WorldWideScience

Sample records for campylobacter jejuni genes

  1. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation

    Directory of Open Access Journals (Sweden)

    Hartley Lauren E

    2009-06-01

    Full Text Available Abstract Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.

  2. Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species.

    Science.gov (United States)

    Richards, Vincent P; Lefébure, Tristan; Pavinski Bitar, Paulina D; Stanhope, Michael J

    2013-03-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosaccharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain-Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Comparative characterization of the virulence gene clusters (lipooligosacharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species

    Science.gov (United States)

    Richards, Vincent P.; Lefébure, Tristan; Pavinski Bitar, Paulina D.; Stanhope, Michael J.

    2013-01-01

    Campylobacter jejuni subsp. jejuni and Campylobacter coli are leading causes of gastroenteritis, with virulence linked to cell surface carbohydrate diversity. Although the associated gene clusters are well studied for C. jejuni subsp. jejuni, C. coli has been largely neglected. Here we provide comparative analysis of the lipooligosacharide (LOS) and capsular polysaccharide (CPS) gene clusters, using genome and cluster sequence data for 36 C. coli strains, 67 C. jejuni subsp. jejuni strains and ten additional Campylobacter species. Similar to C. jejuni subsp. jejuni, C. coli showed high LOS/CPS gene diversity, with each cluster delineated into eight gene content classes. This diversity was predominantly due to extensive gene gain/loss, with the lateral transfer of genes likely occurring both within and between species and also between the LOS and CPS. Additional mechanisms responsible for LOS/CPS diversity included phase-variable homopolymeric repeats, gene duplication/inactivation, and possibly host environment selection pressure. Analyses also showed that (i) strains of C. coli and Campylobacter upsaliensis possessed genes homologous to the sialic acid genes implicated in the neurological disorder Guillain Barré syndrome (GBS), and (ii) C. coli LOS classes were differentiated between bovine and poultry hosts, potentially aiding post infection source tracking. PMID:23279811

  4. Campylobacter jejuni organism (image)

    Science.gov (United States)

    Campylobacter jejuni infection causes cramping, diarrhea, abdominal pain and fever within 2 to 5 days after a person has been exposed to the organism. Campylobacter jejuni is one of the most common bacterial ...

  5. Cloning and alignment of WaaF gene of Campylobacter jejuni Lulei

    Directory of Open Access Journals (Sweden)

    XING Cong-cong

    2012-04-01

    Full Text Available Objective To clone the WaaF gene of Campylobacter jejuni, and analyse its relationship with WaaF genetic evolution. Methods Amplified WaaF gene of Campylobacter jejuni Lulei by PCR, and constructed pGEM-T-WaaF cloning plasmid. Downloaded five WaaF associated with Guillain-Barré syndrome (GBS and one WaaF not associated with GBS, and then constructed phylogenetic tree. Results pGEM-T-WaaF cloning plasmid was constructed successfully. WaaF presented cluster phenomenon in Campylobacter jejuni associated with GBS. Conclusion WaaF gene of Campylobacter jejuni Lulei is the fragment of 807 bp, and has the nearest relationship with the genetic evolution of Lichang.

  6. The galE Gene of Campylobacter jejuni Is Involved in Lipopolysaccharide Synthesis and Virulence

    OpenAIRE

    Fry, Benjamin N.; Feng, Shi; Chen, Yuen-Yuen; Newell, Diane G.; Coloe, Peter J.; Korolik, Victoria

    2000-01-01

    Lipopolysaccharide (LPS) is one of the main virulence factors of gram-negative bacteria. The LPS from Campylobacter spp. has endotoxic properties and has been shown to play a role in adhesion. We previously cloned a gene cluster (wla) which is involved in the synthesis of the Campylobacter jejuni 81116 LPS molecule. Sequence alignment of the first gene in this cluster indicated similarity with galE genes. These genes encode a UDP-glucose 4-epimerase, which catalyzes the interconversion of UDP...

  7. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    Directory of Open Access Journals (Sweden)

    Mohamed K. Fakhr

    2013-08-01

    Full Text Available Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL, roxarsone (4–2048 μg/mL, arsenate (16–8,192 μg/mL and arsenite (4–2,048 μg/mL. A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campylobacter coli were further analyzed for the presence of five arsenic resistance genes (arsP, arsR, arsC, acr3, and arsB by PCR. Most of the 552 Campylobacter isolates were able to survive at higher concentrations of arsanilic acid (512–2,048 μg/mL, roxarsone (512–2,048 μg/mL, and arsenate (128–1,024 μg/mL, but at lower concentrations for arsenite (4–16 μg/mL. Ninety seven percent of the isolates tested by PCR showed the presence of arsP and arsR genes. While 95% of the Campylobacter coli isolates contained a larger arsenic resistance operon that has all of the four genes (arsP, arsR, arsC and acr3, 85% of the Campylobacter jejuni isolates carried the short operon (arsP, and arsR. The presence of arsC and acr3 did not significantly increase arsenic resistance with the exception of conferring resistance to higher concentrations of arsenate to some Campylobacter isolates. arsB was prevalent in 98% of the tested Campylobacter jejuni isolates, regardless of the presence or absence of arsC and acr3, but was completely absent in Campylobacter coli. To our knowledge, this is the first study to determine arsenic resistance and the prevalence of arsenic resistance genes in such a large number of Campylobacter isolates.

  8. Restriction fragment length polymorphism analysis shows that the hippuricase gene of Campylobacter jejuni is highly conserved.

    Science.gov (United States)

    Slater, E R; Owen, R J

    1997-10-01

    A 1151-bp amplicon containing the hippuricase (hipO) gene was obtained from 118 strains of Campylobacter jejuni and double-digested with AluI and DdeI to give five different PCR-RFLP patterns. Most strains had the six-banded profile predicted from sequence data. Lack of polymorphisms within the hipO gene indicated it was highly conserved amongst strains of Camp.jejuni, and the RFLP analysis provided only low discrimination as an epidemiological typing method. Detection of hipO by PCR provided a useful test for confirmatory identification of Camp. jejuni.

  9. cj0371: a novel virulence-associated gene of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Xueqing Du

    2016-07-01

    Full Text Available Campylobacter jejuni is the major cause of human bacterial diarrhea worldwide. Its pathogenic mechanism remains poorly understood. cj0371 is a novel gene that was uncovered using immunoscreening. There have been no previous reports regarding its function. In this study, we constructed an insertion mutant and complement of this gene in C. jejuni and examined changes in virulence. We observed that the cj0371 mutant showed significantly increased invasion and colonization ability. We also investigated the role of cj0371 in motility, chemotaxis and growth kinetics to further study its function. We found that the cj0371 mutant displays hypermotility, enhanced chemotaxis and enhanced growth kinetics. In addition, we localized the Cj0371 protein at the poles of C. jejuni by fluorescence microscopy. We present data that collectively significantly proves our hypothesis that cj0371 is a new virulence-associated gene and through the influence of chemotaxis plays a negative role in C. jejuni pathogenicity.

  10. Lipooligosaccharide locus classes and putative virulence genes among chicken and human Campylobacter jejuni isolates.

    Science.gov (United States)

    Ellström, Patrik; Hansson, Ingrid; Nilsson, Anna; Rautelin, Hilpi; Olsson Engvall, Eva

    2016-11-21

    Campylobacter cause morbidity and considerable economic loss due to hospitalization and post infectious sequelae such as reactive arthritis, Guillain Barré- and Miller Fischer syndromes. Such sequelae have been linked to C. jejuni harboring sialic acid structures in their lipooligosaccharide (LOS) layer of the cell wall. Poultry is an important source of human Campylobacter infections but little is known about the prevalence of sialylated C. jejuni isolates and the extent of transmission of such isolates to humans. Genotypes of C. jejuni isolates from enteritis patients were compared with those of broiler chicken with pulsed-field gel electrophoresis (PFGE), to study the patterns of LOS biosynthesis genes and other virulence associated genes and to what extent these occur among Campylobacter genotypes found both in humans and chickens. Chicken and human isolates generally had similar distributions of the putative virulence genes and LOS locus classes studied. However, there were significant differences regarding LOS locus class of PFGE types that were overlapping between chicken and human isolates and those that were distinct to each source. The study highlights the prevalence of virulence associated genes among Campylobacter isolates from humans and chickens and suggests possible patterns of transmission between the two species.

  11. Lipooligosaccharide of Campylobacter jejuni

    Science.gov (United States)

    Houliston, R. Scott; Vinogradov, Evgeny; Dzieciatkowska, Monika; Li, Jianjun; St. Michael, Frank; Karwaski, Marie-France; Brochu, Denis; Jarrell, Harold C.; Parker, Craig T.; Yuki, Nobuhiro; Mandrell, Robert E.; Gilbert, Michel

    2011-01-01

    Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome. We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host glycolipid/glycoprotein mimics within its LOS. P blood group and paragloboside (lacto-N-neotetraose) antigen mimicry is exhibited by RM1221, a strain isolated from a poultry source. RM1503, a gastroenteritis-associated strain, expresses lacto-N-biose and sialyl-Lewis c units, the latter known as the pancreatic tumor-associated antigen, DU-PAN-2 (or LSTa). C. jejuni GC149, a Guillain-Barré syndrome-associated strain, expresses an unusual sialic acid-containing hybrid oligosaccharide with similarity to both ganglio and Pk antigens and can, through phase variation of its LOS biosynthesis genes, display GT1a or GD3 ganglioside mimics. We show that the sialyltransferase CstII and the galactosyltransferase CgtD are involved in the synthesis of multiple mimic types, with LOS structural diversity achieved through evolving allelic substrate specificity. PMID:21257763

  12. Gene expression profiling of innate immune response to Campylobacter jejuni infection in the bursa of broilers

    Science.gov (United States)

    Campylobacter jejuni (C. jejuni) is a commensal microorganism in chickens, but caused significant health problems in humans. Reduction of C. jejuni colonization in the chicken gut will significantly decrease human campylobacteriosis. To study host response to C. jejuni infection in broilers, both ...

  13. Gene expression profile of Campylobacter jejuni in response to growth temperature variation.

    Science.gov (United States)

    Stintzi, Alain

    2003-03-01

    The foodborne pathogen Campylobacter jejuni is the primary causative agent of gastroenteritis in humans. In the present study a whole genome microarray of C. jejuni was constructed and validated. These DNA microarrays were used to measure changes in transcription levels over time, as C. jejuni cells responded to a temperature increase from 37 to 42 degrees C. Approximately 20% of the C. jejuni genes were significantly up- or downregulated over a 50-min period after the temperature increase. The global change in C. jejuni transcriptome was found to be essentially transient, with only a small subset of genes still differentially expressed after 50 min. A substantial number of genes with a downregulated coexpression pattern were found to encode for ribosomal proteins. This suggests a short growth arrest upon temperature stress, allowing the bacteria to reshuffle their energy toward survival and adaptation to the new growth temperature. Genes encoding chaperones, chaperonins, and heat shock proteins displayed the most dramatic and rapid upregulation immediately after the temperature change. Interestingly, genes encoding proteins involved in membrane structure modification were differentially expressed, either up- or downregulated, suggesting a different protein membrane makeup at the two different growth temperatures. Overall, these data provide new insights into the primary response of C. jejuni to surmount a sudden temperature upshift, allowing the bacterium to survive and adapt its transcriptome to a new steady state.

  14. Campylobacter jejuni gene cj0511 encodes a serine peptidase essential for colonisation

    Directory of Open Access Journals (Sweden)

    A.V. Karlyshev

    2014-01-01

    Full Text Available According to MEROPS peptidase database, Campylobacter species encode 64 predicted peptidases. However, proteolytic properties of only a few of these proteins have been confirmed experimentally. In this study we identified and characterised a Campylobacter jejuni gene cj0511 encoding a novel peptidase. The proteolytic activity associated with this enzyme was demonstrated in cell lysates. Moreover, enzymatic studies conducted with a purified protein confirmed a prediction of it being a serine peptidase. Furthermore, cj0511 mutant was found to be severely attenuated in chicken colonisation model, suggesting a role of the Cj0511 protein in infection.

  15. Messenger RNA expression of chicken CLOCK gene in the response to Campylobacter jejuni inoculation.

    Science.gov (United States)

    Liu, Xiaoyi; Liu, Liying; Zhang, Maozhi; Yang, Ning; Qi, Yukai; Sun, Yu; Li, Xianyao

    2015-09-01

    Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial gastroenteritis worldwide. Previous research has shown that circadian rhythm plays a critical role in host response to C. jejuni colonization. The CLOCK gene is one of the core genes regulating circadian rhythms and shows significant expression on 7 d post-C. jejuni inoculation. The objective of this study was to investigate temporal and spatial expression of chicken CLOCK gene post-C. jejuni inoculation. Cecal and splenic RNA were isolated from 2 distinct chicken breeds and used to compare the mRNA expression of CLOCK gene between inoculated and noninoculated chickens within each breed and between breeds within each of inoculated and noninoculated groups. Our results showed that the CLOCK gene was significantly down-regulated at 20 h postinoculation (hpi) in cecum and spleen in Jiningbairi chicken. CLOCK gene was significantly down-regulated at 4 and 16 hpi and up-regulated at 8 hpi in cecum and spleen in specific pathogen free white leghorn noninoculated chicken. The findings suggested that expression of CLOCK gene was significantly changed post C. jejuin inoculation. This change was affected by genetic background, tissue, and time points postinoculation. © 2015 Poultry Science Association Inc.

  16. Arsenic Resistance and Prevalence of Arsenic Resistance Genes in Campylobacter jejuni and Campylobacter coli Isolated from Retail Meats

    OpenAIRE

    Noormohamed, Aneesa; Fakhr, Mohamed K.

    2013-01-01

    Studies that investigate arsenic resistance in the foodborne bacterium Campylobacter are limited. A total of 552 Campylobacter isolates (281 Campylobacter jejuni and 271 Campylobacter coli) isolated from retail meat samples were subjected to arsenic resistance profiling using the following arsenic compounds: arsanilic acid (4–2,048 μg/mL), roxarsone (4–2048 μg/mL), arsenate (16–8,192 μg/mL) and arsenite (4–2,048 μg/mL). A total of 223 of these isolates (114 Campylobacter jejuni and 109 Campyl...

  17. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro.

    Science.gov (United States)

    Upadhyay, Abhinav; Arsi, Komala; Wagle, Basanta R; Upadhyaya, Indu; Shrestha, Sandip; Donoghue, Ann M; Donoghue, Dan J

    2017-01-01

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT) production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth) of three GRAS (generally recognized as safe) status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%), carvacrol (CR; 0.001, 0.002%), and eugenol (EG; 0.005, 0.01%) in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2). Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81-176) of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P jejuni adhesion, invasion, and translocation of Caco-2 cells (P jejuni genes critical for infection in humans (P jejuni infection in humans.

  18. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a caco-2 assay

    DEFF Research Database (Denmark)

    Poli, Vanessa Fadanelli Schoenardie; Thorsen, Line; Olesen, Inger

    2012-01-01

    Campylobacter jejuni is the leading cause of bacterial diarrheal disease in humans, and contaminated poultry and poultry products are recognized as the main vehicle of infection. Despite the significance of C. jejuni as a foodborne pathogen, little is known about its response to stress, and......, especially, how its virulence is modulated under such conditions. The aim of this study was to assess the effect of temperature shift in a broth model system on virulence expression and cell survival of three different Campylobacter jejuni strains: two clinical (TB1048 and NCTC11168) and one chicken isolate...... properties were evaluated by analyzing transcriptions of the virulence genes cdtB, ciaB, cadF and the stress associated genes clpP, htrB using reverse transcription quantitative PCR (RT-qPCR) and by the ability of the C. jejuni strains to adhere to and invade Caco-2 cells. Similar cell survival and no growth...

  19. Exchange of Lipooligosaccharide Synthesis Genes Creates Potential Guillain-Barré Syndrome-Inducible Strains of Campylobacter jejuni

    OpenAIRE

    Phongsisay, Vongsavanh; Perera, Viraj N.; Fry, Benjamin N.

    2006-01-01

    Human ganglioside-like structures, such as GM1, found on some Campylobacter jejuni strains have been linked to inducing the Guillain-Barré Syndrome (GBS). This study shows that a C. jejuni strain without GM1-like molecules acquired large DNA fragments, including lipooligosaccharide synthesis genes, from a strain expressing GM1-like molecules and consequently transformed into a number of potential GBS-inducible transformants, which exhibited a high degree of genetic and phenotypic diversity.

  20. Exchange of lipooligosaccharide synthesis genes creates potential Guillain-Barre syndrome-inducible strains of Campylobacter jejuni.

    Science.gov (United States)

    Phongsisay, Vongsavanh; Perera, Viraj N; Fry, Benjamin N

    2006-02-01

    Human ganglioside-like structures, such as GM1, found on some Campylobacter jejuni strains have been linked to inducing the Guillain-Barré Syndrome (GBS). This study shows that a C. jejuni strain without GM1-like molecules acquired large DNA fragments, including lipooligosaccharide synthesis genes, from a strain expressing GM1-like molecules and consequently transformed into a number of potential GBS-inducible transformants, which exhibited a high degree of genetic and phenotypic diversity.

  1. High frequency genetic variation of purine biosynthesis genes is a mechanism of success in Campylobacter jejuni

    Science.gov (United States)

    Phenotypic variation is prevalent among progeny of the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity bestows increased survival to bacterial populations because variable phenotypes ensure some cells will be protected against future s...

  2. Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction.

    OpenAIRE

    Oyofo, B A; Thornton, S A; Burr, D H; Trust, T J; Pavlovskis, O R; Guerry, P

    1992-01-01

    Development of a routine detection assay for Campylobacter jejuni and Campylobacter coli in clinical specimens was undertaken by using the polymerase chain reaction (PCR). An oligonucleotide primer pair from a conserved 5' region of the flaA gene of C. coli VC167 was used to amplify a 450-bp region by PCR. The primer pair specifically detected 4 strains of C. coli and 47 strains of C. jejuni; but it did not detect strains of Campylobacter fetus, Campylobacter lari, Campylobacter upsaliensis, ...

  3. Campylobacter jejuni: enterocolitis and myopericarditis.

    Science.gov (United States)

    Alzand, B S N; Ilhan, M; Heesen, W F; Meeder, J G

    2010-09-24

    Campylobacter jejuni enteritis is the commonest enteric infection in the developed world. There are only few reported cases in the medical literature of cardiac complications associated with C. jejuni enterocolitis, most of the patients in the reported literature were males and most of the cases followed a benign course. Severe left ventricular dysfunction complicated only two cases of C. jejuni myocarditis. We report here a young male with Campylobacter myopericarditis. We believe that this is the first reported case of Campylobacter associated myopericarditis in The Netherlands. The mechanism by which Campylobacter causes myo(peri)carditis remains uncertain, it may be caused by direct bacterial invasion of cardiac tissue, bacterial toxins, circulating immune complexes, or cytotoxic T-cells. Since the number of C. jejuni infection is increasing worldwide, cardiac complications, although rare, are a remarkable manifestation of this pathogen and should be always kept in mind. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  4. Distribution and polymorphism of the flagellin genes from isolates of Campylobacter coli and Campylobacter jejuni.

    Science.gov (United States)

    Alm, R A; Guerry, P; Trust, T J

    1993-01-01

    The complex flagellar filaments of the LIO8 serogroup member Campylobacter coli VC167 are composed of two highly related subunit proteins encoded by the flaA and flaB genes which share 92% identity. Using oligonucleotide primers based on the known DNA sequence of both the flaA and flaB genes from C. coli VC167 in the polymerase chain reaction, we have shown conservation of both fla genes among isolates within the LIO8 heat-labile serogroup by digestion of the amplified product with PstI and EcoRI restriction endonucleases. Amplification and subsequent restriction analysis of the flaA flagellin gene from Campylobacter isolates belonging to 13 different LIO serogroups further identified 10 unique polymorphic groups. Within most of the serogroups examined, isolates appeared to contain flaA genes with conserved primary structures. Only in serogroups LIO11 and LIO29 did independent isolates possess flagellin genes with different primary structures. Furthermore, by employing primers specific for the flaB gene of C. coli VC167, all serogroups examined contained a second fla gene corresponding to flaB. In all serogroups except the LIO5 and LIO6 isolates which were identical to each other, the polymorphic pattern of this flaB gene was identical to that of the corresponding flaA gene. These data indicate that the presence of a second highly homologous flagellin gene is widespread throughout Campylobacter isolates and that in most instances, the primary structure of the two fla genes is conserved within isolates belonging to the same heat-labile LIO serogroup. This may represent the presence of clonal evolutionary groups in Campylobacter spp. Images PMID:8098328

  5. Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism's virulence potential.

    Science.gov (United States)

    Malik-Kale, Preeti; Raphael, Brian H; Parker, Craig T; Joens, Lynn A; Klena, John D; Quiñones, Beatriz; Keech, Amy M; Konkel, Michael E

    2007-05-01

    Phenotypic and genotypic evidence suggests that not all Campylobacter jejuni isolates are pathogenic for humans. We hypothesized that differences in gene content or gene expression alter the degree of pathogenicity of C. jejuni isolates. A C. jejuni isolate (Turkey) recovered from a turkey and a second C. jejuni isolate (CS) recovered from a chicken differed in their degrees of in vitro and in vivo virulence. The C. jejuni Turkey isolate invaded INT 407 human epithelial cells and secreted the Cia (Campylobacter invasion antigen) proteins, while the C. jejuni CS isolate was noninvasive for human epithelial cells and did not secrete the Cia proteins. Newborn piglets inoculated with the C. jejuni Turkey isolate developed more severe clinical signs of campylobacteriosis than piglets inoculated with the C. jejuni CS isolate. Additional work revealed that flagellin was not expressed in the C. jejuni CS isolate. Microarray and real-time reverse transcription-PCR analyses revealed that all flagellar class II genes were significantly downregulated in the C. jejuni CS isolate compared to the C. jejuni Turkey isolate. Finally, nucleotide sequencing of the flgR gene revealed the presence of a single residue that was different in the FlgR proteins of the C. jejuni Turkey and CS isolates. Complementation of the C. jejuni CS isolate with a wild-type copy of the flgR gene restored the isolate's motility. Collectively, these findings support the hypothesis that critical differences in gene content or gene expression can alter the pathogenic potential of C. jejuni isolates.

  6. DNA sequence heterogeneity of Campylobacter jejuni CJIE4 prophages and expression of prophage genes.

    Directory of Open Access Journals (Sweden)

    Clifford G Clark

    Full Text Available Campylobacter jejuni carry temperate bacteriophages that can affect the biology or virulence of the host bacterium. Known effects include genomic rearrangements and resistance to DNA transformation. C. jejuni prophage CJIE1 shows sequence variability and variability in the content of morons. Homologs of the CJIE1 prophage enhance both adherence and invasion to cells in culture and increase the expression of a specific subset of bacterial genes. Other C. jejuni temperate phages have so far not been well characterized. In this study we describe investigations into the DNA sequence variability and protein expression in a second prophage, CJIE4. CJIE4 sequences were obtained de novo from DNA sequencing of five C. jejuni isolates, as well as from whole genome sequences submitted to GenBank by other research groups. These CJIE4 DNA sequences were heterogenous, with several different insertions/deletions (indels in different parts of the prophage genome. Two variants of a 3-4 kb region inserted within CJIE4 had different gene content that distinguished two major conserved CJIE4 prophage families. Additional indels were detected throughout the prophage. Detection of proteins in the five isolates characterized in our laboratory in isobaric Tags for Relative and Absolute Quantitation (iTRAQ experiments indicated that prophage proteins within each of the two large indel variants were expressed during growth of the bacteria on Mueller Hinton agar plates. These proteins included the extracellular DNase associated with resistance to DNA transformation and prophage repressor proteins. Other proteins associated with known or suspected roles in prophage biology were also expressed from CJIE4, including capsid protein, the phage integrase, and MazF, a type II toxin-antitoxin system protein. Together with the results previously obtained for the CJIE1 prophage these results demonstrate that sequence variability and expression of moron genes are both general

  7. Inflammasome activation by Campylobacter jejuni

    NARCIS (Netherlands)

    Bouwman, Lieneke I|info:eu-repo/dai/nl/341590797; de Zoete, Marcel R|info:eu-repo/dai/nl/30483419X; Bleumink-Pluym, Nancy M C; Flavell, Richard A; van Putten, Jos P M|info:eu-repo/dai/nl/069916527

    2014-01-01

    The Gram-negative pathogen Campylobacter jejuni is the most common cause of bacterial foodborne disease worldwide. The mechanisms that lead to bacterial invasion of eukaryotic cells and massive intestinal inflammation are still unknown. In this study, we report that C. jejuni infection of mouse

  8. Compuesto bactericida contra Campylobacter jejuni

    OpenAIRE

    Gañan, M.; Carrascosa, Alfonso V.; Martínez-Rodríguez, Adolfo J.

    2008-01-01

    Compuesto bactericida contra Campylobacter jejuni. Uso de algunos compuestos fenólicos como agentes antibacterianos contra C jejuni. Además de sus usos para conservación de alimentos, suplemento alimenticio para animales y para la elaboración de una composición farmacéutica para el tratamiento de enfermedades causadas por C. jejuni, debido a su actividad frente a este microorganismos.

  9. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome

    NARCIS (Netherlands)

    B.C. Jacobs (Bart); H.P. Endtz (Hubert); A.P. Heikema (Astrid); M. Gilbert (Michel); T. Komagamine (Tomoko); C.W. Ang (Wim); J. Glerum (Jobine); D. Brochu (Denis); J. Li (Jianjun); N. Yuki (Nobuhiro); A.F. van Belkum (Alex); P.C.R. Godschalk (Peggy)

    2004-01-01

    textabstractMolecular mimicry of Campylobacter jejuni lipo-oligosaccharides (LOS) with gangliosides in nervous tissue is considered to induce cross-reactive antibodies that lead to Guillain-Barre syndrome (GBS), an acute polyneuropathy. To determine whether specific bacterial genes

  10. Campylobacter jejuni : An emerging pathogen

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2003-01-01

    Full Text Available Campylobacter jejuni is a major cause of food-borne diarrhea in many countries. However, in some countries, a number of cases were undetected because of the inappropriate detection method and ignorance. Although C. jejuni usually does not cause death in health adults, it can be deadly for immunocompromised persons (Pigrau, et al., 1997. Although thought to be very susceptible in several conditions, C. jejuni in fact is quite prevalent in nature. It can easily cause sporadic cases and outbreaks resulting in economic loss. This review covers three major parts: clinical aspects of Campylobacteriosis, C. jejuni reservoirs and transmission, and methods for detection.

  11. Cj1411c GENE OF CAMPYLOBACTER JEJUNI 11168 ENCODES FOR A CYTOCHROME P450 INVOLVED IN BACTERIAL CAPSULE SUGAR METABOLISM

    Directory of Open Access Journals (Sweden)

    CORCIONIVOSCHI N.

    2007-01-01

    Full Text Available After isolation in 1970s, Campylobacter jejuni become the most commonlyrecognized cause of bacterial gastroenteritis in man. In animals is frequently foundin bovines on ovines. Publishing of the genome sequence of Campylobacter jejuni11168 (Parkhill, 2000 revealed the presence of only one cytochrome P450 in anoperon involved in sugar and cell surface biosynthesis. The gene name is Cj1411c, is1359 bp long and encodes 453 aa. The sequence is strictly conserved inCampylobacter jejuni RM221. Similarities with two cytochrome P450s, one formSilicobacter sp. and one form Poloromonas sp., were identified. These two enzymesare known to be involved in ascorbate and aldarate metabolism. The recombinantconstruct allowed the expression of active P450 enzyme with a 450 nm peak whenbinds CO. The protein was purified in proportion of ~ 70 %. By deleting the P450gene from the Campylobacter jejuni 11168 genome clear changes in cellmorphology were identified cells becoming wider and shorter. The capsular sugarprofile of the NCI strain reveals the presence of arabinose which was not found inthe wild type strain. The arabinose was identified by both High Performance LiquidChromatography (HPLC and Nuclear Magnetic Resonance (NMR.

  12. Trans-Cinnamaldehyde, Carvacrol, and Eugenol Reduce Campylobacter jejuni Colonization Factors and Expression of Virulence Genes in Vitro

    Directory of Open Access Journals (Sweden)

    Dan J. Donoghue

    2017-04-01

    Full Text Available Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea, and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteritis. Reducing the attachment and invasion of Campylobacter to intestinal epithelium and expression of its virulence factors such as motility and cytolethal distending toxin (CDT production could potentially reduce infection in humans. This study investigated the efficacy of sub-inhibitory concentrations (SICs, concentration not inhibiting bacterial growth of three GRAS (generally recognized as safe status phytochemicals namely trans-cinnamaldehyde (TC; 0.005, 0.01%, carvacrol (CR; 0.001, 0.002%, and eugenol (EG; 0.005, 0.01% in reducing the attachment, invasion, and translocation of C. jejuni on human intestinal epithelial cells (Caco-2. Additionally, the effect of these phytochemicals on Campylobacter motility and CDT production was studied using standard bioassays and gene expression analysis. All experiments had duplicate samples and were replicated three times on three strains (wild type S-8, NCTC 11168, 81–176 of C. jejuni. Data were analyzed using ANOVA with GraphPad ver. 6. Differences between the means were considered significantly different at P < 0.05. The majority of phytochemical treatments reduced C. jejuni adhesion, invasion, and translocation of Caco-2 cells (P < 0.05. In addition, the phytochemicals reduced pathogen motility and production of CDT in S-8 and NCTC 11168 (P < 0.05. Real-time quantitative PCR revealed that phytochemicals reduced the transcription of select C. jejuni genes critical for infection in humans (P < 0.05. Results suggest that TC, CR, and EG could potentially be used to control C. jejuni infection in humans.

  13. Media for Campylobacter jejuni and other campylobacters

    NARCIS (Netherlands)

    Mossel, D.A.A.

    1985-01-01

    Despite their recent elaboration and the many variations in antibiotic combinations designed to attain selectivity, highly selective liquid and solid culture media for Campylobacter jejuni have proved satisfactory provided they are incubated at about 42°C and in a microaerophilic atmosphere such as

  14. Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Aidley, Jack; Holst Sørensen, Martine C.; Bayliss, Christopher D.

    2017-01-01

    Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations...... in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase...... for this CPS modification, cj1421, and two other phase-variable CPS genes generated phage resistance in C. jejuni. Here we investigate the population dynamics of C. jejuni NCTC11168 when exposed to phage F336 in vitro using a newly described method - the 28-locus-CJ11168 PV analysis. Dynamic switching...

  15. PCR-restriction fragment length polymorphism analysis of Campylobacter jejuni genes involved in lipooligosaccharide biosynthesis identifies putative molecular markers for Guillain-Barré syndrome

    NARCIS (Netherlands)

    P.C.R. Godschalk (Peggy); A.F. van Belkum (Alex); N.P.W.C.J. van den Braak (Nicole); D. van Netten (Diana); C.W. Ang (Wim); M. Gilbert (Michel); H.P. Endtz (Hubert); B.C. Jacobs (Bart)

    2007-01-01

    textabstractMolecular mimicry of Campylobacter jejuni lipooligosaccharides (LOS) by gangliosides in peripheral nerve tissue probably triggers the Guillain-Barré syndrome due to the induction of cross-reactive antibodies. PCR-restriction fragment length polymorphism analysis of C. jejuni genes

  16. Characterization of Antimicrobial Susceptibility and Its Association with Virulence Genes Related to Adherence, Invasion, and Cytotoxicity in Campylobacter jejuni and Campylobacter coli Isolates from Animals, Meat, and Humans.

    Science.gov (United States)

    Lapierre, Lisette; Gatica, María A; Riquelme, Víctor; Vergara, Constanza; Yañez, José Manuel; San Martín, Betty; Sáenz, Leonardo; Vidal, Maricel; Martínez, María Cristina; Araya, Pamela; Flores, Roberto; Duery, Oscar; Vidal, Roberto

    2016-07-01

    The aim of this research was to statistically analyze the association between antimicrobial susceptibility/resistance to erythromycine, gentamicin, ciprofloxacin, and tetracycline and 11 virulence genes associated with adherence, invasion, and cytotoxicity in 528 isolates of Campylobacter coli and Campylobacter jejuni obtained from retail meat and fecal samples from food-producing animals and human patients. A high percentage of Campylobacter strains were resistant to antimicrobials, specifically ciprofloxacin and tetracycline. Moreover, we observed a wide distribution of virulence genes within the analyzed strains. C. jejuni strains were more susceptible to antimicrobials, and showed greater number of virulence genes than C. coli strains. Genes related to invasion capability, such as racR, ciaB, and pldA, were associated with antimicrobial-susceptible strains in both species. The genes cdtA and dnaJ, a citotoxin unit and an adherence-related gene, respectively, were associated with antimicrobial-resistant strains in both species. In conclusion, Campylobacter strains show a statistically significant association between antimicrobial susceptibility and the presence of virulence genes.

  17. Virulence strategies of Campylobacter jejuni

    NARCIS (Netherlands)

    Alphen, Lieke van

    2007-01-01

    Campylobacter jejuni is recognized as the leading cause of bacterial foodborne disease, causing approximately 400 million human cases of enterocolitis world wide each year. Many cases can be attributed to foreign travel, making it one of the most important causative agents of traveller's diarrhea.

  18. High-Frequency Variation of Purine Biosynthesis Genes Is a Mechanism of Success in Campylobacter jejuni.

    Science.gov (United States)

    Cameron, Andrew; Huynh, Steven; Scott, Nichollas E; Frirdich, Emilisa; Apel, Dmitry; Foster, Leonard J; Parker, Craig T; Gaynor, Erin C

    2015-09-29

    Phenotypic variation is prevalent in the zoonotic pathogen Campylobacter jejuni, the leading agent of enterocolitis in the developed world. Heterogeneity enhances the survival and adaptive malleability of bacterial populations because variable phenotypes may allow some cells to be protected against future stress. Exposure to hyperosmotic stress previously revealed prevalent differences in growth between C. jejuni strain 81-176 colonies due to resistant or sensitive phenotypes, and these isolated colonies continued to produce progeny with differential phenotypes. In this study, whole-genome sequencing of isolated colonies identified allelic variants of two purine biosynthesis genes, purF and apt, encoding phosphoribosyltransferases that utilize a shared substrate. Genetic analyses determined that purF was essential for fitness, while apt was critical. Traditional and high-depth amplicon-sequencing analyses confirmed extensive intrapopulation genetic variation of purF and apt that resulted in viable strains bearing alleles with in-frame insertion duplications, deletions, or missense polymorphisms. Different purF and apt alleles were associated with various stress survival capabilities under several niche-relevant conditions and contributed to differential intracellular survival in an epithelial cell infection model. Amplicon sequencing revealed that intracellular survival selected for stress-fit purF and apt alleles, as did exposure to oxygen and hyperosmotic stress. Putative protein recognition direct repeat sequences were identified in purF and apt, and a DNA-protein affinity screen captured a predicted exonuclease that promoted the global spontaneous mutation rate. This work illustrates the adaptive properties of high-frequency genetic variation in two housekeeping genes, which influences C. jejuni survival under stress and promotes its success as a pathogen. C. jejuni is an important cause of bacterial diarrheal illness. Bacterial populations have many

  19. Experimental Campylobacter Jejuni Infection in Humans

    Science.gov (United States)

    1988-03-01

    Blaser MJI Black RE. Duncan DJ, Amer I. Campylobacter Clements ML, Robins-Brone R, Lim Y-L. Duration of jejuni -specific serum antibodies are elevated in...SUBTITLE 5 FUNDING •4UMBERS Experimental Campylobacter jejuni Infection 86PP6826 in Humans 61102A 30161102BS13 AB6. AUTHOR(S)DA328 Robert E. Black...SUPPLEMENTARY NOTES Contract Title: Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development ൔa• DISTRIBUTION

  20. Prevalence of virulence genes and cytolethal distending toxin production in Campylobacter jejuni isolates from diarrheal patients in Bangladesh

    NARCIS (Netherlands)

    Talukder, Kaisar A.; Aslam, Mohammad; Islam, Zhahirul; Azmi, Ishrat J.; Dutta, Dilip K.; Hossain, Sabir; Nur-E-Kamal, Alam; Nair, Gopinath B.; Cravioto, Alejandro; Sack, David A.; Endtz, Hubert P.

    From 300 stool samples, 58 Campylobacter strains were isolated by standard microbiological and biochemical methods. Of these, 40 strains were identified as Campylobacter jejuni and 5 as Campylobacter coli. The presence of flaA (100%), cadF (100%), racR (100%), dnaJ (100%), pldA (100%), ciaB (95%),

  1. Prevalence of virulence genes and cytolethal distending toxin production in Campylobacter jejuni isolates from diarrheal patients in Bangladesh

    NARCIS (Netherlands)

    K.A. Talukder (Kaisar); M. Aslam (Mohammad); Z. Islam (Zhahirul); I.J. Azmi (Ishrat); D.K. Dutta (Dilip); S. Hossain (S.); A. Nur-E-Kamal (Alam); G.B. Nair (Gopinath); A. Cravioto (Alejandro); D.A. Sack (David); H.P. Endtz (Hubert)

    2008-01-01

    textabstractFrom 300 stool samples, 58 Campylobacter strains were isolated by standard microbiological and biochemical methods. Of these, 40 strains were identified as Campylobacter jejuni and 5 as Campylobacter coli. The presence of flaA (100%), cadF (100%), racR (100%), dnaJ (100%), pldA (100%),

  2. Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.

    Science.gov (United States)

    Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H

    2013-01-09

    Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. FROM GENE TO PROTEIN – CLONNING, EXPRESSION AND PUFICATION OF A P450 CYTOCHROM FROM Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    N. CORCIONIVOSCHI

    2009-05-01

    Full Text Available Recently, the complete genome sequence of Campylobacter jejuni NCTC 11168 was published revealing the presence of only one open reading frame (Cj1411c encoding for a cytochrome P450, in contrast to 20 found in M. tuberculosis. The gene Cj1411c encodes for a soluble 52.6 kDa protein with a predicted isoelectric point of 9.3. The P450 gene is part of reading frame which hosts genes involved in the synthesis of cell surface components (capsula. Campylobacter capsule are important in adherence, invasion and colonisation of host cells and for maintenance of cell surface charge and serum resistance. These capsule are thought to cause autoimmunity leading to Guillan-Barre and Miller-Fischer syndromes. The structure of the lipoolygosaccharides and capsule polysaccharide was published last year revealing that the strain possessed a type II/III capsule locus found in other microorganisms such Nisseria meningitidis. This project focuses on the cloning and characterisation of the only P450 enzyme of the human pathogen Campylobacter jejuni NCTC 11168. We aim to understand the metabolic role of this P450 cytochrome in order to elucidate its possible use as a new target for drug design. To achieve this aim we have cloned, expressed and purify the product of P450 coding gene.

  4. Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Jong-Chul eKim

    2015-02-01

    Full Text Available Campylobacter jejuni is an important foodborne pathogen. The molecular mechanisms for the regulation of oxidative stress resistance have not yet been understood fully in this bacterium. In this study, we investigated how PerR (peroxide stress regulator modulates the transcriptional regulation of both peroxide and superoxide resistance genes in C. jejuni, particularly under oxidative stress conditions. The transcriptional levels of ahpC, katA, and sodB were substantially increased by aeration and oxidant exposure. Interestingly, a perR mutation completely abrogated the transcriptional response of ahpC, katA and sodB to oxidants. Furthermore, we demonstrated that perR transcription was reduced by aeration and oxidant exposure. In contrast to the unique role of PerR homologs in peroxide stress regulation in other bacteria, interestingly, C. jejuni PerR directly regulates the transcription of sodB, the most important gene in superoxide defense, as evidenced by the alteration of sodB transcription by the perR mutation and direct binding of rPerR to the sodB promoter. In addition, we also observed notable morphological changes in C. jejuni from spiral rods to coccoid morphology under aerobic conditions. Based on the intracellular ATP levels, C. jejuni entered a viable-but-non-culturable state under aerobic conditions. These findings clearly demonstrate that C. jejuni possesses a unique regulatory mechanism of oxidative stress defense that does not specifically distinguish between peroxide and superoxide defense, and PerR plays a pivotal role in this non-selective regulation of oxidative stress resistance in C. jejuni.

  5. Detection of a putative virulence cadF gene of Campylobacter jejuni obtained from different sources using a microfabricated PCR chip

    DEFF Research Database (Denmark)

    Poulsen, Claus Riber; El-Ali, Jamil; Perch-Nielsen, Ivan R.

    2005-01-01

    A microfabricated polymerase chain reaction (PCR) chip made of epoxy-based photoresist (SU-8) was recently designed and developed. In this study, we tested whether the PCR chip could be used for rapid detection of a potential virulence determinant, the cadF gene of Campylobacter jejuni. PCR...... was performed using published PCR conditions and primers for the C. jejuni cadF gene. DNA isolated from a C. jejuni reference strain CCUG 11284, C. jejuni isolates obtained from different sources (chicken and human), and Campylobacter whole cells were used as templates in the PCR tests. Conventional PCR in tube...... was used as the control. After optimization of the PCR chip, PCR positives on the chip were obtained from 91.0% (10/11) of the tested chips. A fast transition time was achieved with the PCR chip, and therefore a faster cycling time and a shorter PCR program were obtained. Using the PCR chip, the cadF gene...

  6. Campylobacter jejuni in commercial eggs

    Directory of Open Access Journals (Sweden)

    Belchiolina Beatriz Fonseca

    2014-01-01

    Full Text Available This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health.

  7. Human Volunteer Studies with Campylobacter jejuni

    Science.gov (United States)

    1993-01-01

    AD-A271 892 1 April 1993 Reprint Human Volunteer Studies with Campylobacter jejuni Army Project Order 90PP0820 Robert E. Black, Daniel Perlman, Mary...the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development Approved for public release; distribution unlimited NTxxeISfl RFor...C. jejuni results in diarrhea cosa visualized on a microscopic study of rectal with fecal leukocytes and blood, similar to nat- biopsy specimens

  8. Multiplex PCR Assay for Identifi cation and Differentiation of Campylobacter jejuni and Campylobacter coli Isolates.

    Science.gov (United States)

    Pavlova, Maria R; Dobreva, Elina G; Ivanova, Katucha I; Asseva, Galina D; Ivanov, Ivan N; Petrov, Peter K; Velev, Valeri R; Tomova, Ivelina I; Tiholova, Maida M; Kantardjiev, Todor V

    2016-01-01

    Campylobacter spp. are important causative agents of gastrointestinal infections in humans. The most frequently isolated strains of this bacterial genus are Campylobacter jejuni and Campylobacter coli. To date, genetic methods for bacterial identification have not been used in Bulgaria. We optimized the multiplex PSR assay to identify Campylobacter spp. and differentiate C. jejuni from C. coli in clinical isolates. We also compared this method with the routinely used biochemical methods. To identify Campylobacter spp. and discriminate C. coli from C. jejuni in clinical isolates using multiplex PCR assay. Between February 2014 and January 2015 we studied 93 stool samples taken from patients with diarrheal syndrome and identified 40 species of Campylobacter spp. in them. The clinical material was cultured in microaerophilic atmosphere, the isolated strains being biochemically diff erentiated (hydrolysis of sodium hippurate for C. jejuni, and hydrolysis of indoxyl acetate for C. coli). DNA was isolated from the strains using QiaAmp MiniKit (QIAGEN, Germany). Twenty strains were tested with multiplex PCR for the presence of these genes: cadF, characteristic for Campylobacter spp., hipO for C. jejuni and asp for C. coli. The biochemical tests identified 16 strains of C. jejuni, 3 strains of C. coli, and 1 strain of C. upsaliensis. After the multiplex PCR assay the capillary gel electrophoresis confirmed 16 strains of C. jejuni, 2 strains of C. coli and 2 strains of Campylobacter spp. - because of the presence of the gene cadF. C. jejuni has the gene hipO, and it is possible that this gene may not be expressed in the biochemical differentiation yielding a negative reaction as a result. In comparison, we can conclude that the genetic differentiation is a more accurate method than the biochemical tests. The multiplex PCR assay is a fast, accurate method for identifi cation of Campylobacter spp. which makes it quite necessary in the clinical diagnostic practice.

  9. Survey of chicken abattoir for the presence of Campylobacter jejuni and Campylobacter coli Pesquisa de Campylobacter jejuni e Campylobacter coli em abatedouros de aves

    Directory of Open Access Journals (Sweden)

    Ana L.L. Cortez

    2006-12-01

    Full Text Available The genus Campylobacter is of great importance to public health because it includes several species that may cause diarrhea. These species may be found in water, food and in the intestinal tract of chickens. This study investigated the presence of Campylobacter jejuni and Campylobacter coli in chicken abattoirs in São Paulo State, Brazil. A total of 288 samples of feces, feathers, scald water, evisceration water, chiller water, and the rinse water of eviscerated, not eviscerated and chilled carcasses were collected in six chicken abattoirs. Polymerase Chain Reaction (PCR was performed in Campylobacter spp.-positive isolates using the gene HIP, specific for hippuricase enzyme from Campylobacter jejuni and aspartokinase gene, specific to detect Campylobacter coli. The percentage of positive isolates of Campylobacter jejuni was 4.9% (14/288. Isolation was greater in feces samples (22%, 8/36. One sample was positive for the species C. coli. In conclusion, the results indicate that it is necessary to improve quality control for Campylobacter spp. in chicken abattoirs.O gênero Campylobacter tem grande destaque em saúde pública, principalmente por pertencerem a este gênero várias espécies que podem causar diarréia. Estas espécies podem ser encontradas em amostras de água, alimentos e no trato intestinal das aves. Este estudo investigou a presença de Campylobacter jejuni e Campylobacter coli em abatedouros de aves no Estado de São Paulo. As 288 amostras foram coletadas em seis estabelecimentos e incluíram: fezes; penas; água de escaldamento, de evisceração e de resfriamento; e água de enxaguadura de carcaça não eviscerada, eviscerada e resfriada. Após o isolamento microbiológico das amostras positivas de Campylobacter spp. foi realizada uma Reação em Cadeia da Polimerase (PCR utilizando o gene HIP, da hipuricase, específico para Campylobacter jejuni e o gene da enzima aspartoquinase, específico para Campylobacter coli. A

  10. Detection of seven virulence and toxin genes of Campylobacter jejuni isolates from Danish turkeys by PCR and cytolethal distending toxin production of the isolates

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Borck, Birgitte; Nielsen, Eva Møller

    2004-01-01

    A total of 117 Campylobacter jejuni isolates from Danish turkeys were tested for the presence of seven virulence and toxin genes by PCR. One hundred seventeen (100%) isolates were positive for flaA, cadF, and ceuE gene primers. One hundred three (88%) isolates were positive for cdt gene cluster P...... turkeys and calls for further investigation for the elimination of Campylobacter infection in industrial turkey production and in industrial food chains.......A total of 117 Campylobacter jejuni isolates from Danish turkeys were tested for the presence of seven virulence and toxin genes by PCR. One hundred seventeen (100%) isolates were positive for flaA, cadF, and ceuE gene primers. One hundred three (88%) isolates were positive for cdt gene cluster PCR...

  11. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  12. Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro

    Science.gov (United States)

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans characterized by fever, diarrhea and abdominal cramps. In the human gut, Campylobacter adheres and invades the intestinal epithelium followed by cytolethal distending toxin mediated cell death, and enteri...

  13. Isolation of Campylobacter jejuni from raw milk.

    OpenAIRE

    Lovett, J; Francis, D W; Hunt, J. M.

    1983-01-01

    Campylobacter jejuni was isolated from raw milk by a method that can routinely detect less than or equal to 1 organism per ml. This procedure was used in a survey of 195 separate farms and showed a 1.5% incidence of C. jejuni in milk from bulk tanks.

  14. Campylobacter jejuni strategies to evade hostile environments

    NARCIS (Netherlands)

    Vaezirad, M.M.|info:eu-repo/dai/nl/311482384

    2017-01-01

    Campylobacter jejuni is the most common cause of human bacterial foodborne disease in the western world. Each year hundreds of millions of cases of Campylobacter infection occur worldwide. After a few weeks, the infection may be followed by serious auto-immune diseases like the Guillain-Barre

  15. Identification of Chicken Originated Campylobacter coli and Campylobacter jejuni by Polymerase Chain Reaction (PCR)

    OpenAIRE

    ERTAŞ, Hasan Basri; ÇETİNKAYA, Burhan; MUZ, Adile; ÖNGÖR, Hasan

    2014-01-01

    The purpose of this study was to isolate Campylobacter species from the intestines and livers of chicken and to identify Campylobacter coli and Campylobacter jejuni by both conventional methods and Polymerase Chain Reaction (PCR). Four specific primers derived from the ceuE gene present in the genomes of C. coli and C. jejuni were used for PCR identification. In the examination of 150 intestine and liver samples by culture and PCR, 25 (16.6%) and 32 (21.3%) were identified as C. coli and C...

  16. Development of Multiplex-Mismatch Amplification Mutation-PCR Assay for Simultaneous Detection of Campylobacter jejuni and Mutation in gyrA Gene Related to Fluoroquinolone Resistance.

    Science.gov (United States)

    Cui, Mingquan; Wu, Chenbin; Zhang, Peng; Wu, Congming

    2016-11-01

    Campylobacter jejuni, a foodborne pathogen, is the major cause of enteritis in humans worldwide, however, its increasing resistance to fluoroquinolones reported recently is of a major concern. In the present study, multiplex-mismatch amplification mutation assay-polymerase chain reaction (MMAMA-PCR) was developed for the first time with the aim to quickly identify C. jejuni and to detect the single nucleotide mutation (C-257 to T) frequently observed in gyrA gene, associated with the acquisition of resistance to fluoroquinolones. In this assay, mismatch amplification mutation primers for the detection of gyrA mutation in C. jejuni were coupled with primers for the hip gene encoding for hippuricase and 16S rRNA gene of C. jejuni, respectively, in the multiplex PCR assay. The specificity and accuracy of this method were analyzed by the use of 78 C. jejuni strains with previously confirmed resistance phenotypes and the mutation (C-257 to T) in gyrA gene, as well as 107 clinical isolates of various bacterial species, including 29 C. jejuni isolates. This study indicates that MMAMA-PCR is a promising assay for the rapid identification of C. jejuni with a specific mutation in gyrA gene, responsible for the resistance to fluoroquinolones.

  17. Epidemiological aspects of Campylobacter jejuni enteritis.

    OpenAIRE

    Norkrans, G.; Svedhem, A.

    1982-01-01

    An epidemiological study on Campylobacter jejuni enterocolitis was performed in an urban Swedish community. The study included 55 patients gathered during a six-month period. Forty-one of the 55 patients (75%) were infected outside Sweden. Campylobacter enterocolitis was rare among children within the country. Patients infected in Sweden had eaten chicken significantly more often than a corresponding control group. Seven out of nine chicken consuming campylobacter patients also had prepared t...

  18. A Cytolethal Distending Toxin Gene-Based Multiplex PCR Assay for Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari.

    Science.gov (United States)

    Kamei, Kazumasa; Kawabata, Hiroki; Asakura, Masahiro; Samosornsuk, Worada; Hinenoya, Atsushi; Nakagawa, Shinsaku; Yamasaki, Shinji

    2016-05-20

    In this study, we devised a multiplex PCR assay based on the gene of cytolethal distending toxin (cdt) B subunit to simultaneously detect and discriminate Campylobacter jejuni, C. fetus, C. coli, C. upsaliensis, C. hyointestinalis, and C. lari. Species-specific PCR products were successfully obtained from all 38 C. jejuni, 12 C. fetus, 39 C. coli, 22 C. upsaliensis, 24 C. hyointestinalis, and 7 C. lari strains tested. On the other hand, no specific PCR products were obtained from other campylobacters and bacterial species tested (41 strains in total). The proposed multiplex PCR assay is a valuable tool for detection and descrimination of 6 major Campylobacter species, that are associated with gastrointestinal diseases in humans.

  19. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis

    DEFF Research Database (Denmark)

    Mortensen, Ninell P; Schiellerup, Peter; Boisen, Nadia

    2011-01-01

    The role of Campylobacter jejuni cytolethal distending toxin (CDT) on clinical outcome after gastroenteritis was investigated. Clinical data, blood serum samples, and Campylobacter spp. isolated, from each of 30 patients were collected over a period of 6 months. The CDT encoding genes, cdt......ABC, characterized by PCR, revealed that all but one of the C. jejuni strains had the wild-type sequence. Sequencing of cdtABC from this strain showed two major deletions. From all of the strains, CDT titers were determined, and toxin neutralizing antibodies were documented using an in vitro assay. Three...

  20. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products

    Directory of Open Access Journals (Sweden)

    Mona A. El-Zamkan

    2016-10-01

    Full Text Available Aim: This study was accomplished to test raw milk and certain dairy products sold in local markets of Qena, Egypt, for the presence of Campylobacter coli and Campylobacter jejuni. Materials and Methods: A total of 150 samples of raw milk, kareish cheese, and yoghurt (50 samples each were subjected first to enrichment in Bolton broth at 42°C for 2 days under a microaerobic condition, subsequently campylobacter blood free selective agar plates were cultured and incubated in the same condition of the broth. Based on the morphological and biochemical themes of the growing colonies, it was further classified into Campylobacter spp. The identified isolates were later affirmed by polymerase chain reaction using primers that were designed to locate hipO genes in C. jejuni and glyA in C. coli. Results: Of the total 150 examined samples of raw milk and soft cheese samples; 37 (24.6% samples were contaminated with Campylobacter spp. C. jejuni was dominating in this study in 20%, 14%, and 8% of the examined raw milk, kareish cheese, and yoghurt samples, respectively. No sample harbored C. coli. Conclusion: Campylobacter spp. could be detected in 24.6% of the investigated samples. C. jejuni isolated from 14% of the total tested samples, while C. coli could not be detected from the examined samples. Campylobacter spp. is rampant in the areas of poor hygienic conditions making products made from raw milk of public health hazard.

  1. Prevalence of Campylobacter jejuni and Campylobacter coli in raw milk and some dairy products.

    Science.gov (United States)

    El-Zamkan, Mona A; Hameed, Karima G Abdel

    2016-10-01

    This study was accomplished to test raw milk and certain dairy products sold in local markets of Qena, Egypt, for the presence of Campylobacter coli and Campylobacter jejuni. A total of 150 samples of raw milk, kareish cheese, and yoghurt (50 samples each) were subjected first to enrichment in Bolton broth at 42°C for 2 days under a microaerobic condition, subsequently campylobacter blood free selective agar plates were cultured and incubated in the same condition of the broth. Based on the morphological and biochemical themes of the growing colonies, it was further classified into Campylobacter spp. The identified isolates were later affirmed by polymerase chain reaction using primers that were designed to locate hipO genes in C. jejuni and glyA in C. coli. Of the total 150 examined samples of raw milk and soft cheese samples; 37 (24.6%) samples were contaminated with Campylobacter spp. C. jejuni was dominating in this study in 20%, 14%, and 8% of the examined raw milk, kareish cheese, and yoghurt samples, respectively. No sample harbored C. coli. Campylobacter spp. could be detected in 24.6% of the investigated samples. C. jejuni isolated from 14% of the total tested samples, while C. coli could not be detected from the examined samples. Campylobacter spp. is rampant in the areas of poor hygienic conditions making products made from raw milk of public health hazard.

