WorldWideScience

Sample records for camphene

  1. A DFT Study of the Camphene Hydrochloride Rearrangement.

    Science.gov (United States)

    Smith, William B.

    1999-01-08

    The rearrangement of camphene hydrochloride to isobornyl chloride is one of the best studied among the many early examples of Wagner-Meerwein rearrangement processes. However, many aspects of the reaction remain to be elucidated. A summary of early mechanistic studies is given. A proposal of new mechanistic possibilities is set forth and then tested by density functional theory (DFT) calculations. The uncertainties in configurations of camphene hydrochloride and isobornyl chloride are laid to rest by a comparison of computed and experimental carbon-13 and methyl proton chemical shifts.

  2. Ion exchange resins as catalyst for the isomerization of alpha-pinene to camphene.

    Science.gov (United States)

    Chimal-Valencia, O; Robau-Sánchez, A; Collins-Martínez, V; Aguilar-Elguézabal, A

    2004-06-01

    Camphene is an industrial intermediate compound for commercial chemicals such as isoborneol, isobornyl acetate and camphor. Industrially, the conventional process for camphene production consists of the isomerization of alpha-pinene using acidic TiO2 as catalyst. The use of this catalyst presents problems such as considerable time for preparation, reproducibility and recovery of catalyst from products after the alpha-pinene isomerization. For the first time, a commercial exchange resin was used as catalyst for this reaction. Based on the concentration of product as a function of the reaction time, the path of the alpha-pinene transformation to camphene and byproducts is proposed. Temperature and alpha-pinene/catalyst ratio were studied in order to optimize the yield to camphene production. The obtained results were comparable with those reported for acidic TiO2. Copyright 2003 Elsevier Ltd.

  3. Alkylation of phenol with camphene in the presence of heteropolyacids supported on metal oxides

    Science.gov (United States)

    Popova, S. A.; Tarasov, A. L.; Kustov, L. M.; Chukicheva, I. Yu.; Kuchin, A. V.

    2013-02-01

    Alkylation of phenol with camphene in the presence of supported heteropolyacids is studied. The main reaction products are found to be phenyl isobornyl ether, 2-isobornylphenol and 2-isocamphylphenol, the ratio between them being determined by the nature of heteropolyacid and carrier (ZrO2 or TiO2).

  4. Esterification of camphene over heterogeneous heteropoly acid catalysts: synthesis of isobornyl carboxylates.

    OpenAIRE

    Meireles, Augusto Luís Pereira de; Rocha, Kelly Alessandra da Silva; Kozhevnikov, Ivan V.; Goussevskaia, Elena Vitalievna

    2011-01-01

    Silica supported H3PW12O40 (PW), the strongest heteropoly acid in the Keggin series, is an active and environmentally friendly solid acid catalyst for liquid-phase esterification of camphene, a renewable biomass-based substrate, with C2, C4 and C6 short-chain fatty acids. The reaction provides isobornyl carboxylates, useful as fragrances, in virtually 100% selectivity and 80–90% yield. The reaction is equilibrium-controlled and occurs under mild conditions with a catalyst turnover number of u...

  5. Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis.

    Science.gov (United States)

    Oliveira, R C de M; Bauerfeldt, G F

    2012-10-07

    In this work, a chemical model for the camphene ozonolysis, leading to carbonyl final products, is proposed and discussed on the basis of the thermochemical properties and kinetic data obtained at density functional theory levels of calculation. The mechanism is initiated by the electrophilic attack of ozone to the double bond in camphene leading to a 1,2,3-trioxolane intermediate, which decomposes to peroxy radicals and carbonyl compounds in a total of 10 elementary reactions. The thermodynamic properties (enthalpy and entropies differences) are calculated at 298 K. For the thermochemical evaluation, theoretical calculations are performed with the B3LYP, MPW1PW91, and mPW1K density functionals and the basis sets 6-31G(d), 6-31G(2d,2p), 6-31+G(d,p), and 6-31+G(2d,2p). Eventually, single point calculations adopting the 6-311++G(2d,2p) basis set are performed in order to improve the electronic energies. The enthalpy profiles suggest highly exothermic reactions for the individual steps, with a global enthalpy difference of -179.18 kcal mol(-1), determined at the B3LYP∕6-31+G(2d,2p) level. The Gibbs free energy differences for each step, at 298 K, calculated at the B3LYP∕6-311++G(2d,2p)∕∕B3LYP∕6-31+G(2d,2p) level, are used to estimate the composition of a final product mixture under equilibrium conditions as 58% of camphenilone and 42% of 6,6-dimethyl-ɛ-caprolactone-2,5-methylene. For the reaction kinetics, the bimolecular O(3) + camphene step is assumed to be rate determining in the global mechanism. A saddle point for the ozone addition to the double bond is located and rate constants are determined on the basis of the transition state theory. This saddle point is well represented by a loosely bound structure and corrections for the basis set superposition error (BSSE) are calculated, either by considering the effect over the geometry optimization procedure (here referred as CP1 procedure), or the effect of the BSSE over the electronic energy of a

  6. Transcriptome Profile of the Response of Paracoccidioides spp. to a Camphene Thiosemicarbazide Derivative.

    Directory of Open Access Journals (Sweden)

    Lívia do Carmo Silva

    Full Text Available Paracoccidioidomycosis (PCM is a systemic granulomatous human mycosis caused by fungi of the genus Paracoccidioides, which is geographically restricted to Latin America. Inhalation of spores, the infectious particles of the fungus, is a common route of infection. The PCM treatment of choice is azoles such as itraconazole, but sulfonamides and amphotericin B are used in some cases despite their toxicity to mammalian cells. The current availability of treatments highlights the need to identify and characterize novel targets for antifungal treatment of PCM as well as the need to search for new antifungal compounds obtained from natural sources or by chemical synthesis. To this end, we evaluated the antifungal activity of a camphene thiosemicarbazide derivative (TSC-C compound on Paracoccidioides yeast. To determine the response of Paracoccidioides spp. to TSC-C, we analyzed the transcriptional profile of the fungus after 8 h of contact with the compound. The results demonstrate that Paracoccidioides lutzii induced the expression of genes related to metabolism; cell cycle and DNA processing; biogenesis of cellular components; cell transduction/signal; cell rescue, defense and virulence; cellular transport, transport facilities and transport routes; energy; protein synthesis; protein fate; transcription; and other proteins without classification. Additionally, we observed intensely inhibited genes related to protein synthesis. Analysis by fluorescence microscopy and flow cytometry revealed that the compound induced the production of reactive oxygen species. Using an isolate with down-regulated SOD1 gene expression (SOD1-aRNA, we sought to determine the function of this gene in the defense of Paracoccidioides yeast cells against the compound. Mutant cells were more susceptible to TSC-C, demonstrating the importance of this gene in response to the compound. The results presented herein suggest that TSC-C is a promising candidate for PCM treatment.

  7. Porous and strong bioactive glass (13–93) scaffolds prepared by unidirectional freezing of camphene-based suspensions

    Science.gov (United States)

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.

    2011-01-01

    Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661

  8. Design and Production of Continuously Gradient Macro/Microporous Calcium Phosphate (CaP) Scaffolds Using Ceramic/Camphene-Based 3D Extrusion

    Science.gov (United States)

    Ahn, Min-Kyung; Moon, Young-Wook; Maeng, Woo-Youl; Koh, Young-Hag; Kim, Hyoun-Ee

    2017-01-01

    This study proposes a new type of calcium phosphate (CaP) scaffolds with a continuously gradient macro/microporous structure using the ceramic/camphene-based 3D extrusion process. Green filaments with a continuously gradient core/shell structure were successfully produced by extruding a bilayered feedrod comprised of a CaP/camphene mixture lower part and a pure camphene upper part. The extruded filaments were then deposited in a controlled manner to construct triangular prisms, followed by the assembly process for the production of CaP scaffolds with a gradient core/shell structure. In addition, a gradient microporous structure was created by heat-treating the green body at 43 °C to induce the overgrowth of camphene dendrites in the CaP/camphene walls. The produced CaP scaffold showed a highly macroporous structure within its inner core, where the size of macrochannels increased gradually with an increase in the distance from the outer shell, while relatively larger micropores were created in the outer shell. PMID:28773077

  9. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    Science.gov (United States)

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent

  10. Thermal properties and structural characterizations of new types of phase change material: Anhydrous and hydrated palmitic acid/camphene solid dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tu, E-mail: tulee@cc.ncu.edu.tw; Chiu, Yu Hsiu; Lee, Yun; Lee, Hung Lin

    2014-01-10

    Highlights: • Solid dispersion is implemented on phase change materials. • Water is added as a tertiary component. • Specific heat of solid is increased by partially amorphous camphene. • Microstructures are characterized by LTDSC, PXRD and SAXS. • Thermal properties are linked to microstructures. - Abstract: Two new types of phase change material anhydrous and hydrated palmitic acid/camphene solid dispersions (PA1CA1) are prepared and characterized by low-temperature differential scanning calorimetry, powder X-ray diffraction, small-angle X-ray scattering and temperature–history method. Their microstructures contain nanometer-sized palmitic acid (PA) crystallites with lamellar periodicity dispersed in a partially amorphous plastic crystalline camphene (CA) matrix. The PA phase apparently possesses a relatively high latent heat value inherited from the pristine crystalline PA of 229.7 ± 0.1 kJ kg{sup −1}. The relatively high specific heat of solid, C{sub ps}, for anhydrous PA1CA1 of 2.17 ± 0.06 kJ kg{sup −1} K{sup −1} is originated from the presence of disordered CA matrix. Hydration of PA1CA1 can further increase the C{sub ps} to 2.61 ± 0.01 kJ kg{sup −1} K{sup −1}. The mixing of partially amorphous CA, some PA and the small amount of water may have turned the matrix into more disorder due to their different bonding natures, molecular weights, and various molecular shapes and sizes.

  11. Drug: D07747 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07747 Mixture, Drug alpha, beta-Pinene - borneol - anetholtrithion - d-camphene - cine...11], Anetholtrithion [DR:D02377], d-Camphene [CPD:C06304], Cineole [DR:D04115], Fenchone [CPD:C09859] PubChem: 96024466 ...

  12. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    DEFF Research Database (Denmark)

    Van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka

    2017-01-01

    emission remained similar. Whilst some compounds were species specific, the compounds -pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity......, the compounds -pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response....... Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds -pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all...

  13. Chemotype diversity of indigenous Dalmatian sage (Salvia officinalis L.) populations in Montenegro.

    Science.gov (United States)

    Stešević, Danijela; Ristić, Mihailo; Nikolić, Vuko; Nedović, Marijana; Caković, Danka; Šatović, Zlatko

    2014-01-01

    To identify how many chemotypes of Salvia officinalis exist in Montenegro, the chemical composition of the essential oils of 12 wild-growing populations was determined by GC-FID and GC/MS analyses. Among the 40 identified constituents, the most abundant were cis-thujone (16.98-40.35%), camphor (12.75-35.37%), 1,8-cineol (6.40-12.06%), trans-thujone (1.5-10.35%), camphene (2.26-9.97%), borneol (0.97-8.81%), viridiflorol (3.46-7.8%), limonene (1.8-6.47%), α-pinene (1.59-5.46%), and α-humulene (1.77-5.02%). The composition of the essential oils under study did not meet the ISO 9909 requirements, while the oils of populations P02-P04, P09, and P10 complied with the German Drug Codex. A few of the main essential-oil constituents appeared to be highly intercorrelated. Strong positive correlations were observed between α-pinene and camphene, camphene and camphor, as well as between cis-thujone and trans-thujone. Strong negative correlations were evidenced between cis-thujone and α-pinene, cis-thujone and champhene, cis-thujone and camphor, as well as between trans-thujone and camphene. Multivariate analyses allowed the grouping of the populations into three distinct chemotypes, i.e., Chemotype A, rich in total thujones, Chemotype B, with intermediate contents of thujones, α-pinene, camphene, and camphor and high borneol contents, and Chemotype C, rich in camphor, camphene, and α-pinene. The chemotypes did not significantly differ in the total essential-oil content and the cis/trans-thujone ratio. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Chemical composition and antioxidant activity of essentiel oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco

    OpenAIRE

    Zidane, H; Elmiz, M; Aouinti, F; Tahani, A; Wathelet, J; Sindic, Marianne; Elbachiri, Ali

    2013-01-01

    In the present work, we studied the chemical composition of the essential oil of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Camphene, borneol, cyclohexanol-2, 2, 6 tremethyl, terpineol-4 and α-pinene were the main constituents of the essential oil of C. ladanifer, while in the essential oil of C. libanotis we obtained terpineol-4, γ-terpinene, camphene, sabinene, α-terpinene and α-pinene. The result show that C. ladanifer of the leaves of methanol: water (50:50) extr...

  15. Drug: D04840 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D04840 Mixture, Drug Dental phenol with camphor (JP16); Phenol - camphor; Camphenic...eutic category of drugs in Japan [BR:br08301] 2 Agents affecting individual organs 27 Dental preparations 27...3 Analgesics and sedatives 2730 Analgesics and sedatives D04840 Dental phenol with camphor (JP16) PubChem: 17398190 ...

  16. Antimicrobial activity of essential oil of Salvia officinalis L. collected ...

    African Journals Online (AJOL)

    Although, the major components of the essential oils extracted from plants grown at both altitudes were 1,8-cineol, camphor, borneol, α-pinene, β-pinene, camphene, β-myrcene and caryophyllene, their percentage changed according to the altitude. S. officinalis essential oil was for its antibacterial activities by using Gram- ...

  17. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects.

