Nucleotide-Oligomerization-Domain-2 Is Associated with Less Distinct Disease in Campylobacter jejuni Infected Secondary Abiotic IL-10 Deficient Mice

    Directory of Open Access Journals (Sweden)

    Markus M. Heimesaat

    2017-07-01

    Full Text Available Human Campylobacter jejuni-infections are progressively increasing worldwide. Despite their high prevalence and socioeconomic impact the underlying mechanisms of pathogen-host-interactions are only incompletely understood. Given that the innate immune receptor nucleotide-oligomerization-domain-2 (Nod2 is involved in clearance of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address this, we applied Nod2-deficient IL-10−/− (Nod2−/− IL-10−/− mice and IL-10−/− counterparts both with a depleted intestinal microbiota to warrant pathogen-induced enterocolitis. At day 7 following peroral C. jejuni strain 81–176 infection, Nod2 mRNA was down-regulated in the colon of secondary abiotic IL-10−/− and wildtype mice. Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and systemic translocation properties of C. jejuni. Colonic mucin-2 mRNA was, however, down-regulated upon C. jejuni-infection of both Nod2−/− IL-10−/− and IL-10−/− mice, whereas expression levels were lower in infected, but also naive Nod2−/− IL-10−/− mice as compared to respective IL-10−/− controls. Remarkably, C. jejuni-infected Nod2−/− IL-10−/− mice were less compromised than IL-10−/− counterparts and displayed less distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely, innate as well as adaptive immune cells such as macrophages and monocytes as well as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large intestines of Nod2−/− IL-10−/− as compared to IL-10−/− mice at day 7 post-infection. Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal compartments including colon and mesenteric lymph nodes as well as in systemic tissue sites such as the spleen of C. jejuni infected Nod2−/− IL-10−/− as compared to IL10−/− counterparts. Whereas, at day

  12. Reversible expression of flagella in Campylobacter jejuni.

    OpenAIRE

    Caldwell, M. B.; Guerry, P; Lee, E C; Burans, J. P.; Walker, R I

    1985-01-01

    Campylobacter jejuni 81116 and A3249 undergo a bidirectional transition between flagellated (Fla+) and aflagellated (Fla-) phenotypes. When measured in culture medium, the Fla+----Fla- transition occurred at a rate of 3.1 X 10(-3) to 5.9 X 10(-3) per cell per generation, and the Fla- to Fla+ transition occurred at a rate of 4.0 X 10(-7) to 8.0 X 10(-7) per cell per generation. However, passage through a rabbit intestine markedly favored the Fla+ phenotype.

  13. Does Whipworm Increase the Pathogenicity of Campylobacter jejuni? A Clinical Correlate of an Experimental Observation

    Directory of Open Access Journals (Sweden)

    Jennifer L Shin

    2004-01-01

    Full Text Available Campylobacter jejuni is a leading cause of acute diarrhea worldwide, usually mild and self-limiting. No adequate hypothesis has yet been formulated to explain why in an otherwise healthy host this infection is occasionally severe. In a pig model, C jejuni has been shown to be pathogenic only in the presence of swine whipworm. A human case of life-threatening C jejuni colitis leading to toxic megacolon and acute renal failure, associated with concomitant whipworm (Trichuris suis ova in the feces, is reported. The potential of T suis to potentiate C jejuni in humans deserves further study.

  14. Evaluation of fecal calprotectin in Campylobacter concisus and Campylobacter jejuni/coli gastroenteritis.

    Science.gov (United States)

    Nielsen, Hans Linde; Engberg, Jørgen; Ejlertsen, Tove; Nielsen, Henrik

    2013-05-01

    Calprotectin (CP) is a calcium-binding cytosolic neutrophil protein and the concentration in feces reflects the migration of neutrophils into the gut lumen. Testing for fecal CP (f-CP) in patients with negative cultures for enteric pathogens is widely accepted as a useful screening tool for identifying patients who are most likely to benefit from endoscopy for suspected inflammatory bowel disease (IBD) with the assumption that a negative f-CP is compatible with a functional disorder. Campylobacter concisus has recently been reported to have a high incidence in the Danish population almost equal to Campylobacter jejuni and Campylobacter coli and has been reported to cause prolonged watery diarrhea. However, isolation of C. concisus from feces requires the filter method in a hydrogen-enriched microaerobic atmosphere, which is not commonly used in the laboratory, and the diagnosis may consequently be missed. The aim of this study was to evaluate the f-CP levels, as a marker for the intestinal inflammation in C. jejuni/coli- and C. concisus-infected patients. The authors found a high concentration of f-CP (median 631: IQR 221-1274) among 140 patients with C. jejuni/coli infection, whereas the f-CP level among 99 C. concisus-infected patients was significantly lower (median 53: IQR 20-169). The data correlate to the severe inflammatory gastroenteritis seen in patients infected with C. jejuni/coli, whereas C. concisus-infected patients have a much lower intestinal inflammation which could be compared with viral gastroenteritis. Nevertheless, clinicians should be aware of C. concisus infection, especially in patients with prolonged mild diarrhea, in the differential diagnosis to IBD.

  15. Presence of antibodies against campylobacter flagellar capping proteins versus campylobacter jejuni isolation in broilers

    Science.gov (United States)

    Campylobacter jejuni is the leading foodborne pathogen that causes human acute bacterial gastroenteritis worldwide. Human cases have been linked to consumption and/or handling of contaminated poultry products. Although Campylobacter jejuni is commonly regarded as a commensal in broiler cecal micro...

  16. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation.

    Directory of Open Access Journals (Sweden)

    Andrew E Scott

    2007-08-01

    Full Text Available Campylobacter jejuni is a leading cause of food-borne illness. Although a natural reservoir of the pathogen is domestic poultry, the degree of genomic diversity exhibited by the species limits the application of epidemiological methods to trace specific infection sources. Bacteriophage predation is a common burden placed upon C. jejuni populations in the avian gut, and we show that amongst C. jejuni that survive bacteriophage predation in broiler chickens are bacteriophage-resistant types that display clear evidence of genomic rearrangements. These rearrangements were identified as intra-genomic inversions between Mu-like prophage DNA sequences to invert genomic segments up to 590 kb in size, the equivalent of one-third of the genome. The resulting strains exhibit three clear phenotypes: resistance to infection by virulent bacteriophage, inefficient colonisation of the broiler chicken intestine, and the production of infectious bacteriophage CampMu. These genotypes were recovered from chickens in the presence of virulent bacteriophage but not in vitro. Reintroduction of these strains into chickens in the absence of bacteriophage results in further genomic rearrangements at the same locations, leading to reversion to bacteriophage sensitivity and colonisation proficiency. These findings indicate a previously unsuspected method by which C. jejuni can generate genomic diversity associated with selective phenotypes. Genomic instability of C. jejuni in the avian gut has been adopted as a mechanism to temporarily survive bacteriophage predation and subsequent competition for resources, and would suggest that C. jejuni exists in vivo as families of related meta-genomes generated to survive local environmental pressures.

  17. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni Enteritis

    National Research Council Canada - National Science Library

    Louwen, R.P; Belkum, van, A; Wagenaar, J.A; Doorduyn, Y; Achterberg, R.P; Endtz, H.P

    2006-01-01

    The main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C...

  18. [Evaluation of antigenic properties of Campylobacter jejuni and Campylobacter coli proteins in a western-immunoblot].

    Science.gov (United States)

    Rokosz, Natalia; Waldemar, Rastawicki; Jagielski, Marek

    2008-01-01

    Campylobacter jejuni and Campylobacter coli are the most common bacterial cause for acute diarrheal illnesses in developed countries. The aim of this study was to evaluate the antigenic properties of Campylobacterjejuni and Campylobacter coli proteins in western-blot assay. Whole-cell components of Campulobacter jejuni and Campylobacter coli were separated by sodium dodecyl sulfate-polyacrylamide gel electroforesis. Using this method we detected in all seven C. jejuni strains 21 peptides migrating between 180-29 kDa. All three Ccoli strains had a 17 bands migrating with the same molecular weight range. Proteins were transferred electrophoretically to nitrocellulose paper for immunoblotting experiments. The 74 kDa protein reacted strongly in all classes ofimmmunoglobulin with all tested human serum samples. We observed that this protein reacted also with human immunoglobulins for Salmonella and Yersinia sp. This cross-reaction observed for this protein could give false positive results in routine diagnosis of C. jejuni infections. The proteins with molecular weight of: 92, 62, 56, 52, 45-43, 29 kDa were most recognized in the 20 human serum samples. The other proteins of Cljejuni and C. coli, particularly in the 68-50 kDa and 45-31 kDa regions, were recognized occasionally and the response to these in reconvalescent sera was usually weak. The result of this study showed that the proteins with molecular weight: 92, 62, 56, 52, 45-43 and 29 kDa can be use in routine serological diagnostic of campylobacteriosis.

  19. Role of Infection Due to Campylobacter jejuni in the Initiation of Guillain-Barre Syndrome

    Science.gov (United States)

    1993-01-01

    Initiation of Guillain - Barre Syndrome 90PP0820 Ban Mishu and Martin J. Blaser Veterans Administration Medical Center 93-26165 Research Service 1310 24th...Unlimited Best Available Copy 104 Role of Infection Due to Campylobacterjejuni in the Initiation of Guillain - Barre Syndrome Ban Mishu and Martin J. Blaser...may cause Guillain -Barrk syndrome (GBS) by triggering demyelination of peripheral nerves. GBS is preceded by an acute infectious illness (due to a

  20. Campylobacter

    NARCIS (Netherlands)

    Wagenaar, J.A.

    2015-01-01

    Campylobacteriosis is a frequently diagnosed disease in humans. Most infections are considered food-borne and are caused by Campylobacter jejuni and C. coli. The animal reservoirs of these Campylobacter, and the sources and routes of transmission, are described and discussed. Most warm-blooded

  1. Global Epidemiology of Campylobacter Infection

    Science.gov (United States)

    Kaakoush, Nadeem O.; Castaño-Rodríguez, Natalia; Mitchell, Hazel M.

    2015-01-01

    SUMMARY Campylobacter jejuni infection is one of the most widespread infectious diseases of the last century. The incidence and prevalence of campylobacteriosis have increased in both developed and developing countries over the last 10 years. The dramatic increase in North America, Europe, and Australia is alarming, and data from parts of Africa, Asia, and the Middle East indicate that campylobacteriosis is endemic in these areas, especially in children. In addition to C. jejuni, there is increasing recognition of the clinical importance of emerging Campylobacter species, including Campylobacter concisus and Campylobacter ureolyticus. Poultry is a major reservoir and source of transmission of campylobacteriosis to humans. Other risk factors include consumption of animal products and water, contact with animals, and international travel. Strategic implementation of multifaceted biocontrol measures to reduce the transmission of this group of pathogens is paramount for public health. Overall, campylobacteriosis is still one of the most important infectious diseases that is likely to challenge global health in the years to come. This review provides a comprehensive overview of the global epidemiology, transmission, and clinical relevance of Campylobacter infection. PMID:26062576

  2. Methods for initial characterization of Campylobacter jejuni bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity....

  3. Differential Survival of Hyper-Aerotolerant Campylobacter jejuni under Different Gas Conditions

    Directory of Open Access Journals (Sweden)

    Euna Oh

    2017-05-01

    Full Text Available Campylobacter jejuni accounts for a significant number of foodborne illnesses around the world. C. jejuni is microaerophilic and typically does not survive efficiently in oxygen-rich conditions. We recently reported that hyper-aerotolerant (HAT C. jejuni are highly prevalent in retail poultry meat. To assess the capabilities of HAT C. jejuni in foodborne transmission and infection, in this study, we investigated the prevalence of virulence genes in HAT C. jejuni and the survival in poultry meat in atmosphere at a refrigeration temperature. When we examined the prevalence of eight virulence genes in 70 C. jejuni strains from raw poultry meat, interestingly, the frequencies of detecting virulence genes were significantly higher in HAT C. jejuni strains than aerosenstive C. jejuni strains. This suggests that HAT C. jejuni would potentially be more pathogenic than aerosensitive C. jejuni. Under aerobic conditions, aerosensitive C. jejuni survived at 4°C in raw poultry meat for 3 days, whereas HAT C. jejuni survived in poultry meat for a substantially extended time; there was a five-log CFU reduction over 2 weeks. In addition, we measured the effect of other gas conditions, including N2 and CO2, on the viability of HAT C. jejuni in comparison with aerosensitive and aerotolerant strains. N2 marginally affected the viability of C. jejuni. However, CO2 significantly reduced the viability of C. jejuni both in culture media and poultry meat. Based on the results, modified atmosphere packaging using CO2 may help us to control poultry contamination with HAT C. jejuni.

  4. Identification of possible virulence marker from Campylobacter jejuni isolates.

    Science.gov (United States)

    Harrison, James W; Dung, Tran Thi Ngoc; Siddiqui, Fariha; Korbrisate, Sunee; Bukhari, Habib; Tra, My Phan Vu; Hoang, Nguyen Van Minh; Carrique-Mas, Juan; Bryant, Juliet; Campbell, James I; Studholme, David J; Wren, Brendan W; Baker, Stephen; Titball, Richard W; Champion, Olivia L

    2014-06-01

    A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS. The marker was most prevalent in human and chicken isolates from Vietnam.

  5. Survival of Campylobacter jejuni in different gas mixtures

    DEFF Research Database (Denmark)

    Boysen, Louise; Knochel, Susanne; Rosenquist, Hanne

    2007-01-01

    Campylobacter jejuni in fresh chilled chicken meat is known to be a major risk factor for human gastrointestinal disease. In the present study, the survival under chilled conditions of different C. jejuni strains exposed to different gas mixtures usually used for gas packaging of food was examined...

  6. Cytotoxity of cell free filtrates of campylobacter jejuni isolated in ...

    African Journals Online (AJOL)

    Culture filtrates of Campylobacter jejuni strains isolated from clinical specimens in Lagos Nigeria were tested for toxic activity. Two out of five filtrates tested manifested cytopathic effect on BHK cells. The effects were mainly cytotoxic and cytotonic. Toxic activity of C. jejuni filtrates was much lower than toxic activity elicited by ...

  7. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne

    2009-01-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168, w...

  8. Innate Immunity to Campylobacter jejuni in Guillain-Barre Syndrome

    NARCIS (Netherlands)

    Huizinga, Ruth; van den Berg, Bianca; van Rijs, Wouter; Tio-Gillen, Anne P.; Fokkink, Willem Jan R.; Bakker-Jonges, Liesbeth E.; Geleijns, Karin; Samsom, Janneke N.; van Doorn, Pieter A.; Laman, Jon D.; Jacobs, Bart C.

    ObjectiveGuillain-Barre syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons

  9. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.

    Directory of Open Access Journals (Sweden)

    Robert O Watson

    2008-01-01

    Full Text Available Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni-containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells.

  10. Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates.

    Science.gov (United States)

    Ugarte-Ruiz, M; Stabler, R A; Domínguez, L; Porrero, M C; Wren, B W; Dorrell, N; Gundogdu, O

    2015-11-01

    Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a number of loci to be identified, which encode virulence factors that aid survival and pathogenicity. Recently, a Type VI secretion system (T6SS) consisting of 13 conserved genes was described in C. jejuni strains and recognised to promote pathogenicity and adaptation to the environment. In this study, we determined the presence of this T6SS in 63 Spanish C. jejuni isolates from the food chain and urban effluents using whole-genome sequencing. Our findings demonstrated that nine (14%) strains harboured the 13 ORFs found in prototype strain C. jejuni 108. Further studies will be necessary to determine the prevalence and importance of T6SS-positive C. jejuni strains. © 2014 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  11. Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity

    OpenAIRE

    Bleumink-Pluym, Nancy M.C.; van Alphen, Lieke B.; Bouwman, Lieneke I; Wösten, Marc M. S. M.; van Putten, Jos P. M.

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses rev...

  12. Aplicación de PCR-RFLP para subtipificar Campylobacter jejuni PCR-RFLP for Campylobacter jejuni subtyping

    Directory of Open Access Journals (Sweden)

    G. Giacoboni

    2005-06-01

    Full Text Available Diez cepas de Campylobacter jejuni aisladas de fetos porcinos abortados fueron identificadas por pruebas bioquímicas: 8 como C. jejuni biotipo II de Lior, y 2 como C. jejuni biotipo I. Para poder subtipificarlas se utilizó la técnica de reacción en cadena de la polimerasa (PCR para amplificar el gen flaA y al producto obtenido se lo digirió con la enzima de restricción DdeI (RFLP. Se pudieron obtener 6 subtipos a partir de C. jejuni biotipo II, mientras que los dos aislamientos de biotipo I correspondieron a un mismo subtipo. Aunque existe una amplia variedad de técnicas de biología molecular que son aplicadas con fines epidemiológicos para Campylobacter, PCR-RFLP, demostró ser una técnica simple y accesible, capaz de subtipificar a C. jejuni.Ten Campylobacter jejuni isolates, 8 identified as C. jejuni biotype II of Lior and 2 as C. jejuni biotipe I, were recovered from aborted pig fetuses. In order to discriminate among strains, restriction fragment length polymorphism (RFLP using DdeI of polymerase chain reaction (PCR products of flaA gen was used. C. jejuni biotype II strains could be diferenciated in 6 by PCR-RFLP, and one subtype was obtained from C. jejuni biotype I. Although there is great variability of molecular techniques applied to the Campylobacter epidemiological studies, PCR-RFLP demonstrated to be a simple and accessible technique to discriminate Campylobacter jejuni isolates.

  13. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Science.gov (United States)

    Riazi, Ali; Strong, Philippa C R; Coleman, Russell; Chen, Wangxue; Hirama, Tomoko; van Faassen, Henk; Henry, Matthew; Logan, Susan M; Szymanski, Christine M; Mackenzie, Roger; Ghahroudi, Mehdi Arbabi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  14. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  15. Generation of Campylobacter jejuni genetic diversity in vivo

    NARCIS (Netherlands)

    Boer, de P.; Wagenaar, J.A.; Achterberg, R.P.; Putten, van J.P.M.; Schouls, L.M.; Duim, B.

    2002-01-01

    Molecular epidemiology studies suggest that horizontal genetic exchange is a major cause of pathogen biodiversity. We tested this concept for the bacterial enteropathogen Campylobacter jejuni by seeking direct in vivo evidence for the exchange of genetic material among Campylobacter strains. For

  16. Cellular response of Campylobacter jejuni to trisodium phosphate

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Cohn, M. T.; Stabler, R. A.

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal...

  17. Guillain-Barré syndrome-related Campylobacter jejuni in Bangladesh: Ganglioside mimicry and cross-reactive antibodies

    NARCIS (Netherlands)

    Z. Islam (Zhahirul); M. Gilbert (Michel); Q.D. Mohammad (Quazi); K. Klaij (Kevin); J. Li (Jianjun); W. van Rijs (Wouter); A.P. Tio-Gillen (Anne); K.A. Talukder (Kaisar); H.J. Willison (Hugh); A.F. van Belkum (Alex); H.P. Endtz (Hubert); B.C. Jacobs (Bart)

    2012-01-01

    textabstractBackground: Campylobacter jejuni is the predominant antecedent infection in Guillain-Barré syndrome (GBS). Molecular mimicry and cross-reactive immune responses to C. jejuni lipo-oligosaccharides (LOS) precipitate the development of GBS, although this mechanism has not been established

  18. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis.

    Science.gov (United States)

    Louwen, R P L; van Belkum, A; Wagenaar, J A; Doorduyn, Y; Achterberg, R; Endtz, H P

    2006-05-01

    The main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a role for other virulence determinants.

  19. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni Enteritis

    NARCIS (Netherlands)

    Louwen, R.P.; Belkum, van A.; Wagenaar, J.A.; Doorduyn, Y.; Achterberg, R.P.; Endtz, H.P.

    2006-01-01

    The main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a role for

  20. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis.

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier); A.F. van Belkum (Alex); J.A. Wagenaar (Jaap); Y. Doorduyn; R. Achterberg; H.P. Endtz (Hubert)

    2006-01-01

    textabstractThe main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a

  1. Survey of chicken abattoir for the presence of Campylobacter jejuni and Campylobacter coli Pesquisa de Campylobacter jejuni e Campylobacter coli em abatedouros de aves

    Directory of Open Access Journals (Sweden)

    Ana L.L. Cortez

    2006-12-01

    Full Text Available The genus Campylobacter is of great importance to public health because it includes several species that may cause diarrhea. These species may be found in water, food and in the intestinal tract of chickens. This study investigated the presence of Campylobacter jejuni and Campylobacter coli in chicken abattoirs in São Paulo State, Brazil. A total of 288 samples of feces, feathers, scald water, evisceration water, chiller water, and the rinse water of eviscerated, not eviscerated and chilled carcasses were collected in six chicken abattoirs. Polymerase Chain Reaction (PCR was performed in Campylobacter spp.-positive isolates using the gene HIP, specific for hippuricase enzyme from Campylobacter jejuni and aspartokinase gene, specific to detect Campylobacter coli. The percentage of positive isolates of Campylobacter jejuni was 4.9% (14/288. Isolation was greater in feces samples (22%, 8/36. One sample was positive for the species C. coli. In conclusion, the results indicate that it is necessary to improve quality control for Campylobacter spp. in chicken abattoirs.O gênero Campylobacter tem grande destaque em saúde pública, principalmente por pertencerem a este gênero várias espécies que podem causar diarréia. Estas espécies podem ser encontradas em amostras de água, alimentos e no trato intestinal das aves. Este estudo investigou a presença de Campylobacter jejuni e Campylobacter coli em abatedouros de aves no Estado de São Paulo. As 288 amostras foram coletadas em seis estabelecimentos e incluíram: fezes; penas; água de escaldamento, de evisceração e de resfriamento; e água de enxaguadura de carcaça não eviscerada, eviscerada e resfriada. Após o isolamento microbiológico das amostras positivas de Campylobacter spp. foi realizada uma Reação em Cadeia da Polimerase (PCR utilizando o gene HIP, da hipuricase, específico para Campylobacter jejuni e o gene da enzima aspartoquinase, específico para Campylobacter coli. A

  2. Cloning, expression, and antigenicity of 14 proteins from Campylobacter jejuni.

    Science.gov (United States)

    Zhang, Maojun; Meng, Fanliang; Cao, Fangfang; Qiao, Bo; Liu, Guodong; Liu, Hongying; Zhou, Yizhuang; Dong, Haiyan; Gu, Yixin; Xiao, Di; Zhang, Yongchan; Zhang, Jianzhong

    2012-08-01

    Fourteen Campylobacter jejuni genes--porA, cadF, omp18, dnaK, flaC, peb1, peb2, peb3, peb4, ahpC, groEL, tuF, hipO, and Cj0069--were cloned and expressed in Escherichia coli BL21. The recombinant proteins were purified on histidine (His) and glutathione S-transferase (GST) trap columns using the ÄKTA Explorer 100 System. Recombinant proteins were visualized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The antigenicities of these recombinant proteins were assessed by Western blotting and enzyme-linked immunosorbent assays with anti-C. jejuni immune rabbit sera. Four recombinant proteins, including rGST-PorA, rHis-CadF, rGST-GroEL, and rGST-TuF, demonstrated reactions with both anti-serum and preimmune serum, while rHis-DnaK, rGST-FlaC, rGST-PEB2, rGST-PEB3, rGST-PEB4, and rGST-HipO showed variable antigenicity characteristics to the anti-sera derived from different C. jejuni strains. rHis-Omp18, rHis-PEB1, and rGST-AhpC demonstrated universal and specific antigenities with the entire anti-sera panel tested in this present study, while recombinant rGST-Cj0069 and rHis-DnaK did not react with any of the anti-C. jejuni sera tested. In conclusion, rGST-AhpC may be useful as a potential serodiagnostic antigen for C. jejuni infection.

  3. [Invasive Campylobacter jejuni/coli Infections: 9 Case Reports at a Single Center between 2000 and 2015, and a Review of Literature Describing Japanese Patients].

    Science.gov (United States)

    Tasaka, Keiji; Matsubara, Kousaku; Nigami, Hiroyuki; Iwata, Aya; Isome, Kenichi; Yamamoto, Go

    2016-05-01

    There have been few coherent reports on extraintestinal infection or bacteremia caused by Campylobacter jejuni (C. jejuni) or C. coli in Japan. To clarify the clinical and microbiological characteristics of invasive infections caused by these two species, we retrospectively analyzed the records of patients from whom these pathogens had been isolated from sterile sites between 2000 and 2015. During this study period, we identified 9 patients. The clinical syndrome of all of these patients was bacteremia. Three patients had underlying diseases with both liver cirrhosis and malignant neoplasm, and all of these patients were aged 60 years or older. The remaining 6 patients were immunocompetent and younger than 40 years of age. All 9 patients had a fever of 38.5 degrees C or higher. The proportion of patients with gastrointestinal symptoms was lower for the 3 patients with underlying diseases, compared with the 6 patients without underlying diseases (1/3 cases vs, 4/6 cases). Of the 8 strains evaluated for antimicrobial susceptibility, all were susceptible to imipenem/cilastatin, kanamycin and erythromycin, and 2 were resistant to levofloxacin. Antimicrobial treatment was administered to 8 patients, but one spontaneously recovered without any treatment. We were able to follow the outcomes of 8 patients, and all of these patients completely recovered without relapses. We also reviewed 14 Japanese patients reported in the Japanese and English literature and found similar clinical features consisting of a high-grade fever and an association with underlying diseases and gastrointestinal symptoms. Of note, 3 agammaglobulinemic patients presented with bacteremia and extraintestinal infections and had multiple relapses. Based on the findings of our 9 cases and previous reports, the affected patients were divided into two groups according to clinical syndrome and therapeutic intervention. One group consisted of previously healthy children or young adults showing bacteremia

  4. Innate Immunity to Campylobacter jejuni in Guillain-Barré Syndrome.

    Science.gov (United States)

    Huizinga, Ruth; van den Berg, Bianca; van Rijs, Wouter; Tio-Gillen, Anne P; Fokkink, Willem Jan R; Bakker-Jonges, Liesbeth E; Geleijns, Karin; Samsom, Janneke N; van Doorn, Pieter A; Laman, Jon D; Jacobs, Bart C

    2015-09-01

    Guillain-Barré syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons infected with C. jejuni develop GBS, and the factors that determine GBS susceptibility are poorly understood. We hypothesized that these persons have a high intrinsic dendritic cell (DC) response to C. jejuni LOS through Toll-like receptor 4 (TLR4) activation. Intrinsic DC responsiveness to C. jejuni LOS was investigated first in 20 healthy controls at three time points with a 3-month interval, and second in patients, who previously developed GBS after a C. jejuni infection (n = 27) and controls (n = 26). The DC response to C. jejuni LOS was highly variable between, but not within, healthy individuals, suggesting that intrinsic factors determine the magnitude of TLR4-mediated innate response. High responsiveness to C. jejuni LOS by former GBS patients was evidenced by increased expression of CD38 and CD40. Frequency of CD38, CD40 and type I interferon high responders was significantly increased in the GBS group. These results suggest that a strong response to TLR4 stimulation is a critical host condition for the development of GBS after an infection with C. jejuni. © 2015 American Neurological Association.

  5. Campylobacter jejuni is not an important pathogen as a cause of diarrhea in US travelers to Mexico.

    Science.gov (United States)

    Villa, Nicolas A; Okhuysen, Pablo C; Flores-Figueroa, Jose; Jiang, Zhi-Dong; Belkind-Gerson, Jaime; Paredes, Mercedes; Mohamed, Jamal A; Nair, Parvathy; Carlin, Lily; DuPont, Herbert L

    2011-01-01

    Campylobacter jejuni is an unusual cause of travelers' diarrhea acquired in Mexico, but previous studies have relied only on stool culture for diagnosis. We conducted a cohort study to determine if antibody seroconversion to C jejuni would better reflect the occurrence of infection acquired in Mexico. Serum IgG, IgA, and IgM antibodies to Campylobacter seroconverted in only 2 of 353 participants (0.6%). These data further support that C jejuni infection is an unusual cause of travelers' diarrhea in US visitors to Mexico. © 2010 International Society of Travel Medicine.

  6. Campylobacter jejuni e Campylobacter coli EM CARCAÇAS DE FRANGO RESFRIADAS E CONGELADAS

    OpenAIRE

    Cisco, Isabel Cristina; Tedesco, Denise; Perdoncini, Gustavo; Santos, Suelen Priscila; Rodrigues, Laura Beatriz; Santos, Luciana Ruschel dos

    2017-01-01

    Resumo Espécies de Campylobacter spp. termotolerantes são agentes de surtos de campilobacteriose em humanos e os produtos de origem avícola são considerados uma importante fonte de infecção. Foram identificados Campylobacter jejuni e Campylobacter coli em carcaças de frango resfriadas e congeladas coletadas em três abatedouros entre 2014 e 2015. A detecção de Campylobacter spp. foi realizada por microbiologia convencional e a identificação de C. jejuni e C. coli por multiplex-PCR. Dentre as a...

  7. Campylobacter jejuni infection and virulence-associated genes in children with moderate to severe diarrhoea admitted to emergency rooms in northeastern Brazil.

    Science.gov (United States)

    Quetz, Josiane da S; Lima, Ila F N; Havt, Alexandre; Prata, Mara M G; Cavalcante, Paloma A; Medeiros, Pedro H Q S; Cid, David A C; Moraes, Milena L; Rey, Luís Carlos; Soares, Alberto M; Mota, Rosa M S; Weigl, Bernhard H; Guerrant, Richard L; Lima, Aldo A M

    2012-04-01

    Campylobacter is an important cause of foodborne gastroenteritis. We determined the occurrence of Campylobacter jejuni and Campylobacter coli, using culture-based methods and PCRs targeting virulence-associated genes (VAGs) among children aged ≤14 years who were treated for diarrhoea at emergency rooms in northeastern Brazil. Genomic DNA was extracted directly from stool samples collected from 366 children. A questionnaire was also applied to qualify the clinical conditions presented by each child at the time of admission. C. jejuni and C. coli were detected in 16.4 % (60/366) and 1.4 % (5/366) of the diarrhoeal samples, respectively, by PCR, a much higher proportion than that detected by conventional methods. C. jejuni VAGs were detected in the following proportions of hipO-positive samples: ciaB, 95 % (57/60); dnaJ, 86.7 % (52/60); racR, 98.3 % (59/60); flaA, 80 % (48/60); pldA, 45 % (27/60); cdtABC, 95 % (57/60); and pVir 0 % (0/60). Particular symptoms, such as blood in faeces, vomiting, fever, and/or abdominal pain, were not associated with detection of C. jejuni nor were they associated with any particular VAG or combination of VAGs (P>0.05). C. jejuni and its VAGs were detected in a substantial proportion of the children admitted. Further efforts shall be directed towards elucidating whether these genetic factors or their expressed proteins play a role in Campylobacter pathogenesis.

  8. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni

    Science.gov (United States)

    Campylobacter spp. are the second leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of nearly $2 billion per year. Most human illness associated with campylobacteriosis is due to infection by C. jejuni and chickens are recognized as a reservoir, which could le...

  9. Molecular typing of Campylobacter jejuni isolates involved in a neonatal outbreak indicates nosocomial transmission

    DEFF Research Database (Denmark)

    Llovo, J.; Mateo, E.; Munoz, A.

    2003-01-01

    Genotypic typing by restriction fragment length polymorphism and pulsed-field gel electrophoresis showed that two neonates in a neonatal ward were infected with the same Campylobacter jejuni strain. Isolates from the mother and brother of the index patient were identical to each other but distinc...

  10. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity

    NARCIS (Netherlands)

    Bleumink-Pluym, Nancy M C; van Alphen, Lieke B; Bouwman, Lieneke I; Wösten, MM; van Putten, Jos P M

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to

  11. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh

    NARCIS (Netherlands)

    Islam, Z.; Belkum, van A.; Wagenaar, J.A.; Cody, A.J.; Boer, de A.G.; Sarker, S.K.; Jacobs, B.C.; Talukder, K.A.; Endtz, H.P.

    2014-01-01

    Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain-Barr, syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of

  12. Campylobacter jejuni prevalence and hygienic quality of retail bovine ground meat in Finland.

    Science.gov (United States)

    Llarena, A-K; Sivonen, K; Hänninen, M-L

    2014-05-01

    Detection of common genotypes of Campylobacter jejuni among Finnish human and bovine isolates, suggested that bovines may be a source for zoonotic Camp. jejuni infection. In addition, a Finnish epidemiological study implied the tasting and eating raw or undercooked beef as risk factors for acquiring campylobacteriosis. We therefore performed a study on the occurrence of Camp. jejuni in retail bovine ground meat in Helsinki by the use of both cultivation and PCR. During 2011 and 2012, 175 bovine ground meat samples were collected. None of the samples were Campylobacter positive by cultivation, and only one sample (0.6%) was Camp. jejuni positive by the use of PCR on template extracted directly from ground meat. According to our findings, Finnish bovine ground meat is an unlikely source for human campylobacteriosis. Additionally, the hygienic quality of bovine ground meat at retail level was screened and found to be good when monitored by aerobic micro-organisms, total thermotolerant coliforms and Eshericha coli. This study provides the first data on the occurrence of the zoonotic pathogen Campylobacter jejuni in Finnish bovine ground meat. This knowledge is important as part of future Campylobacter risk assessment, management and monitoring programs, particularly when assessing the relative attribution of poultry, pork and bovine meat to the burden of human campylobacteriosis. According to our results, Finnish bovine ground meat at retail level is of good hygienic quality. © 2013 The Society for Applied Microbiology.

  13. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease.

    Science.gov (United States)

    Zhang, Li; Man, Si Ming; Day, Andrew S; Leach, Steven T; Lemberg, Daniel A; Dutt, Shoma; Stormon, Michael; Otley, Anthony; O'Loughlin, Edward V; Magoffin, Annabel; Ng, Patrick H Y; Mitchell, Hazel

    2009-02-01

    The presence of Campylobacter species other than Campylobacter jejuni and antibodies to Campylobacter concisus in children were investigated. A significantly greater presence of C. concisus and higher levels of antibodies to C. concisus were detected in children with Crohn's disease (CD) than in controls. Campylobacter species other than C. jejuni were isolated from intestinal biopsy specimens of children with CD.

  14. Detection and Isolation of Campylobacter Species Other than C. jejuni from Children with Crohn's Disease▿

    OpenAIRE

    Zhang, Li; Man, Si Ming; Andrew S. Day; Steven T. Leach; Lemberg, Daniel A.; Dutt, Shoma; Stormon, Michael; Otley, Anthony; O'Loughlin, Edward V.; Magoffin, Annabel; Ng, Patrick H. Y.; Mitchell, Hazel

    2008-01-01

    The presence of Campylobacter species other than Campylobacter jejuni and antibodies to Campylobacter concisus in children were investigated. A significantly greater presence of C. concisus and higher levels of antibodies to C. concisus were detected in children with Crohn's disease (CD) than in controls. Campylobacter species other than C. jejuni were isolated from intestinal biopsy specimens of children with CD.

  15. A Quantitative Real-Time PCR Approach for Assessing Campylobacter jejuni and Campylobacter coli Colonization in Broiler Herds.

    Science.gov (United States)

    Haas, Katrin; Overesch, Gudrun; Kuhnert, Peter

    2017-04-01

    Human campylobacteriosis is a major public health concern in developed countries, with Campylobacter jejuni and Campylobacter coli from poultry recognized as the main source of human infection. Identification of Campylobacter-positive broiler herds before slaughter is essential for implementing measures to avoid carryover of pathogens via the slaughter process into the food chain. However, appropriate methods that have been validated for testing poultry flocks antemortem are lacking for Campylobacter. A quantitative real-time PCR (qPCR) that allows simultaneous detection and quantification of C. jejuni and C. coli was adapted and optimized to be applied on boot socks. The adjusted qPCR serves as an easy, sensitive, and quantitative method for Campylobacter detection in poultry flocks antemortem by analysis of boot socks. An adequate correlation was found between qPCR and culture, as well as between boot socks and cecal samples, which are regarded as the "gold standard." Therefore, boot sock sampling followed by qPCR analysis provides a reliable and simple method for assessing Campylobacter load within a flock prior to slaughter. The approach allows categorization of broiler herds into negative, low, moderate, or high Campylobacter colonization. Based on the results of this new approach, risk assessment models, such as evaluating the possible effect of sorting flocks before slaughter, can be easily implemented. Similarly, targeted identification of highly colonized flocks for improvement of biosecurity measures at the farm level will become feasible, presenting an opportunity to increase food safety.

  16. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen

    Science.gov (United States)

    Kim, Jong-Chul; Oh, Euna; Kim, Jinyong; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense. PMID:26284041

  17. Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Jordan, Penelope J.

    2003-01-01

    We examined the sensitivity and specificity of 11 PCR assays described for the species identification of Campylobacter jejuni and Campylobacter coli by using 111 type, reference, and field strains of C. jejuni, C. coli, and Campylobacter lari. For six assays, an additional 21 type strains...... representing related Campylobacter, Arcobacter, and Helicobacter species were also included. PCR tests were initially established in the laboratory by optimizing conditions with respect to five type and reference strains of C. jejuni, C. coli, and C. lari. One PCR test for C. coli failed to give appropriate...... gave amplicons in four of seven C. jejuni PCR tests only where purified DNA was used as the template; corresponding results were seen with one strain of C. coli in each of three assays for the latter species. Our findings indicate that a polyphasic strategy for PCR-based identification should be used...

  18. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare.