  2. Phage exposure causes dynamic shifts in the expression states of specific phase-variable genes of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Aidley, Jack; Holst Sørensen, Martine C.; Bayliss, Christopher D.

    2017-01-01

    Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations in homop......Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacter jejuni this reversible adaptive process is mediated by mutations...... in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase...

  3. Rapid PCR using nested primers of the 16S rRNA and the hippuricase (hipO) genes to detect Campylobacter jejuni and Campylobacter coli in environmental samples

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Wedderkopp, A.; Pedersen, Karl

    2002-01-01

    to detect Campylobacter jejuni and Campylobacter coli in environmental samples. The sensitivity of the nested PCR was determined to be 0.01 pg/PCR, corresponding to 2-3 colony forming units (cfu) per ml. The nested PCR assays were applied to detect C. jejuni and C. coli in 269 environmental samples......Identification of sources Campylobacter infection in the poultry houses is in general problematic due to the lack of reliable methods to detect campylobacteria in environmental samples. Detection of campylobacteria in environmental samples by conventional culture methods is difficult and of limited...... sensitivity due to the use of selective media, the low number of bacteria in the samples and possibly also due to the presence of non-culturable or sub-lethally injured stages of the bacteria. The present paper describes a rapid PCR assay using nested primers of the 16S rRNA or the hippuricase (hipO) genes...

  4. Natural transformation of Campylobacter jejuni occurs beyond limits of growth.

    Science.gov (United States)

    Vegge, Christina S; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni.

  5. Campylobacter jejuni infection and virulence-associated genes in children with moderate to severe diarrhoea admitted to emergency rooms in northeastern Brazil.

    Science.gov (United States)

    Quetz, Josiane da S; Lima, Ila F N; Havt, Alexandre; Prata, Mara M G; Cavalcante, Paloma A; Medeiros, Pedro H Q S; Cid, David A C; Moraes, Milena L; Rey, Luís Carlos; Soares, Alberto M; Mota, Rosa M S; Weigl, Bernhard H; Guerrant, Richard L; Lima, Aldo A M

    2012-04-01

    Campylobacter is an important cause of foodborne gastroenteritis. We determined the occurrence of Campylobacter jejuni and Campylobacter coli, using culture-based methods and PCRs targeting virulence-associated genes (VAGs) among children aged ≤14 years who were treated for diarrhoea at emergency rooms in northeastern Brazil. Genomic DNA was extracted directly from stool samples collected from 366 children. A questionnaire was also applied to qualify the clinical conditions presented by each child at the time of admission. C. jejuni and C. coli were detected in 16.4 % (60/366) and 1.4 % (5/366) of the diarrhoeal samples, respectively, by PCR, a much higher proportion than that detected by conventional methods. C. jejuni VAGs were detected in the following proportions of hipO-positive samples: ciaB, 95 % (57/60); dnaJ, 86.7 % (52/60); racR, 98.3 % (59/60); flaA, 80 % (48/60); pldA, 45 % (27/60); cdtABC, 95 % (57/60); and pVir 0 % (0/60). Particular symptoms, such as blood in faeces, vomiting, fever, and/or abdominal pain, were not associated with detection of C. jejuni nor were they associated with any particular VAG or combination of VAGs (P>0.05). C. jejuni and its VAGs were detected in a substantial proportion of the children admitted. Further efforts shall be directed towards elucidating whether these genetic factors or their expressed proteins play a role in Campylobacter pathogenesis.

  6. PRESENCE OF RESISTANCE IN CAMPYLOBACTER JEJUNI AND CAMPYLOBACTER COLI

    Directory of Open Access Journals (Sweden)

    Branislava Kocić

    2009-04-01

    Full Text Available There are 18 species belonging to the genus of Campylobacter (rRNK group I, of which thermophilic ones are the following: Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter upsaliensis. The aim of our research was to determine the sensitivity of Campylobacter species, isolated from human feces, to antibiotics being used in practice. The study involved 50 human strains of C. jejuni/coli isolated from feces in the Center for Microbiology in the Public Health Institute Nis. Sensitivity was tested by applying the disk diffusion method on seven antibiotics (erythromycin, gentamicin, tetracycline, ciprofloxacin, hloramphenicol, cephalexin and nalidixic acid. Our results showed low resistance to erythromycin, gentamicin and tetracycline (2%, which corresponds to the studies conducted in the world. Moreover, these findings indicate that erythromycin may be considered the drug of choice in the treatment of Campylobacter diarrhea in this region. Resistance to fluoroquinolone and nalidixic acid was 44%, and C. coli showed higher resistance compared to C. jejuni, though statistical significance was not proved.

  7. Genomic Characterization of Campylobacter jejuni strain M1

    DEFF Research Database (Denmark)

    Friis, Carsten; Wassenaar, Gertrude Maria; Javed, Muhammad A.

    2010-01-01

    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently....... Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1....... publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core...... genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas...

  8. Nutrient Acquisition and Metabolism by Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Martin eStahl

    2012-02-01

    Full Text Available The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar L-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron-sulphur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments.

  9. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis.

    Science.gov (United States)

    Banowary, Banya; Dang, Van Tuan; Sarker, Subir; Connolly, Joanne H; Chenu, Jeremy; Groves, Peter; Ayton, Michelle; Raidal, Shane; Devi, Aruna; Vanniasinkam, Thiru; Ghorashi, Seyed A

    2015-01-01

    Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates.

  10. Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis.

    Directory of Open Access Journals (Sweden)

    Banya Banowary

    Full Text Available Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR and high resolution melt (HRM curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO of C. jejuni and putative aspartokinase (asp gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours technique for differentiation between C. jejuni and C. coli isolates.

  11. Serotyping of Campylobacter jejuni/coli.

    OpenAIRE

    Abbott, J. D.; Dale, B.; Eldridge, J.; Jones, D. M.; Sutcliffe, E M

    1980-01-01

    Antisera were prepared from strains of Campylobacter jejuni/coli isolated from patients in six outbreaks of enteritis. Bactericidal antibodies, and agglutinating antibodies to heat-labile and heat-stable antigens, were demonstrated. These reactions were used to type a number of strains isolated from patients in each outbreak, and to distinguish 'epidemic' from 'non-epidemic' strains.

  12. Detection and quantification of Campylobacter jejuni and Campylobacter coli using real-time multiplex PCR.

    Science.gov (United States)

    Toplak, N; Kovač, M; Piskernik, S; Možina, S Smole; Jeršek, B

    2012-04-01

    We describe a real-time quantitative multiplex polymerase chain reaction (qmPCR) assay to identify and discriminate between isolates of Campylobacter jejuni and Campylobacter coli. Two novel sets of primers and hydrolysis probes were designed to amplify the unique DNA sequences within the hipO, ccoN and cadF genes that are specific to Camp. jejuni and Camp. coli. Using the designed optimized qmPCR assay conditions, the amplification efficiency is in range from 108 to 116%. These qmPCR assays are highly specific for Camp. jejuni and Camp. coli, as seen through testing of 40 Campylobacter strains and 17 non-Campylobacter strains. In chicken juice and tap water models spiked with known quantities of Camp. jejuni, qmPCR detected 10(2) -10(3) CFU ml(-1) within 4 h. The qmPCR assays developed in this study provide reliable and simultaneous detection and quantification of Camp. jejuni and Camp. coli, with good amplification reaction parameters. Following further validation, the qmPCR assay reported here has the potential to be applied to various sample types as an alternative and rapid methodology. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. A Study on Campylobacter jejuni and Campylobacter coli through Commercial Broiler Production Chains in Thailand: Antimicrobial Resistance, the Characterization of DNA Gyrase Subunit A Mutation, and Genetic Diversity by Flagellin A Gene Restriction Fragment Length Polymorphism.

    Science.gov (United States)

    Thomrongsuwannakij, Thotsapol; Blackall, Patrick J; Chansiripornchai, Niwat

    2017-06-01

    Contaminated poultry meat is regarded as the main source of human campylobacteriosis. During September 2014 and February 2015, breeder flocks, hatcheries, and broiler farms from two chicken production chains were investigated chronologically. Five commercial breeder flocks (Breeder Flocks 1-5), two hatcheries (Hatcheries A and B), and five broiler flocks (Broiler Flocks 1-5) were sampled in this study. Campylobacter colonization of both breeder and broiler flocks was determined from cloacal swabs and environmental samples (pan feeders, footwear, darkling beetles, flies, feed, and water). The eggs from the breeder flocks were followed to hatcheries. At the hatcheries, early embryonic deaths, egg trays, eggshells, hatchers, and water were investigated. Cloacal swabs were taken from broilers at Days 1, 14, and 28 (all broiler flocks), and either 35 (Broiler Flocks 1 and 2) or 43 (Broiler Flocks 3-5). Thirty-six Campylobacter jejuni and 94 Campylobacter coli isolates collected through two broiler production chains were tested by twofold agar dilution for their susceptibility to antimicrobial agents. Most Campylobacter isolates were multidrug resistant (MDR), defined as being resistant to three or more antimicrobial classes ( C. jejuni : 100%; C. coli : 98.9%), and exhibited high resistance to enrofloxacin ( C. jejuni : 100%; C. coli : 98.9%). The vast majority of C. coli were resistant to tetracycline (97.9%), trimethoprim-sulfamethoxazole (81.9%), and doxycycline (79.8%), but only 55.6%, 36.1%, and 50% of C. jejuni isolates revealed resistance to these antimicrobial agents, respectively. A selected subset of 24 C. jejuni and 24 C. coli were characterized for their mutations in the quinolone resistance determining region of the DNA gyrase subunit A gene by nucleotide sequence analysis. The Thr-86-Ile substitution (ACA-ATA in C. jejuni or ACT-ATT in C. coli ) was found in all isolates. Moreover, a total of 130 Campylobacter isolates were typed with the use of polymerase

  14. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins

    DEFF Research Database (Denmark)

    Nielsen, Lene Nørby; Luijkx, Thomas A.; Vegge, Christina Skovgaard

    2012-01-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was trans...

  15. Update on human Campylobacter jejuni infections.

    Science.gov (United States)

    Kirkpatrick, Beth D; Tribble, David R

    2011-01-01

    The present review will update the reader to the clinical, epidemiological and immunologic advances in the field of human campylobacteriosis. New advances in human campylobacteriosis include an increased appreciation of the role of Campylobacter jejuni in postinfectious sequelae, a broadened understanding of Campylobacter-associated disease burden and the interplay between host immunity and bacterial factors. Antibiotic management has also become more complex: C. jejuni has undergone a rapid increase in resistance to the fluoroquinolone antibiotics and concurrently, postinfectious irritable bowel syndrome has been associated with a longer duration of untreated infection. In anticipation of new candidate C. jejuni vaccines, progress in understanding human immune responses to infection has been made via human experimental infections. These tightly controlled studies have also increased our understanding of the natural history of campylobacteriosis as well as observations of recrudescent infection following treatment with C. jejuni-sensitive antibiotics. As one of the most common agents of bacterial gastroenteritis and a major health burden for both developing world and industrialized nations, Campylobacter infections remain a high priority for research efforts to improve prevention and management. Priorities for the future include vaccine development, pathogen-specific immunity and identification of risk factors for postinfectious sequelae.

  16. Epidemiological aspects of Campylobacter jejuni enteritis.

    Science.gov (United States)

    Norkrans, G.; Svedhem, A.

    1982-01-01

    An epidemiological study on Campylobacter jejuni enterocolitis was performed in an urban Swedish community. The study included 55 patients gathered during a six-month period. Forty-one of the 55 patients (75%) were infected outside Sweden. Campylobacter enterocolitis was rare among children within the country. Patients infected in Sweden had eaten chicken significantly more often than a corresponding control group. Seven out of nine chicken consuming campylobacter patients also had prepared the fresh chicken alone, and none of their family members became ill. Thus the preparation of food contaminated with Campylobacter seems to elevate the risk for contracting the disease. Sick household pets transmitted the campylobacter infection to two patients. Forty-six of the patients had a total of 85 close household members. Three definite secondary cases were found. There was no evidence of transmission of Campylobacter by food prepared by two cooks who were working while still being asymptomatic excreters. Clinical reinfection with Campylobacter was observed in one patient. No patients became long-term carriers of Campylobacter. PMID:7097000

  17. Colonization factors of Campylobacter jejuni in the chicken gut

    Science.gov (United States)

    2011-01-01

    Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development. PMID:21714866

  18. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates

    Directory of Open Access Journals (Sweden)

    Virginie eDufour

    2012-04-01

    Full Text Available Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes.We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC and benzyl-isothiocyanate (BITC, against 24 C. jejuni isolates from chicken feces, human infections and contaminated foods, as well as two reference strains NCTC11168 and 81-176.Both AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 2.5 to 5 g mL-1 compared to AITC (MIC of 50 to 200 g mL-1. Interestingly, the 24 C. jejuni isolates could be classified in 3 groups according to their sensitivity levels to both compounds, suggesting that AITC and BITC shared identical activity mechanisms and consequently faced similar resistance processes in bacterial cells.The sensitivity levels of C. jejuni strains against isothiocyanates were neither correlated with the presence of a GGT (-Glutamyl Transpeptidase encoding gene in the genome nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to WT when exposed to ITC.

  19. Colonization factors of Campylobacter jejuni in the chicken gut

    Directory of Open Access Journals (Sweden)

    Hermans David

    2011-06-01

    Full Text Available Abstract Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.

  20. Prevalence of Thermotolerant Campylobacter spp. in Chicken Meat in Croatia and Multilocus Sequence Typing of a Small Subset of Campylobacter jejuni and Campylobacter coli Isolates

    Directory of Open Access Journals (Sweden)

    Andrea Humski

    2016-01-01

    Full Text Available In order to detect thermotolerant Campylobacter spp., 241 samples of fresh chicken meat, at retail in Croatia, were analysed according to a standard method, followed by biochemical test and molecular polymerase chain reaction/restriction enzyme analysis for exact species determination. Campylobacter spp. prevalence was 73.86 %. Campylobacter jejuni and Campylobacter coli were isolated from 53.53 and 15.35 % of the samples, respectively. In 4.98 % of isolates thermotolerant Campylobacter spp. were not determined. The multi locus sequence typing method was used to evaluate genetic diversity of eight Campylobacter jejuni and four Campylobacter coli isolates. To our knowledge, these results of genotyping provided the first data on the presence of sequence types (STs and clonal complexes (CCs of Campylobacter jejuni and C. coli isolates in Croatia. By applying the multilocus sequence typing, a new allele of tkt gene locus was discovered and marked tkt508. The C. jejuni ST 6182 and C. coli ST 6183 genotypes were described for the fi rst time, and all other identified genotypes were clustered in the previously described sequence types and clonal complexes. These findings provide useful information on the prevalence and epidemiology of Campylobacter jejuni and C. coli in Croatia.

  1. A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity.

    Science.gov (United States)

    Ghorbanalizadgan, Mahdi; Bakhshi, Bita; Kazemnejad Lili, Anoshirvan; Najar-Peerayeh, Shahin; Nikmanesh, Bahram

    2014-07-01

    The aim of this study was to determine the prevalence of virulence-associated genes and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) analysis of Campylobacter spp. isolated from children with diarrhea in Iran. A total of 200 stool specimens were obtained from children under 5 years during July 2012 to July 2013. Detection of C. jejuni and C. coli was performed by standard biochemical and molecular methods. The presence of virulence-associated genes and genetic diversity of isolates was examined using PCR and ERIC-PCR analyses. A total of 12 (6%) Campylobacter spp. were isolated from patients including 10 (4.5%) C. jejuni and 2 (1.5%) C.coli. The flaA, cadF and ciaB genes were present in 100% of isolates, while no plasmid of virB11 gene was present in their genome. The prevalence of invasion-associated marker was 100% among C. coli and was not detected in C. jejuni isolates. The distribution of both pldA and the genes associated with cytolethal distending toxin (CDT) was 58.3% in C. jejuni isolates. Seven distinct ERIC-PCR profiles were distinguished in three clusters using ERIC-PCR analysis. Genotyping analysis showed a relative correlation with geographic location of patients and virulence gene content of isolates. To our knowledge, this is the first molecular survey of Campylobacter spp. in Iran concerning genotyping and virulence gene content of both C. jejuni and C. coli. ERIC-PCR revealed appropriate discriminatory power for clustering C. jejuni isolates with identical virulence gene content. However, more studies are needed to clearly understand the pathogenesis properties of specific genotypes.

  2. Phenotypic and Genotypic Detection of Campylobacter jejuni at Local Chicken and Chicken Meat

    Directory of Open Access Journals (Sweden)

    A Rosyidi

    2010-05-01

    Full Text Available The Objective of this study was to identify the existence of Campylobacter jejuni based on phenotypic and genotypic characteristic in local chicken and chicken meats. Samples of local chicken intestine and meat were tested for the bacterial existence. Phenotypic examination was carried out by means of cultivation followed by gram staining and biochemical tests. Genotypic examination was conducted by polymerase chain reaction (PCR using genus specific16S rRNA gene at 816 bp and membrane-associated protein A (mapA gene at 589 bp as Campylobacter jejuni species-specific gene. The result of phenotypic detection revealed the existence of Campylobacter spp as gram negative, curved rod shape, oxidase positive, urease negative and motile. Genotypic examination also indicated the existence of bacteria using both primers. However, no Campylobacter jejuni detected from meat of the chickens. The results suggest that the method of PCR using a primer detecting species-specific gene of Campylobacter jejuni gives a rapid and accurate detection of the bacteria as compared to that using phenotypic and biochemical test. Identification of Campylobacter spp from chicken meats should be improved with enrichment method and sample collection. (Animal Production 12(2: 128-134 (2010Key Words: Campylobacter jejuni, mapA gene, local chicken

  3. Campylobacter jejuni enterocolitis. A clinicopathologic study.

    Science.gov (United States)

    Colgan, T; Lambert, J R; Newman, A; Luk, S C

    1980-11-01

    Sixteen patients with diarrhea due to Campylobacter jejuni seen within a one-year period at a general hospital were studied to review the clinical and pathological features of this illness. Campylobacter jejuni causes an acute diarrheal illness often associated with fever, delayed-onset hematochezia, and severe abdominal pain. Roentgenographically, one may see colonic and ileal ulceration. Sigmoidoscopically, the rectal appearance is similar to that from acute idiopathic ulcerative colitis, while rectal biopsy specimens show preservation of glandular architecture and a range of focal inflammatory changes. These changes are most severe in patients with a history of frank blood in stool, provided the specimens are taken within the first week of illness. No correlation between stool frequency, abdominal pain, or fever and the severity of proctitis in rectal biopsy specimens can be drawn, which suggests that the pathogenic determinants for thesse clinical manifestations may not be in the rectum, but higher in the colon or in the small intestine.

  4. Acute myocarditis secondary to Campylobacter jejuni enterocolitis.

    Science.gov (United States)

    Turley, A J; Crilley, J G; Hall, J A

    2008-10-01

    Myocarditis is a rare condition that can mimic an acute coronary syndrome (ACS). We present the case of a 24-year-old male with Noonan syndrome who presented with a diarrhoeal pro-dromal illness, acute onset chest pain, elevated cardiac biomarkers and an abnormal ECG with ST elevation in the absence of obstructive coronary artery disease. The patient had acute myocarditis secondary to Campylobacter jejuni enterocolitis. Infective myocarditis is most commonly due to a viral infection. Myocarditis is very rarely due to a bacterial infection with only isolated reports of myocarditis induced by Campylobacter jejuni infection. At follow-up he remains well. Myocarditis should be considered in all patients presenting with acute onset chest pain and elevated cardiac biomarkers.

  5. Natural transformation of Campylobacter jejuni occurs beyond limits of growth.

    Directory of Open Access Journals (Sweden)

    Christina S Vegge

    Full Text Available Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni.

  6. Identification of immunogenic and virulence-associated Campylobacter jejuni proteins.

    Science.gov (United States)

    Nielsen, Lene N; Luijkx, Thomas A; Vegge, Christina S; Johnsen, Christina Kofoed; Nuijten, Piet; Wren, Brendan W; Ingmer, Hanne; Krogfelt, Karen A

    2012-02-01

    With the aim of identifying proteins important for host interaction and virulence, we have screened an expression library of NCTC 11168 Campylobacter jejuni genes for highly immunogenic proteins. A commercial C. jejuni open reading frame (ORF) library consisting of more than 1,600 genes was transformed into the Escherichia coli expression strain BL21(DE3), resulting in 2,304 clones. This library was subsequently screened for immunogenic proteins using antibodies raised in rabbit against a clinical isolate of C. jejuni; this resulted in 52 highly reactive clones representing 25 different genes after sequencing. Selected candidate genes were inactivated in C. jejuni NCTC 11168, and the virulence was examined using INT 407 epithelial cell line and motility, biofilm, autoagglutination, and serum resistance assays. These investigations revealed C. jejuni antigen 0034c (Cj0034c) to be a novel virulence factor and support the usefulness of the method. Further, several antigens were tested as vaccine candidates in two mouse models, in which Cj0034c, Cj0404, and Cj0525c resulted in a reduction of invasion in spleen and liver after challenge.

  7. Loop-Mediated Isothermal Amplification (LAMP) for Detection of Campylobacter jejuni and C. coli in Thai Children with Diarrhea.

    Science.gov (United States)

    Pham, Ngan Thi Kim; Trinh, Quang Duy; Khamrin, Pattara; Ukarapol, Nuthapong; Kongsricharoern, Tipachan; Yamazaki, Wataru; Komine-Aizawa, Shihoko; Okitsu, Shoko; Maneekarn, Niwat; Hayakawa, Satoshi; Ushijima, Hiroshi

    2015-01-01

    Campylobacter species are common causes of bacterial diarrhea, and Campylobacter jejuni and C. coli are known as the predominant causative agents in humans. Recent studies suggested that loop-mediated isothermal amplification (LAMP) is an efficient and practical tool for rapid detection of C. jejuni and C. coli in clinical samples. We used LAMP to screen 151 stool samples for Campylobacter; these samples were collected in 2012 from Thai children with diarrhea. The PCR method discriminated C. jejuni and C. coli among the detected Campylobacter strains; these species were subjected to sequencing of the hipO gene (in C. jejuni) or the ask gene (in C. coli). The results suggest that the prevalence of Campylobacter infection among Thai children with diarrhea is 8.6%, and C. jejuni is the most prevalent species.

  8. Novel plasmid conferring kanamycin and tetracycline resistance in turkey-derived Campylobacter jejuni strain 11601MD

    Science.gov (United States)

    In Campylobacter spp., resistance to the antibiotics kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095 bp.) harboring tet(O) was identified in...

  9. Clinical aspects of Campylobacter jejuni infections in adults.

    OpenAIRE

    Peterson, M C

    1994-01-01

    Campylobacter jejuni is an almost ubiquitous, microaerophilic, gram-negative rod. Outbreaks have been associated with drinking raw milk or contaminated water and eating poultry. Campylobacter jejuni accounts for 3.2% to 6.1% of cases of diarrheal illness in the general population of the United States, and infected patients frequently present with abdominal pain and fever. Less frequently, C jejuni is responsible for bacteremia, septic arthritis, septic abortion, and other extraintestinal infe...

  10. Impact of mutations in DNA gyrase genes on quinolone resistance in Campylobacter jejuni.

    Science.gov (United States)

    Changkwanyeun, Ruchirada; Yamaguchi, Tomoyuki; Kongsoi, Siriporn; Changkaew, Kanjana; Yokoyama, Kazumasa; Kim, Hyun; Suthienkul, Orasa; Usui, Masaru; Tamura, Yutaka; Nakajima, Chie; Suzuki, Yasuhiko

    2016-10-01

    Amino acid substitutions providing quinolone resistance to Campyloabcter jejuni have been found in the quinolone resistance-determining region of protein DNA gyrase subunit A (GyrA), with the highest frequency at position 86 followed by position 90. In this study, wild-type and mutant recombinant DNA gyrase subunits were expressed in Escherichia coli and purified using Ni-NTA agarose column chromatography. Soluble 97 kDa GyrA and 87 kDa DNA gyrase subunit B were shown to reconstitute ATP-dependent DNA supercoiling activity. A quinolone-inhibited supercoiling assay demonstrated the roles of Thr86Ile, Thr86Ala, Thr86Lys, Asp90Asn, and Asp90Tyr amino acid substitutions in reducing sensitivity to quinolones. The marked effect of Thr86Ile on all examined quinolones suggested the advantage of this substitution in concordance with recurring isolation of quinolone-resistant C. jejuni. An analysis of the structure-activity relationship showed the importance of the substituent at position 8 in quinolones to overcome the effect of Thr86Ile. Sitafloxacin (SIT), which has a fluorinate cyclopropyl ring at R-1 and a chloride substituent at R-8, a characteristic not found in other quinolones, showed the highest inhibitory activity against all mutant C. jejuni gyrases including ciprofloxacin-resistant mutants. The results suggest SIT as a promising drug for the treatment of campylobacteriosis caused by CIP-resistant C. jejuni. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides.

    Science.gov (United States)

    Semchenko, Evgeny A; Day, Christopher J; Moutin, Marc; Wilson, Jennifer C; Tiralongo, Joe; Korolik, Victoria

    2012-01-01

    Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM(1), asialo GM(2) and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375) with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM(2)-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides.

  12. Structural heterogeneity of terminal glycans in Campylobacter jejuni lipooligosaccharides.

    Directory of Open Access Journals (Sweden)

    Evgeny A Semchenko

    Full Text Available Lipooligosaccharides of the gastrointestinal pathogen Campylobacter jejuni are regarded as a major virulence factor and are implicated in the production of cross-reactive antibodies against host gangliosides, which leads to the development of autoimmune neuropathies such as Guillain-Barré and Fisher Syndromes. C. jejuni strains are known to produce diverse LOS structures encoded by more than 19 types of LOS biosynthesis clusters. This study demonstrates that the final C. jejuni LOS structure cannot always be predicted from the genetic composition of the LOS biosynthesis cluster, as determined by novel lectin array analysis of the terminal LOS glycans. The differences were shown to be partially facilitated by the differential on/off status of three genes wlaN, cst and cj1144-45. The on/off status of these genes was also analysed in C. jejuni strains grown in vitro and in vivo, isolated directly from the host animal without passaging, using immunoseparation. Importantly, C. jejuni strains 331, 421 and 520 encoding cluster type C were shown to produce different LOS, mimicking asialo GM(1, asialo GM(2 and a heterogeneous mix of gangliosides and other glycoconjugates respectively. In addition, individual C. jejuni colonies were shown to consistently produce heterogeneous LOS structures, irrespective of the cluster type and the status of phase variable genes. Furthermore we describe C. jejuni strains (351 and 375 with LOS clusters that do not match any of the previously described LOS clusters, yet are able to produce LOS with asialo GM(2-like mimicries. The LOS biosynthesis clusters of these strains are likely to contain genes that code for LOS biosynthesis machinery previously not identified, yet capable of synthesising LOS mimicking gangliosides.

  13. New, extended biotyping scheme for Campylobacter jejuni, Campylobacter coli, and "Campylobacter laridis".

    OpenAIRE

    Lior, H.

    1984-01-01

    A biotyping scheme using improved media and methods for the detection of hippurate hydrolysis, rapid H2S production, and DNA hydrolysis was applied to 1,826 cultures of Campylobacter jejuni, Campylobacter coli and "Campylobacter laridis" isolates from human and nonhuman sources. Four biotypes were identified among C. jejuni: 57.3% of the isolates belonged to biotype I; 36.0%, to biotype II; 4.0%, to biotype III; and 2.7%, to biotype IV. C. coli organisms were differentiated into biotype I (67...

  14. Campylobacter jejuni: exposure assessment and hazard characterization : growth, survival and infectivity of Campylobacter jejuni

    NARCIS (Netherlands)

    Verhoeff-Bakkenes, L.

    2012-01-01

    Campylobacter jejuni, a small, curved or spirally shaped highly motile microorganism, is identified as a major cause of bacterial gastroenteritis throughout the world. Serious complications such as the Guillain-Barré syndrome and reactive arthritis might occasionally follow infection. In this

  15. Complete Genomic Sequence of Campylobacter jejuni subsp. jejuni HS:19 Strain RM1285 Isolated from Packaged Chicken

    OpenAIRE

    Parker, Craig; Huynh, S; Heikema, Astrid

    2016-01-01

    textabstractPoultry products serve as the main source of Campylobacter jejuni subsp. jejuni infections in humans. C. jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome. This study describes the genome of C. jejuni subsp. jejuni HS:19 strain RM1285, isolated from packaged chicken in California.

  16. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli recovered from organic turkey farms in Germany.

    Science.gov (United States)

    El-Adawy, Hosny; Ahmed, Marwa F E; Hotzel, Helmut; Tomaso, Herbert; Tenhagen, Bernd-Alois; Hartung, Joerg; Neubauer, Heinrich; Hafez, Hafez M

    2015-11-01

    The popularity of food produced from animals kept under an organic regimen has increased in recent years. In Germany, turkey meat consumption has increased. Despite several studies assessing the susceptibility of campylobacters to various antibiotics in poultry, no sufficient data exists regarding the antimicrobial resistance of campylobacters in organic-reared turkeys. This study provides information about antibiotic resistance in Campylobacter isolated from turkeys reared on organic farms in Germany. Ninety-six Campylobacter strains (41 C. jejuni and 55 C. coli) were isolated from different free-range turkey flocks. In vitro antimicrobial sensitivity testing was done using a broth microdilution test, and the presence of resistance genes to antibiotics (ciprofloxacin, tetracycline) was investigated. All Campylobacter isolates from organic turkeys (n = 96) were phenotypically sensitive to gentamicin, erythromycin, streptomycin, and chloramphenicol. In this study, the antibiotic susceptibilities of C. jejuni to ciprofloxacin, tetracycline, and naladixic acid were 56.0%, 51.3%, and 56.0%, respectively. In contrast, 44.0%, 73.0%, and 74.6% of C. coli isolates were resistant to tetracycline, ciprofloxacin, and nalidixic acid, respectively. Replacement of the Thr-86→Ile in the gyrA gene, and the presence of the tet(O) gene were the mainly identified resistance mechanisms against fluoroquinolones and tetracycline, respectively.These results also reinforce the need to develop strategies and implement specific control procedures to reduce the development of antimicrobial resistance. © 2015 Poultry Science Association Inc.

  17. Post-genome Analysis of the Foodborne Pathogen Campylobacter jejuni

    Science.gov (United States)

    Kay, Emily J.; Gundogdu, Ozan; Wren, Brendan

    The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter and Wolinella genuses. Campylobacter species are Gram-negative, curved rod shaped or spiral and are motile (via polar flagella).

  18. Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions

    NARCIS (Netherlands)

    Chaveerach, P.; Huurne, ter A.A.H.M.; Lipman, L.J.A.; Knapen, van F.

    2003-01-01

    The culturability of 10 strains of Campylobacter jejuni and Campylobacter coli was studied after the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells could not survive 2 h under acid conditions (formic acid at pH 4). The 10 Campylobacter strains could not be

  19. Expression of a novel autoantibody defined by the VH3-15 gene in inflammatory bowel disease and Campylobacter jejuni enterocolitis.

    Science.gov (United States)

    Berberian, L S; Valles-Ayoub, Y; Gordon, L K; Targan, S R; Braun, J

    1994-10-15

    This study newly introduces anti-VH mAbs to assess the role of clonal B cell activity in inflammatory bowel disease. Immunohistochemistry of colonic biopsies in ulcerative colitis (UC) and Crohn's disease (CD), but not unaffected individuals, demonstrated uniform staining of intravascular erythrocytes with BK2, a monoclonal specific for the VH3-15 Ig heavy chain gene product. Staining was caused by erythrocytes opsinized in vivo by anti-erythrocyte Abs present in patient sera and by using the VH3-15 gene product. The erythrocyte Ag was identified by immunoprecipitation as 22- and 28-kDa membrane proteins. A direct flow cytometric assay was developed to measure this serum autoantibody and was tested in 101 individuals with UC, CD, other acute or chronic colitis, and healthy controls. Compared with normal subjects, BK2+ anti-erythrocyte Abs were elevated in most sera from patients with CD and UC (including postcolectomy). BK2+ anti-erythrocyte Abs also were elevated in 10 of 38 noninflammatory bowel disease patients, all of whom had Campylobacter jejuni enterocolitis. These findings suggest that a common immunopathogenetic factor, manifested by VH3-15 B cell activation may be shared in UC, CD, and Campylobacter jejuni enterocolitis.

  20. Mouse Models for Campylobacter jejuni Colonization and Infection.

    Science.gov (United States)

    Stahl, Martin; Graef, Franziska A; Vallance, Bruce A

    2017-01-01

    Relevant animal models for Campylobacter jejuni infection have been difficult to establish due to C. jejuni's inability to cause disease in many common animal research models. Fortunately, recent work has proven successful in developing several new and relevant mouse models of C. jejuni infection, including the SIGIRR-deficient mouse strain that develops acute enterocolitis in response to C. jejuni. Here we describe how to properly infect mice with C. jejuni, as well as a number of accompanying histological techniques to aid in studying C. jejuni colonization and infection in mice.

  1. Campylobacter jejuni PflB is required for motility and colonisation of the chicken gastrointestinal tract.

    Science.gov (United States)

    Kanji, Alpa; Jones, Michael A; Maskell, Duncan J; Grant, Andrew J

    2015-12-01

    Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis worldwide. Although the mechanisms by which C. jejuni causes disease are not completely understood, the presence of functional flagella appears to be required for colonisation of the gastrointestinal tract of humans and animals. Therefore much attention has been given to understanding the synthesis and role of flagella in C. jejuni. In this study we report insights into the function of PflB that is essential for Campylobacter motility. We have explored the function of this gene by constructing deletion mutants in C. jejuni strains NCTC11168 and M1, in the genes cj0390 and CJM1_0368, respectively. The mutants were non-motile yet assembled flagella that appeared structurally identical to the wild type. Furthermore the protein is required for C. jejuni colonisation of caeca in a two-week old chicken colonisation model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Substrate utilization by Campylobacter jejuni and Campylobacter coli

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, H.N.; Rollins, D.M.; Weiss, E.

    1986-10-01

    An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO/sub 2/ formation from four /sup 14/C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. The cells were incubated with 0.02 M glutamate, glutamine, ..cap alpha..-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with /sup 2/chemically bond-ketoglutarate, was an immediate burst of CO/sub 2/ production followed by CO/sub 2/ evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO/sub 2/ production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and ..cap alpha..-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.

  3. Reversible expression of flagella in Campylobacter jejuni.

    OpenAIRE

    Caldwell, M. B.; Guerry, P; Lee, E C; Burans, J. P.; Walker, R I

    1985-01-01

    Campylobacter jejuni 81116 and A3249 undergo a bidirectional transition between flagellated (Fla+) and aflagellated (Fla-) phenotypes. When measured in culture medium, the Fla+----Fla- transition occurred at a rate of 3.1 X 10(-3) to 5.9 X 10(-3) per cell per generation, and the Fla- to Fla+ transition occurred at a rate of 4.0 X 10(-7) to 8.0 X 10(-7) per cell per generation. However, passage through a rabbit intestine markedly favored the Fla+ phenotype.

  4. Isolation and detection of Campylobacter jejuni from chicken fecal samples by immunomagnetic separation–PCR

    DEFF Research Database (Denmark)

    Le Ly, Tram Thuy; Cao, Cuong; Høgberg, Jonas

    2012-01-01

    Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal...... specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity...... of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 μm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection...

  5. Presence of antibodies against campylobacter flagellar capping proteins versus campylobacter jejuni isolation in broilers

    Science.gov (United States)

    Campylobacter jejuni is the leading foodborne pathogen that causes human acute bacterial gastroenteritis worldwide. Human cases have been linked to consumption and/or handling of contaminated poultry products. Although Campylobacter jejuni is commonly regarded as a commensal in broiler cecal micro...

  6. Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model

    Science.gov (United States)

    Shang, Yuwei; Ren, Fangzhe; Song, Zhaojun; Li, Qiuchun; Zhou, Xiaohui; Wang, Xiaobo; Xu, Zhonglan; Bao, Guangyu; Wan, Ting; Lei, Tianyao; Wang, Nan; Jiao, Xin-an; Huang, Jinlin

    2016-01-01

    A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens. PMID:27357336

  7. Differential Survival of Hyper-Aerotolerant Campylobacter jejuni under Different Gas Conditions

    Directory of Open Access Journals (Sweden)

    Euna Oh

    2017-05-01

    Full Text Available Campylobacter jejuni accounts for a significant number of foodborne illnesses around the world. C. jejuni is microaerophilic and typically does not survive efficiently in oxygen-rich conditions. We recently reported that hyper-aerotolerant (HAT C. jejuni are highly prevalent in retail poultry meat. To assess the capabilities of HAT C. jejuni in foodborne transmission and infection, in this study, we investigated the prevalence of virulence genes in HAT C. jejuni and the survival in poultry meat in atmosphere at a refrigeration temperature. When we examined the prevalence of eight virulence genes in 70 C. jejuni strains from raw poultry meat, interestingly, the frequencies of detecting virulence genes were significantly higher in HAT C. jejuni strains than aerosenstive C. jejuni strains. This suggests that HAT C. jejuni would potentially be more pathogenic than aerosensitive C. jejuni. Under aerobic conditions, aerosensitive C. jejuni survived at 4°C in raw poultry meat for 3 days, whereas HAT C. jejuni survived in poultry meat for a substantially extended time; there was a five-log CFU reduction over 2 weeks. In addition, we measured the effect of other gas conditions, including N2 and CO2, on the viability of HAT C. jejuni in comparison with aerosensitive and aerotolerant strains. N2 marginally affected the viability of C. jejuni. However, CO2 significantly reduced the viability of C. jejuni both in culture media and poultry meat. Based on the results, modified atmosphere packaging using CO2 may help us to control poultry contamination with HAT C. jejuni.

  8. Methods for initial characterization of Campylobacter jejuni bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity....

  9. Prevalence of Virulence/Stress Genes in Campylobacter jejuni from Chicken Meat Sold in Qatari Retail Outlets.

    Directory of Open Access Journals (Sweden)

    Marawan Abu-Madi

    Full Text Available Chicken meat from the shelves of supermarkets in Qatar was tested for the presence of Campylobacter spp. and the presence of five virulence genes (htrB, cdtB, clpP, cadF and ciaB was assessed in isolates. Forty eight percent of the chickens provided for supermarkets by Saudi (53% and Qatari (45.9% producers were found to be contaminated and the most important factor affecting the overall prevalence of contaminated chickens was the store from which chicken samples originated. Variation in prevalence of Campylobacter in chicken meat from different stores was evident even when the same producer supplied the three stores in our survey. Differences in the prevalence and in the combinations of virulence genes in isolates that can and cannot grow in a classic maintenance medium (Karmali were identified, providing a starting point for linking presence/absence of particular virulence genes with actual in vivo virulence and pathogenicity. Because of the relatively low infective doses of Campylobacter that are required to initiate infection in humans, it will be important to explore further the relationships we identified between certain Campylobacter virulence genes and their capacity for survival in poultry meat, and hence their contribution to the incidence of campylobacteriosis.

  10. Prevalence of Virulence/Stress Genes in Campylobacter jejuni from Chicken Meat Sold in Qatari Retail Outlets.

    Science.gov (United States)

    Abu-Madi, Marawan; Behnke, Jerzy M; Sharma, Aarti; Bearden, Rebecca; Al-Banna, Nadia

    2016-01-01

    Chicken meat from the shelves of supermarkets in Qatar was tested for the presence of Campylobacter spp. and the presence of five virulence genes (htrB, cdtB, clpP, cadF and ciaB) was assessed in isolates. Forty eight percent of the chickens provided for supermarkets by Saudi (53%) and Qatari (45.9%) producers were found to be contaminated and the most important factor affecting the overall prevalence of contaminated chickens was the store from which chicken samples originated. Variation in prevalence of Campylobacter in chicken meat from different stores was evident even when the same producer supplied the three stores in our survey. Differences in the prevalence and in the combinations of virulence genes in isolates that can and cannot grow in a classic maintenance medium (Karmali) were identified, providing a starting point for linking presence/absence of particular virulence genes with actual in vivo virulence and pathogenicity. Because of the relatively low infective doses of Campylobacter that are required to initiate infection in humans, it will be important to explore further the relationships we identified between certain Campylobacter virulence genes and their capacity for survival in poultry meat, and hence their contribution to the incidence of campylobacteriosis.

  11. Identification of possible virulence marker from Campylobacter jejuni isolates.

    Science.gov (United States)

    Harrison, James W; Dung, Tran Thi Ngoc; Siddiqui, Fariha; Korbrisate, Sunee; Bukhari, Habib; Tra, My Phan Vu; Hoang, Nguyen Van Minh; Carrique-Mas, Juan; Bryant, Juliet; Campbell, James I; Studholme, David J; Wren, Brendan W; Baker, Stephen; Titball, Richard W; Champion, Olivia L

    2014-06-01

    A novel protein translocation system, the type-6 secretion system (T6SS), may play a role in virulence of Campylobacter jejuni. We investigated 181 C. jejuni isolates from humans, chickens, and environmental sources in Vietnam, Thailand, Pakistan, and the United Kingdom for T6SS. The marker was most prevalent in human and chicken isolates from Vietnam.

  12. Survival of Campylobacter jejuni in different gas mixtures

    DEFF Research Database (Denmark)

    Boysen, Louise; Knochel, Susanne; Rosenquist, Hanne

    2007-01-01

    Campylobacter jejuni in fresh chilled chicken meat is known to be a major risk factor for human gastrointestinal disease. In the present study, the survival under chilled conditions of different C. jejuni strains exposed to different gas mixtures usually used for gas packaging of food was examined...

  13. Cytotoxity of cell free filtrates of campylobacter jejuni isolated in ...

    African Journals Online (AJOL)

    Culture filtrates of Campylobacter jejuni strains isolated from clinical specimens in Lagos Nigeria were tested for toxic activity. Two out of five filtrates tested manifested cytopathic effect on BHK cells. The effects were mainly cytotoxic and cytotonic. Toxic activity of C. jejuni filtrates was much lower than toxic activity elicited by ...

  14. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne

    2009-01-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168, w...

  15. Innate Immunity to Campylobacter jejuni in Guillain-Barre Syndrome

    NARCIS (Netherlands)

    Huizinga, Ruth; van den Berg, Bianca; van Rijs, Wouter; Tio-Gillen, Anne P.; Fokkink, Willem Jan R.; Bakker-Jonges, Liesbeth E.; Geleijns, Karin; Samsom, Janneke N.; van Doorn, Pieter A.; Laman, Jon D.; Jacobs, Bart C.

    ObjectiveGuillain-Barre syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons

  16. Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates.

    Science.gov (United States)

    Ugarte-Ruiz, M; Stabler, R A; Domínguez, L; Porrero, M C; Wren, B W; Dorrell, N; Gundogdu, O

    2015-11-01

    Infections from Campylobacter jejuni pose a serious public health problem and are now considered the leading cause of foodborne bacterial gastroenteritis throughout the world. Sequencing of C. jejuni genomes has previously allowed a number of loci to be identified, which encode virulence factors that aid survival and pathogenicity. Recently, a Type VI secretion system (T6SS) consisting of 13 conserved genes was described in C. jejuni strains and recognised to promote pathogenicity and adaptation to the environment. In this study, we determined the presence of this T6SS in 63 Spanish C. jejuni isolates from the food chain and urban effluents using whole-genome sequencing. Our findings demonstrated that nine (14%) strains harboured the 13 ORFs found in prototype strain C. jejuni 108. Further studies will be necessary to determine the prevalence and importance of T6SS-positive C. jejuni strains. © 2014 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  17. Aplicación de PCR-RFLP para subtipificar Campylobacter jejuni PCR-RFLP for Campylobacter jejuni subtyping

    Directory of Open Access Journals (Sweden)

    G. Giacoboni

    2005-06-01

    Full Text Available Diez cepas de Campylobacter jejuni aisladas de fetos porcinos abortados fueron identificadas por pruebas bioquímicas: 8 como C. jejuni biotipo II de Lior, y 2 como C. jejuni biotipo I. Para poder subtipificarlas se utilizó la técnica de reacción en cadena de la polimerasa (PCR para amplificar el gen flaA y al producto obtenido se lo digirió con la enzima de restricción DdeI (RFLP. Se pudieron obtener 6 subtipos a partir de C. jejuni biotipo II, mientras que los dos aislamientos de biotipo I correspondieron a un mismo subtipo. Aunque existe una amplia variedad de técnicas de biología molecular que son aplicadas con fines epidemiológicos para Campylobacter, PCR-RFLP, demostró ser una técnica simple y accesible, capaz de subtipificar a C. jejuni.Ten Campylobacter jejuni isolates, 8 identified as C. jejuni biotype II of Lior and 2 as C. jejuni biotipe I, were recovered from aborted pig fetuses. In order to discriminate among strains, restriction fragment length polymorphism (RFLP using DdeI of polymerase chain reaction (PCR products of flaA gen was used. C. jejuni biotype II strains could be diferenciated in 6 by PCR-RFLP, and one subtype was obtained from C. jejuni biotype I. Although there is great variability of molecular techniques applied to the Campylobacter epidemiological studies, PCR-RFLP demonstrated to be a simple and accessible technique to discriminate Campylobacter jejuni isolates.

  18. Generation of Campylobacter jejuni genetic diversity in vivo

    NARCIS (Netherlands)

    Boer, de P.; Wagenaar, J.A.; Achterberg, R.P.; Putten, van J.P.M.; Schouls, L.M.; Duim, B.

    2002-01-01

    Molecular epidemiology studies suggest that horizontal genetic exchange is a major cause of pathogen biodiversity. We tested this concept for the bacterial enteropathogen Campylobacter jejuni by seeking direct in vivo evidence for the exchange of genetic material among Campylobacter strains. For

  19. Cellular response of Campylobacter jejuni to trisodium phosphate

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Cohn, M. T.; Stabler, R. A.

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal...

  20. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  1. Campylobacter jejuni enterocolitis presenting as inflammatory bowel disease.

    Science.gov (United States)

    Quondamcarlo, C; Valentini, G; Ruggeri, M; Forlini, G; Fenderico, P; Rossi, Z

    2003-10-01

    We report a case of Campylobacter jejuni enterocolitis presenting as inflammatory bowel disease in a 19-year old woman. After a useless course of corticosteroids, ceftazidime and metronidazole, she was successfully treated with erythromicin. Campylobacter species represent an important cause of gastroenteritis in children and adults. The rate of Campylobacter isolation is 5-6 per 100,000 persons. This rate, however, grossly understimates the actual number of Campylobacter infections. In most cases, Campylobacter enteritis is a self-limiting disease, rarely associated with severe complications. Our case demonstrates the difficulty in distinguishing inflammatory bowel disease (Crohn's disease or ulcerative colitis) at onset from atypical infectious colitis. Unfortunately, corticosteroids (necessary for the treatment of inflammatory bowel disease) may exacerbate infectious etiologies. Campylobacter jejuni should be ruled out when assessing inflammatory bowel diseases at onset (as during flare-ups), especially if corticosteroids or immunosuppressive therapies are required.

  2. Genomic Insights into Campylobacter jejuni Virulence and Population Genetics

    Directory of Open Access Journals (Sweden)

    Zuowei Wu

    2016-11-01

    Full Text Available Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.

  3. Cloning, expression, and antigenicity of 14 proteins from Campylobacter jejuni.

    Science.gov (United States)

    Zhang, Maojun; Meng, Fanliang; Cao, Fangfang; Qiao, Bo; Liu, Guodong; Liu, Hongying; Zhou, Yizhuang; Dong, Haiyan; Gu, Yixin; Xiao, Di; Zhang, Yongchan; Zhang, Jianzhong

    2012-08-01

    Fourteen Campylobacter jejuni genes--porA, cadF, omp18, dnaK, flaC, peb1, peb2, peb3, peb4, ahpC, groEL, tuF, hipO, and Cj0069--were cloned and expressed in Escherichia coli BL21. The recombinant proteins were purified on histidine (His) and glutathione S-transferase (GST) trap columns using the ÄKTA Explorer 100 System. Recombinant proteins were visualized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The antigenicities of these recombinant proteins were assessed by Western blotting and enzyme-linked immunosorbent assays with anti-C. jejuni immune rabbit sera. Four recombinant proteins, including rGST-PorA, rHis-CadF, rGST-GroEL, and rGST-TuF, demonstrated reactions with both anti-serum and preimmune serum, while rHis-DnaK, rGST-FlaC, rGST-PEB2, rGST-PEB3, rGST-PEB4, and rGST-HipO showed variable antigenicity characteristics to the anti-sera derived from different C. jejuni strains. rHis-Omp18, rHis-PEB1, and rGST-AhpC demonstrated universal and specific antigenities with the entire anti-sera panel tested in this present study, while recombinant rGST-Cj0069 and rHis-DnaK did not react with any of the anti-C. jejuni sera tested. In conclusion, rGST-AhpC may be useful as a potential serodiagnostic antigen for C. jejuni infection.

  4. Genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 Penner serotype reference strain RM3420

    NARCIS (Netherlands)

    C.T. Parker (Craig); Huynh, S. (Steven); A.P. Heikema (Astrid)

    2017-01-01

    textabstractCampylobacter jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Penner serotype HS:19 is among several capsular types shown to be markers for GBS. This study describes the genome of C.

  5. Complete genomic sequence of campylobacter jejuni subsp. jejuni HS:19 penner reference strain

    Science.gov (United States)

    Campylobacter jejuni subsp. jejuni (Cjj) infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Capsular type Penner HS:19 is among several capsule types shown to be markers for GBS. This study describes the genome of Cjj HS:19...

  6. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    Science.gov (United States)

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  7. Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Liu

    Full Text Available Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways.

  8. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity.

    Science.gov (United States)

    Bleumink-Pluym, Nancy M C; van Alphen, Lieke B; Bouwman, Lieneke I; Wösten, Marc M S M; van Putten, Jos P M

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.

  9. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Nancy M C Bleumink-Pluym

    Full Text Available The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.

  10. Campylobacter jejuni e Campylobacter coli EM CARCAÇAS DE FRANGO RESFRIADAS E CONGELADAS

    OpenAIRE

    Cisco, Isabel Cristina; Tedesco, Denise; Perdoncini, Gustavo; Santos, Suelen Priscila; Rodrigues, Laura Beatriz; Santos, Luciana Ruschel dos

    2017-01-01

    Resumo Espécies de Campylobacter spp. termotolerantes são agentes de surtos de campilobacteriose em humanos e os produtos de origem avícola são considerados uma importante fonte de infecção. Foram identificados Campylobacter jejuni e Campylobacter coli em carcaças de frango resfriadas e congeladas coletadas em três abatedouros entre 2014 e 2015. A detecção de Campylobacter spp. foi realizada por microbiologia convencional e a identificação de C. jejuni e C. coli por multiplex-PCR. Dentre as a...

  11. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni.

    Science.gov (United States)

    Han, Jing; Sahin, Orhan; Barton, Yi-Wen; Zhang, Qijing

    2008-06-06

    Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.

  12. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Jing Han

    2008-06-01

    Full Text Available Campylobacter jejuni is a major food-borne pathogen and a common causative agent of human enterocolitis. Fluoroquinolones are a key class of antibiotics prescribed for clinical treatment of enteric infections including campylobacteriosis, but fluoroquinolone-resistant Campylobacter readily emerges under the antibiotic selection pressure. To understand the mechanisms involved in the development of fluoroquinolone-resistant Campylobacter, we compared the gene expression profiles of C. jejuni in the presence and absence of ciprofloxacin using DNA microarray. Our analysis revealed that multiple genes showed significant changes in expression in the presence of a suprainhibitory concentration of ciprofloxacin. Most importantly, ciprofloxacin induced the expression of mfd, which encodes a transcription-repair coupling factor involved in strand-specific DNA repair. Mutation of the mfd gene resulted in an approximately 100-fold reduction in the rate of spontaneous mutation to ciprofloxacin resistance, while overexpression of mfd elevated the mutation frequency. In addition, loss of mfd in C. jejuni significantly reduced the development of fluoroquinolone-resistant Campylobacter in culture media or chickens treated with fluoroquinolones. These findings indicate that Mfd is important for the development of fluoroquinolone resistance in Campylobacter, reveal a previously unrecognized function of Mfd in promoting mutation frequencies, and identify a potential molecular target for reducing the emergence of fluoroquinolone-resistant Campylobacter.

  13. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease.

    Science.gov (United States)

    Zhang, Li; Man, Si Ming; Day, Andrew S; Leach, Steven T; Lemberg, Daniel A; Dutt, Shoma; Stormon, Michael; Otley, Anthony; O'Loughlin, Edward V; Magoffin, Annabel; Ng, Patrick H Y; Mitchell, Hazel

    2009-02-01

    The presence of Campylobacter species other than Campylobacter jejuni and antibodies to Campylobacter concisus in children were investigated. A significantly greater presence of C. concisus and higher levels of antibodies to C. concisus were detected in children with Crohn's disease (CD) than in controls. Campylobacter species other than C. jejuni were isolated from intestinal biopsy specimens of children with CD.

  14. Detection and Isolation of Campylobacter Species Other than C. jejuni from Children with Crohn's Disease▿

    OpenAIRE

    Zhang, Li; Man, Si Ming; Andrew S. Day; Steven T. Leach; Lemberg, Daniel A.; Dutt, Shoma; Stormon, Michael; Otley, Anthony; O'Loughlin, Edward V.; Magoffin, Annabel; Ng, Patrick H. Y.; Mitchell, Hazel

    2008-01-01

    The presence of Campylobacter species other than Campylobacter jejuni and antibodies to Campylobacter concisus in children were investigated. A significantly greater presence of C. concisus and higher levels of antibodies to C. concisus were detected in children with Crohn's disease (CD) than in controls. Campylobacter species other than C. jejuni were isolated from intestinal biopsy specimens of children with CD.

  15. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS: 19 strain RM1285 isolated from packaged chicken

    NARCIS (Netherlands)

    C.T. Parker (Craig); Huynh, S. (Steven); A.P. Heikema (Astrid)

    2016-01-01

    textabstractPoultry products serve as the main source of Campylobacter jejuni subsp. jejuni infections in humans. C. jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome. This study describes the genome of C.

  16. Energy Taxis Drives Campylobacter jejuni toward the Most Favorable Conditions for Growth

    DEFF Research Database (Denmark)

    Vegge, C.S.; Brondsted, L.; Li, Yiping

    2009-01-01

    Campylobacter jejuni is a serious food-borne bacterial pathogen in the developed world. Poultry is a major reservoir, and C. jejuni appears highly adapted to the gastrointestinal tract of birds. Several factors are important for chicken colonization and virulence, including a taxis mechanism...... for environmental navigation. To explore the mechanism of chemotaxis in C. jejuni, we constructed mutants with deletions of five putative mcp (methyl-accepting chemotaxis protein) genes (tlp1, tlp2, tlp3, docB, and docC). Surprisingly, the deletions did not affect the chemotactic behavior of the mutants compared...

  17. Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Jordan, Penelope J.

    2003-01-01

    We examined the sensitivity and specificity of 11 PCR assays described for the species identification of Campylobacter jejuni and Campylobacter coli by using 111 type, reference, and field strains of C. jejuni, C. coli, and Campylobacter lari. For six assays, an additional 21 type strains...... representing related Campylobacter, Arcobacter, and Helicobacter species were also included. PCR tests were initially established in the laboratory by optimizing conditions with respect to five type and reference strains of C. jejuni, C. coli, and C. lari. One PCR test for C. coli failed to give appropriate...... gave amplicons in four of seven C. jejuni PCR tests only where purified DNA was used as the template; corresponding results were seen with one strain of C. coli in each of three assays for the latter species. Our findings indicate that a polyphasic strategy for PCR-based identification should be used...