    Science.gov (United States)

    Koo, Bon-Ryul; Ahn, Hyo-Jin

    2017-11-08

    In this study, mesoporous WO3 films with oxygen vacancy defects have been fabricated using the camphene-assisted sol-gel method. By controlling the optimized weight ratio of camphene on the WO3 films, we developed a unique film structure of the WO3 phase with both mesoporous morphology and oxygen vacancy defects due to the distinctive effect of camphene. The mesoporous WO3 films with oxygen vacancy defects fabricated using 10 wt% camphene showed superb multifunctional electrochromic (EC) properties with both fast switching speeds (5.8 s for coloration speed and 1.0 s for bleaching speed) and high coloration efficiency (CE, 51.4 cm(2) C(-1)), which include the most prominent properties, particularly for switching speeds among WO3-based films reported so far. The attractive EC properties are due to the synergistic effects of the mesoporous morphology and oxygen vacancy defects on the WO3. The fast switching speeds are mainly caused by the reduced Li(+) diffusion pathway due to the mesoporous morphology and increased electrical conductivity due to the oxygen vacancy defects. In addition, the increased CE value is due to the large transmittance modulation as a result of a more effective electrostatic contact of the mesoporous morphology and an increased optical bandgap of the oxygen vacancy defects on the WO3. Therefore, this unique film structure of the mesoporous WO3 films with oxygen vacancy defects can be potentially regarded as a novel EC material for high-performance EC devices.

  18. Isolation of pure enantiomers of Toxaphene congeners via hydrochlorination and chlorination of Pinene and composition of Soviet polychloropinene

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, V.; Trukhin, A.; Kruchkov, F.; Kiprianova, A.; Miltsov, S. [Sankt-Peterburgskij Univ. (Russian Federation). Dept. of Chemistry; Kallenborn, R. [NILU, Kjeller (Norway)

    2004-09-15

    Toxaphene is an insecticidal mixture, produced by the controlled photochlorination of camphene1. In the USSR similar insecticide - Polychloropinene was produced by chlorination of {alpha}-pinene with AIBN (azobisisobutyronitrile) as initiator. Natural camphene occurs in different essential oils in (+)-form as well as (-)-form. Production of artificial camphene starts from natural {alpha}-pinene, which is also chiral. All noted types of camphene are used for toxaphene synthesis by different manufacturers. Some congeners in selected samples of technical Toxaphene were shown to have small deviations from racemic distribution. Nevertheless, there is no information about any enantiomerically pure congeners of toxaphene. The amount of Polychloropinene produced in the USSR is estimated to be 160 thousand tons, which is a significant contribution into the total global production. Unfortunately, there is no traceable sample of Soviet Polychloropinene available. In the present work we report on the preparation of artificial model Polychloropinene mixtures with different content of chlorine in an attempt to find the difference between Toxaphene and Soviet Polychloropinene. Another goal of our research project is to prepare pure enantiomers of important Toxaphene congeners, to establish their configuration and thus to provide more opportunities to enantiomerspecific environmental analysis of Toxaphene residues.

  19. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    from the aerial parts of feverfew plants and collected by the dynamic headspace technique a total of 41 compounds, mainly monoterpenes, were identified and quantified by GC and GC-MS. Alpha-Pinene, camphene, limonene, gamma-terpinene, (E)-beta-ocimene, linalool, p-cymene, (E)-chrysanthenol, camphor...

  20. Chemical composition, antioxidant and antibacterial properties of Bene (Pistacia atlantica subsp. mutica) hull essential oil

    National Research Council Canada - National Science Library

    Rezaie, Mitra; Farhoosh, Reza; Sharif, Ali; Asili, Javad; Iranshahi, Mehrdad

    2015-01-01

    .... In this study, sixty three compounds were identified in the essential oil (EO) of Bene hull. The major components were determined to be α-pinene (20.8 %), camphene (8.4 %), β-myrcene (8.2 %) and limonene (8...

  1. Volatile terpenoids from aeciospores of Cronartium fusiforme.

    Science.gov (United States)

    Laseter, J. L.; Weete, J. D.; Walkinshaw, C. H.

    1973-01-01

    Identification of the terpenoids present in the volatile fraction from aeciospores of the gall rust fungus Cronartium fusiforme. The major monoterpenoid hydrocarbons found to be present with only traces of camphene include alpha-pinene, beta-pinene, delta(3)-carene, myrcene, linonene, beta-phellandrene, and delta-terpinene. A number of monoterpenoid alcohols, acyclic sesquiterpenes, and aromatic compounds were also present.

  2. Environmental Forensics

    Science.gov (United States)

    2011-03-29

    Resorcinol Camphene Isophorones Salicylates Camphor Isopropyl acetate Sterates Carboxylic acids Isopropyl alcohol Styrene Carboxylic alcohols...Sodium silicated Ethyl-2-cyanoacrylate Toluene Casein Carbon Tetrachloride Petroleum solvent naphtha Methyl cellouse Acrylic acid Vinyl acetate Lignin...Fragrances Acetaldehydes Cinnamates Mercaptans Acetates Citrals Methyl ethyl ketone Acetic acids Cresols Methyl isopropyl ketone Acetones

  3. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    methods of synthesis. In one of them the primary target molecule is camphene which is then converted to camphor via isoborneol. (Scheme-4). The first step is a Diels-Alder reaction (Box 7) between cyclopentadiene and mesityl oxide. Subsequent steps involve catalytic hydrogenation, a haloform reaction, reduction.

  4. Studies of Phase Transformation in Molecular Crystals Using the Positron Annihilation Technique

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Lightbody, David; Sherwood, John N.

    1980-01-01

    An examination has been made of the brittle/plastic phase transformation in the molecular crystals cyclohexane, DL-camphene and succinonitrile using the positron annihilation technique. In each material, the transition is characterized by a distinct increase in ortho-positronium lifetime. The inf...

  5. Drug: D06743 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available l [CPD:C09704], Camphene [CPD:C06076], alpha-Pinene [CPD:C09880], beta-Pinene [CPD:C09882], Cineole [CPD:C09...rneol [CPD:C01411] Therapeutic category of drugs in Japan [BR:br08301] 5 Crude drugs and Chinese medicine fo...16); Powdered amomum seed (JP16) Traditional Chinese Medicine in Japan [BR:br08304] Crude Drugs Drugs for da

  6. An Investigation Into Ventilation And Dust Issues For The Joint Light Tactical Vehicle (JLTV)

    Science.gov (United States)

    2012-05-01

    C)1 | (C)3 | Chlorine dioxide.......| 10049-04-4 | 0.1 | 0.3 | Chlorine trifluoride ...| 7790-91-2 | (C)0.1 | (C)0.4...15 | Boron trifluoride ......| 7637-07-2 | (C)1 | (C)3 | Bromine................| 7726-95-6 | 0.1 | 0.7...5 | Chlordane..............| 57-74-9 | ........ | 0.5 | X Chlorinated camphene...| 8001-35-2 | ........ | 0.5 | X

  7. In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    C. E. Jones

    2011-07-01

    Full Text Available Biogenic volatile organic compounds (BVOCs emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, as well as oxygenated VOCs (OVOCs of biogenic origin such as methacrolein, in ambient air above a tropical rainforest in Malaysian Borneo during the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3 project in 2008. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt respectively, and with an average monoterpene toisoprene ratio of 0.3 during sunlit hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission continued into the late afternoon/evening, under relatively low temperature and light conditions. The contributions of isoprene, monoterpenes and other classes of VOC to the volatile carbon budget and OH reactivity have been summarised for this rainforest location. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.

  8. Anticonflict effects of lavender oil and identification of its active constituents.

    Science.gov (United States)

    Umezu, Toyoshi; Nagano, Kimiyo; Ito, Hiroyasu; Kosakai, Kiyomi; Sakaniwa, Misao; Morita, Masatoshi

    2006-12-01

    The pharmacological effects of lavender oil were investigated using two conflict tests in ICR mice, and then the active constituents were identified. Lavender oil produced significant anticonflict effects at 800 and 1600 mg/kg in the Geller conflict test and at 800 mg/kg in the Vogel conflict test, suggesting that the oil has an anti-anxiety effect. Analysis using GC/MS revealed that lavender oil contains 26 constituents, among which alpha-pinene (ratio, 0.22%), camphene (0.06%), beta-myrcene (5.33%), p-cymene (0.3%), limonene (1.06%), cineol (0.51%), linalool (26.12%), borneol (1.21%), terpinene-4-ol (4.64%), linalyl acetate (26.32%), geranyl acetate (2.14%) and caryophyllene (7.55%) were identified. We examined the effects of linalool, linalyl acetate, borneol, camphene, cineol, terpinen-4-ol, alpha-pinene and beta-myrcene using the Geller and Vogel conflict tests in ICR mice. Cineol, terpinen-4-ol, alpha-pinene and beta-myrcene did not produce any significant anticonflict effects in the Geller test. Linalyl acetate did not produce any significant anticonflict effects in either test. Both borneol and camphene at 800 mg/kg produced significant anticonflict effects in the Geller, but not in the Vogel conflict test. Linalool, a major constituent of lavender oil, produced significant anticonflict effects at 600 and 400 mg/kg in the Geller and Vogel tests, respectively, findings that were similar to those of lavender oil. Thus, we concluded that linalool is the major pharmacologically active constituent involved in the anti-anxiety effect of lavender oil.

  9. Foliar and cortex oleoresin variability of silver fir (Abies alba Mill.) in Albania.

    Science.gov (United States)

    Zeneli, G; Tsitsimpikou, C; Petrakis, P V; Naxakis, G; Habili, D; Roussis, V

    2001-01-01

    Terpene composition of needle and cortical oleoresin from lateral shoots were analyzed by GC/MS for four Silver fir (Abies alba Mill.) populations scattered in natural species range in Albania. More than sixty compounds were detected in the needle oleoresin, which was characterized by a high content of alpha-pinene, camphene, beta-pinene, limonene and bornyl acetate. Three monoterpenes, alpha-pinene, beta-pinene and limonene, and two sesquiterpenes, beta-caryophyllene and germacrene D, comprised the majority of cortical oleoresin. The terpene composition differences among the populations that led to the recognition of two chemotypes. The needle oleoresin from the provinces of Puka, Bulqiza and Llogara were characterised by high amounts of beta-pinene, camphene and alpha-pinene and low amounts of limonene, while that from Drenova had high amounts of beta-pinene and limonene. A similar pattern was found in the cortical oleoresin with the exception of camphene that was a minor contributor. Geographical and seasonal variation between the populations was, also, investigated. Multivariate analysis of both needle and cortical oleoresin separated Drenova (southeastern population) from the other sites. When both major monoterpenes and sesquiterpenes were considered four chemical profiles could be attributed. Based on their chemical profiles, the populations can be divided into two groups: Populations with high content of beta-pinene and alpha-pinene but a low content of limonene (Puka, Bulqiza and Llogara), typical of most of A. alba populations in all its distribution range. Population with a high content of limonene and a moderate content of beta-pinene and alpha-pinene (Drenova).

  10. Volatile Chemical Constituents of Piper aduncum L and Piper gibbilimbum C. DC (Piperaceae from Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Peter G Waterman

    2007-03-01

    Full Text Available Exhaustive hydro-distillation of the leaves of Piper aduncum and fruits of Piper gibbilimbum (Piperaceae afforded colorless and pale orange colored oils in 0.35 and 0.30 % yields, respectively. Detailed chemical analysis by GC/MS indicated the volatile constituents of Piper aduncum to be composed of dill apiole (43.3 %, β-caryophyllene (8.2 %, piperitione (6.7 % and α-humulene (5.1 %, whilst the oil of P. gibbilimbum is dominated by the gibbilimbols A-D (74.2 %, with the remaining major constituents being the terpenes camphene (13.6 % and α-pinene (6.5 %.

  11. Some effects of douglas fir terpenes on certain microorganisms.

    Science.gov (United States)

    Andrews, R E; Parks, L W; Spence, K D

    1980-08-01

    The Douglas fir terpene alpha-pinene was shown to inhibit the growth of a variety of bacteria and a yeast. Other terpenes of the Douglas fir, including limonene, camphene, and isobornyl acetate, were also inhibitory to Bacillus thuringiensis. All terpenes were inhibitory at concentrations normally present in the fir needle diet of Douglas fir tussock moth larvae. The presence of such terpenes in the diet of these insects was found to strongly influence the infectivity of B. thuringiensis spores for the Douglas fir tussock moth larvae. The terpene alpha-pinene destroyed the cellular integrity and modified mitochondrial activity in certain microorganisms.

  12. A Comparative Study on Turpentine Oils of Oleoresins of Pinus sylvestris L. from Three Districts of Denizli

    Directory of Open Access Journals (Sweden)

    İbrahim Tümen

    2010-10-01

    Full Text Available Oleoresin samples collected from Pinus sylvestris L. trees from Acıpayam, Çal and Çamlıbel, three different locations in Denizli-Turkey. The constituents of the turpentine oil, obtained by hydrodistillation of oleoresin of Pinus sylvestris L., were identified by GC-MS. Fifty four constituents were detected from the turpentine oil, which constituted about between 96.2% and 98.2% of the total amount. Major constituents of the oil were a-pinene, b-pinene, camphene, longifolene, D3-carene, limonene and b-caryophyllene

  13. Volatile Constituents of Zhumaria Majdae

    Directory of Open Access Journals (Sweden)

    Yazdanparst

    1993-07-01

    Full Text Available Capillary gas chromatography mass spectrometry (GC- MS analyses of a sample of essential oil of zhumaria Linalool ned by simple water distillation of the pulverized air - dired leaves and flowers of the plant indicated that Linalool and comphor are the two major constituents of the volatile oil. Sylvestrene , y -terpinene, a- Pinene, b - carene, camphene, and Epiborneol constitute the other main components of the essential oil. The GC - MS chromatogram indicated the presence of more than fifty - components in the oil, most of them were present in trace amounts. In this study, the chemical structures of twenty of these consti tuents were elucidated using GC - MS analysis.