    Science.gov (United States)

    Humphrey, Suzanne; Chaloner, Gemma; Kemmett, Kirsty; Davidson, Nicola; Williams, Nicola; Kipar, Anja; Humphrey, Tom; Wigley, Paul

    2014-07-01

    Campylobacter jejuni is the leading cause of bacterial food-borne infection; chicken meat is its main source. C. jejuni is considered commensal in chickens based on experimental models unrepresentative of commercial production. Here we show that the paradigm of Campylobacter commensalism in the chicken is flawed. Through experimental infection of four commercial breeds of broiler chickens, we show that breed has a significant effect on C. jejuni infection and the immune response of the animals, although these factors have limited impact on the number of bacteria in chicken ceca. All breeds mounted an innate immune response. In some breeds, this response declined when interleukin-10 was expressed, consistent with regulation of the intestinal inflammatory response, and these birds remained healthy. In another breed, there was a prolonged inflammatory response, evidence of damage to gut mucosa, and diarrhea. We show that bird type has a major impact on infection biology of C. jejuni. In some breeds, infection leads to disease, and the bacterium cannot be considered a harmless commensal. These findings have implications for the welfare of chickens in commercial production where C. jejuni infection is a persistent problem. Importance: Campylobacter jejuni is the most common cause of food-borne bacterial diarrheal disease in the developed world. Chicken is the most common source of infection. C. jejuni infection of chickens had previously not been considered to cause disease, and it was thought that C. jejuni was part of the normal microbiota of birds. In this work, we show that modern rapidly growing chicken breeds used in intensive production systems have a strong inflammatory response to C. jejuni infection that can lead to diarrhea, which, in turn, leads to damage to the feet and legs on the birds due to standing on wet litter. The response and level of disease varied between breeds and is related to regulation of the inflammatory immune response. These findings

  19. Humoral immune response to campylobacter jejuni in patients with enterocolitis and Guillain-Barré syndrome

    Directory of Open Access Journals (Sweden)

    Ristić Ljiljana

    2012-01-01

    Full Text Available Campylobacter jejuni is one of the most important causes of diarrheal disease worldwide. In addition, it can cause neurological post-infectious sequels, such as Guillain-Barré syndrome (GBS. Humoral immune response to C. jejuni was monitored in patients with C. jejuni enterocolitis, GBS patients and healthy persons, by ELISA. Statistical significance between patients with enterocolitis and healthy persons, as well as among GBS patients and healthy controls, was proven. Statistical significance in IgA among the examined groups was also noticed. The highest values of IgM were found in the patients with GBS, while the highest values of IgG were found in those with enterocolitis. C. jejuni is a significant cause of antecedent infection in GBS. ELISA techniques can be considered a reliable method in determining the presence of serum antibodies in patients with enterocolitis caused by C. jejuni, as well as in patients with GBS.

  20. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?

    Directory of Open Access Journals (Sweden)

    Tadhg eÓ Cróinín

    2012-03-01

    Full Text Available Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the zipper over the trigger mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.

  1. Campylobacter jejuni and Campylobacter coli in children from communities in Northeastern Brazil: molecular detection and relation to nutritional status.

    Science.gov (United States)

    da Silva Quetz, Josiane; Lima, Ila Fernanda Nunes; Havt, Alexandre; de Carvalho, Eunice Bobo; Lima, Noélia Leal; Soares, Alberto Melo; Mota, Rosa Maria Salani; Guerrant, Richard Littleton; Lima, Aldo Angelo Moreira

    2010-07-01

    This study determined the prevalence of Campylobacter jejuni/coli and its relation with nutritional status in children from Northeastern Brazil. This was a case-control study design. Stool samples were evaluated for hipO (C. jejuni), ask (C. coli), and cdtABC (C. jejuni's cytolethal distending toxin) genes. The nutritional status from these children was assessed by anthropometric measures and z-scores. C. jejuni and C. coli were detected in 9.6% (8/83) and 6.0% (5/83) in the diarrhea group and in 7.2% (6/83) and 1.2% (1/83) of the nondiarrhea group, respectively. Children with positive molecular detection of C. jejuni showed significantly lower z-scores than children without C. jejuni. The cdtABC operon was found in 57% of hipO(+) samples. C. jejuni/coli prevalence was similar in diarrhea and nondiarrhea groups. There was a significant association of C. jejuni infection with lower nutritional status.

  2. Outcome of infection of C57BL/6 IL-10−/− mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo

    Science.gov (United States)

    Bell, J. A.; Jerome, J.P.; Plovanich-Jones, A. E.; Smith, E. J.; Gettings, J. R.; Kim, H. Y.; Landgraf, J. R.; Lefébure, T.; Kopper, J. J.; Rathinam, V. A.; St. Charles, J. L.; Buffa, B. A.; Brooks, A. P.; Poe, S. A.; Eaton, K. A.; Stanhope, M. J.; Mansfield, L. S.

    2014-01-01

    Human Campylobacter jejuni infection can result in an asymptomatic carrier state, watery or bloody diarrhea, bacteremia, meningitis, or autoimmune neurological sequelae. Infection outcomes of C57BL/6 IL-10−/− mice orally infected with twenty-two phylogenetically diverse C. jejuni sstrains were evaluated to correlate colonization and disease phenotypes with genetic composition of the strains. Variation between strains was observed in colonization, timing of development of clinical signs, and occurrence of enteric lesions. Five pathotypes of C. jejuni in C57BL/6 IL-10−/− mice were delineated: little or no colonization, colonization without disease, colonization with enteritis, colonization with hemorrhagic enteritis, and colonization with neurological signs with or without enteritis. Virulence gene content of ten sequenced strains was compared in silico; virulence gene content of twelve additional strains was compared using a C. jejuni pan-genome microarray. Neither total nor virulence gene content predicted pathotype; nor was pathotype correlated with multilocus sequence type. Each strain was unique with regard to absences of known virulence-related loci and/or possession of point mutations and indels, including phase variation, in virulence-related genes. An experiment in C. jejuni 11168-infected germ-free mice showed that expression levels of ninety open reading frames (ORFs) were significantly up- or down-regulated in the mouse cecum at least two-fold compared to in vitro growth. Genomic content of these ninety C. jejuni 11168 ORFs was significantly correlated with the capacity to colonize and cause enteritis in C57BL/6 IL-10−/− mice. Differences in gene expression levels and patterns are thus an important determinant of pathotype in C. jejuni strains in this mouse model. PMID:22960579

  3. Outcome of infection of C57BL/6 IL-10(-/-) mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo.

    Science.gov (United States)

    Bell, J A; Jerome, J P; Plovanich-Jones, A E; Smith, E J; Gettings, J R; Kim, H Y; Landgraf, J R; Lefébure, T; Kopper, J J; Rathinam, V A; St Charles, J L; Buffa, B A; Brooks, A P; Poe, S A; Eaton, K A; Stanhope, M J; Mansfield, L S

    2013-01-01

    Human Campylobacter jejuni infection can result in an asymptomatic carrier state, watery or bloody diarrhea, bacteremia, meningitis, or autoimmune neurological sequelae. Infection outcomes of C57BL/6 IL-10(-/-) mice orally infected with twenty-two phylogenetically diverse C. jejuni strains were evaluated to correlate colonization and disease phenotypes with genetic composition of the strains. Variation between strains was observed in colonization, timing of development of clinical signs, and occurrence of enteric lesions. Five pathotypes of C. jejuni in C57BL/6 IL-10(-/-) mice were delineated: little or no colonization, colonization without disease, colonization with enteritis, colonization with hemorrhagic enteritis, and colonization with neurological signs with or without enteritis. Virulence gene content of ten sequenced strains was compared in silico; virulence gene content of twelve additional strains was compared using a C. jejuni pan-genome microarray. Neither total nor virulence gene content predicted pathotype; nor was pathotype correlated with multilocus sequence type. Each strain was unique with regard to absences of known virulence-related loci and/or possession of point mutations and indels, including phase variation, in virulence-related genes. An experiment in C. jejuni 11168-infected germ-free mice showed that expression levels of ninety open reading frames (ORFs) were significantly up- or down-regulated in the mouse cecum at least two-fold compared to in vitro growth. Genomic content of these ninety C. jejuni 11168 ORFs was significantly correlated with the capacity to colonize and cause enteritis in C57BL/6 IL-10(-/-) mice. Differences in gene expression levels and patterns are thus an important determinant of pathotype in C. jejuni strains in this mouse model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Influxed insects as Vectors for Campylobacter jejuni and Campylobacter coll in Danish Broiler Houses

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Pedersen, Karl

    2008-01-01

    The vector potential of flies (Diptera: Brachycera) for spread of Campylobacter jejuni and Campylobacter coli on 5 Danish broiler farms was evaluated in a longitudinal field study from April to November 2004. First, the prevalence of C. jejuni- and C. coli-positive flies was determined in 2...... houses was estimated by trapping of insects (n = 5,936) in ventilation vents. In total, 31 flies (28 of which were of the Muscidae family) caught in farm surroundings were Campylobacter spp.-positive (C. jejuni, n = 7; C. coli, n = 23; other Campylobacter spp., n = 1). Musca domestica (L) (house fly...... caesar (L) (green bottle fly) of the Calliphoridae family and 2 flies of unidentified species were also positive. The prevalence of Campylobacter spp.-positive flies varied from 0.0 in April to a peak of 16.3% in July and decreasing to 2.0% in October on a farm with pig production. On 4 broiler farms...

  5. Evaluation of passive immunotherapeutic efficacy of hyperimmunized egg yolk powder against intestinal colonization of Campylobacter jejuni in chickens.

    Science.gov (United States)

    Paul, Narayan C; Al-Adwani, Salma; Crespo, Rocio; Shah, Devendra H

    2014-11-01

    Campylobacter jejuni is a leading cause of foodborne bacterial gastroenteritis in human. Chickens are the reservoir host of C. jejuni, and contaminated chicken meat is an important source of human infection. Therefore, control of C. jejuni in chickens can have direct effect on human health. In this study we tested the passive immunotherapeutic efficacy of the chicken egg-yolk-derived antibodies, in the form of hyperimmunized egg yolk powder (HEYP), against 7 colonization-associated proteins of C. jejuni, namely, CadF (Campylobacter adhesion to fibronectin), FlaA (flagellar proteins), MOMP (major outer membrane protein), FlpA (fibronectin binding protein A), CmeC (Campylobacter multidrug efflux C), Peb1A (Campylobacter putative adhesion), and JlpA (Jejuni lipoprotein A). Three chicken experiments were performed. In each experiment, chickens were treated orally via feed supplemented with 10% (wt/wt) egg yolk powder. In experiment 1, chicken groups were experimentally infected with C. jejuni (10(8) cfu) followed by treatment with 5 HEYP (CadF, FlaA, MOMP, FlpA, CmeC) for 4 d either individually or as a cocktail containing equal parts of each HEYP. In experiment 2, chickens were treated for 21 d with cocktail containing equal parts of 7 HEYP before and after experimental infection with C. jejuni (10(8) cfu). In experiment 3, chickens were treated with feed containing a cocktail of 7 HEYP before and after (prophylaxis), and after (treatment) experimental infection with C. jejuni (10(5) cfu). Intestinal colonization of C. jejuni was monitored by culturing cecal samples from chickens euthanized at the end of each experiment. The results showed that there were no differences in the cecal colonization of C. jejuni between HEYP treated and nontreated control chickens, suggesting that use of HEYP at the dose and the regimens used in the current study is not efficacious in reducing C. jejuni colonization in chickens. ©2014 Poultry Science Association Inc.

  6. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity.

    Science.gov (United States)

    Bleumink-Pluym, Nancy M C; van Alphen, Lieke B; Bouwman, Lieneke I; Wösten, Marc M S M; van Putten, Jos P M

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.

  7. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Nancy M C Bleumink-Pluym

    Full Text Available The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.

  8. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni.

    Science.gov (United States)

    Han, Jing; Sahin, Orhan; Barton, Yi-Wen; Zhang, Qijing

    2008-06-06

    Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.

  9. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Jing Han

    2008-06-01

    Full Text Available Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.

  10. Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni.

    Science.gov (United States)

    Kumar, Anand; Gangaiah, Dharanesh; Torrelles, Jordi B; Rajashekara, Gireesh

    2016-09-07

    Campylobacter jejuni (C. jejuni), a Gram-negative microaerophilic bacterium, is a predominant cause of bacterial foodborne gastroenteritis in humans worldwide. Despite its importance as a major foodborne pathogen, our understanding of the molecular mechanisms underlying C. jejuni stress survival and pathogenesis is limited. Inorganic polyphosphate (poly P) has been shown to play significant roles in bacterial resistance to stress and virulence in many pathogenic bacteria. C. jejuni contains the complete repertoire of enzymes required for poly P metabolism. Recent work in our laboratory and others have demonstrated that poly P controls a plethora of C. jejuni properties that impact its ability to survive in the environment as well as to colonize/infect mammalian hosts. This review article summarizes the current literature on the role of poly P in C. jejuni stress survival and virulence and discusses on how poly P-related enzymes can be exploited for therapeutic/prevention purposes. Additionally, the review article identifies potential areas for future investigation that would enhance our understanding of the role of poly P in C. jejuni and other bacteria, which ultimately would facilitate design of effective therapeutic/preventive strategies to reduce not only the burden of C. jejuni-caused foodborne infections but also of other bacterial infections in humans.

  11. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation.

    Science.gov (United States)

    Mohan, V

    2015-08-01

    Campylobacter jejuni is one of the most common bacterial causes of human gastroenterocolitis worldwide, leading to diarrhea and other serious post-infectious complications. Probiotics form an attractive alternative intervention strategy for most of the enteric infections. However, the role of probiotics in C. jejuni infections requires detailed investigations in order to delineate the probiotic strains that are effective against C. jejuni. Although there are several biological mechanisms involved in the inhibition of pathogenic bacterial growth, the strains of probiotics and their mechanisms of actions through which they combat C. jejuni invasion have not been studied in greater detail. This mini review details the factors that are involved in the colonization and establishment of C. jejuni infection, with special reference to chickens, the natural host of C. jejuni, and the studies that have investigated the effect of different probiotic strains against C. jejuni colonization and growth. This review has collated the studies conducted using probiotics to inhibit C. jejuni colonization and growth to date to provide a collective knowledge about the role of probiotics as an alternative intervention strategy for campylobacteriosis.

  12. Study in ovo immunisation with flagellin and whole cell protein antigens of Campylobacter jejuni in chickens

    Directory of Open Access Journals (Sweden)

    Susan Maphilindawati Noor

    2000-06-01

    Full Text Available In ovo immunisation of chickens with flagellin and whole cell protein antigens of Campylobacter jejuni was examined to determine Campylobacter infection. Four groups of embryonated chicken eggs (10 eggs per group were immunised in ovo at day 17 of incubation and booster was given at 7 days post-hatch. Group I was immunised in ovo and oral booster with whole cell protein of C. jejuni, group II was immunised in ovo and oral booster with C. jejuni flagellin protein, group III was immunised in ovo and intraperitoneal booster with whole cell, and group IV was treated as control. The humoral immune responses were determined by enzyme-linked immunosorbent assay (ELISA and the mucosal immune responses were examined by a direct fluorescent histology antibody technique. Immunised chickens of Group I, II, and III shown to have higher antibody titers than those of control chickens (group IV. The titres of anti-campylobacter antibodies of all isotypes in serum, bile, and intestinal scrapping after challenge were not significantly different in all groups. In addition, when immunised chickens were orally challenged with a homologous strain of viable C. jejuni organism, the chickens remained infected throughout the experiment based on cloacal swabs and caecal contents. These findings indicated that although in ovo immunisation resulted in increasing of the mucosal and humoral immune responses in chickens, it is not strong enough to protect the Campylobacter colonisation in the intestinal tract.

  13. Genotypes and antibiotic resistance of canine Campylobacter jejuni isolates.

    Science.gov (United States)

    Amar, Chantal; Kittl, Sonja; Spreng, David; Thomann, Andreas; Korczak, Bożena M; Burnens, André P; Kuhnert, Peter

    2014-01-10

    Campylobacter jejuni is the most important cause of bacterial gastroenteritis in humans. It is a commensal in many wild and domestic animals, including dogs. Whereas genotypes of human and chicken C. jejuni isolates have been described in some detail, only little information on canine C. jejuni genotypes is available. To gain more information on genotypes of canine C. jejuni and their zoonotic potential, isolates from routine diagnostics of diarrheic dogs as well as isolates of a prevalence study in non-diarrheic dogs were analyzed. Prevalence of thermophilic Campylobacter among non-diarrheic dogs was 6.3% for C. jejuni, 5.9% for Campylobacter upsaliensis and 0.7% for Campylobacter coli. The C. jejuni isolates were genotyped by multi locus sequence typing (MLST) and flaB typing. Resistance to macrolides and quinolones was genetically determined in parallel. Within the 134 genotyped C. jejuni isolates 57 different sequence types (ST) were found. Five STs were previously unrecognized. The most common STs were ST-48 (11.2%), ST-45 (10.5%) and ST-21 (6.0%). Whereas no macrolide resistance was found, 28 isolates (20.9%) were resistant to quinolones. ST-45 was significantly more prevalent in diarrheic than in non-diarrheic dogs. Within the common time frame of isolation 94% of the canine isolates had a ST that was also found in human clinical isolates. In conclusion, prevalence of C. jejuni in Swiss dogs is low but there is a large genetic overlap between dog and human isolates. Given the close contact between human and dogs, the latter should not be ignored as a potential source of human campylobacteriosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Metronidazole resistance in Campylobacter jejuni from poultry meat

    DEFF Research Database (Denmark)

    Andersen, Sigrid Rita; Shukri, Naseer Mahmoud; Boel, Jeppe

    2006-01-01

    The occurrence of metronidazole resistance was investigated among Campylobacter jejuni in raw poultry meat collected from supermarkets. MICs were determined by the agar dilution procedure in the testing range of 3 to 60 mu g/ml metronidazole. The MICs showed a bimodal distribution...... with a significant proportion of metronidazole-resistant isolates among C. jejuni from raw broiler and turkey meat. Metronidazole resistance occurred most frequently among turkey meat isolates (P metronidazole resistance....

  15. The abundant free-living amoeba, Acanthamoeba polyphaga, increases the survival of Campylobacter jejuni in milk and orange juice

    Directory of Open Access Journals (Sweden)

    Jenny Olofsson

    2015-09-01

    Full Text Available Background: Campylobacter jejuni is a common cause of human bacterial diarrhea in most parts of the world. Most C. jejuni infections are acquired from contaminated poultry, milk, and water. Due to health care costs and human suffering, it is important to identify all possible sources of infection. Unpasteurized milk has been associated with several outbreaks of C. jejuni infection. Campylobacter has been identified on fresh fruit, and other gastrointestinal pathogens such as Salmonella, E. coli O157:H7 and Cryptosporidium have been involved in fruit juice outbreaks. C. jejuni is sensitive to the acidic environment of fruit juice, but co-cultures with the amoeba, Acanthamoeba polyphaga, have previously been shown to protect C. jejuni at low pH. Methods: To study the influence of A. polyphaga on the survival of C. jejuni in milk and juice, the bacteria were incubated in the two products at room temperature and at 4°C with the following treatments: A C. jejuni preincubated with A. polyphaga before the addition of product, B C. jejuni mixed with A. polyphaga after the addition of product, and C C. jejuni in product without A. polyphaga. Bacterial survival was assessed by colony counts on blood agar plates. Results: Co-culture with A. polyphaga prolonged the C. jejuni survival both in milk and juice. The effect of co-culture was most pronounced in juice stored at room temperature. On the other hand, A. polyphaga did not have any effect on C. jejuni survival during pasteurization of milk or orange juice, indicating that this is a good method for eliminating C. jejuni in these products. Conclusion: Amoebae-associated C. jejuni in milk and juice might cause C. jejuni infections.

  16. Inaccuracy of routine susceptibility tests for detection of erythromycin resistance of Campylobacter jejuni and Campylobacter coli

    NARCIS (Netherlands)

    Beek, M.T.; Claas, E.C.J.; Mevius, D.J.; Pelt, van W.; Wagenaar, J.A.; Kuijper, E.J.

    2010-01-01

    In The Netherlands, both an increase in and regional differences in erythromycin resistance of Campylobacter jejuni and Campylobacter coli have been reported. To determine the accuracy of routine tests for erythromycin resistance, 48 erythromycin-resistant isolates from various laboratories that

  17. Prevalence of Campylobacter jejuni in poultry breeder flocks

    Directory of Open Access Journals (Sweden)

    Ludovico Dipineto

    2010-01-01

    Full Text Available The aim of this work is to present the preliminary results of a study about the prevalence of Campylobacter jejuni in poultry breeder flocks. It was examined three different breeder flocks of Bojano in Molise region. A total of 360 cloacal swabs and 80 enviromental swabs was collected. Of the 3 flocks studied, 6.9% tested were positive for Campylobacter spp. The most-prevalent isolated species is C. jejuni (8.2%. Only 3 of the 360 cloacal swabs samples examined were associated with C. coli. The environmental swabs resulted negative. This results confirms again that poultry is a reservoir of this germ.

  18. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis

    DEFF Research Database (Denmark)

    Mortensen, Ninell P; Schiellerup, Peter; Boisen, Nadia

    2011-01-01

    The role of Campylobacter jejuni cytolethal distending toxin (CDT) on clinical outcome after gastroenteritis was investigated. Clinical data, blood serum samples, and Campylobacter spp. isolated, from each of 30 patients were collected over a period of 6 months. The CDT encoding genes, cdt......ABC, characterized by PCR, revealed that all but one of the C. jejuni strains had the wild-type sequence. Sequencing of cdtABC from this strain showed two major deletions. From all of the strains, CDT titers were determined, and toxin neutralizing antibodies were documented using an in vitro assay. Three...

  19. Campylobacter jejuni and Campylobacter coli in Children With Acute Diarrhea in Health Centers of Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    Rastyani

    2015-11-01

    Full Text Available Background Enteritis caused by Campylobacter is considered as the most common acute bacterial diarrhea around the world. In most cases, infection occurs as a result of consuming contaminated water or food, especially raw meat of fowls. Objectives The purpose of the present study was to determine the prevalence and antibiotic resistance of campylobacter species among pediatrics of Hamadan city, Iran. Patients and Methods A total of 120 stool samples from children less than 10 years old were examined from January 2013 to December 2014 in Hamadan, Iran. The samples were incubated in Campy-Thio enrichment medium for 1 - 2 hours and then cultured on a specific medium; after that, the suspected colonies were analyzed for Campylobacter spp. identification by conventional tests. The identified species by biochemical methods were confirmed by polymerase chain reaction (PCR. Antimicrobial susceptibility testing was performed by disk agar diffusion (DAD method. Results Twelve (10% Campylobacter spp. from 120 stool samples were isolated including C. coli and C. jejuni. In the antibiotic susceptibility test, the most frequent resistance was observed to ciprofloxacin 8 (88.8%, followed by 7 (77.7% resistant strains to tetracycline, 7 (77.7% to erythromycin, 6 (66.6% to clindamycin, 5 (55.5% to meropenem, 4 (44.4% to gentamicin, 3 (33.3% to nalidixicacid and only 1 (11.1% to chloramphenicol. Conclusions Campylobacter is responsible for some important clinical problems such as enteritis and is also associated with meningitis and hemolytic-uremic syndrome. It is imperative to monitor the prevalence and antibiotic resistance of Campylobacter spp. as well as other the zoonotic bacteria.

  20. Isolation of Campylobacter fetus subsp jejuni from zoo animals.

    Science.gov (United States)

    Luechtefeld, N W; Cambre, R C; Wang, W L

    1981-12-01

    Over a 1-year period, 619 fecal specimens from animals at the Denver Zoo were cultured for Campylobacter fetus subsp jejuni. The organism was isolated from 35 animals, including 12 primates, 2 felids, a red panda, 13 hooved animals, 6 birds, and 1 reptile. Of 44 cultured fecal specimens from diarrheal animals, 31.8% were positive for Campylobacter, whereas only 5.6% of 575 specimens from animals without diarrhea were positive (P less than 0.001). Among 25 isolates tested, 12 serotypes were represented; several of these serotypes are commonly associated with Campylobacter enteritis in human beings. Campylobacter fetus subsp jejuni was isolated from 8% of 75 wild pigeons trapped on the zoo premises during winter months and from 26% of 75 trapped during March and April (P less than 0.01).

  1. Immunoreactivity of glycoproteins isolated from human peripheral nerve and Campylobacter jejuni (O:19

    Directory of Open Access Journals (Sweden)

    Katerina Brezovska

    2011-01-01

    Full Text Available Objective: Antibodies to ganglioside GM1 are associated with Guillain-Barré Syndrome (GBS in patients with serologic evidence of a preceding infection with Campylobacter jejuni. Molecular mimicry between C. jejuni Lipopolysaccharide (LPS and ganglioside GM1 has been proven to be the immunopathogenic mechanism of the disease in the axonal variant of GBS. GM1-positive sera cross-react with several Gal-GalNAc-bearing glycoproteins from the human peripheral nerve and C. jejuni (O:19. This study aimed to examine the immunoreactivity of the digested cross-reactive glycoproteins isolated from the human peripheral nerve and C. jejuni (O:19 with Peanut Agglutinin (PNA as a marker for the Gal-GalNAc determinant, and with sera from patients with GBS. Materials and Methods: For this purpose, the cross-reactive glycoproteins from peripheral nerve and C. jejuni (O:19 were enzymatically digested with trypsin and the obtained peptides were incubated with PNA and GBS sera. Results: Western blot analysis of the separated peptides revealed several bands showing positive reactivity to PNA and to sera from patients with GBS, present in both digests from peripheral nerve and C. jejuni (O:19. Conclusions: These data indicate the possible molecular mimicry between the cross-reactive glycoproteins present in C. jejuni and human peripheral nerve and its potential role in the development of GBS following infection with C. jejuni (O:19.

  2. Immune responses to Campylobacter (C. jejuni or C. coli) infections: a two-year study of US forces deployed to Thailand.

    Science.gov (United States)

    Islam, Dilara; Ruamsap, Nattaya; Aksomboon, Ajchara; Khantapura, Patchariya; Srijan, Apichai; Mason, Carl J

    2014-11-01

    Campylobacter spp. is a leading cause of diarrheal disease among US troops deployed to Thailand for exercise. We investigated the importance of immunological analysis and immune responses against Campylobacter infection in US troops deployed to Thailand. Blood and fecal samples were collected from volunteered soldiers with diarrhea and from healthy controls. Stool culture was performed to identify the pathogens. Campylobacter-specific antibodies, antibody secreting cells and cytokines were measured. Several bacterial protein fragments in the outer membrane extract of Campylobacter spp., were identified by an immunoblot analysis with plasma and fecal antibodies. Among all of the diarrheal cases, 35% were Campylobacter-positive. Based on antibody titers in plasma and in fecal extract and antibody secreting cells: 6% of healthy controls, 32% of the Campylobacter culture-negative diarrheal cases, and 85% of the Campylobacter culture-positive diarrheal cases were positive for Campylobacter. Our results indicate that the measurement of Campylobacter-specific antibodies in plasma and fecal extract samples is a good marker of exposure to Campylobacter, and this test may be a useful diagnostic tool for seroepidemiological studies. Elicited antibodies against several bacterial outer membrane protein fragments suggest that these protein fragments are vital in providing protective immunity against Campylobacter. © 2014 APMIS. Published by John Wiley & Sons Ltd.

  3. Pesquisa de Campylobacter jejuni e Campylobacter coli em abatedouros de aves

    OpenAIRE

    Cortez, Ana L.L.; Carvalho, Angela C.F.B.; Scarcelli, Eliana; Miyashiro, Simone; Vidal-Martins, Ana M.C.; Bürger, Karina P.

    2006-01-01

    The genus Campylobacter is of great importance to public health because it includes several species that may cause diarrhea. These species may be found in water, food and in the intestinal tract of chickens. This study investigated the presence of Campylobacter jejuni and Campylobacter coli in chicken abattoirs in São Paulo State, Brazil. A total of 288 samples of feces, feathers, scald water, evisceration water, chiller water, and the rinse water of eviscerated, not eviscerated and chilled c...

  4. Identification of Chicken Originated Campylobacter coli and Campylobacter jejuni by Polymerase Chain Reaction (PCR)

    OpenAIRE

    ERTAŞ, Hasan Basri; ÇETİNKAYA, Burhan; MUZ, Adile; ÖNGÖR, Hasan

    2014-01-01

    The purpose of this study was to isolate Campylobacter species from the intestines and livers of chicken and to identify Campylobacter coli and Campylobacter jejuni by both conventional methods and Polymerase Chain Reaction (PCR). Four specific primers derived from the ceuE gene present in the genomes of C. coli and C. jejuni were used for PCR identification. In the examination of 150 intestine and liver samples by culture and PCR, 25 (16.6%) and 32 (21.3%) were identified as C. coli and C...

  5. Characterization of Campylobacter jejuni and Campylobacter coli strains isolated in the region of Niš, Serbia

    Directory of Open Access Journals (Sweden)

    Miljković-Selimović Biljana

    2010-01-01

    Full Text Available Introduction. Campylobacter jejuni and Campylobacter coli represent one of the main causes of bacterial diarrhoea in humans. Although the disease is usually mild and self-limiting, severe chronic sequelae may occur, such as reactive arthritis, Guillain-Barré and Miller Fisher syndromes. Serotyping is used as an epidemiological marker, while post-infective polyneuropathies are associated with several O serotypes. Objective. Strains of C. jejuni and C. coli were serotyped based on heat stable (HS and heat labile (HL antigens, as well as biotypes to determine strain diversity. Methods. Campylobacter spp. was isolated using selective blood media with antibiotics. Differentiation to the species level was done by a combination of biotyping tests and by a PCR-based RFLP test. The isolates were characterised by Penner and Lior serotyping methods. Results. The serotypes showed diversity without predominant serotypes. 24 HS serotypes were detected among 29 C. jejuni strains, and seven serotypes among nine C. coli strains. HL serotyping method successfully typed 62.5% of strains. Among 16 C. jejuni strains 14 serotypes were detected, and three among four C. coli strains. A C. jejuni strain associated with a patient with Guillain-Barré syndrome was typed as biotype II, O:19. Conclusion. The biotyping and serotyping results have indicated that C. jejuni and C. coli strains in the region of Niš, Serbia are diverse and could be probably of unrelated sources of origin or reservoirs. The strain associated with the Guillain-Barré syndrome patient was serotype O:19, one of the most common in this post-infective complication.

  6. Recurrent Campylobacter jejuni bacteremia in a patient with hypogammaglobulinemia: A case report.

    Science.gov (United States)

    Kim, Youie; Shin, Ju Ae; Han, Seung Beom; Cho, Bin; Jeong, Dae Chul; Kang, Jin Han

    2017-06-01

    Although some cases of recurrent bacteremia due to Campylobacter jejuni have been reported in immunocompromised patients, antibiotic treatment strategies to eradicate C. jejuni and prevent recurrent infections in immunocompromised patients have not been established. Authors' experience of such rare cases should be shared for improving patients' outcomes. An 18-year-old boy with hypogammaglobulinemia, who received intravenous immunoglobulin replacement therapy every 3 weeks, was admitted to hospital repeatedly due to recurrent diarrhea and cellulitis of the leg. The patient was admitted 6 times, and among them, C. jejuni was isolated from blood cultures 4 times and stool cultures 2 times. The patient experienced recurrent C. jejuni enteritis and bacteremia 5 times despite macrolide therapy. Doxycycline was administered for 3 months after the fifth admission. Ten months after the completion of doxycycline therapy for 3 months, C. jejuni enteritis relapsed; however, since then, recurrent infection has not occurred for 10 months. Immunocompromised patients can experience recurrent C. jejuni infection despite prolonged antibiotic therapy. Further studies to establish appropriate antibiotic therapy for eradicating colonized C. jejuni and preventing recurrent infection are needed.

  7. Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni.

    Science.gov (United States)

    Zeng, Ximin; Xu, Fuzhou; Lin, Jun

    2009-12-01

    The ferric enterobactin receptor CfrA not only is responsible for high-affinity iron acquisition in Campylobacter jejuni but also is essential for C. jejuni colonization in animal intestines. In this study, we determined the feasibility of targeting the iron-regulated outer membrane protein CfrA for immune protection against Campylobacter colonization. Alignment of complete CfrA sequences from 15 Campylobacter isolates showed that the levels of amino acid identity for CfrA range from 89% to 98%. Immunoblotting analysis using CfrA-specific antibodies demonstrated that CfrA was dramatically induced under iron-restricted conditions and was widespread and produced in 32 Campylobacter primary strains from various sources and from geographically diverse areas. The immunoblotting survey results were highly correlated with the results of an enterobactin growth promotion assay and a PCR analysis using cfrA-specific primers. Inactivation of the cfrA gene also impaired norepinephrine-mediated growth promotion, suggesting that CfrA is required for C. jejuni to sense intestinal stress hormones during colonization. Complementation of the cfrA mutant with a wild-type cfrA allele in trans fully restored the production and function of CfrA. A growth assay using purified anti-CfrA immunoglobulin G demonstrated that specific CfrA antibodies could block the function of CfrA, which diminished ferric enterobactin-mediated growth promotion under iron-restricted conditions. The inhibitory effect of CfrA antibodies was dose dependent. Immunoblotting analysis also indicated that CfrA was expressed and immunogenic in chickens experimentally infected with C. jejuni. Amino acid substitution mutagenesis demonstrated that R327, a basic amino acid that is highly conserved in CfrA, plays a critical role in ferric enterobactin acquisition in C. jejuni. Together, these findings strongly suggest that CfrA is a promising vaccine candidate for preventing and controlling Campylobacter infection in

  8. Campylobacter jejuni-induced severe colitis--a rare cause of toxic megacolon.

    Science.gov (United States)

    Schneider, A; Rünzi, M; Peitgen, K; von Birgelen, C; Gerken, G

    2000-04-01

    The development of toxic megacolon as a sequel of infectious colitis is rare. We have observed the very rare case of a campylobacter jejuni-induced toxic megacolon. A 28-year-old man was admitted with severe enterocolitis and appearance of blood in stools. He had been treated with loperamide without success. Two days after admission stool cultures revealed campylobacter jejuni and then an oral antibiotic therapy was started. On the fifth day clinical performance deteriorated again with development of toxic megacolon and consecutive subtotal colectomy. Rectoscopy before discharge after 13 days showed a normal mucosa. The unusual course with first improvement and then rapid deterioration despite adequate therapy was observed in 4 other cases, which may also be a hint of ensuing megacolon. Even in usually harmless enterocolitis like campylobacter infection, predisposing factors such as loperamide are known to precipitate toxic megacolon and should be considered in clinical practice.

  9. Campylobacter: animal reservoirs, human infections, and options for control

    NARCIS (Netherlands)

    Wagenaar, Jaap; Newell, D.G.; Kalupahana, R.S.; Mughini Gras, Lapo

    2015-01-01

    Campylobacteriosis is a frequently diagnosed disease in humans. Most infections are considered food-borne and are caused by Campylobacter jejuni and C. coli. The animal reservoirs of these Campylobacter, and the sources and routes of transmission, are described and discussed. Most warm-blooded

  10. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products

    Directory of Open Access Journals (Sweden)

    Mona A. El-Zamkan

    2016-10-01

    Full Text Available Aim: This study was accomplished to test raw milk and certain dairy products sold in local markets of Qena, Egypt, for the presence of Campylobacter coli and Campylobacter jejuni. Materials and Methods: A total of 150 samples of raw milk, kareish cheese, and yoghurt (50 samples each were subjected first to enrichment in Bolton broth at 42°C for 2 days under a microaerobic condition, subsequently campylobacter blood free selective agar plates were cultured and incubated in the same condition of the broth. Based on the morphological and biochemical themes of the growing colonies, it was further classified into Campylobacter spp. The identified isolates were later affirmed by polymerase chain reaction using primers that were designed to locate hipO genes in C. jejuni and glyA in C. coli. Results: Of the total 150 examined samples of raw milk and soft cheese samples; 37 (24.6% samples were contaminated with Campylobacter spp. C. jejuni was dominating in this study in 20%, 14%, and 8% of the examined raw milk, kareish cheese, and yoghurt samples, respectively. No sample harbored C. coli. Conclusion: Campylobacter spp. could be detected in 24.6% of the investigated samples. C. jejuni isolated from 14% of the total tested samples, while C. coli could not be detected from the examined samples. Campylobacter spp. is rampant in the areas of poor hygienic conditions making products made from raw milk of public health hazard.

  11. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products.

    Science.gov (United States)

    El-Zamkan, Mona A; Hameed, Karima G Abdel

    2016-10-01

    This study was accomplished to test raw milk and certain dairy products sold in local markets of Qena, Egypt, for the presence of Campylobacter coli and Campylobacter jejuni. A total of 150 samples of raw milk, kareish cheese, and yoghurt (50 samples each) were subjected first to enrichment in Bolton broth at 42°C for 2 days under a microaerobic condition, subsequently campylobacter blood free selective agar plates were cultured and incubated in the same condition of the broth. Based on the morphological and biochemical themes of the growing colonies, it was further classified into Campylobacter spp. The identified isolates were later affirmed by polymerase chain reaction using primers that were designed to locate hipO genes in C. jejuni and glyA in C. coli. Of the total 150 examined samples of raw milk and soft cheese samples; 37 (24.6%) samples were contaminated with Campylobacter spp. C. jejuni was dominating in this study in 20%, 14%, and 8% of the examined raw milk, kareish cheese, and yoghurt samples, respectively. No sample harbored C. coli. Campylobacter spp. could be detected in 24.6% of the investigated samples. C. jejuni isolated from 14% of the total tested samples, while C. coli could not be detected from the examined samples. Campylobacter spp. is rampant in the areas of poor hygienic conditions making products made from raw milk of public health hazard.

  12. Passive and active immunity of broiler chickens against Campylobacter jejuni and ways of disease transmission

    Directory of Open Access Journals (Sweden)

    Silvia Ondrašovičová

    2012-01-01

    Full Text Available The study deals with passive and active immunity of fifty-three broiler chickens after infection with culture of Campylobacter jejuni. Potential transfer of infection by faecal-oral and aerogenic routes was also investigated. Cloacal swabs and ceacal content were analyzed microbiologically. Identification of C. jejuni was carried out by polymerase chain reaction. Observation of passive immunity of broilers from 3 days of age showed that no transfer of C. jejuni infection occurred up to 12 day post-infection (p.i.. Observations of active immunity in fourteen 21 days old chickens infected with C. jejuni showed that 6 chickens were positive on day 3 p.i. and all infected chickens were positive on day 5 p.i. Investigations of the transfer of C. jejuni by faecal-oral route revealed positivity in two broilers on day 3 p.i. and in all tested chickens on day 5 p.i. Aerogenic transfer of infection was not recorded. This was one of the first studies in our country dealing with passive and active immunity of broiler chickens against C. jejuni and spreading of this zoonotic disease.