  18. Does Campylobacter jejuni infection elicit "demyelinating" Guillain-Barre syndrome?

    Science.gov (United States)

    Kuwabara, S; Ogawara, K; Misawa, S; Koga, M; Mori, M; Hiraga, A; Kanesaka, T; Hattori, T; Yuki, N

    2004-08-10

    Campylobacter jejuni enteritis is the most common antecedent infection in Guillain-Barré syndrome (GBS). C. jejuni-related GBS is usually acute motor axonal neuropathy (AMAN), but previous reports described many cases of the demyelinating subtype of GBS (acute inflammatory demyelinating polyneuropathy [AIDP]) after C. jejuni infection. To investigate whether C. jejuni infection elicits AIDP. In 159 consecutive patients with GBS, antibodies against C. jejuni were measured using ELISA. Antecedent C. jejuni infection was determined by the strict criteria of positive C. jejuni serology and a history of a diarrheal illness within the previous 3 weeks. Electrodiagnostic studies were performed weekly for the first 4 weeks, and sequential findings were analyzed. There was evidence of recent C. jejuni infection in 22 (14%) patients. By electrodiagnostic criteria, these patients were classified with AMAN (n = 16; 73%) or AIDP (n = 5; 23%) or as unclassified (n = 1) in the first studies. The five C. jejuni-positive patients with the AIDP pattern showed prolonged motor distal latencies in two or more nerves and had their rapid normalization within 2 weeks, eventually all showing the AMAN pattern. In contrast, patients with cytomegalovirus- or Epstein-Barr virus-related AIDP (n = 13) showed progressive increases in distal latencies in the 8 weeks after onset. Patients with C. jejuni-related Guillain-Barré syndrome can show transient slowing of nerve conduction, mimicking demyelination, but C. jejuni infection does not appear to elicit acute inflammatory demyelinating polyneuropathy.

  19. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms

    Directory of Open Access Journals (Sweden)

    Roberta T. Melo

    2017-07-01

    Full Text Available Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature

  20. Importance of Campylobacter jejuni for Food Safety and Public Health

    Directory of Open Access Journals (Sweden)

    Omer Cakmak

    2010-04-01

    Full Text Available Campylobacter spp. are microorganisms that can be found in nature in the entire domestic and wild animal’s intestinal flora including the poultry and the sea animals. Campylobacter can better colonize in the poultry than the other animals. Campylobacter jejuni is an important pathogen among the thermophilic Campylobacter spp. whose growth temperature’s are different than the other Campylobacter spp. and can cause serious gastroenteritis in human beings which in some cases ended up with death. Human beings are generally infected with C. jejuni mainly because of the poultry meat and products and rarely because of the red meat which are contaminated during preparation and serving stages. Inadequate cooking, consumption of poorly chlorinated drinking water or unpasteurized milk are other infection sources of C. jejuni. Campylobacteriosis especially affect children under 5 years of age and reported to be a zoonotic illness that cause acute gastroenteritis in human. In many countries, food sourced C. jejuni infections were reported to occur more frequently than Salmonella spp. infections. In order to avoid Campylobacter infections, it is very important to enforce food security programmes and HACCP like systems during growth, slaughterhouses and point of sales stages. Also adequate cooking of the products, hygiene of the kitchen and personnel are important. [TAF Prev Med Bull 2010; 9(2.000: 157-166

  1. Restriction fragment length polymorphism of flagellin genes of Campylobacter jejuni and/or C. coli isolates from Egypt.

    Science.gov (United States)

    Mohran, Z S; Guerry, P; Lior, H; Murphy, J R; el-Gendy, A M; Mikhail, M M; Oyofo, B A

    1996-05-01

    The conservation of flagellin genes from thermophilic Campylobacter spp. strains isolated in Egypt was evaluated by a restriction fragment length polymorphism (RFLP) assay. The flaA and flaB genes were amplified from 59 independent clinical isolates and digested with EcoRI and PstI, and the resulting patterns were compared with each other and with previously described RFLP groups. The results indicate that the isolates fell into 14 groups for flaA and 11 groups for flaB, 9 of which have been described, and that considerable genetic variability exists among isolates belonging to the same LIO serogroup. In most cases, the flaB gene displayed the same RFLP pattern as that of the flaA gene of the same strain, although some variability was observed. The data suggest that more variability of flagellin genes exists within the LIO serogroups common to Campylobacter field isolates from Egypt than has previously been reported for North American isolates.

  2. Influxed insects as Vectors for Campylobacter jejuni and Campylobacter coll in Danish Broiler Houses

    DEFF Research Database (Denmark)

    Hald, Birthe; Skovgård, Henrik; Pedersen, Karl

    2008-01-01

    The vector potential of flies (Diptera: Brachycera) for spread of Campylobacter jejuni and Campylobacter coli on 5 Danish broiler farms was evaluated in a longitudinal field study from April to November 2004. First, the prevalence of C. jejuni- and C. coli-positive flies was determined in 2...... houses was estimated by trapping of insects (n = 5,936) in ventilation vents. In total, 31 flies (28 of which were of the Muscidae family) caught in farm surroundings were Campylobacter spp.-positive (C. jejuni, n = 7; C. coli, n = 23; other Campylobacter spp., n = 1). Musca domestica (L) (house fly...... caesar (L) (green bottle fly) of the Calliphoridae family and 2 flies of unidentified species were also positive. The prevalence of Campylobacter spp.-positive flies varied from 0.0 in April to a peak of 16.3% in July and decreasing to 2.0% in October on a farm with pig production. On 4 broiler farms...

  3. Campylobacter jejuni and Campylobacter coli in children from communities in Northeastern Brazil: molecular detection and relation to nutritional status.

    Science.gov (United States)

    da Silva Quetz, Josiane; Lima, Ila Fernanda Nunes; Havt, Alexandre; de Carvalho, Eunice Bobo; Lima, Noélia Leal; Soares, Alberto Melo; Mota, Rosa Maria Salani; Guerrant, Richard Littleton; Lima, Aldo Angelo Moreira

    2010-07-01

    This study determined the prevalence of Campylobacter jejuni/coli and its relation with nutritional status in children from Northeastern Brazil. This was a case-control study design. Stool samples were evaluated for hipO (C. jejuni), ask (C. coli), and cdtABC (C. jejuni's cytolethal distending toxin) genes. The nutritional status from these children was assessed by anthropometric measures and z-scores. C. jejuni and C. coli were detected in 9.6% (8/83) and 6.0% (5/83) in the diarrhea group and in 7.2% (6/83) and 1.2% (1/83) of the nondiarrhea group, respectively. Children with positive molecular detection of C. jejuni showed significantly lower z-scores than children without C. jejuni. The cdtABC operon was found in 57% of hipO(+) samples. C. jejuni/coli prevalence was similar in diarrhea and nondiarrhea groups. There was a significant association of C. jejuni infection with lower nutritional status.

  4. PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Nielsen, E.M.; Scheutz, F.

    2003-01-01

    among 40 C. jejuni and C. coli isolates was detected by polymerase chain reaction. The CDT production of the isolates was determined on Vero, colon 205 and chicken embryo cells. The cadF, flaA, ceuE and cdtB genes were detected from 100% of the isolates. The cdtA and cdtC genes were found in 95.0 and 90.......0% of the isolates, respectively. The cdt gene cluster was detected in 82.5% isolates. Only 7.5% of the isolates were positive for virB11. Ninety-five per cent of the isolates produced CDT in Vero and colon 205 cell assays, and 90% of the isolates produced CDT in chicken embryo cell assays. Conclusions: High...

  5. Reducing Campylobacter jejuni colonization of poultry via vaccination.

    Science.gov (United States)

    Neal-McKinney, Jason M; Samuelson, Derrick R; Eucker, Tyson P; Nissen, Mark S; Crespo, Rocio; Konkel, Michael E

    2014-01-01

    Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs) would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization.

  6. Reducing Campylobacter jejuni colonization of poultry via vaccination.

    Directory of Open Access Journals (Sweden)

    Jason M Neal-McKinney

    Full Text Available Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization.

  7. Reducing Campylobacter jejuni Colonization of Poultry via Vaccination

    Science.gov (United States)

    Neal-McKinney, Jason M.; Samuelson, Derrick R.; Eucker, Tyson P.; Nissen, Mark S.; Crespo, Rocio; Konkel, Michael E.

    2014-01-01

    Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs) would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization. PMID:25474206

  8. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen

    Science.gov (United States)

    Kim, Jong-Chul; Oh, Euna; Kim, Jinyong; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense. PMID:26284041

  9. Genotypes and antibiotic resistance of canine Campylobacter jejuni isolates.

    Science.gov (United States)

    Amar, Chantal; Kittl, Sonja; Spreng, David; Thomann, Andreas; Korczak, Bożena M; Burnens, André P; Kuhnert, Peter

    2014-01-10

    Campylobacter jejuni is the most important cause of bacterial gastroenteritis in humans. It is a commensal in many wild and domestic animals, including dogs. Whereas genotypes of human and chicken C. jejuni isolates have been described in some detail, only little information on canine C. jejuni genotypes is available. To gain more information on genotypes of canine C. jejuni and their zoonotic potential, isolates from routine diagnostics of diarrheic dogs as well as isolates of a prevalence study in non-diarrheic dogs were analyzed. Prevalence of thermophilic Campylobacter among non-diarrheic dogs was 6.3% for C. jejuni, 5.9% for Campylobacter upsaliensis and 0.7% for Campylobacter coli. The C. jejuni isolates were genotyped by multi locus sequence typing (MLST) and flaB typing. Resistance to macrolides and quinolones was genetically determined in parallel. Within the 134 genotyped C. jejuni isolates 57 different sequence types (ST) were found. Five STs were previously unrecognized. The most common STs were ST-48 (11.2%), ST-45 (10.5%) and ST-21 (6.0%). Whereas no macrolide resistance was found, 28 isolates (20.9%) were resistant to quinolones. ST-45 was significantly more prevalent in diarrheic than in non-diarrheic dogs. Within the common time frame of isolation 94% of the canine isolates had a ST that was also found in human clinical isolates. In conclusion, prevalence of C. jejuni in Swiss dogs is low but there is a large genetic overlap between dog and human isolates. Given the close contact between human and dogs, the latter should not be ignored as a potential source of human campylobacteriosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Metronidazole resistance in Campylobacter jejuni from poultry meat

    DEFF Research Database (Denmark)

    Andersen, Sigrid Rita; Shukri, Naseer Mahmoud; Boel, Jeppe

    2006-01-01

    The occurrence of metronidazole resistance was investigated among Campylobacter jejuni in raw poultry meat collected from supermarkets. MICs were determined by the agar dilution procedure in the testing range of 3 to 60 mu g/ml metronidazole. The MICs showed a bimodal distribution...... with a significant proportion of metronidazole-resistant isolates among C. jejuni from raw broiler and turkey meat. Metronidazole resistance occurred most frequently among turkey meat isolates (P metronidazole resistance....

  11. Inaccuracy of routine susceptibility tests for detection of erythromycin resistance of Campylobacter jejuni and Campylobacter coli

    NARCIS (Netherlands)

    Beek, M.T.; Claas, E.C.J.; Mevius, D.J.; Pelt, van W.; Wagenaar, J.A.; Kuijper, E.J.

    2010-01-01

    In The Netherlands, both an increase in and regional differences in erythromycin resistance of Campylobacter jejuni and Campylobacter coli have been reported. To determine the accuracy of routine tests for erythromycin resistance, 48 erythromycin-resistant isolates from various laboratories that

  12. Prevalence of Campylobacter jejuni in poultry breeder flocks

    Directory of Open Access Journals (Sweden)

    Ludovico Dipineto

    2010-01-01

    Full Text Available The aim of this work is to present the preliminary results of a study about the prevalence of Campylobacter jejuni in poultry breeder flocks. It was examined three different breeder flocks of Bojano in Molise region. A total of 360 cloacal swabs and 80 enviromental swabs was collected. Of the 3 flocks studied, 6.9% tested were positive for Campylobacter spp. The most-prevalent isolated species is C. jejuni (8.2%. Only 3 of the 360 cloacal swabs samples examined were associated with C. coli. The environmental swabs resulted negative. This results confirms again that poultry is a reservoir of this germ.

  13. Chitosan supplementation reduces enteric colonization of Campylobacter jejuni in broiler chickens and down-regulates expression of colonization genes

    Science.gov (United States)

    Campylobacter is one of the leading causes of foodborne bacterial gastroenteritis worldwide, and poultry is considered as the most common source of human infections. Campylobacter is prevalent in most poultry flocks and a reduction of Campylobacter in poultry would greatly reduce the risk of campylo...

  14. Isolation of Campylobacter fetus subsp jejuni from zoo animals.

    Science.gov (United States)

    Luechtefeld, N W; Cambre, R C; Wang, W L

    1981-12-01

    Over a 1-year period, 619 fecal specimens from animals at the Denver Zoo were cultured for Campylobacter fetus subsp jejuni. The organism was isolated from 35 animals, including 12 primates, 2 felids, a red panda, 13 hooved animals, 6 birds, and 1 reptile. Of 44 cultured fecal specimens from diarrheal animals, 31.8% were positive for Campylobacter, whereas only 5.6% of 575 specimens from animals without diarrhea were positive (P less than 0.001). Among 25 isolates tested, 12 serotypes were represented; several of these serotypes are commonly associated with Campylobacter enteritis in human beings. Campylobacter fetus subsp jejuni was isolated from 8% of 75 wild pigeons trapped on the zoo premises during winter months and from 26% of 75 trapped during March and April (P less than 0.01).

  15. Pesquisa de Campylobacter jejuni e Campylobacter coli em abatedouros de aves

    OpenAIRE

    Cortez, Ana L.L.; Carvalho, Angela C.F.B.; Scarcelli, Eliana; Miyashiro, Simone; Vidal-Martins, Ana M.C.; Bürger, Karina P.

    2006-01-01

    The genus Campylobacter is of great importance to public health because it includes several species that may cause diarrhea. These species may be found in water, food and in the intestinal tract of chickens. This study investigated the presence of Campylobacter jejuni and Campylobacter coli in chicken abattoirs in São Paulo State, Brazil. A total of 288 samples of feces, feathers, scald water, evisceration water, chiller water, and the rinse water of eviscerated, not eviscerated and chilled c...

  16. Survey of Campylobacter jejuni and Campylobacter coli in different taxa and ecological guilds of migratory birds

    Directory of Open Access Journals (Sweden)

    Alessandro Fioretti

    2010-01-01

    Full Text Available A total of 169 faecal samples were collected from migrating birds, belonging to the Order of Passeriformes, in Campania region in order to isolate Campylobacter spp. Campylobacter spp. were isolated from 39 of the 169 birds examined (23.1%. Among these 36 were identified as C. jejuni and the remaining strains were identified as Campylobacter coli. Given the high isolation rates wild birds could be considered natural reservoir of infection.

  17. Survey of Campylobacter jejuni and Campylobacter coli in different taxa and ecological guilds of migratory birds

    Directory of Open Access Journals (Sweden)

    Mariangela Sensale

    2006-01-01

    Full Text Available A total of 169 faecal samples were collected from migrating birds, belonging to the Order of Passeriformes, in Campania region in order to isolate Campylobacter spp. Campylobacter spp. were isolated from 39 of the 169 birds examined (23.1%. Among these 36 were identified as C. jejuni and the remaining strains were identified as Campylobacter coli. Given the high isolation rates wild birds could be considered natural reservoir of infection.

  18. Can microbiota transplantation abrogate murine colonization resistance against Campylobacter jejuni?

    Science.gov (United States)

    Heimesaat, M M; Plickert, R; Fischer, A; Göbel, U B; Bereswill, S

    2013-03-01

    Enterocolitis caused by Campylobacter jejuni represents an important socioeconomic burden worldwide. The host-specific intestinal microbiota is essential for maintaining colonization resistance (CR) against C. jejuni in conventional mice. Notably, CR is abrogated by shifts of the intestinal microbiota towards overgrowth with commensal E. coli during acute ileitis. Thus, we investigated whether oral transplantation (TX) of ileal microbiota derived from C. jejuni susceptible mice with acute ileitis overcomes CR of healthy conventional animals. Four days following ileitis microbiota TX or ileitis induction and right before C. jejuni infection, mice displayed comparable loads of main intestinal bacterial groups as shown by culture. Eight days following ileitis induction, but not ileal microbiota TX, however, C. jejuni could readily colonize the gastrointestinal tract of conventional mice and also translocate to extra-intestinal tissue sites such as mesenteric lymph nodes, spleen, liver, and blood within 4 days following oral infection. Of note, C. jejuni did not further deteriorate histopathology following ileitis induction. Lack of C. jejuni colonization in TX mice was accompanied by a decrease of commensal E. coli loads in the feces 4 days following C. jejuni infection. In summary, oral ileal microbiota TX from susceptible donors is not sufficient to abrogate murine CR against C. jejuni.

  19. Campylobacter jejuni Colonization Is Associated with a Dysbiosis in the Cecal Microbiota of Mice in the Absence of Prominent Inflammation

    Science.gov (United States)

    Lone, Abdul G.; Selinger, L. Brent; Uwiera, Richard R. E.; Xu, Yong; Inglis, G. Douglas

    2013-01-01

    Background Campylobacter jejuni causes enterocolitis in humans, but does not incite disease in asymptomatic carrier animals. To survive in the intestine, C. jejuni must successfully compete with the microbiota and overcome the host immune defense. Campylobacter jejuni colonization success varies considerably amongst individual mice, and we examined the degree to which the intestinal microbiota was affected in mice (i.e. a model carrier animal) colonized by C. jejuni at high relative to low densities. Methods Mice were inoculated with C. jejuni or buffer, and pathogen shedding and intestinal colonization were measured. Histopathologic scoring and quantification of mRNA expression for α-defensins, toll-like receptors, and cytokine genes were conducted. Mucosa-associated bacterial communities were characterized by two approaches: multiplexed barcoded pyrosequencing and terminal restriction fragment length polymorphism analysis. Results Two C. jejuni treatments were established based on the degree of cecal and colonic colonization; C. jejuni Group A animals were colonized at high cell densities, and C. jejuni Group B animals were colonized at lower cell densities. Histological examination of cecal and colonic tissues indicated that C. jejuni did not incite visible pathologic changes. Although there was no significant difference among treatments in expression of mRNA for α-defensins, toll-like receptors, or cytokine genes, a trend for increased expression of toll-like receptors and cytokine genes was observed for C. jejuni Group A. The results of the two methods to characterize bacterial communities indicated that the composition of the cecal microbiota of C. jejuni Group A mice differed significantly from C. jejuni Group B and Control mice. This difference was due to a reduction in load, diversity and richness of bacteria associated with the cecal mucosa of C. jejuni Group A mice. Conclusions High density colonization by C. jejuni is associated with a dysbiosis in

  20. Campylobacter jejuni colonization is associated with a dysbiosis in the cecal microbiota of mice in the absence of prominent inflammation.

    Science.gov (United States)

    Lone, Abdul G; Selinger, L Brent; Uwiera, Richard R E; Xu, Yong; Inglis, G Douglas

    2013-01-01

    Campylobacter jejuni causes enterocolitis in humans, but does not incite disease in asymptomatic carrier animals. To survive in the intestine, C. jejuni must successfully compete with the microbiota and overcome the host immune defense. Campylobacter jejuni colonization success varies considerably amongst individual mice, and we examined the degree to which the intestinal microbiota was affected in mice (i.e. a model carrier animal) colonized by C. jejuni at high relative to low densities. Mice were inoculated with C. jejuni or buffer, and pathogen shedding and intestinal colonization were measured. Histopathologic scoring and quantification of mRNA expression for α-defensins, toll-like receptors, and cytokine genes were conducted. Mucosa-associated bacterial communities were characterized by two approaches: multiplexed barcoded pyrosequencing and terminal restriction fragment length polymorphism analysis. Two C. jejuni treatments were established based on the degree of cecal and colonic colonization; C. jejuni Group A animals were colonized at high cell densities, and C. jejuni Group B animals were colonized at lower cell densities. Histological examination of cecal and colonic tissues indicated that C. jejuni did not incite visible pathologic changes. Although there was no significant difference among treatments in expression of mRNA for α-defensins, toll-like receptors, or cytokine genes, a trend for increased expression of toll-like receptors and cytokine genes was observed for C. jejuni Group A. The results of the two methods to characterize bacterial communities indicated that the composition of the cecal microbiota of C. jejuni Group A mice differed significantly from C. jejuni Group B and Control mice. This difference was due to a reduction in load, diversity and richness of bacteria associated with the cecal mucosa of C. jejuni Group A mice. High density colonization by C. jejuni is associated with a dysbiosis in the cecal microbiota independent of

  1. Campylobacter jejuni colonization is associated with a dysbiosis in the cecal microbiota of mice in the absence of prominent inflammation.

    Directory of Open Access Journals (Sweden)

    Abdul G Lone

    Full Text Available BACKGROUND: Campylobacter jejuni causes enterocolitis in humans, but does not incite disease in asymptomatic carrier animals. To survive in the intestine, C. jejuni must successfully compete with the microbiota and overcome the host immune defense. Campylobacter jejuni colonization success varies considerably amongst individual mice, and we examined the degree to which the intestinal microbiota was affected in mice (i.e. a model carrier animal colonized by C. jejuni at high relative to low densities. METHODS: Mice were inoculated with C. jejuni or buffer, and pathogen shedding and intestinal colonization were measured. Histopathologic scoring and quantification of mRNA expression for α-defensins, toll-like receptors, and cytokine genes were conducted. Mucosa-associated bacterial communities were characterized by two approaches: multiplexed barcoded pyrosequencing and terminal restriction fragment length polymorphism analysis. RESULTS: Two C. jejuni treatments were established based on the degree of cecal and colonic colonization; C. jejuni Group A animals were colonized at high cell densities, and C. jejuni Group B animals were colonized at lower cell densities. Histological examination of cecal and colonic tissues indicated that C. jejuni did not incite visible pathologic changes. Although there was no significant difference among treatments in expression of mRNA for α-defensins, toll-like receptors, or cytokine genes, a trend for increased expression of toll-like receptors and cytokine genes was observed for C. jejuni Group A. The results of the two methods to characterize bacterial communities indicated that the composition of the cecal microbiota of C. jejuni Group A mice differed significantly from C. jejuni Group B and Control mice. This difference was due to a reduction in load, diversity and richness of bacteria associated with the cecal mucosa of C. jejuni Group A mice. CONCLUSIONS: High density colonization by C. jejuni is associated

  2. β-Resorcylic Acid, a Phytophenolic Compound, Reduces Campylobacter jejuni in Postharvest Poultry.

    Science.gov (United States)

    Wagle, B R; Arsi, K; Upadhyay, A; Shrestha, S; Venkitanarayanan, K; Donoghue, A M; Donoghue, D J

    2017-08-01

    Human Campylobacter infections, a leading foodborne illness globally, has been linked with the high prevalence of this bacterium on raw retail chicken products. Reduction of Campylobacter counts on poultry products would greatly reduce the risk of subsequent infections in humans. To this end, this study investigated the potential of the phytophenolic compound β-resorcylic acid (BR) to reduce Campylobacter counts on postharvest poultry (chicken skin or meat). Four trials in total, two each on thigh skin or breast meat, were conducted in which chicken skin or meat samples (2 ± 0.1 g; 10 samples per treatment) were inoculated with 50 μL (∼10 6 CFU per sample) of a cocktail of four wild strains of C. jejuni. After 30 min of attachment, inoculated samples were dipped in a 0, 0.5, 1, or 2% BR solution for 30 s immediately followed by vigorously vortexing the samples in Butterfield's phosphate diluent and plating the supernatant for Campylobacter enumeration. In addition, the effect of BR on the color of skin and meat samples was studied. Moreover, the change in the expression of survival and virulence genes of C. jejuni exposed to BR was evaluated. Data were analyzed by the PROC MIXED procedure of SAS (P Campylobacter populations on both chicken or meat samples by 1 to 3 log CFU/g compared with non-BR-treated washed controls. No significant difference in the lightness, redness, and yellowness of skin and meat samples was observed on exposure to BR wash (P > 0.05). Real-time PCR results revealed that BR treatment down-regulated expression of select genes coding for motility (motA, motB) and attachment (cadF, ciaB) in the majority of C. jejuni strains. Stress response genes (sodB, katA) were upregulated in C. jejuni S-8 (P Campylobacter on chicken carcasses.

  3. Fla-DGGE analysis of Campylobacter jejuni and Campylobacter coli in cecal samples of broilers without cultivation.

    Science.gov (United States)

    Najdenski, Hristo; Heyndrickx, Marc; Herman, Lieve; Messens, Winy

    2008-02-05

    In a commercial broiler flock during rearing multiple genotypes of Campylobacter jejuni may be present as well as in gastrointestinal tracts of individual birds. The aim of this study was to optimize and apply a denaturing gradient gel electrophoresis assay of the flagellin gene (fla-DGGE) for analysis of C. jejuni and Campylobacter coli in cecal samples of broilers without prior cultivation. One C. coli and 21 C. jejuni strains isolated from broiler flocks, of which 14 typed as unique by restriction fragment length polymorphism of flaA and two undefined strains, were clustered into 9 groups when applying fla-DGGE. Spiking of cecal samples revealed that fla-DGGE is able to detect at least 4.55-5.96logCFUCampylobacter/mlcecal material. The presence of 3 strains spiked in cecal material was demonstrated by fla-DGGE as the corresponding bands were visible on the DGGE gel. Naturally contaminated cecal samples were shown to contain different types of C. jejuni and C. coli. Fla-DGGE has some potential as a cultivation-independent fast primary subtyping method for C. jejuni and C. coli in cecal samples of broilers.

  4. Prevalence of putative virulence markers in Campylobacter jejuni and Campylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran.

    Science.gov (United States)

    Hamidian, Mohammad; Sanaei, Maryam; Bolfion, Mehdi; Dabiri, Hossein; Zali, Mohammad-Reza; Walther-Rasmussen, Jan

    2011-02-01

    The incidence of the virulence-associated genes cdtA, cdtB, cdtC, cadF, dnaJ, racR, and pldA has been investigated in Campylobacter jejuni and Campylobacter coli collected from raw chicken and beef from retailers in Tehran, Iran, and from hospitalized children (age, ≤14 years) suffering from diarrhea. Campylobacter spp. were collectively identified by morphological and biochemical methods. Campylobacter jejuni and C. coli were discriminated from other Campylobacter spp. by amplification of a specific conserved fragment of the 16S rRNA gene. The distinction between C. jejuni and C. coli was subsequently made by molecular determination of the presence of the hipO gene in C. jejuni or the ask gene in C. coli. Fragments of the studied virulence-associated genes, cdtA, cdtB, cdtC, cadF, racR, dnaJ, and pldA, were amplified by PCR and subjected to horizontal gel electrophoresis. A total of 71 isolates of C. jejuni and 24 isolates of C. coli from meat were analyzed, while the numbers of isolates from the hospitalized children were 28 and 9, respectively. The unequal distribution of C. jejuni and C. coli in the samples has also been reported in other studies. Statistical analyses by the use of the two-tailed Fisher's exact test of the occurrence of the virulence genes in the isolates of different origins showed that the occurrence of the dnaJ gene was consistently significantly higher in all C. jejuni isolates than in C. coli. The occurrence of the other virulence markers did not differ significantly between species in the majority of the isolates. The PCR results also showed that the occurrence of the virulence markers in the analyzed isolates was much lower than in other studies, which may be caused by a divergent genomic pool of our isolates in comparison with others.

  5. Genome Sequence of Campylobacter jejuni strain 327, a strain isolated from a turkey slaughterhouse

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten

    2011-01-01

    Campylobacter is one of the leading causes of food-borne gastroenteritis and has a high prevalence in poultry. Campylobacter jejuni subsp. jejuni 327 is a subspecies of the genus Campylobacter of the family Campylobacteraceae in the phylum Proteobacteria. The microaerophilic, spiral shaped, catal...

  6. Campylobacter jejuni in Duck Faeces around Drinking Water ...

    African Journals Online (AJOL)

    Faeces from 192 ducks feeding around 10 wells and 6 ponds in peri-urban areas of Makurdi town, North-Central Nigeria were randomly sampled during the dry season period of October, 2006 to March, 2007. The samples were cultured for Campylobacter jejuni, followed by characterisation of positive samples. The overall ...

  7. Prevalence of Campylobacter jejuni in duck faeces around drinking ...

    African Journals Online (AJOL)

    Faeces from one hundred and ninety-two ducks feeding around ten wells and six ponds in peri urban areas of Makurdi town, North-Central Nigeria were randomly sampled during the dry season period of October, 2004 to March, 2005. In total, one hundred and ninety-two samples were cultured for Campylobacter jejuni, ...

  8. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species.

    Science.gov (United States)

    Sheppard, Samuel K; Colles, Frances M; McCarthy, Noel D; Strachan, Norval J C; Ogden, Iain D; Forbes, Ken J; Dallas, John F; Maiden, Martin C J

    2011-08-01

    Bacterial populations can display high levels of genetic structuring but the forces that influence this are incompletely understood. Here, by combining modelling approaches with multilocus sequence data for the zoonotic pathogen Campylobacter, we investigated how ecological factors such as niche (host) separation relate to population structure. We analysed seven housekeeping genes from published C. jejuni and C. coli isolate collections from a range of food and wild animal sources as well as abiotic environments. By reconstructing genetic structure and the patterns of ancestry, we quantified C. jejuni host association, inferred ancestral populations, investigated genetic admixture in different hosts and determined the host origin of recombinant C. jejuni alleles found in hybrid C. coli lineages. Phylogenetically distinct C. jejuni lineages were associated with phylogenetically distinct wild birds. However, in the farm environment, phylogenetically distant host animals shared several C. jejuni lineages that could not be segregated according to host origin using these analyses. Furthermore, of the introgressed C. jejuni alleles found in C. coli lineages, 73% were attributed to genotypes associated with food animals. Our results are consistent with an evolutionary scenario where distinct Campylobacter lineages are associated with different host species but the ecological factors that maintain this are different in domestic animals such that phylogenetically distant animals can harbour closely related strains. © 2011 Blackwell Publishing Ltd.

  9. Genotyping of Campylobacter jejuni strains from Danish broiler chickens by restriction fragment length polymorphism of the LPS gene cluster

    DEFF Research Database (Denmark)

    Knudsen, K.N.; Bang, Dang Duong; Nielsen, E.M.

    2005-01-01

    , the LG genotyping method was used to study the genetic stability of four C. jejuni strains after gastrointestinal passage through experimentally infected chickens. Methods and Results: In the present study, the LG genotyping method was modified with respect to the restriction enzymes used. To validate...... no changes in the LG genotype of the C. jejuni strains obtained after experimental passage through chickens. Concusions: All C. jejuni strains obtained from broiler chickens were typeable by the LG genotyping method. Application of the RsaI restriction enzyme improved the method in terms of ease...

  10. A Case of Acute Myocarditis From Campylobacter Jejuni Enterocolitis

    Directory of Open Access Journals (Sweden)

    Yahya Kurdi

    2016-01-01

    Full Text Available Dear Editor, Campylobacter Jejuni (C. Jejuni is the most common cause of infectious enterocolitis in the developed world, with an annual incidence as high as 1 in 1000 in the developed world and about 2.5 million cases per year in the United States with male gender predominance. Campylobacter-associated myocarditis (CAM is a very rare and potentially life-threatening complication of C. Jejuni enterocolitis (CEC. The majority of cases include a subtle history of abdominal pain and diarrhea that progressively worsens. Chest pain and shortness of breath follow in most cases of myocarditis. We present a case of CAM mimicking acute coronary syndrome (ACS and treated successfully with antibiotic and supportive care. We hope to increase awareness of this rare, but potentially fatal complication.

  11. Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes

    DEFF Research Database (Denmark)

    Li, Yiping; Ingmer, Hanne; Madsen, Mogens

    2008-01-01

    -free media from another co-cultivation experiment also increased the expression of the virulence-associated genes in the C. jejuni chicken isolate, indicating that the expression of bacterial genes is regulated by component(s) secreted upon co-cultivation of bacteria and CEICs. Conclusion We show that under...... in vitro culture condition C. jejuni strains of both human and chicken origins can invade avian host cells with a pro-inflammatory response and that the virulence-associated genes of C. jejuni may play a role in this process....

  12. Chicken cecal microRNAs in the response to Campylobacter jejuni inoculation by Solexa sequencing.

    Science.gov (United States)

    Liu, Xiaoyi; Liu, Liying; Zhang, Maozhi; Wang, Huicui; Yang, Ning; Li, Xianyao

    2016-12-01

    Campylobacter jejuni (C. jejuni) is one of major foodborne pathogen that cause human diarrhea by consuming C. jejuni contaminated chicken products. MicroRNAs play an integral role in many different biological processes including bacteria and virus inoculation in chickens. In this study, we identified chicken miRNAs responding to C. jejuni inoculation through Solexa sequencing in the cecum. As a result, four miRNAs were significantly differentially expressed between inoculated and non-inoculated groups. There were 1,114 putative target genes regulated by those differentially expressed miRNAs predicted by miRanda, TargetScan, and miRTarget softwares. Functional analysis of those target genes showed that 113 gene ontology biological process terms and 14 pathways were significantly enriched. Hedgehog signaling pathway may contribute to chicken C. jejuni inoculation. MiR-155 played vital role in the C. jejuni inoculation. The result herein will lay the foundation for the further study of regulatory mechanism of chicken miRNAs in the response to C. jejuni inoculation. © 2016 Poultry Science Association Inc.

  13. Isolation and characterization of Campylobacter jejuni subsp jejuni from macaroni penguins (Eudyptes chrysolophus) in the subantarctic region

    DEFF Research Database (Denmark)

    Broman, T.; Bergstrom, S.; On, Stephen L.W.

    2000-01-01

    On Bird Island, South Georgia, albatrosses (n = 140), penguins (n = 100), and fur seals (n = 206) were sampled for Campylobacter jejuni. C. jejuni subsp. jejuni was recovered from three macaroni penguins (Eudyptes chrysolophus). These isolates, the first reported for the subantarctic region, showed...

  14. Rapid Detection of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in Fresh Chicken Meat and By-Products in Bangkok, Thailand, Using Modified Multiplex PCR.

    Science.gov (United States)

    Saiyudthong, S; Phusri, K; Buates, S

    2015-07-01

    A multiplex PCR assay for simultaneous detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari was developed and validated to assess the occurrence of these bacteria in fresh chicken meat and by-products in Bangkok, Thailand, by using a new combination of four previously published PCR primers for C. jejuni, C. coli, C. lari, and a universal 16S rDNA gene as an internal control. The specificity was determined by using 13 strains of other bacteria. With pure culture DNA, the detection limit was 0.017 ng/PCR for C. jejuni and C. coli and was 0.016 ng/PCR for C. lari. It can detect 10 CFU of C. jejuni, C. coli, and C. lari in 2 g of chicken meat within a 16-h enrichment time. Our multiplex PCR assay was applied for identification of Campylobacter spp. in 122 supermarket samples and 108 fresh market samples. Of the 230 samples evaluated by multiplex PCR, 54.0, 3.3, and 10.7% of supermarket samples were positive for C. jejuni, C. coli, and mixed C. jejuni and C. coli, respectively, and 56.5 and 33.3% of fresh market samples were positive for C. jejuni and mixed C. jejuni and C. coli, respectively. No sample was positive for C. lari. Fresh market samples had significantly higher C. jejuni and C. coli contamination than those from supermarkets (relative risk: 1.3; P = 0.0001). Compared with the culture method (a gold standard), the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of multiplex PCR were 97.7, 86.8, 96.1, 92.0, and 95.2%, respectively. No significant difference was observed between results from two methods (P = 0.55). Therefore, the established multiplex PCR was not only rapid and easy to perform but had a high sensitivity and specificity to distinguish between C. jejuni, C. coli, and C. lari, even in samples containing mixed contamination. Our study indicated that fresh chicken meat and by-products from fresh markets were significantly less hygienic than those

  15. Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni.

    Science.gov (United States)

    Zeng, Ximin; Xu, Fuzhou; Lin, Jun

    2009-12-01

    The ferric enterobactin receptor CfrA not only is responsible for high-affinity iron acquisition in Campylobacter jejuni but also is essential for C. jejuni colonization in animal intestines. In this study, we determined the feasibility of targeting the iron-regulated outer membrane protein CfrA for immune protection against Campylobacter colonization. Alignment of complete CfrA sequences from 15 Campylobacter isolates showed that the levels of amino acid identity for CfrA range from 89% to 98%. Immunoblotting analysis using CfrA-specific antibodies demonstrated that CfrA was dramatically induced under iron-restricted conditions and was widespread and produced in 32 Campylobacter primary strains from various sources and from geographically diverse areas. The immunoblotting survey results were highly correlated with the results of an enterobactin growth promotion assay and a PCR analysis using cfrA-specific primers. Inactivation of the cfrA gene also impaired norepinephrine-mediated growth promotion, suggesting that CfrA is required for C. jejuni to sense intestinal stress hormones during colonization. Complementation of the cfrA mutant with a wild-type cfrA allele in trans fully restored the production and function of CfrA. A growth assay using purified anti-CfrA immunoglobulin G demonstrated that specific CfrA antibodies could block the function of CfrA, which diminished ferric enterobactin-mediated growth promotion under iron-restricted conditions. The inhibitory effect of CfrA antibodies was dose dependent. Immunoblotting analysis also indicated that CfrA was expressed and immunogenic in chickens experimentally infected with C. jejuni. Amino acid substitution mutagenesis demonstrated that R327, a basic amino acid that is highly conserved in CfrA, plays a critical role in ferric enterobactin acquisition in C. jejuni. Together, these findings strongly suggest that CfrA is a promising vaccine candidate for preventing and controlling Campylobacter infection in

  16. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum

    Energy Technology Data Exchange (ETDEWEB)

    Sosula, L.; Nicholls, E.M.; Skeen, M.

    1988-04-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and natural animal and human Campylobacter infections.

  17. Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains.

    Science.gov (United States)

    Zeng, Ximin; Ardeshna, Devarshi; Lin, Jun

    2015-07-01

    Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The transcriptional landscape of Campylobacter jejuni under iron replete and iron limited growth conditions.

    Directory of Open Access Journals (Sweden)

    James Butcher

    Full Text Available The genome-wide Campylobacter jejuni transcriptional response under iron replete and iron limited conditions was characterized using RNA-seq. We have identified 111 novel C. jejuni 5'UTRs and mapped 377 co-transcribed genes into 230 transcriptional operons. In contrast to previous microarray results, the C. jejuni iron stimulon is less extensive than previously believed and consists of 77 iron activated genes and 50 iron repressed genes. As anticipated, the iron repressed genes are primarily those involved in iron acquisition or oxidative stress defense. Interestingly, these experiments have revealed that iron is an important modulator of flagellar biogenesis with almost all the components of the flagella found to be iron activated. Given that motility is a well-known C. jejuni colonization factor, this suggests that there is an important regulatory coupling of flagellar biogenesis and iron level in C. jejuni. In addition we have identified several consensus mutations in the C. jejuni NCTC11168 strain that are widespread in the Campylobacter research community and which may explain conflicting phenotypic reports for this strain. Comparative analysis of iron responsive genes with the known Fur regulon indicates that many iron responsive genes are not Fur responsive; suggesting that additional iron regulatory factors remain to be characterized in C. jejuni. Further analysis of the RNA-seq data identified multiple novel transcripts including 19 potential ncRNAs. The expression of selected ncRNAs was confirmed and quantified with qRT-PCR. The qRT-PCR results indicate that several of these novel transcripts are either Fur and/or iron responsive. The fact that several of these ncRNAs are iron responsive or Fur regulated suggests that they may perform regulatory roles in iron homeostasis.

  19. Acute pancreatitis in association with Campylobacter jejuni-associated diarrhea in a 15-year-old with CFTR mutations: is there a link?

    Science.gov (United States)

    Kandula, Leena; Khan, Seema; Whitcomb, David C; Lowe, Mark E

    2006-09-10

    Acute pancreatitis has occasionally been reported in association with Campylobacter jejuni infection in humans. However, the mechanism linking Campylobacter jejuni infection and pancreatitis is unclear. Acute pancreatitis in association with an infectious illness may be related to underlying genetic mutations. For instance, studies show that mutations in the cystic fibrosis transmembrane conductance regulator gene increase the susceptibility for acute and chronic pancreatitis. We describe a patient with Campylobacter jejuni infection who developed acute pancreatitis in the setting of an underlying cystic fibrosis transmembrane conductance regulator gene mutation. In this patient with an underlying mutation in the CFTR gene, we propose that the interaction between the mutant gene and an environmental factor, Campylobacter jejuni infection, resulted in pancreatitis.

  20. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle

    Science.gov (United States)

    2011-01-01

    Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic

  1. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate.

    Science.gov (United States)

    Zhang, Maojun; He, Lihua; Li, Qun; Sun, Honghe; Gu, Yixin; You, Yuanhai; Meng, Fanliang; Zhang, Jianzhong

    2010-11-29

    Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993) was isolated from a Guillain-Barré syndrome (GBS) patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp) and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb) plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS) loci and the flagella modification (FM) loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.

  2. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate.

    Directory of Open Access Journals (Sweden)

    Maojun Zhang

    Full Text Available Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993 was isolated from a Guillain-Barré syndrome (GBS patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS loci and the flagella modification (FM loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.

  3. Identification, Purification and Characterization of Major Antigenic Proteins of Campylobacter jejuni

    Science.gov (United States)

    1991-01-01

    ELISA-We next examined the potential application of antibodies to C. jejuni proteins for identification and diagnosis of Campylobacter and/or Helico...Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development Approved for public release; distribution unlimited A~ cc it o:1...Purification, and Characterization of Major Antigenic Proteins of Campylobacter jejuni * (Received hor piub)lication. April 5, 1991) Zhiheng Pei*, Richard T

  4. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study

    NARCIS (Netherlands)

    Doorduyn, Y.; Brandhof, van den W.E.; Duynhoven, van Y.T.H.P.; Breukink, B.J.; Wagenaar, J.A.; Pelt, van W.

    2010-01-01

    A case-control study comprising 1315 Campylobacter jejuni cases, 121 Campylobacter coli cases and 3409 frequency-matched controls was conducted in The Netherlands in 2002-2003. Risk factors for both C. jejuni and C. coli enteritis were consumption of undercooked meat and barbecued meat, ownership of

  5. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor.

    Science.gov (United States)

    Masdor, Noor Azlina; Altintas, Zeynep; Tothill, Ibtisam E

    2016-04-15

    A quartz crystal microbalance (QCM) sensor platform was used to develop an immunosensor for the detection of food pathogen Campylobacter jejuni. Rabbit polyclonal antibodies and commercially available mouse monoclonal antibodies against C. jejuni were investigated to construct direct, sandwich and gold-nanoparticles (AuNPs) amplified sandwich assays. The performance of the QCM immunosensor developed using sandwich assay by utilising the rabbit polyclonal antibody as the capture antibody and conjugated to AuNPs as the detection antibody gave the highest sensitivity. This sensor achieved a limit of detection (LOD) of 150 colony forming unit (CFU)mL(-1) of C. jejuni in solution. The QCM sensor showed excellent sensitivity and specificity for Campylobacter detection with low cross reactivity for other foodborne pathogens such as Salmonella Typhimurium, (7%) Listeria monocytogenes (3%) and Escherichia coli (0%). The development of this biosensor would help in the sensitive detection of Campylobacter which can result in reducing pre-enrichment steps; hence, reducing assay time. This work demonstrates the potential of this technology for the development of a rapid and sensitive detection method for C. jejuni. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The influence of age on Campylobacter jejuni infection in chicken.

    Science.gov (United States)

    Han, Zifeng; Pielsticker, Colin; Gerzova, Lenka; Rychlik, Ivan; Rautenschlein, Silke

    2016-09-01

    Campylobacter jejuni (C. jejuni)-host-interaction may be affected by the maturation stage of the chicken's immune system and the developing gut microbiota composition. We compared these parameters between birds C. jejuni-inoculated at day one, 10, 22 and 31 post hatch. The highest C. jejuni-colonization rate and numbers of colony forming units (CFU) were detected in caecal content of day-one-inoculated birds while the lowest was detected in 22-days-old birds. The low bacterial colonization of 22-days-old chickens correlated with the most prominent immune reactions in this age group in comparison to other age groups. Age and C. jejuni-inoculation had a significant effect on lymphocyte numbers and cytokine expression levels in caecum as well as on gut flora composition. Overall, the immune response to C. jejuni is significantly influenced by the age of the infected chickens leading to differences in C. jejuni-colonization pattern between age goups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Identification, purification, and characterization of major antigenic proteins of Campylobacter jejuni

    National Research Council Canada - National Science Library

    Z H Pei; R T Ellison, 3rd; M J Blaser

    1991-01-01

    Evidence from developing countries and volunteer studies indicates that immunity to Campylobacter jejuni and Campylobacter coli may be acquired, but the antigenic basis for this protection is poorly defined...

  8. Higher resistance of Campylobacter coli compared to Campylobacter jejuni at chicken slaughterhouse.

    Science.gov (United States)

    Torralbo, Alicia; Borge, Carmen; García-Bocanegra, Ignacio; Méric, Guillaume; Perea, Anselmo; Carbonero, Alfonso

    2015-04-01

    In order to compare the prevalence of Campylobacter coli and Campylobacter jejuni during the processing of broilers at slaughterhouse a total of 848 samples were analyzed during 2012 in southern Spain. Four hundred and seventy six samples were collected from cloaca, carcass surfaces and quartered carcasses. Moreover, 372 environmental swabs from equipment and scalding water were collected. Minimum inhibitory concentration (MIC) to ciprofloxacin, erythromycin, streptomycin, tetracycline and gentamicin was determined for isolates from chicken meat. The general prevalence of Campylobacter was 68.8% (40.2% of C. coli and 28.5% of C. jejuni). The relative prevalence of C. coli increased from loading dock area (41.5%) to packing area (64.6%). In contrast, the relative prevalence of C. jejuni decreased from 58.5% to 35.4%. These differences between species from initial to final area were significant (p=0.02). The highest antimicrobial resistance for C. jejuni and C. coli was detected to tetracycline (100%) and ciprofloxacin (100%), respectively. Campylobacter coli showed an antimicrobial resistance significantly higher than C. jejuni to streptomycin (p=0.002) and erythromycin (p<0.0001). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Multi drug resistance of campylobacter jejuni and campylobacter coli to tested antibiotics in strains originating from humans, poultry and swine

    Directory of Open Access Journals (Sweden)

    Tambur Zoran Ž.

    2010-01-01

    Full Text Available Thermophilic Campylobacter are among the most common cause of bacterial enteritis in humans. Food animals are considered one of the most important sources of Campylobacter causing infections in man. Campylobacter infection is clinically mild and resolves spontaneously. In severe or long-lasting cases, treatment with antibiotics is necessary. Resistance of Campylobacter spp. to drugs used in treatment of infection is a matter of concern. The aim of this paper is to determine presence of multi drug resistant strains of Campylobacter jejuni and Campylobacter coli isolated from animals and man. Material for testing was obtained by scraping the cecum surface from boilers, pig cecum and colon, and human feces. For isolation Campylobacter jejuni and Campylobacter coli microaerophilic conditions, temperature of 42°C and antibiotic supplement were required to inhibit the growth of other intestinal bacteria. In this research, for sensitivity testing of Campylobacter jejuni and Campylobacter coli three different methods were used: disc diffusion test, E-test, and dilution agar method. A total of 55 strains of Campylobacter jejuni and Campylobacter coli. Out of the total, 24 strains originated from man, 16 from broilers were isolated, and 15 from pigs. Multidrug resistance was determined in cases when the strains were resistant to two or more antibiotics. Applying E-test, we detected that the largest number of Campylobacter jejuni were multi drug resistant to two antibiotics (41.2%, and three antibiotics (11.8%. Applying disc diffusion method it was detected that 5.9% of Campylobacter jejuni from man was resistant to four tested antibiotics. Applying all three methods, it was detected that the largest number of Campylobacter strains was resistant to two antibiotics and three antibiotics. Applying disc diffusion method it was detected that 50% of Campylobacter coli strains from pigs were resistant to three tested antibiotics.

  10. Resistance to quinolones in Campylobacter jejuni and Campylobacter coli from Danish broilers at farm level

    DEFF Research Database (Denmark)

    Pedersen, Karl; Wedderkopp, A.

    2003-01-01

    Aims : To investigate the prevalence of quinolone resistance among Campylobacter jejuni and Camp. coli isolates from Danish poultry at the farm level, as well as for the whole country. Methods and Results : Data and isolates were collected from a national surveillance of Campylobacter in poultry......-resistant variant. Conclusions : Overall, quinolone resistance among Campylobacter isolates from Danish broilers was 7.5% in 1998 and 1999; it was higher among Camp. coli than Camp. jejuni . Genetic diversity among resistant isolates was lower than among susceptible isolates, and certain clones existed in both...... a resistant and a susceptible variant. Some resistant clones appeared to persist on the farms and were repeatedly isolated from poultry flocks. Significance and Impact of the Study : The study is important for the understanding of persistence and dynamics of Campylobacter in broiler houses. It also highlights...

  11. Campylobacter jejuni and Campylobacter coli in wild birds on Danish livestock farms

    DEFF Research Database (Denmark)

    Hald, Birthe; Skov, Marianne Nielsine; Nielsen, Eva Møller

    2016-01-01

    feeding on a diet of animal or mixed animal and vegetable origin, foraging on the ground and vegetation in close proximity to livestock stables were more likely to carry Campylobacter spp. in both summer (P birds foraging further away from the farm or in the air. Age......, fat score, gender, and migration range were not found to be associated with Campylobacter spp. carriage. A correlation was found between the prevalence (%) of C. jejuni in wild birds and the proportions (%) of C. jejuni in both manure on cattle farms (R-2 = 0.92) and poultry farms (R-2 = 0...... food of animal or mixed animal and vegetable origin and foraging on the ground close to livestock were more likely to carry Campylobacter spp. than those foraging further away or hunting in the air. These findings suggest that wild birds may play a role in sustaining the epidemiology of Campylobacter...

  12. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  13. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides.

    Science.gov (United States)

    Semchenko, Evgeny A; Day, Christopher J; Wilson, Jennifer C; Grice, I Darren; Moran, Anthony P; Korolik, Victoria

    2010-11-30

    Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37 °C and 42 °C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-M(r) LOS form, which was different in size and structure to the previously characterized higher-M(r) form bearing GM₁ mimicry. The lower-M(r) form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37 °C to ~35% at 42 °C. The structure of the lower-M(r) form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM₁, asialo-GM₁, GD₁, GT₁ and GQ₁ gangliosides, however, it did not display GM₁ mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM₁. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. The presence of differing amounts of LOS forms at 37 and 42 °C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  14. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    Directory of Open Access Journals (Sweden)

    Moran Anthony P

    2010-11-01

    Full Text Available Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O was compared to its genome-sequenced variant (11168-GS, and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  15. The isolation and characterization of Campylobacter jejuni subsp. jejuni from domestic geese (Anser anser).

    Science.gov (United States)

    Aydin, F; Atabay, H I; Akan, M

    2001-04-01

    The objectives of this study were to determine the presence of thermophilic Campylobacter spp. in free range domestic geese, and to characterize isolated strains using phenotyping criteria and SDS-PAGE of whole-cell proteins. Forty cloacal swabs from two different flocks of domestic geese were examined. All Camp. jejuni strains isolated from geese were biotyped using the Lior biotyping scheme. Twelve Camp. jejuni isolates were also tested for their susceptibility to 17 different antibacterial agents by a disc diffusion Fourteen of the isolates were also subjected to SDS-PAGE. All of the geese examined were found to harbour Camp. jejuni. Six geese carried more than one species of Campylobacter. All strains examined were susceptible to various antibiotics but resistant to penicillin G and cephalothin. Eleven strains (92%) were resistant to sodium cefuroxime, and eight (67%) were resistant to cloxacillin, ampicillin and colistin sulphate. Three strains (25%) were resistant to tetracycline, and one strain was resistant to sulfamethoxazole/trimethoprim and kanamycin. Nine strains were subtyped as Camp. jejuni subsp. jejuni biotype II and the remaining ones as biotype I. There were 96% and 100% similarities between all the strains examined by SDS-PAGE. This study showed that Camp. jejuni were common in the intestinal tract of domestic geese. Geese should be considered as potential reservoirs for human and animal campylobacteriosis. The antibiotic resistance data from this study also showed that fluoroquinolone resistance, which appears to be a problem in poultry isolates in some countries, is not yet a problem in these geese.

  16. Guillain-Barré Syndrome and Campylobacter jejuni Infection: A Review

    Directory of Open Access Journals (Sweden)

    Nurun Nahar Mawla

    2014-01-01

    Full Text Available Guillain-Barré syndrome (GBS, a neurologic disease that produces ascending paralysis, affects people all over the world. Acute infectious illness precedes 50%-75% of the GBS cases. Although many infectious agents have been associated with GBS, the strongest documented association is with Campylobacter infection. The first line of evidence supporting Campylobacter infection as a trigger of GBS is anecdotal reports. The second line of evidence is serological surveys, which have demonstrated that sera from GBS patients contain anti Campylobacter jejuni antibodies, consistent with recent infection. Finally, culture studies have proven that a high proportion of GBS patients have C. jejuni in their stools at the time of onset of neurological symptoms. One of every 1058 Campylobacter infections results in GBS. Sialic acid containing lipooligosaccharides (LOS biosynthesis gene locus are associated with GBS and the expression of ganglioside mimicking structures. GM1a was the most prevalent ganglioside mimic in GBS associated strains. Molecular mimicry between C. jejuni LOS and gangliosides in human peripheral nerves, and cross-reactive serum antibody precipitate the majority of GBS cases in Bangladesh, like worldwide.

  17. Relapsing Campylobacter jejuni Systemic Infections in a Child with X-Linked Agammaglobulinemia

    Directory of Open Access Journals (Sweden)

    Paola Ariganello

    2013-01-01

    Full Text Available X-linked agammaglobulinemia (XLA is a primary immunodeficiency of the humoral compartment, due to a mutation in the Bruton tyrosine kinase (BTK gene, characterized by a severe defect of circulating B cells and serum immunoglobulins. Recurrent infections are the main clinical manifestations; although they are especially due to encapsulated bacteria, a specific association with Campylobacter species has been reported. Here, we report the case of a boy with XLA who presented with relapsing Campylobacter jejuni systemic infections. His clinical history supports the hypothesis of the persistence of C. jejuni in his intestinal tract. Indeed, as previously reported, XLA patients may become chronic intestinal carriers of Campylobacter, even in absence of symptoms, with an increased risk of relapsing bacteraemia. The humoral defect is considered to be crucial for this phenomenon, as well as the difficulties to eradicate the pathogen with an appropriate antibiotic therapy; drug resistance is raising in Campylobacter species, and the appropriate duration of treatment has not been established. C. jejuni should always be suspected in XLA patients with signs and symptoms of systemic infection, and treatment should be based on antibiogram to assure the eradication of the pathogen.