  14. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of {sup 1} H and {sup 13} C of monoterpenes using computational methods; Asignacion inequivoca de las senales del espectro de resonancia magnetica nuclear de {sup 1} H y {sup 13} C de monoterpenos empleando metodos computacionales

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L. [Universidad Nacional Autonoma de Mexico, Instituto de Quimica, A.P. 70213, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and {alpha}-pinene. The {sup 1} H and {sup 13} C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of {sup 1} H nuclei and qualitatively in the case of {sup 13} C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  15. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action.

    Science.gov (United States)

    Mangprayool, Thitiya; Kupittayanant, Sajeera; Chudapongse, Nuannoi

    2013-09-01

    The extract of ginger, the rhizomes of Zingiber officinale Roscoe (Zingiberaceae), has been reported to possess anti-hyperactivity and anti-inflammation on airway. The present study described brochodilatory activity of ginger oil and identified its active compound. Ginger oil was extracted by hydro-distillation. The compositions of ginger oil were analyzed by gas chromatography and mass spectrometer. Citral, eucalyptol and camphene were found to be the major components. Ginger oil and citral, but not camphene, suppressed rat tracheal contraction induced by carbachol (CCh). Consistent with previous report, eucalyptol showed a relaxing effect on rat airway. Since the content of eucalyptol in ginger oil was relatively low, the contribution of eucalyptol to the bronchodilatory effect of ginger oil was small. To elucidate the mechanisms responsible for the myorelaxing effect, propranolol (a β-adrenergic receptor antagonist), indomethacin (a COX inhibitor) and L-NAME (a NOS inhibitor) were used to block the inhibitory effects of ginger oil and citral. It was found that propranolol, but not indomethacin and L-NAME, reversed bronchodilatory effects of both ginger oil and citral, suggesting that a possible mechanism involved β-adrenergic receptor. This study provides the pharmacological basis supporting the therapeutic potential of Z. officinale rhizomes as a bronchodilator. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Chemotypes of Pistacia atlantica leaf essential oils from Algeria.

    Science.gov (United States)

    Gourine, Nadhir; Bombarda, Isabelle; Yousfi, Mohamed; Gaydou, Emile M

    2010-01-01

    The essential oils obtained by hydrodistillation of Pistacia atlantica Desf. leaves collected from different regions of Algeria were analyzed by GC and GC-MS. The essential oil was rich in monoterpenes and oxygenated sesquiterpenes. The major components were alpha-pinene (0.0-67%), delta-3-carene (0.0-56%), spathulenol (0.5-22%), camphene (0.0-21%), terpinen-4-ol (0.0-16%) and beta-pinene (0.0-13%). Among the various components identified, twenty were used for statistical analyses. The result of principal component analysis (PCA) showed the occurrence of three chemotypes: a delta-3-carene chemotype (16.4-56.2%), a terpinen-4-ol chemotype (10.8-16.0%) and an alpha-pinene/camphene chemotype (10.9-66.6%/3.8-20.9%). It was found that the essential oil from female plants (delta-3-carene chemotype) could be easily differentiated from the two other chemotypes corresponding to male trees.

  17. Essential-oil diversity of Salvia tomentosa Mill. in Greece.

    Science.gov (United States)

    Hanlidou, Effie; Karousou, Regina; Lazari, Diamanto

    2014-08-01

    Salvia tomentosa essential oils from Greece were studied for the first time here. The oils from five populations growing in Mediterranean pine forests on the island of Thassos (northern Aegean Sea) and from 14 populations situated in deciduous forests in Thrace (northeastern Greek mainland) were investigated. Their essential-oil contents ranged from 1.1 to 3.3% (v/w, based on the dry weight of the plant material). The populations from Thassos had high contents of α-pinene (18.0 ± 2.9%), 1,8-cineole (14.7 ± 3.0%), cis-thujone (14.0 ± 6.9%), and borneol (12.8 ± 2.2%) and smaller amounts of camphene, camphor, and β-pinene, whereas the populations from Thrace showed high α-pinene (16.7 ± 4.0%), β-pinene (22.8 ± 4.5%), camphor (18.3 ± 4.3%), and camphene (10.3 ± 2.4%) contents, much lower 1,8-cineole and borneol amounts, while cis-thujone was completely lacking. The comparison of the present results with published data showed that oils having cis-thujone as one of the main compounds were reported for the first time here. Multivariate statistical analyses indicate that the observed essential-oil variation was related to geographical and environmental factors. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Essential Oils Extracted Using Microwave-Assisted Hydrodistillation from Aerial Parts of Eleven Artemisia Species: Chemical Compositions and Diversities in Different Geographical Regions of Iran

    Directory of Open Access Journals (Sweden)

    Majid Mohammadhosseini

    2017-03-01

    Full Text Available This study aimed to assess the chemical compositions of essential oils (EOs extracted through microwave-assisted hydrodistillation from aerial parts of 11 Artemisia species growing wild in different regions in Northern, Eastern, Western, and Central parts of Iran. The EOs were subsequently analyzed via GC and GC-MS. The percentage yields of the EOs varied over the range of 0.21-0.50 (w/w%. On the basis of these characterizations and spectral assignments, natural compounds including camphor, 1,8-cineole, camphene, α-pinene, β-pinene, β-thujone, and sabinene were the most abundant and frequent constituents among all studied chemical profiles. Accordingly, oxygenated monoterpenes, monoterpene hydrocarbons, and non-terpene hydrocarbons were the dominant groups of natural compounds in the chemical profiles of 13, 4, and 2 samples, respectively. Moreover, five chemotypes were identified using statistical analyses: camphene, α-pinene and β-pinene; 1,8-cineole; camphore and 1,8-cineole; camphore and camphore and β-thujone.

  19. Recycling of Coal Fly Ash for the Fabrication of Porous Mullite/Alumina Composites

    Directory of Open Access Journals (Sweden)

    Kyu H. Kim

    2014-08-01

    Full Text Available Coal fly ash with the addition of Al2O3 was recycled to produce mullite/alumina composites and the camphene-based freeze casting technique was processed to develop a controlled porous structure with improved mechanical strength. Many rod-shaped mullite crystals, formed by the mullitization of coal fly ash in the presence of enough silicate, melt. After sintering at 1300–1500 °C with the initial solid loadings of 30–50 wt.%, interconnected macro-sized pore channels with nearly circular-shaped cross-sections developed along the macroscopic solidification direction of camphene solvent used in freeze casting and a few micron-sized pores formed in the walls of the pore channels. The macro-pore size of the mullite/alumina composites was in the range 20–25 μm, 18–20 μm and 15–17 μm with reverse dependence on the sintering temperature at 30, 40 and 50 wt.% solid loading, respectively. By increasing initial solid loading and the sintering temperature, the sintered porosity was reduced from 79.8% to 31.2%, resulting in an increase in the compressive strength from 8.2 to 80.4 MPa.

  20. Characterization of the chemical composition of the essential oils from Annona emarginata (Schltdl. H. Rainer 'terra-fria' and Annona squamosa L.

    Directory of Open Access Journals (Sweden)

    Felipe Girotto Campos

    2014-01-01

    Full Text Available The objective of this study was to characterize the chemical composition of the essential oil from the leaves of Annona emarginata (Schltdl. H. Rainer 'terra-fria' and Annona squamosa L. The species were grown in a greenhouse for 18 months, which nutrient solution was applied weekly; the plants were then harvested and the leaves dried to extract the essential oil. The essential oil was analyzed by gas chromatography and mass spectrometry to study its chemical profiles. Eleven substances were found in the essential oil of A. emarginata, primarily (E-caryophyllene (29.29%, (Z-caryophyllene (16.86%, γ-muurolene (7.54%, α-pinene (13.86%, and tricyclene (10.04%. Ten substances were detected in the oil from A. squamosa, primarily (E-caryophyllene (28.71%, (Z-caryophyllene (14.46%, α-humulene (4.41%, camphene (18.10%, α-pinene (7.37%, β-pinene (8.71%, and longifolene (5.64%. Six substances were common to both species: (E-caryophyllene, (Z-caryophyllene, α-humulene, camphene, α-pinene, and β-pinene.

  1. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography-mass spectrometry.

    Science.gov (United States)

    Woolley, Cole L; Suhail, Mahmoud M; Smith, Brett L; Boren, Karen E; Taylor, Lindsey C; Schreuder, Marc F; Chai, Jeremiah K; Casabianca, Hervé; Haq, Sadqa; Lin, Hsueh-Kung; Al-Shahri, Ahmed A; Al-Hatmi, Saif; Young, D Gary

    2012-10-26

    Major botanical and scientific references currently identify two species of frankincense, Boswellia carterii and Boswellia sacra, as being synonymous. We evaluated the Somalian (B. carterii) and Omani/Yemeni (B. sacra) species by chemical analyses to determine if there were any minor or major differences between the two species of frankincense. Components identified with their average percent for B. sacra are α-thujene (0.6%), α-pinene (68.2%), camphene (2.1%), sabinene (2.9%), β-pinene (2.0%), myrcene (0.7%), limonene+β-phellandrene (6.2%). Components identified with their average percent for B. carterii are α-thujene (7.9%), α-pinene (37.3%), camphene (0.8%), sabinene (4.9%), β-pinene (1.8%), myrcene (7.3%), limonene+β-phellandrene (14.4%). Initially, GC-MS analysis did not reveal major statistical differences. However, optical rotation values, B. Sacra (+30.1°) and B. carterii (-13.3°), demonstrated a greater significant difference. Enantiomeric ratio (+)/(-) values of α-pinene for B. sacra and B. carterii are 8.24 and 0.68, respectively, were also calculated aiding our conclusion that B. sacra and B. carterii are not synonymous but rather two distinct and individual frankincense species. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The Essential Oil of Monarda didyma L. (Lamiaceae Exerts Phytotoxic Activity in Vitro against Various Weed Seed

    Directory of Open Access Journals (Sweden)

    Donata Ricci

    2017-02-01

    Full Text Available The chemical composition of the essential oil of the flowering aerial parts of Monarda didyma L. cultivated in central Italy was analyzed by Gas Chromatography/Mass Spectrometry (GC/MS. The major compounds of the oil were thymol (59.3%, p-cymene (10.3%, terpinolene (9.2%, δ-3-carene (4.4%, myrcene (3.7%, and camphene (3.4%. The essential oil was tested in vitro for its anti-germination activity against Papaver rhoeas L., Taraxacum officinale F. H. Wigg., Avena fatua L., Raphanus sativus L. and Lepidium sativum L. seeds, demonstrating good inhibitory activity in a dose-dependent way. The exposure of the employed weed seeds to M. didyma essential oil and thymol solution (59.3% increased the level of hydrogen peroxide (H2O2 and malondialdehyde (MDA, markers of oxidative stress, in emerging 5-day-old rootlets.

  3. Successful computational modeling of isobornyl chloride ion-pair mechanisms.

    Science.gov (United States)

    Kong, Jing; Schleyer, Paul v R; Rzepa, Henry S

    2010-08-06

    Along with the directly related Wagner-Meerwein camphene hydrochloride-isobornyl chloride rearrangement, the racemization of isobornyl chloride involves intermediate carbocation-anion ion pairs; both processes have become mechanistic icons in organic chemistry. The two known racemization pathways, involving either a hydride transfer or a methyl migration, are observed to be concurrent. However, prior quantitative computational modeling has not been able to reproduce the fine kinetic balance of these processes. We demonstrate that a density functional approach, which includes two explicit solvent molecules embedded in a continuum solvent field, coupled with full geometric optimization using smoothed solvent cavities and free energy calculation, yields results in accord with experiment. Alternative racemization routes also have been explored.

  4. Rapid analysis of Achillea tenuifolia Lam essential oils by polythiophene/hexagonally ordered silica nanocomposite coating as a solid-phase microextraction fibre.

    Science.gov (United States)

    Piryaei, Marzieh; Abolghasemi, Mir Mahdi; Nazemiyeh, Hossein

    2015-01-01

    In this work, a highly porous fibre coated with polythiophene/hexagonally ordered silica nanocomposite (PT/SBA-15) was prepared and used for extraction of essential oils with microwave-assisted distillation headspace solid phase microextraction (MA-HS-SPME) method. The prepared nanomaterials were immobilised on a stainless steel wire for fabrication of the SPME fibre. Using MA-HS-SPME followed by GC-MS, 24 compounds were separated and identified in Achillea tenuifolia, which mainly included limonene (28.6%), α-cadinol (12.7%), borneol (6.7%), caryophyllene oxide (3.2%), bornyl acetate (4.3%), camphene (3.2%) and para-cymene (2.3%). The experimental results showed that the polythiophene/hexagonally ordered silica nanocomposite fibres were suitable for the semi-quantitative study of the composition of essential oils in plant materials and for monitoring the variations in the volatile components of the plants.

  5. Characterization of odor-active compounds of various Chrysanthemum essential oils by gas chromatography-olfactometry, gas chromatography-mass spectrometry and their correlation with sensory attributes.

    Science.gov (United States)

    Xiao, Zuobing; Fan, Binbin; Niu, Yunwei; Wu, Minling; Liu, Junhua; Ma, Shengtao

    2016-01-15

    Volatiles of five kinds of Chrysanthemum essential oils with different manufactures were characterized by descriptive sensory analysis, gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and statistics analysis. Six sensory attributes (floral, woody, grassy, fruity, sour and minty) were selected to assess Chrysanthemum essential oils. A total of 38 volatile compounds were detected and quantified using standard substances by GC-O and GC-MS. Terpenes constituted the largest chemical group among the volatiles of the essential oils. Then partial least squares regression (PLSR) was used to elucidate the relationship between sensory attributes and aroma compounds. The result showed that α-pinene, β-thujene, α-terpinolen, β-cubebene, caryophyllene, (Z)β-farnesene, (-)-spathulenol, linalool, camphor, camphene, 4-terpineol, Z-citral and 4-isopropyltoluene were typical aroma compounds covaried with characteristic aroma of Chrysanthemum essential oils. Copyright © 2015. Published by Elsevier B.V.