  13. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni.

    Science.gov (United States)

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.

  14. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Dirk eHofreuter

    2014-09-01

    Full Text Available During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.

  15. Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children and environmental sources in urban and suburban areas.

    Science.gov (United States)

    Szczepanska, Bernadeta; Andrzejewska, Małgorzata; Spica, Dorota; Klawe, Jacek J

    2017-04-04

    Campylobacteriosis is a dominant bacterial cause of foodborne infection and is considered the main public health problem in Europe and many other countries worldwide. In the study lasting from 2011 to 2013 we compared the prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children, domestic animals, poultry meat and surface water in Northern Poland. During a 3-years study 1973 samples were analysed. The results proved the presence of Campylobacter spp. in 306 (15.5%) samples. The percentage of Campylobacter-positive samples differed among the sample types, from 0% (freshwater beaches) to 38.6% (poultry meat in 2011). Prevalence of Campylobacter spp. in children isolates was 9.6%. It decreased from 13.2% in 2011 to 8.0% in 2013. It should be highlighted with a particular concern that Campylobacter jejuni was detected in 20.0% of fountains. All children and poultry meat isolates were susceptible to azithromycin. Two C. coli (3.7%) and four C. jejuni (3.3%) isolated from poultry meat were resistant to erythromycin. The highest percentage of C. jejuni isolates with resistance to ciprofloxacin were found in samples from 80% dogs and 85% ponds. Among isolates resistant to two antimicrobials 74.7% C. jejuni and 59.2% C. coli isolates were resistant to ciprofloxacin as well as to tetracycline. Only one cat C. coli isolate was resistant to both azithromycin and erythromycin. One C. jejuni isolate from a fountain was resistant to four antimicrobial agents (erythromycin, azithromycin, tetracycline and ciprofloxacin). The study proved that surface water, poultry meat and pets constituted potential sources of Campylobacter to children. Fountains can be a direct source of children campylobacteriosis but can also pollute other environments with multidrug-resistant Campylobacter. The high resistance to some antimicrobials among the isolates may lead to increasing numbers of difficult-to-treat campylobacteriosis cases among children.

  16. β-Resorcylic Acid, a Phytophenolic Compound, Reduces Campylobacter jejuni in Postharvest Poultry.

    Science.gov (United States)

    Wagle, B R; Arsi, K; Upadhyay, A; Shrestha, S; Venkitanarayanan, K; Donoghue, A M; Donoghue, D J

    2017-08-01

    Human Campylobacter infections, a leading foodborne illness globally, has been linked with the high prevalence of this bacterium on raw retail chicken products. Reduction of Campylobacter counts on poultry products would greatly reduce the risk of subsequent infections in humans. To this end, this study investigated the potential of the phytophenolic compound β-resorcylic acid (BR) to reduce Campylobacter counts on postharvest poultry (chicken skin or meat). Four trials in total, two each on thigh skin or breast meat, were conducted in which chicken skin or meat samples (2 ± 0.1 g; 10 samples per treatment) were inoculated with 50 μL (∼10 6 CFU per sample) of a cocktail of four wild strains of C. jejuni. After 30 min of attachment, inoculated samples were dipped in a 0, 0.5, 1, or 2% BR solution for 30 s immediately followed by vigorously vortexing the samples in Butterfield's phosphate diluent and plating the supernatant for Campylobacter enumeration. In addition, the effect of BR on the color of skin and meat samples was studied. Moreover, the change in the expression of survival and virulence genes of C. jejuni exposed to BR was evaluated. Data were analyzed by the PROC MIXED procedure of SAS (P Campylobacter populations on both chicken or meat samples by 1 to 3 log CFU/g compared with non-BR-treated washed controls. No significant difference in the lightness, redness, and yellowness of skin and meat samples was observed on exposure to BR wash (P > 0.05). Real-time PCR results revealed that BR treatment down-regulated expression of select genes coding for motility (motA, motB) and attachment (cadF, ciaB) in the majority of C. jejuni strains. Stress response genes (sodB, katA) were upregulated in C. jejuni S-8 (P Campylobacter on chicken carcasses.

  17. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine

    Science.gov (United States)

    Nothaft, Harald; Davis, Brandi; Lock, Yee Ying; Perez-Munoz, Maria Elisa; Vinogradov, Evgeny; Walter, Jens; Coros, Colin; Szymanski, Christine M.

    2016-01-01

    Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain. PMID:27221144

  18. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro.

    Science.gov (United States)

    Upadhyay, Abhinav; Arsi, Komala; Wagle, Basanta R; Upadhyaya, Indu; Shrestha, Sandip; Donoghue, Ann M; Donoghue, Dan J

    2017-01-01

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT) production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth) of three GRAS (generally recognized as safe) status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%), carvacrol (CR; 0.001, 0.002%), and eugenol (EG; 0.005, 0.01%) in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2). Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81-176) of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P jejuni adhesion, invasion, and translocation of Caco-2 cells (P jejuni genes critical for infection in humans (P jejuni infection in humans.

  19. Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten

    2011-01-01

    Campylobacter is one of the leading causes of food-borne gastroenteritis and has a high prevalence in poultry. Campylobacter jejuni subsp. jejuni 327 is a subspecies of the genus Campylobacter of the family Campylobacteraceae in the phylum Proteobacteria. The microaerophilic, spiral shaped, catal...

  20. Campylobacter jejuni in Duck Faeces around Drinking Water ...

    African Journals Online (AJOL)

    Faeces from 192 ducks feeding around 10 wells and 6 ponds in peri-urban areas of Makurdi town, North-Central Nigeria were randomly sampled during the dry season period of October, 2006 to March, 2007. The samples were cultured for Campylobacter jejuni, followed by characterisation of positive samples. The overall ...

  1. Prevalence of Campylobacter jejuni in duck faeces around drinking ...

    African Journals Online (AJOL)

    Faeces from one hundred and ninety-two ducks feeding around ten wells and six ponds in peri urban areas of Makurdi town, North-Central Nigeria were randomly sampled during the dry season period of October, 2004 to March, 2005. In total, one hundred and ninety-two samples were cultured for Campylobacter jejuni, ...

  2. Acute pancreatitis in association with Campylobacter jejuni-associated diarrhea in a 15-year-old with CFTR mutations: is there a link?

    Science.gov (United States)

    Kandula, Leena; Khan, Seema; Whitcomb, David C; Lowe, Mark E

    2006-09-10

    Acute pancreatitis has occasionally been reported in association with Campylobacter jejuni infection in humans. However, the mechanism linking Campylobacter jejuni infection and pancreatitis is unclear. Acute pancreatitis in association with an infectious illness may be related to underlying genetic mutations. For instance, studies show that mutations in the cystic fibrosis transmembrane conductance regulator gene increase the susceptibility for acute and chronic pancreatitis. We describe a patient with Campylobacter jejuni infection who developed acute pancreatitis in the setting of an underlying cystic fibrosis transmembrane conductance regulator gene mutation. In this patient with an underlying mutation in the CFTR gene, we propose that the interaction between the mutant gene and an environmental factor, Campylobacter jejuni infection, resulted in pancreatitis.

  3. A Case of Acute Myocarditis From Campylobacter Jejuni Enterocolitis

    Directory of Open Access Journals (Sweden)

    Yahya Kurdi

    2016-01-01

    Full Text Available Dear Editor, Campylobacter Jejuni (C. Jejuni is the most common cause of infectious enterocolitis in the developed world, with an annual incidence as high as 1 in 1000 in the developed world and about 2.5 million cases per year in the United States with male gender predominance. Campylobacter-associated myocarditis (CAM is a very rare and potentially life-threatening complication of C. Jejuni enterocolitis (CEC. The majority of cases include a subtle history of abdominal pain and diarrhea that progressively worsens. Chest pain and shortness of breath follow in most cases of myocarditis. We present a case of CAM mimicking acute coronary syndrome (ACS and treated successfully with antibiotic and supportive care. We hope to increase awareness of this rare, but potentially fatal complication.

  4. Isolation and characterization of Campylobacter jejuni subsp jejuni from macaroni penguins (Eudyptes chrysolophus) in the subantarctic region

    DEFF Research Database (Denmark)

    Broman, T.; Bergstrom, S.; On, Stephen L.W.

    2000-01-01

    On Bird Island, South Georgia, albatrosses (n = 140), penguins (n = 100), and fur seals (n = 206) were sampled for Campylobacter jejuni. C. jejuni subsp. jejuni was recovered from three macaroni penguins (Eudyptes chrysolophus). These isolates, the first reported for the subantarctic region, showed...

  5. ERIC-PCR Genotyping of Some Campylobacter jejuni Isolates of Chicken and Human Origin in Egypt.

    Science.gov (United States)

    Ahmed, Heba A; El Hofy, Fatma I; Ammar, Ahmed M; Abd El Tawab, Ashraf A; Hefny, Ahmed A

    2015-12-01

    The public health importance of the genus Campylobacter is attributed to several species causing diarrhea in consumers. Poultry and their meat are considered the most important sources of human campylobacteriosis. In this study, 287 samples from chicken (131 cloacal swabs, 39 chicken skin, 78 chicken meat, and 39 cecal parts) obtained from retail outlets as well as 246 stool swabs from gastroenteritis patients were examined. A representative number of the biochemically identified Campylobacter jejuni isolates were identified by real-time PCR, confirming the identification of the isolates as C. jejuni. Genotyping of the examined isolates (n = 31) by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) revealed a high discriminatory index of ERIC-PCR (D = 0.948), dividing C. jejuni isolates of chicken and human origins into 18 profiles and four clusters. The 18 profiles obtained indicated the heterogeneity of C. jejuni. Dendrogram analysis showed that four clusters were generated; all human isolates fell into clusters I and III. These observations further support the existence of a genetic relationship between human and poultry isolates examined in the present study. In conclusion, the results obtained support the speculation that poultry and poultry meat have an important role as sources of infection in the acquisition of Campylobacter infection in humans.

  6. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells.

    Science.gov (United States)

    Wine, Eytan; Gareau, Mélanie G; Johnson-Henry, Kathene; Sherman, Philip M

    2009-11-01

    Campylobacter jejuni is the most common bacterial cause of enterocolitis in humans, leading to diarrhoea and chronic extraintestinal diseases. Although probiotics are effective in preventing other enteric infections, beneficial microorganisms have not been extensively studied with C. jejuni. The aim of this study was to delineate the ability of selected probiotic Lactobacillus strains to reduce epithelial cell invasion by C. jejuni. Human colon T84 and embryonic intestine 407 epithelial cells were pretreated with Lactobacillus strains and then infected with two prototypic C. jejuni pathogens. Lactobacillus helveticus, strain R0052 reduced C. jejuni invasion into T84 cells by 35-41%, whereas Lactobacillus rhamnosus R0011 did not reduce pathogen invasion. Lactobacillus helveticus R0052 also decreased invasion of one C. jejuni isolate (strain 11168) into intestine 407 cells by 55%. Lactobacillus helveticus R0052 adhered to both epithelial cell types, which suggest that competitive exclusion could contribute to protection by probiotics. Taken together, these findings indicate that the ability of selected probiotics to prevent C. jejuni-mediated disease pathogenesis depends on the pathogen strain, probiotic strain and the epithelial cell type selected. The data support the concept of probiotic strain selectivity, which is dependent on the setting in which it is being evaluated and tested.

  7. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Directory of Open Access Journals (Sweden)

    Kalischuk Lisa D

    2010-11-01

    Full Text Available Abstract Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'. To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase. Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.

  8. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells

    Science.gov (United States)

    2010-01-01

    Background Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. Results C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. Conclusion These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients. PMID:21040540

  9. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples.

    Science.gov (United States)

    Leblanc-Maridor, Mily; Beaudeau, François; Seegers, Henri; Denis, Martine; Belloc, Catherine

    2011-05-22

    Campylobacter spp., especially Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli), are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 10² CFU/g of faeces, 1.3 × 10² CFU/g of feed, and 1.0 × 10³ CFU/m² for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R² = 0.90 and R² = 0.93 respectively. The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new diagnostic tool for studying the epidemiology of

  10. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples

    Directory of Open Access Journals (Sweden)

    Denis Martine

    2011-05-01

    Full Text Available Abstract Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni and Campylobacter coli (C. coli, are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new

  11. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples

    Science.gov (United States)

    2011-01-01

    Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni) and Campylobacter coli (C. coli), are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new diagnostic tool for studying

  12. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni.

    Science.gov (United States)

    Samuelson, Derrick R; Konkel, Michael E

    2013-11-04

    Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time

  13. Identification, Purification and Characterization of Major Antigenic Proteins of Campylobacter jejuni

    Science.gov (United States)

    1991-01-01

    ELISA-We next examined the potential application of antibodies to C. jejuni proteins for identification and diagnosis of Campylobacter and/or Helico...Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development Approved for public release; distribution unlimited A~ cc it o:1...Purification, and Characterization of Major Antigenic Proteins of Campylobacter jejuni * (Received hor piub)lication. April 5, 1991) Zhiheng Pei*, Richard T

  14. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle

    Science.gov (United States)

    2011-01-01

    Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic

  15. Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice.

    Directory of Open Access Journals (Sweden)

    Ruth Huizinga

    Full Text Available Guillain-Barré syndrome (GBS is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.

  16. Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice.

    Science.gov (United States)

    Huizinga, Ruth; Easton, Alistair S; Donachie, Anne M; Guthrie, Jim; van Rijs, Wouter; Heikema, Astrid; Boon, Louis; Samsom, Janneke N; Jacobs, Bart C; Willison, Hugh J; Goodyear, Carl S

    2012-01-01

    Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown. In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC. These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.

  17. Campylobacter Infections

    Science.gov (United States)

    ... contact with fecal matter (poop) from an infected person (especially a child in diapers). Household pets can carry and spread the bacteria to people. ... preparing food. Clean and disinfect toilets after the person with diarrhea uses them. Also, if a pet dog or cat has diarrhea, wash your hands ...

  18. Campylobacter jejuni Induces Acute Enterocolitis in Gnotobiotic IL-10−/− Mice via Toll-Like-Receptor-2 and -4 Signaling

    OpenAIRE

    Haag, Lea-Maxie; Fischer, André; Otto, Bettina; Plickert, Rita; Kühl, Anja A.; Göbel, Ulf B.; Bereswill, Stefan; Heimesaat, Markus M.

    2012-01-01

    BACKGROUND: Campylobacter jejuni is a leading cause of foodborne bacterial enterocolitis worldwide. Investigation of immunopathology is hampered by a lack of suitable vertebrate models. We have recently shown that gnotobiotic mice as well as conventional IL-10(-/-) animals are susceptible to C. jejuni infection and develop intestinal immune responses. However, clinical symptoms of C. jejuni infection were rather subtle and did not reflect acute bloody diarrhea seen in human campylobacteriosis...

  19. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor.

    Science.gov (United States)

    Masdor, Noor Azlina; Altintas, Zeynep; Tothill, Ibtisam E

    2016-04-15

    A quartz crystal microbalance (QCM) sensor platform was used to develop an immunosensor for the detection of food pathogen Campylobacter jejuni. Rabbit polyclonal antibodies and commercially available mouse monoclonal antibodies against C. jejuni were investigated to construct direct, sandwich and gold-nanoparticles (AuNPs) amplified sandwich assays. The performance of the QCM immunosensor developed using sandwich assay by utilising the rabbit polyclonal antibody as the capture antibody and conjugated to AuNPs as the detection antibody gave the highest sensitivity. This sensor achieved a limit of detection (LOD) of 150 colony forming unit (CFU)mL(-1) of C. jejuni in solution. The QCM sensor showed excellent sensitivity and specificity for Campylobacter detection with low cross reactivity for other foodborne pathogens such as Salmonella Typhimurium, (7%) Listeria monocytogenes (3%) and Escherichia coli (0%). The development of this biosensor would help in the sensitive detection of Campylobacter which can result in reducing pre-enrichment steps; hence, reducing assay time. This work demonstrates the potential of this technology for the development of a rapid and sensitive detection method for C. jejuni. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Genomic Characterization of Campylobacter jejuni strain M1

    DEFF Research Database (Denmark)

    Friis, Carsten; Wassenaar, Gertrude Maria; Javed, Muhammad A.

    2010-01-01

    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently....... Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1....... publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core...... genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas...

  1. Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni

    National Research Council Canada - National Science Library

    Z H Pei; R T Ellison, 3rd; M J Blaser

    1991-01-01

    Evidence from developing countries and volunteer studies indicates that immunity to Campylobacter jejuni and Campylobacter coli may be acquired, but the antigenic basis for this protection is poorly defined...

  2. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure.

    Science.gov (United States)

    Cresci, Gail A M; Mayor, Paul C; Thompson, Stuart A

    2017-03-01

    Campylobacter jejuni frequently infects humans causing many gastrointestinal symptoms, fever, fatigue and several long-term debilitating diseases. Current treatment for campylobacteriosis includes rehydration and in some cases, antibiotic therapy. Probiotics are used to treat several gastrointestinal diseases. Butyrate is a short-chain fatty acid known to promote intestinal health. Interaction of butyrate with its respective receptor (HCAR2) and transporter (SLC5A8), both expressed in the intestine, is associated with water and electrolyte absorption as well as providing defense against colon cancer and inflammation. Alterations in gut microbiota influence the presence of HCAR2 and SLC5A8 in the intestine. We hypothesized that adherence and/or invasion of C. jejuni and alterations in HCAR2 and SLC5A8 expression would be minimized with butyrate or Lactobacillus GG (LGG) pretreatment of Caco-2 cells. We found that both C. jejuni adhesion but not invasion was reduced with butyrate pretreatment. While LGG pretreatment did not prevent C. jejuni adhesion, it did result in reduced invasion which was associated with altered cell supernate pH. Both butyrate and LGG protected HCAR2 and SLC5A8 protein expression following C. jejuni infection. These results suggest that the first stages of C. jejuni infection of Caco-2 cells may be minimized by LGG and butyrate pretreatment. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Higher resistance of Campylobacter coli compared to Campylobacter jejuni at chicken slaughterhouse.

    Science.gov (United States)

    Torralbo, Alicia; Borge, Carmen; García-Bocanegra, Ignacio; Méric, Guillaume; Perea, Anselmo; Carbonero, Alfonso

    2015-04-01

    In order to compare the prevalence of Campylobacter coli and Campylobacter jejuni during the processing of broilers at slaughterhouse a total of 848 samples were analyzed during 2012 in southern Spain. Four hundred and seventy six samples were collected from cloaca, carcass surfaces and quartered carcasses. Moreover, 372 environmental swabs from equipment and scalding water were collected. Minimum inhibitory concentration (MIC) to ciprofloxacin, erythromycin, streptomycin, tetracycline and gentamicin was determined for isolates from chicken meat. The general prevalence of Campylobacter was 68.8% (40.2% of C. coli and 28.5% of C. jejuni). The relative prevalence of C. coli increased from loading dock area (41.5%) to packing area (64.6%). In contrast, the relative prevalence of C. jejuni decreased from 58.5% to 35.4%. These differences between species from initial to final area were significant (p=0.02). The highest antimicrobial resistance for C. jejuni and C. coli was detected to tetracycline (100%) and ciprofloxacin (100%), respectively. Campylobacter coli showed an antimicrobial resistance significantly higher than C. jejuni to streptomycin (p=0.002) and erythromycin (p<0.0001). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Detection and quantification of Campylobacter jejuni and Campylobacter coli using real-time multiplex PCR.

    Science.gov (United States)

    Toplak, N; Kovač, M; Piskernik, S; Možina, S Smole; Jeršek, B

    2012-04-01

    We describe a real-time quantitative multiplex polymerase chain reaction (qmPCR) assay to identify and discriminate between isolates of Campylobacter jejuni and Campylobacter coli. Two novel sets of primers and hydrolysis probes were designed to amplify the unique DNA sequences within the hipO, ccoN and cadF genes that are specific to Camp. jejuni and Camp. coli. Using the designed optimized qmPCR assay conditions, the amplification efficiency is in range from 108 to 116%. These qmPCR assays are highly specific for Camp. jejuni and Camp. coli, as seen through testing of 40 Campylobacter strains and 17 non-Campylobacter strains. In chicken juice and tap water models spiked with known quantities of Camp. jejuni, qmPCR detected 10(2) -10(3) CFU ml(-1) within 4 h. The qmPCR assays developed in this study provide reliable and simultaneous detection and quantification of Camp. jejuni and Camp. coli, with good amplification reaction parameters. Following further validation, the qmPCR assay reported here has the potential to be applied to various sample types as an alternative and rapid methodology. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  5. A Deep-Rough Mutant of Campylobacter Jejuni 81-176 Is Noninvasive for Intestinal Epithelial Cells

    Science.gov (United States)

    2004-04-01

    worldwide (7, 17). In addition, C. jejuni is associated with the development of a devastating neurological disorder, Guillain -Barré syndrome, perhaps... Guillain -Barré syndrome. J. Infect. Dis. 178:1549–1550. 17. Oberhelman, R., and D. Taylor. 2000. Campylobacter infections in develop- ing countries

  6. Lipooligosaccharide locus classes and putative virulence genes among chicken and human Campylobacter jejuni isolates.

    Science.gov (United States)

    Ellström, Patrik; Hansson, Ingrid; Nilsson, Anna; Rautelin, Hilpi; Olsson Engvall, Eva

    2016-11-21

    Campylobacter cause morbidity and considerable economic loss due to hospitalization and post infectious sequelae such as reactive arthritis, Guillain Barré- and Miller Fischer syndromes. Such sequelae have been linked to C. jejuni harboring sialic acid structures in their lipooligosaccharide (LOS) layer of the cell wall. Poultry is an important source of human Campylobacter infections but little is known about the prevalence of sialylated C. jejuni isolates and the extent of transmission of such isolates to humans. Genotypes of C. jejuni isolates from enteritis patients were compared with those of broiler chicken with pulsed-field gel electrophoresis (PFGE), to study the patterns of LOS biosynthesis genes and other virulence associated genes and to what extent these occur among Campylobacter genotypes found both in humans and chickens. Chicken and human isolates generally had similar distributions of the putative virulence genes and LOS locus classes studied. However, there were significant differences regarding LOS locus class of PFGE types that were overlapping between chicken and human isolates and those that were distinct to each source. The study highlights the prevalence of virulence associated genes among Campylobacter isolates from humans and chickens and suggests possible patterns of transmission between the two species.

  7. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  8. Changes within the intestinal flora of broilers by colonisation with Campylobacter jejuni.

    Science.gov (United States)

    Sofka, Dmitri; Pfeifer, Agathe; Gleiss, Barbara; Paulsen, Peter; Hilbert, Friederike

    2015-01-01

    In most European countries human campylobacteriosis is the most important bacterial zoonotic foodborne infection. Chicken meat is considered the main source of infection. Since most strategies assessed so far, in reducing Campylobacter colonization in chickens or in the reduction of human disease, have not been very effective, new knowledge regarding Campylobacter's interaction with the host is needed. In this study we analysed fecal and cecal samples of five chicken flocks of different Austrian farms for the occurrence of Cjejuni and C. coli, and analysed the intestinal microbiota by PCR-SSCP, cultural detection of lactic acid bacteria, Enterococci, Staphylococci, Enterobacteriaceae, E. coli, and total aerobic colony counts. Furthermore ten chicken samples of cecal content of a flock during colonization with Campylobacter spp. was analysed by high throughput sequencing. With all three methods used we could detect a change within the microbiota caused by Cjejuni. Enumeration of different bacteria was significantly lower in fecal samples positive for C. jejuni, pointing out that a higher water content and thus, a preliminary stage of diarrhea might appear during Campylobacter colonization. By PCR-SSCP analysis the microbiota composition differed between colonized and non-colonized chicken fecal samples. This could also be detected in community analysis by high throughput sequencing, but this difference was only a tendency and not statistically significant. It can be concluded that C. jejuni is interacting with the intestinal microflora in their respective hosts and hence, this has to be taken into account when providing new strategies to combat Campylobacter colonization and disease.

  9. Resistance to quinolones in Campylobacter jejuni and Campylobacter coli from Danish broilers at farm level

    DEFF Research Database (Denmark)

    Pedersen, Karl; Wedderkopp, A.

    2003-01-01

    Aims : To investigate the prevalence of quinolone resistance among Campylobacter jejuni and Camp. coli isolates from Danish poultry at the farm level, as well as for the whole country. Methods and Results : Data and isolates were collected from a national surveillance of Campylobacter in poultry......-resistant variant. Conclusions : Overall, quinolone resistance among Campylobacter isolates from Danish broilers was 7.5% in 1998 and 1999; it was higher among Camp. coli than Camp. jejuni . Genetic diversity among resistant isolates was lower than among susceptible isolates, and certain clones existed in both...... a resistant and a susceptible variant. Some resistant clones appeared to persist on the farms and were repeatedly isolated from poultry flocks. Significance and Impact of the Study : The study is important for the understanding of persistence and dynamics of Campylobacter in broiler houses. It also highlights...

  10. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms

    DEFF Research Database (Denmark)

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller

    2016-01-01

    feeding on a diet of animal or mixed animal and vegetable origin, foraging on the ground and vegetation in close proximity to livestock stables were more likely to carry Campylobacter spp. in both summer (P birds foraging further away from the farm or in the air. Age......, fat score, gender, and migration range were not found to be associated with Campylobacter spp. carriage. A correlation was found between the prevalence (%) of C. jejuni in wild birds and the proportions (%) of C. jejuni in both manure on cattle farms (R-2 = 0.92) and poultry farms (R-2 = 0...... food of animal or mixed animal and vegetable origin and foraging on the ground close to livestock were more likely to carry Campylobacter spp. than those foraging further away or hunting in the air. These findings suggest that wild birds may play a role in sustaining the epidemiology of Campylobacter...

  11. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs.

    Science.gov (United States)

    Godlewska, Renata; Kuczkowski, Maciej; Wyszyńska, Agnieszka; Klim, Joanna; Derlatka, Katarzyna; Woźniak-Biel, Anna; Jagusztyn-Krynicka, Elżbieta K

    2016-10-01

    Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.

  12. Prevalence of Campylobacter jejuni, Campylobacter coli and enteric Helicobacter in domestic and free living birds in North-Western Italy.

    Science.gov (United States)

    Robino, P; Tomassone, L; Tramuta, C; Rodo, M; Giammarino, M; Vaschetti, G; Nebbia, P

    2010-09-01

    In order to investigate the prevalence of some thermophilic Campylobacter (C. jejuni and C. coli) and enteric Helicobacter (H. pullorum and H. canadensis) in domestic and wild birds, a total of 278 bird caecal samples were analyzed over a 2 year period in North-Western Italy. Samples were collected from poultry raised in intensive farming at the slaughterhouse (n=102, group A) and in small scale rural farms (n=60, group B) as well as from wild birds (n=116, group C). PCR amplifications were carried out on DNA extracted from caecal samples. Molecular assays targeted the hipO gene for C. jejuni, the asp gene for C. coli and the 16S rRNA gene of H. pullorum/H. canadensis. To differentiate H. pullorum from H. canadensis, PCR products were subjected to an ApaLI digestion assay. Prevalence of thermophilic Campylobacter and enteric Helicobacter was significantly different among groups (p<0.0001). Campylobacter infections were detected in all three bird groups (78.4% group A, 18.3% group B and 38.8% group C, respectively), Helicobacter infections were only detected in poultry, with H. pullorum infecting 68.6% of group A and 21.7% of group B birds. H. canadensis was detected in Guinea fowls (group A) and for the first time in pheasants (group B). Mixed infections by enteric Campylobacter and Helicobacter were shown in 53.9% of group A and in 5.0 % of group B. Our results show that both microorganisms commonly infect poultry, especially intensive farming animals. Only hooded crows among the wild bird group (group C), proved to be highly sensitive to Campylobacter infection.

  13. Primary isolation strain determines both phage type and receptors recognised by Campylobacter jejuni bacteriophages.

    Directory of Open Access Journals (Sweden)

    Martine C Holst Sørensen

    Full Text Available In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb, host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220 as well as receptors (CPS or flagella recognised by the isolated phages.

  14. Campylobacter jejuni mediated disruption of polarized epithelial monolayers is cell-type specific, time dependent, and correlates with bacterial invasion.

    Science.gov (United States)

    Wine, Eytan; Chan, Voon L; Sherman, Philip M

    2008-12-01

    The precise mechanism by which the most common cause of bacterial enterocolitis in humans, Campylobacter jejuni, perturbs the intestinal mucosa remains elusive. To define effects of C. jejuni infection on mucosal permeability, Madin-Darby canine kidney (MDCK)-I and T84 cell monolayers were infected with C. jejuni for up to 48 h. All three tested C. jejuni strains caused a 73-78% reduction in transepithelial electrical resistance (TER) in intestinal (T84) cell monolayers, whereas only one strain slightly reduced TER of MDCK-I cells by 25% after 48 h infection. Infection with C. jejuni strains also caused a 2.3-4.5-fold increase in dextran permeability, but only in T84 cells. C. jejuni infection of monolayers also caused morphologic changes in desmosomes, observed by transmission electron microscopy. The cell-type specificity, demonstrated by increased T84 monolayer permeability, correlated with higher bacterial invasion into these cells, relative to MDCK-I cells. In T84 cells, invasion and bacterial translocation preceded barrier disruption and inhibition of C. jejuni invasion using a pharmacological inhibitor of phosphoinositide 3-kinase, reduced the drop in TER. These findings suggest that C. jejuni disruption of monolayers is mediated by invasion, provide new insights into C. jejuni-host epithelial barrier interactions, and offer potential mechanisms of intestinal injury and chronic immune stimulation.

  15. The isolation and characterization of Campylobacter jejuni subsp. jejuni from domestic geese (Anser anser).

    Science.gov (United States)

    Aydin, F; Atabay, H I; Akan, M

    2001-04-01

    The objectives of this study were to determine the presence of thermophilic Campylobacter spp. in free range domestic geese, and to characterize isolated strains using phenotyping criteria and SDS-PAGE of whole-cell proteins. Forty cloacal swabs from two different flocks of domestic geese were examined. All Camp. jejuni strains isolated from geese were biotyped using the Lior biotyping scheme. Twelve Camp. jejuni isolates were also tested for their susceptibility to 17 different antibacterial agents by a disc diffusion Fourteen of the isolates were also subjected to SDS-PAGE. All of the geese examined were found to harbour Camp. jejuni. Six geese carried more than one species of Campylobacter. All strains examined were susceptible to various antibiotics but resistant to penicillin G and cephalothin. Eleven strains (92%) were resistant to sodium cefuroxime, and eight (67%) were resistant to cloxacillin, ampicillin and colistin sulphate. Three strains (25%) were resistant to tetracycline, and one strain was resistant to sulfamethoxazole/trimethoprim and kanamycin. Nine strains were subtyped as Camp. jejuni subsp. jejuni biotype II and the remaining ones as biotype I. There were 96% and 100% similarities between all the strains examined by SDS-PAGE. This study showed that Camp. jejuni were common in the intestinal tract of domestic geese. Geese should be considered as potential reservoirs for human and animal campylobacteriosis. The antibiotic resistance data from this study also showed that fluoroquinolone resistance, which appears to be a problem in poultry isolates in some countries, is not yet a problem in these geese.

  16. Interaction of Campylobacter jejuni and Campylobacter coli with lectins and blood group antibodies.

    OpenAIRE

    Wong, K H; Skelton, S K; Feeley, J C

    1985-01-01

    Lectins and blood group antibodies were used to probe the surface structures of Campylobacter jejuni and Campylobacter coli. Of the 29 strains tested, there were distinct reaction patterns. The lectin-reactive and blood group antibody-reactive sites on the bacterial surface were distinguishable from the heat-stable (lipopolysaccharide) antigenic determinants. The interactions were strain specific. The reactive sites were stable with respect to culture media and passage and may be useful as ad...

  17. Bickerstaff's brainstem encephalitis after an outbreak of Campylobacter jejuni enteritis.

    Science.gov (United States)

    Mori, Masahiro; Koga, Michiaki; Yuki, Nobuhiro; Hattori, Takamichi; Kuwabara, Satoshi

    2008-05-30

    Twenty-eight patients suffered Campylobacter jejuni enteritis after eating raw chicken. Among them, only one patient developed Bickerstaff's brainstem encephalitis, who carried anti-GQ1b IgG antibodies. In contrast, none of the others did the autoantibodies. C. jejuni was cultured from all stool samples from five patients with enteritis alone. All the isolates had the same genotype, cst-II (Asn51), which are characteristic of strains isolated from Bickerstaff's brainstem encephalitis. These findings suggest that host susceptibility may play a role in inducing the production of anti-ganglioside antibodies and the development of Bickerstaff's brainstem encephalitis.

  18. Cross-reactive epitopes present in campylobacter jejuni serotypes isolated from enteritis patients.

    Science.gov (United States)

    Grozdanova, A; Poceva-Panovska, A; Brezovska, K; Trajkovska-Dokic, E; Dimovski, A; Apostolski, S; Suturkova, Lj

    2011-01-01

    Campylobacter jejuni (C. jejuni) infection frequently triggers autoimmune-mediated neuropathies, especially the Guillain-Barre syndrome (GBS). The molecular mimicry between the core oligosaccharides of bacterial lipopolysaccharides (LPSs) and the human gangliosides presumably results in the production of anti-neural cross-reactive antibodies which are likely to be a contributory factor in the induction and pathogenesis of GBS. The aim of our study was to determine the presence of cross-reactive epitopes in C. jejuni LPSs isolated from enteritis patients and to determine their antigen reactivity. For that purpose we collected stool specimens from 21 patients with enteritis and without neurological symptoms. Seven different serotypes of C. jejuni (0:27; 0:6/0:7; 0:38; 0:3; 0:1/0:44; 0:19; 0:37) were detected using the Penner system. Unexpectedly, one serotype from this group was detected as 0:19, a serotype rarely isolated from enteritis patient and in close association with GBS. Binding studies using cholera toxin-B subunit and peanut agglutinin, showed the presence of ganglioside-like epitopes in C. jejuni strains 0:37, 0:19 and 0:27. Reactivity with sera from patient with GBS, with confirmed previous exposure to C. jejuni and with high a titre of anti-ganglioside antibodies, showed that the same three LPSs from C. jejuni serotypes 0:37, 0:19 and 0:27 bear cross-reactive epitopes in their LPSs structures. Our results confirm the results from previous studies that LPSs from certain C. jejuni serotypes bear cross-reactive ganglioside-like epitopes which might be involved in the induction of GBS after C. jejuni infection.

  19. Campylobacter jejuni induces colitis through activation of mammalian target of rapamycin signaling.

    Science.gov (United States)

    Sun, Xiaolun; Threadgill, Deborah; Jobin, Christian

    2012-01-01

    Campylobacter jejuni is the worldwide leading cause of bacterial-induced enteritis. The molecular and cellular events that lead to campylobacteriosis are poorly understood. We identify mammalian target of rapamycin (mTOR) as a signaling pathway that leads to C jejuni-induced intestinal inflammation. Germ-free (control) or conventionally derived Il10(-/-) mice that express enhanced green fluorescent protein (EGFP) under the control of nuclear factor κB (Il10(-/-); NF-κB(EGFP) mice) were infected with C jejuni (10(9) colony-forming units/mouse) for 12 days; their responses were determined using histologic, semiquantitative reverse-transcription polymerase chain reaction, fluorescence in situ hybridization, transmission electron microscopy, and tissue culture analyses. mTOR signaling was blocked by daily intraperitoneal injections of the pharmacologic inhibitor rapamycin (1.5 mg/kg). CD4(+) T cells were depleted by intraperitoneal injections of antibodies against CD4 (0.5 mg/mouse every 3 days). Bacterial survival in splenocytes was measured using a gentamycin killing assay. C jejuni induced intestinal inflammation, which correlated with activation of mTOR signaling and neutrophil infiltration. The inflamed intestines of these mice had increased levels of interleukin-1β, Cxcl2, interleukin-17a, and EGFP; C jejuni localized to colons and extraintestinal tissues of infected Il10(-/-); NF-κB(EGFP) mice compared with controls. Rapamycin, administered before or after introduction of C jejuni, blocked C jejuni-induced intestinal inflammation and bacterial accumulation. LC3II processing and killing of C jejuni were increased in splenocytes incubated with rapamycin compared with controls. mTOR signaling mediates C jejuni-induced colitis in Il10(-/-) mice, independently of T-cell activation. Factors involved in mTOR signaling might be therapeutic targets for campylobacteriosis. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation

    Directory of Open Access Journals (Sweden)

    Hartley Lauren E

    2009-06-01

    Full Text Available Abstract Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.

  1. Clinical Manifestations of Campylobacter concisus Infection in Children

    DEFF Research Database (Denmark)

    Nielsen, Hans Linde; Engberg, Jørgen; Ejlertsen, Tove

    2013-01-01

    BACKGROUND:: There is only sparse information about the clinical impact of Campylobacter concisus infections in children. METHODS:: A study was performed during a two-year period to determine the clinical manifestations in C. concisus positive children with gastroenteritis. A case patient...... with Campylobacter jejuni/coli infection. RESULTS:: Two thousand three hundred and seventy-two diarrheic stool samples from 1,867 children were cultured for pathogenic enteric bacteria during the study period, and 85 and 109 children with C. concisus and C. jejuni/coli, respectively, were identified. Comparison...... for more than two weeks and two-thirds of all children with C. concisus reported loose stools after six month follow-up. CONCLUSIONS:: Campylobacter concisus infection in children seems to have a milder course of acute gastroenteritis compared with C. jejuni/coli infection, but is associated with more...