  18. Interaction of Campylobacter jejuni and Campylobacter coli with lectins and blood group antibodies.

    OpenAIRE

    Wong, K H; Skelton, S K; Feeley, J C

    1985-01-01

    Lectins and blood group antibodies were used to probe the surface structures of Campylobacter jejuni and Campylobacter coli. Of the 29 strains tested, there were distinct reaction patterns. The lectin-reactive and blood group antibody-reactive sites on the bacterial surface were distinguishable from the heat-stable (lipopolysaccharide) antigenic determinants. The interactions were strain specific. The reactive sites were stable with respect to culture media and passage and may be useful as ad...

  19. Bickerstaff's brainstem encephalitis after an outbreak of Campylobacter jejuni enteritis.

    Science.gov (United States)

    Mori, Masahiro; Koga, Michiaki; Yuki, Nobuhiro; Hattori, Takamichi; Kuwabara, Satoshi

    2008-05-30

    Twenty-eight patients suffered Campylobacter jejuni enteritis after eating raw chicken. Among them, only one patient developed Bickerstaff's brainstem encephalitis, who carried anti-GQ1b IgG antibodies. In contrast, none of the others did the autoantibodies. C. jejuni was cultured from all stool samples from five patients with enteritis alone. All the isolates had the same genotype, cst-II (Asn51), which are characteristic of strains isolated from Bickerstaff's brainstem encephalitis. These findings suggest that host susceptibility may play a role in inducing the production of anti-ganglioside antibodies and the development of Bickerstaff's brainstem encephalitis.

  20. Evaluation of a protective effect of in ovo delivered Campylobacter jejuni OMVs.

    Science.gov (United States)

    Godlewska, Renata; Kuczkowski, Maciej; Wyszyńska, Agnieszka; Klim, Joanna; Derlatka, Katarzyna; Woźniak-Biel, Anna; Jagusztyn-Krynicka, Elżbieta K

    2016-10-01

    Campylobacter jejuni is the most prevalent cause of a food-borne gastroenteritis in the developed world, with poultry being the main source of infection. Campylobacter jejuni, like other Gram-negative bacteria, constitutively releases outer membrane vesicles (OMVs). OMVs are highly immunogenic, can be taken up by mammalian cells, and are easily modifiable by recombinant engineering. We have tested their usefulness for an oral (in ovo) vaccination of chickens. Four groups of 18-day-old chicken embryos (164 animals) underwent injection of wt C. jejuni OMVs or modified OMVs or PBS into the amniotic fluid. The OMVs modifications relied on overexpression of either a complete wt cjaA gene or the C20A mutant that relocates to the periplasm. Fourteen days post-hatch chicks were orally challenged with live C. jejuni strain. Cecum colonization parameters were analyzed by two-way ANOVA with Tukey post-hoc test. The wtOMVs and OMVs with wtCjaA overexpression were found to confer significant protection of chicken against C. jejuni (p = 0.03 and p = 0.013, respectively) in comparison to PBS controls and are promising candidates for further in ovo vaccine development.

  1. Detecção dos genes codificantes da toxina CDT, e pesquisa de fatores que influenciam na produção de hemolisinas em amostras de Campylobacter jejuni de origem avícola

    Directory of Open Access Journals (Sweden)

    Michele M. Trindade

    2015-08-01

    Full Text Available Resumo: Membros termofílicos do gênero Campylobacter são reconhecidos como importantes enteropatógenos para o ser humano e animais. A grande diversidade ecológica destes micro-organismos em diferentes habitats tais como água, animais e alimentos predispõem ao aparecimento de novos fatores de virulência. Este trabalho teve por objetivo detectar os genes codificantes da Toxina Distensiva Citoletal (CDT por meio da técnica de PCR, pesquisar a atividade de hemolisinas e a influência de soluções quelantes e de íons nesta atividade. Foram utilizadas 45 amostras de Campylobacter jejuni de origem avícola para pesquisa de atividade hemolítica, cultivadas em Caldo Triptona de Soja (TSB. Após o crescimento bacteriano, as amostras foram semeadas em Ágar tríptico de soja (TSA contendo 5% de sangue de ovino. Para verificar a influência de agentes quelantes e solução de íons na atividade hemolítica, as amostras de C. jejuni foram cultivadas em TSB contendo separadamente os quelantes EDTA, ácido acético, soluções de íons CaCl2, MgCl2 e FeCl3, em atmosfera de microaerofilia. Quanto à atividade de hemolisina de C. jejuni em placas de TSA - sangue ovino foi possível observar que houve hemólise em 40% das amostras analisadas apenas com caldo TSB. Somente o ácido acético apresentou ação quelante sobre a atividade de hemolisinas em amostras de C. jejuni semeadas em placas de TSA - sangue ovino. Para detecção dos genes cdtA, cdtB e cdtC através da técnica da Reação em Cadeia da Polimerase (PCR foram utilizadas 119 amostras de C. jejuni de origem avícola. Foi possível observar que 37,8% possuíam o perfil de genes cdtABC. Os resultados demonstraram em amostras avícolas a presença de cepas de C. jejuni com potencial virulento, devido à presença dos genes da toxina CDT e potencial hemolítico, que apresentou ação reduzida in vitro com ácido acético.

  2. Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni in cynomolgus monkeys (Macaca fascicularis) and eradication regimens.

    Science.gov (United States)

    Koga, Tetsufumi; Aoki, Wataru; Mizuno, Takashi; Wakazono, Kuniko; Ohno, Junki; Nakai, Tsunehiro; Nomiya, Takao; Fujii, Miki; Fusegawa, Keiichi; Kinoshita, Kazuya; Hamada, Takakazu; Ikeda, Yoshinori

    2017-02-01

    Campylobacter spp. are zoonotic pathogens, however, knowledge about their presence and antimicrobial resistance in nonhuman primates is limited. Our animal facility purchased cynomolgus monkeys (Macaca fascicularis) from various Asian countries: China, Cambodia, Indonesia, the Philippines, and Vietnam. Colonization by Campylobacter spp. was investigated in 238 of the monkeys from 2009 to 2012 and antimicrobial susceptibility testing was carried out for these isolates. Furthermore, we eradicated these pathogens from these monkeys. Campylobacter spp. were isolated from 47 monkeys from three specific countries: China, Cambodia, and Indonesia, with respective isolation rates of 15%, 36%, and 67%. Two monkeys, which were each infected with Campylobacter jejuni and Campylobacter coli, showed clinical symptoms of diarrhea and bloody feces. In total, 41 isolates of C. coli and 17 isolates of C. jejuni were detected. Antimicrobial susceptibility varied: in the monkeys from China, erythromycin (ERY)-, tetracycline (TET)-, and ciprofloxacin-resistant C. coli, in the monkeys from Cambodia, amoxicillin-intermediate, TET- and ciprofloxacin-resistant C. coli and amoxicillin- and ciprofloxacin-resistant C. jejuni, and in the monkeys from Indonesia, ciprofloxacin-resistant C. coli and TET- and ciprofloxacin-resistant C. jejuni were common (>75%). Multiresistant isolates of C. coli were found in monkeys from all countries and multiresistant isolates of C. jejuni were found in monkeys from Indonesia. The eradication rate with azithromycin was comparable to that with gentamicin (GEN) by oral administration, and was higher than those with amoxicillin-clavulanic acid (AMC) and chloramphenicol (CHL). From the perspective of zoonosis, we should acknowledge multiresistant Campylobacter spp. isolated from the monkeys as a serious warning. Copyright © 2015. Published by Elsevier B.V.

  3. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Computer-assisted analysis and epidemiological value of genotyping methods for Campylobacter jejuni and Campylobacter coli

    NARCIS (Netherlands)

    Boer, P. de; Duim, B.; Rigter, A.; Plas, J. van der; Jacobs-Reitsma, W.F.; Wagenaar, J.A.

    2000-01-01

    For epidemiological tracing of the thermotolerant Campylobacter species C. jejuni and C. coli, reliable and highly discriminatory typing techniques are necessary. In this study the genotyping techniques of flagellin typing (flaA typing), pulsed-field gel electrophoresis (PFGE), automated ribotyping,

  5. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, R.C.; Lund, V.; Carlson, D.A.

    1987-02-01

    Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.

  6. Chemical Decontamination of Campylobacter jejuni on Chicken Skin and Meat

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Brøndsted, Lone; Rosenquist, Hanne

    2009-01-01

    This study evaluated the effectiveness of 11 chemical compounds to reduce Campylobacter jejuni on chicken skin and meat samples dipped in chemical solutions. Treatment of skin samples for 1 min using tartaric acid (2%) and caprylic acid sodium salt (5%) caused reductions of C. jejuni NCTC11168......, which were not significantly different from the reduction obtained by sterile water (0.95 log). Statistically larger reductions (1.57 to 3.81 log) were caused by formic acid (2%), lactic acid (2.5%), trisodium phosphate (10%), capric acid sodium salt (5%), grapefruit seed extract (1...... effective, indicating that some cells may recover after a 1-min treatment with these chemicals. An increase in treatment time to 15 min resulted in higher effectiveness of trisodium phosphate and formic acid. Interestingly, when reduction of the C. jejuni population was compared on chicken skin and meat...

  7. Use of a Rabbit Soft Tissue Chamber Model to Investigate Campylobacter jejuni - Host Interactions

    Directory of Open Access Journals (Sweden)

    Annika eFlint

    2010-11-01

    Full Text Available Despite the prevalence of C. jejuni as an important food borne pathogen, the microbial factors governing its infection process are poorly characterized. In this study, we developed a novel rabbit soft tissue chamber model to investigate C. jejuni interactions with its host. The in vivo transcriptome profile of C. jejuni was monitored as a function of time post-infection by competitive microarray hybridization with cDNA obtained from C. jejuni grown in vitro. Genome-wide expression analysis identified 449 genes expressed at significantly different levels in vivo. Genes implicated to play important roles in early colonization of C. jejuni within the tissue chamber include up-regulation of genes involved in ribosomal protein synthesis and modification, heat shock response, and primary adaptation to the host environment (DccSR regulon. Genes encoding proteins involved in the TCA cycle and flagella related components were found to be significantly down regulated during early colonization. Oxidative stress defense and stringent response genes were found to be maximally induced during the acute infectious phase. Overall, these findings reveal possible mechanisms involved in adaptation of Campylobacter to the host.

  8. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  9. Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine

    DEFF Research Database (Denmark)

    Scott, Nichollas E; Nothaft, Harald; Edwards, Alistair V G

    2012-01-01

    Campylobacter jejuni is the major worldwide cause of bacterial gastroenteritis. C. jejuni possesses an extensive repertoire of carbohydrate structures that decorate both protein and non-protein surface-exposed structures. An N-linked glycosylation system encoded by the pgl gene cluster mediates...... an attractive option for glycoengineering recombinant vaccines in Escherichia coli. To determine whether non-canonical N-glycans are present in C. jejuni, we utilized high throughput glycoproteomics to characterize C. jejuni JHH1 and identified 93 glycosylation sites, including 34 not previously reported......EtN-glycan but did not globally influence protein reactivity to patient sera, whereas deletion of the pglB oligosaccharyltransferase significantly reduced reactivity. Transfer of eptC and the pgl gene cluster to E. coli confirmed the addition of the pEtN-glycan to a target C. jejuni protein. Significantly reduced...

  10. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    Science.gov (United States)

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  11. Effect of H2 on culture of Campylobacter jejuni within mixed populations of ruminal bacteria

    Science.gov (United States)

    Campylobacter jejuni is a leading bacterial cause of human foodborne illness. Campylobacter readily colonize the gut of food animals as evidenced by prevalence rates often exceeding 80%. Physiologically, C. jejuni conserve energy via amino acid catabolism and anaerobic respiration. Hydrogen is rep...

  12. The Prevalence of Antibiotic and Biocide Resistance Among Campylobacter coli and Campylobacter jejuni from Different Sources

    Directory of Open Access Journals (Sweden)

    Ana Mavri

    2012-01-01

    Full Text Available The increasing levels of antimicrobial resistance among foodborne bacteria are recognised as an important emerging public health problem. Reduced susceptibility to biocides also appears to be increasing. A potential concern is the possibility that the widespread use of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. Here, we examine the prevalence of erythromycin, ciprofloxacin, triclosan, benzalkonium chloride, chlorhexidine diacetate, cetylpyridinium chloride, trisodium phosphate and sodium dodecyl sulphate resistance among 27 isolates of Campylobacter coli and 15 isolates of Campylobacter jejuni from food, animal, human and environmental water sources. These antimicrobial susceptibilities were determined by the broth microdilution method. In the 42 Campylobacter strains studied, different antibiotic resistance levels were seen. The resistance to erythromycin and ciprofloxacin was observed in 14.3 % of Campylobacter strains. A higher rate of erythromycin resistance and multi-resistance was observed among isolated C. coli than among C. jejuni strains. Similar situations were seen for triclosan. Conversely, the level of benzalkonium chloride resistance was higher in C. jejuni than in C. coli. No correlation between biocide and antibiotic resistance was observed. This study does not provide evidence to confirm that tolerance to biocides is connected to antibiotic resistance in Campylobacter.

  13. Functional characterization of a lipoprotein-encoding operon in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    Full Text Available BACKGROUND: Bacterial lipoproteins have important functions in bacterial pathogenesis and physiology. In Campylobacter jejuni, a major foodborne pathogen causing gastroenteritis in humans, the majority of lipoproteins have not been functionally characterized. Previously, we showed by DNA microarray that CmeR, a transcriptional regulator repressing the expression of the multidrug efflux pump CmeABC, modulates the expression of a three-gene operon (cj0089, cj0090, and cj0091 encoding a cluster of lipoproteins in C. jejuni. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we characterized the function and regulation of the cj0089-cj0090-cj0091 operon. In contrast to the repression of cmeABC, CmeR activates the expression of the lipoprotein genes and the regulation is confirmed by immunoblotting using anti-Cj0089 and anti-Cj0091 antibodies. Gel mobility shift assay showed that CmeR directly binds to the promoter of the lipoprotein operon, but the binding is much weaker compared with the promoter of cmeABC. Analysis of different cellular fractions indicated that Cj0089 was associated with the inner membrane, while Cj0091 was located on the outer membrane. Inactivation of cj0091, but not cj0089, significantly reduced the adherence of C. jejuni to INT 407 cells in vitro, indicating that Cj0091 has a function in adherence. When inoculated into chickens, the Cj0091 mutant also showed a defect in early colonization of the intestinal tract, suggesting that Cj0091 contributes to Campylobacter colonization in vivo. It was also shown that Cj0091 was produced and immunogenic in chickens that were naturally infected by C. jejuni. CONCLUSION/SIGNIFICANCE: These results indicate that the lipoprotein operon is subject to direct regulation by CmeR and that Cj0091 functions as an adhesion mechanism in C. jejuni and contributes to Campylobacter colonization of the intestinal tract in animal hosts.

  14. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity.

    Science.gov (United States)

    Méndez-Olvera, Estela T; Bustos-Martínez, Jaime A; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-10-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). The results obtained showed that the eight strains of C. jejuni, including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA, cdtB and cdtC genes.

  15. Comparative genomic analysis of clinical strains of Campylobacter jejuni from South Africa.

    Directory of Open Access Journals (Sweden)

    Beatriz Quiñones

    Full Text Available BACKGROUND: Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome. The present study examined the genetic content of a collection of 32 South African C. jejuni strains with different serotypes, including 13 HS:41 strains, that were recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. The sequence-based typing methods, multilocus sequence typing and DNA microarrays, were employed to potentially identify distinguishing features within the genomes of these C. jejuni strains with various disease outcomes. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomic analyses demonstrated that the HS:41 South African strains were clearly distinct from the other South African strains. Further DNA microarray analysis demonstrated that the HS:41 strains from South African patients with the Guillain-Barré syndrome or enteritis were highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements (CJIEs. Only the integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas this element was absent in two closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both integrated elements CJIE1 and CJIE2. CONCLUSION/SIGNIFICANCE: These findings demonstrate that CJIEs may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may contribute to the genomic diversity

  16. Prevalence of Campylobacter jejuni, Campylobacter coli and enteric Helicobacter in domestic and free living birds in North-Western Italy.

    Science.gov (United States)

    Robino, P; Tomassone, L; Tramuta, C; Rodo, M; Giammarino, M; Vaschetti, G; Nebbia, P

    2010-09-01

    In order to investigate the prevalence of some thermophilic Campylobacter (C. jejuni and C. coli) and enteric Helicobacter (H. pullorum and H. canadensis) in domestic and wild birds, a total of 278 bird caecal samples were analyzed over a 2 year period in North-Western Italy. Samples were collected from poultry raised in intensive farming at the slaughterhouse (n=102, group A) and in small scale rural farms (n=60, group B) as well as from wild birds (n=116, group C). PCR amplifications were carried out on DNA extracted from caecal samples. Molecular assays targeted the hipO gene for C. jejuni, the asp gene for C. coli and the 16S rRNA gene of H. pullorum/H. canadensis. To differentiate H. pullorum from H. canadensis, PCR products were subjected to an ApaLI digestion assay. Prevalence of thermophilic Campylobacter and enteric Helicobacter was significantly different among groups (p<0.0001). Campylobacter infections were detected in all three bird groups (78.4% group A, 18.3% group B and 38.8% group C, respectively), Helicobacter infections were only detected in poultry, with H. pullorum infecting 68.6% of group A and 21.7% of group B birds. H. canadensis was detected in Guinea fowls (group A) and for the first time in pheasants (group B). Mixed infections by enteric Campylobacter and Helicobacter were shown in 53.9% of group A and in 5.0 % of group B. Our results show that both microorganisms commonly infect poultry, especially intensive farming animals. Only hooded crows among the wild bird group (group C), proved to be highly sensitive to Campylobacter infection.

  17. Combined Campylobacter jejuni and Campylobacter coli Rapid Testing and Molecular Epidemiology in Conventional Broiler Flocks.

    Science.gov (United States)

    Schallegger, G; Muri-Klinger, S; Brugger, K; Lindhardt, C; John, L; Glatzl, M; Wagner, M; Stessl, B

    2016-12-01

    Campylobacter spp. are important causes of bacterial zoonosis, most often transmitted by contaminated poultry meat. From an epidemiological and risk assessment perspective, further knowledge should be obtained on Campylobacter prevalence and genotype distribution in primary production. Consequently, 15 Austrian broiler flocks were surveyed in summer for their thermophilic Campylobacter spp. contamination status. Chicken droppings, dust and drinking water samples were collected from each flock at three separate sampling periods. Isolates were confirmed by PCR and subtyped. We also compared three alternative methods (culture-based enrichment in Bolton broth, culture-independent real-time PCR and a lateral-flow test) for their applicability in chicken droppings. Twelve flocks were found to be positive for thermophilic Campylobacter spp. during the entire sampling period. Seven flocks (46.6%) were contaminated with both, C. jejuni and C. coli, five flocks harboured solely one species. We observed to a majority flock-specific C. jejuni and C. coli genotypes, which dominated the respective flock. Flocks within a distance jejuni genotypes indicating a cross-contamination event via the environment or personnel vectors. Multilocus sequence typing (MLST) of C. jejuni revealed that the majority of isolates were assigned to globally distributed clonal complexes or had a strong link to the human interface (CC ST-446 and ST4373). The combination of techniques poses an advantage over risk assessment studies based on cultures alone, as, in the case of Campylobacter, occurrence of a high variety of genotypes might be present among a broiler flock. We suggest applying the lateral-flow test under field conditions to identify 'high-shedding' broiler flocks at the farm level. Consequently, poultry farmers and veterinarians could improve hygiene measurements and direct sanitation activities, especially during the thinning period. Ultimately, real-time PCR could be applied to quantify

  18. Identificação de Campylobacter jejuni e Campylobacter coli isoladas de carcaças resfriadas de Frango pela Multiplex PCR | Identification of Campylobacter jejuni and Campylobacter coli from refrigerated cicken carcasses by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    Valeria de Mello Medeiros

    2015-08-01

    Full Text Available Campylobacter jejuni e C. coli constituem as espécies termofílicas mais frequentemente isoladas em casos de enterites humanas, devido à ingestão de alimentos à base de frango mal cozido ou através da contaminação cruzada durante a manipulação de alimentos crus. A diferenciação bioquímica de C. jejuni e C. coli apresenta inconsistências, como a hidrólise do hipurato e a sensibilidade ao ácido nalidíxico e à cefalotina. Desta forma, a aplicação de métodos moleculares se faz necessário na identificação dessas espécies. O objetivo deste trabalho foi realizar a identificação de C. jejuni e C. coli isolados de carcaças resfriadas de frango pela Multiplex PCR. Para isso, o gene que codifica uma subunidade de oxirredutase (160 pb e o gene de virulência ceuE (894 pb específicos para C. jejuni e C. coli, respectivamente, foram submetidos a PCR, simultaneamente. Dos 21 isolados analisados pela bioquímica, 19 (90,48% foram identificados como C. jejuni um (4,76% como C. coli e um (4,76% não identificado. A Multiplex PCR confirmou a presença de 90,48% de C. jejuni e 9,52% de C. coli. A abordagem proposta apresentou rapidez, sensibilidade e especificidade e, assim, poderia ser considerada uma boa alternativa para ensaios clínicos de rotina e estudos epidemiológicos. --------------------------------------------------------------------------------------------- Campylobacter jejuni and C. coli are the most frequently identified thermophilic species in cases of human enteritis caused by the consumption of food products made with undercooked chicken or cross-contamination during handling of raw food products. The biochemical differentiation of C. jejuni and C. coli shows inconsistencies, such as hippurate hydrolysis and sensitivity to nalidixic acid and cephalothin. Consequently, the use of molecular methods is necessary to identify these species. The objective of this study was to identify C. jejuni and C. coli isolates from

  19. Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived Campylobacter jejuni strain 11601MD.

    Science.gov (United States)

    Crespo, M D; Altermann, E; Olson, J; Miller, W G; Chandrashekhar, K; Kathariou, S

    2016-07-01

    In Campylobacter spp., resistance to the antimicrobials kanamycin and tetracycline is frequently associated with plasmid-borne genes. However, relatively few plasmids of Campylobacter jejuni have been fully characterized to date. A novel plasmid (p11601MD; 44,095nt) harboring tet(O) was identified in C. jejuni strain 11601MD, which was isolated from the jejunum of a turkey produced conventionally in North Carolina. Analysis of the p11601MD sequence revealed the presence of a high-GC content cassette with four genes that included tet(O) and a putative aminoglycoside transferase gene (aphA-3) highly similar to kanamycin resistance determinants. Several genes putatively involved in conjugative transfer were also identified on the plasmid. These findings will contribute to a better understanding of the distribution of potentially self-mobilizing plasmids harboring antibiotic resistance determinants in Campylobacter spp. from turkeys and other sources. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Sialylation of campylobacter jejuni lipo-oligosaccharides: Impact on phagocytosis and cytokine production in mice

    NARCIS (Netherlands)

    R. Huizinga (Ruth); A.S. Easton (Alistair); A.M. Donachie (Anne); J. Guthrie (Jim); W. van Rijs (Wouter); A.P. Heikema (Astrid); L. Boon (Louis); J.N. Samsom (Janneke); B.C. Jacobs (Bart); H.J. Willison (Hugh); C.S. Goodyear (Carl)

    2012-01-01

    textabstractBackground: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS

  1. It is all about flagellin : Towards development of a Campylobacter jejuni flagellin-based vaccine

    NARCIS (Netherlands)

    Radomska, K.A.|info:eu-repo/dai/nl/41331846X

    2017-01-01

    Campylobacter jejuni is the most common cause of foodborne bacterial diarrhea in humans worldwide. C. jejuni is highly prevalent in livestock, poultry in particular. The most common source of human infection is C. jejuni-contaminated poultry meat products. The main objective of the work described in

  2. Campylobacter jejuni capsular genotypes are related to Guillain-Barré syndrome

    NARCIS (Netherlands)

    Heikema, A P; Islam, Z; Horst-Kreft, D; Huizinga, R; Jacobs, B C; Wagenaar, J A; Poly, F; Guerry, P; van Belkum, A; Parker, C T; Endtz, H P

    In about one in a thousand cases, a Campylobacter jejuni infection results in the severe polyneuropathy Guillain-Barré syndrome (GBS). It is established that sialylated lipo-oligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with

  3. Phytochemicals reduce biofilm formation and inactivates mature biofilm of Campylobacter jejuni

    Science.gov (United States)

    Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. However, little is known about the persistence of C. jejuni in the poultry processing environment. Several studies have shown that C. jejuni ca...

  4. In-water supplementation of Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni colonization in broiler chickens

    Science.gov (United States)

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen colonizes the ceca thereby leading to contamination of the carcass during slaughter. Reducing C. jejuni cecal colonization could pot...

  5. Primary Isolation Strain Determines Both Phage Type and Receptors Recognised by Campylobacter jejuni Bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine C. Holst; Gencay, Yilmaz Emre; Birk, Tina

    2015-01-01

    In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated...

  6. Status of vaccine research and development for Campylobacter jejuni.

    Science.gov (United States)

    Riddle, Mark S; Guerry, Patricia

    2016-06-03

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea worldwide and is associated with a number of sequelae, including Guillain-Barre Syndrome, reactive arthritis, irritable bowel syndrome and growth stunting/malnutrition. Vaccine development against C. jejuni is complicated by its antigenic diversity, a lack of small animal models, and a poor understanding of the bacterium's pathogenesis. Vaccine approaches have been limited to recombinant proteins, none of which have advanced beyond Phase I testing. Genomic analyses have revealed the presence of a polysaccharide capsule on C. jejuni. Given the success of capsule-conjugate vaccines for other mucosal pathogens of global importance, efforts to evaluate this established approach for C. jejuni are also being pursued. A prototypical capsule-conjugate vaccine has demonstrated efficacy against diarrheal disease in non-human primates and is currently in Phase I testing. In addition to proof of concept studies, more data on the global prevalence of capsular types, and a better understanding of the acute and chronic consequences of C. jejuni are needed to inform investments for a globally relevant vaccine. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  7. AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro

    NARCIS (Netherlands)

    Holmes, K.; Tavender, T.J.; Winzer, K.; Wells, J.; Hardie, K.

    2009-01-01

    Background - Campylobacter jejuni contains a homologue of the luxS gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) in Vibrio harveyi and Vibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal

  8. Complete chemoenzymatic synthesis of the Forssman antigen using novel glycosyltransferases identified in Campylobacter jejuni and Pasteurella multocida

    Science.gov (United States)

    We have identified an alpha1,4-galactosyltransferase (CgtD) and a beta1,3-N-acetylgalactosaminyltransferase (CgtE) in the lipooligosaccharide (LOS) locus of Campylobacter jejuni LIO87. Strains that carry these genes may have the capability of synthesizing mimics of the P blood group antigens of the ...

  9. Pentavalent Single-Domain Antibodies Reduce Campylobacter jejuni Motility and Colonization in Chickens

    OpenAIRE

    Ali Riazi; Strong, Philippa C. R.; Russell Coleman; Wangxue Chen; Tomoko Hirama; Henk van Faassen; Matthew Henry; Logan, Susan M; Szymanski, Christine M.; Roger Mackenzie; Mehdi Arbabi Ghahroudi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonizati...

  10. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Andrew Cameron

    Full Text Available Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.

  11. High Prevalence and Genetic Diversity of Campylobacter jejuni in Wild Crows and Pigeons.

    Science.gov (United States)

    Ramonaitė, Sigita; Novoslavskij, Aleksandr; Zakarienė, Gintarė; Aksomaitienė, Jurgita; Malakauskas, Mindaugas

    2015-11-01

    The occurrence, seasonal variation and genetic diversity of Campylobacter spp. in pigeons and crows over a 1-year period were evaluated. Campylobacter spp. were isolated from 166 (34.6 %) out of 480 wild bird faecal samples. The occurrence of Campylobacter spp. in faecal samples was higher among crows (39.2 %) than pigeons (30.0 %), (P Campylobacter jejuni was the most common species detected among wild bird faecal samples (98.2 %). Meanwhile, Campylobacter coli prevalence in wild bird faecal samples was low-6 %. The Simpson's diversity index of C. jejuni flaA RFLP types was lower in pigeons (D = 0.88) compared with C. jejuni isolates detected in crows (D = 0.97). Obtained results revealed that C. jejuni are widely prevalent among crows and pigeons, indicating these wild birds as potential infection sources to humans. Further studies are required to determine crows and pigeons role in zoonotic transmission of Campylobacter.

  12. Studying the prevalence of Campylobacter jejuni in adults with gastroenteritis from northwest of Iran

    Directory of Open Access Journals (Sweden)

    Ahmadreza Mobaien

    2016-12-01

    Full Text Available Objective: To investigate the prevalence of Campylobacter jejuni (C. jejuni in the patients with gastroenteritis. Methods: This descriptive and analytical study included all adult patients with acute diarrhea admitted to the University Hospital of Zanjan Province who were enrolled in a one-year period from 2013 to 2014. Stool samples were checked for white blood cells (WBC and lactoferrin, then samples with WBC ≤ 5 positive for lactoferrin were selected for amplification of mapA gene of C. jejuni by RT-PCR assay. Results: In this study, 864 patients (410 men and 454 women with acute diarrhea were enrolled, of which about 718 patients had WBC less than 5 and 146 patients had WBC more than 5 in the stool exam. All inflammatory diarrhea samples were tested for lactoferrin and 111 cases of the samples tested were positive for lactferrin. A total of 40 samples out of 111 were positive for C. jejuni by RT. Conclusions: The finding of this study showed that the prevalence of inflammatory diarrhea and diarrhea caused by Campylobacter in this study was high. This need for education and awareness in this area, as well as appropriate treatment is too important.

  13. Confirmed identification and toxin profiling of Campylobacter jejuni using a thermostabilized multiplex PCR formulation.

    Science.gov (United States)

    Ramachandran, Nitya; Ramlal, Shylaja; Batra, Harsh Vardhan

    2017-07-01

    Cytolethal distending toxin (CDT) producing Campylobacter jejuni species are one of the leading causes of human gastroenteritis worldwide. The main intent of the study was to develop a multiplex PCR assay for the confirmed identification and toxin profiling of C. jejuni. The genes targeted were rpo B as genus specific, hip O for species; cdt A, cdt B, cdt C encoding respective subunit proteins of CDT with Internal Amplification Control (IAC). To enhance its application as a pre-mixed ready-to-use format, the master mix of developed mPCR was dried by lyophilization and stability was assessed. Thermostabilized reagents showed stability of 1.5 months at room-temperature and upto six months at 4 °C without any loss of functionality. The assay was evaluated on a number of presumptive Campylobacter isolates along with biochemical tests. Results obtained indicated the accurate identification of C. jejuni by developed mPCR format in contrast to misconception associated with biochemical assays. The assay was also tested on spiked samples for its real-time utility. Altogether, the room-temperature storable and ready-to- use mPCR format developed in this study could be preferred for rapid detection and confirmed identification of toxigenic strains of C. jejuni in place of conventional biochemical assays. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  14. Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 strain RM1285 that was isolated from packaged chicken

    Science.gov (United States)

    Poultry products serve as the main source of Campylobacter jejuni subsp. jejuni (Cjj) infections in humans. Cjj infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome (GBS). This study describes the genome of Cjj HS:19 strain RM1285 isol...

  15. Pathogenic potential and genotypic diversity of Campylobacter jejuni: a neglected food-borne pathogen in Brazil.

    Science.gov (United States)

    Frazão, Miliane Rodrigues; Medeiros, Marta Inês Cazentini; Duque, Sheila da Silva; Falcão, Juliana Pfrimer

    2017-03-01

    Purpose and methodology.Campylobacter jejuni is a major zoonotic pathogen that causes food-borne gastroenteritis worldwide. However, there are only a few studies available that have molecularly characterized C. jejuni strains isolated in Brazil. The aim of this study was to genotype 111 C. jejuni strains isolated from sick humans (43), monkey faeces (19), chicken faeces (14), chicken meat (33) and sewage (2) between 1996 and 2016 in Brazil using flaA-SVR (short variable region) sequencing and PFGE. Furthermore, the presence of 16 virulence genes was analysed by PCR. Using PFGE and flaA-SVR sequencing, the 111 C. jejuni strains studied were grouped into three and two clusters, respectively, and some strains of different origin presented a similarity of ≥80 %. In total, 35 flaA-SVR alleles were detected. Alleles gt45, gt49 and gt57 were the most prevalent, in contrast with those frequently described in the PubMLST database. All 111 C. jejuni strains contained the genes flaA, flhA, cadF, docA, cdtA, cdtB, cdtC, iamA, ciaB, sodB, dnaJ, pldA, racR and csrA. The wlaN gene was detected in 11 strains (9.9 %), and the virB11 in just one strain (0.9 %). In conclusion, the pathogenic potential of the C. jejuni strains studied was highlighted by the high frequency of the majority of the virulence genes searched. The flaA-SVR sequencing and PFGE results showed that some of the strains studied presented a high genotypic similarity, suggesting potential for transmission between animal sources and humans in this country. Altogether, the results characterize further C. jejuni isolates from Brazil, an important producer and exporter of chicken meat.

  16. The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq

    Science.gov (United States)

    Taveirne, Michael E.; Theriot, Casey M.; Livny, Jonathan; DiRita, Victor J.

    2013-01-01

    Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq) has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5’ untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host. PMID:23991199

  17. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq.

    Directory of Open Access Journals (Sweden)

    Michael E Taveirne

    Full Text Available Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5' untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host.

  18. Identification of Campylobacter jejuni Proteins Recognized by Maternal Antibodies of Chickens▿ †

    OpenAIRE

    Shoaf-Sweeney, Kari D.; Larson, Charles L.; Tang, Xiaoting; Konkel, Michael E.

    2008-01-01

    Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with mater...

  19. Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development

    Science.gov (United States)

    1991-11-26

    AD-A245 442 AD___1111111i1i11l 01 li[i ] i 1 I1 STUDIES OF THE OUTER MEMBRANE PROTEINS OF CAMPYLOBACTER JEJUNI FOR VACCINE DEVELOPMENT MIDTERM...the Outer Membrane Proteins of Campylobacter 90PP0820 Jejuni for Vaccine Development ____ ___ ___ ____ _ _ ___ ___ ___ ____ ___ ___61102A .1 6...Enteritis in Thailand. Although Campylobacter enteritis is usually an inflammatory process in developed countries, watery diarrhea is common in the

  20. Distribution of Flagella Secreted Protein and Integral Membrane Protein Among Campylobacter jejuni Isolated from Thailand

    Science.gov (United States)

    2011-01-01

    secreted protein and integral membrane protein among Campylobacter jejuni isolated from Thailand Piyarat Pootong 1·, Oralak Serichantalergs...Ladaporn Bodhidatta \\ Frederic Poly2, Patricia Guerry2 and Carl J Mason 1 Abstract Background: Campylobacter jejuni, a gram-negative bacterium, is a...groups of integral membrane protein. The significance of these different FspA variants to virulence requires further study. Background Campylobacter

  1. Phenotypic Characters and Molecular Epidemiology of Campylobacter Jejuni in East China.

    Science.gov (United States)

    Zeng, Dexin; Zhang, Xiaoping; Xue, Feng; Wang, Yanhong; Jiang, Luyan; Jiang, Yuan

    2016-01-01

    In this study, we investigated the distribution, phenotypic and molecular typing characters of Campylobacter jejuni in domestic fowl, and livestock populations in East China, to provide some reference for researches on its molecular epidemiology. A total of 1250 samples were collected from different animal sources, and C. jejuni strains were then isolated and tested for antibiotic sensitivity. Antibiotics-resistance gene and pathogenic genes were detected by polymerase chain reaction. Phylogenic analysis on the C. jejuni strains was performed by multilocus sequence typing (MLST) method. The results showed that 108 out of the 1250 samples (mean 8.64%) were C. jejuni positive. These 108 C. jejuni strains were highly sensitive to antibiotics such as chloramphenicol, amoxicillin, amikacin, cefotaxime, and azithromycin, whereas they were highly resistant to antibiotics such as cefoperazone, cotrimoxazole, cefamandole, sulfamethoxazole, and cefradine. Pathogenicity related gene identification indicated that the mean carrying rate of adhesion related gene cadF and racR, flagellin gene flaA, toxin regulating gene cdtA, cdtB, cdtC, wlaN and virB11, heat shock proteins and transferring proteins related genes dnaJ and ceuE, CiaB and pldA were 92.45%, 38.69%, 73.58%, 71.70%, 52.83%, 96.23%, 12.26%, 1.89%, 0.94%, 65.09%, 39.62% and 9.43%, respectively. A total of 58.82% of these strains contained more than 6 pathogenicity-related genes. MLST typed 58 ST types from the 108 isolated C. jejuni strains, including 24 new types, and ST-21 was the major type, accounting for 39.3% of the total strains. © 2015 Institute of Food Technologists®

  2. Identification of the main quinolone resistance determinant in Campylobacter jejuni and Campylobacter coli by MAMA-DEG PCR.

    Science.gov (United States)

    Hormeño, Lorena; Palomo, Gonzalo; Ugarte-Ruiz, María; Porrero, M Concepción; Borge, Carmen; Vadillo, Santiago; Píriz, Segundo; Domínguez, Lucas; Campos, Maria J; Quesada, Alberto

    2016-03-01

    Among zoonotic diseases, campylobacteriosis stands out as the major bacterial infection producing human gastroenteritis. Antimicrobial therapy, only recommended in critical cases, is challenged by resistance mechanisms that should be unambiguously detected for achievement of effective treatments. Quinolone (ciprofloxacin) resistance of Campylobacter jejuni and Campylobacter coli, the 2 main Campylobacter detected in humans, is conferred by the mutation gyrA C-257-T, which can be genotyped by several methods that require a previous identification of the pathogen species to circumvent the sequence polymorphism of the gene. A multiplex PCR, based on degenerated oligonucleotides, has been designed for unambiguous identification of the quinolone resistance determinant in Campylobacter spp. isolates. The method was verified with 249 Campylobacter strains isolated from humans (141 isolates) and from the 3 most important animal sources for this zoonosis: poultry (34 isolates), swine (38 isolates), and cattle (36 isolates). High resistance to ciprofloxacin, MIC above 4μg/mL, linked to the mutated genotype predicted by MAMA-DEG PCR (mismatch amplification mutation assay PCR with degenerated primers) was found frequently among isolates from the different hosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Multilocus sequence typing analysis of 47 Campylobacter jejuni strains isolated from poultry in Hubei province].

    Science.gov (United States)

    Dong, Jun; Han, Mei; Zhou, Kang; Luo, Qingping; Shao, Huabin; Zhang, Tengfei

    2016-01-04

    To study the epidemiological and molecular characteristics of Campylobacter jejuni in poultry in Hubei province, we used multilocus sequence typing method to classify 47 local C. jejuni strains. Genomic DNA of each isolated strain was extract, seven housekeeping genes including aspA, g1nA, g1tA, glyA, pgm, tkt and uncA were amplified by PCR and sequenced, and then the sequences of genes were analyzed using MLST database. There were a total of 38 sequence types and 10 clonal complexes, and ST353 and ST464 complexes were the largest amount of the population of C. jejuni analyzed, of which 2 new allelic profile and 25 new sequence types were found. Phylogenetic tree shows that sequence types from different types of poultry and different regions were different. Forty-seven C. jejuni strains isolated from poultry in Hubei were analyzed using MLST and showed abundant genetic diversity, it will provide scientific data to the epidemiological investigation of C. jejuni in Hubei, China.

  4. Campylobacter jejuni cocultured with epithelial cells reduces surface capsular polysaccharide expression.

    LENUS (Irish Health Repository)

    Corcionivoschi, N

    2012-02-01

    The host cell environment can alter bacterial pathogenicity. We employed a combination of cellular and molecular techniques to study the expression of Campylobacter jejuni polysaccharides cocultured with HCT-8 epithelial cells. After two passages, the amount of membrane-bound high-molecular-weight polysaccharide was considerably reduced. Microarray profiling confirmed significant downregulation of capsular polysaccharide (CPS) locus genes. Experiments using conditioned media showed that sugar depletion occurred only when the bacterial and epithelial cells were cocultured. CPS depletion occurred when C. jejuni organisms were exposed to conditioned media from a different C. jejuni strain but not when exposed to conditioned media from other bacterial species. Proteinase K or heat treatment of conditioned media under coculture conditions abrogated the effect on the sugars, as did formaldehyde fixation and cycloheximide treatment of host cells or chloramphenicol treatment of the bacteria. However, sugar depletion was not affected in flagellar export (fliQ) and quorum-sensing (luxS) gene mutants. Passaged C. jejuni showed reduced invasiveness and increased serum sensitivity in vitro. C. jejuni alters its surface polysaccharides when cocultured with epithelial cells, suggesting the existence of a cross talk mechanism that modulates CPS expression during infection.

  5. Genome-Wide Identification of Host-Segregating Epidemiological Markers for Source Attribution in Campylobacter jejuni.

    Science.gov (United States)

    Thépault, Amandine; Méric, Guillaume; Rivoal, Katell; Pascoe, Ben; Mageiros, Leonardos; Touzain, Fabrice; Rose, Valérie; Béven, Véronique; Chemaly, Marianne; Sheppard, Samuel K

    2017-04-01

    Campylobacter is among the most common worldwide causes of bacterial gastroenteritis. This organism is part of the commensal microbiota of numerous host species, including livestock, and these animals constitute potential sources of human infection. Molecular typing approaches, especially multilocus sequence typing (MLST), have been used to attribute the source of human campylobacteriosis by quantifying the relative abundance of alleles at seven MLST loci among isolates from animal reservoirs and human infection, implicating chicken as a major infection source. The increasing availability of bacterial genomes provides data on allelic variation at loci across the genome, providing the potential to improve the discriminatory power of data for source attribution. Here we present a source attribution approach based on the identification of novel epidemiological markers among a reference pan-genome list of 1,810 genes identified by gene-by-gene comparison of 884 genomes of Campylobacter jejuni isolates from animal reservoirs, the environment, and clinical cases. Fifteen loci involved in metabolic activities, protein modification, signal transduction, and stress response or coding for hypothetical proteins were selected as host-segregating markers and used to attribute the source of 42 French and 281 United Kingdom clinical C. jejuni isolates. Consistent with previous studies of British campylobacteriosis, analyses performed using STRUCTURE software attributed 56.8% of British clinical cases to chicken, emphasizing the importance of this host reservoir as an infection source in the United Kingdom. However, among French clinical isolates, approximately equal proportions of isolates were attributed to chicken and ruminant reservoirs, suggesting possible differences in the relative importance of animal host reservoirs and indicating a benefit for further national-scale attribution modeling to account for differences in production, behavior, and food consumption

  6. Prevalence and characterization of Campylobacter jejuni isolated from pasture flock poultry.

    Science.gov (United States)

    Hanning, Irene; Biswas, Debabrata; Herrera, Paul; Roesler, Mary; Ricke, Steven C

    2010-09-01

    The growing interest in organic and natural foods warrants a greater need for information on the food safety of these products. In this study, samples were taken from 2 pasture flock farms (N = 178; feed, water, drag swabs, and insect traps), pasture flock retail carcasses (N = 48) and 1 pasture flock processing facility (N = 16) over a period of 8 mo. A total of 105 Campylobacter isolates were obtained from 53 (30%), 36 (75%), and 16 (100%) samples from the farms, retail carcasses, and processing facility, respectively. Of the 105 isolates collected, 65 were C. jejuni, 31 were C. coli, and 9 were other Campylobacter spp. Using PCR, the C. jejuni isolates were further analyzed for virulence genes involved in colonization and survival (flaA, flaC, cadF, dnaJ, racR, cbrR), invasion (virB11, ciaB, pldA), protection against harsh conditions (sodB, htrA, clpA), toxin production (cdtA, cdtB, cdtC), siderophore transport (ceuE), and ganglioside mimicry (wlaN). In addition, the short variable region of the flaA locus (flaA SVR) was sequenced to determine the genetic diversity of the C. jejuni isolates. The flaA SVR diversity indices increased along the farm to carcass continuum. PCR-based analysis indicated a low prevalence of 5 genes involved in colonization (dnaJ, ciaB, pldA, racR, virB11). The results of this survey indicate that the prevalence of Campylobacter on organic retail carcasses is similar to prevalence reports of Campylobacter on conventional retail carcasses. However, the genetic diversity of the flaA SVR genotypes increased along the farm to carcass continuum that contrasted with conventional poultry studies. Campylobacter jejuni is a leading cause of foodborne illness with poultry and poultry products being leading sources of infection. Free-range and pasture flock chickens are becoming more popular; however, there is an inherent biosecurity risk that can increase the prevalence of foodborne pathogens in these flocks. This study aimed to determine sources

  7. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation.

    Directory of Open Access Journals (Sweden)

    Andrew E Scott

    2007-08-01

    Full Text Available Campylobacter jejuni is a leading cause of food-borne illness. Although a natural reservoir of the pathogen is domestic poultry, the degree of genomic diversity exhibited by the species limits the application of epidemiological methods to trace specific infection sources. Bacteriophage predation is a common burden placed upon C. jejuni populations in the avian gut, and we show that amongst C. jejuni that survive bacteriophage predation in broiler chickens are bacteriophage-resistant types that display clear evidence of genomic rearrangements. These rearrangements were identified as intra-genomic inversions between Mu-like prophage DNA sequences to invert genomic segments up to 590 kb in size, the equivalent of one-third of the genome. The resulting strains exhibit three clear phenotypes: resistance to infection by virulent bacteriophage, inefficient colonisation of the broiler chicken intestine, and the production of infectious bacteriophage CampMu. These genotypes were recovered from chickens in the presence of virulent bacteriophage but not in vitro. Reintroduction of these strains into chickens in the absence of bacteriophage results in further genomic rearrangements at the same locations, leading to reversion to bacteriophage sensitivity and colonisation proficiency. These findings indicate a previously unsuspected method by which C. jejuni can generate genomic diversity associated with selective phenotypes. Genomic instability of C. jejuni in the avian gut has been adopted as a mechanism to temporarily survive bacteriophage predation and subsequent competition for resources, and would suggest that C. jejuni exists in vivo as families of related meta-genomes generated to survive local environmental pressures.

  8. Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni.

    Science.gov (United States)

    Muraoka, Wayne T; Zhang, Qijing

    2011-03-01

    Campylobacter jejuni remains among the leading causes of bacterial food-borne illness. The current understanding of Campylobacter physiology suggests that it is asaccharolytic and is unable to catabolize exogenous carbohydrates. Contrary to this paradigm, we provide evidence for l-fucose utilization by C. jejuni. The fucose phenotype, shown in chemically defined medium, is strain specific and linked to an 11-open reading frame (ORF) plasticity region of the bacterial chromosome. By constructing a mutation in fucP (encoding a putative fucose permease), one of the genes in the plasticity region, we found that this locus is required for fucose utilization. Consistent with their function in fucose utilization, transcription of the genes in the locus is highly inducible by fucose. PCR screening revealed a broad distribution of this genetic locus in strains derived from various host species, and the presence of this locus was consistently associated with fucose utilization. Birds inoculated with the fucP mutant strain alone were colonized at a level comparable to that by the wild-type strain; however, in cocolonization experiments, the mutant was significantly outcompeted by the wild-type strain when birds were inoculated with a low dose (10⁵ CFU per bird). This advantage was not observed when birds were inoculated at a higher inoculum dose (10⁸ CFU per bird). These results demonstrated a previously undescribed substrate that supports growth of C. jejuni and identified the genetic locus associated with the utilization of this substrate. These findings substantially enhance our understanding of the metabolic repertoire of C. jejuni and the role of metabolic diversity in Campylobacter pathobiology.

  9. Development and application of a real-time polymerase chain reaction method for Campylobacter jejuni detection.

    Science.gov (United States)

    Zhang, Mao-Jun; Qiao, Bo; Xu, Xue-Bin; Zhang, Jian-Zhong

    2013-05-28

    To develop a real-time polymerase chain reaction (PCR) method to detect and quantify Campylobacter jejuni (C. jejuni) from stool specimens. Primers and a probe for real-time PCR were designed based on the specific DNA sequence of the hipO gene in C. jejuni. The specificity of the primers and probe were tested against a set of Campylobacter spp. and other enteric pathogens. The optimal PCR conditions were determined by testing a series of conditions with standard a C. jejuni template. The detection limits were obtained using purified DNA from bacterial culture and extracted DNA from the stool specimen. Two hundred and forty-two specimens were analyzed for the presence of C. jejuni by direct bacterial culture and real-time PCR. The optimal PCR system was determined using reference DNA templates, 1 × uracil-DNA glycosylase, 3.5 mmol/L MgCl2, 1.25 U platinum Taq polymerase, 0.4 mmol/L PCR nucleotide mix, 0.48 μmol/L of each primer, 0.2 μmol/L of probe and 2 μL of DNA template in a final volume of 25 μL. The PCR reaction was carried as follows: 95 °C for 4 min, followed by 45 cycles of 10 s at 95 °C and 30 s at 59 °C. The detection limit was 4.3 CFU/mL using purified DNA from bacterial culture and 10(3) CFU/g using DNA from stool specimens. Twenty (8.3%, 20/242) C. jejuni strains were isolated from bacterial culture, while 41 (16.9%, 41/242) samples were found to be positive by real-time PCR. DNA sequencing of the PCR product indicated the presence of C. jejuni in the specimen. One mixed infection of C. jejuni and Salmonella was detected in one specimen and the PCR test for this specimen was positive. The sensitivity of detection of C. jejuni from stool specimens was much higher using this PCR assay than using the direct culture method.

  10. Characterization of the biochemical properties of Campylobacter jejuni RNase III.

    Science.gov (United States)

    Haddad, Nabila; Saramago, Margarida; Matos, Rute G; Prévost, Hervé; Arraiano, Cecília M

    2013-11-25

    Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.

  11. Rapid identification of Campylobacter jejuni from poultry carcasses and slaughtering environment samples by real-time PCR.

    Science.gov (United States)

    Ivanova, Mirena; Singh, Randhir; Dharmasena, Muthu; Gong, Chao; Krastanov, Albert; Jiang, Xiuping

    2014-06-01

    The objective of this study was to develop a real-time PCR assay for rapid identification of Campylobacter jejuni and to apply the method in analyzing samples from poultry processing. A C. jejuni-specific primer set targeting a portion of the C. jejuni hippuricase gene was developed. The specificity of the newly designed primer pair was verified using 5 C. jejuni strains and 20 other bacterial strains. Sensitivity was determined to be as low as 1 genome copy per reaction. A total of 73 samples were collected at different sites along the processing line during 2 visits to a poultry slaughterhouse and were examined by direct plating onto modified charcoal cefoperazone deoxycholate agar or after enrichment in Bolton broth followed by plating on modified charcoal cefoperazone deoxycholate agar. The newly developed real-time PCR assay was used to identify the presumptive colonies as belonging to C. jejuni. A real-time PCR assay targeting 16S ribosomal RNA was also applied to determine Campylobacter spp. prevalence. Results from the real-time PCR analysis indicated considerable variability in Campylobacter contamination, with incidence rates of 72.7 and 27.6% for sampling days A and B, respectively. Campylobacter was isolated from 100% of prescalded and preeviscerated carcasses on sampling day A. In contrast, on sampling day B, the highest number of Campylobacter-positive carcasses was recovered after evisceration (60%). The chilling process significantly reduced (P Campylobacter population, but the percentage of positive samples on sampling day A increased to 80%. All samples collected from the processing environment, except scalding tank 3 and the prechiller and chiller tanks, were 100% positive on day A, whereas no campylobacters were isolated from machinery on sampling day B. Our results revealed the widespread of C. jejuni in poultry processing and proved that the newly developed real-time PCR assay is a simple, specific, and inexpensive method for rapid C. jejuni

  12. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork.

    Science.gov (United States)

    Yahara, Koji; Méric, Guillaume; Taylor, Aidan J; de Vries, Stefan P W; Murray, Susan; Pascoe, Ben; Mageiros, Leonardos; Torralbo, Alicia; Vidal, Ana; Ridley, Anne; Komukai, Sho; Wimalarathna, Helen; Cody, Alison J; Colles, Frances M; McCarthy, Noel; Harris, David; Bray, James E; Jolley, Keith A; Maiden, Martin C J; Bentley, Stephen D; Parkhill, Julian; Bayliss, Christopher D; Grant, Andrew; Maskell, Duncan; Didelot, Xavier; Kelly, David J; Sheppard, Samuel K

    2017-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. High frequency, spontaneous motA mutations in Campylobacter jejuni strain 81-176.

    Directory of Open Access Journals (Sweden)

    Krystle L Mohawk

    Full Text Available Campylobacter jejuni is an important cause of bacterial diarrhea worldwide. The pathogenesis of C. jejuni is poorly understood and complicated by phase variation of multiple surface structures including lipooligosaccharide, capsule, and flagellum. When C. jejuni strain 81-176 was plated on blood agar for single colonies, the presence of translucent, non-motile colonial variants was noted among the majority of opaque, motile colonies. High-throughput genomic sequencing of two flagellated translucent and two opaque variants as well as the parent strain revealed multiple genetic changes compared to the published genome. However, the only mutated open reading frame common between the two translucent variants and absent from the opaque variants and the parent was motA, encoding a flagellar motor protein. A total of 18 spontaneous motA mutations were found that mapped to four distinct sites in the gene, with only one class of mutation present in a phase variable region. This study exemplifies the mutative/adaptive properties of C. jejuni and demonstrates additional variability in C. jejuni beyond phase variation.

  14. Activation of the transcription factor NF-kappaB by Campylobacter jejuni.

    Science.gov (United States)

    Mellits, Kenneth H; Mullen, Joseph; Wand, Matthew; Armbruster, Gisèle; Patel, Amit; Connerton, Phillippa L; Skelly, Maeve; Connerton, Ian F

    2002-09-01

    Campylobacter jejuni is a food-borne pathogen responsible for infectious enterocolitis. The early-response transcription factor NF-kappa B triggers the expression of genes associated with cellular immune and inflammatory responses. Co-incubation of HeLa cells with viable C. jejuni leads to the activation of the transcription factor NF-kappa B as determined by specific induction of a cellular luciferase-based reporter. Boiled cell-free extracts of C. jejuni are also potent dose-dependent stimulators of NF-kappa B-dependent transcription, the levels of which can reach up to 1000-fold as compared with independent controls. Using both cultured HeLa cells and human colonic epithelial (HCA-7) cells, the activation of NF-kappa B by C. jejuni boiled extract has been monitored through the degradation of IKB alpha and DNA binding of the nuclear translocated p50/p65 heterodimer of NF-kappa B. These events are co-ordinated with elaboration of the pro-inflammatory cytokine interleukin-8. Fractionation of the boiled C. jejuni extract suggests that the majority of the bioactive component has a molecular mass of 3 kDa or less, which is insensitive to proteinase K treatment.

  15. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Sunyoung Hwang

    Full Text Available CosR (Campylobacter oxidative stress regulator; Cj0355c is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.

  16. Sialylation of Campylobacter jejuni lipo-oligosaccharides is associated with severe gastro-enteritis and reactive arthritis.