  6. Chemical analysis and antioxidant activity of the essential oils of three Piperaceae species growing in the central region of Cuba.

    Science.gov (United States)

    Rodríguez, Elisa Jorge; Saucedo-Hernández, Yanelis; Vander Heyden, Yvan; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo; Lerma-García, María Jesús; Monteagudo, Urbano; Bravo, Luis; Medinilla, Mildred; de Armas, Yuriam; Herrero-Martínez, José Manuel

    2013-09-01

    The present study describes the phytochemical profile and antioxidant activity of the essential oils of three Piperaceae species collected in the central region of Cuba. The essential oils of Piper aduncum, P. auritum and P. umbellatum leaves, obtained by hydrodistillation, were analyzed by gas chromatography-mass spectrometry. The main components of P. aduncum oil were piperitone (34%), camphor (17.1%), camphene (10.9%), 1,8-cineol (8.7%) and viridiflorol (7.4%), whereas that of P. auritum and P. umbellatum was safrole (71.8 and 26.4%, respectively). The antioxidant properties of the essential oils were also evaluated using several assays for radical scavenging ability (DPPH test and reducing power) and inhibition of lipid oxidation (ferric thiocyanate method and evaluation against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods). P. auritum showed the strongest antioxidant activity among the Piper species investigated, but lower than those of butylated hydroxyanisol and propyl gallate.

  7. Composition of the essential oils from Rocky Mountain juniper (Juniperus scopulorum), Big sagebrush (Artemisia tridentata), and White Sage (Salvia apiana).

    Energy Technology Data Exchange (ETDEWEB)

    Hochrein, James Michael; Irwin, Adriane Nadine; Borek, Theodore Thaddeus III

    2003-09-01

    The essential oils of Juniperus scopulorum, Artemisia tridentata, and Salvia apiana obtained by steam extraction were analyzed by GC-MS and GC-FID. For J. scopulorum, twenty-five compounds were identified which accounts for 92.43% of the oil. The primary constituents were sabinene (49.91%), {alpha}-terpinene (9.95%), and 4-terpineol (6.79%). For A. tridentata, twenty compounds were identified which accounts for 84.32% of the oil. The primary constituents were camphor (28.63%), camphene (16.88%), and 1,8-cineole (13.23%). For S. apiana, fourteen compounds were identified which accounts for 96.76% of the oil. The primary component was 1,8-cineole (60.65%).

  8. The Essential Oil of Monarda didyma L. (Lamiaceae) Exerts Phytotoxic Activity in Vitro against Various Weed Seed.

    Science.gov (United States)

    Ricci, Donata; Epifano, Francesco; Fraternale, Daniele

    2017-02-02

    The chemical composition of the essential oil of the flowering aerial parts of Monarda didyma L. cultivated in central Italy was analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). The major compounds of the oil were thymol (59.3%), p-cymene (10.3%), terpinolene (9.2%), δ-3-carene (4.4%), myrcene (3.7%), and camphene (3.4%). The essential oil was tested in vitro for its anti-germination activity against Papaver rhoeas L., Taraxacum officinale F. H. Wigg., Avena fatua L., Raphanus sativus L. and Lepidium sativum L. seeds, demonstrating good inhibitory activity in a dose-dependent way. The exposure of the employed weed seeds to M. didyma essential oil and thymol solution (59.3%) increased the level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), markers of oxidative stress, in emerging 5-day-old rootlets.

  9. Age and space distributions of monoterpenes in fresh needles of Picea abies (L) Karst. Determined by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Holubová, V; Hrdlicka, P; Kubán, V

    2001-01-01

    Monoterpenes (alpha- and beta-pinene, delta-3-carene, camphene, alpha-phellandrene and limonene) were determined by Gas Chromatography-Mass Spectrometry in fresh needles of Picea abies (L) Karst. situated in three ecologically different regions of Moravia. Through the use of cryogenic grinding for critical sample homogenisation, solvent extraction with cold n-hexane, followed by GC analysis with mass detection, very low quantities of sample (0.1-0.3 g needles) could be processed, thus permitting a comparison of amounts of monoterpenes in needles of different ages and a determination of changes in concentrations of monoterpenes in needles at different locations on the tree. The amount of alpha-phellandrene decreased with the age of the needles, and the content of delta-3-carene was higher in apical branches compared to lateral ones.

  10. Analysis of organic compounds (VOC) in the forest air of the Southern Black Forest

    Energy Technology Data Exchange (ETDEWEB)

    Juettner, F.

    1986-01-01

    The volatile organic compounds of forest air (Kaelbelescheuer, Southern Black Forest) and, for comparison, suburban air (Tuebingen) were qualitatively analyzed by gas chromatographic and mass spectrometric methods. 94 Individual compounds were identified, 6 of them belonged to biogenic monoterpenes (..cap alpha..-pinene, ..delta..3-carene, myrcene, limonene, eucalyptol, camphene). While the monoterpenes were enriched in forest air, a similar collection of the pollution products was observed in both locations. Predominant substances were aromatic compounds (toluene, ethylbenzene, benzene, xylenes, ethyltoluenes, pseudocumene and naphthalene) which can be regarded as constituents of vehicle exhaust fumes and incineration processes. Other important substances in forest air were various solvents, of which butyl acetate, isobutyl acetate, tetrachloroethylene and trichloroethylene, butanol-1, and several ketones were prominent species.

  11. 2-exo,5-endo,8,8,10-Pentachlorobornane

    Directory of Open Access Journals (Sweden)

    Vladimir Nikiforov

    2008-04-01

    Full Text Available The title compound, C10H13Cl5, is a polychlorinated monoterpene and a Toxaphene congener. This compound is also the only pentachlorinated derivative of camphene formed via ionic chlorination. Previously, the title compound was thought to be 2-exo,5-endo,9,9,10-pentachlorobornane, but X-ray structural analysis showed it to have a different structure and rather to be 2-exo,5-endo,8,8,10-pentachlorobornane. The title compound shows static disorder and almost half the molecule was divided in two partitions with an occupancy ratio of 0.575 (major to 0.425 (minor. The repulsive close contacts of Cl atoms could possibly be the cause for this disorder.

  12. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    Science.gov (United States)

    van Meeningen, Ylva; Schurgers, Guy; Rinnan, Riikka; Holst, Thomas

    2017-09-01

    Light is an important environmental factor controlling biogenic volatile organic compound (BVOC) emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur), European beech (Fagus sylvatica) and two provenances of Norway spruce (Picea abies) in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m-2 s-1), whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the discussion regarding light or

  13. Chemical Components of Four Essential Oils in Aromatherapy Recipe.

    Science.gov (United States)

    Tadtong, Sarin; Kamkaen, Narisa; Watthanachaiyingcharoen, Rith; Ruangrungsi, Nijsiri

    2015-06-01

    This study focused on characterization of the chemical components of an aromatherapy recipe. The formulation consisted of four blended essential oils; rosemary oil, eucalyptus oil, pine oil and lime oil (volume ratio 6 : 2 : 1 : 1). The single and combination essential oils were identified by gas chromatography-mass spectrometry (GC-MS). The analysis of GC-MS data revealed that several components exist in the mixture. The five most important components of the blended essential oils were 1,8-cineole (35.6 %), α-pinene (11.1%), limonene (9.6%), camphor (8.4%), and camphene (6.6%). The main components of rosemary oil were 1,8-cineole (37.3%), α-pinene (19.3%), camphor (14.7%), camphene (8.8%), and β-pinene (5.5%); of eucalyptus oil 1,8-cineole (82.6%) followed by limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%), and α-pinene (1.5%); of pine oil terpinolene (26.7%), α-terpineol (20.50%), 1-terpineol (10.8%), α-pinene (6.0%), and γ-terpineol (5.3%); and of lime oil limonene (62.9%), γ-terpinene (11.5%), α-terpineol (7.6%), terpinolene (6.0%), and α-terpinene (2.8%). The present study provided a theoretical basis for the potential application of blended essential oils to be used as an aromatherapy essential oil recipe. GC-MS serves as a suitable and reliable method for the quality control of the chemical markers.

  14. Antibacterial activity and the variation of Tanacetum parthenium (L.) Schultz Bip. essential oils from Turkey.

    Science.gov (United States)

    Polatoglu, Kaan; Demirci, Fatih; Demirci, Betül; Gören, Nezhun; Başer, Kemal Hüsnü Can

    2010-01-01

    Water-distilled essential oils from herbal parts of Tanacetum parthenium from two different localities in Turkey were analyzed by GC and GC/MS. The essential oil of T. parthenium collected from Davutpasa-Istanbul location were characterized with camphor 49%, trans-chrysanthenyl acetate 22.1% and camphene 9.4%. Second plant sample is collected from the remote east end of the country Savşat-Ardahan location. The essential oil from this location was characterized with camphor 60.8% and camphene 6.8%. Unlike the former this sample contains trans-chrysanthenyl acetate in trace amount and cis- chrysanthenyl acetate in very small amount (0.6%) which is not present in the first sample. Antibacterial activity of the oils were evaluated for five Gram (+) and five Gram (-) bacteria by using a broth microdilution assay. The highest activity was observed on Bacillus subtilis, Staphylococcus aureus and methicillin-resistant S.aureus however when compared with positive control oils showed higher MIC values. The oil of Istanbul-sample showed highest activity on B. subtilis (125 microg/mL) and methicillin-resistant S. aureus (125 microg/mL) which is two fold concentration when compared with the positive control chloramphenicol (62.5 microg/mL). The oil of Ardahan sample showed the highest activity on S. aureus (125 microg/mL) which is likewise two fold concentration of the positive control chloramphenicol (62.5 microg/mL). DPPH scavenging activity was 59.3% of the oil from Davutpasa at 15 mg/mL concentration. When compared to positive control alpha-tocopherol (94.6%) Savşat oil (28.2%) showed low and Davutpasa oil showed medium DPPH scavenging activity. All of the oils showed toxicity to Vibrio fischeri in the TLC-bioluminescence assay.

  15. Determining Chemical Composition and Antimicrobial Activity of Feverfew (Tanacetum parthenium L. Essential Oil on Some Microbial Strains

    Directory of Open Access Journals (Sweden)

    Zahra Izadi

    2013-06-01

    Full Text Available Background: Feverfew (Tanacetum parthenium L. is a herbal plant that has anti- septic, anti-microbial, anti-parasitic and anti-inflammatory effects. The main objective of this study is to evaluate the antimicrobial effect of shoot essential oil (essential oil of the aerial parts of the plant of the feverfew on a number of microorganisms including gram-negative and gram-positive bacteria, filamentous fungi and yeasts. Materials and Methods: In this empirical study, plant samples were collected at the full blooming stage. Shoot essential oil was extracted using hydro-distillation technique and Clevenger apparatus. Components of the extract were identified using GC and GC/MS apparatus and its antimicrobial properties were evaluated using diffusion in Agar method (disk diffusion and dilution in the well (Micro-broth dilution.Results: Among 35 compounds identified in the essential oil of the feverfew, camphor (45%, chrysanthenyl acetate (21.5 and camphene (9.6%, were the main components respectively. Essential oil showed very good antifungal effect which was stronger than its antibacterial effect. Gram-negative bacteria were less sensitive to the essential oil than gram-positive bacteria. The mean diameter of inhibition zone, in the bio-assessment of the effect of feverfew essential oil on gram-positive bacteria and fungi was respectively more than the effect of vancomycin and amphotericin B and this effect on gram-negative bacteria was less than the effect of gentamicin. This effect is attributed to the high value of camphor, chrysanthenyl acetate and camphene found in the essential oil.Conclusion: Feverfew essential oil could be utilized as a sound and harmless substitute for the antibiotics.

  16. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan.

    Science.gov (United States)

    Sampietro, Diego A; Gomez, Analía de Los A; Jimenez, Cristina M; Lizarraga, Emilio F; Ibatayev, Zharkyn A; Suleimen, Yerlan M; Catalán, Cesar A

    2017-06-01

    The composition of essential oils from leaves of Kazakhstan medicinal plants was analysed by GC-MS. The major compounds identified were 1,8-cineole (34.2%), myrcene (19.1%) and α-pinene (9.4%) in Ajania fruticulosa; 1,8-cineole (21.0%), β-thujone (11.0%), camphor (8.5%), borneol (7.3%) and α-thujone (6.5%), in Achillea nobilis; camphor (47.3%), 1,8-cineole (23.9%), camphene (9.8%) and β-thujone (6.0%) in Artemisia terrae-albae; 1,8-cineole(55.8%) and β-pinene (6.2%) in Hyssopus ambiguus; α-thuyene(46.3%) and δ-cadinene(6.3%) in Juniperus sibirica; sabinene (64%) in Juniperus sabina; and α-pinene (51.5%), β-phellandrene (11.2%) and δ-cadinene (6.3%) in Pinus sibirica. The essential oils did not show antifungal effect (MIC > 1.20 mg/mL) on Aspergillus carbonarius and Aspergillus niger, while the oils from A. nobilis, A. terrae-albae, H. ambiguus and J. sabina exhibited moderate and moderate to weak antimicrobial activities on Fusarium verticillioides (MIC = 0.60 mg/mL) and Fusarium graminearum (MIC = 0.60-1.20 mg/mL), respectively. A principal component analysis associated the antifungal activity (r2 > 0.80, p = 0.05) with the presence of borneol, camphor, camphene, 1,8-cineole,α- and β-thujone, and of the oxygenated monoterpenes.