  2. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a caco-2 assay

    DEFF Research Database (Denmark)

    Poli, Vanessa Fadanelli Schoenardie; Thorsen, Line; Olesen, Inger

    2012-01-01

    Campylobacter jejuni is the leading cause of bacterial diarrheal disease in humans, and contaminated poultry and poultry products are recognized as the main vehicle of infection. Despite the significance of C. jejuni as a foodborne pathogen, little is known about its response to stress, and......, especially, how its virulence is modulated under such conditions. The aim of this study was to assess the effect of temperature shift in a broth model system on virulence expression and cell survival of three different Campylobacter jejuni strains: two clinical (TB1048 and NCTC11168) and one chicken isolate...... properties were evaluated by analyzing transcriptions of the virulence genes cdtB, ciaB, cadF and the stress associated genes clpP, htrB using reverse transcription quantitative PCR (RT-qPCR) and by the ability of the C. jejuni strains to adhere to and invade Caco-2 cells. Similar cell survival and no growth...

  3. Genome Sequences of the Guillain-Barre Syndrome Outbreak-Associated Campylobacter jejuni Strains ICDCCJ07002 and ICDCCJ07004.

    Science.gov (United States)

    Zhang, Maojun; Yang, Xianwei; Liu, Hongying; Liu, Xiayang; Huang, Yufen; He, Lihua; Gu, Yixin; Zhang, Jianzhong

    2013-05-23

    The first world-known and largest outbreak of 36 cases of Guillain-Barré syndrome caused by a preceding Campylobacter jejuni infection was reported previously in China. During the outbreak, Campylobacter jejuni strain ICDCCJ07002 was isolated from a patient with persistent diarrhea for 21 days, and C. jejuni strain ICDCCJ07004 was from a healthy carrier without any clinical symptoms at the same time. Here, we report the draft genome sequence of strain ICDCCJ07002 (1,698,407 bp, with a G+C content of 30.45%) and the genome resequencing result of strain ICDCCJ07004 (1,701,584 bp, with a G+C content of 30.51%), and we compared these with the completed genome of C. jejuni strain ICDCCJ07001.

  4. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    OpenAIRE

    Noormohamed, Aneesa; Fakhr, Mohamed K.

    2013-01-01

    Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL), roxarsone (4–2048 μg/mL), arsenate (16–8,192 μg/mL) and arsenite (4–2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campyl...

  5. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate.

    Science.gov (United States)

    Zhang, Maojun; He, Lihua; Li, Qun; Sun, Honghe; Gu, Yixin; You, Yuanhai; Meng, Fanliang; Zhang, Jianzhong

    2010-11-29

    Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993) was isolated from a Guillain-Barré syndrome (GBS) patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp) and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb) plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS) loci and the flagella modification (FM) loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.

  7. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate.

    Directory of Open Access Journals (Sweden)

    Maojun Zhang

    Full Text Available Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993 was isolated from a Guillain-Barré syndrome (GBS patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS loci and the flagella modification (FM loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.

  8. Campylobacter jejuni cell lysates differently target mitochondria and lysosomes on HeLa cells.

    Science.gov (United States)

    Canonico, B; Campana, R; Luchetti, F; Arcangeletti, M; Betti, M; Cesarini, E; Ciacci, C; Vittoria, E; Galli, L; Papa, S; Baffone, W

    2014-08-01

    Campylobacter jejuni is the most common cause of bacterial gastroenteritis in humans. The synthesis of cytolethal distending toxin appears essential in the infection process. In this work we evaluated the sequence of lethal events in HeLa cells exposed to cell lysates of two distinct strains, C. jejuni ATCC 33291 and C. jejuni ISS3. C. jejuni cell lysates (CCLys) were added to HeLa cell monolayers which were analysed to detect DNA content, death features, bcl-2 and p53 status, mitochondria/lysosomes network and finally, CD54 and CD59 alterations, compared to cell lysates of C. jejuni 11168H cdtA mutant. We found mitochondria and lysosomes differently targeted by these bacterial lysates. Death, consistent with apoptosis for C. jejuni ATCC 33291 lysate, occurred in a slow way (>48 h); concomitantly HeLa cells increase their endolysosomal compartment, as a consequence of toxin internalization besides a simultaneous and partial lysosomal destabilization. C. jejuni CCLys induces death in HeLa cells mainly via a caspase-dependent mechanism although a p53 lysosomal pathway (also caspase-independent) seems to appear in addition. In C. jejuni ISS3-treated cells, the p53-mediated oxidative degradation of mitochondrial components seems to be lost, inducing the deepest lysosomal alterations. Furthermore, CD59 considerably decreases, suggesting both a degradation or internalisation pathway. CCLys-treated HeLa cells increase CD54 expression on their surface, because of the action of lysate as its double feature of toxin and bacterial peptide. In conclusion, we revealed that C. jejuni CCLys-treated HeLa cells displayed different features, depending on the particular strain.

  9. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets

    NARCIS (Netherlands)

    Gras, L.M.; Smid, J.H.; Wagenaar, J.A.; Koene, M.G.J.; Havelaar, A.H.; Friesema, I.H.M.; French, N.P.; Flemming, C.; Galson, J.D.; Graziani, C.; Busani, L.; Pelt, van W.

    2013-01-01

    We compared Campylobacter jejuni/coli multilocus sequence types (STs) from pets (dogs/cats) and their owners and investigated risk factors for pet-associated human campylobacteriosis using a combined source-attribution and case-control analysis. In total, 132/687 pet stools were

  10. Superoxide dismutase SodB is a protective antigen against Campylobacter jejuni colonisation in chickens.

    Science.gov (United States)

    Chintoan-Uta, Cosmin; Cassady-Cain, Robin L; Al-Haideri, Halah; Watson, Eleanor; Kelly, David J; Smith, David G E; Sparks, Nick H C; Kaiser, Pete; Stevens, Mark P

    2015-11-17

    Campylobacter is the leading cause of foodborne diarrhoeal illness in the developed world and consumption or handling of contaminated poultry meat is the principal source of infection. Strategies to control Campylobacter in broilers prior to slaughter are urgently required and are predicted to limit the incidence of human campylobacteriosis. Towards this aim, a purified recombinant subunit vaccine based on the superoxide dismutase (SodB) protein of C. jejuni M1 was developed and tested in White Leghorn birds. Birds were vaccinated on the day of hatch and 14 days later with SodB fused to glutathione S-transferase (GST) or purified GST alone. Birds were challenged with C. jejuni M1 at 28 days of age and caecal Campylobacter counts determined at weekly intervals. Across three independent trials, the vaccine induced a statistically significant 1 log10 reduction in caecal Campylobacter numbers in vaccinated birds compared to age-matched GST-vaccinated controls. Significant induction of antigen-specific serum IgY was detected in all vaccinated birds, however the magnitude and timing of SodB-specific IgY did not correlate with lower numbers of C. jejuni. Antibodies from SodB-vaccinated chickens detected the protein in the periplasm and not membrane fractions or on the bacterial surface, suggesting that the protection observed may not be strictly antibody-mediated. SodB may be useful as a constituent of vaccines for control of C. jejuni infection in broiler birds, however modest protection was observed late relative to the life of broiler birds and further studies are required to potentiate the magnitude and timing of protection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Computer-assisted analysis and epidemiological value of genotyping methods for Campylobacter jejuni and Campylobacter coli

    NARCIS (Netherlands)

    Boer, P. de; Duim, B.; Rigter, A.; Plas, J. van der; Jacobs-Reitsma, W.F.; Wagenaar, J.A.

    2000-01-01

    For epidemiological tracing of the thermotolerant Campylobacter species C. jejuni and C. coli, reliable and highly discriminatory typing techniques are necessary. In this study the genotyping techniques of flagellin typing (flaA typing), pulsed-field gel electrophoresis (PFGE), automated ribotyping,

  12. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-02-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.

  13. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne

    2009-01-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168......, which were not significantly different from the reduction obtained by sterile water (0.95 log). Statistically larger reductions (1.57 to 3.81 log) were caused by formic acid (2%), lactic acid (2.5%), trisodium phosphate (10%), capric acid sodium salt (5%), grapefruit seed extract (1...... effective, indicating that some cells may recover after a 1-min treatment with these chemicals. An increase in treatment time to 15 min resulted in higher effectiveness of trisodium phosphate and formic acid. Interestingly, when reduction of the C. jejuni population was compared on chicken skin and meat...

  14. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  15. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Science.gov (United States)

    Radomska, Katarzyna A; Vaezirad, Mahdi M; Verstappen, Koen M; Wösten, Marc M S M; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20-40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  16. Bacteriophage F336 Recognizes the Capsular Phosphoramidate Modification of Campylobacter jejuni NCTC11168

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; van Alphen, Lieke B.; Harboe, Anne

    2011-01-01

    Bacteriophages infecting the food-borne human pathogen Campylobacter jejuni could potentially be exploited to reduce bacterial counts in poultry prior to slaughter. This bacterium colonizes the intestinal tract of poultry in high numbers, and contaminated poultry meat is regarded as the major...... source of human campylobacteriosis. In this study, we used phage F336 belonging to the Myoviridae family to select a C. jejuni NCTC11168 phage-resistant strain, called 11168R, with the aim of investigating the mechanisms of phage resistance. We found that phage F336 has reduced adsorption to 11168R, thus...... indicating that the receptor is altered. While proteinase K-treated C. jejuni cells did not affect adsorption, periodate treatment resulted in reduced adsorption, suggesting that the phage binds to a carbohydrate moiety. Using high-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy...

  17. In vitro phagocytosis and intracellular survival of Campylobacter jejuni with phagocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiehlbauch, J.A.

    1986-01-01

    In vitro phagocytosis and intracellular survival of Campylobacter jejuni was studied using three types of mononuclear phagocytes: a J774G8 peritoneal macrophage line, resident BABL/c peritoneal macrophages and human peripheral blood monocytes. In phagocytosis assays using CFU determinations, phagocytosis increased steadily over an 8 hr time period. Results obtained using a /sup 51/Cr assay indicated no consistent significant difference between phagocytosis of C. jejuni between the three mononuclear phagocytes or PMN's and that maximum infection occurred prior to 0.5 hr and maintained throughout the 4 hr assay. Further investigation of the mechanism of attachment and entry of C. jejuni revealed this process required the expenditure of energy by the phagocyte, but was not inhibited by inhibitors of microfilament functions. In addition, phagocytosis was enhanced by the presence of 20% FCS,

  18. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  19. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    Science.gov (United States)

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  20. Effect of H2 on culture of Campylobacter jejuni within mixed populations of ruminal bacteria

    Science.gov (United States)

    Campylobacter jejuni is a leading bacterial cause of human foodborne illness. Campylobacter readily colonize the gut of food animals as evidenced by prevalence rates often exceeding 80%. Physiologically, C. jejuni conserve energy via amino acid catabolism and anaerobic respiration. Hydrogen is rep...

  1. The Prevalence of Antibiotic and Biocide Resistance Among Campylobacter coli and Campylobacter jejuni from Different Sources

    Directory of Open Access Journals (Sweden)

    Ana Mavri

    2012-01-01

    Full Text Available The increasing levels of antimicrobial resistance among foodborne bacteria are recognised as an important emerging public health problem. Reduced susceptibility to biocides also appears to be increasing. A potential concern is the possibility that the widespread use of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. Here, we examine the prevalence of erythromycin, ciprofloxacin, triclosan, benzalkonium chloride, chlorhexidine diacetate, cetylpyridinium chloride, trisodium phosphate and sodium dodecyl sulphate resistance among 27 isolates of Campylobacter coli and 15 isolates of Campylobacter jejuni from food, animal, human and environmental water sources. These antimicrobial susceptibilities were determined by the broth microdilution method. In the 42 Campylobacter strains studied, different antibiotic resistance levels were seen. The resistance to erythromycin and ciprofloxacin was observed in 14.3 % of Campylobacter strains. A higher rate of erythromycin resistance and multi-resistance was observed among isolated C. coli than among C. jejuni strains. Similar situations were seen for triclosan. Conversely, the level of benzalkonium chloride resistance was higher in C. jejuni than in C. coli. No correlation between biocide and antibiotic resistance was observed. This study does not provide evidence to confirm that tolerance to biocides is connected to antibiotic resistance in Campylobacter.

  2. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    Science.gov (United States)

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  3. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  4. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Science.gov (United States)

    Haag, Lea-Maxie; Fischer, André; Otto, Bettina; Plickert, Rita; Kühl, Anja A; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2012-01-01

    The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might occur in human campylobacteriosis. Murine models introduced here mimick key features of

  5. Milk-borne campylobacter infection.

    OpenAIRE

    Robinson, D A; Jones, D M

    1981-01-01

    The common factor in 13 recent outbreaks of Campylobacter jejuni enteritis was the consumption of unpasteurised or incompletely pasteurised milk. C jejuni is a common commensal in the alimentary tract of milking cows, but it is not clear how the milk becomes contaminated with the organism. Pasteurisation will readily eliminate the organism from milk. In England and Wales 3% of milk retailed is still unpasteurised, and in the light of these findings it is suggested that only pasteurised milk s...

  6. Lack of homologous protection against Campylobacter jejuni CG8421 in a human challenge model.

    Science.gov (United States)

    Kirkpatrick, Beth D; Lyon, Caroline E; Porter, Chad K; Maue, Alex C; Guerry, Patricia; Pierce, Kristen K; Carmolli, Marya P; Riddle, Mark S; Larsson, Catherine J; Hawk, Douglas; Dill, Elizabeth A; Fingar, A; Poly, Frederic; Fimlaid, Kelly A; Hoq, Fahmida; Tribble, David R

    2013-10-01

    Campylobacter jejuni is a common cause of diarrhea and is associated with serious postinfectious sequelae. Although symptomatic and asymptomatic infections are recognized, protective immunity is not well understood. Previous data suggests that interferon γ (IFN-γ) may be associated with protection. To better define the clinical and immunologic development of protective immunity to C. jejuni, we assessed the ability of an initial infection to prevent clinical illness after a second experimental infection. Subjects with no clinical or immunologic evidence of prior infection with C. jejuni received an initial challenge with C. jejuni CG8421 with rechallenge 3 months later. The primary endpoint was campylobacteriosis, as defined by diarrhea and/or systemic signs. Close inpatient monitoring was performed. Serum immunoglobulin A (IgA) and immunoglobulin G (IgG), fecal IgA, IgA antibody-secreting cells (ASCs), and IFN-γ production were evaluated. All subjects were treated with antibiotics and were clinically well at discharge. Fifteen subjects underwent a primary infection with C. jejuni CG8421; 14 (93.3%) experienced campylobacteriosis. Eight subjects received the second challenge, and all experienced campylobacteriosis with similar severity. Immune responses after primary infection included serum IgA, IgG, ASC, and IFN-γ production. Responses were less robust after secondary infection. In naive healthy adults, a single infection with CG8421 did not protect against campylobacteriosis. Although protection has been demonstrated with other strains and after continuous environmental exposure, our work highlights the importance of prior immunity, repeated exposures, and strain differences in protective immunity to C. jejuni. NCT01048112.

  7. Lack of Homologous Protection Against Campylobacter jejuni CG8421 in a Human Challenge Model

    Science.gov (United States)

    Kirkpatrick, Beth D.; Lyon, Caroline E.; Porter, Chad K.; Maue, Alex C.; Guerry, Patricia; Pierce, Kristen K.; Carmolli, Marya P.; Riddle, Mark S.; Larsson, Catherine J.; Hawk, Douglas; Dill, Elizabeth A.; Fingar, A.; Poly, Frederic; Fimlaid, Kelly A.; Hoq, Fahmida; Tribble, David R.

    2013-01-01

    Background. Campylobacter jejuni is a common cause of diarrhea and is associated with serious postinfectious sequelae. Although symptomatic and asymptomatic infections are recognized, protective immunity is not well understood. Previous data suggests that interferon γ (IFN-γ) may be associated with protection. To better define the clinical and immunologic development of protective immunity to C. jejuni, we assessed the ability of an initial infection to prevent clinical illness after a second experimental infection. Methods. Subjects with no clinical or immunologic evidence of prior infection with C. jejuni received an initial challenge with C. jejuni CG8421 with rechallenge 3 months later. The primary endpoint was campylobacteriosis, as defined by diarrhea and/or systemic signs. Close inpatient monitoring was performed. Serum immunoglobulin A (IgA) and immunoglobulin G (IgG), fecal IgA, IgA antibody-secreting cells (ASCs), and IFN-γ production were evaluated. All subjects were treated with antibiotics and were clinically well at discharge. Results. Fifteen subjects underwent a primary infection with C. jejuni CG8421; 14 (93.3%) experienced campylobacteriosis. Eight subjects received the second challenge, and all experienced campylobacteriosis with similar severity. Immune responses after primary infection included serum IgA, IgG, ASC, and IFN-γ production. Responses were less robust after secondary infection. Conclusions. In naive healthy adults, a single infection with CG8421 did not protect against campylobacteriosis. Although protection has been demonstrated with other strains and after continuous environmental exposure, our work highlights the importance of prior immunity, repeated exposures, and strain differences in protective immunity to C. jejuni. Clinical Trials Registration. NCT01048112 PMID:23840001

  8. Combined Campylobacter jejuni and Campylobacter coli Rapid Testing and Molecular Epidemiology in Conventional Broiler Flocks.

    Science.gov (United States)

    Schallegger, G; Muri-Klinger, S; Brugger, K; Lindhardt, C; John, L; Glatzl, M; Wagner, M; Stessl, B

    2016-12-01

    Campylobacter spp. are important causes of bacterial zoonosis, most often transmitted by contaminated poultry meat. From an epidemiological and risk assessment perspective, further knowledge should be obtained on Campylobacter prevalence and genotype distribution in primary production. Consequently, 15 Austrian broiler flocks were surveyed in summer for their thermophilic Campylobacter spp. contamination status. Chicken droppings, dust and drinking water samples were collected from each flock at three separate sampling periods. Isolates were confirmed by PCR and subtyped. We also compared three alternative methods (culture-based enrichment in Bolton broth, culture-independent real-time PCR and a lateral-flow test) for their applicability in chicken droppings. Twelve flocks were found to be positive for thermophilic Campylobacter spp. during the entire sampling period. Seven flocks (46.6%) were contaminated with both, C. jejuni and C. coli, five flocks harboured solely one species. We observed to a majority flock-specific C. jejuni and C. coli genotypes, which dominated the respective flock. Flocks within a distance jejuni genotypes indicating a cross-contamination event via the environment or personnel vectors. Multilocus sequence typing (MLST) of C. jejuni revealed that the majority of isolates were assigned to globally distributed clonal complexes or had a strong link to the human interface (CC ST-446 and ST4373). The combination of techniques poses an advantage over risk assessment studies based on cultures alone, as, in the case of Campylobacter, occurrence of a high variety of genotypes might be present among a broiler flock. We suggest applying the lateral-flow test under field conditions to identify 'high-shedding' broiler flocks at the farm level. Consequently, poultry farmers and veterinarians could improve hygiene measurements and direct sanitation activities, especially during the thinning period. Ultimately, real-time PCR could be applied to quantify

  9. Functional characterization of a lipoprotein-encoding operon in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    Full Text Available BACKGROUND: Bacterial lipoproteins have important functions in bacterial pathogenesis and physiology. In Campylobacter jejuni, a major foodborne pathogen causing gastroenteritis in humans, the majority of lipoproteins have not been functionally characterized. Previously, we showed by DNA microarray that CmeR, a transcriptional regulator repressing the expression of the multidrug efflux pump CmeABC, modulates the expression of a three-gene operon (cj0089, cj0090, and cj0091 encoding a cluster of lipoproteins in C. jejuni. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we characterized the function and regulation of the cj0089-cj0090-cj0091 operon. In contrast to the repression of cmeABC, CmeR activates the expression of the lipoprotein genes and the regulation is confirmed by immunoblotting using anti-Cj0089 and anti-Cj0091 antibodies. Gel mobility shift assay showed that CmeR directly binds to the promoter of the lipoprotein operon, but the binding is much weaker compared with the promoter of cmeABC. Analysis of different cellular fractions indicated that Cj0089 was associated with the inner membrane, while Cj0091 was located on the outer membrane. Inactivation of cj0091, but not cj0089, significantly reduced the adherence of C. jejuni to INT 407 cells in vitro, indicating that Cj0091 has a function in adherence. When inoculated into chickens, the Cj0091 mutant also showed a defect in early colonization of the intestinal tract, suggesting that Cj0091 contributes to Campylobacter colonization in vivo. It was also shown that Cj0091 was produced and immunogenic in chickens that were naturally infected by C. jejuni. CONCLUSION/SIGNIFICANCE: These results indicate that the lipoprotein operon is subject to direct regulation by CmeR and that Cj0091 functions as an adhesion mechanism in C. jejuni and contributes to Campylobacter colonization of the intestinal tract in animal hosts.

  10. Genetic Characterization of Campylobacter Jejuni and C. coli Isolated From Broilers Using flaA PCR-Restriction Fragment Length Polymorphism Method in Shiraz, Southern Iran.

    Science.gov (United States)

    Khoshbakht, Rahem; Tabatabaei, Mohammad; Hosseinzadeh, Saeid; Shirzad Aski, Hesamaddin; Seifi, Saeed

    2015-05-01

    Thermophilic campylobacters, particularly Campylobacter jejuni and C. coli are the main agents of human campylobacteriosis. Campylobacter contaminated chicken products is the most important source of foodborne gastroenteritis. Evaluation of genetic diversity among Campylobacter population is critical for understanding the epidemiology of this bacterium and developing effective control strategies against Campylobacter infections and other related disorders. The aim of this study was to investigate the polymorphism of thermophilic Campylobacter isolated from broiler fecal samples in Shiraz, southern Iran. Ninety Campylobacter isolates were recovered from broiler feces using enrichment process followed by cultivation method. The isolates were species typing on the basis of polymerase chain reaction (PCR) detection of 16SrRNA and multiplex PCR for determining two thermophilic species. To evaluate strain diversity of thermophilic Campylobacter isolates, flaA PCR-Restriction Fragment Length Polymorphism (RFLP) was performed using DdeI restriction enzyme. All 90 Campylobacter isolates confirmed by m-PCR were successfully typed using flaA-PCR-RFLP. Eleven different types were defined according to flaA-typing method and the RFLP patterns were located at three separate clusters in RFLP image analysis dendrogram. Campylobacter jejuni isolates significantly showed more variety than C. coli isolates. A relatively low genetic diversity existed among C. jejuni and C. coli isolated from broilers in Shiraz, southern Iran. In our knowledge, this was the first report of genetic diversity among broiler originated human pathogen thermophilic campylobacters in Shiraz, southern Iran.

  11. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?

    Science.gov (United States)

    2013-01-01

    Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen. PMID:24079544

  12. Proteomic identification of immunodominant membrane-related antigens in Campylobacter jejuni associated with sheep abortion.

    Science.gov (United States)

    Wu, Zuowei; Sahin, Orhan; Wang, Fei; Zhang, Qijing

    2014-03-17

    Campylobacter jejuni clone SA is the predominant agent inducing sheep abortion and a zoonotic agent causing gastroenteritis in humans in the United States. In an attempt to identify antigens of clone SA that may be useful for vaccine development, immunoproteomic analyses were conducted to characterize the membrane proteome of C. jejuni clone SA. 2-DE of C. jejuni membrane-related proteins was followed by immunoblotting analyses using convalescent sera that were derived from ewes naturally infected by C. jejuni clone SA. Totally 140 immunoreactive spots were identified, 50 of which were shared by all tested convalescent sheep sera. Conserved and immunodominant spots were identified by mass spectrometry. Among the 26 identified immunogenic proteins, there were 8 cytoplasmic proteins, 2 cytoplasmic membrane proteins, 11 periplasmic proteins, 3 outer membrane proteins, and 2 extracellular proteins. Notably, many of the immunodominant antigens were periplasmic proteins including HtrA, ZnuA, CjaA, LivK, CgpA, and others, some of which were previously shown to induce protective immunity. Interestingly, 11 immunoreactive proteins including 9 periplasmic proteins are known N-linked glycosylated proteins. These findings reveal immunogens that may potentially elicit protective immune responses and provide a foundation for developing vaccines against C. jejuni induced sheep abortion. Campylobacter jejuni clone SA is the predominant agent inducing sheep abortion and incurs a significant economic loss to sheep producers. This emergent strain is also a zoonotic agent, causing gastroenteritis in humans. However, the immunogens of C. jejuni induced abortion are largely unknown. Considering the significance of C. jejuni clone SA in causing sheep abortion and foodborne illnesses, protective vaccines are needed to control its transmission and spread. Additionally, immunological markers are required for detection and identification of this highly pathogenic clone. To address these

  13. Phytochemicals reduce biofilm formation and inactivates mature biofilm of Campylobacter jejuni

    Science.gov (United States)

    Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. However, little is known about the persistence of C. jejuni in the poultry processing environment. Several studies have shown that C. jejuni ca...

  14. In-water supplementation of Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni colonization in broiler chickens

    Science.gov (United States)

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen colonizes the ceca thereby leading to contamination of the carcass during slaughter. Reducing C. jejuni cecal colonization could pot...

  15. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins.

    Science.gov (United States)

    Nielsen, Lene N; Luijkx, Thomas A; Vegge, Christina S; Johnsen, Christina Kofoed; Nuijten, Piet; Wren, Brendan W; Ingmer, Hanne; Krogfelt, Karen A

    2012-02-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was transformed into the Escherichia coli expression strain BL21(DE3), resulting in 2,304 clones. This library was subsequently screened for immunogenic proteins using antibodies raised in rabbit against a clinical isolate of C. jejuni; this resulted in 52 highly reactive clones representing 25 different genes after sequencing. Selected candidate genes were inactivated in C. jejuni NCTC 11168, and the virulence was examined using INT 407 epithelial cell line and motility, biofilm, autoagglutination, and serum resistance assays. These investigations revealed C. jejuni antigen 0034c (Cj0034c) to be a novel virulence factor and support the usefulness of the method. Further, several antigens were tested as vaccine candidates in two mouse models, in which Cj0034c, Cj0404, and Cj0525c resulted in a reduction of invasion in spleen and liver after challenge.

  16. Status of vaccine research and development for Campylobacter jejuni.

    Science.gov (United States)

    Riddle, Mark S; Guerry, Patricia

    2016-06-03

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea worldwide and is associated with a number of sequelae, including Guillain-Barre Syndrome, reactive arthritis, irritable bowel syndrome and growth stunting/malnutrition. Vaccine development against C. jejuni is complicated by its antigenic diversity, a lack of small animal models, and a poor understanding of the bacterium's pathogenesis. Vaccine approaches have been limited to recombinant proteins, none of which have advanced beyond Phase I testing. Genomic analyses have revealed the presence of a polysaccharide capsule on C. jejuni. Given the success of capsule-conjugate vaccines for other mucosal pathogens of global importance, efforts to evaluate this established approach for C. jejuni are also being pursued. A prototypical capsule-conjugate vaccine has demonstrated efficacy against diarrheal disease in non-human primates and is currently in Phase I testing. In addition to proof of concept studies, more data on the global prevalence of capsular types, and a better understanding of the acute and chronic consequences of C. jejuni are needed to inform investments for a globally relevant vaccine. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  17. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides.

    Science.gov (United States)

    Semchenko, Evgeny A; Day, Christopher J; Moutin, Marc; Wilson, Jennifer C; Tiralongo, Joe; Korolik, Victoria

    2012-01-01

    Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM(1), asialo GM(2) and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375) with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM(2)-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides.

  18. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides.

    Directory of Open Access Journals (Sweden)

    Evgeny A Semchenko

    Full Text Available Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM(1, asialo GM(2 and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375 with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM(2-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides.

  19. Identification of the main quinolone resistance determinant in Campylobacter jejuni and Campylobacter coli by MAMA-DEG PCR.

    Science.gov (United States)

    Hormeño, Lorena; Palomo, Gonzalo; Ugarte-Ruiz, María; Porrero, M Concepción; Borge, Carmen; Vadillo, Santiago; Píriz, Segundo; Domínguez, Lucas; Campos, Maria J; Quesada, Alberto

    2016-03-01

    Among zoonotic diseases, campylobacteriosis stands out as the major bacterial infection producing human gastroenteritis. Antimicrobial therapy, only recommended in critical cases, is challenged by resistance mechanisms that should be unambiguously detected for achievement of effective treatments. Quinolone (ciprofloxacin) resistance of Campylobacter jejuni and Campylobacter coli, the 2 main Campylobacter detected in humans, is conferred by the mutation gyrA C-257-T, which can be genotyped by several methods that require a previous identification of the pathogen species to circumvent the sequence polymorphism of the gene. A multiplex PCR, based on degenerated oligonucleotides, has been designed for unambiguous identification of the quinolone resistance determinant in Campylobacter spp. isolates. The method was verified with 249 Campylobacter strains isolated from humans (141 isolates) and from the 3 most important animal sources for this zoonosis: poultry (34 isolates), swine (38 isolates), and cattle (36 isolates). High resistance to ciprofloxacin, MIC above 4μg/mL, linked to the mutated genotype predicted by MAMA-DEG PCR (mismatch amplification mutation assay PCR with degenerated primers) was found frequently among isolates from the different hosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Use of a Rabbit Soft Tissue Chamber Model to Investigate Campylobacter jejuni - Host Interactions

    Directory of Open Access Journals (Sweden)

    Annika eFlint

    2010-11-01

    Full Text Available Despite the prevalence of C. jejuni as an important food borne pathogen, the microbial factors governing its infection process are poorly characterized. In this study, we developed a novel rabbit soft tissue chamber model to investigate C. jejuni interactions with its host. The in vivo transcriptome profile of C. jejuni was monitored as a function of time post-infection by competitive microarray hybridization with cDNA obtained from C. jejuni grown in vitro. Genome-wide expression analysis identified 449 genes expressed at significantly different levels in vivo. Genes implicated to play important roles in early colonization of C. jejuni within the tissue chamber include up-regulation of genes involved in ribosomal protein synthesis and modification, heat shock response, and primary adaptation to the host environment (DccSR regulon. Genes encoding proteins involved in the TCA cycle and flagella related components were found to be significantly down regulated during early colonization. Oxidative stress defense and stringent response genes were found to be maximally induced during the acute infectious phase. Overall, these findings reveal possible mechanisms involved in adaptation of Campylobacter to the host.

  1. Distribution of Campylobacter jejuni multilocus sequence types isolated from chickens in Poland.

    Science.gov (United States)

    Wieczorek, K; Denis, E; Lachtara, B; Osek, J

    2017-03-01

    Poultry is recognized as the most important source of food-related transmission of Campylobacter jejuni to humans and campylobacteriosis is the most commonly reported zoonotic bacterial disease in the European Union. It has been documented that C. jejuni is genetically diverse and analyses of bacterial isolates usually show a large strain variety. Therefore, molecular typing of strains represents an important tool to study the genetic diversity of isolates and to trace individual strains that cause human infections. The aim of the study was characterization of genetic population structure and antimicrobial resistance (AMR) of C. jejuni isolated from Polish chickens. C. jejuni from chicken ceca and the corresponding carcasses (72 and 61 strains, respectively), originating from 128 flocks in Poland during February 2011 and May 2013, were used in the study. The isolates were tested for their population structure and genetic diversity using a multilocus sequence typing (MLST) scheme with connection to their antimicrobial resistance. The molecular analysis of 133 C. jejuni generated 39 different sequence types (ST); 3 of them were defined for the first time. Additionally, 16 STs were represented by single isolates. The most common STs observed were 6411 (16.5% isolates) and 257 (15.0% strains). The first mentioned ST was resistant to 3 different classes of antibiotics, i.e., quinolones, tetracyclines, and aminoglycosides. Overall, 125 (94.4%) of C. jejuni isolates demonstrated antimicrobial resistance and the most frequent AMR profile observed was ciprofloxacin, nalidixic acid, tetracycline (47.4% strains). Likewise, the clonal complexes CC 257 and CC 353 were defined as the predominant molecular groups covering altogether 37 C. jejuni strains. No associations between CCs and the origin of the samples as well as the place of isolation were found. This study highlights that the C. jejuni population from chickens in Poland was diverse and showed a weak clonal structure.

  2. Basolateral invasion and trafficking of Campylobacter jejuni in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lieneke I Bouwman

    Full Text Available Campylobacter jejuni is a major cause of bacterial diarrheal disease. Most enteropathogenic bacteria including C. jejuni can invade cultured eukaryotic cells via an actin- and/or microtubule-dependent and an energy-consuming uptake process. Recently, we identified a novel highly efficient C. jejuni invasion pathway that involves bacterial migration into the subcellular space of non-polarized epithelial cells (termed subvasion followed by invasion from the cell basis. Here we report cellular requirements of this entry mechanism and the subsequent intracellular trafficking route of C. jejuni in polarized islands of Caco-2 intestinal epithelial cells. Advanced microscopy on infected cells revealed that C. jejuni invades the polarized intestinal cells via the subcellular invasion pathway. Remarkably, invasion was not blocked by the inhibitors of microtubule dynamics colchicine or paclitaxel, and was even enhanced after disruption of host cell actin filaments by cytochalasin D. Invasion also continued after dinitrophenol-induced cellular depletion of ATP, whereas this compound effectively inhibited the uptake of invasive Escherichia coli. Confocal microscopy demonstrated that intracellular C. jejuni resided in membrane-bound CD63-positive cellular compartments for up to 24 h. Establishment of a novel luciferase reporter-based bacterial viability assay, developed to overcome the limitations of the classical bacterial recovery assay, demonstrated that a subset of C. jejuni survived intracellularly for up to 48 h. Taken together, our results indicate that C. jejuni is able to actively invade polarized intestinal epithelial cells via a novel actin- and microtubule-independent mechanism and remains metabolically active in the intracellular niche for up to 48 hours.

  3. Comparative genomic analysis of Campylobacter jejuni associated with Guillain-Barré and Miller Fisher syndromes: Neuropathogenic and enteritis-associated isolates can share high levels of genomic similarity

    NARCIS (Netherlands)

    E.N. Taboada (Eduardo); A.F. van Belkum (Alex); N. Yuki (Nobuhiro); R.R. Acedillo (Rey); P.C.R. Godschalk (Peggy); M. Koga (Michiaki); H.P. Endtz (Hubert); M. Gilbert (Michel); J.H.E. Nash (John)

    2007-01-01

    textabstractBackground: Campylobacter jejuni infection represents the most frequent antecedent infection triggering the onset of the neuropathic disorders Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS). Although sialylated ganglioside-mimicking lipo-oligosaccharide (LOS) structures

  4. Biological roles of the O-methyl phosphoramidate capsule modification in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Lieke B van Alphen

    Full Text Available Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81-176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity.

  5. Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni

    Science.gov (United States)

    Richards, Michele R.; Fodor, Christopher; Ashmus, Roger A.; Stahl, Martin; Karlyshev, Andrey V.; Wren, Brendan W.; Stintzi, Alain; Miller, William G.; Lowary, Todd L.; Szymanski, Christine M.

    2014-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81–176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity. PMID:24498018

  6. Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development

    Science.gov (United States)

    1991-11-26

    AD-A245 442 AD___1111111i1i11l 01 li[i ] i 1 I1 STUDIES OF THE OUTER MEMBRANE PROTEINS OF CAMPYLOBACTER JEJUNI FOR VACCINE DEVELOPMENT MIDTERM...the Outer Membrane Proteins of Campylobacter 90PP0820 Jejuni for Vaccine Development ____ ___ ___ ____ _ _ ___ ___ ___ ____ ___ ___61102A .1 6...Enteritis in Thailand. Although Campylobacter enteritis is usually an inflammatory process in developed countries, watery diarrhea is common in the

  7. Distribution of Flagella Secreted Protein and Integral Membrane Protein Among Campylobacter jejuni Isolated from Thailand

    Science.gov (United States)

    2011-01-01

    secreted protein and integral membrane protein among Campylobacter jejuni isolated from Thailand Piyarat Pootong 1·, Oralak Serichantalergs...Ladaporn Bodhidatta \\ Frederic Poly2, Patricia Guerry2 and Carl J Mason 1 Abstract Background: Campylobacter jejuni, a gram-negative bacterium, is a...groups of integral membrane protein. The significance of these different FspA variants to virulence requires further study. Background Campylobacter

  8. Sialylation of Campylobacter jejuni lipo-oligosaccharides is associated with severe gastro-enteritis and reactive arthritis.

    Science.gov (United States)

    Mortensen, Ninell P; Kuijf, Mark L; Ang, C Wim; Schiellerup, Peter; Krogfelt, Karen A; Jacobs, Bart C; van Belkum, Alex; Endtz, Hubert Ph; Bergman, Mathijs P

    2009-10-01

    We used various genotyping methods to identify bacterial genetic markers for development of arthritic symptoms following Campylobacter enteritis. We genotyped a collection of population derived Campylobacter strains, with detailed information on clinical characteristics, including arthritic symptoms. Besides using whole genome screening methods, we focused on the lipo-oligosaccharide (LOS) gene locus in which marker genes for developing post-Campylobacter neurological disease are present. Patients with arthritic symptoms were more frequently infected with Campylobacter jejuni strains with a class A LOS locus. We also found that patients who were infected with a C. jejuni strain containing sialic acid-positive LOS (class A, B or C) more frequently had bloody diarrhoea and a longer duration of symptoms. Furthermore, the IgM antibody response against Campylobacter was stronger in patients with a sialic acid containing LOS. Ganglioside auto-antibodies were observed in a small number of patients following infection with a class C strain. We conclude that sialylation of C. jejuni LOS is not only a risk factor for development of post-infectious symptoms, but is also associated with increased severity of enteric disease.

  9. Genome-Wide Identification of Host-Segregating Epidemiological Markers for Source Attribution in Campylobacter jejuni.