    Science.gov (United States)

    Mortensen, Ninell P; Kuijf, Mark L; Ang, C Wim; Schiellerup, Peter; Krogfelt, Karen A; Jacobs, Bart C; van Belkum, Alex; Endtz, Hubert Ph; Bergman, Mathijs P

    2009-10-01

    We used various genotyping methods to identify bacterial genetic markers for development of arthritic symptoms following Campylobacter enteritis. We genotyped a collection of population derived Campylobacter strains, with detailed information on clinical characteristics, including arthritic symptoms. Besides using whole genome screening methods, we focused on the lipo-oligosaccharide (LOS) gene locus in which marker genes for developing post-Campylobacter neurological disease are present. Patients with arthritic symptoms were more frequently infected with Campylobacter jejuni strains with a class A LOS locus. We also found that patients who were infected with a C. jejuni strain containing sialic acid-positive LOS (class A, B or C) more frequently had bloody diarrhoea and a longer duration of symptoms. Furthermore, the IgM antibody response against Campylobacter was stronger in patients with a sialic acid containing LOS. Ganglioside auto-antibodies were observed in a small number of patients following infection with a class C strain. We conclude that sialylation of C. jejuni LOS is not only a risk factor for development of post-infectious symptoms, but is also associated with increased severity of enteric disease.

  17. A PCR-RFLP assay for the detection and differentiation of Campylobacter jejuni, C. coli, C. fetus, C. hyointestinalis, C. lari, C. helveticus and C. upsaliensis.

    Science.gov (United States)

    Kamei, Kazumasa; Asakura, Masahiro; Somroop, Srinuan; Hatanaka, Noritoshi; Hinenoya, Atsushi; Nagita, Akira; Misawa, Naoaki; Matsuda, Motoo; Nakagawa, Shinsaku; Yamasaki, Shinji

    2014-05-01

    Although Campylobacter jejuni and Campylobacter coli are the most common bacterial causes of human gastrointestinal diseases, other Campylobacter species are also involved in human and animal infections. In this study, we developed a cytolethal distending toxin (cdt) gene-based PCR-RFLP assay for the detection and differentiation of C. jejuni, C. coli, C. fetus, C. hyointestinalis, C. lari, C. helveticus and C. upsaliensis. Previously designed common primers, which can amplify the cdtB gene of C. jejuni, C. coli and C. fetus, were used for detecting seven Campylobacter species and differentiating between them by restriction digestion. The PCR-RFLP assay was validated with 277 strains, including 35 C. jejuni, 19 C. coli, 20 C. fetus, 24 C. hyointestinalis, 13 C. lari, 2 C. helveticus, 22 C. upsaliensis, 3 other Campylobacter spp. and 17 other species associated with human diseases. Sensitivity and specificity of the PCR-RFLP assay were 100 % except for C. hyointestinalis (88 % sensitivity). Furthermore, the PCR-RFLP assay successfully detected and differentiated C. jejuni, C. coli and C. fetus in clinical and animal samples. The results indicate that the PCR-RFLP assay is useful for the detection and differentiation of seven Campylobacter species important for human and animal diseases.

  18. Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape.

    Science.gov (United States)

    Esson, Diane; Gupta, Srishti; Bailey, David; Wigley, Paul; Wedley, Amy; Mather, Alison E; Méric, Guillaume; Mastroeni, Pietro; Sheppard, Samuel K; Thomson, Nicholas R; Parkhill, Julian; Maskell, Duncan J; Christie, Graham; Grant, Andrew J

    2017-03-01

    Campylobacter jejuni is the leading cause of bacterial food borne illness. While helical cell shape is considered important for C. jejuni pathogenesis, this bacterium is capable of adopting other morphologies. To better understand how helical-shaped C. jejuni maintain their shape and thus any associated colonisation, pathogenicity or other advantage, it is first important to identify the genes and proteins involved. So far, two peptidoglycan modifying enzymes Pgp1 and Pgp2 have been shown to be required for C. jejuni helical cell shape. We performed a visual screen of ∼2000 transposon mutants of C. jejuni for cell shape mutants. Whole genome sequence data of the mutants with altered cell shape, directed mutants, wild type stocks and isolated helical and rod-shaped 'wild type' C. jejuni, identified a number of different mutations in pgp1 and pgp2, which result in a change in helical to rod bacterial cell shape. We also identified an isolate with a loss of curvature. In this study, we have identified the genomic change in this isolate, and found that targeted deletion of the gene with the change resulted in bacteria with loss of curvature. Helical cell shape was restored by supplying the gene in trans. We examined the effect of loss of the gene on bacterial motility, adhesion and invasion of tissue culture cells and chicken colonisation, as well as the effect on the muropeptide profile of the peptidoglycan sacculus. Our work identifies another factor involved in helical cell shape. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. [Evaluation of antigenic properties of Campylobacter jejuni and Campylobacter coli proteins in a western-immunoblot].

    Science.gov (United States)

    Rokosz, Natalia; Waldemar, Rastawicki; Jagielski, Marek

    2008-01-01

    Campylobacter jejuni and Campylobacter coli are the most common bacterial cause for acute diarrheal illnesses in developed countries. The aim of this study was to evaluate the antigenic properties of Campylobacterjejuni and Campylobacter coli proteins in western-blot assay. Whole-cell components of Campulobacter jejuni and Campylobacter coli were separated by sodium dodecyl sulfate-polyacrylamide gel electroforesis. Using this method we detected in all seven C. jejuni strains 21 peptides migrating between 180-29 kDa. All three Ccoli strains had a 17 bands migrating with the same molecular weight range. Proteins were transferred electrophoretically to nitrocellulose paper for immunoblotting experiments. The 74 kDa protein reacted strongly in all classes ofimmmunoglobulin with all tested human serum samples. We observed that this protein reacted also with human immunoglobulins for Salmonella and Yersinia sp. This cross-reaction observed for this protein could give false positive results in routine diagnosis of C. jejuni infections. The proteins with molecular weight of: 92, 62, 56, 52, 45-43, 29 kDa were most recognized in the 20 human serum samples. The other proteins of Cljejuni and C. coli, particularly in the 68-50 kDa and 45-31 kDa regions, were recognized occasionally and the response to these in reconvalescent sera was usually weak. The result of this study showed that the proteins with molecular weight: 92, 62, 56, 52, 45-43 and 29 kDa can be use in routine serological diagnostic of campylobacteriosis.

  20. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments

    Science.gov (United States)

    Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  1. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    Science.gov (United States)

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-02

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Use of pcr-rflp of the fla a gene for detection and subtyping of Campylobacter jejuni strains Potentially related to Guillain-barré syndrome, isolated from humans and animals.

    Science.gov (United States)

    Scarcelli, E; Piatti, R M; Harakava, R; Miyashiro, S; Campos, F R; Souza, M C A; Cardoso, M V; Teixeira, S R; Genovez, M E

    2009-10-01

    The objectives of the present study were the subtyping of Campylobacter jejuni subsp. jejuni strains obtained from humans and different animal species using PCR-RFLP, and the detection, by means of the same technique, of strains related to serotype PEN O19:LIO 7, the main C. jejuni serotype linked to Guillain-Barré Syndrome (GBS). Seventy C. jejuni strains isolated from human feces (n=33), primates (n=15), dogs (n=5), swine (n=2), bovines (n=1), abortion material from goats (n=2) and poultry carcasses (n=12), all collected in the state of São Paulo, were subtyped by means of PCR-RFLP of fla A gene, using restriction endonucleases Hae III, Afa I and Mbo I. Seven subtypes were observed when using the enzyme Hae III; eight when using Mbo I; and seven when using Afa I. The combination of the three endonucleases led to 16 fla-RFLP subtypes, from which ten subtypes shared strains of human and animal origin. From these, seven subtypes were observed in human and broiler strains. In eight subtypes, the other animal species shared patterns with human strains. It was inferred that, besides broilers, swine, goats, dogs and primates may be sources of infection for human in São Paulo. PCR-RFLP is a highly discriminatory technique that may be applied to molecular epidemiology studies of samples from different origins. Besides, the study also enabled the detection of two human strains and two primate strains related to serotype PEN O19: LIO 7.

  3. Myocarditis related to Campylobacter jejuni infection: A case report

    Directory of Open Access Journals (Sweden)

    Lee Christine H

    2003-07-01

    Full Text Available Abstract Background Myocarditis can develop as a complication of various infections and is most commonly linked to enterovirus infections. Myocarditis is rarely associated with bacterial infections; salmonellosis and shigellosis have been the most frequently reported bacterial cause. We report a case of myocarditis related to Campylobacter jejuni enteritis. Case Presentation A 30-year-old previously healthy man presented with a history of prolonged chest pain radiating to the jaw and the left arm. Five days prior to the onset of chest pain, he developed bloody diarrhea, fever and chills. Creatine kinase (CK and CK-MB were elevated to 289 U/L and 28.7 μg/L. Troponin I was 30.2 μg/L. The electrocardiogram (ECG showed T wave inversion in the lateral and inferior leads. The chest pain resolved within 24 hours of admission. The patient had a completely normal ECG stress test. The patient was initiated on ciprofloxacin 500 mg po bid when Campylobacter jejuni was isolated from the stool. Diarrhea resolved within 48 hours of initiation of ciprofloxacin. The diagnosis of Campylobacter enteritis and related myocarditis was made based on the clinical and laboratory results and the patient was discharged from the hospital in stable condition. Conclusion Myocarditis can be a rare but severe complication of infectious disease and should be considered as a diagnosis in patients presenting with chest pain and elevated cardiac enzymes in the absence of underlying coronary disease. It can lead to cardiomyopathy and congestive heart failure. There are only a few reported cases of myocarditis associated with Campylobacter infection.

  4. MLST genotypes of Campylobacter jejuni isolated from broiler products, dairy cattle and human campylobacteriosis cases in Lithuania.

    Science.gov (United States)

    Ramonaite, Sigita; Tamuleviciene, Egle; Alter, Thomas; Kasnauskyte, Neringa; Malakauskas, Mindaugas

    2017-06-15

    Campylobacter (C.) jejuni is the leading cause of human campylobacteriosis worldwide. We performed a molecular epidemiological study to investigate the genetic relationship among C. jejuni strains isolated from human diarrhoeal patients, broiler products and dairy cattle in Lithuania. The C. jejuni isolates from human clinical cases, dairy cattle and broiler products were genotyped using multilocus sequence typing (MLST). Allele numbers for each housekeeping gene, sequence type (ST), and clonal complex (CC) were assigned by submitting the DNA sequences to the C. jejuni MLST database ( http://pubmlst.org/campylobacter ). Based on the obtained sequence data of the housekeeping genes a phylogenetic analysis of the strains was performed and a minimum spanning tree (MST) was calculated. Among the 262 C. jejuni strains (consisting of 43 strains isolated from dairy cattle, 102 strains isolated from broiler products and 117 clinical human C. jejuni strains), 82 different MLST sequence types and 22 clonal complexes were identified. Clonal complexes CC21 and CC353 predominated among the C. jejuni strains. On ST-level, five sequence types (ST-5, ST-21, ST-50, ST-464 and ST-6410) were dominating and these five STs accounted for 35.9% (n = 94) of our isolates. In addition, 51 (19.5%) C. jejuni strains representing 27 (32.9%) STs were reported for the first time in the PubMLST database ( http://pubmlst.org/campylobacter ). The highest Czekanowski index or proportional similarity index (PSI) was calculated for C. jejuni strains isolated from human campylobacteriosis cases and broiler products (PSI = 0.32) suggesting a strong link between broiler strains and human cases. The PSI of dairy cattle and human samples was lower (PSI = 0.11), suggesting a weaker link between bovine strains and human cases. The calculated Simpson's index of all C. jejuni isolates showed a high genetic diversity (D = 0.96). Our results suggest that broiler products are the most important source of

  5. Molecular Characterization, Antimicrobial Resistance and Caco-2 Cell Invasion Potential of Campylobacter jejuni/coli from Young Children with Diarrhea.

    Science.gov (United States)

    Pan, Haijian; Ge, Yanling; Xu, Hao; Zhang, Jianmin; Kuang, Dai; Yang, Xiaowei; Su, Xudong; Huang, Zheng; Shi, Xianming; Xu, Xuebin; Meng, Jianghong

    2016-03-01

    Campylobacter is a major cause of bacterial gastroenteritis worldwide. Young children represent a particular age group affected by Campylobacter infection because of their limited diets and weak immune systems. In this study, a total of 110 Campylobacter (80 Campylobacter jejuni and 30 Campylobacter coli) isolated from children younger than 5 years of age with diarrhea in Shanghai, China in 2011 were examined for their genetic relationship and antimicrobial susceptibility. The presence of virulence genes and its association with invasion potential in Caco-2 cell were also determined. Multilocus sequence typing revealed 62 sequence types (STs) under 14 clonal complexes from C. jejuni and 15 STs under 2 clonal complexes from C. coli. High resistance rates among the 110 isolates were observed to nalidixic acid (88.2%), ciprofloxacin (87.3%) and tetracycline (87.3%), followed by ampicillin (30.9%), gentamicin (28.2%), clindamycin (21.8%), erythromycin (21.8%) and chloramphenicol (8.2%). Compared with that of C. jejuni (32.5%), a larger proportion of C. coli (83.3%) were resistant to multiple antimicrobials, including 16 isolates of ST-828 complex resistant to 6 antimicrobials: ciprofloxacin, clindamycin, erythromycin, gentamicin, nalidixic acid and tetracycline. Furthermore, 57 Campylobacter isolates were selected based on their distinct STs and the presence of virulence genes to determine their abilities to adhere to and invade Caco-2 cells. The level of invasion varied widely among isolates and had relatively weak correlation with the genotype data. Our findings provided baseline data on Campylobacter among young children. Active surveillance of Campylobacter is needed to better understand the epidemiology and antimicrobial resistance trends of this significant pathogen to help control and protect young children from such infections.

  6. [Microbiological diagnosis of infections caused by Campylobacter jejuni and Campylobacter coli in humans].

    Science.gov (United States)

    Rokosz, Natalia; Rastawicki, Waldemar; Wołkowicz, Tomasz

    2014-01-22

    Campylobacter jejuni and Campylobacter coli are Gram-negative, microaerophilic bacteria which are worldwide in distribution, causing a zoonotic disease in humans called campylobacteriosis. These infections are mainly caused by eating contaminated food products, most often improperly prepared poultry meat. Campylobacteriosis usually takes the form of gastroenteritis, or inflammation of the intestines, and the characteristic symptoms are watery-mucous diarrhea often with the presence of blood in stool, nausea, vomiting, abdominal pain and fever. The epidemiological data suggest that in Europe, as well as in North America, bacteria of the genus Campylobacter, especially C. jejuni and C. coli, are the most commonly isolated pathogens in infections of the gastrointestinal tract in humans. Epidemiological data indicate that these organisms are a much more common cause of acute diarrhea, mostly in young children, than Salmonella and Yersinia. The lack of specific symptoms makes the diagnosis of campylobacteriosis necessary to carry out specialized microbiological diagnostics. Because so far these studies are performed in our country only in a few laboratories, the overwhelming number of cases of campylobacteriosis are not recorded in Polish epidemiological statistics. The purpose of this paper is to discuss issues related to the microbiological diagnosis of infections caused by C. jejuni and C. coli. It also describes the basic epidemiological and clinical data, as well as current treatment of campylobacteriosis.

  7. Microbiological diagnosis of infections caused by Campylobacter jejuni and Campylobacter coli in humans

    Directory of Open Access Journals (Sweden)

    Natalia Rokosz

    2014-01-01

    Full Text Available Campylobacter jejuni and Campylobacter coli are Gram-negative, microaerophilic bacteria which are worldwide in distribution, causing a zoonotic disease in humans called campylobacteriosis. These infections are mainly caused by eating contaminated food products, most often improperly prepared poultry meat. Campylobacteriosis usually takes the form of gastroenteritis, or inflammation of the intestines, and the characteristic symptoms are watery-mucous diarrhea often with the presence of blood in stool, nausea, vomiting, abdominal pain and fever. The epidemiological data suggest that in Europe, as well as in North America, bacteria of the genus Campylobacter, especially C. jejuni and C. coli, are the most commonly isolated pathogens in infections of the gastrointestinal tract in humans. Epidemiological data indicate that these organisms are a much more common cause of acute diarrhea, mostly in young children, than Salmonella and Yersinia. The lack of specific symptoms makes the diagnosis of campylobacteriosis necessary to carry out specialized microbiological diagnostics. Because so far these studies are performed in our country only in a few laboratories, the overwhelming number of cases of campylobacteriosis are not recorded in Polish epidemiological statistics. The purpose of this paper is to discuss issues related to the microbiological diagnosis of infections caused by C. jejuni and C. coli. It also describes the basic epidemiological and clinical data, as well as current treatment of campylobacteriosis.

  8. Relationship between Presence of Anti-Campylobacter FliD Protein Antibodies and Campylobacter jejuni Isolation from Broiler Chickens

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis worldwide. Poultry products are regarded as a major source of this bacterium for human infection. Although this bacterium is a commensal in chicken cecal microbiome, Campylobacte...

  9. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    Science.gov (United States)

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  10. Antibiotic resistance modulation and modes of action of (--α-pinene in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Jasna Kovač

    Full Text Available The aim of the study was to investigate the mode of action of (--α-pinene in terms of its modulation of antibiotic resistance in Campylobacter jejuni. Broth microdilution and ethidium bromide accumulation assays were used to evaluate the (--α-pinene antimicrobial activity, modulation of antimicrobial resistance, and inhibition of antimicrobial efflux. The target antimicrobial efflux systems were identified using an insertion mutagenesis approach, and C. jejuni adaptation to (--α-pinene was evaluated using DNA microarrays. Knock-out mutants of the key up-regulated transcriptional regulators hspR and hrcA were constructed to investigate their roles in C. jejuni adaptation to several stress factors, including osmolytes, and pH, using Biolog phenotypical microarrays. Our data demonstrate that (--α-pinene efficiently modulates antibiotic resistance in C. jejuni by decreasing the minimum inhibitory concentrations of ciprofloxacin, erythromycin and triclosan by up to 512-fold. Furthermore, (--α-pinene promotes increased expression of cmeABC and another putative antimicrobial efflux gene, Cj1687. The ethidium bromide accumulation was greater in the wild-type strain than in the antimicrobial efflux mutant strains, which indicates that these antimicrobial efflux systems are a target of action of (--α-pinene. Additionally, (--α-pinene decreases membrane integrity, which suggests that enhanced microbial influx is a secondary mode of action of (--α-pinene. Transcriptomic analysis indicated that (--α-pinene disrupts multiple metabolic pathways, and particularly those involved in heat-shock responses. Thus, (--α-pinene has significant activity in the modulation of antibiotic resistance in C. jejuni, which appears to be mediated by multiple mechanisms that include inhibition of microbial efflux, decreased membrane integrity, and metabolic disruption. These data warrant further studies on (--α-pinene to develop its use in the control of antibiotic

  11. Enteritis caused by Campylobacter jejuni followed by acute motor axonal neuropathy: a case report

    Directory of Open Access Journals (Sweden)

    Babić Tatjana

    2010-03-01

    Full Text Available Abstract Introduction Campylobacter species represent the main cause of bacterial diarrhea in developed countries and one of the most frequent causes of enterocolitis in developing ones. In some patients, Campylobacter jejuni infection of the gastrointestinal tract has been observed as an antecedent illness of acute motor axonal neuropathy, a variant of Guillain-Barré syndrome. Case presentation We present a case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni, biotype II, heat stable serotype O:19. A 46-year-old Caucasian man developed acute motor neuropathy 10 days after mild intestinal infection. The proximal and distal muscle weakness of his upper and lower extremities was associated with serum antibodies to Campylobacter jejuni and antibodies to ganglioside GM1. The electromyographic signs of neuropathic muscle action potentials with almost normal nerve conduction velocities indicated axonal neuropathy. Our patient's clinical and electrophysiological features fulfilled criteria for the diagnosis of an acute motor axonal neuropathy, a subtype of Guillain-Barré syndrome. Conclusion As this is the first case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni reported from the Balkan area, the present findings indicate the need for systematic studies and further clinical, epidemiological and microbiological investigations on the prevalence of Campylobacter jejuni and its heat stable serotypes in the etiology of Guillain-Barré syndrome and other post-infectious sequelae.

  12. Enteritis caused by Campylobacter jejuni followed by acute motor axonal neuropathy: a case report.

    Science.gov (United States)

    Miljković-Selimović, Biljana; Lavrnić, Dragana; Morić, Olga; Ng, Lai-King; Price, Lawrence; Suturkova, Ljubica; Kocic, Branislava; Babić, Tatjana; Ristić, Ljiljana; Apostolski, Slobodan

    2010-03-31

    Campylobacter species represent the main cause of bacterial diarrhea in developed countries and one of the most frequent causes of enterocolitis in developing ones. In some patients, Campylobacter jejuni infection of the gastrointestinal tract has been observed as an antecedent illness of acute motor axonal neuropathy, a variant of Guillain-Barré syndrome. We present a case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni, biotype II, heat stable serotype O:19. A 46-year-old Caucasian man developed acute motor neuropathy 10 days after mild intestinal infection. The proximal and distal muscle weakness of his upper and lower extremities was associated with serum antibodies to Campylobacter jejuni and antibodies to ganglioside GM1. The electromyographic signs of neuropathic muscle action potentials with almost normal nerve conduction velocities indicated axonal neuropathy. Our patient's clinical and electrophysiological features fulfilled criteria for the diagnosis of an acute motor axonal neuropathy, a subtype of Guillain-Barré syndrome. As this is the first case of acute motor axonal neuropathy following infection with Campylobacter jejuni subspecies jejuni reported from the Balkan area, the present findings indicate the need for systematic studies and further clinical, epidemiological and microbiological investigations on the prevalence of Campylobacter jejuni and its heat stable serotypes in the etiology of Guillain-Barré syndrome and other post-infectious sequelae.

  13. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...... to available epidemiological data. We conclude that this amplified fragment length polymorphism fingerprinting method may be a highly effective tool for molecular epidemiological studies of Campylobacter spp....

  14. Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Mughini-Gras, Lapo; Penny, Christian; Ragimbeau, Catherine; Schets, Franciska M; Blaak, Hetty; Duim, Birgitta; Wagenaar, Jaap A; de Boer, Albert; Cauchie, Henry-Michel; Mossong, Joel; van Pelt, Wilfrid

    2016-09-15

    Campylobacter is the most common causative agent of human bacterial gastroenteritis and is frequently found in surface water, where it indicates recent contamination with animal faeces, sewage effluent, and agricultural run-off. The contribution of different animal reservoirs to surface water contamination with Campylobacter is largely unknown. In the Netherlands, the massive poultry culling to control the 2003 avian influenza epidemic coincided with a 44-50% reduction in human campylobacteriosis cases in the culling areas, suggesting substantial environment-mediated spread of poultry-borne Campylobacter. We inferred the origin of surface water Campylobacter jejuni and Campylobacter coli strains in Luxembourg and the Netherlands, as defined by multilocus sequence typing, by comparison to strains from poultry, pigs, ruminants, and wild birds, using the asymmetric island model for source attribution. Most Luxembourgish water strains were attributed to wild birds (61.0%), followed by poultry (18.8%), ruminants (15.9%), and pigs (4.3%); whereas the Dutch water strains were mainly attributed to poultry (51.7%), wild birds (37.3%), ruminants (9.8%), and pigs (1.2%). Attributions varied over seasons and surface water types, and geographical variation in the relative contribution of poultry correlated with the magnitude of poultry production at either the national or provincial level, suggesting that environmental dissemination of Campylobacter from poultry farms and slaughterhouses can be substantial in poultry-rich regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion.

    Science.gov (United States)

    Llarena, Ann-Katrin; Zhang, Ji; Vehkala, Minna; Välimäki, Niko; Hakkinen, Marjaana; Hänninen, Marja-Liisa; Roasto, Mati; Mäesaar, Mihkel; Taboada, Eduardo; Barker, Dillon; Garofolo, Giuliano; Cammà, Cesare; Di Giannatale, Elisabetta; Corander, Jukka; Rossi, Mirko

    2016-10-01

    The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni.

  16. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in food, using multiplex real-time PCR.

    Science.gov (United States)

    Mayr, A M; Lick, S; Bauer, J; Thärigen, D; Busch, U; Huber, I

    2010-02-01

    A multiplex real-time PCR assay based on four differently labeled TaqMan probes for detection and differentiation of the thermophilic Campylobacter species C. jejuni, C. coli, and C. lari was established and validated in food products. This assay combines two previously published PCR assays for C. jejuni and C. coli with a newly developed detection assay for C. lari and an internal amplification control system. The selectivity of the method was determined by analyzing 70 Campylobacter strains and 43 strains of other bacteria. The sensitivity was 50 fg of C. jejuni and C. lari DNA and 500 fg of C. coli DNA per PCR. It was possible to detect 1 to 10 CFU/25 g of food before preenrichment of all three species. More than 400 samples of various foods (poultry, seafood, and meat) were analyzed after 48 h of preenrichment parallel to the conventional diagnostic method of culture and biochemical identification. Using the established real-time PCR assay, 55.4% of the samples were recognized as positive for thermophilic Campylobacter species, whereas with the conventional method only 40.3% of the samples were positive. The real-time PCR assay also detected contaminations with two different Campylobacter species in 32.6% of the analyzed poultry samples, a finding of epidemiological interest. Compared with the original PCR method, which was established for the differentiation of bacterial isolates of C. jejuni and C. coli, this new method also detects and distinguishes C. lari, was validated as an analytical tool for food analysis, and provides reliable and extensive results within 2 days.

  17. Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni.

    Science.gov (United States)

    Kovács, Judit K; Felső, Péter; Makszin, Lilla; Pápai, Zoltán; Horváth, Györgyi; Ábrahám, Hajnalka; Palkovics, Tamás; Böszörményi, Andrea; Emődy, Levente; Schneider, György

    2016-10-15

    Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni IMPORTANCE: This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni.

    Science.gov (United States)

    Palyada, Kiran; Sun, Yi-Qian; Flint, Annika; Butcher, James; Naikare, Hemant; Stintzi, Alain

    2009-10-18

    During gut colonization, the enteric pathogen Campylobacter jejuni must surmount the toxic effects of reactive oxygen species produced by its own metabolism, the host immune system, and intestinal microflora. Elucidation of C. jejuni oxidative stress defense mechanisms is critical for understanding Campylobacter pathophysiology. The mechanisms of oxidative stress defense in C. jejuni were characterized by transcriptional profiling and phenotypic analysis of wild-type and mutant strains. To define the regulon of the peroxide-sensing regulator, PerR, we constructed an isogenic DeltaperR mutant and compared its transcriptome profile with that of the wild-type strain. Transcriptome profiling identified 104 genes that belonged to the PerR regulon. PerR appears to regulate gene expression in a manner that both depends on and is independent of the presence of iron and/or H2O2. Mutation of perR significantly reduced motility. A phenotypic analysis using the chick colonization model showed that the DeltaperR mutant exhibited attenuated colonization behavior. An analysis of changes in the transcriptome induced by exposure to H2O2, cumene hydroperoxide, or menadione revealed differential expression of genes belonging to a variety of biological pathways, including classical oxidative stress defense systems, heat shock response, DNA repair and metabolism, fatty acid biosynthesis, and multidrug efflux pumps. Mutagenic and phenotypic studies of the superoxide dismutase SodB, the alkyl-hydroxyperoxidase AhpC, and the catalase KatA, revealed a role for these proteins in oxidative stress defense and chick gut colonization. This study reveals an interplay between PerR, Fur, iron metabolism and oxidative stress defense, and highlights the role of these elements in C. jejuni colonization of the chick cecum and/or subsequent survival.

  19. Association of Campylobacter jejuni infection with childhood Guillain-Barré syndrome: a case-control study.

    Science.gov (United States)

    Kalra, Veena; Chaudhry, Rama; Dua, Tarun; Dhawan, Benu; Sahu, Jitendra K; Mridula, B

    2009-06-01

    A prospective case-control study was conducted to determine the association between Campylobacter jejuni infection and childhood Guillain-Barré syndrome in the Indian population. We found evidence of recent Campylobacter jejuni infection in 27.7% of patients with Guillain-Barré syndrome, as compared with 2.3% in neurological controls (P = .003) and 2.3% in nonneurological controls (P = .003). Of the 15 patients with Campylobacter jejuni infection, 8 (53.3%) reported having had diarrhea within 12 weeks before the onset of the neurologic illness. Our results suggest association between recent Campylobacter jejuni infection and bulbar weakness (P = .043). No statistical difference was observed between the Campylobacter jejuni positive and negative groups with respect to age, other clinical features, albuminocytological dissociation, and residual paralysis at follow-up. It is concluded that subclinical Campylobacter jejuni infection is an important antecedent illness in childhood Guillain-Barré syndrome in the Indian population.

  20. Evaluation of fecal calprotectin in Campylobacter concisus and Campylobacter jejuni/coli gastroenteritis.

    Science.gov (United States)

    Nielsen, Hans Linde; Engberg, Jørgen; Ejlertsen, Tove; Nielsen, Henrik

    2013-05-01

    Calprotectin (CP) is a calcium-binding cytosolic neutrophil protein and the concentration in feces reflects the migration of neutrophils into the gut lumen. Testing for fecal CP (f-CP) in patients with negative cultures for enteric pathogens is widely accepted as a useful screening tool for identifying patients who are most likely to benefit from endoscopy for suspected inflammatory bowel disease (IBD) with the assumption that a negative f-CP is compatible with a functional disorder. Campylobacter concisus has recently been reported to have a high incidence in the Danish population almost equal to Campylobacter jejuni and Campylobacter coli and has been reported to cause prolonged watery diarrhea. However, isolation of C. concisus from feces requires the filter method in a hydrogen-enriched microaerobic atmosphere, which is not commonly used in the laboratory, and the diagnosis may consequently be missed. The aim of this study was to evaluate the f-CP levels, as a marker for the intestinal inflammation in C. jejuni/coli- and C. concisus-infected patients. The authors found a high concentration of f-CP (median 631: IQR 221-1274) among 140 patients with C. jejuni/coli infection, whereas the f-CP level among 99 C. concisus-infected patients was significantly lower (median 53: IQR 20-169). The data correlate to the severe inflammatory gastroenteritis seen in patients infected with C. jejuni/coli, whereas C. concisus-infected patients have a much lower intestinal inflammation which could be compared with viral gastroenteritis. Nevertheless, clinicians should be aware of C. concisus infection, especially in patients with prolonged mild diarrhea, in the differential diagnosis to IBD.

  1. Important role of a putative lytic transglycosylase Cj0843c in β-lactam resistance in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Ximin eZeng

    2015-11-01

    Full Text Available Beta-lactam antibiotics are an important class of antibiotics for treating bacterial infections. Despite prevalent β-lactam resistance in Campylobacter jejuni, the leading bacterial cause of human diarrhea in developed countries, molecular mechanism of β-lactam resistance in C. jejuni is still largely unknown. In this study, C. jejuni 81-176 was used for random transposon mutagenesis. Screening of a 2,800-mutant library identified 22 mutants with increased susceptibility to ampicillin. Of these mutants, two mutants contains mutations in Cj0843c (a putative lytic transglycosylase gene and in its upstream gene Cj0844c, respectively. Molecular manipulation in different strains demonstrated that Cj0843c contributes to both intrinsic and acquired β-lactam resistance in C. jejuni. Consistent with this finding, inactivation of Cj0843c also dramatically reduced β-lactamase activity. Genomic examination and PCR analysis showed Cj0843c is widely distributed in C. jejuni. The Cj0843 was localized in the periplasm as demonstrated by immunoblotting using specific antibodies. Turbidimetric assay further demonstrated the capability of the purified Cj0843c to hydrolyze cell walls. Inactivation of Cj0843c also significantly reduced C. jejuni colonization in the intestine. Together, this study identifies a mechanism of β-lactam resistance in C. jejuni and provides insights into the role of cell wall metabolism in regulating β-lactamase activity.

  2. Dos casos de Enteritis con bacteriemia por Campylobacter jejuni Two cases of enteritis with bacteremia due to Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noemí Borda

    2006-10-01

    Full Text Available Campylobacter es un importante agente causante de enfermedad en el ser humano en nuestro medio. Los casos de bacteriemia ocurren principalmente en pacientes inmunosuprimidos y son debidos frecuentemente a C. fetus. Sin embargo la bacteriemia es un episodio que también se ha observado en pacientes con enteritis por C. jejuni. Referimos dos pacientes con enteritis grave y bacteriemia, ambos con enfermedades concomitantes compatibles con inmunodepresión: uno con síndrome nefrótico de larga data y otro con hepatopatía crónica con cirrosis. Destacamos que los dos casos presentaron hematemesis y uno de ellos, enterorragia. Sugerimos prestar atención a la coloración de Gram durante el subcultivo de los caldos con hemocultivos, en busca de formas características de esta especie, y en ese caso emplear medios de cultivo en microaerofilia a 37 y 42 °C.Campylobacter is an important agent of illness in human beings. Bacteremia occurs principally in the immunocompromissed host and is frequently due to C. fetus. Nevertheless bacteremia also has been observed in patients with enteritis due to C. jejuni. We refer two cases of patients with severe enteritis and bacteremia, both of them with immunosupressive concomitant diseases such as nephrotic syndrome and chronic cirrotic hepatopathy. Both patients presented hemathemesis.

  3. Detection and genotypic differentiation of Campylobacter jejuni and Campylobacter coli strains from laying hens by multiplex PCR and fla-typing.

    Science.gov (United States)

    Müller, Wolfgang; Böhland, Corinna; Methner, Ulrich

    2011-12-01

    In total, 26 Campylobacter (C.) strains, isolated from liver, spleen, caecal or jejunal content of laying hens from different flocks were examined. In these flocks a drop in egg production, an increasing mortality and livers with whitish-grey lesions as post-mortem finding were observed. Suspected Campylobacter colonies were differentiated using a modified m-PCR in 13 Campylobacter jejuni and 13 Campylobacter coli strains. All isolates were characterised by typing of the flaA and flaB gene each with two restriction enzymes. To compare the four different profiles for all strains an artificial "fla-type" was generated. Different and identical fla-types of C. jejuni and C. coli were recovered from both intestinal and extra-intestinal organs of the laying hens and even from individual birds. One significant observation is that some fla-types of C. jejuni or C. coli were detected in intestinal and systemic sites but not all fla-types of both species appeared to be equally able to invade internal organs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Production of a Monoclonal Antibody Specific for the Major Outer Membrane Protein of Campylobacter jejuni and Characterization of the Epitope▿

    OpenAIRE

    Qian, Hongliang; Pang, Ervinna; Du, Qingyun; Chang, Jason; Dong, Jin; Toh, Say Ling; Ng, Fook Kheong; Tan, Ai Ling; Kwang, Jimmy

    2007-01-01

    Campylobacter species are important enteric pathogens causing disease in humans and animals. There is a lack of a good immunological test that can be used routinely to separate Campylobacter jejuni from other Campylobacter species. We produced monoclonal antibodies (MAbs) directed against the major outer membrane protein (MOMP) of C. jejuni using recombinant MOMP as the antigen. One MAb, designated MAb5C4 and of the immunoglobulin G1 isotype, was found to be potentially specific for C. jejuni...

  5. Divergent distribution of the sensor kinase CosS in non-thermotolerant campylobacter species and its functional incompatibility with the response regulator CosR of Campylobacter jejuni.

    Science.gov (United States)

    Hwang, Sunyoung; Miller, William G; Ryu, Sangryeol; Jeon, Byeonghwa

    2014-01-01

    Two-component signal transduction systems are commonly composed of a sensor histidine kinase and a cognate response regulator, modulating gene expression in response to environmental changes through a phosphorylation-dependent process. CosR is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a major foodborne pathogenic species causing human gastroenteritis. Although CosR is a response regulator, its cognate sensor kinase has not been identified in C. jejuni. In this study, DNA sequence analysis of the cosR flanking regions revealed that a gene encoding a putative sensor kinase, which we named cosS, is prevalent in non-thermotolerant Campylobacter spp., but not in thermotolerant campylobacters. Phosphorylation assays indicated that C. fetus CosS rapidly autophosphorylates and then phosphorylates C. fetus CosR, suggesting that the CosRS system constitutes a paired two-component signal transduction system in C. fetus. However, C. fetus CosS does not phosphorylate C. jejuni CosR, suggesting that CosR may have different regulatory cascades between thermotolerant and non-thermotolerant Campylobacter species. Comparison of CosR homolog amino acid sequences showed that the conserved phosphorylation residue (D51), which is present in all non-thermotolerant Campylobacter spp., is absent from the CosR homologs of thermotolerant Campylobacter species. However, C. jejuni CosR was not phosphorylated by C. fetus CosS even after site-directed mutagenesis of N51D, implying that C. jejuni CosR may possibly function phosphorylation-independently. In addition, the results of cosS mutational analysis indicated that CosS is not associated with the temperature dependence of the Campylobacter spp. despite its unique divergent distribution only in non-thermotolerant campylobacters. The findings in this study strongly suggest that thermotolerant and non-thermotolerant Campylobacter spp. have different signal sensing mechanisms associated with the Cos

  6. Comparison of epidemiologically linked Campylobacter jejuni isolated from human and poultry sources.

    Science.gov (United States)

    Lajhar, S A; Jennison, A V; Patel, B; Duffy, L L

    2015-12-01

    Campylobacter jejuni is responsible for most foodborne bacterial infections worldwide including Australia. The aim of this study was to investigate a combination of typing methods in the characterization of C. jejuni isolated from clinical diarrhoeal samples (n = 20) and chicken meat (n = 26) in order to identify the source of infection and rank isolates based on their relative risk to humans. Sequencing of the flaA short variable region demonstrated that 86% of clinical isolates had genotypes that were also found in chicken meat. A polymerase chain reaction binary typing system identified 27 different codes based on the presence or absence of genes that have been reported to be associated with various aspects of C. jejuni pathogenicity, indicating that not all isolates may be of equal risk to human health. The lipooligosaccharide (LOS) of the C. jejuni isolates was classified into six classes (A, B, C, E, F, H) with 10·4% remaining unclassified. The majority (72·7%) of clinical isolates possessed sialylated LOS classes. Sialylated LOS classes were also detected in chicken isolates (80·7%). Antimicrobial tests indicated a low level of resistance, with no phenotypic resistance found to most antibiotics tested. A combination of typing approaches was useful to assign isolates to a source of infection and assess their risk to humans.

  7. The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in Campylobacter jejuni.

    Science.gov (United States)

    Johnson, Jeremiah G; Gaddy, Jennifer A; DiRita, Victor J

    2016-11-15

    Campylobacter jejuni is a leading cause of bacterially derived gastroenteritis. A previous mutant screen demonstrated that the heme uptake system (Chu) is required for full colonization of the chicken gastrointestinal tract. Subsequent work identified a PAS domain-containing regulator, termed HeuR, as being required for chicken colonization. Here we confirm that both the heme uptake system and HeuR are required for full chicken gastrointestinal tract colonization, with the heuR mutant being particularly affected during competition with wild-type C. jejuni Transcriptomic analysis identified the chu genes-and those encoding other iron uptake systems-as regulatory targets of HeuR. Purified HeuR bound the chuZA promoter region in electrophoretic mobility shift assays. Consistent with a role for HeuR in chu expression, heuR mutants were unable to efficiently use heme as a source of iron under iron-limiting conditions, and mutants exhibited decreased levels of cell-associated iron by mass spectrometry. Finally, we demonstrate that an heuR mutant of C. jejuni is resistant to hydrogen peroxide and that this resistance correlates to elevated levels of catalase activity. These results indicate that HeuR directly and positively regulates iron acquisition from heme and negatively impacts catalase activity by an as yet unidentified mechanism in C. jejuni IMPORTANCE: Annually, Campylobacter jejuni causes millions of gastrointestinal infections in the United States, due primarily to its ability to reside within the gastrointestinal tracts of poultry, where it can be released during processing and contaminate meat. In the developing world, humans are often infected by consuming contaminated water or by direct contact with livestock. Following consumption of contaminated food or water, humans develop disease that is characterized by mild to severe diarrhea. There is a need to understand both colonization of chickens, to make food safer, and colonization of humans, to better

  8. Comparison of real-time PCR assays for detection, quantification, and differentiation of campylobacter jejuni and campylobacter coli in broiler neck skin samples.

    Science.gov (United States)

    Schnider, A; Overesch, G; Korczak, B M; Kuhnert, P

    2010-06-01

    We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.

  9. Complete genome sequence of Campylobacter jejuni RM1246-ERRC that exhibits resistance to Quaternary Ammonium Compounds

    Science.gov (United States)

    Campylobacter jejuni strain RM1246-ERRC is a clinical isolate. In laboratory experiments RM1246-ERRC exhibited resistance to the antimicrobial effects of quaternary ammonium compounds (QACs) when compared to other C. jejuni strains. The chromosome of RM1246-ERRC was determined to be 1,659,694 bp w...

  10. New futures of sialyated lipo-oligosaccharide structures in campylobacter jejuni

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier)

    2012-01-01

    textabstractThe zoonotic human enteric pathogen Campylobacter jejuni is acquired by humans through contaminated water, poultry, shellfish and pets 1. Motility, chemotaxis, glycosylation and lipo-oligosaccharides (LOS) structures are all different virulence features exploited by C. jejuni to adhere,

  11. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni

    NARCIS (Netherlands)

    Radomska, Katarzyna A; Vaezirad, Mahdi M; Verstappen, Koen M; Wösten, Marc M S M; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the

  12. Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides.

    NARCIS (Netherlands)

    Heikema, A.P.; Bergman, M.P.; Richards, H.; Crocker, P.R.; Gilbert, M.; Samsom, J.N.; Wamel, W.J.; Endtz, H.Ph.; van Belkum, A.

    2010-01-01

    In Campylobacter jejuni-induced Guillain-Barré syndrome (GBS), molecular mimicry between C. jejuni lipooligosaccharide (LOS) and host gangliosides leads to the production of cross-reactive antibodies directed against the peripheral nerves of the host. Currently, the presence of surface exposed

  13. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni

    Science.gov (United States)

    The antibacterial effect of ZnO nanoparticles on Campylobacter jejuni was investigated for cell growth inhibition and inactivation. The results showed that C. jejuni was extremely sensitive to the treatment of ZnO nanoparticles. The minimal inhibitory concentration (MIC) of ZnO nanoparticles to C. j...

  14. Innate Immunity to Campylobacter jejuni in Guillain-Barré Syndrome

    NARCIS (Netherlands)

    Huizinga, Ruth; Van Den Berg, Bianca; Van Rijs, Wouter; Tio-Gillen, Anne P.; Fokkink, Willem Jan R; Bakker-Jonges, Liesbeth E.; Geleijns, Karin; Samsom, Janneke N.; Van Doorn, Pieter A.; Laman, Jon D.; Jacobs, Bart C.

    2015-01-01

    Objective: Guillain-Barré syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons

  15. Molecular characterization of Campylobacter jejuni from patients with Guillain-Barré and Miller Fisher syndromes

    NARCIS (Netherlands)

    H.P. Endtz (Hubert); F.G. Rodgers; W.M. Johnson; A.F. van Belkum (Alex); J.A. Wagenaar (Jaap); H.A. Verbrugh (Henri); B.C. Jacobs (Bart); C.W. Ang (Wim); N.P.W.C.J. van den Braak (Nicole); B. Duim; A. Rigter; L.J. Price; D.L. Woodward

    2000-01-01

    textabstractCampylobacter jejuni has been identified as the predominant cause of antecedent infection in Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS). The risk of developing GBS or MFS may be higher after infection with specific C. jejuni types. To

  16. Natural transformation of Campylobacter jejuni occurs beyond limits of growth

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ligowska, Małgorzata

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered...

  17. Clonal population structure and antimicrobial resistance of Campylobacter jejuni from chicken meat in Belgium

    Science.gov (United States)

    Campylobacter jejuni is one of the most important causes of human diarrhea worldwide. In the present work, multilocus sequence typing (MLST) was used to study the genotypic diversity of 145 C. jejuni isolates from 135 chicken meat preparations sampled across Belgium. Isolates were further typed by p...

  18. Chicken immune response after in ovo Immunization with Chimeric TLR5 activating flagellin of campylobacter jejuni

    NARCIS (Netherlands)

    Radomska, Katarzyna A.; Vaezirad, Mahdi M.; Verstappen, Koen M.; Wösten, Marc M.S.M.; Wagenaar, Jaap A.; Putten, van Jos P.M.

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the

  19. Antimicrobial wash with Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni on chicken skin

    Science.gov (United States)

    Campylobacter jejuni is a major foodborne pathogen that causes severe enteritis in humans largely due to consumption of contaminated poultry products. Reducing C. jejuni contamination on chicken carcasses would reduce subsequent human infections. This study investigated the efficacy of Trans-cinnama...

  20. FliD. : Exploring the flagellar tip protein as a target against Campylobacter jejuni

    NARCIS (Netherlands)

    Freitag, C.M.

    2017-01-01

    Campylobacter jejuni is most common bacterial agent causing human diarrhea. Symptoms can range from mild colitis to severe bloody enteritis with abdominal cramping. Chickens represent the main reservoir of C. jejuni and contaminated meat products are an important source of human infection. In order

  1. Campylobacter jejuni Translocation across Intestinal Epithelial Cells Is Facilitated by Ganglioside-Like Lipooligosaccharide Structures

    NARCIS (Netherlands)

    Louwen, R.; Nieuwenhuis, E.E.S.; Marrewijk, van L.; Horst-Kreft, D.; Ruiter, de L.; Heikema, A.P.; Wamel, van W.J.; Wagenaar, J.A.; Endtz, H.P.; Samsom, J.; Baarlen, van P.; Akhmanova, A.; Belkum, van A.

    2012-01-01

    Translocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether sialylation of C.

  2. Campylobacter jejuni translocation across intestinal epithelial cells is facilitated by ganglioside-like lipooligosaccharide structures

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier); E.E.S. Nieuwenhuis (Edward); L. van Marrewijk (Leonie); D. Horst-Kreft (Deborah); L.F. de Ruiter (Lilian); A.P. Heikema (Astrid); W.J.B. van Wamel (Willem); J.A. Wagenaar (Jaap); H.P. Endtz (Hubert); J.N. Samsom (Janneke); P. van Baarlen (Peter); A.S. Akhmanova (Anna); A.F. van Belkum (Alex)

    2012-01-01

    textabstractTranslocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether

  3. Nucleases Encoded by Integraded Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter Jejuni

    NARCIS (Netherlands)

    Gaasbeek, E.J.; Wagenaar, J.A.; Guilhabert, M.R.; Putten, van J.P.; Parker, C.T.; Wal, van der F.J.

    2010-01-01

    The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic

  4. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Bui Xuan

    2012-10-01

    Full Text Available Abstract Background Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre-exposure to heat, starvation, oxidative or osmotic stresses encountered in the environment may affect the subsequent interaction of C. jejuni with free-living protozoa. To test this hypothesis, we examined the impact of environmental stress on expression of virulence-associated genes (ciaB, dnaJ, and htrA of C. jejuni and on its uptake by and intracellular survival within Acanthamoeba castellanii. Results Heat, starvation and osmotic stress reduced the survival of C. jejuni significantly, whereas oxidative stress had no effect. Quantitative RT-PCR experiments showed that the transcription of virulence genes was slightly up-regulated under heat and oxidative stresses but down-regulated under starvation and osmotic stresses, the htrA gene showing the largest down-regulation in response to osmotic stress. Pre-exposure of bacteria to low nutrient or osmotic stress reduced bacterial uptake by amoeba, but no effect of heat or oxidative stress was observed. Finally, C. jejuni rapidly lost viability within amoeba cells and pre-exposure to oxidative stress had no significant effect on intracellular survival. However, the numbers of intracellular bacteria recovered 5 h post-gentamicin treatment were lower with starved, heat treated or osmotically stressed bacteria than with control bacteria. Also, while ~1.5 × 103 colony forming unit/ml internalized bacteria could typically be recovered 24 h post-gentamicin treatment with control bacteria, no starved, heat treated or osmotically stressed bacteria could be recovered at this time point. Overall, pre-exposure of C. jejuni to environmental stresses did not promote intracellular survival in A. castellanii

  5. Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens.

    Science.gov (United States)

    Shoaf-Sweeney, Kari D; Larson, Charles L; Tang, Xiaoting; Konkel, Michael E

    2008-11-01

    Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with maternal antibodies generated against the S3B strain of C. jejuni provided protection against Campylobacter colonization (O. Sahin, N. Luo, S. Huang, and Q. Zhang, Appl. Environ. Microbiol. 69:5372-5379, 2003). We obtained serum samples, collectively referred to as the C. jejuni S3B-SPF sera, from the previous study. These sera were determined to contain maternal antibodies that reacted against C. jejuni whole-cell lysates as judged by enzyme-linked immunosorbent assay. The antigens recognized by the C. jejuni S3B-SPF antibodies were identified by immunoblot analysis, coupled with mass spectrometry, of C. jejuni outer membrane protein extracts. This approach led to the identification of C. jejuni proteins recognized by the maternal antibodies, including the flagellin proteins and CadF adhesin. In vitro assays revealed that the C. jejuni S3B-SPF sera retarded the motility of the C. jejuni S3B homologous strain but did not retard the motility of a heterologous strain of C. jejuni (81-176). This finding provides a possible mechanism explaining why maternal antibodies confer enhanced protection against challenge with a homologous strain compared to a heterologous strain. Collectively, this study provides a list of C. jejuni proteins against which protective antibodies are generated in hens and passed to chicks.

  6. Humoral immune response to campylobacter jejuni in patients with enterocolitis and Guillain-Barré syndrome

    OpenAIRE

    Ristić Ljiljana; Kocić Branislava; Babić Tatjana; Apostolski S.; Spasić Mirjana; Miljković-Selimović Biljana

    2012-01-01

    Campylobacter jejuni is one of the most important causes of diarrheal disease worldwide. In addition, it can cause neurological post-infectious sequels, such as Guillain-Barré syndrome (GBS). Humoral immune response to C. jejuni was monitored in patients with C. jejuni enterocolitis, GBS patients and healthy persons, by ELISA. Statistical significance between patients with enterocolitis and healthy persons, as well as among GBS patients and healthy controls, was proven. Statistical sign...

  7. Use of culture, PCR analysis, and DNA microarrays for detection of Campylobacter jejuni and Campylobacter coli from chicken feces

    DEFF Research Database (Denmark)

    Keramas, Georgios; Bang, Dang Duong; Lund, Marianne

    2004-01-01

    . detection obtained with DNA microarrays were compared to those obtained by conventional culture and gel electrophoresis. By conventional culture, 60% of the samples were positive for either Campylobacter jejuni or Campylobacter coli. By PCR and capillary electrophoresis, 95% of the samples were positive...... for Campylobacter spp., whereas with DNA microarrays all samples were positive for Campylobacter spp. By application of DNA microarray analysis, the isolates in 4 samples (6%) could not be identified to the species level, whereas by PCR-capillary electrophoresis, the isolates in 12 samples (19%) remained......A DNA microarray for detection of Campylobacter spp. was recently developed and applied to detect Campylobacter spp. directly from chicken feces. Sixty-five pooled chicken cloacal swab samples from 650 individual broiler chickens were included in the study. The results of Campylobacter sp...

  8. [Preparation and characterization of monoclonal antibodies specific for CjaA protein of Campylobacter jejuni].

    Science.gov (United States)

    Huang, Jin-lin; Yin, Yan-xin; Hu, Yuan-qing; Zhang, Gong; Liu, Xiu-fan; Jiao, Xin-an

    2011-11-01

    Expression, purification of Campylobacter jejuni CjaA protein and development of monoclonal antibodies (mAbs) against this protein. The C. jejuni cjaA gene was amplified and inserted into the expression plasmids, pGEX-6p-1 and pET30a (+). The purified rGST-CjaA protein was used as an immunogen in 8-week-old BALB/c mice, and injected subcutaneously. The purified rHis-CjaA protein used as a detecting antigen for screening mAbs against CjaA was prepared. The specificity of mAbs was characterized by Dot-ELISA and Western blot assays. The recombinant expression plasmids, pGEX-6p-1-cjaA and pET30a(+)-cjaA were obtained. The sizes of the recombinant proteins, rGST-CjaA and rHis-CjaA, were consistent with their predicted size. Specific reaction was found between CjaA positive serum and expressed protein by Western blot assay, confirming its identification as a Campylobacter jejuni immunogen. Three hybridoma cell lines, designated 2B6, 3C2 and 4F11, secreting mAbs against CjaA were obtained. Their immunoglobulin subclasses were all IgG1. The ELISA titers of the ascites fluid were 1:1×10(5);, 1:2×10(5); and 1:4×10(5);, respectively. Western blot analysis confirmed that the three mAbs reacted with the rHis-CjaA fusion protein but not the His tag. The Dot-ELISA results demonstrated that the three mAbs only with CjaA and not the tags for the expression vectors. The successful preparation of three mAbs specific for the CjaA protein lays the foundation for further study regarding the biological characteristics of CjaA and the pathogenesis of C. jejuni.

  9. Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host

    Science.gov (United States)

    Luangtongkum, Taradon; Shen, Zhangqi; Seng, Virginia W.; Sahin, Orhan; Jeon, Byeonghwa; Liu, Peng

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain and is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health. To facilitate the control of macrolide-resistant Campylobacter, it is necessary to understand if macrolide resistance affects the fitness and transmission of Campylobacter in its natural host. In this study we conducted pairwise competitions and comingling experiments in chickens using clonally related and isogenic C. jejuni strains, which are either susceptible or resistant to erythromycin (Ery). In every competition pair, Ery-resistant (Eryr) Campylobacter was consistently outcompeted by the Ery-susceptible (Erys) strain. In the comingling experiments, Eryr Campylobacter failed to transmit to chickens precolonized by Erys Campylobacter, while isogenic Erys Campylobacter was able to transmit to and establish dominance in chickens precolonized by Eryr Campylobacter. The fitness disadvantage was linked to the resistance-conferring mutations in the 23S rRNA. These findings clearly indicate that acquisition of macrolide resistance impairs the fitness and transmission of Campylobacter in chickens, suggesting that the prevalence of macrolide-resistant C. jejuni will likely decrease in the absence of antibiotic selection pressure. PMID:22183170

  10. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland.

    Science.gov (United States)

    Korczak, Bozena M; Zurfluh, Monika; Emler, Stefan; Kuhn-Oertli, Jacqueline; Kuhnert, Peter

    2009-07-01

    We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers

  11. Risk factors associated with Campylobacter jejuni infections in Curacao, Netherlands Antilles

    NARCIS (Netherlands)

    H.P. Endtz (Hubert); L. de Haan (Lidewij); R. van Koningsveld (Rinske); Y. Halabi; N.P.W.C.J. van den Braak (Nicole); B.I. Kesztyus; C.W. Ang (Wim); I. Gerstenbluth; E. Leyde; A. Ott (Alewijn); F.G. Rodgers; R.P.A.J. Verkooyen (Roel); D.L. Woodward; A.F. van Belkum (Alex); L.J. Price; H. West; P.C.R. Godschalk (Peggy)

    2003-01-01

    textabstractA steady increase in the incidence of Guillain-Barre syndrome (GBS) with a seasonal preponderance, almost exclusively related to Campylobacter jejuni, and a rise in the incidence of laboratory-confirmed Campylobacter enteritis have been reported from Curacao,

  12. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    Science.gov (United States)

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  13. [The hemolytic-uremic syndrome in enterocolitis caused by Campylobacter jejuni].