  17. Determination of Volatile Flavour Profiles of Citrus spp. Fruits by SDE-GC-MS and Enantiomeric Composition of Chiral Compounds by MDGC-MS.

    Science.gov (United States)

    Hong, Joon Ho; Khan, Naeem; Jamila, Nargis; Hong, Young Shin; Nho, Eun Yeong; Choi, Ji Yeon; Lee, Cheong Mi; Kim, Kyong Su

    2017-09-01

    Citrus fruits are known to have characteristic enantiomeric key compounds biosynthesised by highly stereoselective enzymatic mechanisms. In the past, evaluation of the enantiomeric ratios of chiral compounds in fruits has been applied as an effective indicator of adulteration by the addition of synthetic compounds or natural components of different botanical origin. To analyse the volatile flavour compounds of Citrus junos Sieb. ex Tanaka (yuzu), Citrus limon BURM. f. (lemon) and Citrus aurantifolia Christm. Swingle (lime), and determine the enantiomeric ratios of their chiral compounds for discrimination and authentication of extracted oils. Volatile flavour compounds of the fruits of the three Citrus species were extracted by simultaneous distillation extraction and analysed by gas chromatography-mass spectrometry. The enantiomeric composition (ee%) of chiral camphene, sabinene, limonene and β-phellandrene was analysed by heart-cutting multidimensional gas chromatography-mass spectrometry. Sixty-seven (C. junos), 77 (C. limon) and 110 (C. aurantifolia) volatile compounds were identified with limonene, γ-terpinene and linalool as the major compounds. Stereochemical analysis (ee%) revealed 1S,4R-(-) camphene (94.74, 98.67, 98.82), R-(+)-limonene (90.53, 92.97, 99.85) and S-(+)-β-phellandrene (98.69, 97.15, 92.13) in oil samples from all three species; R-(+)-sabinene (88.08) in C. junos; and S-(-)-sabinene (81.99, 79.74) in C. limon and C. aurantifolia, respectively. The enantiomeric composition and excess ratios of the chiral compounds could be used as reliable indicators of genuineness and quality assurance of the oils derived from the Citrus fruit species. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Essential oil variation in the populations of Artemisia spicigera from northwest of Iran: chemical composition and antibacterial activity.

    Science.gov (United States)

    Chehregani, Abdolkarim; Atri, Morteza; Yousefi, Somayeh; Albooyeh, Zahra; Mohsenzadeh, Fariba

    2013-02-01

    Artemisia spicigera C. Koch (Asteraceae) is a perennial shrubby herb and is generally distributed in Armenia, Iran, and Middle Anatolia. This species traditionally has been used in medicines. The aim of this research is to study the chemical composition and antibacterial activity of essential oils from Artemisia spicigera populations in northwest of Iran. The essential oil of A. spicigera was obtained by hydrodistillation from eight populations collected from different regions of East Azerbaijan and West Azerbaijan provinces (Iran) and analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils was investigated against four Gram-positive and four Gram-negative bacteria using MIC determinations and the agar-gel diffusion method. Fourteen compounds were identified as the main components of the essential oils and the most abundant constituents are 1,8-cineole, camphor, α-thujone, camphene, β-thujone and p-cymene. Essential oil of population No. 1 showed the highest activity against Escherichia coli, Enterobacter aerogenes, Serratia marcescens and Staphylococcus aureus but the highest activity against St. saprophyticus, Bacillus megaterium, and B. cereus was found with population No. 6 and for Citrobacter amalonaficus with population No. 5. MIC values of essential oils ranged from 6 µg/mL against Bacillus megaterium to 12 µg/mL against Citrobacter amalonaficus. This study demonstrates the occurrence of 1,8-cineole/camphor/camphene chemotype of A. spicigera but there is also significant chemical variation between the studied populations. The findings showed the studied oils have good antibacterial activity, and thus potential to be used as natural health products.

  19. Development of a sampling method for the simultaneous monitoring of straight-chain alkanes, straight-chain saturated carbonyl compounds and monoterpenes in remote areas.

    Science.gov (United States)

    Detournay, Anaïs; Sauvage, Stéphane; Locoge, Nadine; Gaudion, Vincent; Leonardis, Thierry; Fronval, Isabelle; Kaluzny, Pascal; Galloo, Jean-Claude

    2011-04-01

    Studies have shown that biogenic compounds, long chain secondary compounds and long lifetime anthropogenic compounds are involved in the formation of organic aerosols in both polluted areas and remote places. This work aims at developing an active sampling method to monitor these compounds (i.e. 6 straight-chain saturated aldehydes from C6 to C11; 8 straight-chain alkanes from C9 to C16; 6 monoterpenes: α-pinene, β-pinene, camphene, limonene, α-terpinene, & γ-terpinene; and 5 aromatic compounds: toluene, ethylbenzene, meta-, para- and ortho-xylenes) in remote areas. Samples are collected onto multi-bed sorbent cartridges at 200 mL min(-1) flow rate, using the automatic sampler SyPAC (TERA-Environnement, Crolles, France). No breakthrough was observed for sampling volumes up to 120 L (standard mixture at ambient temperature, with a relative humidity of 75%). As ozone has been shown to alter the samples (losses of 90% of aldehydes and up to 95% of terpenes were observed), the addition of a conditioned manganese dioxide (MnO(2)) scrubber to the system has been validated (full recovery of the affected compounds for a standard mixture at 50% relative humidity--RH). Samples are first thermodesorbed and then analysed by GC/FID/MS. This method allows suitable detection limits (from 2 ppt for camphene to 13 ppt for octanal--36 L sampled), and reproducibility (from 1% for toluene to 22% for heptanal). It has been successfully used to determine the diurnal variation of the target compounds (six 3 h samples a day) during winter and summer measurement campaigns at a remote site in the south of France.

  20. Host Preference and Performance of the Yellow Peach Moth (Conogethes punctiferalis on Chestnut Cultivars.

    Directory of Open Access Journals (Sweden)

    Yanli Du

    Full Text Available Suitability of plant tissues as food for insects varies from plant to plant. In lepidopteran insects, fitness is largely dependent on the host-finding ability of the females. Existing studies have suggested that polyphagous lepidopterans preferentially select certain host plant species for oviposition. However, the mechanisms for host recognition and selection have not been fully elucidated. For the polyphagous yellow peach moth Conogethes punctiferalis, we explored the effect of chestnut cultivar on the performance and fitness and addressed the mechanisms of plant-volatile-mediated host recognition. By carrying out laboratory experiments and field investigation on four chestnut Castanea mollissima cultivars (Huaihuang, Huaijiu, Yanhong, and Shisheng, we found that C. punctiferalis females preferentially select Huaijiu for oviposition and infestation, and caterpillars fed on Huaijiu achieved slightly greater fitness than those fed on the other three chestnut cultivars, indicating that Huaijiu was a better suitable host for C. punctiferalis. Plant volatiles played important roles in host recognition by C. punctiferalis. All seven chestnut volatile compounds, α-pinene, camphene, β-thujene, β-pinene, eucalyptol, 3-carene, and nonanal, could trigger EAG responses in C. punctiferalis. The ubiquitous plant terpenoids, α-pinene, camphene and β-pinene, and their specific combination at concentrations and proportions similar to the emissions from the four chestnut cultivars, was sufficient to elicit host recognition behavior of female C. punctiferalis. Nonanal and a mixture containing nonanal, that mimicked the emission of C. punctiferalis infested chestnut fruits, caused avoidance response. The outcome demonstrates the effects of chestnut cultivars on the performance of C. punctiferalis and reveals the preference-performance relationship between C. punctiferalis adults and their offspring. The observed olfactory plasticity in the plant

  1. Isoprenoid emission response to changing light conditions of English oak, European beech and Norway spruce

    Directory of Open Access Journals (Sweden)

    Y. van Meeningen

    2017-09-01

    Full Text Available Light is an important environmental factor controlling biogenic volatile organic compound (BVOC emissions, but in natural conditions its impact is hard to separate from other influential factors such as temperature. We studied the light response of foliar BVOC emissions, photosynthesis and stomatal conductance on three common European tree species, namely English oak (Quercus robur, European beech (Fagus sylvatica and two provenances of Norway spruce (Picea abies in Taastrup, Denmark. Leaf scale measurements were performed on the lowest positioned branches of the tree in July 2015. Light intensity was increased in four steps (0, 500, 1000 and 1500 µmol m−2 s−1, whilst other chamber conditions such as temperature, humidity and CO2 levels were fixed. Whereas the emission rate differed between individuals of the same species, the relative contributions of compounds to the total isoprenoid emission remained similar. Whilst some compounds were species specific, the compounds α-pinene, camphene, 3-carene, limonene and eucalyptol were emitted by all of the measured tree species. Some compounds, like isoprene and sabinene, showed an increasing emission response with increasing light intensity, whereas other compounds, like camphene, had no significant emission response to light for most of the measured trees. English oak and European beech showed high light-dependent emission fractions from isoprene and sabinene, but other emitted compounds were light independent. For the two provenances of Norway spruce, the compounds α-pinene, 3-carene and eucalyptol showed high light-dependent fractions for many of the measured trees. This study highlights differences between compound emissions in their response to a change in light and a possible light independence for certain compounds, which might be valid for a wider range of tree species. This information could be of importance when improving emission models and to further emphasize the

  2. Identification of odoriferous compounds from adults of a swallowtail butterfly, Papilio machaon (Lepidoptera: Papilionidae).

    Science.gov (United States)

    Omura, H; Honda, K; Hayashi, N

    2001-01-01

    Adults, particularly males, of a papilionid butterfly, Papilio machaon hippocrates, emit a fairly strong scent perceivable by humans. We have identified a variety of volatile compounds (hydrocarbons, alcohols, aldehydes, ketones, esters, and so on) from the wings and bodies of both sexes of the butterfly. Male wings secreted n-dodecane, linalool and geranylacetone as major components together with small amounts of camphene, limonene, p-cymene, 2-phenylethanol, n-hexanal, n-decanal, isoamyl acetate, p-allylanisole, 2-pyrrolidone and other characteristic volatiles. The overall profile of volatile compounds detected from male body was quite different from that of the wings. Male body was devoid of camphene, 2-phenylethanol, n-hexanal but instead contained limonene, acetoin, a sesquiterpene hydrocarbon (C15H24, methyl n-octanoate, (E,E)-hepta-2,4-dienal, and another isomer of heptadienal as principal components, of which the last four compounds were specific to the body. All these substances seem to concurrently characterize the male odor. The chemical patterns of compounds found from female wings and body were essentially the same in quality as those of male wings and body, respectively, although their quantities in females were generally smaller than in males. Females, however, had a larger amount of acetamide than males. The chemical compositions of volatiles from the fore and hind wings of males were not greatly different from each other, and every component was considered to be present on all parts of the wings. This suggests that the scent-producing organs or scent-emitting pores are widely distributed on the whole wings. EAG responses of both sexes to 12 selected compounds identified from the butterfly were not strong at a dose of 1 microg, while both sexes showed relatively stronger responses to n-nonanal, methyl n-octanoate, D-limonene and linalool at a higher dose (10 microg). Although sexual difference in EAG response was not prominent, females appeared a

  3. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China

    Science.gov (United States)

    Bai, Jianhui; Guenther, Alex; Turnipseed, Andrew; Duhl, Tiffany; Greenberg, James

    2017-07-01

    Measurements of BVOC emissions, ozone concentration and environmental parameters were carried out from May 2013 to January 2016 in a subtropical Pinus plantation in China. Isoprene and monoterpene emissions were measured using a relaxed eddy accumulation (REA) system and a gradient technique on an above-canopy tower. In 2013, isoprene comprised 21.2% of total terpenoid emissions, while α-pinene, camphene, β-pinene and limonene constituting 51.5%, 2.4%, 9.1%, and 13.0% of total emissions, respectively. Monoterpenes together were the dominant VOCs measured contributing 71.6%. α-pinene, camphene, β-pinene and limonene constituted 67.7%, 3.2%, 11.9%, 17.2% of total monoterpene emissions. Isoprene and monoterpene emissions displayed strong diurnal variations, with lower emissions in the morning and late evening, and the highest emissions around noon. BVOC peak emissions typically occurred a few hours after the noon PAR peak. Isoprene and monoterpene emissions varied with season and were the highest in summer, contributing more than half of the total annual emission, and the lowest emissions were in winter. Evident interannual variations of isoprene, monoterpenes and total BVOCs were observed. Compared to 2013, annual BVOC emissions decreased in 2015, associated with decreases of PAR, Temperature, water vapor, and an increase of all substances in gas, liquid and solid phases in the atmospheric column (e.g., S/Q, the ratio of solar scattered radiation to global radiation). Ozone concentration showed clear diurnal variation with PAR, higher around noon and lower in the early morning and late evening. Generally, there were no evident correlations between ozone concentrations and BVOC emissions, or the vertical gradients of ozone concentrations and BVOC concentrations. Under all sky conditions (including cloudy skies), no strong correlations at a high confidence level or very similar variation patterns were observed between any two following parameters, BVOC emissions

  4. In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components

    Science.gov (United States)

    Camele, Ippolito; Altieri, Luciana; De Martino, Laura; De Feo, Vincenzo; Mancini, Emilia; Rana, Gian Luigi

    2012-01-01

    Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare), previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products. PMID:22408454

  5. Packaging methods and storage duration affect essential oil content and composition of lemon verbena (Lippia citriodora Kunth.).