    Science.gov (United States)

    Thépault, Amandine; Méric, Guillaume; Rivoal, Katell; Pascoe, Ben; Mageiros, Leonardos; Touzain, Fabrice; Rose, Valérie; Béven, Véronique; Chemaly, Marianne; Sheppard, Samuel K

    2017-04-01

    Campylobacter is among the most common worldwide causes of bacterial gastroenteritis. This organism is part of the commensal microbiota of numerous host species, including livestock, and these animals constitute potential sources of human infection. Molecular typing approaches, especially multilocus sequence typing (MLST), have been used to attribute the source of human campylobacteriosis by quantifying the relative abundance of alleles at seven MLST loci among isolates from animal reservoirs and human infection, implicating chicken as a major infection source. The increasing availability of bacterial genomes provides data on allelic variation at loci across the genome, providing the potential to improve the discriminatory power of data for source attribution. Here we present a source attribution approach based on the identification of novel epidemiological markers among a reference pan-genome list of 1,810 genes identified by gene-by-gene comparison of 884 genomes of Campylobacter jejuni isolates from animal reservoirs, the environment, and clinical cases. Fifteen loci involved in metabolic activities, protein modification, signal transduction, and stress response or coding for hypothetical proteins were selected as host-segregating markers and used to attribute the source of 42 French and 281 United Kingdom clinical C. jejuni isolates. Consistent with previous studies of British campylobacteriosis, analyses performed using STRUCTURE software attributed 56.8% of British clinical cases to chicken, emphasizing the importance of this host reservoir as an infection source in the United Kingdom. However, among French clinical isolates, approximately equal proportions of isolates were attributed to chicken and ruminant reservoirs, suggesting possible differences in the relative importance of animal host reservoirs and indicating a benefit for further national-scale attribution modeling to account for differences in production, behavior, and food consumption

  10. A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity.

    Science.gov (United States)

    Ghorbanalizadgan, Mahdi; Bakhshi, Bita; Kazemnejad Lili, Anoshirvan; Najar-Peerayeh, Shahin; Nikmanesh, Bahram

    2014-07-01

    The aim of this study was to determine the prevalence of virulence-associated genes and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) analysis of Campylobacter spp. isolated from children with diarrhea in Iran. A total of 200 stool specimens were obtained from children under 5 years during July 2012 to July 2013. Detection of C. jejuni and C. coli was performed by standard biochemical and molecular methods. The presence of virulence-associated genes and genetic diversity of isolates was examined using PCR and ERIC-PCR analyses. A total of 12 (6%) Campylobacter spp. were isolated from patients including 10 (4.5%) C. jejuni and 2 (1.5%) C.coli. The flaA, cadF and ciaB genes were present in 100% of isolates, while no plasmid of virB11 gene was present in their genome. The prevalence of invasion-associated marker was 100% among C. coli and was not detected in C. jejuni isolates. The distribution of both pldA and the genes associated with cytolethal distending toxin (CDT) was 58.3% in C. jejuni isolates. Seven distinct ERIC-PCR profiles were distinguished in three clusters using ERIC-PCR analysis. Genotyping analysis showed a relative correlation with geographic location of patients and virulence gene content of isolates. To our knowledge, this is the first molecular survey of Campylobacter spp. in Iran concerning genotyping and virulence gene content of both C. jejuni and C. coli. ERIC-PCR revealed appropriate discriminatory power for clustering C. jejuni isolates with identical virulence gene content. However, more studies are needed to clearly understand the pathogenesis properties of specific genotypes.

  11. Foodborne Campylobacter: Infections, Metabolism, Pathogenesis and Reservoirs

    Directory of Open Access Journals (Sweden)

    Sharon V. R. Epps

    2013-11-01

    Full Text Available Campylobacter species are a leading cause of bacterial-derived foodborne illnesses worldwide. The emergence of this bacterial group as a significant causative agent of human disease and their propensity to carry antibiotic resistance elements that allows them to resist antibacterial therapy make them a serious public health threat. Campylobacter jejuni and Campylobacter coli are considered to be the most important enteropathogens of this genus and their ability to colonize and survive in a wide variety of animal species and habitats make them extremely difficult to control. This article reviews the historical and emerging importance of this bacterial group and addresses aspects of the human infections they cause, their metabolism and pathogenesis, and their natural reservoirs in order to address the need for appropriate food safety regulations and interventions.

  12. Foodborne Campylobacter: Infections, Metabolism, Pathogenesis and Reservoirs

    Science.gov (United States)

    Epps, Sharon V. R.; Harvey, Roger B.; Hume, Michael E.; Phillips, Timothy D.; Anderson, Robin C.; Nisbet, David J.

    2013-01-01

    Campylobacter species are a leading cause of bacterial-derived foodborne illnesses worldwide. The emergence of this bacterial group as a significant causative agent of human disease and their propensity to carry antibiotic resistance elements that allows them to resist antibacterial therapy make them a serious public health threat. Campylobacter jejuni and Campylobacter coli are considered to be the most important enteropathogens of this genus and their ability to colonize and survive in a wide variety of animal species and habitats make them extremely difficult to control. This article reviews the historical and emerging importance of this bacterial group and addresses aspects of the human infections they cause, their metabolism and pathogenesis, and their natural reservoirs in order to address the need for appropriate food safety regulations and interventions. PMID:24287853

  13. Development and application of a real-time polymerase chain reaction method for Campylobacter jejuni detection.

    Science.gov (United States)

    Zhang, Mao-Jun; Qiao, Bo; Xu, Xue-Bin; Zhang, Jian-Zhong

    2013-05-28

    To develop a real-time polymerase chain reaction (PCR) method to detect and quantify Campylobacter jejuni (C. jejuni) from stool specimens. Primers and a probe for real-time PCR were designed based on the specific DNA sequence of the hipO gene in C. jejuni. The specificity of the primers and probe were tested against a set of Campylobacter spp. and other enteric pathogens. The optimal PCR conditions were determined by testing a series of conditions with standard a C. jejuni template. The detection limits were obtained using purified DNA from bacterial culture and extracted DNA from the stool specimen. Two hundred and forty-two specimens were analyzed for the presence of C. jejuni by direct bacterial culture and real-time PCR. The optimal PCR system was determined using reference DNA templates, 1 × uracil-DNA glycosylase, 3.5 mmol/L MgCl2, 1.25 U platinum Taq polymerase, 0.4 mmol/L PCR nucleotide mix, 0.48 μmol/L of each primer, 0.2 μmol/L of probe and 2 μL of DNA template in a final volume of 25 μL. The PCR reaction was carried as follows: 95 °C for 4 min, followed by 45 cycles of 10 s at 95 °C and 30 s at 59 °C. The detection limit was 4.3 CFU/mL using purified DNA from bacterial culture and 10(3) CFU/g using DNA from stool specimens. Twenty (8.3%, 20/242) C. jejuni strains were isolated from bacterial culture, while 41 (16.9%, 41/242) samples were found to be positive by real-time PCR. DNA sequencing of the PCR product indicated the presence of C. jejuni in the specimen. One mixed infection of C. jejuni and Salmonella was detected in one specimen and the PCR test for this specimen was positive. The sensitivity of detection of C. jejuni from stool specimens was much higher using this PCR assay than using the direct culture method.

  14. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens

    Directory of Open Access Journals (Sweden)

    Carvalho Carla M

    2010-09-01

    Full Text Available Abstract Background Poultry meat is one of the most important sources of human campylobacteriosis, an acute bacterial enteritis which is a major problem worldwide. Campylobacter coli and Campylobacter jejuni are the most common Campylobacter species associated with this disease. These pathogens live in the intestinal tract of most avian species and under commercial conditions they spread rapidly to infect a high proportion of the flock, which makes their treatment and prevention very difficult. Bacteriophages (phages are naturally occurring predators of bacteria with high specificity and also the capacity to evolve to overcome bacterial resistance. Therefore phage therapy is a promising alternative to antibiotics in animal production. This study tested the efficacy of a phage cocktail composed of three phages for the control of poultry infected with C. coli and C. jejuni. Moreover, it evaluated the effectiveness of two routes of phage administration (by oral gavage and in feed in order to provide additional information regarding their future use in a poultry unit. Results The results indicate that experimental colonisation of chicks was successful and that the birds showed no signs of disease even at the highest dose of Campylobacter administered. The phage cocktail was able to reduce the titre of both C. coli and C. jejuni in faeces by approximately 2 log10 cfu/g when administered by oral gavage and in feed. This reduction persisted throughout the experimental period and neither pathogen regained their former numbers. The reduction in Campylobacter titre was achieved earlier (2 days post-phage administration when the phage cocktail was incorporated in the birds' feed. Campylobacter strains resistant to phage infection were recovered from phage-treated chickens at a frequency of 13%. These resistant phenotypes did not exhibit a reduced ability to colonize the chicken guts and did not revert to sensitive types. Conclusions Our findings provide

  15. Characterization of the Campylobacter jejuni population in the barnacle geese reservoir.

    Science.gov (United States)

    Llarena, A-K; Skarp-de Haan, C P A; Rossi, M; Hänninen, M-L

    2015-05-01

    Campylobacter spp. are the most common cause of bacterial gastroenteritis worldwide and have been isolated from a wide number of different hosts and environmental sources. Waterfowl is considered a natural reservoir for this zoonotic bacterium and may act as a potential infection source for human campylobacteriosis. In this study, faecal samples from 924 barnacle geese were tested for the presence of C. jejuni and C. coli. The resulting C. jejuni and C. coli populations were characterized by multilocus sequence typing (MLST), structure analysis by BAPS and phylogenetic analysis based on full genome sequences. The prevalences of C. jejuni in barnacle geese faeces were 11.5% and 23.1% in 2011 and 2012, respectively, and only 0.2% of the samples were positive for C. coli in both years. Furthermore, a possible adaption of the clonal complexes (CCs) ST-702 and ST-1034 to the barnacle geese reservoir was found, as these two CCs represented the majority of the typed isolates and were repeatedly isolated from different flocks at several time-points. Further core genome phylogenetic analysis using ClonalFrame revealed a formation of a distinct monophyletic lineage by these two CCs, suggesting a certain degree of clonality of the C. jejuni population adapted to barnacle geese. Therefore, although STs also commonly found in humans patients (e.g. ST-45) were among the barnacle geese C. jejuni isolates, this reservoir is probably an infrequent source for human campylobacteriosis. © 2014 Blackwell Verlag GmbH.

  16. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork.

    Science.gov (United States)

    Yahara, Koji; Méric, Guillaume; Taylor, Aidan J; de Vries, Stefan P W; Murray, Susan; Pascoe, Ben; Mageiros, Leonardos; Torralbo, Alicia; Vidal, Ana; Ridley, Anne; Komukai, Sho; Wimalarathna, Helen; Cody, Alison J; Colles, Frances M; McCarthy, Noel; Harris, David; Bray, James E; Jolley, Keith A; Maiden, Martin C J; Bentley, Stephen D; Parkhill, Julian; Bayliss, Christopher D; Grant, Andrew; Maskell, Duncan; Didelot, Xavier; Kelly, David J; Sheppard, Samuel K

    2017-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Host Epithelial Cell Invasion by Campylobacter jejuni: Trigger or Zipper Mechanism?

    Science.gov (United States)

    Ó Cróinín, Tadhg; Backert, Steffen

    2012-01-01

    Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants, and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the “zipper” over the “trigger” mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease. PMID:22919617

  18. Campylobacter jejuni cocultured with epithelial cells reduces surface capsular polysaccharide expression.

    LENUS (Irish Health Repository)

    Corcionivoschi, N

    2012-02-01

    The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide (CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting the existence of a cross talk mechanism that modulates CPS expression during infection.

  19. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro

    Directory of Open Access Journals (Sweden)

    Dan J. Donoghue

    2017-04-01

    Full Text Available Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth of three GRAS (generally recognized as safe status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%, carvacrol (CR; 0.001, 0.002%, and eugenol (EG; 0.005, 0.01% in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2. Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81–176 of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P < 0.05. The majority of phytochemical treatments reduced C. jejuni adhesion, invasion, and translocation of Caco-2 cells (P < 0.05. In addition, the phytochemicals reduced pathogen motility and production of CDT in S-8 and NCTC 11168 (P < 0.05. Real-time quantitative PCR revealed that phytochemicals reduced the transcription of select C. jejuni genes critical for infection in humans (P < 0.05. Results suggest that TC, CR, and EG could potentially be used to control C. jejuni infection in humans.

  20. Contribution of Amino Acid Catabolism to the Tissue Specific Persistence of Campylobacter jejuni in a Murine Colonization Model

    Science.gov (United States)

    Hofreuter, Dirk; Mohr, Juliane; Wensel, Olga; Rademacher, Sebastian; Schreiber, Kerstin; Schomburg, Dietmar; Gao, Beile; Galán, Jorge E.

    2012-01-01

    Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the in vitro and in vivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues. PMID:23226358

  1. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli recovered from organic turkey farms in Germany.

    Science.gov (United States)

    El-Adawy, Hosny; Ahmed, Marwa F E; Hotzel, Helmut; Tomaso, Herbert; Tenhagen, Bernd-Alois; Hartung, Joerg; Neubauer, Heinrich; Hafez, Hafez M

    2015-11-01

    The popularity of food produced from animals kept under an organic regimen has increased in recent years. In Germany, turkey meat consumption has increased. Despite several studies assessing the susceptibility of campylobacters to various antibiotics in poultry, no sufficient data exists regarding the antimicrobial resistance of campylobacters in organic-reared turkeys. This study provides information about antibiotic resistance in Campylobacter isolated from turkeys reared on organic farms in Germany. Ninety-six Campylobacter strains (41 C. jejuni and 55 C. coli) were isolated from different free-range turkey flocks. In vitro antimicrobial sensitivity testing was done using a broth microdilution test, and the presence of resistance genes to antibiotics (ciprofloxacin, tetracycline) was investigated. All Campylobacter isolates from organic turkeys (n = 96) were phenotypically sensitive to gentamicin, erythromycin, streptomycin, and chloramphenicol. In this study, the antibiotic susceptibilities of C. jejuni to ciprofloxacin, tetracycline, and naladixic acid were 56.0%, 51.3%, and 56.0%, respectively. In contrast, 44.0%, 73.0%, and 74.6% of C. coli isolates were resistant to tetracycline, ciprofloxacin, and nalidixic acid, respectively. Replacement of the Thr-86→Ile in the gyrA gene, and the presence of the tet(O) gene were the mainly identified resistance mechanisms against fluoroquinolones and tetracycline, respectively.These results also reinforce the need to develop strategies and implement specific control procedures to reduce the development of antimicrobial resistance. © 2015 Poultry Science Association Inc.

  2. Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry.

    Science.gov (United States)

    Hanning, Irene; Biswas, Debabrata; Herrera, Paul; Roesler, Mary; Ricke, Steven C

    2010-09-01

    The growing interest in organic and natural foods warrants a greater need for information on the food safety of these products. In this study, samples were taken from 2 pasture flock farms (N = 178; feed, water, drag swabs, and insect traps), pasture flock retail carcasses (N = 48) and 1 pasture flock processing facility (N = 16) over a period of 8 mo. A total of 105 Campylobacter isolates were obtained from 53 (30%), 36 (75%), and 16 (100%) samples from the farms, retail carcasses, and processing facility, respectively. Of the 105 isolates collected, 65 were C. jejuni, 31 were C. coli, and 9 were other Campylobacter spp. Using PCR, the C. jejuni isolates were further analyzed for virulence genes involved in colonization and survival (flaA, flaC, cadF, dnaJ, racR, cbrR), invasion (virB11, ciaB, pldA), protection against harsh conditions (sodB, htrA, clpA), toxin production (cdtA, cdtB, cdtC), siderophore transport (ceuE), and ganglioside mimicry (wlaN). In addition, the short variable region of the flaA locus (flaA SVR) was sequenced to determine the genetic diversity of the C. jejuni isolates. The flaA SVR diversity indices increased along the farm to carcass continuum. PCR-based analysis indicated a low prevalence of 5 genes involved in colonization (dnaJ, ciaB, pldA, racR, virB11). The results of this survey indicate that the prevalence of Campylobacter on organic retail carcasses is similar to prevalence reports of Campylobacter on conventional retail carcasses. However, the genetic diversity of the flaA SVR genotypes increased along the farm to carcass continuum that contrasted with conventional poultry studies. Campylobacter jejuni is a leading cause of foodborne illness with poultry and poultry products being leading sources of infection. Free-range and pasture flock chickens are becoming more popular; however, there is an inherent biosecurity risk that can increase the prevalence of foodborne pathogens in these flocks. This study aimed to determine sources

  3. Characterization of the biochemical properties of Campylobacter jejuni RNase III.

    Science.gov (United States)

    Haddad, Nabila; Saramago, Margarida; Matos, Rute G; Prévost, Hervé; Arraiano, Cecília M

    2013-11-25

    Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.

  4. Seroprevalence in Chickens against Campylobacter jejuni Flagellar Capping Protein (FliD) in Selected Areas of the United States.

    Science.gov (United States)

    Yeh, H-Y; Hiett, K L; Line, J E; Jagne, J F; Lauer, D C

    2016-06-01

    Campylobacter jejuni is a causative pathogen of human acute bacterial gastroenteritis. Infected poultry products are regarded as a major source for human C. jejuni infection. The flagellar capping protein (FliD) is highly conserved among C. jejuni strains/isolates and is antigenic as analysed by immunoblot. In this study, we used the FliD protein as a probe to survey the prevalence of C. jejuni antibodies in chickens from two areas in the United States. A total of 394 samples were tested. Sera from layer breeders of 44-52 weeks of age tested 100% positive, while 4- to 6-week broilers from 22 premises showed 7-100% positivity. These results demonstrate that anti-FliD antibodies were prevalent in the poultry population in the areas of serum samples collected. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Aidley, Jack; Holst Sørensen, Martine C.; Bayliss, Christopher D.

    2017-01-01

    Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations in homop......Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations...... in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase...

  6. Occupational Exposure to Swine, Poultry, and Cattle and Antibody Biomarkers of Campylobacter jejuni Exposure and Autoimmune Peripheral Neuropathy.

    Science.gov (United States)

    Vegosen, Leora; Breysse, Patrick N; Agnew, Jacqueline; Gray, Gregory C; Nachamkin, Irving; Sheikh, Kazim; Kamel, Freya; Silbergeld, Ellen

    2015-01-01

    Foodborne Campylobacter jejuni infection has been associated with an increased risk of autoimmune peripheral neuropathy, but risks of occupational exposure to C. jejuni have received less attention. This study compared anti-C. jejuni IgA, IgG, and IgM antibody levels, as well as the likelihood of testing positive for any of five anti-ganglioside autoantibodies, between animal farmers and non-farmers. Anti-C. jejuni antibody levels were also compared between farmers with different animal herd or flock sizes. The relationship between anti-C. jejuni antibody levels and detection of anti-ganglioside autoantibodies was also assessed. Serum samples from 129 Agricultural Health Study swine farmers (some of whom also worked with other animals) and 46 non-farmers, all from Iowa, were analyzed for anti-C. jejuni antibodies and anti-ganglioside autoantibodies using ELISA. Information on animal exposures was assessed using questionnaire data. Anti-C. jejuni antibody levels were compared using Mann-Whitney tests and linear regression on log-transformed outcomes. Fisher's Exact Tests and logistic regression were used to compare likelihood of positivity for anti-ganglioside autoantibodies. Farmers had significantly higher levels of anti-C. jejuni IgA (p antibodies compared to non-farmers. There was no consistent pattern of anti-C. jejuni antibody levels based on animal herd or flock size. A higher percentage of farmers (21%) tested positive for anti-ganglioside autoantibodies compared to non-farmers (9%), but this difference was not statistically significant (p = 0.11). There was no significant association between anti-C. jejuni antibody levels and anti-ganglioside autoantibodies. The findings provide evidence that farmers who work with animals may be at increased risk of exposure to C. jejuni. Future research should include longitudinal studies of exposures and outcomes, as well as studies of interventions to reduce exposure. Policies to reduce occupational exposure to C. jejuni

  7. [Toxic megacolon as a complication of Campylobacter jejuni enterocolitis].

    Science.gov (United States)

    Kummer, A F; Meyenberger, C

    1998-10-10

    We report the case of a previously healthy 53-year-old white male who developed an extraordinary complication of acute Campylobacter jejuni colitis. Toxic megacolon occurred while the patient was treated with a fluoroquinolone antibiotic and glucocorticoids, which were given for endoscopically suspected Crohn's colitis. During the course of the disease no cause of colitis was found other than C. jejuni. Despite the extreme dilatation, the patient was treated conservatively with parenteral nutrition and repeated decompression colonoscopies and made a full, though slow, and uneventful recovery. Follow-up colonoscopies for up to 4 years showed persistent scarring of the transverse colon, probably due to the extreme dilatation, and mild unspecific inflammation of the terminal ileum without histological evidence of inflammatory bowel disease. A comparison with the 6 previously published cases leads to the following conclusions: in most cases the transverse colon is most severely affected. Treatment with either antimotility agents or systemic glucocorticoids does not seem to promote colonic dilatation. The complication has affected patients of both sexes (4 women, 3 men), in the age range of 21 to 83 years, most of them without an underlying disease. The interval between the start of diarrhea and development of the megacolon ranged widely from 3 to 33 days, as did recovery time (2 days to several months). Three of the 7 patients underwent colectomy for imminent or actual colonic perforation. The delayed recovery of our patient was partly attributed to colonic damage caused by extreme dilatation, leading to ischaemia and subsequent scarring of the mucosa, which persisted. Histologically no Crohn's disease or ulcerative colitis could be found at any stage. A rapid increase in resistance of C. species against fluoroquinolone antibodies has been observed in recent years, due to use of the antibiotics in farming. Our patient's severe illness may partly have resulted from

  8. Comparison of epidemiologically linked Campylobacter jejuni isolated from human and poultry sources.

    Science.gov (United States)

    Lajhar, S A; Jennison, A V; Patel, B; Duffy, L L

    2015-12-01

    Campylobacter jejuni is responsible for most foodborne bacterial infections worldwide including Australia. The aim of this study was to investigate a combination of typing methods in the characterization of C. jejuni isolated from clinical diarrhoeal samples (n = 20) and chicken meat (n = 26) in order to identify the source of infection and rank isolates based on their relative risk to humans. Sequencing of the flaA short variable region demonstrated that 86% of clinical isolates had genotypes that were also found in chicken meat. A polymerase chain reaction binary typing system identified 27 different codes based on the presence or absence of genes that have been reported to be associated with various aspects of C. jejuni pathogenicity, indicating that not all isolates may be of equal risk to human health. The lipooligosaccharide (LOS) of the C. jejuni isolates was classified into six classes (A, B, C, E, F, H) with 10·4% remaining unclassified. The majority (72·7%) of clinical isolates possessed sialylated LOS classes. Sialylated LOS classes were also detected in chicken isolates (80·7%). Antimicrobial tests indicated a low level of resistance, with no phenotypic resistance found to most antibiotics tested. A combination of typing approaches was useful to assign isolates to a source of infection and assess their risk to humans.

  9. Molecular Characterization, Antimicrobial Resistance and Caco-2 Cell Invasion Potential of Campylobacter jejuni/coli from Young Children with Diarrhea.

    Science.gov (United States)

    Pan, Haijian; Ge, Yanling; Xu, Hao; Zhang, Jianmin; Kuang, Dai; Yang, Xiaowei; Su, Xudong; Huang, Zheng; Shi, Xianming; Xu, Xuebin; Meng, Jianghong

    2016-03-01

    Campylobacter is a major cause of bacterial gastroenteritis worldwide. Young children represent a particular age group affected by Campylobacter infection because of their limited diets and weak immune systems. In this study, a total of 110 Campylobacter (80 Campylobacter jejuni and 30 Campylobacter coli) isolated from children younger than 5 years of age with diarrhea in Shanghai, China in 2011 were examined for their genetic relationship and antimicrobial susceptibility. The presence of virulence genes and its association with invasion potential in Caco-2 cell were also determined. Multilocus sequence typing revealed 62 sequence types (STs) under 14 clonal complexes from C. jejuni and 15 STs under 2 clonal complexes from C. coli. High resistance rates among the 110 isolates were observed to nalidixic acid (88.2%), ciprofloxacin (87.3%) and tetracycline (87.3%), followed by ampicillin (30.9%), gentamicin (28.2%), clindamycin (21.8%), erythromycin (21.8%) and chloramphenicol (8.2%). Compared with that of C. jejuni (32.5%), a larger proportion of C. coli (83.3%) were resistant to multiple antimicrobials, including 16 isolates of ST-828 complex resistant to 6 antimicrobials: ciprofloxacin, clindamycin, erythromycin, gentamicin, nalidixic acid and tetracycline. Furthermore, 57 Campylobacter isolates were selected based on their distinct STs and the presence of virulence genes to determine their abilities to adhere to and invade Caco-2 cells. The level of invasion varied widely among isolates and had relatively weak correlation with the genotype data. Our findings provided baseline data on Campylobacter among young children. Active surveillance of Campylobacter is needed to better understand the epidemiology and antimicrobial resistance trends of this significant pathogen to help control and protect young children from such infections.

  10. Food finds its way to a woman's heart: Campylobacter jejuni-associated myopericarditis.

    Science.gov (United States)

    Veerasamy, Manivannan; Alguire, Craig T

    2017-03-31

    Campylobacter jejuni-associated myopericarditis (CAM) has been reported infrequently in the literature. We describe a case of immunocompetent young woman presenting with chest pain, with history of recent travel and diarrhea. Evaluation led to diagnosis of myopericarditis associated with this infection. The patient improved with conservative management. The pathogenesis of CAM remains unknown. Patients present with chest pain, heart failure, pulmonary edema and arrhythmias. Diagnostic evaluation includes EKG, cardiac enzymes, echocardiogram, cardiac MRI and stool culture. Conservative management recommended and routine use of antimicrobial therapy is controversial. CAM is a rare but severe complication of C. jejuni infection. It should be considered as a diagnosis in patients presenting with chest pain with associated gastrointestinal symptoms.

  11. Prevalence of Thermotolerant Campylobacter spp. in Chicken Meat in Croatia and Multilocus Sequence Typing of a Small Subset of Campylobacter jejuni and Campylobacter coli Isolates

    Directory of Open Access Journals (Sweden)

    Andrea Humski

    2016-01-01

    Full Text Available In order to detect thermotolerant Campylobacter spp., 241 samples of fresh chicken meat, at retail in Croatia, were analysed according to a standard method, followed by biochemical test and molecular polymerase chain reaction/restriction enzyme analysis for exact species determination. Campylobacter spp. prevalence was 73.86 %. Campylobacter jejuni and Campylobacter coli were isolated from 53.53 and 15.35 % of the samples, respectively. In 4.98 % of isolates thermotolerant Campylobacter spp. were not determined. The multi locus sequence typing method was used to evaluate genetic diversity of eight Campylobacter jejuni and four Campylobacter coli isolates. To our knowledge, these results of genotyping provided the first data on the presence of sequence types (STs and clonal complexes (CCs of Campylobacter jejuni and C. coli isolates in Croatia. By applying the multilocus sequence typing, a new allele of tkt gene locus was discovered and marked tkt508. The C. jejuni ST 6182 and C. coli ST 6183 genotypes were described for the fi rst time, and all other identified genotypes were clustered in the previously described sequence types and clonal complexes. These findings provide useful information on the prevalence and epidemiology of Campylobacter jejuni and C. coli in Croatia.

  12. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni.

    Science.gov (United States)

    Chen, Ming L; Ge, Zhongming; Fox, James G; Schauer, David B

    2006-12-01

    Campylobacter jejuni is a leading cause of human enterocolitis and is associated with postinfectious complications, including irritable bowel syndrome and Guillain-Barré syndrome. However, the pathogenesis of C. jejuni infection remains poorly understood. Paracellular pathways in intestinal epithelial cells are gated by intercellular junctions (tight junctions and adherens junctions), providing a functional barrier between luminal microbes and host immune cells in the lamina propria. Here we describe alterations in tight junctions in intestinal epithelial monolayers following C. jejuni infection. Apical infection of polarized T84 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TER). Immunofluorescence microscopy revealed a redistribution of the tight junctional transmembrane protein occludin from an intercellular to an intracellular location. Subcellular fractionation using equilibrium sucrose density gradients demonstrated decreased hyperphosphorylated occludin in lipid rafts, Triton X-100-soluble fractions, and the Triton X-100-insoluble pellet following apical infection. Apical infection with C. jejuni also caused rapid activation of NF-kappaB and AP-1, phosphorylation of extracellular signal-regulated kinase, Jun N-terminal protein kinase, and p38 mitogen-activated protein kinases, and basolateral secretion of the CXC chemokine interleukin-8 (IL-8). Basolateral infection with C. jejuni caused a more rapid decrease in TER, comparable redistribution of tight-junction proteins, and secretion of more IL-8 than that seen with apical infection. These results suggest that compromised barrier function and increased chemokine expression contribute to the pathogenesis of C. jejuni-induced enterocolitis.

  13. Effect of fermented feed on the susceptibility for campylobacter jejuni infection in broilers with and without concurrent infection with Salmonella enteriditis

    NARCIS (Netherlands)

    Heres, L.; Engel, B.; Knapen, van F.; Wagenaar, J.A.; Urlings, B.

    2003-01-01

    Fermented liquid feed (FLF) protects broiler chickens against colonisation with Salmonella. While Campylobacter causes more disease cases in humans than Salmonella, the effect of FLF on Campylobacter was assessed. The fermented liquid feed is a moistened feed with a high number of lactobacilli, a

  14. Characterization of Campylobacter jejuni DNA gyrase as the target of quinolones.

    Science.gov (United States)

    Changkwanyeun, Ruchirada; Usui, Masaru; Kongsoi, Siriporn; Yokoyama, Kazumasa; Kim, Hyun; Suthienkul, Orasa; Changkaew, Kanjana; Nakajima, Chie; Tamura, Yutaka; Suzuki, Yasuhiko

    2015-08-01

    Quinolones have long been used as the first-line treatment for Campylobacter infections. However, an increased resistance to quinolones has raised public health concerns. The development of new quinolone-based antibiotics with high activity is critical for effective, as DNA gyrase, the target of quinolones, is an essential enzyme for bacterial growth in several mechanisms. The evaluation of antibiotic activity against Campylobacter jejuni largely relies on drug susceptibility tests, which require at least 2 days to produce results. Thus, an in vitro method for studying the activity of quinolones against the C. jejuni DNA gyrase is preferred. To identify potent quinolones, we investigated the interaction of C. jejuni DNA gyrase with a number of quinolones using recombinant subunits. The combination of purified subunits exhibited DNA supercoiling activity in an ATP dependent manner. Drug concentrations that inhibit DNA supercoiling by 50% (IC50s) of 10 different quinolones were estimated to range from 0.4 (sitafloxacin) to >100 μg/mL (nalidixic acid). Sitafloxacin showed the highest inhibitory activity, and the analysis of the quinolone structure-activity relationship demonstrated that a fluorine atom at R-6 might play the important role in the inhibitory activity against C. jejuni gyrase. Measured quinolone IC50s correlated well with minimum inhibitory concentrations (R = 0.9943). These suggest that the in vitro supercoiling inhibition assay on purified recombinant C. jejuni DNA gyrase is a useful and predictive technique to monitor the antibacterial potency of quinolones. And furthermore, these data suggested that sitafloxacin might be a good candidate for clinical trials on campylobacteriosis. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. A PCR-RFLP assay for the detection and differentiation of Campylobacter jejuni, C. coli, C. fetus, C. hyointestinalis, C. lari, C. helveticus and C. upsaliensis.

    Science.gov (United States)

    Kamei, Kazumasa; Asakura, Masahiro; Somroop, Srinuan; Hatanaka, Noritoshi; Hinenoya, Atsushi; Nagita, Akira; Misawa, Naoaki; Matsuda, Motoo; Nakagawa, Shinsaku; Yamasaki, Shinji

    2014-05-01

    Although Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of human gastrointestinal diseases, other Campylobacter species are also involved in human and animal infections. In this study, we developed a cytolethal distending toxin (cdt) gene-based PCR-RFLP assay for the detection and differentiation of C. jejuni, C. coli, C. fetus, C. hyointestinalis, C. lari, C. helveticus and C. upsaliensis. Previously designed common primers, which can amplify the cdtB gene of C. jejuni, C. coli and C. fetus, were used for detecting seven Campylobacter species and differentiating between them by restriction digestion. The PCR-RFLP assay was validated with 277 strains, including 35 C. jejuni, 19 C. coli, 20 C. fetus, 24 C. hyointestinalis, 13 C. lari, 2 C. helveticus, 22 C. upsaliensis, 3 other Campylobacter spp. and 17 other species associated with human diseases. Sensitivity and specificity of the PCR-RFLP assay were 100 % except for C. hyointestinalis (88 % sensitivity). Furthermore, the PCR-RFLP assay successfully detected and differentiated C. jejuni, C. coli and C. fetus in clinical and animal samples. The results indicate that the PCR-RFLP assay is useful for the detection and differentiation of seven Campylobacter species important for human and animal diseases.

  16. Clinical manifestations of Campylobacter concisus infection in children.

    Science.gov (United States)

    Nielsen, Hans Linde; Engberg, Jørgen; Ejlertsen, Tove; Nielsen, Henrik

    2013-11-01

    There is only sparse information about the clinical impact of Campylobacter concisus infections in children. A study was performed during a 2-year period to determine the clinical manifestations in C. concisus-positive children with gastroenteritis. A case patient was defined as a child or teenager (Campylobacter jejuni/coli infection. Two thousand three hundred seventy-two diarrheic stool samples from 1867 children were cultured for pathogenic enteric bacteria during the study period, and 85 and 109 children with C. concisus and C. jejuni/coli, respectively, were identified. Comparison of the acute clinical manifestations in 44 C. concisus patients with those in 64 C. jejuni/coli patients showed a significantly lower prevalence of fever, chills and blood in stools in the former. However, half of C. concisus patients compared with one-fourth of C. jejuni/coli patients had prolonged diarrhea for more than 2 weeks and two-thirds of all children with C. concisus reported loose stools after 6-month follow-up. C. concisus infection in children seems to have a milder course of acute gastroenteritis compared with C. jejuni/coli infection but is associated with more prolonged diarrhea. Children with C. concisus have the same degree of late gastrointestinal complaints as children diagnosed with C. jejuni/coli infection.

  17. Contrasting immune responses mediate Campylobacter jejuni-induced colitis and autoimmunity.

    Science.gov (United States)

    Malik, A; Sharma, D; St Charles, J; Dybas, L A; Mansfield, L S

    2014-07-01

    Campylobacter jejuni is a leading cause of foodborne enteritis that has been linked to the autoimmune neuropathy, Guillain Barré syndrome (GBS). C57BL/6 interleukin (IL)-10(+/+) and congenic IL-10(-/-) mice serve as C. jejuni colonization and colitis models, respectively, but a mouse model for GBS is lacking. We demonstrate that IL-10(-/-) mice infected with a C. jejuni colitogenic human isolate had significantly upregulated type 1 and 17 but not type 2 cytokines in the colon coincident with infiltration of phagocytes, T cells and innate lymphoid cells (ILCs). Both ILC and T cells participated in interferon-γ (IFN-γ), IL-17, and IL-22 upregulation but in a time- and organ-specific manner. T cells were, however, necessary for colitis as mice depleted of Thy-1(+) cells were protected while neither Rag1(-/-) nor IL-10R blocked Rag1(-/-) mice developed colitis after infection. Depleting IFN-γ, IL-17, or both significantly ameliorated colitis and drove colonic responses toward type 2 cytokine and antibody induction. In contrast, C. jejuni GBS patient strains induced mild colitis associated with blunted type 1/17 but enhanced type 2 responses. Moreover, the type 2 but not type 1/17 antibodies cross-reacted with peripheral nerve gangliosides demonstrating autoimmunity.

  18. Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: Campylobacter jejuni is a leading cause of foodborne bacterial enterocolitis worldwide. Investigation of immunopathology is hampered by a lack of suitable vertebrate models. We have recently shown that gnotobiotic mice as well as conventional IL-10(-/- animals are susceptible to C. jejuni infection and develop intestinal immune responses. However, clinical symptoms of C. jejuni infection were rather subtle and did not reflect acute bloody diarrhea seen in human campylobacteriosis. METHODOLOGY/PRINCIPAL FINDINGS: In order to overcome these limitations we generated gnotobiotic IL-10(-/- mice by quintuple antibiotic treatment starting right after weaning. The early treatment was essential to prevent these animals from chronic colitis. Following oral infection C. jejuni colonized the gastrointestinal tract at high levels and induced acute enterocolitis within 7 days as indicated by bloody diarrhea and pronounced histopathological changes of the colonic mucosa. Immunopathology was further characterized by increased numbers of apoptotic cells, regulatory T-cells, T- and B-lymphocytes as well as elevated TNF-α, IFN-γ, and MCP-1 concentrations in the inflamed colon. The induction of enterocolitis was specific for C. jejuni given that control animals infected with a commensal E. coli strain did not display any signs of disease. Most strikingly, intestinal immunopathology was ameliorated in mice lacking Toll-like-receptors-2 or -4 indicating that C. jejuni lipoproteins and lipooligosaccharide are essential for induction and progression of immunopathology. CONCLUSION/SIGNIFICANCE: Gnotobiotic IL-10(-/- mice develop acute enterocolitis following C. jejuni infection mimicking severe episodes of human campylobacteriosis and are thus well suited to further dissect mechanisms underlying Campylobacter infections in vivo.

  19. Campylobacter jejuni induces acute enterocolitis in gnotobiotic IL-10-/- mice via Toll-like-receptor-2 and -4 signaling.