    Science.gov (United States)

    Dolezel, Z; Stejskal, J; Dostálková, D

    1993-11-01

    In the submitted case-history the authors describe the clinical course of haemolytic-uraemic syndrome (HUS) during Campylobacter infection in a two-year-old boy. On the described case the authors wish to confirm that in the manifestation of HUS in childhood not only infections caused by the usual microbial agents can participate but also Campylobacter jejuni.

  14. Neonatal sepsis by Campylobacter jejuni : Genetically proven transmission from a household puppy

    NARCIS (Netherlands)

    Wolfs, TFW; Duim, B; Geelen, SPM; Rigter, A; Thomson-Carter, F; Fleer, A; Wagenaar, JA

    2001-01-01

    We report a case of neonatal Campylobacter jejuni sepsis in a 3-week-old infant who acquired the infection through transmission from a recently acquired household puppy. Genotyping of Campylobacter strains obtained from puppy and child resulted in highly homogenous findings. This represents the

  15. Systematic identification of genetic loci required for polymyxin resistance in Campylobacter jejuni using an efficient in vivo transposon mutagenesis system.

    Science.gov (United States)

    Lin, Jun; Wang, Ying; Hoang, Ky Van

    2009-03-01

    The aim of this study was to identify genetic loci required for polymyxin (PM) resistance in Campylobacter jejuni using an efficient in vivo random mutagenesis system. PM has been widely used as a model peptide to examine mechanisms of bacterial resistance to antimicrobial peptides (AMPs), the major effectors of host innate immunity and also candidates for a new generation of antibiotics. In this study, a commercially available transposon mutagenesis approach (EZ-Tn5 Transposome; Epicentre, Madison, WI) was evaluated and used to systematically identify Campylobacter mutants with increased susceptibility to PM. This simple, yet efficient, transposon mutagenesis approach identified 12 mutants representing seven different genes of C. jejuni 81-176 involved in acquired PM resistance. Backcrossing of the transposon mutations into the parent strain confirmed that the PM-sensitive phenotype in each mutant was linked to the gene with a specific transposon insertion. The genes are identified as being involved in the synthesis of cell-surface carbohydrates, modification of intracellular targets, signal transduction, and modulation of transmembrane potential. The mutant with the highest susceptibility to PM contains a transposon insertion in a putative galU gene that is essential for production of uridine diphosphate glucose (UDP)-glucose, a precursor required for lipooligosaccharide (LOS) synthesis. LOS analysis by tricine SDSPAGE showed significant truncation of the LOS core structure in the galU mutant. Susceptibility assays also indicated that GalU contributed C. jejuni resistance to some natural AMPs. Complementation of the galU mutant in trans fully restored LOS synthesis and resistance to the levels of the parent strain. Together, these results define seven C. jejuni genetic loci that will be useful for characterizing the molecular basis of Campylobacter resistance to PM and natural AMPs, and also highlight the usefulness of the in vivo mutagenesis approach for

  16. Antibiotic Resistance and Prevalence of Campylobacter jejuni and Campylobacter coli in Poultry Liver

    Directory of Open Access Journals (Sweden)

    A. Saadatmand

    2017-10-01

    Full Text Available Background and Objective: Campylobacter is a common type of bacteria in humans and poultry, which generally accounts for various diseases in humans, such as gastroenteritis. The poultry digestive system contains a high level of these bacteria. The aim of this study was to evaluate the prevalence of C. jejuni and C. coli in the poultry liver packed for marketing and determine the antibiotic resistance of the isolates. Materials and Methods: This cross-sectional study was conducted in the spring of 2016 in the city of Hamadan, Iran. A total of 80 samples of packed chicken liver were collected from the stores supplying meat and poultry products in Hamadan. The enrichment of the liver samples was performed in brucella broth; subsequently, separation was carried out on Campylobacter selective agar. The presence of bacteria was confirmed by the implementation of chemical diagnostic tests and direct microscopic observation. Finally, the antibiotic resistance of the isolates was tested using disk diffusion method. Results: According to the results, Campylobacter had a prevalence rate of 90%, 73.61% and 26.39% of which were C. jejuni and C. coli, respectively. Out of the 12 antibiotic discs used in this study, the highest resistance (79% and sensitivity (99% rates were observed for cotrimoxazole (10 µg and gentamycin (10 µg, respectively. Conclusion: The packed poultry liver in Hamadan had a relatively high prevalence of C. jejuni and C. coli. Therefore, the consumers should be careful about the cooking time and using this food. Accordingly, they can prevent the dissemination of this bacteria by cooking the liver at a temperature of above 70°C for 20 min and properly washing the devices before cooking this product. Additionally, the elderly, children, and those with immunodeficiency are recommended to avoid eating poultry liver.

  17. Intestinal Mucus Gel and Secretory Antibody are Barriers to Campylobacter jejuni Adherence to INT 407 Cells

    Science.gov (United States)

    1987-06-01

    contained sigA against C. jejuni HC.INT-407 cells overlaid with: l0"’,el The importance of specific antibodies to campylobacter was BSA...to Campylobacter Jejuni Adherence to INT 407 Cells 12. PERSONAL AUrOR(S) McSweegan, E.; Burr, D.ll.; Walker, R.I. 13a. TYPE OF REPORT 13b. TIME...stored at -20’C. sIgA EIISA. Anti-C. jejuni IgA antibody was measured in Calculations. Results were expressed as the mean of rabbit intestinal mucus

  18. Effects of decontamination at varying contamination levels of Campylobacter jejuni on broiler meat

    DEFF Research Database (Denmark)

    Boysen, Louise; Wechter, Naja Strandby; Rosenquist, Hanne

    2013-01-01

    When assessing effects of decontamination techniques on counts of Campylobacter spp. on broiler meat, it is essential that the results reflect the variations that may exist. Decontamination studies often use high inoculation levels (107 to 108 cfu) and one or few strains of Campylobacter jejuni......, thereby restricting the results to reflect only a limited part of the true situation. This study presents results from physical and chemical decontamination of broiler meat medallions using different strains and different initial concentrations of C. jejuni. For 3 strains of C. jejuni, mean log reductions...

  19. Campylobacter jejuni in Musca domestica: An examination of survival and transmission potential in light of the innate immune responses of the house flies.

    Science.gov (United States)

    Gill, Carson; Bahrndorff, Simon; Lowenberger, Carl

    2017-08-01

    The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen-induced gene expression in the intestinal tracts of adult house flies 4-24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni-infected and -uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect-pathogen interactions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  20. High-Level Ciprofloxacin-Resistant Campylobacter jejuni Isolates Circulating in Humans and Animals in Incheon, Republic of Korea.

    Science.gov (United States)

    Kim, J S; Lee, M Y; Kim, S J; Jeon, S-E; Cha, I; Hong, S; Chung, G T; Huh, M-J; Kang, Y-H; Yoo, C-K; Kim, J

    2016-11-01

    Campylobacter jejuni is one of the major causative pathogens of outbreaks or sporadic cases of diarrhoeal diseases worldwide. In this study, we compared the phenotypic and genetic characteristics of C. jejuni isolates of human and food-producing animal origins in Korea and examined the genetic relatedness between these two groups of isolates. Regardless of isolation source, all C. jejuni isolates harboured four virulence genes, cadF, cdtB, ciaB and racR, whereas the wlaN and virB11 genes were more frequently observed in human isolates. Antimicrobial susceptibility testing showed that the majority of C. jejuni isolates displayed high-level resistance to fluoroquinolone (95.2%) or tetracycline (76.2%) antibiotics, and 12.4% of isolates exhibited multidrug resistance (more than three classes of antibiotics tested). Pulsed-field gel electrophoresis (PFGE) of all Campylobacter isolates revealed 51 different SmaI-PFGE patterns and six major clusters containing both human and animal isolates. These results indicate that genetically diverse strains of C. jejuni with antimicrobial drug-resistance and virulence properties have prevailed in Incheon. Nevertheless, some particular populations continue to circulate within the community, providing the evidence for an epidemiological link of C. jejuni infections between humans and food-producing animals. Therefore, the continued monitoring and surveillance of C. jejuni isolates of human and food-producing animal origins are required for public health and food safety. © 2016 Blackwell Verlag GmbH.

  1. Characterization and reactivity of broiler chicken sera to selected recombinant Campylobacter jejuni chemotactic proteins.

    Science.gov (United States)

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E; Seal, Bruce S

    2014-05-01

    Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to colonization and invasion in the host cells, proteins involved in chemotactic processes can be novel targets for vaccine development. In this communication, we report amplification, cloning and expression of the C. jejuni chemotactic proteins in an Escherichia coli expression system. A total of 15 chemotactic protein genes were successfully expressed. These recombinant proteins were confirmed by nucleotide sequencing, SDS-PAGE analysis and immunoblot analysis of six-His and hemagglutinin tags. Twelve recombinant chemotactic proteins were further tested whether they were antigenic using sera from broiler chickens older than 4 weeks. The immunoblot results show that each chicken serum reacted to a variety of the recombinant proteins, but all sera reacted to the Cjj0473 gene product (annotated as a methyl-accepting chemotaxis protein), suggesting that anti-Campylobacter antibodies may be prevalent in the poultry population. These antibody screening results provide a rationale for further evaluation of the Cjj0473 protein as a potential vaccine for broilers to improve human food safety.

  2. Fluoroquinolone and macrolide resistance in Campylobacter jejuni isolated from broiler slaughterhouses in southern Brazil.

    Science.gov (United States)

    Sierra-Arguello, Yuli M; Perdoncini, G; Morgan, R B; Salle, C T P; Moraes, H L S; Gomes, Marcos J P; do Nascimento, Vladimir Pinheiro

    2016-01-01

    Campylobacter jejuni is recognized as a leading cause of acute bacterial gastroenteritis in humans. The over-use of antimicrobials in the human population and in animal husbandry has led to an increase in antimicrobial-resistant infections, particularly with fluoroquinolones and macrolides. The aim of the present study was to provide information of the current status of antimicrobial resistance patterns in Campylobacter jejuni from poultry sources. Fifty strains were recovered from broiler slaughterhouses in Rio Grande do Sul state, Brazil, 2012. The strains were investigated for antimicrobial susceptibility against three agents (ciprofloxacin, nalidixic acid and erythromycin) by minimal inhibitory concentrations. The strains were analysed by polymerase chain reaction-restriction fragment length polymorphism for detection of the Thr-86 mutation that confers resistance to ciprofloxacin. In addition, all the strains were tested for the presence of efflux systems (cmeB gene) conferring antimicrobial resistance. The minimum inhibitory concentrations results showed that 98% of isolates were sensitive to erythromycin and most isolates were resistant to ciprofloxacin (94%) and nalidixic acid (90%). A complete correlation was observed between the minimum inhibitory concentrations and PCR-RFLP assay. Finally, the cmeB gene that is responsible for multidrug resistance was detected in 16 isolates out the 50 strains (32%).

  3. The Central, Surface-Exposed Region of the Flagellar Hook Protein FlgE of Campylobacter jejuni Shows Hypervariability among Strains

    OpenAIRE

    Lüneberg, Edeltraud; Glenn-Calvo, Eduardo; Hartmann, Maike; Bär, Werner; Frosch, Matthias

    1998-01-01

    In a previous study, we observed that monoclonal antibodies raised against the hook protein FlgE of Campylobacter jejuni LIO 36, isolate 5226, bound exclusively to this strain. The aim of this study was to elucidate the molecular basis for these binding specificities. The hook protein-encoding gene flgE of C. jejuni was cloned in Escherichia coli and sequenced. The flgE genes of four additional C. jejuni strains were amplified by PCR and also sequenced. Comparison of the deduced amino acid se...

  4. An Improved Culture Method for Selective Isolation of Campylobacter jejuni from Wastewater

    Science.gov (United States)

    Kim, Jinyong; Oh, Euna; Banting, Graham S.; Braithwaite, Shannon; Chui, Linda; Ashbolt, Nicholas J.; Neumann, Norman F.; Jeon, Byeonghwa

    2016-01-01

    Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin), to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater. PMID:27617011

  5. Immune Response to Campylobacter jejuni in a Rural Community in Thailand

    Science.gov (United States)

    1986-02-01

    AND SUBTITLE S FUNDING NUMBERS Immune Response to Campylobacter Jejuni in a Rural Community in Thailand 61102A 30161102BS13 AB 6. AUTHOR(S) DA 312588...Contract Title: Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development 12a. DISTRIBUTION. AVAILABILITY STATEMENT 12b... Antibodies to Campylobacter in Thailand 25i r *24G 11 2 .E _ 4 1 2-4 5-o to 2o 2 4 ൖ AGE GROUP (YEARS) AGE GROUP (tARES) 7 / S Figure 2. Age

  6. Effect of refrigeration and frozen storage on the Campylobacter jejuni recovery from naturally contaminated broiler carcasses

    Directory of Open Access Journals (Sweden)

    Maike T. Maziero

    2010-06-01

    Full Text Available Campylobacter jejuni is the most common thermophilic Campylobacter associated with human enteritis in many countries. Broilers and their by-products are the main sources for human enteritis. Refrigeration and freezing are used to control bacterial growth in foods. The effect of these interventions on survival of Campylobacter jejuni is yet not quite understood. This study evaluated the effect of storage temperature on the survival of C. jejuni in chicken meat stored for seven days at 4ºC and for 28 days at -20ºC. The influence of selective enrichment on recovery of Campylobacter was also evaluated. Thirty fresh chicken meat samples were analyzed and 93.3% was contaminated with termotolerant Campylobacter spp. with average count of 3.08 Log10 CFU/g on direct plating. After refrigeration, 53.3% of the analyzed samples tested positive for Campylobacter and the average count was 1.19 Log10 CFU/g. After storage at -20ºC, 36.6% of the samples were positive with a verage count of 0.75 Log10 CFU/g. C. jejuni was detected after enrichment, respectively, in 50% of the fresh, 36.7% of the refrigerated and 33.3% of the frozen meat samples analyzed. No difference was detected for the recovery of C. jejuni from fresh, refrigerated or frozen samples after selective enrichment, showing that this microorganism can survive under the tested storage conditions.

  7. Campylobacter jejuni and Campylobacter coli in Children With Acute Diarrhea in Health Centers of Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    Rastyani

    2015-11-01

    Full Text Available Background Enteritis caused by Campylobacter is considered as the most common acute bacterial diarrhea around the world. In most cases, infection occurs as a result of consuming contaminated water or food, especially raw meat of fowls. Objectives The purpose of the present study was to determine the prevalence and antibiotic resistance of campylobacter species among pediatrics of Hamadan city, Iran. Patients and Methods A total of 120 stool samples from children less than 10 years old were examined from January 2013 to December 2014 in Hamadan, Iran. The samples were incubated in Campy-Thio enrichment medium for 1 - 2 hours and then cultured on a specific medium; after that, the suspected colonies were analyzed for Campylobacter spp. identification by conventional tests. The identified species by biochemical methods were confirmed by polymerase chain reaction (PCR. Antimicrobial susceptibility testing was performed by disk agar diffusion (DAD method. Results Twelve (10% Campylobacter spp. from 120 stool samples were isolated including C. coli and C. jejuni. In the antibiotic susceptibility test, the most frequent resistance was observed to ciprofloxacin 8 (88.8%, followed by 7 (77.7% resistant strains to tetracycline, 7 (77.7% to erythromycin, 6 (66.6% to clindamycin, 5 (55.5% to meropenem, 4 (44.4% to gentamicin, 3 (33.3% to nalidixicacid and only 1 (11.1% to chloramphenicol. Conclusions Campylobacter is responsible for some important clinical problems such as enteritis and is also associated with meningitis and hemolytic-uremic syndrome. It is imperative to monitor the prevalence and antibiotic resistance of Campylobacter spp. as well as other the zoonotic bacteria.

  8. Epidemiological association of Campylobacter jejuni groups with pathogenicity-associated genetic markers

    Directory of Open Access Journals (Sweden)

    Zautner Andreas E

    2012-08-01

    Full Text Available Abstract Background Campylobacter jejuni, the most leading cause for bacterial gastroenteritis worldwide, shows a high genetic diversity among its isolates. Recently, we demonstrated the existence of six C. jejuni-groups by combining MLST with six genetic markers. These groups were further characterized by the detection of cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, and cstIII in order (I. to show further associations between these different genetic markers and MLST CCs. Moreover, different studies were able to associate several of these markers: a sialylated lipoologosaccharide (cstII/III+, the gamma-glytamyl-transpeptidase (ggt+, and the absence of a certain allele of the enterochelin-uptake-binding-protein (ceuE11168- with severe campylobacteriosis, bloody diarrhea and unpleasant outcome. Additionally more than half of human Campylobacter-isolates were assigned to a non-livestock clade associated with the absence of cj1321-cj1326. These isolates were considered as mere colonizers. From the combination of marker genes, the ratio of human isolates in a specific group, and clinical data (II. it should be demonstrated to which of the previous defined groups these Campylobacter-subpopulations, associated with higher virulence, correspond. Results Besides the marker gene pldA, all new estimated genetic markers show significant differences in their distribution among the various MLST-based groups. Especially the genes for cj1321-cj1326, fucP, cj0178, cj0755/cfrA are widely associated with each other and split the study population into two major and seven intermediate groups substantiating the previous group-definition, whereas cstII and cstIII indicate at least three groups following an independent distribution pattern. Conclusions Based on these data a group of C. jejuni-isolates characterized by the presence of ansB, dmsA, ggt, and the absence of cj1365c, cj1585c, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, and cstII/III was

  9. Epidemiological association of Campylobacter jejuni groups with pathogenicity-associated genetic markers.

    Science.gov (United States)

    Zautner, Andreas E; Ohk, Carolin; Tareen, Abdul Malik; Lugert, Raimond; Gross, Uwe

    2012-08-08

    Campylobacter jejuni, the most leading cause for bacterial gastroenteritis worldwide, shows a high genetic diversity among its isolates. Recently, we demonstrated the existence of six C. jejuni-groups by combining MLST with six genetic markers. These groups were further characterized by the detection of cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, and cstIII in order (I.) to show further associations between these different genetic markers and MLST CCs. Moreover, different studies were able to associate several of these markers: a sialylated lipoologosaccharide (cstII/III(+)), the gamma-glytamyl-transpeptidase (ggt(+)), and the absence of a certain allele of the enterochelin-uptake-binding-protein (ceuE(11168)(-)) with severe campylobacteriosis, bloody diarrhea and unpleasant outcome. Additionally more than half of human Campylobacter-isolates were assigned to a non-livestock clade associated with the absence of cj1321-cj1326. These isolates were considered as mere colonizers.From the combination of marker genes, the ratio of human isolates in a specific group, and clinical data (II.) it should be demonstrated to which of the previous defined groups these Campylobacter-subpopulations, associated with higher virulence, correspond. Besides the marker gene pldA, all new estimated genetic markers show significant differences in their distribution among the various MLST-based groups. Especially the genes for cj1321-cj1326, fucP, cj0178, cj0755/cfrA are widely associated with each other and split the study population into two major and seven intermediate groups substantiating the previous group-definition, whereas cstII and cstIII indicate at least three groups following an independent distribution pattern. Based on these data a group of C. jejuni-isolates characterized by the presence of ansB, dmsA, ggt, and the absence of cj1365c, cj1585c, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, and cstII/III was associated with a higher prevalence in human

  10. Global Distribution of Campylobacter jejuni Penner Serotypes: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Brian L Pike

    Full Text Available Penner serotyping has been the principal method for differentiating Campylobacter isolates since its inception. Campylobacter capsule polysaccharide (CPS, the principal serodeterminant on which Penner serotyping is based, is presently of interest as a vaccine component. To determine the required valency of an effective CPS-based vaccine, a comprehensive understanding of CPS distribution is needed. Because of the association between Penner serotype and CPS, we conducted a systematic review to estimate the frequency and distribution of Penner serotypes associated with cases of Campylobacteriosis. In total, more than 21,000 sporadic cases of C. jejuni cases were identified for inclusion. While regional variation exists, distribution estimates indicate that eight serotypes accounted for more than half of all sporadic diarrheal cases globally and three serotypes (HS4 complex, HS2, and HS1/44 were dominant inter-regionally as well as globally. Furthermore, a total of 17 different serotypes reached a representation of 2% or greater in at least one of the five regions sampled. While this review is an important first step in defining CPS distribution, these results make it clear that significant gaps remain in our knowledge. Eliminating these gaps will be critical to future vaccine development efforts.

  11. Multilocus sequence typing of Campylobacter jejuni and Campylobacter coli isolates from poultry, cattle and humans in Nigeria.

    Science.gov (United States)

    Ngulukun, S; Oboegbulem, S; Klein, G

    2016-08-01

    To determine the genetic diversity of Campylobacter jejuni and Campylobacter coli isolates from Nigeria and to identify the association between multilocus sequence types and hosts (poultry, cattle and humans). Isolates were identified using multiplex PCR assays. Multilocus sequence typing (MLST) was used to determine the genetic diversity of 36 Camp. jejuni and 24 Camp. coli strains isolated from poultry, cattle and humans. Of the 36 Camp. jejuni genotyped, 21 sequence types (ST) were found, 9 (43%) were new while of the 24 Camp. coli isolates genotyped, 22 STs were identified with 14 (64%) being new. The most prevalent sequence type was ST1932 followed by ST1036 and ST607 while the prevalent clonal complexes were CC-828, CC-460 and CC-353. Campylobacter isolates from Nigeria were found to be diverse with novel genotypes. There was overlap of CC-828, CC-460 and CC-353 between the poultry, cattle and human isolates. Genetic exchange was also detected in two of the Camp. coli isolates. This study highlights the genetic diversity of Campylobacter strains in Nigeria, demonstrating that Camp. jejuni and Camp. coli isolates are diverse and have both local and global strains. The predominant sequence types and clonal complexes found in this study differ from other countries; this exemplifies that different predominant Campylobacter populations exist between countries. © 2016 The Society for Applied Microbiology.

  12. Detection of the genes encoding the toxin CDT, and research factors which influence the production of hemolysin in Campylobacter jejuni from poultry products

    OpenAIRE

    Trindade, Michele Martins; Perdoncini,Gustavo; Sierra Arguello, Yuli Melisa; Lovato, Maristela; Borsoi,Anderlise; Nascimento, Vladimir Pinheiro do

    2015-01-01

    Resumo: Membros termofílicos do gênero Campylobacter são reconhecidos como importantes enteropatógenos para o ser humano e animais. A grande diversidade ecológica destes micro-organismos em diferentes habitats tais como água, animais e alimentos predispõem ao aparecimento de novos fatores de virulência. Este trabalho teve por objetivo detectar os genes codificantes da Toxina Distensiva Citoletal (CDT) por meio da técnica de PCR, pesquisar a atividade de hemolisinas e a influência de soluções ...

  13. Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea.

    Science.gov (United States)

    Oh, Jae-Young; Kwon, Yong-Kuk; Wei, Bai; Jang, Hyung-Kwan; Lim, Suk-Kyung; Kim, Cheon-Hyeon; Jung, Suk-Chan; Kang, Min-Su

    2017-01-01

    Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007-2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009-2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.

  14. RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35 box

    DEFF Research Database (Denmark)

    Petersen, Lise; Larsen, Thomas S.; Ussery, David W.

    2003-01-01

    We have used a hidden Markov model (HMM) to identify the consensus sequence of the RpoD promoters in the genome of Campylobacter jejuni. The identified promoter consensus sequence is unusual compared to other bacteria, in that the region upstream of the TATA-box does not contain a conserved -35...... region, but shows a very strong periodic variation in the AT-content and semi-conserved T-stretches, with a period of 10-11 nucleotides. The TATA-box is in some, but not all cases, preceded by a TGx, similar to an extended -10 promoter. We predicted a total of 764 presumed RpoD promoters in the C.jejuni...... genome, of which 654 were located upstream of annotated genes. A similar promoter was identified in Helicobacter pylori, a close phylogenetic relative of Campylobacter, but not in Escherichia coli, Vibrio cholerae, or six other Proteobacterial genomes, or in Staphylococcus aureus. We used upstream...

  15. Does Whipworm Increase the Pathogenicity of Campylobacter jejuni? A Clinical Correlate of an Experimental Observation

    Directory of Open Access Journals (Sweden)

    Jennifer L Shin

    2004-01-01

    Full Text Available Campylobacter jejuni is a leading cause of acute diarrhea worldwide, usually mild and self-limiting. No adequate hypothesis has yet been formulated to explain why in an otherwise healthy host this infection is occasionally severe. In a pig model, C jejuni has been shown to be pathogenic only in the presence of swine whipworm. A human case of life-threatening C jejuni colitis leading to toxic megacolon and acute renal failure, associated with concomitant whipworm (Trichuris suis ova in the feces, is reported. The potential of T suis to potentiate C jejuni in humans deserves further study.

  16. Co-administration of the Campylobacter jejuni N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens.

    Science.gov (United States)

    Nothaft, H; Perez-Muñoz, M E; Gouveia, G J; Duar, R M; Wanford, J J; Lango-Scholey, L; Panagos, C G; Srithayakumar, V; Plastow, G S; Coros, C; Bayliss, C D; Edison, A S; Walter, J; Szymanski, C M

    2017-09-22

    Source attribution studies report that consumption of contaminated poultry is the primary source for acquiring human campylobacteriosis. Oral administration of an engineered Escherichia coli strain expressing the Campylobacter jejuni N-glycan reduces bacterial colonization in specific-pathogen-free leghorn chickens, but only a fraction of birds respond to vaccination. Optimizing the vaccine for commercial broiler chickens has great potential to prevent pathogen entry into the food chain. Here, we tested the same vaccination approach in broilers and observed similar efficacy in pathogen load reduction, stimulation of host IgY response, lack of C. jejuni resistance development, uniformity in microbial gut composition, and bimodal response to treatment. Gut microbiota analysis of leghorn and broiler vaccine responders identified one member of the Clostridiales XIVa cluster, Anaerosporobacter mobilis, significantly more abundant in responder birds. In broilers, co-administration of the live vaccine with A. mobilis or Lactobacillus reuteri, a commonly used probiotic, resulted in increased vaccine efficacy, antibody response, and weight gain. To investigate whether the responder/non-responder effect was due to selection of a C. jejuni 'super colonizer mutant' with altered phase-variable genes, we analysed all polyG-containing loci of the input strain compared to non-responder colony isolates and found no evidence of phase state selection. However, untargeted NMR-based metabolomics identified a potential biomarker negatively correlated with C. jejuni colonization levels possibly linked to the increased microbial diversity in this subgroup. The comprehensive methods used to examine the vaccine response bimodality provide several opportunities to improve the C. jejuni vaccine and the efficacy of any vaccination strategy.ImportanceCampylobacter jejuni is a common cause of human diarrheal disease worldwide and listed by the World Health Organization as a high priority

  17. Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection.

    Directory of Open Access Journals (Sweden)

    Elisabeth Lippert

    2009-10-01

    Full Text Available Limited information is available on the molecular mechanisms associated with Campylobacter jejuni (C. jejuni induced food-borne diarrheal illnesses. In this study, we investigated the function of TLR/NF-kappaB signaling in C. jejuni induced pathogenesis using gnotobiotic IL-10(-/-; NF-kappaB(EGFP mice. In vitro analysis showed that C. jejuni induced IkappaB phosphorylation, followed by enhanced NF-kappaB transcriptional activity and increased IL-6, MIP-2alpha and NOD2 mRNA accumulation in infected-mouse colonic epithelial cells CMT93. Importantly, these events were blocked by molecular delivery of an IkappaB inhibitor (Ad5IkappaBAA. NF-kappaB signalling was also important for C.jejuni-induced cytokine gene expression in bone marrow-derived dendritic cells. Importantly, C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice developed mild (day 5 and severe (day 14 ulcerating colonic inflammation and bloody diarrhea as assessed by colonoscopy and histological analysis. Macroscopic analysis showed elevated EGFP expression indicating NF-kappaB activation throughout the colon of C. jejuni associated IL-10(-/-; NF-kappaB(EGFP mice, while fluorescence microscopy revealed EGFP positive cells to be exclusively located in lamina propria mononuclear cells. Pharmacological NF-kappaB inhibition using Bay 11-7085 did not ameliorate C. jejuni induced colonic inflammation. Our findings indicate that C. jejuni induces rapid and severe intestinal inflammation in a susceptible host that correlates with enhanced NF-kappaB activity from lamina propria immune cells.

  18. Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence

    Directory of Open Access Journals (Sweden)

    Paul M. Luethy

    2017-05-01

    Full Text Available Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease.

  19. Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence

    Science.gov (United States)

    Luethy, Paul M.; Huynh, Steven; Ribardo, Deborah A.

    2017-01-01

    ABSTRACT Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. PMID:28487428

  20. Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid

    Science.gov (United States)

    Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,18...

  1. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    Science.gov (United States)

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  2. [The relationship of Campylobacter jejuni subsp. jejuni enterotoxigenicity and the increase of cAMP and electrolyte changes in the rat intestine].

    Science.gov (United States)

    Fernández, H; Toro, J

    1998-08-01

    Small intestine alterations produced by the enterotoxigenic capacity of Campylobacter jejuni subsp. jejuni are similar to the hydric, electrolytic and pathological changes caused by choleraic and thermolabile Escherichia coli toxins. To study the enterotoxigenic capacity of 4 strains of Campylobacter jejuni subsp. jejuni using the intestinal loop model. Rat intestinal loops were inoculated with culture filtrates of the four strains. Enterotoxigenicity was assessed by fluid accumulation, the increase in Na+ and Cl- in the loop fluid, and cAMP increase in loop tissues. An enterotoxigenic Escherichia coil strain and sterile Brucella both were used as positive and negative controls, respectively. The filtrates of two strains produced fluid accumulation in the loops, significantly increased Na+ and Cl- secretion to the intestinal lumen and increased tissue cAMP levels. Some strains of Campylobacter jejuni subsp. jejuni are able to show enterotoxigenicity in vivo, increasing cAMP levels in the intestinal cells and altering electrolyte exchange mechanisms.

  3. Prevalence of Campylobacter Jejuni and Coli in Sheep Carcasses by Using

    Directory of Open Access Journals (Sweden)

    Reza Shahrokhabadi

    2013-11-01

    Full Text Available Background: Campylobacter species are common bacterial pathogens causing gastroenteritis in humans worldwide. Materials and Methods: A total of 148 randomly sheep carcasses were sampled by surface section of neck meat taken immediately after slaughter analyzed using microbiological examinations. Results: Campylobacter spp. was isolated from 10.13% meat cultures samples examined. Among these 80% sample were C. jejuni and 20% sample were C. coli. Using PCR assays, the number of positive campylobacters increased to 11.48%. Of these positive samples, 82.35% were C. jejuni and 17.65% were C. coli. Significantly higher prevalence rates of Campylobacter spp. (p<0.05 were found in the meat samples taken in summer (47.05%. Conclusion: The PCR is a reliable and sensitive method which can be used as a diagnostic technique for the detection of campylobacter in lamb samples.

  4. Characterization of Campylobacter jejuni and Campylobacter coli Broiler Isolates by Whole-Genome Sequencing

    DEFF Research Database (Denmark)

    Cantero, Guillermo; Correa-Fiz, Florencia; Ronco, Troels

    2017-01-01

    -nucleotide polymorphisms showed two main cluster grouping strains by species. Phenotypic resistances to quinolones (100%), tetracycline (81%), streptomycin (75%), erythromycin (56%), and gentamicin (13%) were found. All the isolates carried the C257T point mutation in the subunit A of the DNA gyrase gene (Thr86Ile......) conferring resistance to quinolones, while all the isolates showing resistance to tetracycline carried the tet(O) gene. The genes aph(3′)-III and aadE conferring resistance to aminoglycosides were identified in the two isolates (one C. jejuni and one C. coli) resistant to streptomycin and gentamicin....... The point mutation A2075G on the 23S rDNA conferring high resistance to macrolides was detected in three C. coli isolates. The CmeABC multidrug efflux pump was also detected, both in C. jejuni and C. coli isolates. All C. jejuni and C. coli isolates were positive for most of the 34 virulence...

  5. Important Role of a Putative Lytic Transglycosylase Cj0843c in β-Lactam Resistance in Campylobacter jejuni.

    Science.gov (United States)

    Zeng, Ximin; Gillespie, Barbara; Lin, Jun

    2015-01-01

    Beta-lactam antibiotics are an important class of antibiotics for treating bacterial infections. Despite prevalent β-lactam resistance in Campylobacter jejuni, the leading bacterial cause of human diarrhea in developed countries, molecular mechanism of β-lactam resistance in C. jejuni is still largely unknown. In this study, C. jejuni 81-176 was used for random transposon mutagenesis. Screening of a 2,800-mutant library identified 22 mutants with increased susceptibility to ampicillin. Of these mutants, two mutants contains mutations in Cj0843c (a putative lytic transglycosylase gene) and in its upstream gene Cj0844c, respectively. Complementation experiment demonstrated that the Cj0843 contributes to β-lactam resistance. The Cj0843c insertional mutation was subsequently introduced to diverse C. jejuni clinical strains for MIC test, showing that Cj0843c contributes to both intrinsic and acquired β-lactam resistance of C. jejuni. Consistent with this finding, inactivation of Cj0843c also dramatically reduced β-lactamase activity. Genomic examination and PCR analysis showed Cj0843c is widely distributed in C. jejuni. High purity recombinant Cj0843c was produced for generation of specific antiserum. The Cj0843 was localized in the periplasm, as demonstrated by immunoblotting using specific antibodies. Turbidimetric assay further demonstrated the capability of the purified Cj0843c to hydrolyze cell walls. Inactivation of Cj0843c also significantly reduced C. jejuni colonization in the intestine. Together, this study identifies a mechanism of β-lactam resistance in C. jejuni and provides insights into the role of cell wall metabolism in regulating β-lactamase activity.

  6. A novel Campylobacter jejuni sequence type from a culture-negative patient in the Gambia.

    Directory of Open Access Journals (Sweden)

    Gerard A J Morris

    2008-03-01

    Full Text Available The introduction of molecular diagnostic methods is crucial for improved understanding of the aetiology and epidemiology of bacterial infections in communities in resource poor settings. A blood sample from a 7 month old patient diagnosed with malaria in 2001 in a Gambian outpatient clinic was reported as culture negative after it was subjected to traditional bacterial culture protocols. We re-addressed the analysis of the blood sample from this case more recently (after 6.5 years in archival storage in pilot work establishing 16S rRNA PCR in our molecular laboratory. Initial 16S rRNA PCR results confirmed the presence of bacterial DNA in the sample. 16S rRNA sequence analysis identified the organism as Campylobacter spp. In light of the molecular evidence we successfully grew the organism using appropriate culture conditions and subsequently biochemically confirmed that the isolate was Campylobacter jejuni. PCR and DNA sequencing of a set of seven C. jejuni housekeeping genes and in silico Multilocus Sequence Typing (MLST analysis revealed that the isolate exhibits a novel sequence type (ST of C. jejuni (ST 2928 and belongs to ST-443 clonal complex. This study demonstrates the potential for molecular tools to enhance the diagnosis of bacterial infections, which remain a major killer globally, not least in children in the developing world. Improvements in diagnostics are needed, and will be important not only for sick individuals but also for populations, where better measures of disease burden will contribute significantly to the improvement of public health policy.

  7. Host-Pathogen Interactions in Guillain-Barré Syndrome : the role of Campylobacter jejuni lipooligosaccharide sialylation

    NARCIS (Netherlands)

    A.P. Heikema (Astrid)

    2013-01-01

    markdownabstract*Campylobacter jejuni* (*C. jejuni*) is a spiral, comma-shaped Gram-negative bacterium which is motile due to bipolar flagella. *C. jejuni* is frequently present in the intestines of poultry and birds, where it is considered to be part of the normal intestinal flora (1).

  8. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barré and Miller Fisher syndromes

    NARCIS (Netherlands)

    P.C.R. Godschalk (Peggy); M.L. Kuijf (Mark); J. Li (Jianjun); F. St. Michael (Frank); C.W. Ang (Wim); M.F. Karwaski; D. Brochu (Denis); B.C. Jacobs (Bart); A. Moterassed (Ali); H.P. Endtz (Hubert); A.F. van Belkum (Alex); M. Gilbert (Michel)

    2007-01-01

    textabstractMolecular mimicry between lipooligosaccharides (LOS) of Campylobacter jejuni and gangliosides in peripheral nerves plays a crucial role in the pathogenesis of C. jejuni-related Guillain-Barré syndrome (GBS). We have analyzed the LOS outer core structures of 26 C. jejuni strains

  9. Distinct Campylobacter jejuni capsular types are related to Guillain-Barré syndrome in The Netherlands and Bangladesh

    Science.gov (United States)

    An infection with the intestinal pathogen Campylobacter jejuni leads to Guillain-Barré syndrome (GBS) in around one in thousand cases. It is established that sialylated lipooligosaccharides (LOS) of C. jejuni are a crucial virulence factor in GBS development. Frequent detection of C. jejuni with sia...

  10. Detection of Campylobacter jejuni in rectal swab samples from Rousettus amplexicaudatus in the Philippines.

    Science.gov (United States)

    Hatta, Yuki; Omatsu, Tsutomu; Tsuchiaka, Shinobu; Katayama, Yukie; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Une, Yumi; Yoshikawa, Yasuhiro; Maeda, Ken; Kyuwa, Shigeru; Mizutani, Tetsuya

    2016-09-01

    Bats are the second diversity species of mammals and widely distributed in the world. They are thought to be reservoir and vectors of zoonotic pathogens. However, there is scarce report of the evidence of pathogenic bacteria kept in bats. The precise knowledge of the pathogenic bacteria in bat microbiota is important for zoonosis control. Thus, metagenomic analysis targeting the V3-V4 region of the 16S rRNA of the rectal microbiota in Rousettus amplexicaudatus was performed using high throughput sequencing. The results revealed that 103 genera of bacteria including Camplyobacter were detected. Campylobacter was second predominant genus, and Campylobacter coli and Campylobacter jejuni were identified in microbiome of R. amplexicaudatus. Campylobacteriosis is one of the serious bacterial diarrhea in human, and the most often implicated species as the causative agent of campylobacteriosis is C. jejuni. Therefore, we investigated the prevalence of C. jejuni in 91 wild bats with PCR. As a result of PCR assay targeted on 16S-23S intergenic spacer, partial genome of C. jejuni was detected only in five R. amplexicaudatus. This is the first report that C. jejuni was detected in bat rectal swab samples. C. jejuni is the most common cause of campylobacteriosis in humans, transmitted through water and contact with livestock animals. This result indicated that R. amplexicaudatus may be a carrier of C. jejuni.

  11. Composting poultry manure by fly larvae (Musca domestica) eliminates Campylobacter jejuni from the manure

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Hald, Birthe

    2013-01-01

    Introduction The common house fly, Musca domestica (Md) is an important carrier of zoonotic agents, and Campylobacter jejuni is one that may be transmitted between animals and humans by flies. Colonized animals shed the bacteria in feces where larval stages of Md flies develops. Aim of the present...... study To monitor fly larvae composting of poultry manure artificially contaminated with C. jejuni, and to investigate a possible transmission route of C. jejuni from the manure through the fly larvae to the adult fly. Conclusions The addition of fly larvae both accelerated the degradation of manure...... and C. jejuni. Pupae or newly hatched flies were not carriers of C. jejuni although larvae were grown in contaminated manure. Impact When composting poultry manure with Md fly larvae, it is possible both to reduce the amount of waste and to sanitize it from C. jejuni, thereby reducing the risk...

  12. Feed can be a source of Campylobacter jejuni infection in broilers.

    Science.gov (United States)

    Alves, M B R; Fonseca, B B; Melo, R T; Mendonça, E P; Nalevaiko, P C; Girão, L C; Monteiro, G P; Silva, P L; Rossi, D A

    2017-02-01

    1. The aim was to determine the importance of a contaminated diet as a possible cause of Campylobacter jejuni infection in broilers. 2. This study evaluated the viability of C. jejuni in both starter and finisher diets and the interference from other mesophilic bacteria in this viability. 3. Starter and finisher samples of broiler diet were deliberately contaminated with 3 or 5 log CFU·g-1 of C. jejuni (NCTC 11351) and then maintained at two different storage temperatures (25°C or 37°C) for 3 or 5 d. 4. C. jejuni survived during this period and, when inoculated at 103 CFU·g-1, multiplied with greater proliferation at a storage temperature of 37°C. There was no relationship between the amount of mesophilic bacteria and C. jejuni viability. 5. This study highlights the importance of the diet in the epidemiology of C. jejuni in broilers.

  13. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes.

    Directory of Open Access Journals (Sweden)

    Robert O Watson

    2008-01-01

    Full Text Available Campylobacter jejuni is one of the major causes of infectious diarrhea world-wide, although relatively little is know about its mechanisms of pathogenicity. This bacterium can gain entry into intestinal epithelial cells, which is thought to be important for its ability to persistently infect and cause disease. We found that C. jejuni is able to survive within intestinal epithelial cells. However, recovery of intracellular bacteria required pre-culturing under oxygen-limiting conditions, suggesting that C. jejuni undergoes significant physiological changes within the intracellular environment. We also found that in epithelial cells the C. jejuni-containing vacuole deviates from the canonical endocytic pathway immediately after a unique caveolae-dependent entry pathway, thus avoiding delivery into lysosomes. In contrast, in macrophages, C. jejuni is delivered to lysosomes and consequently is rapidly killed. Taken together, these studies indicate that C. jejuni has evolved specific adaptations to survive within host cells.

  14. Intranasal Immunization with Chitosan/pCAGGS-flaA Nanoparticles Inhibits Campylobacter jejuni in a White Leghorn Model

    Directory of Open Access Journals (Sweden)

    Jin-lin Huang

    2010-01-01

    Full Text Available Campylobacter jejuni is the most common zoonotic bacterium associated with human diarrhea, and chickens are considered to be one of the most important sources for human infection, with no effective prophylactic treatment available. We describe here a prophylactic strategy using chitosan-DNA intranasal immunization to induce specific immune responses. The chitosan used for intranasal administration is a natural mucus absorption enhancer, which results in transgenic DNA expression in chicken nasopharynx. Chickens immunized with chitosan-DNA nanoparticles, which carried a gene for the major structural protein FlaA, produced significantly increased levels of serum anti-Campylobacter jejuni IgG and intestinal mucosal antibody (IgA, compared to those treated with chitosan-DNA (pCAGGS. Chitosan-pCAGGS-flaA intranasal immunization induced reductions of bacterial expellation by 2-3 log10 and 2 log10 in large intestine and cecum of chickens, respectively, when administered with the isolated C. jejuni strain. This study demonstrated that intranasal delivery of chitosan-DNA vaccine successfully induced effective immune response and might be a promising vaccine candidate against C. jejuni infection.

  15. Molecular mimicry in Campylobacter jejuni: role of the lipo-oligosaccharide core oligosaccharide in inducing anti-ganglioside antibodies.

    Science.gov (United States)

    Perera, Viraj N; Nachamkin, Irving; Ung, Huong; Patterson, John H; McConville, Malcolm J; Coloe, Peter J; Fry, Benjamin N

    2007-06-01

    Campylobacter jejuni is recognized as the most common identifiable pathogen associated with the development of Guillain-Barré syndrome (GBS), an acute autoimmune-mediated disease affecting the peripheral nervous system. The immune response to ganglioside-like structures in lipo-oligosaccharides (LOSs) of certain C. jejuni strains is thought to cross-react with human nerve gangliosides and induce GBS. To study the involvement of LOSs in the pathogenesis of Campylobacter-induced GBS, we created truncated LOS molecules by inactivating the waaF gene in a GBS-associated isolate of C. jejuni. Gas Chromatography-MS analysis of the waaF mutant LOSs revealed a marked reduction in sugar content, including sialic acid and galactose. GM1 and GD1a-like mimicry was not detected in the waaF mutant by Western blot analysis with cholera toxin B and anti-GD1a antibodies. Mice immunized with the waaF mutant failed to develop anti-GM1 or anti-GD1a antibodies. The waaF mutant also showed reduced adherence to and invasion of INT-407 cells. The results indicate that the LOS of C. jejuni HB93-13 is essential for adherence and invasion as well as for anti-ganglioside antibody induction.

  16. A Quantitative Real-Time PCR Approach for Assessing Campylobacter jejuni and Campylobacter coli Colonization in Broiler Herds.

    Science.gov (United States)

    Haas, Katrin; Overesch, Gudrun; Kuhnert, Peter

    2017-04-01

    Human campylobacteriosis is a major public health concern in developed countries, with Campylobacter jejuni and Campylobacter coli from poultry recognized as the main source of human infection. Identification of Campylobacter-positive broiler herds before slaughter is essential for implementing measures to avoid carryover of pathogens via the slaughter process into the food chain. However, appropriate methods that have been validated for testing poultry flocks antemortem are lacking for Campylobacter. A quantitative real-time PCR (qPCR) that allows simultaneous detection and quantification of C. jejuni and C. coli was adapted and optimized to be applied on boot socks. The adjusted qPCR serves as an easy, sensitive, and quantitative method for Campylobacter detection in poultry flocks antemortem by analysis of boot socks. An adequate correlation was found between qPCR and culture, as well as between boot socks and cecal samples, which are regarded as the "gold standard." Therefore, boot sock sampling followed by qPCR analysis provides a reliable and simple method for assessing Campylobacter load within a flock prior to slaughter. The approach allows categorization of broiler herds into negative, low, moderate, or high Campylobacter colonization. Based on the results of this new approach, risk assessment models, such as evaluating the possible effect of sorting flocks before slaughter, can be easily implemented. Similarly, targeted identification of highly colonized flocks for improvement of biosecurity measures at the farm level will become feasible, presenting an opportunity to increase food safety.

  17. Identification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method

    Directory of Open Access Journals (Sweden)

    Heath Sekou

    2007-02-01

    Full Text Available Abstract Background The human bacterial pathogen Campylobacter jejuni contains two subspecies: C. jejuni subsp. jejuni (Cjj and C. jejuni subsp. doylei (Cjd. Although Cjd strains are isolated infrequently in many parts of the world, they are obtained primarily from human clinical samples and result in an unusual clinical symptomatology in that, in addition to gastroenteritis, they are associated often with bacteremia. In this study, we describe a novel multiplex PCR method, based on the nitrate reductase (nap locus, that can be used to unambiguously subspeciate C. jejuni isolates. Results Internal and flanking napA and napB primer sets were designed, based on existing C. jejuni and Campylobacter coli genome sequences to create two multiplex PCR primer sets, nap mpx1 and nap mpx2. Genomic DNA from 161 C. jejuni subsp. jejuni (Cjj and 27 C. jejuni subsp. doylei (Cjd strains were amplified with these multiplex primer sets. The Cjd strains could be distinguished clearly from the Cjj strains using either nap mpx1 or mpx2. In addition, combination of either nap multiplex method with an existing lpxA speciation multiplex method resulted in the unambiguous and simultaneous speciation and subspeciation of the thermophilic Campylobacters. The Cjd nap amplicons were also sequenced: all Cjd strains tested contained identical 2761 bp deletions in napA and several Cjd strains contained deletions in napB. Conclusion The nap multiplex PCR primer sets are robust and give a 100% discrimination of C. jejuni subspecies. The ability to rapidly subspeciate C. jejuni as well as speciate thermophilic Campylobacter species, most of which are pathogenic in humans, in a single amplification will be of value to clinical laboratories in strain identification and the determination of the environmental source of campylobacterioses caused by Cjd. Finally, the sequences of the Cjd napA and napB loci suggest that Cjd strains arose from a common ancestor, providing clues as to

  18. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation

    Directory of Open Access Journals (Sweden)

    Fields Joshua A

    2012-10-01

    Full Text Available Abstract Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA.

  19. Adherence, enterotoxigenicity, invasiveness and serogroups in Campylobacter jejuni and Campylobacter coli strains from adult humans with acute enterocolitis.

    Science.gov (United States)

    Lindblom, G B; Cervantes, L E; Sjögren, E; Kaijser, B; Ruiz-Palacios, G M

    1990-02-01

    Two hundred Campylobacter jejuni and Campylobacter coli strains from the same number of adult Swedish patients with acute enterocolitis were tested regarding adherence to and invasiveness in HEp-2 cells and for enterotoxigenicity by the CHO-cell assay. The serogroup characteristics, heat-stable and heat-labile, for each strain were also investigated. Eighty-four percent of the strains were classified as C. jejuni and 16 percent as C. coli. All of the strains were adherent to HEp-2 cells, 39% were invasive and 31.5% enterotoxigenic. We found significantly more invasive strains in the non-enterotoxigenic group than in the enterotoxigenic one. There would seem to be no correlation between enterotoxigenicity or invasiveness and serogroup. The results of this study suggest the existence of multiple mechanisms for C. jejuni- and C. coli-induced diarrhoea and that the mechanisms may differ from one strain to another.

  20. Distribution of flagella secreted protein and integral membrane protein among Campylobacter jejuni isolated from Thailand

    Directory of Open Access Journals (Sweden)

    Pootong Piyarat

    2011-07-01

    Full Text Available Abstract Background Campylobacter jejuni, a gram-negative bacterium, is a frequent cause of gastrointestinal food-borne illness in humans throughout the world. There are several reports that the virulence of C. jejuni might be modulated by non-flagellar proteins that are secreted through the filament. Recently, FspA (Flagella secreted proteins have been described. Two alleles of fspA (fspA1 and fspA2 based on sequence analysis were previously reported and only the fspA2 allele was found in Thai isolates. The aim of this study is to analyze the deduced amino acid sequences fspA and the adjacent putative integral membrane protein from 103 Thai C. jejuni isolates. Results A total of 103 representative C. jejuni isolates were amplified by PCR for the fspA gene and the adjacent integral membrane protein gene. Two PCR product sizes were amplified using the same primers, an approximately 1600-bp PCR product from 19 strains that contained fspA and integral membrane protein genes and an approximately 800-bp PCR product from 84 strains that contained only the fspA gene. DNA sequencing was performed on the amplified products. The deduced amino acid sequences of both genes were analyzed separately using CLC Free Workbench 4 software. The analysis revealed three groups of FspA. Only FspA group 1 sequences (19/103 (corresponding to fspA1 consisting of 5 subgroups were associated with the adjacent gene encoding the integral membrane protein. FspA group 2 was the largest group (67/103 consisting of 9 subgroups. FspA group 2p (17/103 consisting of 7 subgroups was found to contain stop codons at a position before the terminal 142 position. Conclusions This study reveals greater heterogeneity of FspA (group 1, 2 and 2p among Thai C. jejuni isolates than previously reported. Furthermore, the subgroups of FspA groups 1 were associated with groups of integral membrane protein. The significance of these different FspA variants to virulence requires further study.

  1. [Campylobacter jejuni O:19 serotype in Argentine poultry meat supply chain].

    Science.gov (United States)

    Rossler, Eugenia; Fuhr, Estefanía M; Lorenzón, Guillermina; Romero-Scharpen, Analía; Berisvil, Ayelén P; Blajman, Jesica E; Astesana, Diego M; Zimmermann, Jorge A; Fusari, Marcia L; Signorini, Marcelo L; Soto, Lorena P; Frizzo, Laureano S; Zbrun, María V

    Thermotolerant species of Campylobacter have been focus of attention in the last years because they are the major agent causing zoonotic foodborne diseases. In addition, Campylobacter jejuni O:19 serotype was associated with Guillain Barré syndrome. The aim of this study was to determine the proportion of C. jejuni O:19 serotype isolated at different stages of three poultry meat supply chain in Santa Fe, Argentina. The analysis showed that 18% of isolated C. jejuni belong to serotype O:19. It was also determined that the presence of these strains is given in almost all production stages. These results reflect a significant risk to public health of consumers. Epidemiological studies of Campylobacter should be considered to establish a risk manager policy. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. [Antimicrobial susceptibility of Campylobacter jejuni isolates from stool cultures in Santiago, Chile].

    Science.gov (United States)

    García, Patricia C; Valenzuela, Natalia S; Rodríguez, M Victoria L; León, Eugenia C; Fernández, Heríberto J

    2009-12-01

    Campylobacter jejuni is a common agent of enterocolitis in humans. Campylobacteriosis has been recognized as a zoonotic disease whose reservoir is the intestinal flora of poultry. The reposition of fluid and electrolytes is the recommended treatment, and antimicrobials are required only in severe and/or in prolonged disease. Given the emergence of resistance to drugs commonly used in the treatment of acute diarrhea, we studied the antimicrobial susceptibility of 73 strains of Campylobacter jejuni isolated from stool culture. The antimicrobials tested were: erythromycin, azithromycin, ampicillin and ciprofloxacin. Of the 73 strains tested by E-test, 32.4% were resistant to ciprofloxacin and 6.4% were resistant to ampicillin. Resistance to erythromycin and azithromycin was not detected. The surveillance of antimicrobial resistance of Campylobacter jejuni is important in the evaluation of empirically used antimicrobials in the treatment of bacterial enterocolitis.

  3. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Science.gov (United States)

    Riazi, Ali; Strong, Philippa C R; Coleman, Russell; Chen, Wangxue; Hirama, Tomoko; van Faassen, Henk; Henry, Matthew; Logan, Susan M; Szymanski, Christine M; Mackenzie, Roger; Ghahroudi, Mehdi Arbabi

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  4. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  5. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    Science.gov (United States)

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical

  6. The ability of Fla-typing schemes to discriminate between strains of Campylobacter jejuni.

    Science.gov (United States)

    Petersen, L; Newell, D G

    2001-08-01

    The aim of this investigation was to compare the usefulness of two previously published flagellin PCR-RFLP typing (Fla-typing) techniques for the subtyping of Campylobacter jejuni strains, in terms of ease of use and discriminatory power. Six groups of isolates, which were epidemiologically unrelated but with similar Fla-types, and five groups of epidemiologically related poultry isolates, with similar PFGE profiles, were used in the comparison. The Fla-typing methods used varied in the number and length of fla-genes amplified and the restriction enzymes used. In addition, the use of separately amplified PCR fragments of both the flaA and flaB genes to generate RFLP profiles was investigated. The results clearly demonstrated that both previously published methods exhibit some advantages over the other. However, optimal discrimination was obtained by the use of separately amplified PCR fragments of both fla-genes. The subtyping of Camp. jejuni isolates is considered essential for epidemiological purposes. Genotyping methods are now more frequently used but have yet to be standardized. Fla-typing is a rapid and easy to use method with acceptable discriminatory power. However, the discriminatory power of the currently published Fla-typing techniques may be further improved by incorporating RFLP profiles of both fla-genes.

  7. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel.

    Science.gov (United States)

    Su, Chih-Chia; Radhakrishnan, Abhijith; Kumar, Nitin; Long, Feng; Bolla, Jani Reddy; Lei, Hsiang-Ting; Delmar, Jared A; Do, Sylvia V; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R; Zhang, Qijing; Yu, Edward W

    2014-07-01

    As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance-nodulation-cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export. © 2014 The Protein Society.

  8. Campylobacter jejuni: A rare agent in a child with peritoneal dialysis-related peritonitis.

    Science.gov (United States)

    Tural Kara, Tugce; Yilmaz, Songul; Ozdemir, Halil; Birsin Ozcakar, Zeynep; Derya Aysev, Ahmet; Ciftci, Ergin; Ince, Erdal

    2016-10-01

    Peritonitis is a serious problem in children receiving peritoneal dialysis. Campylobacter jejuni is an unusual cause of peritonitis. A 10-year-old boy who had end stage renal failure due to atypical hemolytic uremic syndrome was admitted to our hospital with abdominal pain and fever. Peritoneal dialysis fluid was cloudy and microscopic examination showed abundant leukocytes. Intraperitoneal cefepime treatment was started. Campylobacter jejuni was isolated from peritoneal dialysis fluid culture and oral clarithromycin was added to the treatment. At the end of therapy, peritoneal fluid culture was negative. To our knowledge, C. jejuni peritonitis was not reported in children previously. Although C. jejuni peritonitis is rarely encountered in children, it should be considered as an etiologic factor for peritonitis. Sociedad Argentina de Pediatría.