    Science.gov (United States)

    Ebadi, Mohammad-Taghi; Sefidkon, Fatemeh; Azizi, Majid; Ahmadi, Noorollah

    2017-05-01

    Changes in essential oils (EOs) content and composition of lemon verbena leave at different packaging methods (packaged with air, nitrogen, or under vacuum) and during storage period (0, 2, 4, 6 and 8 months) were determined. All the samples were hydrodistilled every 2 months during storage for EO content evaluation. EO composition was determined by gas chromatography and gas chromatography-mass spectrometry. The results showed that by extending the storage period in all packaging methods, EO content was significantly decreased. Parallel to the increase in the storage duration in all packaging methods, citral content was decreased, whereas the amounts of limonene and 1,8-cineole were increased. Packaging of lemon verbena leaves with nitrogen preserved the highest EO content during 8 months of storage and achieved the desired amounts of citral, limonene, and 1,8-cineole. This investigation also showed camphene may be a useful marker for the indication of storage duration of lemon verbena.

  6. Workplace concentrations and exposure assessment of monoterpenes in rosemary- and lavender-growing greenhouses.

    Science.gov (United States)

    Tani, Akira; Nozoe, Susumu

    2012-01-01

    Monoterpenes can positively or negatively affect human health depending on their concentrations. To assess the atmospheric risk for greenhouse workers, monoterpene concentrations and personal exposure in herb-growing greenhouses were measured. Monoterpene concentrations in a commercial greenhouse, where rosemary (Rosmarinus officinalis L.) and lavender (Lavandula angustifolia L.) were grown in pots, were measured every 4 hours on 11 days spread across a year. In a small experimental greenhouse, typical horticultural tasks were conducted to determine the factors increasing monoterpene concentrations. Concentrations of α-pinene, camphene, β-pinene, limonene and cineole in the farmer's greenhouse were higher in winter than in summer because of longer ventilation periods of the greenhouse in summer. Further, the concentrations of these compounds were high (but greenhouse. In a small experimental greenhouse, moving pots and cutting shoots increased ambient monoterpene concentrations to 10 ppbv. Spraying water also increased monoterpene concentrations but to a lesser extent. When performing tasks, greenhouse workers were exposed to monoterpene concentrations 2-3 times higher than the concentration in the ambient greenhouse air. Our measurement results reveal that monoterpene emissions are stimulated by horticultural tasks, even by spraying water. Our calculation result suggests that if ventilation is limited, the concentrations can reach levels high enough to cause sensory irritation in greenhouse workers. Greenhouse workers should be cautious when performing tasks for hours in tightly closed herb-growing greenhouses.

  7. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  8. Influence of Binasal and Uninasal Inhalations of Essential Oil of Abies koreana Twigs on Electroencephalographic Activity of Human

    Directory of Open Access Journals (Sweden)

    Min Seo

    2016-01-01

    Full Text Available Objectives. The present work investigates the effect of essential oil from the twigs of Abies koreana on electroencephalographic (EEG activity of human brain in order to understand the influence of binasal and uninasal inhalations. Methods. To accomplish this study, the essential oil from the twigs of A. koreana (AEO was isolated by steam distillation and the EEG readings were recorded using QEEG-8 system from 8 grounding electrodes according to the International 10-20 System. Results. D-Limonene (25.29%, bornyl acetate (19.31%, camphene (12.48%, α-pinene (11.88%, β-pinene (6.45%, and eudesm-7(11-en-ol (5.38% were the major components in the essential oil. In the EEG study, the absolute alpha (left frontal and right parietal and absolute fast alpha (right parietal values significantly increased during the binasal inhalation of AEO. In the uninasal inhalation, absolute beta and theta values decreased significantly, especially in the right frontal and left and right parietal regions. The results revealed that the AEO produced different EEG power spectrum changes according to the nostril difference. Conclusion. The changes in EEG values due to the inhalation of AEO may contribute to the enhancement of relaxation (binasal inhalation and alertness/attention (right uninasal inhalation states of brain which could be used in aromatherapy treatments.

  9. Essential oil of three Uvaria species from Ivory Coast.

    Science.gov (United States)

    Muriel, Koffi A; Félix, Tonzibo Z; Figueredo, Gilles; Chalard, Pierre; N'guessan, Yao T

    2011-11-01

    Different parts of Uvaria ovata (Dunals) A, U. anonoides Baker f. and U. tortilis A. Chev were collected from Ivory Coast, in Toumodi (center), Agboville (south-east) and Sikensi (south), respectively. The essential oils, obtained by hydrodistillation using a Clevenger-type apparatus, were investigated by CG and CG/MS. The proportion of the chromatographed constituents identified varied from 92.5% to 98.5%. For U. ovata, the root bark oil comprised mainly camphene (10.2%), beta-pinene (10.1%), epi-alpha-cadinol (13.2%) and intermedeol (9.7%), while the oil of the stem bark was dominated by epi-alpha-cadinol (27.3%), intermedeol (11.9%) and benzyl benzoate (13.4%). The oil of the leaves showed beta-caryophyllene (15.6%), germacrene D (24.2%) and benzyl benzoate (18.3%) as the most abundant constituents. The leaf oil of U. anonoides was rich in 2,5-dimethoxy-p-cymene (15.5%), bicyclogermacrene (21.3%) and benzyl benzoate (8.7%), while, gamma-terpinene (31.7%), beta-caryophyllene (23.9%) and germacrene D (15.8%) constituted the main components of the stem bark oil of U. tortilis.

  10. Essential oil composition of Salvia fruticosa Mill. populations from Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Ivana Cvetkovikj

    2015-04-01

    Full Text Available The aim of this study was to investigate the yield and chemical composition of the essential oil (EO isolated from 19 different populations of Salvia fruticosa Mill. (Greek sage, Lamiaceae from nine different regions of Albania and Greece. The EO yield ranged from 0.25% to 4.00%. Eighteen of the total analyzed populations met the Ph.Eur.8.0 minimal requirements concerning the essential oil yield. Performing GC/FID/MS analyses, a total of 75 components were detected, representing 79.15-97.83% of the oils. Thirteen components (α-pinene, camphene, β-pinene, myrcene, 1,8-cineole, γ-terpinene, cis-thujone, trans-thujone, camphor, terpinene-4-ol, trans-(E-caryophyllene, aromadendrene and α-humulene were identified in all samples, with 1,8-cineole as a predominant constituent. Statistical analysis showed that the geographical origin of plants did not have significant influence on the variation in chemical composition of the Greek sage essential oil.

  11. Multidimensional enantio gas chromtography/mass spectrometry and gas chromatography-combustion-isotopic ratio mass spectrometry for the authenticity assessment of lime essential oils (C. aurantifolia Swingle and C. latifolia Tanaka).

    Science.gov (United States)

    Bonaccorsi, Ivana; Sciarrone, Danilo; Schipilliti, Luisa; Dugo, Paola; Mondello, Luigi; Dugo, Giovanni

    2012-02-24

    This article focuses on the genuineness assessment of Lime oils (Citrus aurantifolia Swingle and C. latifolia Tanaka), by Multi Dimensional Gas Chromatography (MDGC) to determine the enantiomeric distribution of α-thujene, camphene, β-pinene, sabinene, α-phellandrene, β-phellandrene, limonene, linalool, terpinen-4-ol, α-terpineol and by gas chromatography-combustion isotope ratio mass spectrometry (GC-C-IRMS) to determine the isotopic ratios of α-pinene, β-pinene, limonene, α-terpineol, neral, geranial, β-caryophyllene, trans-α-bergamotene, germacrene B. To the author's knowledge this is the first attempt to assess the authenticity and differentiate Persian Lime from Key lime oils by GC-C-IRMS. The results of the two analytical approaches were compared. The simultaneous use of the two techniques provides more reliable capability to detect adulteration in Citrus essential oils. In fact, in some circumstance only one of the two techniques allows to discriminate adulterated or contaminated oils. In cases where only small anomalies are detected by the two techniques due to subtle adulterations, their synergic use allows to express judgments. The advantage of both techniques is the low number of components the analyst must evaluate, reducing the complexity of the data necessary to deal with. Moreover, the conventional analytical approach based on the evaluation of the whole volatile fraction can fail to reveal the quality of the oils, if the adulteration is extremely subtle. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process

    Science.gov (United States)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-01-01

    In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.

  13. Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time.

    Science.gov (United States)

    Djouahri, Abderrahmane; Saka, Boualem; Boudarene, Lynda; Baaliouamer, Aoumeur

    2016-12-01

    In the present work, the hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD) kinetics of essential oil (EO) extracted from Tetraclinis articulata (Vahl) Mast. wood was conducted, in order to assess the impact of extraction time and technique on chemical composition and biological activities. Gas chromatography (GC) and GC/mass spectrometry analyses showed significant differences between the extracted EOs, where each family class or component presents a specific kinetic according to extraction time, technique and especially for the major components: camphene, linalool, cedrol, carvacrol and α-acorenol. Furthermore, our findings showed a high variability for both antioxidant and anti-inflammatory activities, where each activity has a specific effect according to extraction time and technique. The highlighted variability reflects the high impact of extraction time and technique on chemical composition and biological activities, which led to conclude that we should select EOs to be investigated carefully depending on extraction time and technique, in order to isolate the bioactive components or to have the best quality of EO in terms of biological activities and preventive effects in food. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  14. Identification of Floral Scent in Chrysanthemum Cultivars and Wild Relatives by Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hainan Sun

    2015-03-01

    Full Text Available The objective of this study was to identify the major volatile compounds and their relative concentrations in flowers of different chrysanthemum cultivars and their wild relatives. The volatile organic components of fresh flowers were analyzed using a headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. In total, 193 volatile organic components were detected; the major scent components were monoterpenoids and oxygenated monoterpenoids, which accounted for 68.59%–99.93% of the total volatiles in all tested materials except for Chrysanthemum indicum collected from Huangshan, in which they accounted for only 37.45% of total volatiles. The major volatile compounds were camphor, α-pinene, chrysanthenone, safranal, myrcene, eucalyptol, 2,4,5,6,7,7ab-hexahydro-1H-indene, verbenone, β-phellandrene and camphene. In a hierarchical cluster analysis, 39 accessions of Chrysanthemum and its relatives formed six clusters based on their floral volatile compounds. In a principal component analysis, only spider type flowers were located closely on the score plot. The results of this study provide a basis for breeding chrysanthemum cultivars which desirable floral scents.

  15. Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Sun, Hainan; Zhang, Ting; Fan, Qingqing; Qi, Xiangyu; Zhang, Fei; Fang, Weimin; Jiang, Jiafu; Chen, Fadi; Chen, Sumei

    2015-03-25

    The objective of this study was to identify the major volatile compounds and their relative concentrations in flowers of different chrysanthemum cultivars and their wild relatives. The volatile organic components of fresh flowers were analyzed using a headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. In total, 193 volatile organic components were detected; the major scent components were monoterpenoids and oxygenated monoterpenoids, which accounted for 68.59%-99.93% of the total volatiles in all tested materials except for Chrysanthemum indicum collected from Huangshan, in which they accounted for only 37.45% of total volatiles. The major volatile compounds were camphor, α-pinene, chrysanthenone, safranal, myrcene, eucalyptol, 2,4,5,6,7,7ab-hexahydro-1H-indene, verbenone, β-phellandrene and camphene. In a hierarchical cluster analysis, 39 accessions of Chrysanthemum and its relatives formed six clusters based on their floral volatile compounds. In a principal component analysis, only spider type flowers were located closely on the score plot. The results of this study provide a basis for breeding chrysanthemum cultivars which desirable floral scents.

  16. Control of Three Stored−Product Beetles with Artemisia haussknechtii (Boiss (Asteraceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Hashemi

    2012-12-01

    Full Text Available Fumigant toxicity of the essential oil of aerial parts from Artemisia haussknechtii (Boiss (Asteraceae was investigated against the cowpea weevil Callosobruchus maculatus (Fab., the rice weevil Sitophilus oryzae (L., and the red flour beetle Tribolium castaneum (Herbst. Dry ground plants were subjected to hydro−distillation using a Clevenger−type apparatus and the chemical composition of the volatile oil was studied by gas chromatography−mass spectrometry (GC−MS. The major components of the oil were camphor (29.24%, 1, 8−cineol (27.62%, yomogi alcohol (5.23%, and camphene (4.80%. The essential oil in same concentrations was assayed against (1−7 days old adults of insect species and percentage mortality was recorded after 24, 48, and 72 h exposure times. LC50 values were varied between 19.84 and 103.59 μL L-1 air, depending on insect species and exposure time. Callosobruchus maculatus was more susceptible than other species. These results suggested that A. haussknechtii oil might have potential as a control agent against C. maculatus, S. oryzae and T. castaneum.

  17. Terpenic profile of different Rosmarinus officinalis extracts.

    Science.gov (United States)

    Olah, Neli-Kinga; Benedec, Daniela; Socaci, Sonia; Toma, Claudia Crina; Filip, Lorena; Morgovan, Claudiu; Hanganu, Daniela

    2017-07-01

    The Rosemary (Rosmarinus officinalis L.), a well-known medicinal and culinary herb, was studied to compare the terpenic profile of different extracts obtained from dry and fresh herb. There were studied the volatile oil extracted by hydro distillation from dry plant, the hydroalcoholic extracts obtained from fresh respectively dry plant and the glycerol macerate obtained from fresh plant, by GC-MS using headspace injection. The separated compounds were identified using a MS spectra library. The quantitative determination was performed by normalization respectively by calibration curve method for 1,8-cineole, alpha-pinene and D-limonene. The main separated compounds were alpha-pinene, 1,8-cineol, camphene, camphor, D-limonene and cymene. A significant difference was observed between the 4 samples volatile profiles. 1,8-cineole was found major component of the essential oil (VO-21.39%) and glycerol macerate (GM-35.60%), while and α-pinene was detected as the main constituent of the two tinctures (T-46.05%; MT-31.93%). The highest 1,8-cineol content, determined by calibration curve method, was found in the volatile oil, while the fresh plant hydroalcoholic extract was richer in α-pinene and D-limonene.