    Science.gov (United States)

    Haag, Lea-Maxie; Fischer, André; Otto, Bettina; Plickert, Rita; Kühl, Anja A; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2012-01-01

    Campylobacter jejuni is a leading cause of foodborne bacterial enterocolitis worldwide. Investigation of immunopathology is hampered by a lack of suitable vertebrate models. We have recently shown that gnotobiotic mice as well as conventional IL-10(-/-) animals are susceptible to C. jejuni infection and develop intestinal immune responses. However, clinical symptoms of C. jejuni infection were rather subtle and did not reflect acute bloody diarrhea seen in human campylobacteriosis. In order to overcome these limitations we generated gnotobiotic IL-10(-/-) mice by quintuple antibiotic treatment starting right after weaning. The early treatment was essential to prevent these animals from chronic colitis. Following oral infection C. jejuni colonized the gastrointestinal tract at high levels and induced acute enterocolitis within 7 days as indicated by bloody diarrhea and pronounced histopathological changes of the colonic mucosa. Immunopathology was further characterized by increased numbers of apoptotic cells, regulatory T-cells, T- and B-lymphocytes as well as elevated TNF-α, IFN-γ, and MCP-1 concentrations in the inflamed colon. The induction of enterocolitis was specific for C. jejuni given that control animals infected with a commensal E. coli strain did not display any signs of disease. Most strikingly, intestinal immunopathology was ameliorated in mice lacking Toll-like-receptors-2 or -4 indicating that C. jejuni lipoproteins and lipooligosaccharide are essential for induction and progression of immunopathology. Gnotobiotic IL-10(-/-) mice develop acute enterocolitis following C. jejuni infection mimicking severe episodes of human campylobacteriosis and are thus well suited to further dissect mechanisms underlying Campylobacter infections in vivo.

  20. Pancreatic amylase is an environmental signal for regulation of biofilm formation and host interaction in Campylobacter jejuni.

    Science.gov (United States)

    Jowiya, Waheed; Brunner, Katja; Abouelhadid, Sherif; Hussain, Haitham A; Nair, Sean P; Sadiq, Sohaib; Williams, Lisa K; Trantham, Emma K; Stephenson, Holly; Wren, Brendan W; Bajaj-Elliott, Mona; Cogan, Tristan A; Laws, Andrew P; Wade, Jim; Dorrell, Nick; Allan, Elaine

    2015-12-01

    Campylobacter jejuni is a commensal bacterium in the intestines of animals and birds and a major cause of food-borne gastroenteritis in humans worldwide. Here we show that exposure to pancreatic amylase leads to secretion of an α-dextran by C. jejuni and that a secreted protease, Cj0511, is required. Exposure of C. jejuni to pancreatic amylase promotes biofilm formation in vitro, increases interaction with human epithelial cell lines, increases virulence in the Galleria mellonella infection model, and promotes colonization of the chicken ileum. We also show that exposure to pancreatic amylase protects C. jejuni from stress conditions in vitro, suggesting that the induced α-dextran may be important during transmission between hosts. This is the first evidence that pancreatic amylase functions as an interkingdom signal in an enteric microorganism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Aidley, Jack; Holst Sørensen, Martine C.; Bayliss, Christopher D.

    2017-01-01

    Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations...... in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase...... for this CPS modification, cj1421, and two other phase-variable CPS genes generated phage resistance in C. jejuni. Here we investigate the population dynamics of C. jejuni NCTC11168 when exposed to phage F336 in vitro using a newly described method - the 28-locus-CJ11168 PV analysis. Dynamic switching...

  2. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...... to available epidemiological data. We conclude that this amplified fragment length polymorphism fingerprinting method may be a highly effective tool for molecular epidemiological studies of Campylobacter spp....

  3. CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga

    Science.gov (United States)

    Vieira, Ana; Ramesh, Amritha; Seddon, Alan M.

    2017-01-01

    ABSTRACT Campylobacter jejuni is a foodborne pathogen that is recognized as the leading cause of human bacterial gastroenteritis. The widespread use of antibiotics in medicine and in animal husbandry has led to an increased incidence of antibiotic resistance in Campylobacter. In addition to a role in multidrug resistance (MDR), the Campylobacter CmeABC resistance-nodulation-division (RND)-type efflux pump may be involved in virulence. As a vehicle for pathogenic microorganisms, the protozoan Acanthamoeba is a good model for investigations of bacterial survival in the environment and the molecular mechanisms of pathogenicity. The interaction between C. jejuni 81-176 and Acanthamoeba polyphaga was investigated in this study by using a modified gentamicin protection assay. In addition, a possible role for the CmeABC MDR pump in this interaction was explored. Here we report that this MDR pump is beneficial for the intracellular survival and multiplication of C. jejuni in A. polyphaga but is dispensable for biofilm formation and motility. IMPORTANCE The endosymbiotic relationship between amoebae and microbial pathogens may contribute to persistence and spreading of the latter in the environment, which has significant implications for human health. In this study, we found that Campylobacter jejuni was able to survive and to multiply inside Acanthamoeba polyphaga; since these microorganisms can coexist in the same environment (e.g., on poultry farms), the latter may increase the risk of infection with Campylobacter. Our data suggest that, in addition to its role in antibiotic resistance, the CmeABC MDR efflux pump plays a role in bacterial survival within amoebae. Furthermore, we demonstrated synergistic effects of the CmeABC MDR efflux pump and TetO on bacterial resistance to tetracycline. Due to its role in both the antibiotic resistance and the virulence of C. jejuni, the CmeABC MDR efflux pump could be considered a good target for the development of antibacterial

  4. CmeABC multidrug efflux pump contributes to antibiotic resistance and promotes Campylobacter jejuni survival and multiplication in Acanthamoeba polyphaga.

    Science.gov (United States)

    Vieira, Ana; Ramesh, Amritha; Seddon, Alan M; Karlyshev, Andrey V

    2017-09-15

    Campylobacter jejuni is a foodborne pathogen recognized as the leading cause of human bacterial gastroenteritis. The wide use of antibiotics in medicine and in animal husbandry has led to an increased incidence of antibiotic resistance in Campylobacter In addition to a role in multidrug resistance, the Campylobacter CmeABC RND-type efflux pump, which is associated with multidrug resistance (MDR), may also be involved in virulence. As a vehicle of pathogenic microorganisms, the protozoan Acanthamoeba is a good model for the investigation of bacterial survival in the environment and molecular mechanisms of pathogenicity. The interaction between C. jejuni 81-176 and A. polyphaga was investigated in this study by using a modified gentamicin protection assay. In addition, a possible role for the CmeABC MDR pump in this interaction was explored. Here we report that this MDR pump is beneficial for the intracellular survival and multiplication of C. jejuni in A. polyphaga, but is dispensable for biofilm formation and motility.Importance The endosymbiotic relationship between amoebae and microbial pathogens may contribute to persistence and spreading of the latter in the environment, which has significant implications to human health. In this study we found that Campylobacter jejuni was able to survive and multiply inside Acanthamoeba. polyphaga Since these microorganisms can co-exist in the same environment (e.g. in poultry farms), the latter may increase the risk of infection with Campylobacter Our data suggests that, in addition to its role in antibiotic resistance, the CmeABC MDR efflux pump also plays a role in bacterial survival within amoebae. Furthermore, we demonstrated a synergistic effect of the CmeABC MDR efflux pump and TetO on bacterial resistance to tetracycline. Due to its role both in antibiotic resistance and virulence of C. jejuni, the CmeABC MDR efflux pump could be considered as a good target for the development of antibacterial drugs against this

  5. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Mughini-Gras, Lapo; Penny, Christian; Ragimbeau, Catherine; Schets, Franciska M; Blaak, Hetty; Duim, Birgitta; Wagenaar, Jaap A; de Boer, Albert; Cauchie, Henry-Michel; Mossong, Joel; van Pelt, Wilfrid

    2016-09-15

    Campylobacter is the most common causative agent of human bacterial gastroenteritis and is frequently found in surface water, where it indicates recent contamination with animal faeces, sewage effluent, and agricultural run-off. The contribution of different animal reservoirs to surface water contamination with Campylobacter is largely unknown. In the Netherlands, the massive poultry culling to control the 2003 avian influenza epidemic coincided with a 44-50% reduction in human campylobacteriosis cases in the culling areas, suggesting substantial environment-mediated spread of poultry-borne Campylobacter. We inferred the origin of surface water Campylobacter jejuni and Campylobacter coli strains in Luxembourg and the Netherlands, as defined by multilocus sequence typing, by comparison to strains from poultry, pigs, ruminants, and wild birds, using the asymmetric island model for source attribution. Most Luxembourgish water strains were attributed to wild birds (61.0%), followed by poultry (18.8%), ruminants (15.9%), and pigs (4.3%); whereas the Dutch water strains were mainly attributed to poultry (51.7%), wild birds (37.3%), ruminants (9.8%), and pigs (1.2%). Attributions varied over seasons and surface water types, and geographical variation in the relative contribution of poultry correlated with the magnitude of poultry production at either the national or provincial level, suggesting that environmental dissemination of Campylobacter from poultry farms and slaughterhouses can be substantial in poultry-rich regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni.

    Science.gov (United States)

    Johnson, Jeremiah G; Gaddy, Jennifer A; DiRita, Victor J

    2016-11-15

    Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis. A previous mutant screen demonstrated that the heme uptake system (Chu) is required for full colonization of the chicken gastrointestinal tract. Subsequent work identified a PAS domain-containing regulator, termed HeuR, as being required for chicken colonization. Here we confirm that both the heme uptake system and HeuR are required for full chicken gastrointestinal tract colonization, with the heuR mutant being particularly affected during competition with wild-type C. jejuni Transcriptomic analysis identified the chu genes-and those encoding other iron uptake systems-as regulatory targets of HeuR. Purified HeuR bound the chuZA promoter region in electrophoretic mobility shift assays. Consistent with a role for HeuR in chu expression, heuR mutants were unable to efficiently use heme as a source of iron under iron-limiting conditions, and mutants exhibited decreased levels of cell-associated iron by mass spectrometry. Finally, we demonstrate that an heuR mutant of C. jejuni is resistant to hydrogen peroxide and that this resistance correlates to elevated levels of catalase activity. These results indicate that HeuR directly and positively regulates iron acquisition from heme and negatively impacts catalase activity by an as yet unidentified mechanism in C. jejuni IMPORTANCE: Annually, Campylobacter jejuni causes millions of gastrointestinal infections in the United States, due primarily to its ability to reside within the gastrointestinal tracts of poultry, where it can be released during processing and contaminate meat. In the developing world, humans are often infected by consuming contaminated water or by direct contact with livestock. Following consumption of contaminated food or water, humans develop disease that is characterized by mild to severe diarrhea. There is a need to understand both colonization of chickens, to make food safer, and colonization of humans, to better

  7. Complete genomic sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) that were isolated from patients with Guillain-Barré Syndrome

    Science.gov (United States)

    An infection with Campylobacter jejuni subsp. jejuni (Cjj) is a leading cause of foodborne gastroenteritis in humans and also the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the complete genomic sequences of Cjj HS:41 strains RM3196 (233.94) and RM3197 (308...

  8. The demyelination neurophysiological criteria can be misleading in Campylobacter jejuni-related Guillain-Barré syndrome.

    Science.gov (United States)

    Kokubun, Norito; Shahrizaila, Nortina; Koga, Michiaki; Hirata, Koichi; Yuki, Nobuhiro

    2013-08-01

    The exclusive association of Campylobacter jejuni infection with the axonal variant of Guillain-Barré syndrome (GBS) is debatable. The current study aims to elucidate the GBS subtypes of patients with an antecedent C. jejuni infection. Nerve conduction study results of 73 patients with GBS were reviewed. Patients were defined as having a recent C. jejuni infection when there was a positive stool culture or serological evidence of C. jejuni in the presence of preceding diarrhea. A total of 23 patients had evidence of a recent C. jejuni infection. At the early stage, patients were classified as AMAN (n=9; 39%), AIDP (n=3; 13%) or equivocal (n=9) using existing electrophysiological criteria. Prolonged distal latencies and conduction slowing that were seen in 11 patients rapidly normalized within 3 weeks in seven, whereas four had minor abnormalities throughout the course. Subsequently, all patients showed either acute motor axonal neuropathy pattern or reversible conduction failure. Serial neurophysiology suggests that C. jejuni infections are exclusive to axonal GBS. Our findings suggest that AMAN can demonstrate the full complement of demyelinating features at the early stages of disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in food, using multiplex real-time PCR.

    Science.gov (United States)

    Mayr, A M; Lick, S; Bauer, J; Thärigen, D; Busch, U; Huber, I

    2010-02-01

    A multiplex real-time PCR assay based on four differently labeled TaqMan probes for detection and differentiation of the thermophilic Campylobacter species C. jejuni, C. coli, and C. lari was established and validated in food products. This assay combines two previously published PCR assays for C. jejuni and C. coli with a newly developed detection assay for C. lari and an internal amplification control system. The selectivity of the method was determined by analyzing 70 Campylobacter strains and 43 strains of other bacteria. The sensitivity was 50 fg of C. jejuni and C. lari DNA and 500 fg of C. coli DNA per PCR. It was possible to detect 1 to 10 CFU/25 g of food before preenrichment of all three species. More than 400 samples of various foods (poultry, seafood, and meat) were analyzed after 48 h of preenrichment parallel to the conventional diagnostic method of culture and biochemical identification. Using the established real-time PCR assay, 55.4% of the samples were recognized as positive for thermophilic Campylobacter species, whereas with the conventional method only 40.3% of the samples were positive. The real-time PCR assay also detected contaminations with two different Campylobacter species in 32.6% of the analyzed poultry samples, a finding of epidemiological interest. Compared with the original PCR method, which was established for the differentiation of bacterial isolates of C. jejuni and C. coli, this new method also detects and distinguishes C. lari, was validated as an analytical tool for food analysis, and provides reliable and extensive results within 2 days.

  10. High frequency genetic variation of purine biosynthesis genes is a mechanism of success in Campylobacter jejuni

    Science.gov (United States)

    Phenotypic variation is prevalent among progeny of the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity bestows increased survival to bacterial populations because variable phenotypes ensure some cells will be protected against future s...

  11. Cloning and alignment of WaaF gene of Campylobacter jejuni Lulei

    Directory of Open Access Journals (Sweden)

    XING Cong-cong

    2012-04-01

    Full Text Available Objective To clone the WaaF gene of Campylobacter jejuni, and analyse its relationship with WaaF genetic evolution. Methods Amplified WaaF gene of Campylobacter jejuni Lulei by PCR, and constructed pGEM-T-WaaF cloning plasmid. Downloaded five WaaF associated with Guillain-Barré syndrome (GBS and one WaaF not associated with GBS, and then constructed phylogenetic tree. Results pGEM-T-WaaF cloning plasmid was constructed successfully. WaaF presented cluster phenomenon in Campylobacter jejuni associated with GBS. Conclusion WaaF gene of Campylobacter jejuni Lulei is the fragment of 807 bp, and has the nearest relationship with the genetic evolution of Lichang.

  12. Cluster of erythromycin- and ciprofloxacin-resistant Campylobacter jejuni subsp. jejuni from 1999 to 2001 in men who have sex with men, Québec, Canada.

    Science.gov (United States)

    Gaudreau, Christiane; Michaud, Sophie

    2003-07-01

    From December 1999 to November 2001, a cluster of multidrug-resistant Campylobacter jejuni subsp. jejuni enterocolitis was suspected within the male population of Montreal. Nine men, aged 26-40 years, presented with an erythromycin- and ciprofloxacin-resistant, tetracycline-susceptible C. jejuni enterocolitis. In March 1998 and February 2000, 2 additional men, aged 23 and 27 years, were infected with an erythromycin-resistant, ciprofloxacin and tetracycline-susceptible C. jejuni. All isolates were identical according to pulsed-field gel electrophoresis and flagellin typing. Epidemiological data suggested a sexually transmitted enteric infection; all patients infected with the locally acquired epidemic strain were men, the 8 patients for whom sexual orientation data were available identified themselves as men who have sex with men (MSM), and 3 of the patients had had a sexually transmitted Shigella sonnei infection during a proven outbreak among MSM. Eight patients, 6 of whom were identified as MSM, resided in a predominantly homosexual district of Montreal or its surrounding neighborhoods. The emergence of multidrug-resistant C. jejuni justifies routine susceptibility-testing of these bacteria. MSM should be educated about the prevention of sexually transmitted enteric pathogens.

  13. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome.

    Science.gov (United States)

    Heikema, A P; Islam, Z; Horst-Kreft, D; Huizinga, R; Jacobs, B C; Wagenaar, J A; Poly, F; Guerry, P; van Belkum, A; Parker, C T; Endtz, H P

    2015-09-01

    In about one in a thousand cases, a Campylobacter jejuni infection results in the severe polyneuropathy Guillain-Barré syndrome (GBS). It is established that sialylated lipo-oligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sialylated LOS in stools derived from patients with uncomplicated enteritis implies that additional bacterial factors should be involved. To assess whether the polysaccharide capsule is a marker for GBS, the capsular genotypes of two geographically distinct GBS-associated C. jejuni strain collections and an uncomplicated enteritis control collection were determined. Capsular genotyping of C. jejuni strains from the Netherlands revealed that three capsular genotypes, HS1/44c, HS2 and HS4c, were dominant in GBS-associated strains and capsular types HS1/44c and HS4c were significantly associated with GBS (p 0.05 and p 0.01, respectively) when compared with uncomplicated enteritis. In a GBS-associated strain collection from Bangladesh, capsular types HS23/36c, HS19 and HS41 were most prevalent and the capsular types HS19 and HS41 were associated with GBS (p 0.008 and p 0.02, respectively). Next, specific combinations of the LOS class and capsular genotypes were identified that were related to the occurrence of GBS. Multilocus sequence typing revealed restricted genetic diversity for strain populations with the capsular types HS2, HS19 and HS41. We conclude that capsular types HS1/44c, HS2, HS4c, HS19, HS23/36c and HS41 are markers for GBS. Besides a crucial role for sialylated LOS of C. jejuni in GBS pathogenesis, the identified capsules may contribute to GBS susceptibility. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. All rights reserved.

  14. Diarrhea due to Campylobacter fetus subspecies jejuni. A clinical review of 63 cases.

    Science.gov (United States)

    Drake, A A; Gilchrist, M J; Washington, J A; Huizenga, K A; Van Scoy, R E

    1981-07-01

    Campylobacter fetus subspecies jejuni was isolated fom the feces of 63 (3.2%) of the 1,953 patients who had stools cultured at the Mayo Clinic in 1979. In contrast, Salmonella and Shigella combined were isolated from 31 (1.6%) patients. Two patients had double infections with Salmonella species and C. fetus subsp jejuni. Three patients had no diarrhea at the time of stool culture. One patient, who had chronic lymphocytic leukemia, had both blood and stool cultures positive for C. fetus subsp jejuni. There was a seasonal incidence that peaked in July when 7.8% of all patients who had stools cultured had C. fetus subsp jejuni isolated. Thirteen cases occurred in children 5 years of age and younger and 29 cases occurred between the ages of 15 and 30 years. Clinical features often included a prodrome of malaise, which preceded the onset of abdominal cramps, diarrhea, anorexia, fever, nausea, and vomiting. Grossly bloody diarrhea occurred in 33 patients, and massive intestinal bleeding occurred in 1 patient as a late complication after diarrhea had resolved. Transient splenomegaly was attributed to C. fetus subsp jejuni on one occasion. Proctoscopic findings may be similar to those seen in inflammatory bowel disease or pseudomembranous colitis. Three patients were referred to this institution with newly diagnosed chronic ulcerative colitis, and one patient was referred with newly diagnosed Crohn's disease. C. fetus subsp jejuni was isolated from their stools, and the diagnosis of inflammatory bowel disease was subsequently dropped. A selected review of cases illustrates the variety of gastrointestinal manifestations seen with this organism.

  15. Dos casos de Enteritis con bacteriemia por Campylobacter jejuni Two cases of enteritis with bacteremia due to Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noemí Borda

    2006-10-01

    Full Text Available Campylobacter es un importante agente causante de enfermedad en el ser humano en nuestro medio. Los casos de bacteriemia ocurren principalmente en pacientes inmunosuprimidos y son debidos frecuentemente a C. fetus. Sin embargo la bacteriemia es un episodio que también se ha observado en pacientes con enteritis por C. jejuni. Referimos dos pacientes con enteritis grave y bacteriemia, ambos con enfermedades concomitantes compatibles con inmunodepresión: uno con síndrome nefrótico de larga data y otro con hepatopatía crónica con cirrosis. Destacamos que los dos casos presentaron hematemesis y uno de ellos, enterorragia. Sugerimos prestar atención a la coloración de Gram durante el subcultivo de los caldos con hemocultivos, en busca de formas características de esta especie, y en ese caso emplear medios de cultivo en microaerofilia a 37 y 42 °C.Campylobacter is an important agent of illness in human beings. Bacteremia occurs principally in the immunocompromissed host and is frequently due to C. fetus. Nevertheless bacteremia also has been observed in patients with enteritis due to C. jejuni. We refer two cases of patients with severe enteritis and bacteremia, both of them with immunosupressive concomitant diseases such as nephrotic syndrome and chronic cirrotic hepatopathy. Both patients presented hemathemesis.

  16. Production of a Monoclonal Antibody Specific for the Major Outer Membrane Protein of Campylobacter jejuni and Characterization of the Epitope▿

    OpenAIRE

    Qian, Hongliang; Pang, Ervinna; Du, Qingyun; Chang, Jason; Dong, Jin; Toh, Say Ling; Ng, Fook Kheong; Tan, Ai Ling; Kwang, Jimmy

    2007-01-01

    Campylobacter species are important enteric pathogens causing disease in humans and animals. There is a lack of a good immunological test that can be used routinely to separate Campylobacter jejuni from other Campylobacter species. We produced monoclonal antibodies (MAbs) directed against the major outer membrane protein (MOMP) of C. jejuni using recombinant MOMP as the antigen. One MAb, designated MAb5C4 and of the immunoglobulin G1 isotype, was found to be potentially specific for C. jejuni...

  17. Campylobacter jejuni strains coresistant to tetracycline and ciprofloxacin in patients with gastroenteritis in Croatia.

    Science.gov (United States)

    Carev, Merica; Kovačić, Ana; Novak, Anita; Tonkić, Marija; Jerončić, Ana

    2017-04-01

    Antibiotic-resistant Campylobacter jejuni strains are rapidly emerging worldwide. Here, we aimed to determine the antibiotic-resistance patterns and genetic structure of C. jejuni from stool samples of symptomatic patients in Dalmatia, the largest Croatian county. In a population-based laboratory surveillance programme for campylobacteriosis in Dalmatia from May 2012 to May 2013, C. jejuni (n = 76) were collected from stool samples of all the patients hospitalized with gastroenteritis and matched positive outpatients (n = 77). Antibiotic susceptibility testing and pulsed-field gel electrophoresis (PFGE) genotyping of isolates were performed. Approximately 60% of the isolates were resistant to ciprofloxacin, whereas 24% of isolates were resistant to tetracycline; of the latter, 89% were also coresistant to ciprofloxacin. Resistance to erythromycin and gentamicin was infrequent (≤ 0.7%). Antibiotic-resistant strains were generally not associated with the need for hospitalization. However, the prevalence of coresistant strains increased sharply after 2010, and these coresistant strains were more prevalent in infections caused by clonal PFGE types, with distinct patterns of temporal occurrence and age distribution in infected patients. A high prevalence of coresistant TcR/CipR C. jejuni strains were detected in patients in Croatia. Strains were significantly associated with several clonal-type PFGE genotypes, shared common patterns of temporal occurrence, and showed distinct age distribution in infected patients, suggestive of newly identified strains. Since a high prevalence of coresistant TcR/CipR strains was also observed in other countries, further in-depth studies are essential to evaluate whether this phenomenon is linked to C. jejuni epidemiology in food animals and agricultural ecosystems.

  18. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    Directory of Open Access Journals (Sweden)

    Roberta T. Melo

    2017-07-01

    Full Text Available Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature

  19. Important role of a putative lytic transglycosylase Cj0843c in β-lactam resistance in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Ximin eZeng

    2015-11-01

    Full Text Available Beta-lactam antibiotics are an important class of antibiotics for treating bacterial infections. Despite prevalent β-lactam resistance in Campylobacter jejuni, the leading bacterial cause of human diarrhea in developed countries, molecular mechanism of β-lactam resistance in C. jejuni is still largely unknown. In this study, C. jejuni 81-176 was used for random transposon mutagenesis. Screening of a 2,800-mutant library identified 22 mutants with increased susceptibility to ampicillin. Of these mutants, two mutants contains mutations in Cj0843c (a putative lytic transglycosylase gene and in its upstream gene Cj0844c, respectively. Molecular manipulation in different strains demonstrated that Cj0843c contributes to both intrinsic and acquired β-lactam resistance in C. jejuni. Consistent with this finding, inactivation of Cj0843c also dramatically reduced β-lactamase activity. Genomic examination and PCR analysis showed Cj0843c is widely distributed in C. jejuni. The Cj0843 was localized in the periplasm as demonstrated by immunoblotting using specific antibodies. Turbidimetric assay further demonstrated the capability of the purified Cj0843c to hydrolyze cell walls. Inactivation of Cj0843c also significantly reduced C. jejuni colonization in the intestine. Together, this study identifies a mechanism of β-lactam resistance in C. jejuni and provides insights into the role of cell wall metabolism in regulating β-lactamase activity.

  20. Complete genome sequence of Campylobacter jejuni RM1246-ERRC that exhibits resistance to Quaternary Ammonium Compounds

    Science.gov (United States)

    Campylobacter jejuni strain RM1246-ERRC is a clinical isolate. In laboratory experiments RM1246-ERRC exhibited resistance to the antimicrobial effects of quaternary ammonium compounds (QACs) when compared to other C. jejuni strains. The chromosome of RM1246-ERRC was determined to be 1,659,694 bp w...

  1. New futures of sialyated lipo-oligosaccharide structures in campylobacter jejuni

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier)

    2012-01-01

    textabstractThe zoonotic human enteric pathogen Campylobacter jejuni is acquired by humans through contaminated water, poultry, shellfish and pets 1. Motility, chemotaxis, glycosylation and lipo-oligosaccharides (LOS) structures are all different virulence features exploited by C. jejuni to adhere,

  2. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides.

    NARCIS (Netherlands)

    Heikema, A.P.; Bergman, M.P.; Richards, H.; Crocker, P.R.; Gilbert, M.; Samsom, J.N.; Wamel, W.J.; Endtz, H.Ph.; van Belkum, A.

    2010-01-01

    In Campylobacter jejuni-induced Guillain-Barré syndrome (GBS), molecular mimicry between C. jejuni lipooligosaccharide (LOS) and host gangliosides leads to the production of cross-reactive antibodies directed against the peripheral nerves of the host. Currently, the presence of surface exposed

  3. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins

    DEFF Research Database (Denmark)

    Nielsen, Lene Nørby; Luijkx, Thomas A.; Vegge, Christina Skovgaard

    2012-01-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was trans...

  4. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni

    Science.gov (United States)

    The antibacterial effect of ZnO nanoparticles on Campylobacter jejuni was investigated for cell growth inhibition and inactivation. The results showed that C. jejuni was extremely sensitive to the treatment of ZnO nanoparticles. The minimal inhibitory concentration (MIC) of ZnO nanoparticles to C. j...

  5. Innate Immunity to Campylobacter jejuni in Guillain-Barré Syndrome

    NARCIS (Netherlands)

    Huizinga, Ruth; Van Den Berg, Bianca; Van Rijs, Wouter; Tio-Gillen, Anne P.; Fokkink, Willem Jan R; Bakker-Jonges, Liesbeth E.; Geleijns, Karin; Samsom, Janneke N.; Van Doorn, Pieter A.; Laman, Jon D.; Jacobs, Bart C.

    2015-01-01

    Objective: Guillain-Barré syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons

  6. Clonal population structure and antimicrobial resistance of Campylobacter jejuni from chicken meat in Belgium

    Science.gov (United States)

    Campylobacter jejuni is one of the most important causes of human diarrhea worldwide. In the present work, multilocus sequence typing (MLST) was used to study the genotypic diversity of 145 C. jejuni isolates from 135 chicken meat preparations sampled across Belgium. Isolates were further typed by p...

  7. Campylobacter jejuni Translocation across Intestinal Epithelial Cells Is Facilitated by Ganglioside-Like Lipooligosaccharide Structures

    NARCIS (Netherlands)

    Louwen, R.; Nieuwenhuis, E.E.S.; Marrewijk, van L.; Horst-Kreft, D.; Ruiter, de L.; Heikema, A.P.; Wamel, van W.J.; Wagenaar, J.A.; Endtz, H.P.; Samsom, J.; Baarlen, van P.; Akhmanova, A.; Belkum, van A.

    2012-01-01

    Translocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether sialylation of C.

  8. Campylobacter jejuni translocation across intestinal epithelial cells is facilitated by ganglioside-like lipooligosaccharide structures

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier); E.E.S. Nieuwenhuis (Edward); L. van Marrewijk (Leonie); D. Horst-Kreft (Deborah); L.F. de Ruiter (Lilian); A.P. Heikema (Astrid); W.J.B. van Wamel (Willem); J.A. Wagenaar (Jaap); H.P. Endtz (Hubert); J.N. Samsom (Janneke); P. van Baarlen (Peter); A.S. Akhmanova (Anna); A.F. van Belkum (Alex)

    2012-01-01

    textabstractTranslocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether

  9. Nucleases Encoded by Integraded Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter Jejuni

    NARCIS (Netherlands)

    Gaasbeek, E.J.; Wagenaar, J.A.; Guilhabert, M.R.; Putten, van J.P.; Parker, C.T.; Wal, van der F.J.

    2010-01-01

    The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic

  10. Campylobacter jejuni-associated perimyocarditis: two case reports and review of the literature.

    Science.gov (United States)

    Hessulf, Fredrik; Ljungberg, Johan; Johansson, Per-Anders; Lindgren, Mats; Engdahl, Johan

    2016-06-14

    Campylobacter spp. are among the most common bacterial causes of gastroenteritis world-wide and mostly follow a benign course. We report two cases of Campylobacter jejuni-associated perimyocarditis, the first two simultaneous cases published to date and the third and fourth cases over all in Sweden, and a review of the literature. A previously healthy 24-yo male (A) presented at the Emergency Department(ED) with recent onset of chest pain and a 3-day history of abdominal pain, fever and diarrhoea. The symptoms began within a few hours of returning from a tourist visit to a central European capital. Vital signs were stable, the Electrocardiogram(ECG) showed generalized ST-elevation, laboratory testing showed increased levels of C-reactive protein(CRP) and high-sensitive Troponin T(hsTnT). Transthoracic echocardiogram (TTE) was normal, stool cultures were positive for C Jejuni and blood cultures were negative. Two days after patient A was admitted to the ED his travel companion (B), also a previously healthy male (23-yo), presented at the same ED with almost identical symptoms: chest pain precipitated by a few days of abdominal pain, fever and diarrhoea. Patient B declared that he and patient A had ingested chicken prior to returning from their tourist trip. Laboratory tests showed elevated CRP and hsTnT but the ECG and TTE were normal. In both cases, the diagnosis of C jejuni-associated perimyocarditis was set based on the typical presentation and positive stool cultures with identical strains. Both patients were given antibiotics, rapidly improved and were fully recovered at 6-week follow up. Perimyocarditis is a rare complication of C jejuni infections but should not be overlooked considering the risk of heart failure. With treatment, the prognosis of full recovery is good but several questions remain to be answered regarding the pathophysiology and the male preponderance of the condition.

  11. Construction, expression, purification and antigenicity of recombinant Campylobacter jejuni flagellar proteins.

    Science.gov (United States)

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E; Oakley, Brian B; Seal, Bruce S

    2013-05-06

    Campylobacter jejuni, a flagellated, spiral-rod Gram-negative bacterium, is the leading etiologic agent of human acute bacterial gastroenteritis worldwide. The source of this microorganism for human infection has been implicated as consumption and handling of poultry meat where this microorganism is a commensal in the gut. Because the genomes of many C. jejuni isolates have been sequenced, our ultimate goal is to develop protein arrays for exploring this microorganism and host interactions. In this communication, we report cloning, expression and purification of C. jejuni flagellar proteins in a bacterial expression system. Twelve recombinant proteins were purified, which were confirmed by SDS-PAGE analysis and a His tag detection kit. The FlgE1, FlgG, FlgK, FliE, FlgH/FliH and FlaA recombinant proteins were further confirmed by LC-ESI-MS/MS. The purified recombinant proteins were tested whether they were immunogenic using antibodies from several sources. BacTrace anti-Campylobacter species antibody reacted to the FlaA recombinant protein, but not others. Rabbit anti-MOMP1 peptide antibody reacted strongly to FliE and weakly to FlaA, but not others. Rabbit anti-MOMP2 peptide antibody reacted strongly to the FlaA, FliG, FliE, FlhF, FlgG, FlgE1 and FliD recombinant proteins, less to FlgK and FlgH/FliH, and did not react to the FliY, FliS and FliH recombinant proteins. These antibody studies suggest that these recombinant flagellar proteins have potential for novel targets for vaccine development. It is also anticipated that these recombinant proteins provide us a very useful tool for investigating host immune response to C. jejuni. Published by Elsevier GmbH.

  12. Humoral immune response to campylobacter jejuni in patients with enterocolitis and Guillain-Barré syndrome

    OpenAIRE

    Ristić Ljiljana; Kocić Branislava; Babić Tatjana; Apostolski S.; Spasić Mirjana; Miljković-Selimović Biljana

    2012-01-01

    Campylobacter jejuni is one of the most important causes of diarrheal disease worldwide. In addition, it can cause neurological post-infectious sequels, such as Guillain-Barré syndrome (GBS). Humoral immune response to C. jejuni was monitored in patients with C. jejuni enterocolitis, GBS patients and healthy persons, by ELISA. Statistical significance between patients with enterocolitis and healthy persons, as well as among GBS patients and healthy controls, was proven. Statistical sign...

  13. Phenotypic and Genotypic Detection of Campylobacter jejuni at Local Chicken and Chicken Meat

    Directory of Open Access Journals (Sweden)

    A Rosyidi

    2010-05-01

    Full Text Available The Objective of this study was to identify the existence of Campylobacter jejuni based on phenotypic and genotypic characteristic in local chicken and chicken meats. Samples of local chicken intestine and meat were tested for the bacterial existence. Phenotypic examination was carried out by means of cultivation followed by gram staining and biochemical tests. Genotypic examination was conducted by polymerase chain reaction (PCR using genus specific16S rRNA gene at 816 bp and membrane-associated protein A (mapA gene at 589 bp as Campylobacter jejuni species-specific gene. The result of phenotypic detection revealed the existence of Campylobacter spp as gram negative, curved rod shape, oxidase positive, urease negative and motile. Genotypic examination also indicated the existence of bacteria using both primers. However, no Campylobacter jejuni detected from meat of the chickens. The results suggest that the method of PCR using a primer detecting species-specific gene of Campylobacter jejuni gives a rapid and accurate detection of the bacteria as compared to that using phenotypic and biochemical test. Identification of Campylobacter spp from chicken meats should be improved with enrichment method and sample collection. (Animal Production 12(2: 128-134 (2010Key Words: Campylobacter jejuni, mapA gene, local chicken

  14. Production and evaluation of chicken egg-yolk-derived antibodies against Campylobacter jejuni colonization-associated proteins.

    Science.gov (United States)

    Al-Adwani, Salma R; Crespo, Rocio; Shah, Devendra H

    2013-07-01

    Campylobacter jejuni is one of the most important causes of foodborne gastroenteritis. Chickens are considered a reservoir host of C. jejuni, and epidemiological studies have shown that contaminated chicken meat is a primary source of human infection. The objective of this study was to produce chicken egg-yolk-derived antibody (IgY) against the five C. jejuni colonization-associated proteins or CAPs (CadF, FlaA, MOMP, FlpA, and CmeC). Recombinant C. jejuni CAPs were expressed in Escherichia coli and were purified by affinity chromatography. Specific-pathogen-free laying hens were hyperimmunized with each recombinant CAP to induce production of α-CAP-specific IgY. Egg yolks were collected from immunized and nonimmunized hens and were lyophilized to obtain egg-yolk powder (EYP) with or without α-C. jejuni CAP-specific IgY. IgY was purified from EYP, and the antibody response in serum and egg yolk was tested by indirect enzyme-linked immunosorbent assay. The α-C. jejuni CAP-specific IgY levels were significantly (pjejuni CAP-specific IgY reacted with the C. jejuni cells and recombinant CAPs as detected by immunofluorescence microscopy and Western blot assays, respectively. We also show that α-CadF, α-MOMP, and α-CmeC IgY significantly reduced adherence of C. jejuni to the chicken hepatocellular carcinoma (LMH) cells, suggesting that these α-C. jejuni CAP-specific IgY may be useful as a passive immunotherapeutic to reduce C. jejuni colonization in chickens.

  15. Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces

    DEFF Research Database (Denmark)

    Keramas, Georgios; Bang, Dang Duong; Lund, Marianne

    2004-01-01

    . detection obtained with DNA microarrays were compared to those obtained by conventional culture and gel electrophoresis. By conventional culture, 60% of the samples were positive for either Campylobacter jejuni or Campylobacter coli. By PCR and capillary electrophoresis, 95% of the samples were positive...... for Campylobacter spp., whereas with DNA microarrays all samples were positive for Campylobacter spp. By application of DNA microarray analysis, the isolates in 4 samples (6%) could not be identified to the species level, whereas by PCR-capillary electrophoresis, the isolates in 12 samples (19%) remained......A DNA microarray for detection of Campylobacter spp. was recently developed and applied to detect Campylobacter spp. directly from chicken feces. Sixty-five pooled chicken cloacal swab samples from 650 individual broiler chickens were included in the study. The results of Campylobacter sp...