  9. [Preparation and characterization of monoclonal antibodies against cytolethal distending toxin protein of Campylobacter jejuni].

    Science.gov (United States)

    Lu, Lei; Shang, Yuwei; Ren, Fangzhe; Wang, Nan; Jiao, Xin'an; Huang, Jinlin

    2014-08-04

    To express Campylobacter jejuni cytolethal distending toxin B protein (CdtB) in a prokaryote to prepare monoclonal antibodies (mAbs) against the protein, and to study their antitoxic effects. The C. jejuni cdtB gene was amplified and inserted into the expression plasmids pET-30a( + ) and pGEX-6p-1. The purified rGST-CdtB protein was used as the immunogen to screen hybridoma cells for mAbs against the protein. The mAb titers were determined with an indirect enzyme-linked immunosorbent assay (ELISA), and their specificity with a Dot-ELISA and western blotting analysis. We determined the antitoxic properties of the mAbs in CaCo-2 and HD-11 cells. Recombinant expression plasmids pET-30a (+)-cdtB and pGEX-6p-l-cdtB were successfully constructed, and fusion proteins rHis-CdtB and rGST-CdtB expressed, respectively. Five hybridoma cell lines, designated 1F3, IF5, 2E4, 2E11, and 2F2, were screened for the stable secretion of mAbs against CdtB. The immunoglobulin subclass of 2E11 was IgG2b and that of the other mAbs was IgG1. The mAb titers in the ascites fluids were 1:1 x 10(8) on indirect ELISA. Dot-ELISA demonstrated that the five mAbs reacted specifically with C. jejuni. Western blotting analysis confirmed that the five mAbs reacted well with the rGST-CdtB fusion protein. The mAbs significantly reduced the adhesion and invasion capacities of the bacterium in CaCo-2 cells (P jejuni.

  10. EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence.

    Science.gov (United States)

    Cullen, Thomas W; O'Brien, John P; Hendrixson, David R; Giles, David K; Hobb, Rhonda I; Thompson, Stuart A; Brodbelt, Jennifer S; Trent, M Stephen

    2013-02-01

    Campylobacter jejuni is a natural commensal of the avian intestinal tract. However, the bacterium is also the leading cause of acute bacterial diarrhea worldwide and is implicated in development of Guillain-Barré syndrome. Like many bacterial pathogens, C. jejuni assembles complex surface structures that interface with the surrounding environment and are involved in pathogenesis. Recent work in C. jejuni identified a gene encoding a novel phosphoethanolamine (pEtN) transferase, EptC (Cj0256), that plays a promiscuous role in modifying the flagellar rod protein, FlgG; the lipid A domain of lipooligosaccharide (LOS); and several N-linked glycans. In this work, we report that EptC catalyzes the addition of pEtN to the first heptose sugar of the inner core oligosaccharide of LOS, a fourth enzymatic target. We also examine the role pEtN modification plays in circumventing detection and/or killing by host defenses. Specifically, we show that modification of C. jejuni lipid A with pEtN results in increased recognition by the human Toll-like receptor 4-myeloid differentiation factor 2 (hTLR4-MD2) complex, along with providing resistance to relevant mammalian and avian antimicrobial peptides (i.e., defensins). We also confirm the inability of aberrant forms of LOS to activate Toll-like receptor 2 (TLR2). Most exciting, we demonstrate that strains lacking eptC show decreased commensal colonization of chick ceca and reduced colonization of BALB/cByJ mice compared to wild-type strains. Our results indicate that modification of surface structures with pEtN by EptC is key to its ability to promote commensalism in an avian host and to survive in the mammalian gastrointestinal environment.

  11. Effects of lipooligosaccharide inner core truncation on bile resistance and chick colonization by Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Taketoshi Iwata

    Full Text Available Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS, a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >10(7 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <10(3 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.

  12. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes.

    Science.gov (United States)

    Godschalk, Peggy C R; Kuijf, Mark L; Li, Jianjun; St Michael, Frank; Ang, C Wim; Jacobs, Bart C; Karwaski, Marie-France; Brochu, Denis; Moterassed, Ali; Endtz, Hubert P; van Belkum, Alex; Gilbert, Michel

    2007-03-01

    Molecular mimicry between lipooligosaccharides (LOS) of Campylobacter jejuni and gangliosides in peripheral nerves plays a crucial role in the pathogenesis of C. jejuni-related Guillain-Barré syndrome (GBS). We have analyzed the LOS outer core structures of 26 C. jejuni strains associated with GBS and its variant, Miller Fisher syndrome (MFS), by capillary electrophoresis coupled with electrospray ionization mass spectrometry. Sixteen out of 22 (73%) GBS-associated and all 4 (100%) MFS-associated strains expressed LOS with ganglioside mimics. GM1a was the most prevalent ganglioside mimic in GBS-associated strains (10/22, 45%), and in eight of these strains, GM1a was found in combination with GD1a mimics. All seven strains isolated from patients with ophthalmoplegia (GBS or MFS) expressed disialylated (GD3 or GD1c) mimics. Three out of 22 GBS-associated strains (14%) did not express sialylated ganglioside mimics because their LOS locus lacked the genes necessary for sialylation. Three other strains (14%) did not express ganglioside mimics because of frameshift mutations in either the cstII sialyltransferase gene or the cgtB galactosyltransferase gene. It is not possible to determine if these mutations were already present during C. jejuni infection. This is the first report in which mass spectrometry combined with DNA sequence data were used to infer the LOS outer core structures of a large number of neuropathy-associated C. jejuni strains. We conclude that molecular mimicry between gangliosides and C. jejuni LOS is the presumable pathogenic mechanism in most cases of C. jejuni-related GBS. However, our findings suggest that in some cases, other mechanisms may play a role. Further examination of the disease etiology in these patients is mandatory.

  13. Exploring PFGE for Detecting Large Plasmids in Campylobacter jejuni and Campylobacter coli Isolated from Various Retail Meats

    Directory of Open Access Journals (Sweden)

    Daya Marasini

    2014-10-01

    Full Text Available Campylobacter spp. is one of the most prevalent bacterial pathogens in retail meat, particularly poultry, and is a leading cause of diarrhea in humans. Studies related to Campylobacter large plasmids are limited in the literature possibly due to difficulty in isolating them using available alkaline lysis methods. The objectives of this study were to determine the prevalence of plasmids, particularly large ones, in Campylobacter spp. isolated from various Oklahoma retail meats, and to explore PFGE (Pulsed Field Gel Electrophoresis as a tool in facilitating the detection of these plasmids. One hundred and eighty nine strains (94 Campylobacter jejuni and 95 Campylobacter coli were screened for the presence of plasmids using both alkaline lysis and PFGE. Plasmids were detected in 119/189 (63% using both methods. Most of the plasmids detected by alkaline lysis were smaller than 90 kb and only three were larger than 90 kb. Plasmids over 70 kb in size were detected in 33 more strains by PFGE of which 11 strains contained larger than 90 kb plasmids. Plasmids were more prevalent in Campylobacter coli (73.5% than in Campylobacter jejuni (52%. BglII restriction analysis of plasmids isolated from 102 isolates revealed 42 different restriction patterns. In conclusion, PFGE was able to detect large plasmids up to 180 Kb in Campylobacter spp. which might have been missed if the alkaline lysis method was solely used. Campylobacter spp. isolated from retail meats harbor a diverse population of plasmids with variable sizes. To our knowledge, this is the first study to use PFGE to detect large plasmids in Campylobacter.

  14. Role of Campylobacter jejuni Infection in the Pathogenesis of Guillain-Barré Syndrome: An Update

    Directory of Open Access Journals (Sweden)

    Kishan Kumar Nyati

    2013-01-01

    Full Text Available Our current knowledge on Campylobacter jejuni infections in humans has progressively increased over the past few decades. Infection with C. jejuni is the most common cause of bacterial gastroenteritis, sometimes surpassing other infections due to Salmonella, Shigella, and Escherichia coli. Most infections are acquired due to consumption of raw or undercooked poultry, unpasteurized milk, and contaminated water. After developing the diagnostic methods to detect C. jejuni, the possibility to identify the association of its infection with new diseases has been increased. After the successful isolation of C. jejuni, reports have been published citing the occurrence of GBS following C. jejuni infection. Thus, C. jejuni is now considered as a major triggering agent of GBS. Molecular mimicry between sialylated lipooligosaccharide structures on the cell envelope of these bacteria and ganglioside epitopes on the human nerves that generates cross-reactive immune response results in autoimmune-driven nerve damage. Though C. jejuni is associated with several pathologic forms of GBS, axonal subtypes following C. jejuni infection may be more severe. Ample amount of existing data covers a large spectrum of GBS; however, the studies on C. jejuni-associated GBS are still inconclusive. Therefore, this review provides an update on the C. jejuni infections engaged in the pathogenesis of GBS.

  15. An improved culture method for selective isolation of Campylobacter jejuni from wastewater

    Directory of Open Access Journals (Sweden)

    Jinyong Kim

    2016-08-01

    Full Text Available Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently-available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin, to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with Ct value using quantitative real-time PCR (qRT-PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. In particular, rifampicin supplementation and an increased culture temperature (i.e., 42°C had a decisive effect on the selective enrichment of C. jejuni from wastewater. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater.

  16. Phenotypic and Transcriptomic Responses of Campylobacter jejuni Suspended in an Artificial Freshwater Medium

    Directory of Open Access Journals (Sweden)

    Hana Trigui

    2017-09-01

    Full Text Available Campylobacter jejuni is the leading cause of campylobacteriosis in the developed world. Although most cases are caused by consumption of contaminated meat, a significant proportion is linked to ingestion of contaminated water. The differences between C. jejuni strains originating from food products and those isolated from water are poorly understood. Working under the hypothesis that water-borne C. jejuni strains are better equipped at surviving the nutrient-poor aquatic environment than food-borne strains, the present study aims to characterize these differences using outbreak strains 81116 and 81-176. Strain 81116 caused a campylobacteriosis outbreak linked to consumption of water, while strain 81-176 was linked to consumption of raw milk. CFU counts and viability assays showed that 81116 survives better than 81-176 at 4°C in a defined freshwater medium (Fraquil. Moreover, 81116 was significantly more resistant to oxidative stress and bile salt than strain 81-176 in Fraquil. To better understand the genetic response of 81116 to water, a transcriptomic profiling study was undertaken using microarrays. Compared to rich broth, strain 81116 represses genes involved in amino acid uptake and metabolism, as well as genes involved in costly biosynthetic processes such as replication, translation, flagellum synthesis and virulence in response to Fraquil. In accordance with the observed increase in stress resistance in Fraquil, 81116 induces genes involved in resistance to oxidative stress and bile salt. Interestingly, genes responsible for cell wall synthesis were also induced upon Fraquil exposure. Finally, twelve unique genes were expressed in Fraquil; however, analysis of their distribution in animal and water isolates showed that they are not uniquely and ubiquitously present in water isolates, and thus, unlikely to play a major role in adaptation to water. Our results show that some C. jejuni strains are more resilient than others, thereby

  17. Serologic Evidence of Previous Campylobacter jejuni Infection in Patients with the Guillain-Barre Syndrome

    Science.gov (United States)

    1993-06-15

    Guillain - Barre syndrome . N Engl J Med.1992;326: ular serotype of C. jejuni , Penner type 019, was asso- 1130-6. ciated with...51. with the Guillain -Barrd syndrome who had previous 15. Ropper AN. Campylobacter diarrhea and Guillain - Barre syndrome . C. jejuni infection...with the Guillain - Barre 90PP0820 Syndrome Ban Mishu, M.D.; Amjad A. Ilyas, Ph.D.; Carol L. Koski, M.D.; Francine Vriesendorp, M.D.; Stuart D. Cook,

  18. Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity

    OpenAIRE

    Bleumink-Pluym, Nancy M.C.; van Alphen, Lieke B.; Bouwman, Lieneke I; Wösten, Marc M. S. M.; van Putten, Jos P. M.

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses rev...

  19. Campylobacter jejuni prevalence and hygienic quality of retail bovine ground meat in Finland.

    Science.gov (United States)

    Llarena, A-K; Sivonen, K; Hänninen, M-L

    2014-05-01

    Detection of common genotypes of Campylobacter jejuni among Finnish human and bovine isolates, suggested that bovines may be a source for zoonotic Camp. jejuni infection. In addition, a Finnish epidemiological study implied the tasting and eating raw or undercooked beef as risk factors for acquiring campylobacteriosis. We therefore performed a study on the occurrence of Camp. jejuni in retail bovine ground meat in Helsinki by the use of both cultivation and PCR. During 2011 and 2012, 175 bovine ground meat samples were collected. None of the samples were Campylobacter positive by cultivation, and only one sample (0.6%) was Camp. jejuni positive by the use of PCR on template extracted directly from ground meat. According to our findings, Finnish bovine ground meat is an unlikely source for human campylobacteriosis. Additionally, the hygienic quality of bovine ground meat at retail level was screened and found to be good when monitored by aerobic micro-organisms, total thermotolerant coliforms and Eshericha coli. This study provides the first data on the occurrence of the zoonotic pathogen Campylobacter jejuni in Finnish bovine ground meat. This knowledge is important as part of future Campylobacter risk assessment, management and monitoring programs, particularly when assessing the relative attribution of poultry, pork and bovine meat to the burden of human campylobacteriosis. According to our results, Finnish bovine ground meat at retail level is of good hygienic quality. © 2013 The Society for Applied Microbiology.

  20. Intracellular pH Campylobacter jejuni when treated with aqueous chlorine dioxide

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Arneborg, Nils

    2011-01-01

    The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a pH-sensitiv......The aim of this study was to investigate the response of Campylobacter jejuni at single-cell level when exposed to different concentrations of chlorine dioxide (ClO2). The parameter of choice, intracellular pH (pHi), was determined by using fluorescence ratio imaging microscopy with a p...

  1. Effect of environmental stress factors on the uptake and survival of Campylobacter jejuni in Acanthamoeba castellanii

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Qvortrup, Klaus; Wolff, Anders

    2012-01-01

    Background: Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre-exposure ......Background: Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes. Pre...

  2. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni.

    Science.gov (United States)

    Nishiyama, Keita; Seto, Yasuyuki; Yoshioka, Kazuki; Kakuda, Tsutomu; Takai, Shinji; Yamamoto, Yuji; Mukai, Takao

    2014-01-01

    Campylobacter is a normal inhabitant of the chicken gut. Pathogenic infection with this organism in humans is accompanied by severe inflammation of the intestinal mucosal surface. The aim of this study was to evaluate the ability of Lactobacillus gasseri SBT2055 (LG2055) to inhibit the adhesion and invasion of Campylobacter jejuni in vitro and to suppress C. jejuni colonization of chicks in vivo. Pretreatment with LG2055 significantly reduced adhesion to and invasion of a human epithelial cell line, Intestine 407, by C. jejuni 81-176. Methanol (MeOH)-fixed LG2055 also reduced infection by C. jejuni 81-176. However, proteinase K (ProK)-treated LG2055 eliminated the inhibitory effects. Moreover, LG2055 co-aggregated with C. jejuni 81-176. ProK treatment prevented this co-aggregation, indicating that the co-aggregation phenotype mediated by the proteinaceous cell-surface components of LG2055 is important for reducing C. jejuni 81-176 adhesion and invasion. In an in vivo assay, oral doses of LG2055 were administered to chicks daily for 14 days after oral inoculation with C. jejuni 81-176. At 14 days post-inoculation, chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. Reduction in the number of C. jejuni 81-176 cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni 81-176. In addition, the results of the chick colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages.

  3. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    Full Text Available Campylobacter is a normal inhabitant of the chicken gut. Pathogenic infection with this organism in humans is accompanied by severe inflammation of the intestinal mucosal surface. The aim of this study was to evaluate the ability of Lactobacillus gasseri SBT2055 (LG2055 to inhibit the adhesion and invasion of Campylobacter jejuni in vitro and to suppress C. jejuni colonization of chicks in vivo. Pretreatment with LG2055 significantly reduced adhesion to and invasion of a human epithelial cell line, Intestine 407, by C. jejuni 81-176. Methanol (MeOH-fixed LG2055 also reduced infection by C. jejuni 81-176. However, proteinase K (ProK-treated LG2055 eliminated the inhibitory effects. Moreover, LG2055 co-aggregated with C. jejuni 81-176. ProK treatment prevented this co-aggregation, indicating that the co-aggregation phenotype mediated by the proteinaceous cell-surface components of LG2055 is important for reducing C. jejuni 81-176 adhesion and invasion. In an in vivo assay, oral doses of LG2055 were administered to chicks daily for 14 days after oral inoculation with C. jejuni 81-176. At 14 days post-inoculation, chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. Reduction in the number of C. jejuni 81-176 cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni 81-176. In addition, the results of the chick colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages.

  4. Study of the infectivity of saline-stored Campylobacter jejuni for day-old chicks

    DEFF Research Database (Denmark)

    Hald, Birthe; Knudsen, Katrine; Lind, Peter

    2001-01-01

    The culturability of three Campylobacter jejuni strains and their infectivity for day-old chicks were assessed following storage of the strains in saline. The potential for colonization of chicks was weakened during the storage period and terminated 3 to 1 weeks before the strains became noncultu......The culturability of three Campylobacter jejuni strains and their infectivity for day-old chicks were assessed following storage of the strains in saline. The potential for colonization of chicks was weakened during the storage period and terminated 3 to 1 weeks before the strains became......-campylobacter outer membrane protein serum antibodies in day-old chicks did not protect the chicks from campylobacter colonization....

  5. Presenting a rapid method for detection of Bacillus cereus, Listeria monocytogenes and Campylobacter jejuni in food samples

    Directory of Open Access Journals (Sweden)

    Ali Razei

    2017-08-01

    Full Text Available Objective(s: Listeria monocytogens, Bacillus cereus and Campylobacter jejuni are three toxin producing bacteria over the world, especially in Iran, and it is essential to find a certain, rapid procedure to identify these microorganisms. In this research, these bacteria were simultaneously detected by multiplex PCR technique in foods. Materials and Methods: The primary approval of bacterial strains was performed by biochemical tests. PCR primers were designed based on the nucleotide sequences of the NHEB/NHEC gene of B. cereus, the hly gene of L. monocytogenes and the C gene of C. jejuni. The specificity of Multiplex PCR method was determined using seven food poisoning bacteria including Salmonella typhi, Shigella dysentery, Yersinia pestis, Staphylococcus aureus, Clostridium perfringens, Clostridium botulinum and Vibrio cholerae. To confirm the reaction, DNA extraction was performed from 30 food samples (milk, and gene amplification was performed by PCR. The length of amplified fragments was 300 bp, 210 bp and 160 bpfor NHEB/NHEC, hly and C genes, respectively. Results: The detection limits of the PCR method were 5, 4 and 3 pg for L. monocytogenes, B. cereus and C. jejuni, respectively. Specifisity test showed that this reaction is spesific to these 3 bacteria. Conclusion: In this study, we  introduced a new multiplex PCR method for simultsnus detection of L. monocytogens, B. cereus and C. jejuni. These results can be used  for detection of other toxin producing bacteria in food.

  6. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data

    Directory of Open Access Journals (Sweden)

    Kathy T Mou

    2015-01-01

    Full Text Available Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA in the United States, and that strain’s association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences’ Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902 and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176. Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.

  7. Is allicin able to reduce Campylobacter jejuni colonization in broilers when added to drinking water?

    Science.gov (United States)

    Robyn, J; Rasschaert, G; Hermans, D; Pasmans, F; Heyndrickx, M

    2013-05-01

    Reducing Campylobacter shedding on the farm could result in a reduction of the number of human campylobacteriosis cases. In this study, we first investigated if allicin, allyl disulfide, and garlic oil extract were able to either prevent C. jejuni growth or kill C. jejuni in vitro. Allyl disulfide and garlic oil extract reduced C. jejuni numbers in vitro below a detectable level at a concentration of 50 mg/kg (no lower concentrations were tested), whereas allicin reduced C. jejuni numbers below a detectable level at a concentration as low as 7.5 mg/kg. In further experiments we screened for the anti-C. jejuni activity of allicin in a fermentation system closely mimicking the broiler cecal environment using cecal microbiota and mucus isolated from C. jejuni-free broilers. During these fermentation experiments, allicin reduced C. jejuni numbers below a detectable level after 24 h at a concentration of 50 mg/kg. In contrast, 25 mg/kg of allicin killed C. jejuni in the first 28 h of incubation, but anti-C. jejuni activity was lost after 48 h of incubation, probably due to the presence of mucin in the growth medium. This had been confirmed in fermentation experiments in the presence of broiler cecal mucus. Based on these results, we performed an in vivo experiment to assess the prevention or reduction of cecal C. jejuni colonization in broiler chickens when allicin was added to drinking water. We demonstrated that allicin in drinking water did not have a statistically significant effect on cecal C. jejuni colonization in broilers. It was assumed, based on in vitro experiments, that the activity of allicin was thwarted by the presence of mucin-containing mucus. Despite promising in vitro results, allicin was not capable of statistically influencing C. jejuni colonization in a broiler flock, although a trend toward lower cecal C. jejuni numbers in allicin-treated broilers was observed.

  8. Genome sequences of two stress-tolerant Campylobacter jejuni poultry strains, 305 and DFVF1099

    DEFF Research Database (Denmark)

    Takamiya, Monica; Özen, Asli Ismihan; Rasmussen, Morten

    2011-01-01

    Campylobacter jejuni is a food-borne pathogen with a high prevalence in poultry meat, which in fresh unfrozen condition is the major source of campylobacteriosis. C. jejuni strains DFVF1099 and 305 are considered tolerant to several environmental stresses (T. Birk et al., J. Food Prot. 73......:258–265, 2010; S. L. On et al., Int. J. Med. Microbiol. 296:353–363, 2006). Here, we report the genome sequences of C. jejuni 305 and DFVF1099, a turkey and a chicken isolate, respectively. ©American Society for Microbiology. All rights reserved....

  9. Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens.

    Science.gov (United States)

    Cawthraw, S A; Newell, D G

    2010-03-01

    The role of maternal antibodies in the lag phase of Campylobacter positivity, widely observed in commercial broiler flocks, was investigated. The results indicate that 3-wk-old birds derived from a commercial flock are more susceptible to colonization with Campylobacter jejuni than 1-to-2-wk-old birds. This increasing susceptibility parallels the loss of maternally derived, circulating, anti-Campylobacter, immunoglobulin Y antibodies as detected by enzyme-linked immunosorbent assay. The role of these antibodies in resistance to colonization was further investigated using progeny from breeder flocks of known Campylobacter status. These results confirmed that maternal antibodies confer partial protection against Campylobacter colonization on young chickens (1-2 wk old). This protection was directed against challenge with both homologous and heterologous strains of C. jejuni and even against strains with a high colonization potential. However, evidence presented indicates that newly hatched chicks, with the highest levels of maternal antibodies, were as susceptible to Campylobacter challenge as 3-wk-old birds. This conundrum was investigated further, and an increase in resistance was detected from 1 to 3 days of age. The reasons for this are, as yet, unknown, but the observation validates the use of newly hatched chicks in models of Campylobacter colonization. Moreover, this high susceptibility in the first few days of life may explain the occasional early flock colonization observed, especially when environmental exposure to Campylobacter is high, for example, in free-range birds.

  10. Molecular detection identified a type six secretion system in Campylobacter jejuni from various sources but not from human cases.

    Science.gov (United States)

    Siddiqui, F; Champion, O; Akram, M; Studholme, D; Eqani, S A M A S; Wren, B W; Titball, R; Bokhari, H

    2015-05-01

    To determine the presence of the T6SS in Campylobacter jejuni from diverse sources. The recently identified type VI secretion system (T6SS) is a bacterial injection machinery that plays a role in virulence, symbiosis, bacterial interactions and environmental stress responses. This system has been recently discovered in the major enteric pathogen Camp. jejuni. In this study, we used multiplex PCR (mPCR), based on conserved genetic markers of the T6SS, to screen 366 Pakistani Camp. jejuni isolates from humans, poultry, cattle, wildlife or waste-water sources. We identified the T6SS in isolates from all of these sources except humans. The overall prevalence of the T6SS among the isolates was 17/366 (4·6%) and the T6SS positive isolates clustered into four different groups. Transcription of the T6SS genes, determined using RT-PCR, was observed in bacteria cultured at 37 or 42°C but not in 37°C cultures adjusted to pH3. Campylobacter jejuni isolates harbouring T6SS markers genes were identified in livestock and non-livestock sources but in this study we did not identify human diarrhoeal isolates which possessed the T6SS. We demonstrated down-regulation of T6SS in an acidic environment. This study questions the role of the T6SS in human diarrhoeal disease. Moreover this study did not identify a clear association of Camp. jejuni isolates harbouring T6SS with any of the niches tested. Our study highlights the need to establish the role of the T6SS in environmental survival or virulence. © 2015 The Society for Applied Microbiology.

  11. Development of a loop-mediated isothermal amplification assay for rapid, sensitive detection of Campylobacter jejuni in cattle farm samples.

    Science.gov (United States)

    Dong, Hee-Jin; Cho, Ae-Ri; Hahn, Tae-Wook; Cho, Seongbeom

    2014-09-01

    Campylobacter jejuni is a leading cause of bacterial foodborne disease worldwide. The detection of this organism in cattle and their environment is important for the control of C. jejuni transmission and the prevention of campylobacteriosis. Here, we describe the development of a rapid and sensitive method for the detection of C. jejuni in naturally contaminated cattle farm samples, based on real-time loop-mediated isothermal amplification (LAMP) of the hipO gene. The LAMP assay was specific (100% inclusivity and exclusivity for 84 C. jejuni and 41 non-C. jejuni strains, respectively), sensitive (detection limit of 100 fg/μl), and quantifiable (R(2) = 0.9133). The sensitivity of the LAMP assay was then evaluated for its application to the naturally contaminated cattle farm samples. C. jejuni strains were isolated from 51 (20.7%) of 246 cattle farm samples, and the presence of the hipO gene was tested using the LAMP assay. Amplification of the hipO gene by LAMP within 30 min (mean ~10.8 min) in all C. jejuni isolates (n = 51) demonstrated its rapidity and accuracy. Next, template DNA was prepared from a total of 186 enrichment broth cultures of cattle farm samples either by boiling or using a commercial kit, and the sensitivity of detection of C. jejuni was compared between the LAMP and PCR assays. In DNA samples prepared by boiling, the higher sensitivity of the LAMP assay (84.4%) compared with the PCR assay (35.5%) indicates that it is less susceptible to the existence of inhibitors in sample material. In DNA samples prepared using a commercial kit, both the LAMP and PCR assays showed 100% sensitivity. We anticipate that the use of this rapid, sensitive, and simple LAMP assay, which is the first of its kind for the identification and screening of C. jejuni in cattle farm samples, may play an important role in the prevention of C. jejuni contamination in the food chain, thereby reducing the risk of human campylobacteriosis.

  12. Campylobacter jejuni DNA-binding protein from starved cells in Guillain-Barré syndrome patients.

    Science.gov (United States)

    Kawamura, Nobutoshi; Piao, Hua; Minohara, Motozumi; Matsushita, Takuya; Kusunoki, Susumu; Matsumoto, Hiroshi; Ikenaka, Kazuhiro; Mizunoe, Yoshimitsu; Kira, Jun-ichi

    2011-12-15

    Campylobacter jejuni enteritis is frequently associated with an axonal form of Guillain-Barré syndrome (GBS) and C. jejuni DNA-binding protein from starved cells (C-Dps) induces paranodal myelin detachment and axonal degeneration through binding with sulfatide in vivo. Here we investigated the invasion of C-Dps into hosts with C. jejuni-related GBS. Our analyses of patient sera found that both C-Dps and anti-C-Dps antibodies were most commonly detected in sera from C. jejuni-related GBS patients (5/27, 14.8% and 15/24, 62.5%; respectively). These findings suggest that C-Dps invades the host and may potentially contribute to the peripheral nerve damage in C. jejuni-related GBS. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Significance of phage-host interactions for biocontrol of Campylobacter jejuni in food

    DEFF Research Database (Denmark)

    Athina, Zampara; Sørensen, Martine Camilla Holst; Elsser-Gravesen, Anne

    2017-01-01

    Poultry meat is the main source of Campylobacter jejuni foodborne disease. Currently, no effective control measures prevent C. jejuni from contaminating poultry meat. However, post-harvest phage treatment is a promising biocontrol strategy that has not yet been explored. Here we identified phages....... A thorough understanding of phage-host interactions is prerequisite to further advance phage application as a post-harvest biocontrol strategy against C. jejuni....... most effective phages (F356 showing 0.49 and F357 showing 0.55 log reductions, respectively) led to a 0.73 log reduction of C. jejuni on artificially contaminated chicken skin. Our study shows that poly-phage treatment at 5 °C can be more effective against C. jejuni compared to single phage application...

  14. Analysis of putative chemoreceptor proteins of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Bang, Dang D.

    indicating the chemoreceptors of C. jejuni to have overlapping sensing capacities. To facilitate independent investigation of the chemoreceptors are we now in the process of analyzing all 10 putative chemoreceptors of C. jejuni individually in an E. coli background. Furthermore, the five C. jejuni mutants......Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world. A very important reservoir for C. jejuni is the gut of chickens, which are colonized efficiently and commensally by this organism. Predominantly the mucus filled crypts of the lower gastrointestinal tract...... are being analyzed in adherence and invasion assays with both human and chicken cells to explore the possibility that these membrane spanning proteins interact with host cells rather than operating as chemoreceptors....

  15. [Campylobacter jejuni infection in patient with Guillain-Barré syndrome: a case report].

    Science.gov (United States)

    Kopyta, Ilona; Wardak, Sebastian

    2008-01-01

    The Guillain-Barré syndrome is an acute inflammatory polineuropathy; it's frequency is established at the level of 1,3 cases/ 100 000 persons/ year. The main etiological factors concerned with the GBS occurrence are: Campylobacter jejuni, cytomegalovirus, Epstein-Barre virus, Mycoplasma pneumoniae. The authors present a case of the 15 years old boy with the clinical features of acute motor axonal polineuropathy and confirmed C. jejuni infection. Identification of C. jejuni isolate was based on colony morphology on CCDA plate (OXOID), characteristic motility, catalase, oxidase, hippurate hydrolysis and acetate hydrolysis. The identity of C. jejuni was also confirmed by a specific PCR. According to the authors' knowledge this is the first case of a patient with GBS with confirmed C. jejuni infection reported from Poland.

  16. Humoral immune response to campylobacter jejuni in patients with enterocolitis and Guillain-Barré syndrome

    Directory of Open Access Journals (Sweden)

    Ristić Ljiljana

    2012-01-01

    Full Text Available Campylobacter jejuni is one of the most important causes of diarrheal disease worldwide. In addition, it can cause neurological post-infectious sequels, such as Guillain-Barré syndrome (GBS. Humoral immune response to C. jejuni was monitored in patients with C. jejuni enterocolitis, GBS patients and healthy persons, by ELISA. Statistical significance between patients with enterocolitis and healthy persons, as well as among GBS patients and healthy controls, was proven. Statistical significance in IgA among the examined groups was also noticed. The highest values of IgM were found in the patients with GBS, while the highest values of IgG were found in those with enterocolitis. C. jejuni is a significant cause of antecedent infection in GBS. ELISA techniques can be considered a reliable method in determining the presence of serum antibodies in patients with enterocolitis caused by C. jejuni, as well as in patients with GBS.

  17. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?

    Directory of Open Access Journals (Sweden)

    Tadhg eÓ Cróinín

    2012-03-01

    Full Text Available Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the zipper over the trigger mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.

  18. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds.

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  19. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Directory of Open Access Journals (Sweden)

    Euna eOh

    2015-10-01

    Full Text Available The increasing resistance of Campylobacter to clinically-important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN. Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux.

  20. [Preparation and characterization of monoclonal antibodies specific for FlaA protein of Campylobacter jejuni].

    Science.gov (United States)

    Huang, Jinlin; Yin, Yanxin; Mei, Dexia; Zhang, Gong; Pan, Zhiming; Liu, Xiufan; Jiao, Xin'an

    2010-08-01

    We expressed and purified Campylobacter jejuni flagellin FlaA protein to develop monoclonal antibodies (mAbs) against this protein. The C. jejuni flaA gene was amplified and inserted into the expression plasmids, pET30a (+) and pGEX-6p-1. The purified rHis-FlaA protein was used as an immunogen in 8-week-old BALB/c mice, and injected subcutaneously. The purified rGST-FlaA protein used as a detecting antigen for screening mAbs against FlaA was prepared by using a denaturation and renaturation technique. The specificity of mAbs was characterized by Dot-ELISA and Western blot assays. The recombinant expression plasmids, pET30a (+)-flaA and pGEX-6p-1-flaA were obtained. The sizes of the recombinant proteins, rHis-FlaA and rGST-FlaA, were consistent with their predicted size. Specific reaction was found between FlaA positive serum and expressed protein by Western-blot assay, confirming its identification as a Campylobacter jejuni immunogen. Three hybridoma cell lines, designated 2D12, 5A12 and 6A9, secreting mAbs against FlaA were obtained. Their immunoglobulin subclasses were IgG2a, IgG1 and IgG1, respectively. The ELISA titers of the ascites fluid were 1:102 400, 1:102 400 and 1:51 200, respectively. Western blot analysis confirmed that the three mAbs reacted with the rHis-FlaA fusion protein but not the His tag. The Dot-ELISA results demonstrated that the three mAbs only with FlaA and not the tags for the expression vectors. The successful preparation of three mAbs specific for the FlaA protein lays the foundation for further study regarding the biological characteristics of FlaA and the pathogenesis of C. jejuni.

  1. Campylobacter

    NARCIS (Netherlands)

    Wagenaar, J.A.

    2015-01-01

    Campylobacteriosis is a frequently diagnosed disease in humans. Most infections are considered food-borne and are caused by Campylobacter jejuni and C. coli. The animal reservoirs of these Campylobacter, and the sources and routes of transmission, are described and discussed. Most warm-blooded

  2. Innate Immunity to Campylobacter jejuni in Guillain-Barré Syndrome.

    Science.gov (United States)

    Huizinga, Ruth; van den Berg, Bianca; van Rijs, Wouter; Tio-Gillen, Anne P; Fokkink, Willem Jan R; Bakker-Jonges, Liesbeth E; Geleijns, Karin; Samsom, Janneke N; van Doorn, Pieter A; Laman, Jon D; Jacobs, Bart C

    2015-09-01

    Guillain-Barré syndrome (GBS) is a postinfectious neuropathy most frequently caused by Campylobacter jejuni. Lipo-oligosaccharides (LOS), expressed by C. jejuni induce antibodies that cross-react with self-glycolipids in peripheral nerves, causing neuropathy. Less than 1 in 1,000 persons infected with C. jejuni develop GBS, and the factors that determine GBS susceptibility are poorly understood. We hypothesized that these persons have a high intrinsic dendritic cell (DC) response to C. jejuni LOS through Toll-like receptor 4 (TLR4) activation. Intrinsic DC responsiveness to C. jejuni LOS was investigated first in 20 healthy controls at three time points with a 3-month interval, and second in patients, who previously developed GBS after a C. jejuni infection (n = 27) and controls (n = 26). The DC response to C. jejuni LOS was highly variable between, but not within, healthy individuals, suggesting that intrinsic factors determine the magnitude of TLR4-mediated innate response. High responsiveness to C. jejuni LOS by former GBS patients was evidenced by increased expression of CD38 and CD40. Frequency of CD38, CD40 and type I interferon high responders was significantly increased in the GBS group. These results suggest that a strong response to TLR4 stimulation is a critical host condition for the development of GBS after an infection with C. jejuni. © 2015 American Neurological Association.

  3. Prevalence and Characterization of Campylobacter jejuni Isolated from Retail Chicken in Tianjin, China.

    Science.gov (United States)

    Ma, Hui; Su, Yulan; Ma, Luyao; Ma, Lina; Li, Ping; Du, Xinjun; Gölz, Greta; Wang, Shuo; Lu, Xiaonan

    2017-06-01

    Campylobacter jejuni is an important foodborne pathogen worldwide; however, there is a lack of information on the prevalence and antibiotic-resistant profile of C. jejuni in the People's Republic of China. We determined the prevalence and characteristics of C. jejuni on the retail level in Tianjin, one of the five national central cities in China. A total of 227 samples of chicken wings, legs, and breasts were collected from supermarkets and wet markets; 42 of these samples were confirmed to be positive for Campylobacter contamination. The contamination rates of C. jejuni and other Campylobacter species were 13.7% (31 of 227 samples) and 5.7% (13 of 227 samples), respectively. A group of 31 C. jejuni isolates was subjected to antimicrobial susceptibility testing. All (100%) the selected isolates were resistant to ciprofloxacin and nalidixic acid; 77.4% were resistant to tetracycline, 67.7% to doxycycline, 35.5% to gentamicin, 25.8% to clindamycin and florfenicol, 19.4% to chloramphenicol, and 12.9% to erythromycin and azithromycin. A remarkably high proportion (41.9%) of multidrug-resistant isolates was identified. Multilocus sequence typing was conducted to study the population structure of the C. jejuni strains and their relationship to human isolates. The correlation between antimicrobial resistance traits and certain sequence types (STs) or clonal complexes was determined as well. A great genetic diversity of poultry isolates was identified, with 11 STs belonging to 6 clonal complexes and 11 singleton STs. The novel STs accounted for 40.9% (n = 9) of the 22 STs. ST-21, ST-353, ST-354, ST-443, ST-607, and ST-828 complexes had been previously identified from human isolates. This study revealed an extensive level of antimicrobial resistance and genetic diversity in C. jejuni isolated from chicken products in Tianjin, highlighting the necessity of performing enforced interventions to reduce Campylobacter prevalence in China.

  4. The central, surface-exposed region of the flagellar hook protein FlgE of Campylobacter jejuni shows hypervariability among strains.

    Science.gov (United States)

    Lüneberg, E; Glenn-Calvo, E; Hartmann, M; Bär, W; Frosch, M

    1998-07-01

    In a previous study, we observed that monoclonal antibodies raised against the hook protein FlgE of Campylobacter jejuni LIO 36, isolate 5226, bound exclusively to this strain. The aim of this study was to elucidate the molecular basis for these binding specificities. The hook protein-encoding gene flgE of C. jejuni was cloned in Escherichia coli and sequenced. The flgE genes of four additional C. jejuni strains were amplified by PCR and also sequenced. Comparison of the deduced amino acid sequences revealed a high degree of variability in the central parts of the FlgE proteins among the strains, including variable and hypervariable domains. These findings may indicate a selective pressure of C. jejuni hosts, forcing the bacteria to generate variations in surface-exposed antigenic determinants.

  5. Characterization of Campylobacter jejuni and Campylobacter coli strains isolated in the region of Niš, Serbia

    Directory of Open Access Journals (Sweden)

    Miljković-Selimović Biljana

    2010-01-01

    Full Text Available Introduction. Campylobacter jejuni and Campylobacter coli represent one of the main causes of bacterial diarrhoea in humans. Although the disease is usually mild and self-limiting, severe chronic sequelae may occur, such as reactive arthritis, Guillain-Barré and Miller Fisher syndromes. Serotyping is used as an epidemiological marker, while post-infective polyneuropathies are associated with several O serotypes. Objective. Strains of C. jejuni and C. coli were serotyped based on heat stable (HS and heat labile (HL antigens, as well as biotypes to determine strain diversity. Methods. Campylobacter spp. was isolated using selective blood media with antibiotics. Differentiation to the species level was done by a combination of biotyping tests and by a PCR-based RFLP test. The isolates were characterised by Penner and Lior serotyping methods. Results. The serotypes showed diversity without predominant serotypes. 24 HS serotypes were detected among 29 C. jejuni strains, and seven serotypes among nine C. coli strains. HL serotyping method successfully typed 62.5% of strains. Among 16 C. jejuni strains 14 serotypes were detected, and three among four C. coli strains. A C. jejuni strain associated with a patient with Guillain-Barré syndrome was typed as biotype II, O:19. Conclusion. The biotyping and serotyping results have indicated that C. jejuni and C. coli strains in the region of Niš, Serbia are diverse and could be probably of unrelated sources of origin or reservoirs. The strain associated with the Guillain-Barré syndrome patient was serotype O:19, one of the most common in this post-infective complication.

  6. [Toxic megacolon as a complication of Campylobacter jejuni enterocolitis].

    Science.gov (United States)

    Kummer, A F; Meyenberger, C

    1998-10-10

    We report the case of a previously healthy 53-year-old white male who developed an extraordinary complication of acute Campylobacter jejuni colitis. Toxic megacolon occurred while the patient was treated with a fluoroquinolone antibiotic and glucocorticoids, which were given for endoscopically suspected Crohn's colitis. During the course of the disease no cause of colitis was found other than C. jejuni. Despite the extreme dilatation, the patient was treated conservatively with parenteral nutrition and repeated decompression colonoscopies and made a full, though slow, and uneventful recovery. Follow-up colonoscopies for up to 4 years showed persistent scarring of the transverse colon, probably due to the extreme dilatation, and mild unspecific inflammation of the terminal ileum without histological evidence of inflammatory bowel disease. A comparison with the 6 previously published cases leads to the following conclusions: in most cases the transverse colon is most severely affected. Treatment with either antimotility agents or systemic glucocorticoids does not seem to promote colonic dilatation. The complication has affected patients of both sexes (4 women, 3 men), in the age range of 21 to 83 years, most of them without an underlying disease. The interval between the start of diarrhea and development of the megacolon ranged widely from 3 to 33 days, as did recovery time (2 days to several months). Three of the 7 patients underwent colectomy for imminent or actual colonic perforation. The delayed recovery of our patient was partly attributed to colonic damage caused by extreme dilatation, leading to ischaemia and subsequent scarring of the mucosa, which persisted. Histologically no Crohn's disease or ulcerative colitis could be found at any stage. A rapid increase in resistance of C. species against fluoroquinolone antibodies has been observed in recent years, due to use of the antibiotics in farming. Our patient's severe illness may partly have resulted from

  7. Improvement of capture efficacy of immunomagnetic beads for Campylobacter jejuni using reagents that alter its motility.

    Science.gov (United States)

    Huang, Hongsheng; Phipps-Todd, Beverley

    2013-07-01

    Previous studies using the immunomagnetic beads separation (IMS) technique have shown high detection limits of live campylobacters but low detection limits of formalin-killed campylobacters. The present study investigated if the addition of various concentrations of reagents that alter the motility of live Campylobacter jejuni could enhance the recovery of the organisms by IMS. The addition of 5% glycerol, 0.001% formalin, 10% polyethylene glycol, or 0.001% agarose in a buffer slowed down the movement of C. jejuni and increased the recovery of live C. jejuni, using beads coated with specific monoclonal antibodies (mAbs). The highest recovery yielded was 5.2- ± 3.3-fold with 5% glycerol at 10(5) colony-forming units (CFU)·mL(-1). The addition of 5% glycerol also improved isolation at lower concentrations of C. jejuni (10(2) to 10(4) CFU·mL(-1)) in buffer. The recovery by IMS of C. jejuni killed by 1% formalin was increased up to as high as 17-fold compared with the recovery of live organisms, as detected using a real-time polymerase chain reaction assay. The reagents investigated did not enhance the immunological reactivity of the mAbs to this organism. These results indicate that the addition of several reagents enhanced the capture of C. jejuni by IMS, which could be partially due to the slowing down of the movement or the altering of the motility of C. jejuni and to the increasing of the contact time between C. jejuni and immunomagnetic beads.

  8. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance

    Science.gov (United States)

    Gundogdu, Ozan; da Silva, Daiani T.; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W.; van Vliet, Arnoud H. M.; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes. PMID:28082970

  9. Antimicrobial resistance among Campylobacter jejuni isolated from raw poultry meat at retail level in Denmark

    DEFF Research Database (Denmark)

    Andersen, S. R.; Saadbye, P.; Shukri, Naseer Mahmoud

    2006-01-01

    Campylobacter jejuni isolated from raw poultry meat collected at retail shops in Denmark in the period 1996-2003 were tested for susceptibility to seven antimicrobial agents. The food samples consisted of raw chicken meat and other raw poultry meat of domestic or imported origin. The highest leve...

  10. A carvacrol wash and/or a chitosan based coating reduced Campylobacter jejuni on chicken wingettes

    Science.gov (United States)

    Campylobacter jejuni is a leading cause of foodborne disease in humans, largely associated with consumption of contaminated poultry and poultry products. With increasing consumer demand for natural and minimally processed foods, the use of Generally Recognized as Safe (GRAS) status plant derived com...

  11. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni

    Science.gov (United States)

    Campylobacter spp. are the second leading cause of bacterial-induced foodborne illnesses with an estimated economic burden of nearly $2 billion per year. Most human illness associated with campylobacteriosis is due to infection by C. jejuni and chickens are recognized as a reservoir, which could le...

  12. Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry, and cattle

    DEFF Research Database (Denmark)

    Nielsen, Eva Møller; Engberg, J.; Fussing, V.

    2000-01-01

    Six methods for subtyping of Campylobacter jejuni were compared and evaluated with a collection of 90 isolates from poultry, cattle, and sporadic human clinical cases as well as from a waterborne outbreak. The applied methods were Penner heat-stable serotyping; automated ribotyping (Ribo...

  13. Complete genome sequence of Campylobacter jejuni RM1285 a rod-shaped morphological variant

    Science.gov (United States)

    Campylobacter jejuni is a spiral-shaped Gram-negative food-borne human pathogen found on poultry products. Strain RM1285 is a rod-shaped variant of this species. The genome of RM1285 was determined to be 1,635,803 bp with a G+C content of 30.5%....

  14. Campylobacter jejuni : A brief overview on pathogenicity-associated factors and disease-mediating mechanisms

    NARCIS (Netherlands)

    Dasti, Javid I.; Tareen, A. Malik; Lugert, Raimond; Zautner, Andreas E.; Gross, Uwe

    Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines

  15. Campylobacter jejuni and the Guillain-Barré Syndrome: the role of bacterial genetic polymorphisms

    NARCIS (Netherlands)

    P.C.R. Godschalk (Peggy)

    2007-01-01

    textabstractThe main aim of the research described in this thesis is to identify genetic markers for GBS in C. jejuni. Many studies have provided evidence for the hypothesis that molecular mimicry between Campylobacter LOS and gangliosides in human nerves plays a crucial role in the pathogenesis of

  16. Study in ovo immunisation with flagellin and whole cell protein antigens of Campylobacter jejuni in chickens

    Directory of Open Access Journals (Sweden)

    Susan Maphilindawati Noor

    2000-06-01

    Full Text Available In ovo immunisation of chickens with flagellin and whole cell protein antigens of Campylobacter jejuni was examined to determine Campylobacter infection. Four groups of embryonated chicken eggs (10 eggs per group were immunised in ovo at day 17 of incubation and booster was given at 7 days post-hatch. Group I was immunised in ovo and oral booster with whole cell protein of C. jejuni, group II was immunised in ovo and oral booster with C. jejuni flagellin protein, group III was immunised in ovo and intraperitoneal booster with whole cell, and group IV was treated as control. The humoral immune responses were determined by enzyme-linked immunosorbent assay (ELISA and the mucosal immune responses were examined by a direct fluorescent histology antibody technique. Immunised chickens of Group I, II, and III shown to have higher antibody titers than those of control chickens (group IV. The titres of anti-campylobacter antibodies of all isotypes in serum, bile, and intestinal scrapping after challenge were not significantly different in all groups. In addition, when immunised chickens were orally challenged with a homologous strain of viable C. jejuni organism, the chickens remained infected throughout the experiment based on cloacal swabs and caecal contents. These findings indicated that although in ovo immunisation resulted in increasing of the mucosal and humoral immune responses in chickens, it is not strong enough to protect the Campylobacter colonisation in the intestinal tract.

  17. Molecular typing of Campylobacter jejuni isolates involved in a neonatal outbreak indicates nosocomial transmission

    DEFF Research Database (Denmark)

    Llovo, J.; Mateo, E.; Munoz, A.

    2003-01-01

    Genotypic typing by restriction fragment length polymorphism and pulsed-field gel electrophoresis showed that two neonates in a neonatal ward were infected with the same Campylobacter jejuni strain. Isolates from the mother and brother of the index patient were identical to each other but distinc...

  18. Population Diversity of Campylobacter jejuni in Poultry and Its Dynamic of Contamination in Chicken Meat

    Science.gov (United States)

    Garofolo, Giuliano; Di Donato, Guido; Cianciavicchia, Silvia; Alessiani, Alessandra

    2015-01-01

    This study aimed to analyse the diversity of the Campylobacter jejuni population in broilers and to evaluate the major source of contamination in poultry meat. Eight rearing cycles over one year provided samples from three different broiler farms processed at the same slaughterhouse. A total of 707  C. jejuni were isolated from cloacal swabs before slaughter and from the breast skin of carcasses after slaughter and after chilling. All suspected Campylobacter colonies were identified with PCR assays and C. jejuni was genotyped by sequence analysis of the flaA short variable region (SVR) and by pulsed-field gel electrophoresis (PFGE) using SmaI enzyme. Phenotypic antibiotic resistance profiles were also assayed using minimal inhibitory concentration (MIC). The flocks carried many major C. jejuni clones possibly carrying over the rearing cycles, but cross contamination between farms may happen. Many isolates were resistant to fluoroquinolones, raising an issue of high public concern. Specific Campylobacter populations could be harboured within each poultry farm, with the ability to contaminate chickens during each new cycle. Thus, although biosecurity measures are applied, with a persistent source of contamination, they cannot be efficient. The role of the environment needs further investigation to better address strategies to control Campylobacter. PMID:26543870

  19. Molecular Evidence for Dissemination of Unique Campylobacter jejuni Clones in Curaçao, Netherlands Antilles

    NARCIS (Netherlands)

    Duim, B.; Godschalk, P.C.R.; Braak, N. van den; Dingle, K.E.; Dijkstra, J.R.; Leyde, E.; Plas, J. van der; Colles, F.M.; Endtz, H.P.; Wagenaar, J.A.; Maiden, M.C.J.; Belkum, A. van

    2003-01-01

    Campylobacter jejuni isolates (n = 234) associated with gastroenteritis and the Guillain-Barré syndrome (GBS) in the island of Curaçao, Netherlands Antilles, and collected from March 1999 to March 2000 were investigated by a range of molecular typing techniques. Data obtained by pulsed-field gel

  20. Population Diversity of Campylobacter jejuni in Poultry and Its Dynamic of Contamination in Chicken Meat

    Directory of Open Access Journals (Sweden)

    Francesca Marotta

    2015-01-01

    Full Text Available This study aimed to analyse the diversity of the Campylobacter jejuni population in broilers and to evaluate the major source of contamination in poultry meat. Eight rearing cycles over one year provided samples from three different broiler farms processed at the same slaughterhouse. A total of 707  C. jejuni were isolated from cloacal swabs before slaughter and from the breast skin of carcasses after slaughter and after chilling. All suspected Campylobacter colonies were identified with PCR assays and C. jejuni was genotyped by sequence analysis of the flaA short variable region (SVR and by pulsed-field gel electrophoresis (PFGE using SmaI enzyme. Phenotypic antibiotic resistance profiles were also assayed using minimal inhibitory concentration (MIC. The flocks carried many major C. jejuni clones possibly carrying over the rearing cycles, but cross contamination between farms may happen. Many isolates were resistant to fluoroquinolones, raising an issue of high public concern. Specific Campylobacter populations could be harboured within each poultry farm, with the ability to contaminate chickens during each new cycle. Thus, although biosecurity measures are applied, with a persistent source of contamination, they cannot be efficient. The role of the environment needs further investigation to better address strategies to control Campylobacter.

  1. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity

    NARCIS (Netherlands)

    Bleumink-Pluym, Nancy M C; van Alphen, Lieke B; Bouwman, Lieneke I; Wösten, MM; van Putten, Jos P M

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to

  2. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh

    NARCIS (Netherlands)

    Islam, Z.; Belkum, van A.; Wagenaar, J.A.; Cody, A.J.; Boer, de A.G.; Sarker, S.K.; Jacobs, B.C.; Talukder, K.A.; Endtz, H.P.

    2014-01-01

    Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain-Barr, syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of

  3. Ganglioside mimicry of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity in rabbits

    NARCIS (Netherlands)

    C.W. Ang (Wim); P.G. Noordzij (Peter); M.A. de Klerk; H.P. Endtz (Hubert); P.A. van Doorn (Pieter); J.D. Laman (Jon)

    2002-01-01

    textabstractThe core oligosaccharides of Campylobacter jejuni lipopolysaccharides (LPS) display molecular mimicry with gangliosides. Cross-reactive anti-LPS-antiganglioside antibodies have been implicated to show a crucial role in the pathogenesis of the Guillain-Barre and Miller

  4. Het Guillain-Barré-syndroom na een Campylobacter jejuni-enteritis

    NARCIS (Netherlands)

    Beenen, L. F.; Scholten, H. G.

    1990-01-01

    A 7-year-old boy nine days before onset of a Guillain-Barré-syndrome had had enteritis caused by Campylobacter jejuni. The clinical signs were restricted to minor motor and sensory deficits in the limbs; 5 weeks after the onset of the syndrome, recovery was complete. So far, 16 cases of

  5. Methods for isolation, purification, and propagation of bacteriophages of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-formin...

  6. Methods for Isolation, Purification, and Propagation of Bacteriophages of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Birk, Tina; Sørensen, Martine Camilla Holst

    2017-01-01

    Here, we describe the methods for isolation, purification, and propagation of Campylobacter jejuni bacteriophages from samples expected to contain high number of phages such as chicken feces. The overall steps are (1) liberation of phages from the sample material; (2) observation of plaque-formin...

  7. Prevalence and Distribution of Campylobacter jejuni in Small-Scale Broiler Operations.

    Science.gov (United States)

    Tangkham, Wannee; Janes, Marlene; LeMieux, Frederick

    2016-01-01

    Campylobacter jejuni has been recognized as one of the most prevalent causes of foodborne bacterial illnesses in humans. Previous studies have focused on the transmission routes of C. jejuni from commercial flock farms to the final retail product. The objective of this study was to determine the prevalence of C. jejuni and Campylobacter spp. in eggshells, live birds, feed, drinking water, and the rearing environment in a small-scale broiler operation. Broilers were raised under two different production systems: (i) environmentally controlled housing and (ii) open-air housing with two replications. Each week, samples were collected from eggshells, bird feces, feed, drinking water, enclosures (vertical walls of bird housing), and feed troughs for enumeration and isolation testing. All samples were plated on modified charcoal-cefoperazone-deoxycholate agar to determine the log CFU per gram and percent prevalence of Campylobacter spp. Isolation of C. jejuni was verified with latex agglutination and hippurate hydrolysis tests. The results from this study suggest that vertical transmission of these bacteria from egg surfaces to newly hatched chicks is not a significant risk factor. The results also suggest that the prevalence of C. jejuni at time of harvest (week 6) was significantly higher (P < 0.05) in the open-air housing broilers than in those in the environmentally controlled housing. Elevated levels of cross-contaminants, especially water and feed, may have played a role in this outcome.