  18. Antimicrobial Activity of Three Lamiaceae Essential Oils Against Common Oral Pathogens

    Directory of Open Access Journals (Sweden)

    Nikolić Miloš

    2016-11-01

    Full Text Available Chemical composition, antimicrobial and cytotoxic activities of commercial essential oils’ samples from the aerial plant parts of H. officinalis, R. officinalis and S. officinalis were investigated. Analyses by GC-FID and GC-MS confirmed 52 oil components. The major constituent of the H. officinalis oil was cis-pinocamphone (34.4%, followed by transpinocamphone (23.3%, and β-pinene (11.3%. Analysis of R. officinalis oil revealed 1.8-cineol as a major constituent (43.8%, as well as transpinocamphone (12.5%, α-pinene (11.5% and β-pinene (8.2%. The most dominant constituent of S. officinalis oil was cis-thujone (32.7%, in addition to camphor (17.2%, 1.8-cineol (10.1%, α-pinene (8.6%, transthujone (7.7% and camphene (7.3%. The essential oil antimicrobial activity assay was performed by the use of microdilution method against oral Candida spp. and bacteria, the major causative agents of a number of human oral disorders; all of them were susceptible to tested concentrations of H. officinalis, R. officinalis and S. officinalis essential oils, although the oil of S. officinalis exhibited the lowest antimicrobial potential. The results obtained in this study encourage use of investigated essential oils from Lamiaceae family in development of safe natural agents for prevention and/ or alternative therapy of human oral diseases. However, a special care during development of an effective natural preparation is required.

  19. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    Science.gov (United States)

    Hussain, Abdullah Ijaz; Anwar, Farooq; Chatha, Shahzad Ali Shahid; Jabbar, Abdul; Mahboob, Shahid; Nigam, Poonam Singh

    2010-01-01

    The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%), camphor (17.1%), α-pinene (12.3%), limonene (6.23%), camphene (6.00%) and linalool (5.70%). The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP) and one fibroblast cell line (NIH-3T3) using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ) and minimum inhibitory concentration (MIC) of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities. PMID:24031588

  20. The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site

    Science.gov (United States)

    Hakola, Hannele; Laurila, Tuomas; Rinne, Janne; Puhto, Katri

    Concentrations of monoterpenes, 1,8-cineol and light hydrocarbons were measured in Pötsönvaara, Ilomantsi, Eastern Finland during two growing seasons in 1997 and 1998. The measuring site was located on the top of a hill, outside a mixed forest. The monthly average summer concentrations of isoprene were 0.3-1.7 ppbC and monoterpenes and 1,8-cineol together 1.6-3.2 ppbC. Isoprene and α-pinene were the most abundant compounds throughout the growing season, but β-pinene, Δ3-carene, camphene, 1,8-cineol, sabinene and limonene were found as well. Isoprene and sabinene concentrations started to increase later than the concentrations of other compounds, and were better correlated with each other than with other compounds. Diurnal variations of monoterpenes show a minimum in the daytime and a maximum at night, except sabinene at midsummer, that has maximum concentrations during the day. The field data support the idea that the effective temperature sum can be used to predict the initiation of emissions of isoprene and also terpene emissions from Betula pendula.

  1. Chemical composition, antioxidant activity and in vitro antibacterial activity of Achillea wilhelmsii C. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp.

    Science.gov (United States)

    Alfatemi, Seyedeh Mahsan Hoseini; Rad, Javad Sharifi; Rad, Majid Sharifi; Mohsenzadeh, Sasan; da Silva, Jaime A Teixeira

    2015-02-01

    The present study investigated the chemical composition of the essential oil (EO) from aerial parts (flowering stage) of Achillea wilhelmsii C. Koch by GC-MS. In addition, the antioxidant activity of the EO as well as its antimicrobial activity against methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MRSA) strains was tested. Antioxidant activity was measured by the ability of the EO to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals while the antimicrobial activity was assessed by the disc-diffusion method. In total, 52 compounds were recognized, accounting for 97.33 % of the EO. The main compounds in the EO were carvacrol (22.49 %), dihydrocarvone (13.23 %), linalool (12 %), 1,8-cineol (11.42 %), camphene (8.31 %), thymol (5.28 %), camphor (3.71 %), pulegone (2.82 %) α-terpineol (2.11 %), bornyl acetate (1.14 %), and farganol (1.01 %). The EC 50 value of the EO was 0.01 and 0.08 mg/mL for the antioxidant and DPPH-scavenging ability, respectively. A. wilhelmsii EO affected methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA, but the impact was more effective on MSSA.

  2. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae).

    Science.gov (United States)

    Begum, Asia; Sandhya, Subarda; Shaffath Ali, Syed; Vinod, Kombath Ravindran; Reddy, Swapna; Banji, David

    2013-01-01

    Rosmarinus officinalis (Rosemary) is a common household plant which belongs to the family Lamiaceae and is grown in many parts of the world. It is a woody, perennial herb with fragrant, evergreen, needle-like leaves and white, pink, purple or blue flowers. The two most commonly grown hardy Rosemaries are Rosmarinus officinalis 'Arp' and R. officinalis 'Madelene Hill' (syn. 'Hill Hardy'). The other cultivars of the plant are R. officinalis 'Albus', R. officinalis 'Bendenen Blue', R. officinalis 'Goodwin Creek', R. officinalis 'Herb Cottage', R. officinalis 'Logee's Light Blue', R. officinalis 'Miss Jessup's Upright', R. officinalis 'Russian River', R. officinalis 'Salem'. The chemical constituents include bitter principle, resin, tannic acid, volatile oils and fl avonoids. The volatile oil consists of borneol, bornyl acetate, camphene, cineol, pinene and camphor. It is used for problems involved in central nervous system, cardio vascular system, genito urinary conditions, liver treatments, reproductive system and respiratory system. The volatile oil of the plant is used in oils and lotions for the treatment of various ailments like arthritis, gout, muscular pain, neuralgia, wound and rubbed into hair for stimulating the hair bulbs to renewed activity, to prevent premature baldness.

  3. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Abdullah Ijaz Hussain

    2010-12-01

    Full Text Available The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%, camphor (17.1%, α-pinene (12.3%, limonene (6.23%, camphene (6.00% and linalool (5.70%. The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP and one fibroblast cell line (NIH-3T3 using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ and minimum inhibitory concentration (MIC of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities.

  4. Comparative essential oil composition of aerial parts of Tanacetum dumosum Boiss. from Southern Zagros, Iran.

    Science.gov (United States)

    Ghanbarian, Gholam Abbas; Naseri, Mahmood; Hatami, Ahmad; Jafari, Efat

    2015-01-01

    The essential oils of leaves and flowers of Tanacetum dumosum Boiss., an endemic medicinal shrub, were extracted by using hydrodistillation method and analysed using GC and GC-MS. A total of 43 and 44 compounds were identified in the essential oils from the leaves and flowers of T. dumosum, respectively. The major chemical constituents of leaves oil were borneol (27.9%), bornyl acetate (18.4%), 1,8-cineol (17.5%), α-terpineol (5.3%), cis-chrysanthenyl acetate (3.3%), camphene (2.7%) and terpinene-4-ol (1.9%), while the main components of the flower oil were isobornyl-2-methyl butanoate (41.1%), trans-linalyl oxide acetate (11.9%), 1,8-cineole (7.7%), thymol (4.2%), linalool (3.9%), camphor (2.9%), isobornyl propanoate (2.9%), α-terpineol (2.1%) and caryophyllene oxide (2.0%). Major qualitative and quantitative variations for some main chemical compounds among different aerial parts of T. dumosum were identified. High contents of borneol, bornyl acetate, 1,8-cineol and linalool in the leaves and flowers of T. dumosum show its potential for use in the food and perfumery industry.

  5. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages.

    Science.gov (United States)

    Mohsenzadeh, F; Chehregani, A; Amiri, H

    2011-09-01

    Tanacetum parthenium Schultz Bip. (Asteraceae) is an aromatic perennial plant, widely distributed in the northern hemisphere. This species traditionally has been used in insecticides, cosmetics, balsams, dyes, medicines and preservatives. The essential oil of T. parthenium was obtained by hydrodistillation in three developmental stages and analyzed by gas chromatography-mass spectrometry. The antibacterial activity of the oils was investigated against four Gram-positive and four Gram-negative bacteria. The oil was tested for cytotoxicity against THP-1 cells using the Trypan blue assay. Twenty-nine components were identified in the essential oil; the highest amount was extracted at the flowering stage. The main component, in the flowering stage, was camphor (18.94%) and other major components were bornyl acetate (18.35%), camphene (13.74%), bornyl isovalerate (3.15%), borneol (10.93%), juniper camphor (6.23%) and β-eudesmol (2.65%). Minimum inhibitory concentration of essential oil was evaluated from 4 µL mL(-1) against Staphylococcus subtilis to 38 µL mL(-1) against Entrobacter aerogenes. Toxicity assay showed that the oil has no significant toxicity at 5-15% v/v concentrations on THP-1 cells. This study demonstrates the occurrence of camphor/bornyl acetate chemotype of T. parthenium in western regions of Iran. The finding showed also the studied oils have relatively good antibacterial activity without significant toxicity, thus have great potentiality to be used as natural health product.

  6. The Essential Oil Composition of Tanacetum densum (Labill. Heywood ssp. eginense Heywood from Turkey

    Directory of Open Access Journals (Sweden)

    Kaan Polatoğlu

    2012-07-01

    Full Text Available Water-distilled essential oils from aerial parts of Tanacetum densum (L. Heywood ssp. eginense Heywood, from Turkey was analysed by GC and GC-MS. T. densum ssp. eginense flower, stem and leaf oils were characterized with camphor (30.9% , 25.7%, 27.7%, 1,8-Cineole (12.4% flower oil, camphene (10.6%, %7.0, flower and leaf oils, bornyl acetate, (9.4%, 11.8%, stem and leaf oils, α-pinene (7.0%, %5.3, flower and leaf oils , borneol (5.1%, 5.2%, stem and leaf oils, neodihydrocarveol (5.1%, flower oil. An unidentified compound was also present in flower, stem and leaf oils (11.5%, 27.2%, 20.5%. A comparison is done with the previous investigations on the other subspecies of T. densum and the differences were investigated. Flower and stem oils did not show any significant activity to the tested microorganisms when compared to positive control chloramphenicol. Flower and stem oils both showed cytotoxicity to Vibrio fischeri.

  7. Synergistic Antifungal, Allelopatic and Anti-Proliferative Potential of Salvia officinalis L., and Thymus vulgaris L. Essential Oils

    Directory of Open Access Journals (Sweden)

    Ersilia Alexa

    2018-01-01

    Full Text Available The current study aimed to investigate the chemical composition and the synergistic potential of two essential oils (EOs, as obtained from Salvia officinalis L. (SEO, and Thymus vulgaris L. (TEO. The antifungal potential was tested in vitro against Fusarium graminearum (Fg 06_17, the herbicidal effect was studied using weed seeds of Amaranthus retroflexus (ARET, Chenopodium album (CALB, Echinochloa crus-galli (EGAL, but also wheat seeds (WS of the Lovrin variety and tomato seeds Saint-Pierre of the variety. The GC-MS profile highlights that the mains compounds identified in SEO were: caryophyllene (25.364%, camphene (14.139%, eucalyptol (13.902%, and β-pinene (11.230%, while in TEO, the predominant phytochemicals were: γ-terpinene (68.415% and p-thymol (24.721%. The results indicated that the tested EOs alone as well as in combination have allelopathic effect against investigated seeds, while the synergistic effect of TEO and SEO in terms of fungal growth was demonstrated at a level of 0.06%. Thyme and sage EOs exhibited in vitro anti-proliferative activity on two melanoma cell lines, namely A375 human melanoma and B164A5 mouse melanoma alone, as well as in combination. SEO was most effective in terms of decreasing the cell viability of murine and human melanoma cell lines when compared to TEO.

  8. CHEMOTYPIC Variation in Volatiles and Herbivory for Sagebrush.

    Science.gov (United States)

    Karban, Richard; Grof-Tisza, Patrick; Blande, James D

    2016-08-01

    Plants that are damaged by herbivores emit complex blends of volatile compounds that often cause neighboring branches to induce resistance. Experimentally clipped sagebrush foliage emits volatiles that neighboring individuals recognize and respond to. These volatiles vary among individuals within a population. Two distinct types are most common with either thujone or camphor as the predominate compound, along with other less common types. Individuals respond more effectively to cues from the same type, suggesting that some of the informative message is contained in the compounds that differentiate the types. In this study, we characterized the chemical profiles of the two common types, and we examined differences in their microhabitats, morphologies, and incidence of attack by herbivores and pathogens. Analysis by gas chromatography coupled with mass spectrometry revealed that the camphor type had higher emissions of camphor, camphene, and tricyclene, while the thujone type emitted more α-thujone, β-thujone, (Z)-salvene, (E)-salvene, carvacrol, and various derivatives of sabinene. We were unable to detect any consistent morphological or microhabitat differences associated with the common types. However, plants of the thujone type had consistently higher rates of damage by chewing herbivores. One galling midge species was more common on thujone plants, while a second midge species was more likely to gall plants of the camphor type. The diversity of preferences of attackers may help to maintain the variation in volatile profiles. These chemical compounds that differentiate the types are likely to be informative cues and deserve further attention.

  9. The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Directory of Open Access Journals (Sweden)

    Abhay K. Pandey

    2017-09-01

    Full Text Available Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017 on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity.