  16. Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host

    Science.gov (United States)

    Luangtongkum, Taradon; Shen, Zhangqi; Seng, Virginia W.; Sahin, Orhan; Jeon, Byeonghwa; Liu, Peng

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain and is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health. To facilitate the control of macrolide-resistant Campylobacter, it is necessary to understand if macrolide resistance affects the fitness and transmission of Campylobacter in its natural host. In this study we conducted pairwise competitions and comingling experiments in chickens using clonally related and isogenic C. jejuni strains, which are either susceptible or resistant to erythromycin (Ery). In every competition pair, Ery-resistant (Eryr) Campylobacter was consistently outcompeted by the Ery-susceptible (Erys) strain. In the comingling experiments, Eryr Campylobacter failed to transmit to chickens precolonized by Erys Campylobacter, while isogenic Erys Campylobacter was able to transmit to and establish dominance in chickens precolonized by Eryr Campylobacter. The fitness disadvantage was linked to the resistance-conferring mutations in the 23S rRNA. These findings clearly indicate that acquisition of macrolide resistance impairs the fitness and transmission of Campylobacter in chickens, suggesting that the prevalence of macrolide-resistant C. jejuni will likely decrease in the absence of antibiotic selection pressure. PMID:22183170

  17. Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies.

    Science.gov (United States)

    Gill, Carson; Bahrndorff, Simon; Lowenberger, Carl

    2017-08-01

    The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen-induced gene expression in the intestinal tracts of adult house flies 4-24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni-infected and -uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect-pathogen interactions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  18. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Science.gov (United States)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  19. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    Science.gov (United States)

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  20. Antibiotic Resistance and Prevalence of Campylobacter jejuni and Campylobacter coli in Poultry Liver

    Directory of Open Access Journals (Sweden)

    A. Saadatmand

    2017-10-01

    Full Text Available Background and Objective: Campylobacter is a common type of bacteria in humans and poultry, which generally accounts for various diseases in humans, such as gastroenteritis. The poultry digestive system contains a high level of these bacteria. The aim of this study was to evaluate the prevalence of C. jejuni and C. coli in the poultry liver packed for marketing and determine the antibiotic resistance of the isolates. Materials and Methods: This cross-sectional study was conducted in the spring of 2016 in the city of Hamadan, Iran. A total of 80 samples of packed chicken liver were collected from the stores supplying meat and poultry products in Hamadan. The enrichment of the liver samples was performed in brucella broth; subsequently, separation was carried out on Campylobacter selective agar. The presence of bacteria was confirmed by the implementation of chemical diagnostic tests and direct microscopic observation. Finally, the antibiotic resistance of the isolates was tested using disk diffusion method. Results: According to the results, Campylobacter had a prevalence rate of 90%, 73.61% and 26.39% of which were C. jejuni and C. coli, respectively. Out of the 12 antibiotic discs used in this study, the highest resistance (79% and sensitivity (99% rates were observed for cotrimoxazole (10 µg and gentamycin (10 µg, respectively. Conclusion: The packed poultry liver in Hamadan had a relatively high prevalence of C. jejuni and C. coli. Therefore, the consumers should be careful about the cooking time and using this food. Accordingly, they can prevent the dissemination of this bacteria by cooking the liver at a temperature of above 70°C for 20 min and properly washing the devices before cooking this product. Additionally, the elderly, children, and those with immunodeficiency are recommended to avoid eating poultry liver.

  1. Intestinal Mucus Gel and Secretory Antibody are Barriers to Campylobacter jejuni Adherence to INT 407 Cells

    Science.gov (United States)

    1987-06-01

    contained sigA against C. jejuni HC.INT-407 cells overlaid with: l0"’,el The importance of specific antibodies to campylobacter was BSA...to Campylobacter Jejuni Adherence to INT 407 Cells 12. PERSONAL AUrOR(S) McSweegan, E.; Burr, D.ll.; Walker, R.I. 13a. TYPE OF REPORT 13b. TIME...stored at -20’C. sIgA EIISA. Anti-C. jejuni IgA antibody was measured in Calculations. Results were expressed as the mean of rabbit intestinal mucus

  2. Effects of decontamination at varying contamination levels of Campylobacter jejuni on broiler meat

    DEFF Research Database (Denmark)

    Boysen, Louise; Wechter, Naja Strandby; Rosenquist, Hanne

    2013-01-01

    When assessing effects of decontamination techniques on counts of Campylobacter spp. on broiler meat, it is essential that the results reflect the variations that may exist. Decontamination studies often use high inoculation levels (107 to 108 cfu) and one or few strains of Campylobacter jejuni......, thereby restricting the results to reflect only a limited part of the true situation. This study presents results from physical and chemical decontamination of broiler meat medallions using different strains and different initial concentrations of C. jejuni. For 3 strains of C. jejuni, mean log reductions...

  3. Evaluation of a polysaccharide conjugate vaccine to reduce colonization by Campylobacter jejuni in broiler chickens.

    Science.gov (United States)

    Hodgins, Douglas C; Barjesteh, Neda; St Paul, Michael; Ma, Zuchao; Monteiro, Mario A; Sharif, Shayan

    2015-06-02

    Campylobacter jejuni is a leading bacterial cause of food-borne illness in humans. Symptoms range from mild gastroenteritis to dysentery. Contaminated chicken meat is the most common cause of infection. Broiler chickens become colonized with high numbers of C. jejuni in the intestinal tract, but do not become clinically ill. Vaccination of broiler chicks to control colonization by C. jejuni is challenging because immune function is limited in the first 2 weeks post-hatch and immune suppressive maternal antibodies are common. In addition, there is little time for induction of immunity, since broilers reach slaughter weight by 5-6 weeks of age. In the current study the immunogenicity of a C. jejuni capsular polysaccharide-diphtheria toxoid conjugated vaccine (CPSconj), administered subcutaneously with various adjuvants was assessed and the efficacy of vaccination for reducing cecal colonization after experimental challenge was evaluated by determining colony-forming units (CFU) of C. jejuni in cecal contents. The CPSconj vaccine was immunogenic when administered as three doses at 3, 4 and 5 weeks of age to specific pathogen free chicks lacking maternal antibodies (seroconversion rates up to 75%). Commercial broiler chicks (having maternal antibodies) receiving two doses of CPSconj vaccine at 7 and 21 days of age did not seroconvert before oral challenge at 29 days, but 33% seroconverted post challenge; none of the placebo-injected, challenged birds seroconverted. Vaccinated birds had significantly lower numbers of C. jejuni in cecal contents than control birds at necropsy (38 days of age). CFU of C. jejuni did not differ significantly among groups of birds receiving CPSconj vaccine with different adjuvants. In two trials, the mean reduction in CFU associated with vaccination was 0.64 log10 units. The CPSconj vaccine was immunogenic in chicks lacking maternal antibodies, vaccinated beginning at 3 weeks of age. In commercial broiler birds (possessing maternal

  4. Campylobacter jejuni strain CG8421: a refined model for the study of Campylobacteriosis and evaluation of Campylobacter vaccines in human subjects.

    Science.gov (United States)

    Tribble, David R; Baqar, Shahida; Carmolli, Marya P; Porter, Chad; Pierce, Kristen K; Sadigh, Katrin; Guerry, Patricia; Larsson, Catherine J; Rockabrand, David; Ventone, Cassandra H; Poly, Frederic; Lyon, Caroline E; Dakdouk, Sandra; Fingar, Ann; Gilliland, Theron; Daunais, Patrick; Jones, Erika; Rymarchyk, Stacia; Huston, Christopher; Darsley, Michael; Kirkpatrick, Beth D

    2009-11-15

    A robust human challenge model for Campylobacter jejuni is an important tool for the evaluation of candidate vaccines. The previously established model conveys a potential risk of Guillain-Barré syndrome attributable to lipooligosaccharide ganglioside mimicry. This work establishes a new C. jejuni human challenge model that uses a strain (CG8421) without ganglioside mimicry and that applies Campylobacter-specific cellular immunity screening to achieve high attack rates at lower inoculum doses. Healthy Campylobacter-naive adults participated in an open-label challenge trial. Participants were dosed with C. jejuni CG8421 and followed as inpatients. Pattern of illness, bacterial shedding, and immunologic responses were determined. Following screening, 23 subjects received 1 X 10(6) or 1 X 10(5) colony-forming units of C. jejuni, with attack rates (percentage of patients who became ill) of 100% (1 X 10(6) colony-forming units) or 93% (1 X 10(5) colony-forming units). Every subject shed CG8421; the median time to diarrhea onset was 72.3 h (interquartile range, 53.9-99.9 h). Symptoms included abdominal cramps (74%), nausea (65%), and fever (39%). No major safety concerns occurred, including bacteremia, hypotension, or postinfectious sequelae. Unexpectedly, recrudescent infection occurred in 2 subjects (1 subject without Campylobacter-specific adaptive immune responses and 1 with azithromycin resistance acquired in vivo); both infections cleared after receipt of additional antibiotics. Cumulative Campylobacter-specific immune responses were as follows: serologic response occurred in 87% (immunoglobulin [Ig] A) and 48% (IgG) of subjects, in vitro interferon-gamma production occurred in 91% of subjects, and 96% of subjects had IgA antibody-secreting cells and fecal IgA detected. The C. jejuni CG8421 challenge model provides a safe and effective tool, without the risk of Guillain-Barré syndrome. The model demonstrates high attack rates after lower doses of challenge

  5. An Improved Culture Method for Selective Isolation of Campylobacter jejuni from Wastewater

    Science.gov (United States)

    Kim, Jinyong; Oh, Euna; Banting, Graham S.; Braithwaite, Shannon; Chui, Linda; Ashbolt, Nicholas J.; Neumann, Norman F.; Jeon, Byeonghwa

    2016-01-01

    Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin), to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater. PMID:27617011

  6. Immune Response to Campylobacter jejuni in a Rural Community in Thailand

    Science.gov (United States)

    1986-02-01

    AND SUBTITLE S FUNDING NUMBERS Immune Response to Campylobacter Jejuni in a Rural Community in Thailand 61102A 30161102BS13 AB 6. AUTHOR(S) DA 312588...Contract Title: Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development 12a. DISTRIBUTION. AVAILABILITY STATEMENT 12b... Antibodies to Campylobacter in Thailand 25i r *24G 11 2 .E _ 4 1 2-4 5-o to 2o 2 4 ൖ AGE GROUP (YEARS) AGE GROUP (tARES) 7 / S Figure 2. Age

  7. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses

    Directory of Open Access Journals (Sweden)

    Maike T. Maziero

    2010-06-01

    Full Text Available Campylobacter jejuni is the most common thermophilic Campylobacter associated with human enteritis in many countries. Broilers and their by-products are the main sources for human enteritis. Refrigeration and freezing are used to control bacterial growth in foods. The effect of these interventions on survival of Campylobacter jejuni is yet not quite understood. This study evaluated the effect of storage temperature on the survival of C. jejuni in chicken meat stored for seven days at 4ºC and for 28 days at -20ºC. The influence of selective enrichment on recovery of Campylobacter was also evaluated. Thirty fresh chicken meat samples were analyzed and 93.3% was contaminated with termotolerant Campylobacter spp. with average count of 3.08 Log10 CFU/g on direct plating. After refrigeration, 53.3% of the analyzed samples tested positive for Campylobacter and the average count was 1.19 Log10 CFU/g. After storage at -20ºC, 36.6% of the samples were positive with a verage count of 0.75 Log10 CFU/g. C. jejuni was detected after enrichment, respectively, in 50% of the fresh, 36.7% of the refrigerated and 33.3% of the frozen meat samples analyzed. No difference was detected for the recovery of C. jejuni from fresh, refrigerated or frozen samples after selective enrichment, showing that this microorganism can survive under the tested storage conditions.

  8. High-Level Ciprofloxacin-Resistant Campylobacter jejuni Isolates Circulating in Humans and Animals in Incheon, Republic of Korea.

    Science.gov (United States)

    Kim, J S; Lee, M Y; Kim, S J; Jeon, S-E; Cha, I; Hong, S; Chung, G T; Huh, M-J; Kang, Y-H; Yoo, C-K; Kim, J

    2016-11-01

    Campylobacter jejuni is one of the major causative pathogens of outbreaks or sporadic cases of diarrhoeal diseases worldwide. In this study, we compared the phenotypic and genetic characteristics of C. jejuni isolates of human and food-producing animal origins in Korea and examined the genetic relatedness between these two groups of isolates. Regardless of isolation source, all C. jejuni isolates harboured four virulence genes, cadF, cdtB, ciaB and racR, whereas the wlaN and virB11 genes were more frequently observed in human isolates. Antimicrobial susceptibility testing showed that the majority of C. jejuni isolates displayed high-level resistance to fluoroquinolone (95.2%) or tetracycline (76.2%) antibiotics, and 12.4% of isolates exhibited multidrug resistance (more than three classes of antibiotics tested). Pulsed-field gel electrophoresis (PFGE) of all Campylobacter isolates revealed 51 different SmaI-PFGE patterns and six major clusters containing both human and animal isolates. These results indicate that genetically diverse strains of C. jejuni with antimicrobial drug-resistance and virulence properties have prevailed in Incheon. Nevertheless, some particular populations continue to circulate within the community, providing the evidence for an epidemiological link of C. jejuni infections between humans and food-producing animals. Therefore, the continued monitoring and surveillance of C. jejuni isolates of human and food-producing animal origins are required for public health and food safety. © 2016 Blackwell Verlag GmbH.

  9. Flies and Campylobacter infection of broiler flocks

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Bang, Dang Duong

    2004-01-01

    A total of 8.2% of flies caught outside a broiler house in Denmark had the potential to transmit Campylobacter jejuni to chickens, and hundreds of flies per day passed through the ventilation system into the broiler house. Our study suggests that flies may be an important source of Campylobacter...

  10. A novel Campylobacter jejuni sequence type from a culture-negative patient in the Gambia.

    Directory of Open Access Journals (Sweden)

    Gerard A J Morris

    2008-03-01

    Full Text Available The introduction of molecular diagnostic methods is crucial for improved understanding of the aetiology and epidemiology of bacterial infections in communities in resource poor settings. A blood sample from a 7 month old patient diagnosed with malaria in 2001 in a Gambian outpatient clinic was reported as culture negative after it was subjected to traditional bacterial culture protocols. We re-addressed the analysis of the blood sample from this case more recently (after 6.5 years in archival storage in pilot work establishing 16S rRNA PCR in our molecular laboratory. Initial 16S rRNA PCR results confirmed the presence of bacterial DNA in the sample. 16S rRNA sequence analysis identified the organism as Campylobacter spp. In light of the molecular evidence we successfully grew the organism using appropriate culture conditions and subsequently biochemically confirmed that the isolate was Campylobacter jejuni. PCR and DNA sequencing of a set of seven C. jejuni housekeeping genes and in silico Multilocus Sequence Typing (MLST analysis revealed that the isolate exhibits a novel sequence type (ST of C. jejuni (ST 2928 and belongs to ST-443 clonal complex. This study demonstrates the potential for molecular tools to enhance the diagnosis of bacterial infections, which remain a major killer globally, not least in children in the developing world. Improvements in diagnostics are needed, and will be important not only for sick individuals but also for populations, where better measures of disease burden will contribute significantly to the improvement of public health policy.

  11. Global Distribution of Campylobacter jejuni Penner Serotypes: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Brian L Pike

    Full Text Available Penner serotyping has been the principal method for differentiating Campylobacter isolates since its inception. Campylobacter capsule polysaccharide (CPS, the principal serodeterminant on which Penner serotyping is based, is presently of interest as a vaccine component. To determine the required valency of an effective CPS-based vaccine, a comprehensive understanding of CPS distribution is needed. Because of the association between Penner serotype and CPS, we conducted a systematic review to estimate the frequency and distribution of Penner serotypes associated with cases of Campylobacteriosis. In total, more than 21,000 sporadic cases of C. jejuni cases were identified for inclusion. While regional variation exists, distribution estimates indicate that eight serotypes accounted for more than half of all sporadic diarrheal cases globally and three serotypes (HS4 complex, HS2, and HS1/44 were dominant inter-regionally as well as globally. Furthermore, a total of 17 different serotypes reached a representation of 2% or greater in at least one of the five regions sampled. While this review is an important first step in defining CPS distribution, these results make it clear that significant gaps remain in our knowledge. Eliminating these gaps will be critical to future vaccine development efforts.

  12. Characterization and reactivity of broiler chicken sera to selected recombinant Campylobacter jejuni chemotactic proteins.

    Science.gov (United States)

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E; Seal, Bruce S

    2014-05-01

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to colonization and invasion in the host cells, proteins involved in chemotactic processes can be novel targets for vaccine development. In this communication, we report amplification, cloning and expression of the C. jejuni chemotactic proteins in an Escherichia coli expression system. A total of 15 chemotactic protein genes were successfully expressed. These recombinant proteins were confirmed by nucleotide sequencing, SDS-PAGE analysis and immunoblot analysis of six-His and hemagglutinin tags. Twelve recombinant chemotactic proteins were further tested whether they were antigenic using sera from broiler chickens older than 4 weeks. The immunoblot results show that each chicken serum reacted to a variety of the recombinant proteins, but all sera reacted to the Cjj0473 gene product (annotated as a methyl-accepting chemotaxis protein), suggesting that anti-Campylobacter antibodies may be prevalent in the poultry population. These antibody screening results provide a rationale for further evaluation of the Cjj0473 protein as a potential vaccine for broilers to improve human food safety.

  13. Fluoroquinolone and macrolide resistance in Campylobacter jejuni isolated from broiler slaughterhouses in southern Brazil.

    Science.gov (United States)

    Sierra-Arguello, Yuli M; Perdoncini, G; Morgan, R B; Salle, C T P; Moraes, H L S; Gomes, Marcos J P; do Nascimento, Vladimir Pinheiro

    2016-01-01

    Campylobacter jejuni is recognized as a leading cause of acute bacterial gastroenteritis in humans. The over-use of antimicrobials in the human population and in animal husbandry has led to an increase in antimicrobial-resistant infections, particularly with fluoroquinolones and macrolides. The aim of the present study was to provide information of the current status of antimicrobial resistance patterns in Campylobacter jejuni from poultry sources. Fifty strains were recovered from broiler slaughterhouses in Rio Grande do Sul state, Brazil, 2012. The strains were investigated for antimicrobial susceptibility against three agents (ciprofloxacin, nalidixic acid and erythromycin) by minimal inhibitory concentrations. The strains were analysed by polymerase chain reaction-restriction fragment length polymorphism for detection of the Thr-86 mutation that confers resistance to ciprofloxacin. In addition, all the strains were tested for the presence of efflux systems (cmeB gene) conferring antimicrobial resistance. The minimum inhibitory concentrations results showed that 98% of isolates were sensitive to erythromycin and most isolates were resistant to ciprofloxacin (94%) and nalidixic acid (90%). A complete correlation was observed between the minimum inhibitory concentrations and PCR-RFLP assay. Finally, the cmeB gene that is responsible for multidrug resistance was detected in 16 isolates out the 50 strains (32%).

  14. Campylobacter jejuni PflB is required for motility and colonisation of the chicken gastrointestinal tract.

    Science.gov (United States)

    Kanji, Alpa; Jones, Michael A; Maskell, Duncan J; Grant, Andrew J

    2015-12-01

    Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis worldwide. Although the mechanisms by which C. jejuni causes disease are not completely understood, the presence of functional flagella appears to be required for colonisation of the gastrointestinal tract of humans and animals. Therefore much attention has been given to understanding the synthesis and role of flagella in C. jejuni. In this study we report insights into the function of PflB that is essential for Campylobacter motility. We have explored the function of this gene by constructing deletion mutants in C. jejuni strains NCTC11168 and M1, in the genes cj0390 and CJM1_0368, respectively. The mutants were non-motile yet assembled flagella that appeared structurally identical to the wild type. Furthermore the protein is required for C. jejuni colonisation of caeca in a two-week old chicken colonisation model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Co-administration of the Campylobacter jejuni N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens.

    Science.gov (United States)

    Nothaft, H; Perez-Muñoz, M E; Gouveia, G J; Duar, R M; Wanford, J J; Lango-Scholey, L; Panagos, C G; Srithayakumar, V; Plastow, G S; Coros, C; Bayliss, C D; Edison, A S; Walter, J; Szymanski, C M

    2017-09-22

    Source attribution studies report that consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimizing the vaccine for commercial broiler chickens has great potential to prevent pathogen entry into the food chain. Here, we tested the same vaccination approach in broilers and observed similar efficacy in pathogen load reduction, stimulation of host IgY response, lack of C. jejuni resistance development, uniformity in microbial gut composition, and bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of the Clostridiales XIVa cluster, Anaerosporobacter mobilis, significantly more abundant in responder birds. In broilers, co-administration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody response, and weight gain. To investigate whether the responder/non-responder effect was due to selection of a C. jejuni 'super colonizer mutant' with altered phase-variable genes, we analysed all polyG-containing loci of the input strain compared to non-responder colony isolates and found no evidence of phase state selection. However, untargeted NMR-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels possibly linked to the increased microbial diversity in this subgroup. The comprehensive methods used to examine the vaccine response bimodality provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy.ImportanceCampylobacter jejuni is a common cause of human diarrheal disease worldwide and listed by the World Health Organization as a high priority

  16. Multilocus sequence typing of Campylobacter jejuni and Campylobacter coli isolates from poultry, cattle and humans in Nigeria.

    Science.gov (United States)

    Ngulukun, S; Oboegbulem, S; Klein, G

    2016-08-01

    To determine the genetic diversity of Campylobacter jejuni and Campylobacter coli isolates from Nigeria and to identify the association between multilocus sequence types and hosts (poultry, cattle and humans). Isolates were identified using multiplex PCR assays. Multilocus sequence typing (MLST) was used to determine the genetic diversity of 36 Camp. jejuni and 24 Camp. coli strains isolated from poultry, cattle and humans. Of the 36 Camp. jejuni genotyped, 21 sequence types (ST) were found, 9 (43%) were new while of the 24 Camp. coli isolates genotyped, 22 STs were identified with 14 (64%) being new. The most prevalent sequence type was ST1932 followed by ST1036 and ST607 while the prevalent clonal complexes were CC-828, CC-460 and CC-353. Campylobacter isolates from Nigeria were found to be diverse with novel genotypes. There was overlap of CC-828, CC-460 and CC-353 between the poultry, cattle and human isolates. Genetic exchange was also detected in two of the Camp. coli isolates. This study highlights the genetic diversity of Campylobacter strains in Nigeria, demonstrating that Camp. jejuni and Camp. coli isolates are diverse and have both local and global strains. The predominant sequence types and clonal complexes found in this study differ from other countries; this exemplifies that different predominant Campylobacter populations exist between countries. © 2016 The Society for Applied Microbiology.

  17. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    Science.gov (United States)

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  18. Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model

    Directory of Open Access Journals (Sweden)

    Jin-lin Huang

    2010-01-01

    Full Text Available Campylobacter jejuni is the most common zoonotic bacterium associated with human diarrhea, and chickens are considered to be one of the most important sources for human infection, with no effective prophylactic treatment available. We describe here a prophylactic strategy using chitosan-DNA intranasal immunization to induce specific immune responses. The chitosan used for intranasal administration is a natural mucus absorption enhancer, which results in transgenic DNA expression in chicken nasopharynx. Chickens immunized with chitosan-DNA nanoparticles, which carried a gene for the major structural protein FlaA, produced significantly increased levels of serum anti-Campylobacter jejuni IgG and intestinal mucosal antibody (IgA, compared to those treated with chitosan-DNA (pCAGGS. Chitosan-pCAGGS-flaA intranasal immunization induced reductions of bacterial expellation by 2-3 log10 and 2 log10 in large intestine and cecum of chickens, respectively, when administered with the isolated C. jejuni strain. This study demonstrated that intranasal delivery of chitosan-DNA vaccine successfully induced effective immune response and might be a promising vaccine candidate against C. jejuni infection.

  19. Genotypic characterisation and cluster analysis of Campylobacter jejuni isolates from domestic pets, human clinical cases and retail food

    Directory of Open Access Journals (Sweden)

    Acke Els

    2011-03-01

    Full Text Available Abstract The genetic similarity of Campylobacter jejuni isolates from pets, compared to human clinical cases and retail food isolates collected in Ireland over 2001-2006 was investigated by cluster analysis of pulsed-field gel electrophoresis (PFGE fingerprinting profiles. Comparison of the PFGE profiles of 60 pet isolates and 109 human isolates revealed that seven (4.1% profiles were grouped in clusters including at least one human and one pet C. jejuni isolate. In total six (1.6% of 60 pet and 310 food profiles were in clusters with at least one food and one pet C. jejuni isolate. The detection of only a small number of genetically indistinguishable isolates by PFGE profile cluster analysis from pets and from humans with enteritis in this study suggests that pets are unlikely to be an important reservoir for human campylobacteriosis in Ireland. However, genetically indistinguishable isolates were detected and C. jejuni from pets may circulate and may contribute to clinical infections in humans. In addition, contaminated food fed to pets may be a potential source of Campylobacter infection in pets, which may subsequently pose a risk to humans.

  20. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration.

    Science.gov (United States)

    Baffoni, Loredana; Gaggìa, Francesca; Garofolo, Giuliano; Di Serafino, Gabriella; Buglione, Enrico; Di Giannatale, Elisabetta; Di Gioia, Diana

    2017-06-19

    C. jejuni is considered a food safety concern to both public health authorities and consumers since it is the leading bacterial cause of food-borne gastroenteritis in humans. A high incidence of C. jejuni in broiler flocks is often correlated to pathogen recovery in retail poultry meat, which is the main source of human infection. In this work broiler chickens were fed with a synbiotic product mixed with conventional feed using two different administration strategies. The synbiotic was formulated with the microencapsulated probiotic Bifidobacterium longum PCB133 and a xylo-oligosaccharide (XOS). 1-day old chicks were infected with C. jejuni strain M1 (105 cells) and the synbiotic mixture was then administered starting from the first and the 14th day of chicken life (for animal groups GrpC and GrpB respectively). The goal of this study was to monitor C. jejuni load at caecum level at different sampling time by real-time PCR, identifying the best administration strategy. The microbiological analysis of the caecal content also considered the quantification of Campylobacter spp., Bifidobacterium spp. and B. longum. The supplemented synbiotic was more successful in reducing C. jejuni and Campylobacter spp. when administered lifelong, compared to the shorter supplementation (GrpB). Bifidobacterium spp. quantification did not show significant differences among treatments and B. longum PCB133 was detected in both supplemented groups evidencing the successful colonization of the strain. Moreover, the samples of the control group (GrpA) and GrpC were analysed with PCR-denaturing gradient gel electrophoresis (PCR-DGGE) to compare the caecal microbial community profiles at the beginning and at the end of the trial. Pattern analysis evidenced the strong influence of the early synbiotic supplementation, although a physiological change in the microbial community, occurring during growth, could be observed. Experimental results demonstrate that the synbiotic approach at farm level

  1. Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid

    Science.gov (United States)

    Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,18...

  2. [The relationship of Campylobacter jejuni subsp. jejuni enterotoxigenicity and the increase of cAMP and electrolyte changes in the rat intestine].

    Science.gov (United States)

    Fernández, H; Toro, J

    1998-08-01

    Small intestine alterations produced by the enterotoxigenic capacity of Campylobacter jejuni subsp. jejuni are similar to the hydric, electrolytic and pathological changes caused by choleraic and thermolabile Escherichia coli toxins. To study the enterotoxigenic capacity of 4 strains of Campylobacter jejuni subsp. jejuni using the intestinal loop model. Rat intestinal loops were inoculated with culture filtrates of the four strains. Enterotoxigenicity was assessed by fluid accumulation, the increase in Na+ and Cl- in the loop fluid, and cAMP increase in loop tissues. An enterotoxigenic Escherichia coil strain and sterile Brucella both were used as positive and negative controls, respectively. The filtrates of two strains produced fluid accumulation in the loops, significantly increased Na+ and Cl- secretion to the intestinal lumen and increased tissue cAMP levels. Some strains of Campylobacter jejuni subsp. jejuni are able to show enterotoxigenicity in vivo, increasing cAMP levels in the intestinal cells and altering electrolyte exchange mechanisms.

  3. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  4. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides.

    Science.gov (United States)

    Semchenko, Evgeny A; Day, Christopher J; Wilson, Jennifer C; Grice, I Darren; Moran, Anthony P; Korolik, Victoria

    2010-11-30

    Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37 °C and 42 °C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-M(r) LOS form, which was different in size and structure to the previously characterized higher-M(r) form bearing GM₁ mimicry. The lower-M(r) form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37 °C to ~35% at 42 °C. The structure of the lower-M(r) form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM₁, asialo-GM₁, GD₁, GT₁ and GQ₁ gangliosides, however, it did not display GM₁ mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM₁. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. The presence of differing amounts of LOS forms at 37 and 42 °C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  5. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    Directory of Open Access Journals (Sweden)

    Moran Anthony P

    2010-11-01

    Full Text Available Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O was compared to its genome-sequenced variant (11168-GS, and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  6. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    Directory of Open Access Journals (Sweden)

    Mohamed K. Fakhr

    2013-08-01

    Full Text Available Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL, roxarsone (4–2048 μg/mL, arsenate (16–8,192 μg/mL and arsenite (4–2,048 μg/mL. A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL, roxarsone (512–2,048 μg/mL, and arsenate (128–1,024 μg/mL, but at lower concentrations for arsenite (4–16 μg/mL. Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3, 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR. The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.

  7. Peripheral CD4+ T Cell Cytokine Responses Following Human Challenge and Re-Challenge with Campylobacter jejuni

    Science.gov (United States)

    Fimlaid, Kelly A.; Lindow, Janet C.; Tribble, David R.; Bunn, Janice Y.; Maue, Alexander C.; Kirkpatrick, Beth D.

    2014-01-01

    Campylobacter jejuni is a leading cause of human gastroenteritis worldwide; however, our understanding of the human immune response to C. jejuni infection is limited. A previous human challenge model has shown that C. jejuni elicits IFNγ production by peripheral blood mononuclear cells, a response associated with protection from clinical disease following re-infection. In this study, we investigate T lymphocyte profiles associated with campylobacteriosis using specimens from a new human challenge model in which C. jejuni-naïve subjects were challenged and re-challenged with C. jejuni CG8421. Multiparameter flow cytometry was used to investigate T lymphocytes as a source of cytokines, including IFNγ, and to identify cytokine patterns associated with either campylobacteriosis or protection from disease. Unexpectedly, all but one subject evaluated re-experienced campylobacteriosis after re-challenge. We show that CD4+ T cells make IFNγ and other pro-inflammatory cytokines in response to infection; however, multifunctional cytokine response patterns were not found. Cytokine production from peripheral CD4+ T cells was not enhanced following re-challenge, which may suggest deletion or tolerance. Evaluation of alternative paradigms or models is needed to better understand the immune components of protection from campylobacteriosis. PMID:25397604

  8. Peripheral CD4+ T cell cytokine responses following human challenge and re-challenge with Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Kelly A Fimlaid

    Full Text Available Campylobacter jejuni is a leading cause of human gastroenteritis worldwide; however, our understanding of the human immune response to C. jejuni infection is limited. A previous human challenge model has shown that C. jejuni elicits IFNγ production by peripheral blood mononuclear cells, a response associated with protection from clinical disease following re-infection. In this study, we investigate T lymphocyte profiles associated with campylobacteriosis using specimens from a new human challenge model in which C. jejuni-naïve subjects were challenged and re-challenged with C. jejuni CG8421. Multiparameter flow cytometry was used to investigate T lymphocytes as a source of cytokines, including IFNγ, and to identify cytokine patterns associated with either campylobacteriosis or protection from disease. Unexpectedly, all but one subject evaluated re-experienced campylobacteriosis after re-challenge. We show that CD4+ T cells make IFNγ and other pro-inflammatory cytokines in response to infection; however, multifunctional cytokine response patterns were not found. Cytokine production from peripheral CD4+ T cells was not enhanced following re-challenge, which may suggest deletion or tolerance. Evaluation of alternative paradigms or models is needed to better understand the immune components of protection from campylobacteriosis.

  9. Prevalence of Campylobacter Jejuni and Coli in Sheep Carcasses by Using

    Directory of Open Access Journals (Sweden)

    Reza Shahrokhabadi

    2013-11-01

    Full Text Available Background: Campylobacter species are common bacterial pathogens causing gastroenteritis in humans worldwide. Materials and Methods: A total of 148 randomly sheep carcasses were sampled by surface section of neck meat taken immediately after slaughter analyzed using microbiological examinations. Results: Campylobacter spp. was isolated from 10.13% meat cultures samples examined. Among these 80% sample were C. jejuni and 20% sample were C. coli. Using PCR assays, the number of positive campylobacters increased to 11.48%. Of these positive samples, 82.35% were C. jejuni and 17.65% were C. coli. Significantly higher prevalence rates of Campylobacter spp. (p<0.05 were found in the meat samples taken in summer (47.05%. Conclusion: The PCR is a reliable and sensitive method which can be used as a diagnostic technique for the detection of campylobacter in lamb samples.

  10. A one-year study of campylobacter carriage by individual Danish broiler chickens as the basis for selection of Campylobacter spp. strains for a chicken infection model

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Nielsen, E.M.; Knudsen, K.

    2003-01-01

    (.)5 %). Campylobacter isolates were typed using Penner heat-stable serotyping and flaA-typing methods. Data of campylobacter carriage by individual chickens and data generated by the use of different typing methods contributed to a better understanding of the dynamics of campylobacter infection within the broiler...... flocks. C. jejuni Penner heat-stable serotype HS2, flaA-type 1 was the most common type found in Danish broiler chickens....

  11. Designing multiplex PCR system of Campylobacter jejuni for efficient typing by improving monoplex PCR binary typing method.

    Science.gov (United States)

    Yamada, Kazuhiro; Ibata, Ami; Suzuki, Masahiro; Matsumoto, Masakado; Yamashita, Teruo; Minagawa, Hiroko; Kurane, Ryuichiro

    2015-01-01

    Campylobacter jejuni is responsible for the majority of Campylobacter infections. As the molecular epidemiological study of outbreaks, pulsed-field gel electrophoresis (PFGE) is performed in general. But PFGE has several problems. PCR binary typing (P-BIT) method is a typing method for Campylobacter spp. that was recently developed, and was reported to have a similar discriminatory power and stability to those of PFGE. We modified the P-BIT method from 18 monoplex PCRs to two multiplex PCR systems (mP-BIT). The same results were obtained from monoplex PCRs using original primers and multiplex PCR in the representative isolates. The mP-BIT can analyze 48 strains at a time by using 96-well PCR systems and can identify C. jejuni because mP-BIT includes C. jejuni marker. The typing of the isolates by the mP-BIT and PFGE demonstrated generally concordant results and the mP-BIT method (D = 0.980) has a similar discriminatory power to that of PFGE with SmaI digest (D = 0.975) or KpnI digest (D = 0.987) as with original article. The mP-BIT method is quick, simple and easy, and comes to be able to perform it at low cost by having become a multiplex PCR system. Therefore, the mP-BIT method with two multiplex PCR systems has high potential for a rapid first-line surveillance typing assay of C. jejuni and can be used for routine surveillance and outbreak investigations of C. jejuni in the future. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    -free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  13. Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea.

    Science.gov (United States)

    Oh, Jae-Young; Kwon, Yong-Kuk; Wei, Bai; Jang, Hyung-Kwan; Lim, Suk-Kyung; Kim, Cheon-Hyeon; Jung, Suk-Chan; Kang, Min-Su

    2017-01-01

    Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007-2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009-2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.

  14. Host-Pathogen Interactions in Guillain-Barré Syndrome : the role of Campylobacter jejuni lipooligosaccharide sialylation

    NARCIS (Netherlands)

    A.P. Heikema (Astrid)

    2013-01-01

    markdownabstract*Campylobacter jejuni* (*C. jejuni*) is a spiral, comma-shaped Gram-negative bacterium which is motile due to bipolar flagella. *C. jejuni* is frequently present in the intestines of poultry and birds, where it is considered to be part of the normal intestinal flora (1).

  15. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barré and Miller Fisher syndromes

    NARCIS (Netherlands)

    P.C.R. Godschalk (Peggy); M.L. Kuijf (Mark); J. Li (Jianjun); F. St. Michael (Frank); C.W. Ang (Wim); M.F. Karwaski; D. Brochu (Denis); B.C. Jacobs (Bart); A. Moterassed (Ali); H.P. Endtz (Hubert); A.F. van Belkum (Alex); M. Gilbert (Michel)

    2007-01-01

    textabstractMolecular mimicry between lipooligosaccharides (LOS) of Campylobacter jejuni and gangliosides in peripheral nerves plays a crucial role in the pathogenesis of C. jejuni-related Guillain-Barré syndrome (GBS). We have analyzed the LOS outer core structures of 26 C. jejuni strains

  16. Detection of Campylobacter jejuni in rectal swab samples from Rousettus amplexicaudatus in the Philippines.

    Science.gov (United States)

    Hatta, Yuki; Omatsu, Tsutomu; Tsuchiaka, Shinobu; Katayama, Yukie; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Une, Yumi; Yoshikawa, Yasuhiro; Maeda, Ken; Kyuwa, Shigeru; Mizutani, Tetsuya

    2016-09-01

    Bats are the second diversity species of mammals and widely distributed in the world. They are thought to be reservoir and vectors of zoonotic pathogens. However, there is scarce report of the evidence of pathogenic bacteria kept in bats. The precise knowledge of the pathogenic bacteria in bat microbiota is important for zoonosis control. Thus, metagenomic analysis targeting the V3-V4 region of the 16S rRNA of the rectal microbiota in Rousettus amplexicaudatus was performed using high throughput sequencing. The results revealed that 103 genera of bacteria including Camplyobacter were detected. Campylobacter was second predominant genus, and Campylobacter coli and Campylobacter jejuni were identified in microbiome of R. amplexicaudatus. Campylobacteriosis is one of the serious bacterial diarrhea in human, and the most often implicated species as the causative agent of campylobacteriosis is C. jejuni. Therefore, we investigated the prevalence of C. jejuni in 91 wild bats with PCR. As a result of PCR assay targeted on 16S-23S intergenic spacer, partial genome of C. jejuni was detected only in five R. amplexicaudatus. This is the first report that C. jejuni was detected in bat rectal swab samples. C. jejuni is the most common cause of campylobacteriosis in humans, transmitted through water and contact with livestock animals. This result indicated that R. amplexicaudatus may be a carrier of C. jejuni.