  8. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

    Science.gov (United States)

    Dwivedi, Ritika; Nothaft, Harald; Garber, Jolene; Xin Kin, Lin; Stahl, Martin; Flint, Annika; van Vliet, Arnoud H M; Stintzi, Alain; Szymanski, Christine M

    2016-08-01

    Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development. © 2016 John Wiley & Sons Ltd.

  9. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chih-Chia [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Shi, Feng [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Gu, Ruoyu; Li, Ming [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); McDermott, Gerry [Department of Anatomy, School of Medicine, University of California, San Francisco, CA 94143 (United States); Yu, Edward W., E-mail: ewyu@iastate.edu [Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Zhang, Qijing [Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 (United States); Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 (United States)

    2007-01-01

    The transcriptional regulator CmeR from C. jejuni has been purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.2 Å. In Campylobacter jejuni, a Gram-negative bacterial pathogen causing gastroenteritis in humans, the CmeR regulatory protein controls transcription of the multidrug transporter gene operon cmeABC. CmeR belongs to the TetR family of transcriptional regulators. The 210-residue CmeR consists of two functional motifs: an N-terminal DNA-binding domain and a C-terminal ligand-binding domain. It is predicted that the DNA-binding domain interacts directly with target promoters, while the C-terminal motif interacts with inducing ligands (such as bile salts). As an initial step towards confirming this structural model, recombinant CmeR protein containing a 6×His tag at the N-terminus was crystallized. Crystals of ligand-free CmeR belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 37.4, b = 57.6, c = 93.3 Å. Diffraction was observed to at least 2.2 Å at 100 K. Analysis of the detailed CmeR structure is currently in progress.

  10. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks.

    Directory of Open Access Journals (Sweden)

    Sophie Kittler

    Full Text Available The pathogens Campylobacter jejuni and Campylobacter coli are commensals in the poultry intestine and campylobacteriosis is one of the most frequent foodborne diseases in developed and developing countries. Phages were identified to be effective in reducing intestinal Campylobacter load and this was evaluated, in the first field trials which were recently carried out. The aim of this study was to further investigate Campylobacter population dynamics during phage application on a commercial broiler farm. This study determines the superiority in colonisation of a Campylobacter type found in a field trial that was susceptible to phages in in vitro tests. The colonisation factors, i.e. motility and gamma glutamyl transferase activity, were increased in this type. The clustering in phylogenetic comparisons of MALDI-TOF spectra did not match the ST, biochemical phenotype and phage susceptibility. Occurrence of Campylobacter jejuni strains and phage susceptibility types with different colonisation potential seem to play a very important role in the success of phage therapy in commercial broiler houses. Thus, mechanisms of both, phage susceptibility and Campylobacter colonisation should be further investigated and considered when composing phage cocktails.

  11. Profiling of Campylobacter jejuni Proteome in Exponential and Stationary Phase of Growth

    Directory of Open Access Journals (Sweden)

    Hana Turonova

    2017-05-01

    Full Text Available Campylobacter jejuni has been reported as a major cause of bacterial food-borne enteritides in developed countries during the last decade. Despite its fastidious growth requirements, including low level of oxygen and high level of CO2, this pathogen is able to persist in the environment without permanent loss of its viability and virulence. As C. jejuni is not able to multiply outside a host, the cells spend significant amount of time in stationary phase of growth. The entry into the stationary phase is often correlated to resistance to various stresses in bacteria. The switching between exponential and stationary phases is frequently mediated by the regulator sigma S (RpoS. However, this factor is absent in C. jejuni and molecular mechanisms responsible for transition of cells to the stationary phase remain elusive. In this work, proteomic profiles of cells from exponential and stationary phases were compared using 2-D electrophoresis (2DE fingerprinting combined with mass spectrometry analysis and qRT-PCR. The identified proteins, whose expression differed between the two phases, are mostly involved in protein biosynthesis, carbon metabolism, stress response and motility. Altered expression was observed also in the pleiotropic regulator CosR that was over-expressed during stationary phase. A shift between transcript and protein level evolution of CosR throughout the growth of C. jejuni was observed using qRT-PCR and (2DE. From these data, we hypothesized that CosR could undergo a negative autoregulation in stationary phase. A consensus sequence resulting from promoter sequence alignment of genes potentially regulated by CosR, including its own upstream region, among C. jejuni strains is proposed. To verify experimentally the potential autoregulation of CosR at the DNA level, electrophoretic mobility shift assay was performed with DNA fragments of CosR promoter region and rCosR. Different migration pattern of the promoter fragments indicates

  12. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells

    Directory of Open Access Journals (Sweden)

    Jason eNeal-McKinney

    2012-03-01

    Full Text Available Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute C. jejuni-mediated disease (campylobacteriosis involves C. jejuni invasion of host epithelial cells using a set of virulence proteins known as the Campylobacter invasion antigens (Cia. The genes encoding the Cia proteins are up-regulated upon co-culture of C. jejuni with epithelial cells. One of the Cia proteins, CiaC, is required for maximal invasion of host cells by C. jejuni. Previous work has also revealed that CiaC is, in part, responsible for host cell cytoskeletal rearrangements that result in membrane ruffling. This study was performed to test the hypothesis that CiaC is delivered to the cytosol of host cells. To detect the delivery of CiaC into cultured epithelial cells, we used the adenylate cyclase domain (ACD of Bordetella pertussis CyaA as a reporter. In this study, we found that export and delivery of the C. jejuni Cia proteins into human INT 407 epithelial cells required a functional flagellar hook complex composed of FlgE, FlgK, and FlgL. Assays performed with bacterial culture supernatants supported the hypothesis that CiaC delivery requires bacteria-host cell contact. We also found that that CiaC was delivered to host cells by cell-associated (bound bacteria, as judged by experiments performed with inhibitors that specifically target the cell signaling pathways utilized by C. jejuni for cell invasion. Interestingly, the C. jejuni flgL mutant, which is incapable of exporting and delivering the Cia proteins, did not induce INT 407 cell membrane ruffles. Complementation of the flgL mutant with plasmid-encoded flgL restored the motility and membrane ruffling. These data support the hypothesis that the C. jejuni Cia proteins, which are exported from the flagellum, are delivered to the cytosol of host cells.

  13. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity

    Directory of Open Access Journals (Sweden)

    Eleanor Watson

    2014-09-01

    Full Text Available Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC–ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith–Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  14. Prevalence of thermophilic Campylobacter species in Swedish dogs and characterization of C. jejuni isolates.

    Science.gov (United States)

    Holmberg, Mia; Rosendal, Thomas; Engvall, Eva O; Ohlson, Anna; Lindberg, Ann

    2015-04-01

    The aims of this study were to investigate the prevalence of Campylobacter species in Swedish dogs, to identify the species of the Campylobacter isolates and to genotype the C. jejuni isolates. Young and healthy dogs were targeted and the sampling was performed at 11 veterinary clinics throughout Sweden from October 2011 to October 2012. Faecal swab samples were collected and sent to the laboratory at the National Veterinary Institute (SVA) for isolation of Campylobacter, speciation and genotyping. Campylobacter spp. were isolated from 67 of the 180 sampled dogs which yields an overall prevalence of 37%. The most prevalent species of Campylobacter among the participating dogs was C. upsaliensis with 52 of the 67 identified isolates. A lower prevalence was observed for C. jejuni with seven identified isolates and one isolate was identified as C. helveticus. Multi-locus sequence typing (MLST) was carried out on the seven C. jejuni isolates and all sequence types that were found are also commonly found in humans. The dogs were divided into three age groups; 1) under 12 months, 2) 12 to 23 months and 3) 24 months and older. The highest prevalence was found in the two younger age groups. Dogs shedding C. jejuni were between 3-12 months of age while dogs shedding C. upsaliensis were found in all ages. The present investigation finds that Campylobacter spp. known to cause campylobacteriosis in humans are present in Swedish dogs. The results suggest an age predisposition where dogs under 2 years of age are more likely to shed Campylobacter spp. than older dogs. The most commonly isolated species was C. upsaliensis followed by C. jejuni, which was only detected in dogs up to 12 months of age. All C. jejuni isolates identified in the present study were of the same MLST types that have previously been described both in humans and in animals. The awareness of the Campylobacter risk of healthy young dogs may be an important way to reduce the transmission from dogs to infants

  15. Influence of the Gut Microbiota Composition on Campylobacter jejuni Colonization in Chickens.

    Science.gov (United States)

    Han, Zifeng; Willer, Thomas; Li, Li; Pielsticker, Colin; Rychlik, Ivan; Velge, Philippe; Kaspers, Bernd; Rautenschlein, Silke

    2017-11-01

    The Campylobacter jejuni -host interaction may be affected by the host's gut microbiota through competitive exclusion, metabolites, or modification of the immune response. To understand this interaction, C. jejuni colonization and local immune responses were compared in chickens with different gut microbiota compositions. Birds were treated with an antibiotic cocktail (AT) (experiments 1 and 2) or raised under germfree (GF) conditions (experiment 3). At 18 days posthatch (dph), they were orally inoculated either with 10 4 CFU of C. jejuni or with diluent. Cecal as well as systemic C. jejuni colonization, T- and B-cell numbers in the gut, and gut-associated tissue were compared between the different groups. Significantly higher numbers of CFU of C. jejuni were detected in the cecal contents of AT and GF birds, with higher colonization rates in spleen, liver, and ileum, than in birds with a conventional gut microbiota ( P microbiota. Histopathological gut lesions were observed only in C. jejuni -inoculated AT and GF birds but not in microbiota-colonized C. jejuni -inoculated hatchmates. These results demonstrate that the gut microbiota may contribute to the control of C. jejuni colonization and prevent lesion development. Further studies are needed to identify key players of the gut microbiota and the mechanisms behind their protective role. Copyright © 2017 Han et al.

  16. Evidence of broiler meat contamination with post-disinfection strains of Campylobacter jejuni from slaughterhouse.

    Science.gov (United States)

    Kudirkienė, Eglė; Bunevičienė, Jurgita; Brøndsted, Lone; Ingmer, Hanne; Olsen, John Elmerdahl; Malakauskas, Mindaugas

    2011-03-01

    While cross-contamination from equipment and scalding water containing Campylobacter jejuni is considered the main route of broiler carcass contamination during slaughtering, alternative sources of C. jejuni may have been overlooked because only a limited number of studies focus on sampling of one broiler flock along the entire food chain and not many include the slaughterhouse environment. In the present study we have traced the changes of C. jejuni genotypes within one broiler flock from the beginning of rearing to the final product at the slaughterhouse with the aim to evaluate the dynamics and possible sources of carcass contamination with C. jejuni. Genotyping of 345 isolates of C. jejuni by flaA-RFLP revealed ten different flaA genotypes of C. jejuni along the broiler meat production chain. Broiler fillets were mainly contaminated with flaA genotypes found on the surfaces of slaughterhouse equipment and in the scalding water after cleaning and disinfection. Finally, it was clearly demonstrated that C. jejuni isolates remaining in the slaughterhouse environment after disinfection is a potential source of broiler meat contamination. Thus, identification of the mechanisms that allow such strains to persist in the slaughterhouse and survive cleaning is important for the establishment of future practices that will ensure sufficient reduction of C. jejuni in the slaughterhouse environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni.

    Science.gov (United States)

    Kumar, Anand; Gangaiah, Dharanesh; Torrelles, Jordi B; Rajashekara, Gireesh

    2016-09-07

    Campylobacter jejuni (C. jejuni), a Gram-negative microaerophilic bacterium, is a predominant cause of bacterial foodborne gastroenteritis in humans worldwide. Despite its importance as a major foodborne pathogen, our understanding of the molecular mechanisms underlying C. jejuni stress survival and pathogenesis is limited. Inorganic polyphosphate (poly P) has been shown to play significant roles in bacterial resistance to stress and virulence in many pathogenic bacteria. C. jejuni contains the complete repertoire of enzymes required for poly P metabolism. Recent work in our laboratory and others have demonstrated that poly P controls a plethora of C. jejuni properties that impact its ability to survive in the environment as well as to colonize/infect mammalian hosts. This review article summarizes the current literature on the role of poly P in C. jejuni stress survival and virulence and discusses on how poly P-related enzymes can be exploited for therapeutic/prevention purposes. Additionally, the review article identifies potential areas for future investigation that would enhance our understanding of the role of poly P in C. jejuni and other bacteria, which ultimately would facilitate design of effective therapeutic/preventive strategies to reduce not only the burden of C. jejuni-caused foodborne infections but also of other bacterial infections in humans.

  18. Immunoreactivity of glycoproteins isolated from human peripheral nerve and Campylobacter jejuni (O:19

    Directory of Open Access Journals (Sweden)

    Katerina Brezovska

    2011-01-01

    Full Text Available Objective: Antibodies to ganglioside GM1 are associated with Guillain-Barré Syndrome (GBS in patients with serologic evidence of a preceding infection with Campylobacter jejuni. Molecular mimicry between C. jejuni Lipopolysaccharide (LPS and ganglioside GM1 has been proven to be the immunopathogenic mechanism of the disease in the axonal variant of GBS. GM1-positive sera cross-react with several Gal-GalNAc-bearing glycoproteins from the human peripheral nerve and C. jejuni (O:19. This study aimed to examine the immunoreactivity of the digested cross-reactive glycoproteins isolated from the human peripheral nerve and C. jejuni (O:19 with Peanut Agglutinin (PNA as a marker for the Gal-GalNAc determinant, and with sera from patients with GBS. Materials and Methods: For this purpose, the cross-reactive glycoproteins from peripheral nerve and C. jejuni (O:19 were enzymatically digested with trypsin and the obtained peptides were incubated with PNA and GBS sera. Results: Western blot analysis of the separated peptides revealed several bands showing positive reactivity to PNA and to sera from patients with GBS, present in both digests from peripheral nerve and C. jejuni (O:19. Conclusions: These data indicate the possible molecular mimicry between the cross-reactive glycoproteins present in C. jejuni and human peripheral nerve and its potential role in the development of GBS following infection with C. jejuni (O:19.

  19. The role of probiotics in the inhibition of Campylobacter jejuni colonization and virulence attenuation.

    Science.gov (United States)

    Mohan, V

    2015-08-01

    Campylobacter jejuni is one of the most common bacterial causes of human gastroenterocolitis worldwide, leading to diarrhea and other serious post-infectious complications. Probiotics form an attractive alternative intervention strategy for most of the enteric infections. However, the role of probiotics in C. jejuni infections requires detailed investigations in order to delineate the probiotic strains that are effective against C. jejuni. Although there are several biological mechanisms involved in the inhibition of pathogenic bacterial growth, the strains of probiotics and their mechanisms of actions through which they combat C. jejuni invasion have not been studied in greater detail. This mini review details the factors that are involved in the colonization and establishment of C. jejuni infection, with special reference to chickens, the natural host of C. jejuni, and the studies that have investigated the effect of different probiotic strains against C. jejuni colonization and growth. This review has collated the studies conducted using probiotics to inhibit C. jejuni colonization and growth to date to provide a collective knowledge about the role of probiotics as an alternative intervention strategy for campylobacteriosis.

  20. Analysis of the Campylobacter jejuni genome by SMRT DNA sequencing identifies restriction-modification motifs.

    Directory of Open Access Journals (Sweden)

    Jason L O'Loughlin

    Full Text Available Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. The goal of this study was to analyze the C. jejuni F38011 strain, recovered from an individual with severe enteritis, at a genomic and proteomic level to gain insight into microbial processes. The C. jejuni F38011 genome is comprised of 1,691,939 bp, with a mol.% (G+C content of 30.5%. PacBio sequencing coupled with REBASE analysis was used to predict C. jejuni F38011 genomic sites and enzymes that may be involved in DNA restriction-modification. A total of five putative methylation motifs were identified as well as the C. jejuni enzymes that could be responsible for the modifications. Peptides corresponding to the deduced amino acid sequence of the C. jejuni enzymes were identified using proteomics. This work sets the stage for studies to dissect the precise functions of the C. jejuni putative restriction-modification enzymes. Taken together, the data generated in this study contributes to our knowledge of the genomic content, methylation profile, and encoding capacity of C. jejuni.

  1. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products.

    Science.gov (United States)

    Hong, Soo Hyeon; Kim, Han Sol; Yoon, Ki Sun

    2016-06-09

    The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite). Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low.

  2. Survival and Risk Comparison of Campylobacter jejuni on Various Processed Meat Products

    Directory of Open Access Journals (Sweden)

    Soo Hyeon Hong

    2016-06-01

    Full Text Available The objective of this study was to investigate survival kinetics of Campylobacter jejuni on various processed meat products (dry-cured ham, round ham with/without sodium nitrite, garlic seasoned ham with/without sodium nitrite, and sausage without sodium nitrite. Additionally, a semi-quantitative risk assessment of C. jejuni on various processed meat products was conducted using FDA-iRISK 1.0. Inoculated processed meat products with 6.0 ± 0.5 log CFU/g of C. jejuni were vacuum packed and stored at 4, 10, 17, 24, 30, and 36 °C. Survival curves were fitted to the Weibull model to obtain the delta values of C. jejuni on various processed meat products. The most rapid death of C. jejuni was observed on dry-cured ham, followed by sausage without sodium nitrite. The results of semi-quantitative risk assessment indicate that dry-cured ham represented the lowest risk among all samples. C. jejuni on processed meats presented a greater risk at 4 °C than at 10 °C. The risk of ham was greater than the risk of sausage, regardless of type. Among all samples, the highest risk of C. jejuni was observed in round ham without sodium nitrite. Overall, our data indicates that risk of processed meat products due to C. jejuni is relatively low.

  3. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine

    Science.gov (United States)

    Nothaft, Harald; Davis, Brandi; Lock, Yee Ying; Perez-Munoz, Maria Elisa; Vinogradov, Evgeny; Walter, Jens; Coros, Colin; Szymanski, Christine M.

    2016-01-01

    Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain. PMID:27221144

  4. Campylobacter jejuni-induced severe colitis--a rare cause of toxic megacolon.

    Science.gov (United States)

    Schneider, A; Rünzi, M; Peitgen, K; von Birgelen, C; Gerken, G

    2000-04-01

    The development of toxic megacolon as a sequel of infectious colitis is rare. We have observed the very rare case of a campylobacter jejuni-induced toxic megacolon. A 28-year-old man was admitted with severe enterocolitis and appearance of blood in stools. He had been treated with loperamide without success. Two days after admission stool cultures revealed campylobacter jejuni and then an oral antibiotic therapy was started. On the fifth day clinical performance deteriorated again with development of toxic megacolon and consecutive subtotal colectomy. Rectoscopy before discharge after 13 days showed a normal mucosa. The unusual course with first improvement and then rapid deterioration despite adequate therapy was observed in 4 other cases, which may also be a hint of ensuing megacolon. Even in usually harmless enterocolitis like campylobacter infection, predisposing factors such as loperamide are known to precipitate toxic megacolon and should be considered in clinical practice.

  5. Assess the prevalence rate of Campylobacter genus and Campylobacter jejuni species in raw milk collected from the Amol City by Multiplex- Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Ali Dabiri

    2016-03-01

    Full Text Available Background & Objective: Campylobacter can be transmitted through the raw milk. The purpose of this study was to determine the prevalence of Campylobacter genus and Campylobacter jejuni (C. jejuni species in raw milk samples. Materials & Methods: In this study, 72 samples of raw milk were collected of the platforms milk in the Amol city in summer. Phenotypic identification of Campylobacter genus and C. jejuni species using microbiology laboratory methods and molecular identification of this bacterium using Multiplex- Polymerase Chain Reaction (M-PCR were performed. The data was calculated using the SPSS 16.0 software and the Fisher's exact test (p < 0.05. Results: Among the 72 samples, 13.88% of samples were contaminated with C. jejuni and 2.77% were contaminated with Campylobacter genus. The highest prevalence rate for this bacterium was in July (20.83% and the lowest prevalence rate was in September (12.5%. The significant difference between the prevalence of the Campylobacter genus and C. jejuni species in raw milk samples in various months of summer was not observed (p = 0.07. Conclusion: This study showed the raw milk contamination with Campylobacter, and thereby the sanitation in the dairy food production places and the use of fast and accurate method to identify this bacterium is important.

  6. Genetic diversity and antimicrobial resistance profiles of Campylobacter coli and Campylobacter jejuni isolated from broiler chicken in farms and at time of slaughter in central Italy.

    Science.gov (United States)

    Pergola, S; Franciosini, M P; Comitini, F; Ciani, M; De Luca, S; Bellucci, S; Menchetti, L; Casagrande Proietti, P

    2017-05-01

    Genetic diversity and antimicrobial resistance of Campylobacter coli and Campylobacter jejuni were investigated along the broiler chicken production chain in central Italy. Campylobacter sp. isolated from cloacal swabs in farms (n = 116) and from the neck skin of chilled and eviscerated carcasses at slaughter (n = 24) were identified as C. coli (n = 99) and C. jejuni (n = 41) by multiplex PCR. Characterization by single amplified fragment length polymorphism (s-AFLP) revealed a specific genotype of Campylobacter for each farm. Minimal inhibitory concentration showed high prevalence of fluoroquinolones (70%), tetracycline (70%) and erythromycin (30%) resistance among C. coli isolates. Campylobacter jejuni isolates showed lower prevalence of fluoroquinolone (39%) and tetracycline (10%) resistance, and all isolates were susceptible to erythromycin. The S-AFLP types of the C. coli and C. jejuni isolates were associated with their antimicrobial resistance profiles (P Campylobacter isolates suggested that a specific genotype was harboured in each farm. A considerable number of C. coli isolates were resistant to erythromycin. Campylobacter coli was detected more frequently than C. jejuni in contrast to common findings for poultry. The high prevalence of 30% resistance to erythromycin in C. coli strains isolated from poultry is worrisome, as this is the first antibiotic of choice to treat human campylobacteriosis. © 2017 The Society for Applied Microbiology.

  7. Complete genome sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) isolated from patients with Guillain-Barré syndrome

    NARCIS (Netherlands)

    C.T. Parker (Craig); Huynh, S. (Steven); A.P. Heikema (Astrid); Cooper, K.K. (Kerry K.); W.G. Miller (William)

    2015-01-01

    textabstractInfections with Campylobacter jejuni subsp. jejuni are a leading cause of foodborne gastroenteritis and the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the genomes of C. jejuni subsp. jejuni HS:41 strains RM3196 (233.94) and RM3197 (308.95) that

  8. Peptidoglycan Acetylation of Campylobacter jejuni Is Essential for Maintaining Cell Wall Integrity and Colonization in Chicken Intestines.

    Science.gov (United States)

    Iwata, Taketoshi; Watanabe, Ayako; Kusumoto, Masahiro; Akiba, Masato

    2016-10-15

    Peptidoglycan (PG) acetylation of Gram-positive bacteria confers lysozyme resistance and contributes to survival in the host. However, the importance of PG acetylation in Gram-negative bacteria has not been fully elucidated. The genes encoding putative PG acetyltransferase A (PatA) and B (PatB) are highly conserved in Campylobacter jejuni, the predominant cause of bacterial diarrhea worldwide. To evaluate the importance of PatA and PatB of C. jejuni, we constructed patA and patB isogenic mutants and compared their phenotypes with those of the parental strains. Although transmission electron microscopy did not reveal morphological changes, both mutants exhibited decreased motility and biofilm formation in vitro The extent of acetylation of the PG purified from the patA and patB mutants was significantly lower than the PG acetylation in the parental strains. Both mutants exhibited decreased lysozyme resistance and intracellular survival in macrophage cells. In a chick colonization experiment, significant colonization deficiency was observed for both mutants. These results suggest that PatA and PatB of C. jejuni play important roles in maintaining cell wall integrity by catalyzing PG O-acetylation and that the loss of these enzymes causes decreased motility and biofilm formation, thus leading to colonization deficiency in chicken infection. The importance of peptidoglycan (PG) acetylation in Gram-negative bacteria has not been fully elucidated. The genes encoding putative PG acetyltransferase A (PatA) and B (PatB) are highly conserved in Campylobacter jejuni, the predominant cause of bacterial diarrhea worldwide. We evaluated the importance of these enzymes using isogenic mutants. The results of this study suggest that PatA and PatB of C. jejuni play important roles in maintaining cell wall integrity. The loss of these factors caused multiple phenotypic changes, leading to colonization deficiency in chicken infection. These data should be useful in developing novel

  9. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni Enteritis

    National Research Council Canada - National Science Library

    Louwen, R.P; Belkum, van, A; Wagenaar, J.A; Doorduyn, Y; Achterberg, R.P; Endtz, H.P

    2006-01-01

    The main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C...

  10. The occurrence and characterization of Campylobacter jejuni and C. coli in organic pigs and their outdoor environment

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Dalsgaard, Anders; Baggesen, Dorte Lau

    2006-01-01

    safety. Bacteriological methods for determination of Campylobacter excretion level were combined with colony-blot hybridization and real-time PCR for specific detection of C. jejuni in pigs. Campylobacter was isolated from pigs (n = 47), paddock environment (n = 126) and wildlife (n = 44), identified...... to species by real-time PCR and sub-typed by serotyping (Penner) and pulse-field gel electrophorsis (PFGE) genotyping. All pigs excreted Campylobacter (10(3)-10(7) CFU g(-1) faeces) from the age of 8-13-weeks old. C jejuni was found in 29% of pigs in three consecutive trials and always in minority to C. coli......The occurrence and species distribution of thermophilic Campylobacter was investigated in organic outdoor pigs. An increased exposure of outdoor pigs to C jejuni from the environment may cause a shift from a normal dominance of C coli to more C jejuni, which may imply a concern of reduced food...

  11. Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barré and Miller Fisher patients

    NARCIS (Netherlands)

    C.W. Ang (Wim); J.D. Laman (Jon); H.J. Willison (Hugh); E.R. Wagner; H.P. Endtz (Hubert); M.A. de Klerk; A.P. Tio-Gillen (Anne); N.P.W.C.J. van den Braak (Nicole); B.C. Jacobs (Bart); P.A. van Doorn (Pieter)

    2002-01-01

    textabstractGanglioside mimicry in the lipopolysaccharide (LPS) fraction of Campylobacter jejuni isolated from Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS) patients was compared with isolates from patients with an uncomplicated enteritis. The antibody response to

  12. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik

    2012-01-01

    . aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria...

  13. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni.

    Science.gov (United States)

    Samuelson, Derrick R; Konkel, Michael E

    2013-11-04

    Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time

  14. Guillain-Barré syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b Antibodies in rabbits.

    NARCIS (Netherlands)

    M.A. de Klerk; H.P. Endtz (Hubert); B.C. Jacobs (Bart); J.D. Laman (Jon); F.G.A. van der Meché (Frans); P.A. van Doorn (Pieter); C.W. Ang (Wim)

    2001-01-01

    textabstractCampylobacter jejuni infections are thought to induce antiganglioside antibodies in patients with Guillain-Barre syndrome (GBS) and Miller Fisher syndrome (MFS) by molecular mimicry between C. jejuni lipopolysaccharides (LPS) and gangliosides. We used

  15. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare.

    Science.gov (United States)

    Humphrey, Suzanne; Chaloner, Gemma; Kemmett, Kirsty; Davidson, Nicola; Williams, Nicola; Kipar, Anja; Humphrey, Tom; Wigley, Paul

    2014-07-01

    Campylobacter jejuni is the leading cause of bacterial food-borne infection; chicken meat is its main source. C. jejuni is considered commensal in chickens based on experimental models unrepresentative of commercial production. Here we show that the paradigm of Campylobacter commensalism in the chicken is flawed. Through experimental infection of four commercial breeds of broiler chickens, we show that breed has a significant effect on C. jejuni infection and the immune response of the animals, although these factors have limited impact on the number of bacteria in chicken ceca. All breeds mounted an innate immune response. In some breeds, this response declined when interleukin-10 was expressed, consistent with regulation of the intestinal inflammatory response, and these birds remained healthy. In another breed, there was a prolonged inflammatory response, evidence of damage to gut mucosa, and diarrhea. We show that bird type has a major impact on infection biology of C. jejuni. In some breeds, infection leads to disease, and the bacterium cannot be considered a harmless commensal. These findings have implications for the welfare of chickens in commercial production where C. jejuni infection is a persistent problem. Importance: Campylobacter jejuni is the most common cause of food-borne bacterial diarrheal disease in the developed world. Chicken is the most common source of infection. C. jejuni infection of chickens had previously not been considered to cause disease, and it was thought that C. jejuni was part of the normal microbiota of birds. In this work, we show that modern rapidly growing chicken breeds used in intensive production systems have a strong inflammatory response to C. jejuni infection that can lead to diarrhea, which, in turn, leads to damage to the feet and legs on the birds due to standing on wet litter. The response and level of disease varied between breeds and is related to regulation of the inflammatory immune response. These findings

  16. Production of a monoclonal antibody specific for the major outer membrane protein of Campylobacter jejuni and characterization of the epitope.

    Science.gov (United States)

    Qian, Hongliang; Pang, Ervinna; Du, Qingyun; Chang, Jason; Dong, Jin; Toh, Say Ling; Ng, Fook Kheong; Tan, Ai Ling; Kwang, Jimmy

    2008-02-01

    Campylobacter species are important enteric pathogens causing disease in humans and animals. There is a lack of a good immunological test that can be used routinely to separate Campylobacter jejuni from other Campylobacter species. We produced monoclonal antibodies (MAbs) directed against the major outer membrane protein (MOMP) of C. jejuni using recombinant MOMP as the antigen. One MAb, designated MAb5C4 and of the immunoglobulin G1 isotype, was found to be potentially specific for C. jejuni. Dot blots demonstrated that MAb5C4 reacted with all 29 isolates of C. jejuni tested but did not react with 2 C. jejuni isolates, 26 other Campylobacter spp. isolates, and 19 non-Campylobacter isolates. Western blotting showed that MAb5C4 bound to a single protein band approximately 43 kDa in size, corresponding to the expected size of C. jejuni MOMP. The detection limit of MAb5C4 in a dot blot assay was determined to be about 5 x 10(3) bacteria. The epitope on the MOMP was mapped to a region six amino acids in length with the sequence 216GGQFNP221, which is 97% conserved among C. jejuni strains but divergent in other Campylobacter spp.; a GenBank search indicated that 95% of C. jejuni isolates will be able to be detected from non-Campylobacter spp. based on the highly specific and conserved region of the GGQFNP polypeptide. The epitope is predicted to be located in a region that is exposed to the periplasm. MAb5C4 is a potentially specific and sensitive MAb that can be used for the specific detection and identification of C. jejuni.

  17. Campylobacter jejuni strains of human and chicken origin are invasive in chickens after oral challenge

    DEFF Research Database (Denmark)

    Knudsen, Katrine Nørrelund; Bang, Dang Duong; Andresen, Lars Ole

    2006-01-01

    The aim of the study was to evaluate the colonizing ability and the invasive capacity of selected Campylobacter jejuni strains of importance for the epidemiology of C jejuni in Danish broiler chickens. Four C jejuni strains were selected for experimental colonization Studies in day-old and 14-day...... to be associated with the Guillain Barre Syndrome (GBS) in humans. The minimum dose for establishing colonization in the clay-old chickens was approximately 2 cfu, whereas two- to threefold higher doses were required for establishing colonization in the 14-day-old chickens. Two of the C jejuni strains were shown...... to be invasive in orally challenged chickens as well as in three different human epithelial cell lines....

  18. Effect of Organic Acids and Marination Ingredients on the Survival of Campylobacter jejuni on Meat

    DEFF Research Database (Denmark)

    Birk, Tina; Grønlund, Anne Christine Jørgensen; Christensen, Bjarke Bak

    2010-01-01

    The aim of this study was to determine whether marination of chicken meat in different food ingredients call be used to reduce populations of Campylobacter jejuni strains, were exposed to different organic acids (tartaric, acetic. lactic, malic, and citric acids) and food marinating ingredients...... at 4 degrees C in broth and on chicken meat. The organic acids (0.5%) reduced populations of C. jejuni broth (chicken juice and brain heart infusion broth) by 4 to 6 1011 units (after 24 h): tartaric acid was the most efficient treatment. Large strain variation was observed among 14 C. jejuni isolates...... inoculated in brain heart infusion broth containing 0.3% tartaric acid. On chicken meat medallions, reductions of C. jejuni were 0.5 to 2 log units when tartaric acid solutions (2, 4, 6, and 10%) were spread onto the meal. Analysis of acidic food ingredient (e.g., vinegar. lemon juice, pomegranate syrup...

  19. Growth of Campylobacter jejuni Supported by Respiration of Fumarate, Nitrate, Nitrite, Trimethylamine-N-Oxide, or Dimethyl Sulfoxide Requires Oxygen

    Science.gov (United States)

    Sellars, Michael J.; Hall, Stephen J.; Kelly, David J.

    2002-01-01

    The human gastrointestinal pathogen Campylobacter jejuni is a microaerophilic bacterium with a respiratory metabolism. The genome sequence of C. jejuni strain 11168 reveals the presence of genes that encode terminal reductases that are predicted to allow the use of a wide range of alternative electron acceptors to oxygen, including fumarate, nitrate, nitrite, and N- or S-oxides. All of these reductase activities were present in cells of strain 11168, and the molybdoenzyme encoded by Cj0264c was shown by mutagenesis to be responsible for both trimethylamine-N-oxide (TMAO) and dimethyl sulfoxide (DMSO) reduction. Nevertheless, growth of C. jejuni under strictly anaerobic conditions (with hydrogen or formate as electron donor) in the presence of any of the electron acceptors tested was insignificant. However, when fumarate, nitrate, nitrite, TMAO, or DMSO was added to microaerobic cultures in which the rate of oxygen transfer was severely restricted, clear increases in both the growth rate and final cell density compared to what was seen with the control were obtained, indicative of electron acceptor-dependent energy conservation. The C. jejuni genome encodes a single class I-type ribonucleotide reductase (RNR) which requires oxygen to generate a tyrosyl radical for catalysis. Electron microscopy of cells that had been incubated under strictly anaerobic conditions with an electron acceptor showed filamentation due to an inhibition of cell division similar to that induced by the RNR inhibitor hydroxyurea. An oxygen requirement for DNA synthesis can thus explain the lack of anaerobic growth of C. jejuni. The results indicate that strict anaerobiosis is a stress condition for C. jejuni but that alternative respiratory pathways can contribute significantly to energy conservation under oxygen-limited conditions, as might be found in vivo. PMID:12107136

  20. High Throughput Method for Analysis of Repeat Number for 28 Phase Variable Loci of Campylobacter jejuni Strain NCTC11168.

    Directory of Open Access Journals (Sweden)

    Lea Lango-Scholey

    Full Text Available Mutations in simple sequence repeat tracts are a major mechanism of phase variation in several bacterial species including Campylobacter jejuni. Changes in repeat number of tracts located within the reading frame can produce a high frequency of reversible switches in gene expression between ON and OFF states. The genome of C. jejuni strain NCTC11168 contains 29 loci with polyG/polyC tracts of seven or more repeats. This protocol outlines a method-the 28-locus-CJ11168 PV-analysis assay-for rapidly determining ON/OFF states of 28 of these phase-variable loci in a large number of individual colonies from C. jejuni strain NCTC11168. The method combines a series of multiplex PCR assays with a fragment analysis assay and automated extraction of fragment length, repeat number and expression state. This high throughput, multiplex assay has utility for detecting shifts in phase variation states within and between populations over time and for exploring the effects of phase variation on adaptation to differing selective pressures. Application of this method to analysis of the 28 polyG/polyC tracts in 90 C. jejuni colonies detected a 2.5-fold increase in slippage products as tracts lengthened from G8 to G11 but no difference between tracts of similar length indicating that flanking sequence does not influence slippage rates. Comparison of this observed slippage to previously measured mutation rates for G8 and G11 tracts in C. jejuni indicates that PCR amplification of a DNA sample will over-estimate phase variation frequencies by 20-35-fold. An important output of the 28-locus-CJ11168 PV-analysis assay is combinatorial expression states that cannot be determined by other methods. This method can be adapted to analysis of phase variation in other C. jejuni strains and in a diverse range of bacterial species.

  1. Avian resistance to Campylobacter jejuni colonization is associated with an intestinal immunogene expression signature identified by mRNA sequencing.

    Directory of Open Access Journals (Sweden)

    Sarah Connell

    Full Text Available Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal

  2. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter.

    Science.gov (United States)

    Tang, Yizhi; Dai, Lei; Sahin, Orhan; Wu, Zuowei; Liu, Mingyuan; Zhang, Qijing

    2017-06-01

    To identify and characterize a novel cfr variant that recently emerged and confers multidrug resistance in Campylobacter , a major foodborne pathogen. WGS was initially used to identify the cfr (C) gene in Campylobacter isolates and its function was further verified by cloning into an antibiotic-susceptible Campylobacter jejuni strain. Distribution of cfr (C) in various Campylobacter isolates was determined by PCR analysis. Genotyping of cfr (C)-positive strains was done by PFGE and MLST. The cfr (C) gene is predicted to encode a protein that shares 55.1% and 54.9% identity with Cfr and Cfr(B), respectively. cfr (C) was located on a conjugative plasmid of ∼48 kb. Cloning of cfr (C) into C. jejuni NCTC 11168 and conjugative transfer of the cfr (C)-containing plasmid confirmed its role in conferring resistance to phenicols, lincosamides, pleuromutilins and oxazolidinones, and resulted in an 8-256-fold increase in their MICs in both C. jejuni and Campylobacter coli . The cfr (C) gene was detected in multiple C. coli (34 of 344; 10%) isolates derived from different cattle farms in different states, and molecular typing of the cfr (C)-positive C. coli isolates revealed its spread mainly via clonal expansion. These results identify cfr (C) as a new multidrug resistance mechanism in Campylobacter and suggest the potential transmission of this mechanism via the foodborne route, warranting enhanced efforts to monitor its spread in Campylobacter and other foodborne pathogens.

  3. Distribution of serotypes of Campylobacter jejuni and C-coli from Danish patients, poultry, cattle and swine

    DEFF Research Database (Denmark)

    Nielsen, Eva Møller; Engberg, Jørgen; Madsen, Mogens

    1997-01-01

    The number of human cases of enteritis caused by Campylobacter jejuni and C. coli is increasing in Denmark and other European countries. No systematic typing has earlier been performed on Campylobacter isolates of Danish origin. The primary purpose of this study was to provide a serotype...... chickens, 47% for cattle and 46% for swine when sampled at the slaughterhouse. C. jejuni accounted for 83-91% of the thermophilic Campylobacter spp. in broiler chickens and cattle, whereas 95% of the isolates from swine was C. coli. In human patients with Campylobacter enteritis, 94% of the isolates were C......% of the C. jejuni isolates. These serotypes were also common in samples from broilers and cattle. In swine, C. coli O:30 and O:46 were most common. The serotype distribution of human clinical isolates showed large overlap with the serotype distribution of campylobacters in cattle and chickens...

  4. Characterization and localization of the Campylobacter jejuni transformation system proteins CtsE, CtsP, and CtsX.

    Science.gov (United States)

    Beauchamp, Jessica M; Erfurt, Rebecca S; DiRita, Victor J

    2015-02-01

    The human pathogen Campylobacter jejuni is naturally competent for transformation with its own DNA. Genes required for efficient transformation in C. jejuni include those similar to components of type II secretion systems found in many Gram-negative bacteria (R. S. Wiesner, D. R. Hendrixson, and V. J. DiRita, J Bacteriol 185:5408-5418, 2003, http://dx.doi.org/10.1128/JB.185.18.5408-5418.2003). Two of these, ctsE and ctsP, encode proteins annotated as putative nucleotide binding nucleoside triphosphatases (NTPases) or nucleoside triphosphate (NTP) binding proteins. Here we demonstrate that the nucleotide binding motifs of both proteins are essential for their function in transformation of C. jejuni. Localization experiments demonstrated that CtsE is a soluble protein while CtsP is membrane associated in C. jejuni. A bacterial two-hybrid screen identified an interaction between CtsP and CtsX, an integral membrane protein also required for transformation. Topological analysis of CtsX by the use of LacZ and PhoA fusions demonstrated it to be a bitopic, integral membrane protein with a cytoplasmic amino terminus and a periplasmic carboxyl terminus. Notwithstanding its interaction with membrane-localized CtsX, CtsP inherently associates with the membrane, requiring neither CtsX nor several other Cts proteins for this association. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Transfer of Campylobacter jejuni from raw to cooked chicken via wood and plastic cutting boards.

    Science.gov (United States)

    Tang, J Y H; Nishibuchi, M; Nakaguchi, Y; Ghazali, F M; Saleha, A A; Son, R

    2011-06-01

    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE). RW and PE cutting boards (2.5 × 2.5 cm(2)) were constructed. RW surfaces were smooth and even, whereas PE was uneven. Scoring with scalpel blades produced crevices on RW and flaked patches on the PE boards. Raw chicken breast fillets or skin pieces (10 g) naturally contaminated with Camp. jejuni were used to contaminate the cutting boards (6.25 cm(2)). These were then briefly covered with pieces of cooked chicken. Campylobacter jejuni on raw chicken, the boards, and cooked chicken pieces were counted using a combined most-probable-number (MPN)-PCR method. The type of cutting board (RW, PE; unscored and scored) and temperature of cooked chicken fillets and skins were examined. Unscored PE and RW boards were not significantly different in regards to the mean transfer of Camp. jejuni from raw samples to the boards. The mean transfer of Camp. jejuni from scored RW was significantly higher than from scored PE. When the chicken fillets were held at room temperature, the mean transfer of Camp. jejuni from scored RW and PE was found to be 44.9 and 40.3%, respectively.   RW and PE cutting boards are potential vehicles for Camp. jejuni to contaminate cooked chicken. Although cooked chicken maintained at high temperatures reduced cross-contamination via contaminated boards, a risk was still present. Contamination of cooked chicken by Camp. jejuni from raw chicken via a cutting board is influenced by features of the board (material, changes caused by scoring) and chicken (types of chicken parts and temperature of the cooked chicken). © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni.

    Science.gov (United States)

    Beauchamp, Jessica M; Leveque, Rhiannon M; Dawid, Suzanne; DiRita, Victor J

    2017-09-19

    Campylobacter jejuni, a leading cause of bacterial gastroenteritis, is naturally competent. Like many competent organisms, C. jejuni restricts the DNA that can be used for transformation to minimize undesirable changes in the chromosome. Although C. jejuni can be transformed by C. jejuni-derived DNA, it is poorly transformed by the same DNA propagated in Escherichia coli or produced with PCR. Our work indicates that methylation plays an important role in marking DNA for transformation. We have identified a highly conserved DNA methyltransferase, which we term Campylobacter transformation system methyltransferase (ctsM), which methylates an overrepresented 6-bp sequence in the chromosome. DNA derived from a ctsM mutant transforms C. jejuni significantly less well than DNA derived from ctsM+ (parental) cells. The ctsM mutation itself does not affect transformation efficiency when parental DNA is used, suggesting that CtsM is important for marking transforming DNA, but not for transformation itself. The mutant has no growth defect, arguing against ongoing restriction of its own DNA. We further show that E. coli plasmid and PCR-derived DNA can efficiently transform C. jejuni when only a subset of the CtsM sites are methylated in vitro. A single methylation event 1 kb upstream of the DNA involved in homologous recombination is sufficient to transform C. jejuni, whereas otherwise identical unmethylated DNA is not. Methylation influences DNA uptake, with a slight effect also seen on DNA binding. This mechanism of DNA discrimination in C. jejuni is distinct from the DNA discrimination described in other competent bacteria.

  7. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    and quantification of viable Campylobacter jejuni directly from chicken faecal samples. The results of this method anda DNA-based quantitative real-time PCR (qPCR) method were compared with those of a bacterial culture method. Using bacterial culture andRT-qPCR methods, viable C. jejuni cells could be detected...

  8. Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence

    Science.gov (United States)

    Campylobacter jejuni effectively promotes commensalism in the intestinal tract of avian hosts and diarrheal disease in humans, yet components of intestinal environments sensed by the bacterium in either host to initiate interactions are mostly unknown. By analyzing a C. jejuni acetogenesis mutant th...

  9. Updated Campylobacter jejuni capsule PCR multiplex typing system and its application to clinical isolates from south and southeast Asia

    Science.gov (United States)

    Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as gold standard for C. jejuni typing. A preliminary multiple...

  10. Epitope mapping of campylobacter jejuni flagellar capping protein (FliD) by chicken (gallus gallus domesticus) sera

    Science.gov (United States)

    Campylobacter jejuni, a Gram-negative rod, is a zoonotic pathogen associated with human acute bacterial gastroenteritis worldwide. The flagellum, composed of more than 35 proteins, is responsible for colonization of C. jejuni in the host gastrointestinal tract as well as inducing protective antibod...

  11. The complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized, farm raised chickens

    Science.gov (United States)

    Campylobacter jejuni is a leading cause of bacterially derived foodborne illness worldwide. Human illness is commonly associated with handling and consumption of contaminated poultry products. Three C. jejuni strains were isolated from cecal contents of three different naturally colonized, farm rais...

  12. Guillain-Barré syndrome-related Campylobacter jejuni in Bangladesh: Ganglioside mimicry and cross-reactive antibodies

    NARCIS (Netherlands)

    Z. Islam (Zhahirul); M. Gilbert (Michel); Q.D. Mohammad (Quazi); K. Klaij (Kevin); J. Li (Jianjun); W. van Rijs (Wouter); A.P. Tio-Gillen (Anne); K.A. Talukder (Kaisar); H.J. Willison (Hugh); A.F. van Belkum (Alex); H.P. Endtz (Hubert); B.C. Jacobs (Bart)

    2012-01-01

    textabstractBackground: Campylobacter jejuni is the predominant antecedent infection in Guillain-Barré syndrome (GBS). Molecular mimicry and cross-reactive immune responses to C. jejuni lipo-oligosaccharides (LOS) precipitate the development of GBS, although this mechanism has not been established

  13. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis.

    Science.gov (United States)

    Louwen, R P L; van Belkum, A; Wagenaar, J A; Doorduyn, Y; Achterberg, R; Endtz, H P

    2006-05-01

    The main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a role for other virulence determinants.

  14. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni Enteritis

    NARCIS (Netherlands)

    Louwen, R.P.; Belkum, van A.; Wagenaar, J.A.; Doorduyn, Y.; Achterberg, R.P.; Endtz, H.P.

    2006-01-01

    The main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a role for

  15. Lack of association between the presence of the pVir plasmid and bloody diarrhea in Campylobacter jejuni enteritis.

    NARCIS (Netherlands)

    R.P.L. Louwen (Rogier); A.F. van Belkum (Alex); J.A. Wagenaar (Jaap); Y. Doorduyn; R. Achterberg; H.P. Endtz (Hubert)

    2006-01-01

    textabstractThe main mechanisms by which Campylobacter jejuni causes diarrhea are unknown. In contrast to a recent communication, we report here the absence of an association with the plasmid pVir in patients infected with C. jejuni who developed bloody diarrhea in The Netherlands, and we suggest a

  16. ERIC-PCR Genotyping of Some Campylobacter jejuni Isolates of Chicken and Human Origin in Egypt.

    Science.gov (United States)

    Ahmed, Heba A; El Hofy, Fatma I; Ammar, Ahmed M; Abd El Tawab, Ashraf A; Hefny, Ahmed A

    2015-12-01

    The public health importance of the genus Campylobacter is attributed to several species causing diarrhea in consumers. Poultry and their meat are considered the most important sources of human campylobacteriosis. In this study, 287 samples from chicken (131 cloacal swabs, 39 chicken skin, 78 chicken meat, and 39 cecal parts) obtained from retail outlets as well as 246 stool swabs from gastroenteritis patients were examined. A representative number of the biochemically identified Campylobacter jejuni isolates were identified by real-time PCR, confirming the identification of the isolates as C. jejuni. Genotyping of the examined isolates (n = 31) by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) revealed a high discriminatory index of ERIC-PCR (D = 0.948), dividing C. jejuni isolates of chicken and human origins into 18 profiles and four clusters. The 18 profiles obtained indicated the heterogeneity of C. jejuni. Dendrogram analysis showed that four clusters were generated; all human isolates fell into clusters I and III. These observations further support the existence of a genetic relationship between human and poultry isolates examined in the present study. In conclusion, the results obtained support the speculation that poultry and poultry meat have an important role as sources of infection in the acquisition of Campylobacter infection in humans.

  17. Recurrent Campylobacter jejuni bacteremia in a patient with hypogammaglobulinemia: A case report.

    Science.gov (United States)

    Kim, Youie; Shin, Ju Ae; Han, Seung Beom; Cho, Bin; Jeong, Dae Chul; Kang, Jin Han

    2017-06-01

    Although some cases of recurrent bacteremia due to Campylobacter jejuni have been reported in immunocompromised patients, antibiotic treatment strategies to eradicate C. jejuni and prevent recurrent infections in immunocompromised patients have not been established. Authors' experience of such rare cases should be shared for improving patients' outcomes. An 18-year-old boy with hypogammaglobulinemia, who received intravenous immunoglobulin replacement therapy every 3 weeks, was admitted to hospital repeatedly due to recurrent diarrhea and cellulitis of the leg. The patient was admitted 6 times, and among them, C. jejuni was isolated from blood cultures 4 times and stool cultures 2 times. The patient experienced recurrent C. jejuni enteritis and bacteremia 5 times despite macrolide therapy. Doxycycline was administered for 3 months after the fifth admission. Ten months after the completion of doxycycline therapy for 3 months, C. jejuni enteritis relapsed; however, since then, recurrent infection has not occurred for 10 months. Immunocompromised patients can experience recurrent C. jejuni infection despite prolonged antibiotic therapy. Further studies to establish appropriate antibiotic therapy for eradicating colonized C. jejuni and preventing recurrent infection are needed.

  18. Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice.

    Directory of Open Access Journals (Sweden)

    Ruth Huizinga

    Full Text Available Guillain-Barré syndrome (GBS is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.

  19. Sialylation of Campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice.

    Science.gov (United States)

    Huizinga, Ruth; Easton, Alistair S; Donachie, Anne M; Guthrie, Jim; van Rijs, Wouter; Heikema, Astrid; Boon, Louis; Samsom, Janneke N; Jacobs, Bart C; Willison, Hugh J; Goodyear, Carl S

    2012-01-01

    Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown. In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC. These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS.

  20. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni.

    Science.gov (United States)

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.

  1. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Dirk eHofreuter

    2014-09-01

    Full Text Available During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host.

  2. Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells.

    Science.gov (United States)

    Wine, Eytan; Gareau, Mélanie G; Johnson-Henry, Kathene; Sherman, Philip M

    2009-11-01

    Campylobacter jejuni is the most common bacterial cause of enterocolitis in humans, leading to diarrhoea and chronic extraintestinal diseases. Although probiotics are effective in preventing other enteric infections, beneficial microorganisms have not been extensively studied with C. jejuni. The aim of this study was to delineate the ability of selected probiotic Lactobacillus strains to reduce epithelial cell invasion by C. jejuni. Human colon T84 and embryonic intestine 407 epithelial cells were pretreated with Lactobacillus strains and then infected with two prototypic C. jejuni pathogens. Lactobacillus helveticus, strain R0052 reduced C. jejuni invasion into T84 cells by 35-41%, whereas Lactobacillus rhamnosus R0011 did not reduce pathogen invasion. Lactobacillus helveticus R0052 also decreased invasion of one C. jejuni isolate (strain 11168) into intestine 407 cells by 55%. Lactobacillus helveticus R0052 adhered to both epithelial cell types, which suggest that competitive exclusion could contribute to protection by probiotics. Taken together, these findings indicate that the ability of selected probiotics to prevent C. jejuni-mediated disease pathogenesis depends on the pathogen strain, probiotic strain and the epithelial cell type selected. The data support the concept of probiotic strain selectivity, which is dependent on the setting in which it is being evaluated and tested.

  3. Isolation and Identification of Campylobacter jejuni and Campylobacter coli From Various Animal Source Foods by Conventional Methods and PCR

    OpenAIRE

    KILIC ALTUN, Serap; KİREÇCİ, Ekrem; KUCUKKALEM, Ömer Faruk; SEYITOGLU, Şenay

    2014-01-01

      In   this   study,   300   samples   consisted   of   chicken   meats,   ground   beef,   and   gallbladder   of   cattle   and   sheep   were  collected   from   various   markets,   butchers   and   abattoirs   in   the   Eastern   Anatolia   region   in   Turkey.   The   samples   were  evaluated   for   the   presence   of   Campylobacter   jejuni   and   Campylobacter   coli.   Campylobacter   spp.   was   isolated   from   16  (5.3%)  of  the  samples  by  conventional  methods.  The ...

  4. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions

    Science.gov (United States)

    Bronnec, Vicky; Turoňová, Hana; Bouju, Agnès; Cruveiller, Stéphane; Rodrigues, Ramila; Demnerova, Katerina; Tresse, Odile; Haddad, Nabila; Zagorec, Monique

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer’s plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under

  5. Comparison of Campylobacter jejuni isolates from human, food, veterinary and environmental sources in Iceland using PFGE, MLST and fla‐SVR sequencing

    National Research Council Canada - National Science Library

    Magnússon, S.H; Guðmundsdóttir, S; Reynisson, E; Rúnarsson, Á.R; Harðardóttir, H; Gunnarson, E; Georgsson, F; Reiersen, J; Marteinsson, V.Th

    2011-01-01

    Aims:  Campylobacter jejuni isolates from various sources in Iceland were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and campylobacter transmission routes to humans...

  6. DNA Supercoiling Regulates the Motility of Campylobacter jejuni and Is Altered by Growth in the Presence of Chicken Mucus.

    Science.gov (United States)

    Shortt, Claire; Scanlan, Eoin; Hilliard, Amber; Cotroneo, Chiara E; Bourke, Billy; Ó Cróinín, Tadhg

    2016-09-13

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans, but relatively little is known about the global regulation of virulence factors during infection of chickens or humans. This study identified DNA supercoiling as playing a key role in regulating motility and flagellar protein production and found that this supercoiling-controlled regulon is induced by growth in chicken mucus. A direct correlation was observed between motility and resting DNA supercoiling levels in different strains of C. jejuni, and relaxation of DNA supercoiling resulted in decreased motility. Transcriptional analysis and Western immunoblotting revealed that a reduction in motility and DNA supercoiling affected the two-component regulatory system FlgRS and was associated with reduced FlgR expression, increased FlgS expression, and aberrant expression of flagellin subunits. Electron microscopy revealed that the flagellar structure remained intact. Growth in the presence of porcine mucin resulted in increased negative supercoiling, increased motility, increased FlgR expression, and reduced FlgS expression. Finally, this supercoiling-dependent regulon was shown to be induced by growth in chicken mucus, and the level of activation was dependent on the source of the mucus from within the chicken intestinal tract. In conclusion, this study reports for the first time the key role played by DNA supercoiling in regulating motility in C. jejuni and indicates that the induction of this supercoiling-induced regulon in response to mucus from different sources could play a critical role in regulating motility in vivo Although Campylobacter jejuni is the leading cause of bacterial gastroenteritis, very little is understood about how this pathogen controls the expression of genes involved in causing disease. This study for the first time identifies DNA supercoiling as a key regulator of motility in C. jejuni, which is essential for both pathogenesis and colonization. Altering the

  7. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets.

    Science.gov (United States)</