  17. Evidence that certain clones of Campylobacter jejuni persist during successive broiler flock rotations

    DEFF Research Database (Denmark)

    Petersen, L.; Wedderkopp, A.

    2001-01-01

    selected. Twelve broiler houses located on 10 farms were included in the study. The C,jejuni isolates collected from the selected houses during the surveillance were typed using fla typing and macrorestriction profiling (MRP), and a subset of the isolates, representing each of the identified clones...... (7 of 13) had fla type 1/1, but MRPs distinguished between isolates from different houses, and fla type 1/1 clones belonged to different serotypes, Seven houses carried persistent clones that covered an interval of at least four broiler flock rotations, or at least one half year. The dominant fla...... with recurrent Campylobacter problems. The MRPs of clones belonging to fla type 1/1 serotype O:2 isolated from persistently infected flocks shared a high percentage of bands compared to the remaining isolates, indicating that some clones that have the ability to cause persistent infections in broiler farms...

  18. Composting poultry manure by fly larvae (Musca domestica) eliminates Campylobacter jejuni from the manure

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Hald, Birthe

    2013-01-01

    Introduction The common house fly, Musca domestica (Md) is an important carrier of zoonotic agents, and Campylobacter jejuni is one that may be transmitted between animals and humans by flies. Colonized animals shed the bacteria in feces where larval stages of Md flies develops. Aim of the present...... study To monitor fly larvae composting of poultry manure artificially contaminated with C. jejuni, and to investigate a possible transmission route of C. jejuni from the manure through the fly larvae to the adult fly. Conclusions The addition of fly larvae both accelerated the degradation of manure...... and C. jejuni. Pupae or newly hatched flies were not carriers of C. jejuni although larvae were grown in contaminated manure. Impact When composting poultry manure with Md fly larvae, it is possible both to reduce the amount of waste and to sanitize it from C. jejuni, thereby reducing the risk...

  19. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni.

    Science.gov (United States)

    Scanlan, Eoin; Ardill, Laura; Whelan, Matthew V X; Shortt, Claire; Nally, Jarlath E; Bourke, Billy; Ó Cróinín, Tadhg

    2017-04-01

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which this could be mediated. A significant correlation between more relaxed DNA supercoiling and an increased ability of C. jejuni strains to penetrate human epithelial cells was demonstrated. Directly inducing relaxation of DNA supercoiling in C. jejuni was shown to significantly increase invasion of epithelial cells. Mutants in the fibronectin binding proteins CadF and FlpA still displayed an increased invasion after treatment with novobiocin suggesting these proteins were not essential for the observed phenotype. However, a large increase in protein secretion from multiple C. jejuni strains upon relaxation of DNA supercoiling was demonstrated. This increase in protein secretion was not mediated by outer membrane vesicles and appeared to be dependent on an intact flagellar structure. This study identifies relaxation of DNA supercoiling as playing a key role in enhancing C. jejuni pathogenesis during infection of the human intestine and identifies proteins present in a specific invasion associated secretome induced by relaxation of DNA supercoiling. © 2016 John Wiley & Sons Ltd.

  20. Important Role of a Putative Lytic Transglycosylase Cj0843c in β-Lactam Resistance in Campylobacter jejuni.

    Science.gov (United States)

    Zeng, Ximin; Gillespie, Barbara; Lin, Jun

    2015-01-01

    Beta-lactam antibiotics are an important class of antibiotics for treating bacterial infections. Despite prevalent β-lactam resistance in Campylobacter jejuni, the leading bacterial cause of human diarrhea in developed countries, molecular mechanism of β-lactam resistance in C. jejuni is still largely unknown. In this study, C. jejuni 81-176 was used for random transposon mutagenesis. Screening of a 2,800-mutant library identified 22 mutants with increased susceptibility to ampicillin. Of these mutants, two mutants contains mutations in Cj0843c (a putative lytic transglycosylase gene) and in its upstream gene Cj0844c, respectively. Complementation experiment demonstrated that the Cj0843 contributes to β-lactam resistance. The Cj0843c insertional mutation was subsequently introduced to diverse C. jejuni clinical strains for MIC test, showing that Cj0843c contributes to both intrinsic and acquired β-lactam resistance of C. jejuni. Consistent with this finding, inactivation of Cj0843c also dramatically reduced β-lactamase activity. Genomic examination and PCR analysis showed Cj0843c is widely distributed in C. jejuni. High purity recombinant Cj0843c was produced for generation of specific antiserum. The Cj0843 was localized in the periplasm, as demonstrated by immunoblotting using specific antibodies. Turbidimetric assay further demonstrated the capability of the purified Cj0843c to hydrolyze cell walls. Inactivation of Cj0843c also significantly reduced C. jejuni colonization in the intestine. Together, this study identifies a mechanism of β-lactam resistance in C. jejuni and provides insights into the role of cell wall metabolism in regulating β-lactamase activity.

  1. Comparison of Campylobacter jejuni isolates from human, food, veterinary and environmental sources in Iceland using PFGE, MLST and fla-SVR sequencing.

    Science.gov (United States)

    Magnússon, S H; Guðmundsdóttir, S; Reynisson, E; Rúnarsson, A R; Harðardóttir, H; Gunnarson, E; Georgsson, F; Reiersen, J; Marteinsson, V Th

    2011-10-01

    Campylobacter jejuni isolates from various sources in Iceland were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and campylobacter transmission routes to humans. A collection of 584 Campylobacter isolates were collected from clinical cases, food, animals and environment in Iceland in 1999-2002, during a period of national Campylobacter epidemic in Iceland. All isolates were characterized by pulse field gel electrophoresis (PFGE), and selected subset of 52 isolates representing the diversity of the identified PFGE types was further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. The results show a substantial diversity within the Icelandic Campylobacter population. Majority of the human Campylobacter infections originated from domestic chicken and cattle isolates. MLST showed the isolates to be distributed among previously reported and common sequence type complexes in the MLST database. The genotyping of Campylobacter from various sources has not previously been reported from Iceland, and the results of the study gave a valuable insight into the population structure of Camp. jejuni in Iceland, source distribution and transmission routes to humans. The geographical isolation of Iceland in the north Atlantic provides new information on Campylobacter population dynamics on a global scale. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology No claim to Icelandic Government works.

  2. Identification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method

    Directory of Open Access Journals (Sweden)

    Heath Sekou

    2007-02-01

    Full Text Available Abstract Background The human bacterial pathogen Campylobacter jejuni contains two subspecies: C. jejuni subsp. jejuni (Cjj and C. jejuni subsp. doylei (Cjd. Although Cjd strains are isolated infrequently in many parts of the world, they are obtained primarily from human clinical samples and result in an unusual clinical symptomatology in that, in addition to gastroenteritis, they are associated often with bacteremia. In this study, we describe a novel multiplex PCR method, based on the nitrate reductase (nap locus, that can be used to unambiguously subspeciate C. jejuni isolates. Results Internal and flanking napA and napB primer sets were designed, based on existing C. jejuni and Campylobacter coli genome sequences to create two multiplex PCR primer sets, nap mpx1 and nap mpx2. Genomic DNA from 161 C. jejuni subsp. jejuni (Cjj and 27 C. jejuni subsp. doylei (Cjd strains were amplified with these multiplex primer sets. The Cjd strains could be distinguished clearly from the Cjj strains using either nap mpx1 or mpx2. In addition, combination of either nap multiplex method with an existing lpxA speciation multiplex method resulted in the unambiguous and simultaneous speciation and subspeciation of the thermophilic Campylobacters. The Cjd nap amplicons were also sequenced: all Cjd strains tested contained identical 2761 bp deletions in napA and several Cjd strains contained deletions in napB. Conclusion The nap multiplex PCR primer sets are robust and give a 100% discrimination of C. jejuni subspecies. The ability to rapidly subspeciate C. jejuni as well as speciate thermophilic Campylobacter species, most of which are pathogenic in humans, in a single amplification will be of value to clinical laboratories in strain identification and the determination of the environmental source of campylobacterioses caused by Cjd. Finally, the sequences of the Cjd napA and napB loci suggest that Cjd strains arose from a common ancestor, providing clues as to

  3. Occupational Exposure to Swine, Poultry, and Cattle and Antibody Biomarkers of Campylobacter jejuni Exposure and Autoimmune Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Leora Vegosen

    Full Text Available Foodborne Campylobacter jejuni infection has been associated with an increased risk of autoimmune peripheral neuropathy, but risks of occupational exposure to C. jejuni have received less attention. This study compared anti-C. jejuni IgA, IgG, and IgM antibody levels, as well as the likelihood of testing positive for any of five anti-ganglioside autoantibodies, between animal farmers and non-farmers. Anti-C. jejuni antibody levels were also compared between farmers with different animal herd or flock sizes. The relationship between anti-C. jejuni antibody levels and detection of anti-ganglioside autoantibodies was also assessed.Serum samples from 129 Agricultural Health Study swine farmers (some of whom also worked with other animals and 46 non-farmers, all from Iowa, were analyzed for anti-C. jejuni antibodies and anti-ganglioside autoantibodies using ELISA. Information on animal exposures was assessed using questionnaire data. Anti-C. jejuni antibody levels were compared using Mann-Whitney tests and linear regression on log-transformed outcomes. Fisher's Exact Tests and logistic regression were used to compare likelihood of positivity for anti-ganglioside autoantibodies.Farmers had significantly higher levels of anti-C. jejuni IgA (p < 0.0001 and IgG (p = 0.02 antibodies compared to non-farmers. There was no consistent pattern of anti-C. jejuni antibody levels based on animal herd or flock size. A higher percentage of farmers (21% tested positive for anti-ganglioside autoantibodies compared to non-farmers (9%, but this difference was not statistically significant (p = 0.11. There was no significant association between anti-C. jejuni antibody levels and anti-ganglioside autoantibodies.The findings provide evidence that farmers who work with animals may be at increased risk of exposure to C. jejuni. Future research should include longitudinal studies of exposures and outcomes, as well as studies of interventions to reduce exposure. Policies to

  4. Campylobacter jejuni colonization promotes the translocation of Escherichia coli to extra-intestinal organs and disturbs the short-chain fatty acids profiles in the chicken gut.

    Science.gov (United States)

    Awad, W A; Dublecz, F; Hess, C; Dublecz, K; Khayal, B; Aschenbach, J R; Hess, M

    2016-10-01

    For a long time Campylobacter was only considered as a commensal microorganism in avian hosts restricted to the ceca, without any pathogenic features. The precise reasons for the symptomless chicken carriers are still unknown, but investigations of the gastrointestinal ecology of broiler chickens may improve our understanding of the microbial interactions with the host. Therefore, the current studies were conducted to investigate the effects of Campylobacter jejuni colonization on Escherichia coli translocation and on the metabolic end products (short-chain fatty acids, SCFAs). Following oral infection of 14 day old broiler chickens with 1 × 10(8) CFU of Campylobacter jejuni NCTC 12744 in two independent animal trials, it was found that C. jejuni heavily colonized the intestine and disseminate to extra-intestinal organs. Moreover, in both animal trials, the findings revealed that C. jejuni promoted the translocation of E. coli with a higher number encountered in the spleen and liver at 14 days post infection (dpi). In addition, Campylobacter affected the microbial fermentation in the gastrointestinal tract of broilers by reducing the amount of propionate, isovalerate, and isobutyrate in the cecal digesta of the infected birds at 2 dpi and, at 7 and 14 dpi, butyrate, isobutyrate, and isovalerate were also decreased. However, in the jejunum, the C. jejuni infection lowered only butyrate concentrations at 14 dpi. These data indicated that C. jejuni may utilize SCFAs as carbon sources to promote its colonization in the chicken gut, suggesting that Campylobacter cannot only alter gut colonization dynamics but might also influence physiological processes due to altered microbial metabolite profiles.Finally, the results demonstrated that C. jejuni can cross the intestinal epithelial barrier and facilitates the translocation of Campylobacter itself as well as of other enteric microorganisms such as E. coli to extra-intestinal organs of infected birds. Altogether, our

  5. The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15.

    Science.gov (United States)

    Bertolo, Lisa; Ewing, Cheryl P; Maue, Alexander; Poly, Frederic; Guerry, Patricia; Monteiro, Mario A

    2013-01-25

    Campylobacter jejuni infection is now the main cause of diarrhea-related illnesses in humans. An efficacious vaccine for the traveler and developing world market would be welcomed. We are engaged in the discovery and characterization of serotype-specific C. jejuni capsule polysaccharides (CPSs) to study their role in virulence and as protective vaccine antigens. Our prototype conjugate vaccine with serotype HS23 CPS (strain 81-176) has been shown to fully protect non-human primates against diarrhea inflicted by C. jejuni HS23, but ultimately, a useful CPS-based vaccine will have to be multivalent. To this end, we describe here the creation of a CPS-conjugate vaccine against C. jejuni serotype HS15. Structural analysis revealed that a repeating block consisting of L-α-arabinofuranose (Ara) and 6-deoxy-L-α-gulo-heptopyranose (6d-gulo-Hep) comprised the CPS of serotype HS15 type strain ATCC 43442 [→3)-α-L-Araf-(1→3)-6d-L-α-gulo-Hepp(1→](n). Strategically, the non-reducing end of the CPS was activated and used in the attachment of CPS to CRM₁₉₇ to yield a conjugate vaccine. A serological assessment of the CPS(HS15)-CRM₁₉₇ conjugate with an anti-HS15 polyclonal antibody confirmed the conservation of antigenic epitopes, and subsequent inoculation of mice with CPS(HS15)-CRM₁₉₇ revealed that this conjugate was indeed capable of raising anti-CPS(HS15) antibodies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of lipooligosaccharide inner core truncation on bile resistance and chick colonization by Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Taketoshi Iwata

    Full Text Available Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS, a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >10(7 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <10(3 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.

  7. Adherence, enterotoxigenicity, invasiveness and serogroups in Campylobacter jejuni and Campylobacter coli strains from adult humans with acute enterocolitis.

    Science.gov (United States)

    Lindblom, G B; Cervantes, L E; Sjögren, E; Kaijser, B; Ruiz-Palacios, G M

    1990-02-01

    Two hundred Campylobacter jejuni and Campylobacter coli strains from the same number of adult Swedish patients with acute enterocolitis were tested regarding adherence to and invasiveness in HEp-2 cells and for enterotoxigenicity by the CHO-cell assay. The serogroup characteristics, heat-stable and heat-labile, for each strain were also investigated. Eighty-four percent of the strains were classified as C. jejuni and 16 percent as C. coli. All of the strains were adherent to HEp-2 cells, 39% were invasive and 31.5% enterotoxigenic. We found significantly more invasive strains in the non-enterotoxigenic group than in the enterotoxigenic one. There would seem to be no correlation between enterotoxigenicity or invasiveness and serogroup. The results of this study suggest the existence of multiple mechanisms for C. jejuni- and C. coli-induced diarrhoea and that the mechanisms may differ from one strain to another.

  8. [Campylobacter jejuni O:19 serotype in Argentine poultry meat supply chain].

    Science.gov (United States)

    Rossler, Eugenia; Fuhr, Estefanía M; Lorenzón, Guillermina; Romero-Scharpen, Analía; Berisvil, Ayelén P; Blajman, Jesica E; Astesana, Diego M; Zimmermann, Jorge A; Fusari, Marcia L; Signorini, Marcelo L; Soto, Lorena P; Frizzo, Laureano S; Zbrun, María V

    Thermotolerant species of Campylobacter have been focus of attention in the last years because they are the major agent causing zoonotic foodborne diseases. In addition, Campylobacter jejuni O:19 serotype was associated with Guillain Barré syndrome. The aim of this study was to determine the proportion of C. jejuni O:19 serotype isolated at different stages of three poultry meat supply chain in Santa Fe, Argentina. The analysis showed that 18% of isolated C. jejuni belong to serotype O:19. It was also determined that the presence of these strains is given in almost all production stages. These results reflect a significant risk to public health of consumers. Epidemiological studies of Campylobacter should be considered to establish a risk manager policy. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. [Antimicrobial susceptibility of Campylobacter jejuni isolates from stool cultures in Santiago, Chile].

    Science.gov (United States)

    García, Patricia C; Valenzuela, Natalia S; Rodríguez, M Victoria L; León, Eugenia C; Fernández, Heríberto J

    2009-12-01

    Campylobacter jejuni is a common agent of enterocolitis in humans. Campylobacteriosis has been recognized as a zoonotic disease whose reservoir is the intestinal flora of poultry. The reposition of fluid and electrolytes is the recommended treatment, and antimicrobials are required only in severe and/or in prolonged disease. Given the emergence of resistance to drugs commonly used in the treatment of acute diarrhea, we studied the antimicrobial susceptibility of 73 strains of Campylobacter jejuni isolated from stool culture. The antimicrobials tested were: erythromycin, azithromycin, ampicillin and ciprofloxacin. Of the 73 strains tested by E-test, 32.4% were resistant to ciprofloxacin and 6.4% were resistant to ampicillin. Resistance to erythromycin and azithromycin was not detected. The surveillance of antimicrobial resistance of Campylobacter jejuni is important in the evaluation of empirically used antimicrobials in the treatment of bacterial enterocolitis.

  10. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel.

    Science.gov (United States)

    Su, Chih-Chia; Radhakrishnan, Abhijith; Kumar, Nitin; Long, Feng; Bolla, Jani Reddy; Lei, Hsiang-Ting; Delmar, Jared A; Do, Sylvia V; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R; Zhang, Qijing; Yu, Edward W

    2014-07-01

    As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance-nodulation-cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export. © 2014 The Protein Society.

  11. Campylobacter jejuni: A rare agent in a child with peritoneal dialysis-related peritonitis.

    Science.gov (United States)

    Tural Kara, Tugce; Yilmaz, Songul; Ozdemir, Halil; Birsin Ozcakar, Zeynep; Derya Aysev, Ahmet; Ciftci, Ergin; Ince, Erdal

    2016-10-01

    Peritonitis is a serious problem in children receiving peritoneal dialysis. Campylobacter jejuni is an unusual cause of peritonitis. A 10-year-old boy who had end stage renal failure due to atypical hemolytic uremic syndrome was admitted to our hospital with abdominal pain and fever. Peritoneal dialysis fluid was cloudy and microscopic examination showed abundant leukocytes. Intraperitoneal cefepime treatment was started. Campylobacter jejuni was isolated from peritoneal dialysis fluid culture and oral clarithromycin was added to the treatment. At the end of therapy, peritoneal fluid culture was negative. To our knowledge, C. jejuni peritonitis was not reported in children previously. Although C. jejuni peritonitis is rarely encountered in children, it should be considered as an etiologic factor for peritonitis. Sociedad Argentina de Pediatría.

  12. Exploring PFGE for Detecting Large Plasmids in Campylobacter jejuni and Campylobacter coli Isolated from Various Retail Meats

    Directory of Open Access Journals (Sweden)

    Daya Marasini

    2014-10-01

    Full Text Available Campylobacter spp. is one of the most prevalent bacterial pathogens in retail meat, particularly poultry, and is a leading cause of diarrhea in humans. Studies related to Campylobacter large plasmids are limited in the literature possibly due to difficulty in isolating them using available alkaline lysis methods. The objectives of this study were to determine the prevalence of plasmids, particularly large ones, in Campylobacter spp. isolated from various Oklahoma retail meats, and to explore PFGE (Pulsed Field Gel Electrophoresis as a tool in facilitating the detection of these plasmids. One hundred and eighty nine strains (94 Campylobacter jejuni and 95 Campylobacter coli were screened for the presence of plasmids using both alkaline lysis and PFGE. Plasmids were detected in 119/189 (63% using both methods. Most of the plasmids detected by alkaline lysis were smaller than 90 kb and only three were larger than 90 kb. Plasmids over 70 kb in size were detected in 33 more strains by PFGE of which 11 strains contained larger than 90 kb plasmids. Plasmids were more prevalent in Campylobacter coli (73.5% than in Campylobacter jejuni (52%. BglII restriction analysis of plasmids isolated from 102 isolates revealed 42 different restriction patterns. In conclusion, PFGE was able to detect large plasmids up to 180 Kb in Campylobacter spp. which might have been missed if the alkaline lysis method was solely used. Campylobacter spp. isolated from retail meats harbor a diverse population of plasmids with variable sizes. To our knowledge, this is the first study to use PFGE to detect large plasmids in Campylobacter.

  13. An improved culture method for selective isolation of Campylobacter jejuni from wastewater

    Directory of Open Access Journals (Sweden)

    Jinyong Kim

    2016-08-01

    Full Text Available Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently-available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin, to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR (qRT-PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. In particular, rifampicin supplementation and an increased culture temperature (i.e., 42°C had a decisive effect on the selective enrichment of C. jejuni from wastewater. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater.

  14. Prevalence of virulence genes and cytolethal distending toxin production in Campylobacter jejuni isolates from diarrheal patients in Bangladesh

    NARCIS (Netherlands)

    Talukder, Kaisar A.; Aslam, Mohammad; Islam, Zhahirul; Azmi, Ishrat J.; Dutta, Dilip K.; Hossain, Sabir; Nur-E-Kamal, Alam; Nair, Gopinath B.; Cravioto, Alejandro; Sack, David A.; Endtz, Hubert P.

    From 300 stool samples, 58 Campylobacter strains were isolated by standard microbiological and biochemical methods. Of these, 40 strains were identified as Campylobacter jejuni and 5 as Campylobacter coli. The presence of flaA (100%), cadF (100%), racR (100%), dnaJ (100%), pldA (100%), ciaB (95%),

  15. Prevalence of virulence genes and cytolethal distending toxin production in Campylobacter jejuni isolates from diarrheal patients in Bangladesh

    NARCIS (Netherlands)

    K.A. Talukder (Kaisar); M. Aslam (Mohammad); Z. Islam (Zhahirul); I.J. Azmi (Ishrat); D.K. Dutta (Dilip); S. Hossain (S.); A. Nur-E-Kamal (Alam); G.B. Nair (Gopinath); A. Cravioto (Alejandro); D.A. Sack (David); H.P. Endtz (Hubert)

    2008-01-01

    textabstractFrom 300 stool samples, 58 Campylobacter strains were isolated by standard microbiological and biochemical methods. Of these, 40 strains were identified as Campylobacter jejuni and 5 as Campylobacter coli. The presence of flaA (100%), cadF (100%), racR (100%), dnaJ (100%), pldA (100%),

  16. Intracellular pH Campylobacter jejuni when treated with aqueous chlorine dioxide

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Arneborg, Nils

    2011-01-01

    The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a pH-sensitiv......The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a p...

  17. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Qvortrup, Klaus; Wolff, Anders

    2012-01-01

    Background: Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre-exposure ......Background: Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre...

  18. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni

    Science.gov (United States)

    Huber, Claudia; Lara-Tejero, Maria; Mohr, Juliane; Goodman, Andrew L.; Eisenreich, Wolfgang; Hofreuter, Dirk

    2017-01-01

    Campylobacter jejuni is one of the leading infectious causes of food-borne illness around the world. Its ability to persistently colonize the intestinal tract of a broad range of hosts, including food-producing animals, is central to its epidemiology since most infections are due to the consumption of contaminated food products. Using a highly saturated transposon insertion library combined with next-generation sequencing and a mouse model of infection, we have carried out a comprehensive genome-wide analysis of the fitness determinants for growth in vitro and in vivo of a highly pathogenic strain of C. jejuni. A comparison of the C. jejuni requirements to colonize the mouse intestine with those necessary to grow in different culture media in vitro, combined with isotopologue profiling and metabolic flow analysis, allowed us to identify its metabolic requirements to establish infection, including the ability to acquire certain nutrients, metabolize specific substrates, or maintain intracellular ion homeostasis. This comprehensive analysis has identified metabolic pathways that could provide the basis for the development of novel strategies to prevent C. jejuni colonization of food-producing animals or to treat human infections. PMID:28542173

  19. The galE Gene of Campylobacter jejuni Is Involved in Lipopolysaccharide Synthesis and Virulence

    OpenAIRE

    Fry, Benjamin N.; Feng, Shi; Chen, Yuen-Yuen; Newell, Diane G.; Coloe, Peter J.; Korolik, Victoria

    2000-01-01

    Lipopolysaccharide (LPS) is one of the main virulence factors of gram-negative bacteria. The LPS from Campylobacter spp. has endotoxic properties and has been shown to play a role in adhesion. We previously cloned a gene cluster (wla) which is involved in the synthesis of the Campylobacter jejuni 81116 LPS molecule. Sequence alignment of the first gene in this cluster indicated similarity with galE genes. These genes encode a UDP-glucose 4-epimerase, which catalyzes the interconversion of UDP...

  20. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  1. Is allicin able to reduce Campylobacter jejuni colonization in broilers when added to drinking water?

    Science.gov (United States)

    Robyn, J; Rasschaert, G; Hermans, D; Pasmans, F; Heyndrickx, M

    2013-05-01

    Reducing Campylobacter shedding on the farm could result in a reduction of the number of human campylobacteriosis cases. In this study, we first investigated if allicin, allyl disulfide, and garlic oil extract were able to either prevent C. jejuni growth or kill C. jejuni in vitro. Allyl disulfide and garlic oil extract reduced C. jejuni numbers in vitro below a detectable level at a concentration of 50 mg/kg (no lower concentrations were tested), whereas allicin reduced C. jejuni numbers below a detectable level at a concentration as low as 7.5 mg/kg. In further experiments we screened for the anti-C. jejuni activity of allicin in a fermentation system closely mimicking the broiler cecal environment using cecal microbiota and mucus isolated from C. jejuni-free broilers. During these fermentation experiments, allicin reduced C. jejuni numbers below a detectable level after 24 h at a concentration of 50 mg/kg. In contrast, 25 mg/kg of allicin killed C. jejuni in the first 28 h of incubation, but anti-C. jejuni activity was lost after 48 h of incubation, probably due to the presence of mucin in the growth medium. This had been confirmed in fermentation experiments in the presence of broiler cecal mucus. Based on these results, we performed an in vivo experiment to assess the prevention or reduction of cecal C. jejuni colonization in broiler chickens when allicin was added to drinking water. We demonstrated that allicin in drinking water did not have a statistically significant effect on cecal C. jejuni colonization in broilers. It was assumed, based on in vitro experiments, that the activity of allicin was thwarted by the presence of mucin-containing mucus. Despite promising in vitro results, allicin was not capable of statistically influencing C. jejuni colonization in a broiler flock, although a trend toward lower cecal C. jejuni numbers in allicin-treated broilers was observed.

  2. Genome sequences of two stress-tolerant Campylobacter jejuni poultry strains, 305 and DFVF1099

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten

    2011-01-01

    Campylobacter jejuni is a food-borne pathogen with a high prevalence in poultry meat, which in fresh unfrozen condition is the major source of campylobacteriosis. C. jejuni strains DFVF1099 and 305 are considered tolerant to several environmental stresses (T. Birk et al., J. Food Prot. 73......:258–265, 2010; S. L. On et al., Int. J. Med. Microbiol. 296:353–363, 2006). Here, we report the genome sequences of C. jejuni 305 and DFVF1099, a turkey and a chicken isolate, respectively. ©American Society for Microbiology. All rights reserved....

  3. Restriction fragment length polymorphism analysis shows that the hippuricase gene of Campylobacter jejuni is highly conserved.

    Science.gov (United States)

    Slater, E R; Owen, R J

    1997-10-01

    A 1151-bp amplicon containing the hippuricase (hipO) gene was obtained from 118 strains of Campylobacter jejuni and double-digested with AluI and DdeI to give five different PCR-RFLP patterns. Most strains had the six-banded profile predicted from sequence data. Lack of polymorphisms within the hipO gene indicated it was highly conserved amongst strains of Camp.jejuni, and the RFLP analysis provided only low discrimination as an epidemiological typing method. Detection of hipO by PCR provided a useful test for confirmatory identification of Camp. jejuni.

  4. Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth

    DEFF Research Database (Denmark)

    Vegge, C.S.; Brondsted, L.; Li, Yiping

    2009-01-01

    Campylobacter jejuni is a serious food-borne bacterial pathogen in the developed world. Poultry is a major reservoir, and C. jejuni appears highly adapted to the gastrointestinal tract of birds. Several factors are important for chicken colonization and virulence, including a taxis mechanism...... for environmental navigation. To explore the mechanism of chemotaxis in C. jejuni, we constructed mutants with deletions of five putative mcp (methyl-accepting chemotaxis protein) genes (tlp1, tlp2, tlp3, docB, and docC). Surprisingly, the deletions did not affect the chemotactic behavior of the mutants compared...

  5. Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens.

    Science.gov (United States)

    Cawthraw, S A; Newell, D G

    2010-03-01

    The role of maternal antibodies in the lag phase of Campylobacter positivity, widely observed in commercial broiler flocks, was investigated. The results indicate that 3-wk-old birds derived from a commercial flock are more susceptible to colonization with Campylobacter jejuni than 1-to-2-wk-old birds. This increasing susceptibility parallels the loss of maternally derived, circulating, anti-Campylobacter, immunoglobulin Y antibodies as detected by enzyme-linked immunosorbent assay. The role of these antibodies in resistance to colonization was further investigated using progeny from breeder flocks of known Campylobacter status. These results confirmed that maternal antibodies confer partial protection against Campylobacter colonization on young chickens (1-2 wk old). This protection was directed against challenge with both homologous and heterologous strains of C. jejuni and even against strains with a high colonization potential. However, evidence presented indicates that newly hatched chicks, with the highest levels of maternal antibodies, were as susceptible to Campylobacter challenge as 3-wk-old birds. This conundrum was investigated further, and an increase in resistance was detected from 1 to 3 days of age. The reasons for this are, as yet, unknown, but the observation validates the use of newly hatched chicks in models of Campylobacter colonization. Moreover, this high susceptibility in the first few days of life may explain the occasional early flock colonization observed, especially when environmental exposure to Campylobacter is high, for example, in free-range birds.

  6. Campylobacter jejuni DNA-binding protein from starved cells in Guillain-Barré syndrome patients.

    Science.gov (United States)

    Kawamura, Nobutoshi; Piao, Hua; Minohara, Motozumi; Matsushita, Takuya; Kusunoki, Susumu; Matsumoto, Hiroshi; Ikenaka, Kazuhiro; Mizunoe, Yoshimitsu; Kira, Jun-ichi

    2011-12-15

    Campylobacter jejuni enteritis is frequently associated with an axonal form of Guillain-Barré syndrome (GBS) and C. jejuni DNA-binding protein from starved cells (C-Dps) induces paranodal myelin detachment and axonal degeneration through binding with sulfatide in vivo. Here we investigated the invasion of C-Dps into hosts with C. jejuni-related GBS. Our analyses of patient sera found that both C-Dps and anti-C-Dps antibodies were most commonly detected in sera from C. jejuni-related GBS patients (5/27, 14.8% and 15/24, 62.5%; respectively). These findings suggest that C-Dps invades the host and may potentially contribute to the peripheral nerve damage in C. jejuni-related GBS. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food

    DEFF Research Database (Denmark)

    Athina, Zampara; Sørensen, Martine Camilla Holst; Elsser-Gravesen, Anne

    2017-01-01

    Poultry meat is the main source of Campylobacter jejuni foodborne disease. Currently, no effective control measures prevent C. jejuni from contaminating poultry meat. However, post-harvest phage treatment is a promising biocontrol strategy that has not yet been explored. Here we identified phages....... A thorough understanding of phage-host interactions is prerequisite to further advance phage application as a post-harvest biocontrol strategy against C. jejuni....... most effective phages (F356 showing 0.49 and F357 showing 0.55 log reductions, respectively) led to a 0.73 log reduction of C. jejuni on artificially contaminated chicken skin. Our study shows that poly-phage treatment at 5 °C can be more effective against C. jejuni compared to single phage application...

  8. Analysis of putative chemoreceptor proteins of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Bang, Dang D.

    indicating the chemoreceptors of C. jejuni to have overlapping sensing capacities. To facilitate independent investigation of the chemoreceptors are we now in the process of analyzing all 10 putative chemoreceptors of C. jejuni individually in an E. coli background. Furthermore, the five C. jejuni mutants......Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world. A very important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently and commensally by this organism. Predominantly the mucus filled crypts of the lower gastrointestinal tract...... are being analyzed in adherence and invasion assays with both human and chicken cells to explore the possibility that these membrane spanning proteins interact with host cells rather than operating as chemoreceptors....

  9. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  10. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Directory of Open Access Journals (Sweden)

    Euna eOh

    2015-10-01

    Full Text Available The increasing resistance of Campylobacter to clinically-important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN. Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  11. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes.

    Science.gov (United States)

    Godschalk, Peggy C R; Kuijf, Mark L; Li, Jianjun; St Michael, Frank; Ang, C Wim; Jacobs, Bart C; Karwaski, Marie-France; Brochu, Denis; Moterassed, Ali; Endtz, Hubert P; van Belkum, Alex; Gilbert, Michel

    2007-03-01

    Molecular mimicry between lipooligosaccharides (LOS) of Campylobacter jejuni and gangliosides in peripheral nerves plays a crucial role in the pathogenesis of C. jejuni-related Guillain-Barré syndrome (GBS). We have analyzed the LOS outer core structures of 26 C. jejuni strains associated with GBS and its variant, Miller Fisher syndrome (MFS), by capillary electrophoresis coupled with electrospray ionization mass spectrometry. Sixteen out of 22 (73%) GBS-associated and all 4 (100%) MFS-associated strains expressed LOS with ganglioside mimics. GM1a was the most prevalent ganglioside mimic in GBS-associated strains (10/22, 45%), and in eight of these strains, GM1a was found in combination with GD1a mimics. All seven strains isolated from patients with ophthalmoplegia (GBS or MFS) expressed disialylated (GD3 or GD1c) mimics. Three out of 22 GBS-associated strains (14%) did not express sialylated ganglioside mimics because their LOS locus lacked the genes necessary for sialylation. Three other strains (14%) did not express ganglioside mimics because of frameshift mutations in either the cstII sialyltransferase gene or the cgtB galactosyltransferase gene. It is not possible to determine if these mutations were already present during C. jejuni infection. This is the first report in which mass spectrometry combined with DNA sequence data were used to infer the LOS outer core structures of a large number of neuropathy-associated C. jejuni strains. We conclude that molecular mimicry between gangliosides and C. jejuni LOS is the presumable pathogenic mechanism in most cases of C. jejuni-related GBS. However, our findings suggest that in some cases, other mechanisms may play a role. Further examination of the disease etiology in these patients is mandatory.

  12. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  13. Oral immunization with cholera toxin provides protection against Campylobacter jejuni in an adult mouse intestinal colonization model.

    Science.gov (United States)

    Albert, M John; Mustafa, Abu Salim; Islam, Anjum; Haridas, Shilpa

    2013-05-07

    Immunity to Campylobacter jejuni, a major diarrheal pathogen, is largely Penner serotype specific. For broad protection, a vaccine should be based on a common antigen(s) present in all strains. In our previous study (M. J. Albert, S. Haridas, D. Steer, G. S. Dhaunsi, A. I. Smith, and B. Adler, Infect. Immun. 75:3070-3073, 2007), we demonstrated that antibody to cholera toxin (CT) cross-reacted with the major outer membrane proteins (MOMPs) of all Campylobacter jejuni strains tested. In the current study, we investigated whether immunization with CT protects against intestinal colonization by C. jejuni in an adult mouse model and whether the nontoxic subunit of CT (CT-B) is the portion mediating cross-reaction. Mice were orally immunized with CT and later challenged with C. jejuni strains (48, 75, and 111) of different serotypes. Control animals were immunized with phosphate-buffered saline. Fecal shedding of challenge organisms was studied daily for 9 days. Serum and fecal antibody responses were studied by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. The cross-reactivity of rabbit CT-B antibody to MOMP was studied by immunoblotting. The reactivity of 21 overlapping 30-mer oligopeptides (based on MOMP's sequence) against rabbit CT antibody was tested by ELISA. Test animals produced antibodies to CT and MMP in serum and feces and showed resistance to colonization, the vaccine efficacies being 49% (for strain 48), 37% (for strain 75), and 34% (for strain 111) (P, ≤0.05 to ≤0.001). One peptide corresponding to a variable region of MOMP showed significant reactivity. CT-B antibody cross-reacted with MOMP. Since CT-B is a component of oral cholera vaccines, it might be possible to control C. jejuni diarrhea with these vaccines. Campylobacter jejuni is a major cause of diarrhea worldwide. Patients who recover from C. jejuni diarrhea develop immunity to the infecting serotype and remain susceptible to infection with other serotypes. A vaccine based on

  14. Detection of seven virulence and toxin genes of Campylobacter jejuni isolates from Danish turkeys by PCR and cytolethal distending toxin production of the isolates

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Borck, Birgitte; Nielsen, Eva Møller

    2004-01-01

    A total of 117 Campylobacter jejuni isolates from Danish turkeys were tested for the presence of seven virulence and toxin genes by PCR. One hundred seventeen (100%) isolates were positive for flaA, cadF, and ceuE gene primers. One hundred three (88%) isolates were positive for cdt gene cluster P...... turkeys and calls for further investigation for the elimination of Campylobacter infection in industrial turkey production and in industrial food chains.......A total of 117 Campylobacter jejuni isolates from Danish turkeys were tested for the presence of seven virulence and toxin genes by PCR. One hundred seventeen (100%) isolates were positive for flaA, cadF, and ceuE gene primers. One hundred three (88%) isolates were positive for cdt gene cluster PCR...

  15. Prevalence and Characterization of Campylobacter jejuni Isolated from Retail Chicken in Tianjin, China.

    Science.gov (United States)

    Ma, Hui; Su, Yulan; Ma, Luyao; Ma, Lina; Li, Ping; Du, Xinjun; Gölz, Greta; Wang, Shuo; Lu, Xiaonan

    2017-06-01

    Ca