  10. Monoterpene synthase from Dracocephalum kotschyi and SPME-GC-MS analysis of its aroma profile

    Directory of Open Access Journals (Sweden)

    S. Saeidnia

    2014-04-01

    Full Text Available Dracocephalum kotschyi (Lamiaceae, as one of the remarkable aromatic plants, widely grows and also is cultivated in various temperate regions of Iran. There are diverse reports about the composition of the oil of this plant representing limonene derivatives as its major compounds. There is no report on cloning of mono- or sesquiterpene synthases from this plant. In the present study, the aroma profile of D. kotschyi has been extracted and analyzed via Headspace Solid-Phase Microextraction technique coupled with Gas Chromatography- Mass Spectroscopy. In order to determine the sequence of the active terpene synthase in this plant, first mRNA was prepared and cloning was performed by 3’ and 5’-RACEs-PCR method, then cDNA was sequenced and finally aligned with other recognized terpene synthases. The results showed that the plant leaves mainly comprised geranial (37.2%, limonene-10-al (28.5%, limonene (20.1% and 1,1-dimethoxy decane (14.5%. Sequencing the cDNA cloned from this plant revealed the presence of a monoterpene synthase absolutely similar to limonene synthase, responsible in formation of limonene, terpinolene, camphene and some other cyclic monoterpenes in its young leaves.

  11. Chemical Composition and Antimicrobial Activity of the Volatile Oil of Salvia santolinifolia Boiss. From Southeast of Iran

    Directory of Open Access Journals (Sweden)

    Mir Babak Bahadori, Hassan Valizadeh , Mahdi Moridi Farimani

    2016-03-01

    Full Text Available Background: Salvia santolinifolia is a medicinal plant, traditionally used for the treatment of inflammation, hypercholesterolemia, hemorrhoids and diarrhea. Discovery of new natural antimicrobial agents is necessary because of microorganism’s resistance to common antibiotics. Methods: Essential oil of S. santolinifolia was analyzed by GC-FID and GC-MS. Antibacterial, antifungal and general toxic activities of the essential oil were also evaluated. Results: Chemical analysis of the oil revealed that α-pinene (49.3%, β-eudesmol (20.0%, camphene (7.8% and limonene (7.7% are the major components of the essential oil of S. santolinifolia. The inhibition zones ranged from 11.5 to 23.8 mm. Minimum inhibitory concentrations of the oil obtained from 200 to 800 µg/ml against several microbial strains. Conclusion: Our results showed that the volatile oil of S. santolinifolia could be considered as a rich source of natural agents for several uses as antibiotics against human pathogenic microbes.

  12. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Science.gov (United States)

    Singh, Pooja

    2017-01-01

    Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. PMID:28930281

  13. Alcohol induced alterations to the human fecal VOC metabolome.

    Science.gov (United States)

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  14. The Effect of Resin and Monoterpenes on Spore Germination and Growth in Fusarium circinatum.

    Science.gov (United States)

    Slinski, S L; Zakharov, F; Gordon, T R

    2015-01-01

    Resin obtained from Pinus radiata and five monoterpene components of resin (limonene, α-pinene, β-pinene, camphene, and myrcene) were tested to determine their effects on mycelial growth and germination and survival of spores of Fusarium circinatum, the cause of pitch canker in pine, and F. temperatum, which is interfertile with F. circinatum but not pathogenic to pine. Averaged across all treatments, F. temperatum sustained the greatest reduction in radial growth (16.9±0.02% of control). The greatest reduction in dry weight also occurred in F. temperatum (11.7±0.01% of control), and all isolates of F. circinatum were significantly less affected (Presin, spore survival was significantly greater for F. circinatum than for F. temperatum. Our results are consistent with the hypothesis that greater tolerance of resin is one factor distinguishing F. circinatum from the nonpathogenic F. temperatum. However, differential tolerance of monoterpene components of resin is not sufficient to explain the observed variation in virulence to pine in F. circinatum.

  15. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial, insect-repellent and anticholinesterase activities

    Directory of Open Access Journals (Sweden)

    Betul Demirci

    2017-07-01

    Full Text Available The essential oil (EO of the aerial parts of Rhanterium epapposum Oliv. (Asteraceae, was obtained by hydrodistillation. The oil was subsequently analyzed by both GC-FID and GC-MS, simultaneously. Forty-five components representing 99.2% of the oil composition were identified. The most abundant compounds were camphene (38.5%, myrcene (17.5%, limonene (10.1% and α-pinene (8.7%. Referring to the ethnobotanical utilization, an insecticidal assay was performed, where the oil repelled the yellow fever mosquito Aedes aegypti L. at a minimum effective dose (MED of 0.035 ± 0.010 mg/cm2 compared to the positive control DEET (MED of 0.015 ± 0.004 mg/cm2. Additionally, the in vitro antimicrobial activity against a panel of pathogens was determined using a microdilution method. The acetyl- and butyrylcholine esterase inhibitory activities were measured using the colorimetric Ellman method. The bioassay results showed that the oil was rather moderate in antimicrobial and cholinesterase inhibitions when compared to the standard compounds.

  16. Larvicidal activity of ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils and blends of their constituents against mosquito, Aedes aegypti , acute toxicity on water flea, Daphnia magna , and aqueous residue.

    Science.gov (United States)

    Seo, Seon-Mi; Park, Hye-Mi; Park, Il-Kwon

    2012-06-13

    This study evaluated the larvicidal activity of 20 plant essential oils and components from ajowan ( Trachyspermum ammi ) and Peru balsam ( Myroxylon pereira ) oils against the mosquito, Aedes aegypti . Of the 20 plant essential oils, ajowan and Peru balsam oils at 0.1 mg/mL exhibited 100 and 97.5% larval mortality, respectively. At this same concentration, the individual constituents, (+)-camphene, benzoic acid, thymol, carvacrol, benzyl benzonate, and benzyl trans-cinnamate, caused 100% mortality. The toxicity of blends of constituents identified in two active oils indicated that thymol and benzyl benzoate were major contributors to the larvicidal activity of the artificial blend. This study also tested the acute toxicity of these two active oils and their major constituents against the water flea, Daphnia magna . Peru balsam oil and benzyl trans-cinnamate were the most toxic to D. magna. Two days after the treatment, residues of ajowan and Peru balsalm oils in water were 36.2 and 85.1%, respectively. Less than 50% of benzyl trans-cinnamate and thymol were detected in the water at 2 days after treatment. The results show that the essential oils of ajowan and Peru balsam and some of their constituents have potential as botanical insecticides against Ae. aegypti mosquito larvae.

  17. Preparation of Ecofriendly Formulations Containing Biologically Active Monoterpenes with Their Fumigant and Residual Toxicities against Adults of Culex pipiens

    Directory of Open Access Journals (Sweden)

    Mohamed E. I. Badawy

    2016-01-01

    Full Text Available Different mixtures of monoterpenes (ketone, alcohol, and alkene were loaded on paper discs and wax and their knockdown activities were evaluated against Culex pipiens adults. Some individual monoterpenes were also evaluated by residual toxicity technique. Citronella oil as a reference was also loaded separately or in combination with monoterpenes on paper discs and wax. The ketone monoterpenes mixture (camphor, menthone, carvone, and fenchone on paper discs was the most active (KT50 = 17.20 min followed by ketone monoterpenes with citronella oil (KT50 = 20.79 min and citronella oil alone (KT50 = 28.72 min. Wax formulations proved that the ketone and alcohol (geraniol, thymol, and menthol monoterpenes gave the most activity as knockdown (KT50 = 31.79 and 43.39 min, resp.. Alcohol monoterpenes formulation recorded KT50 = 43.39 min. Residual activity of tested individual monoterpenes reported that the menthol was more toxic than camphor and camphene. Generally, this study suggests that the monoterpenes have the properties, which make them used as eco-friendly compounds in the control programs of Cx. pipiens adult. The use of paper discs is more applicable than wax in the adulticidal formulations.

  18. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees

    Science.gov (United States)

    Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.

    2016-02-01

    Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.

  19. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    Science.gov (United States)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  20. Investigation of two technical toxaphene products by using isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, W.; Armbruster, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Gleixner, G. [Max-Planck-Institut fuer Biogeochemie, Jena (Germany)

    2004-09-15

    Organochlorine compounds have been used in high quantities throughout the past 60 years. Being long-lived in the environment and toxic to humans and wildlife, some of them were classified as persistent organic pollutants (POPs). One of the POPs of special concern is toxaphene which is produced by the chlorination of the natural product camphene (or {alpha}-pinene). The technical products consist of several hundred compounds, mainly of chlorobornanes with an average number of eight chlorine substituents. Toxaphene has been produced in high quantities in different parts of the world. Even though the use has been discontinued during the last two decades, there are still several ecosystems which are heavily contaminated with this chloropesticide. Due to the huge variety of the technical products accompanied with a severe change of composition in the environment, analytical tracing back of toxaphene residues to a specific product has not yet been achieved. One of the potential analytical tools for distinguishing substances that differ only in their way of production is the determination of ratios of stable isotopes ({sup 13}C/{sup 12}C; {sup 2}H/{sup 1}H; {sup 15}N/{sup 14}N). Since the synthesis of toxaphene is starting from natural compounds obtained from different continents, the technical products could have different ratios of stable isotopes. In this study, we investigated the {sup 13}C/{sup 12}C ratio of two former major toxaphene products.

  1. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    Science.gov (United States)

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  2. Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis

    Directory of Open Access Journals (Sweden)

    Anne Elizabeth Harman-Ware

    2016-01-01

    Full Text Available Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β- pinene, camphene and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic and neoabietic acids.

  3. Chemical constituents and insecticidal activities of the essential oil from Alpinia blepharocalyx rhizomes against Lasioderma serricorne

    Directory of Open Access Journals (Sweden)

    Wang Ying

    2015-01-01

    Full Text Available The aim of this research was to determine the chemical constituents and toxicities of essential oil derived from Alpinia blepharocalyx rhizomes against the cigarette beetle, Lasioderma serricorne (Fabricius. Essential oil of A. blepharocalyx rhizomes was obtained from hydrodistillation and was investigated by Gas Chromatography-Mass Spectrometry (GC-MS. A total of 46 components of the essential oil of A. blepharocalyx rhizomes were identified. The principal compounds in A. blepharocalyx essential oil were camphor (23.13%, sabinene (11.27%, α-pinene (9.81% and eucalyptol (8.86% followed by camphene (8.05%, sylvestrene (5.61% and α-phellandrene (5.00%. Among them, the four active constituents, predicted with a bioactivity-test, were isolated and identified as camphor, sabinene, α-pinene and eucalyptol. The essential oil of A. blepharocalyx possessed strong contact toxicity against the cigarette beetle with LD50 value of 15.02 μg adult-1, and also exhibited strong fumigant toxicity against L. serricorne adults with LC50 value of 3.83 mg L-1 air. The results indicate that the essential oil of A. blepharocalyx shows potential in terms of contact and fumigant toxicities against stored product insects.

  4. Immissions of terpenes over Picea abies stands in open-top chambers fumigated with ozone, sulphur dioxide and a mixture of both

    Energy Technology Data Exchange (ETDEWEB)

    Juettner, F.; Bufler, U.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1987-04-01

    The terpene immissions were measured in the air over stands of Picea abies which have been cultivated 3 years in open-top chambers with O/sub 3/-, SO/sub 2/- and O/sub 3//SO/sub 2/-enriched air. A stand fumigated with charcoal-treated air was used as the reference. Highest terpene immissions were observed for ..cap alpha..-pinene, limonene and sabinene, medium for eucalyptol, ..beta..-pinene, camphene and myrcene, and lowest for tricyclene, camphor, ..gamma..-terpinene and bornyl acetate. A reduction of terpene immissions was found over all stands which were fumigated with noxious gases. A change of the terpene pattern that was characterized by an increase of the limonene concentration was observed after a one-week dry period in the O/sub 3/- and O/sub 3//SO/sub 2/-chamber. After sprinkling, the terpene immissions generally increased. Under these conditions, exceptionally high concentrations of sabinene were observed over O/sub 3/-treated stands of Picea abies.

  5. Variation of terpenes in milk and cultured cream from Norwegian alpine rangeland-fed and in-door fed cows.

    Science.gov (United States)

    Borge, Grethe Iren A; Sandberg, Ellen; Øyaas, Jorun; Abrahamsen, Roger K

    2016-05-15

    The terpene content of milk and cream made from milk obtained from cows fed indoors, and by early or late grazing, in alpine rangeland farms in Norway, were analysed for three consecutive years. The main terpenes identified and semi-quantified were the monoterpenes β-pinene, α-pinene, α-thujene, camphene, sabinene, δ-3-carene, d-limonene, γ-terpinene, camphor, β-citronellene, and the sesquiterpene β-caryophyllene. The average total terpene content increased five times during the alpine rangeland feeding period. The terpenes α-thujene, sabinene, γ-terpinene and β-citronellene were only detected in milk and cultured cream from the alpine rangeland feeding period and not in samples from the indoors feeding period. These four terpenes could be used, as indicators, to show that milk and cultured cream originate from the alpine rangeland feeding period. The terpenes did not influence the sensorial quality of the milk or the cultured cream. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Genus Artemisia: a 2012-2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils.

    Science.gov (United States)

    Pandey, Abhay K; Singh, Pooja

    2017-09-12

    Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012-2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity.

  7. Acetylcholinesterase inhibitory, antioxidant, and antimicrobial activities of Salvia tomentosa Mill. essential oil

    Directory of Open Access Journals (Sweden)

    ANDREY MARCHEV

    2015-08-01

    Full Text Available Chemical composition and bioactivity of essential oil from Salvia tomentosa Mill. natively grown in Bulgaria were investigated. GC-MS analysis identified 60 compounds which represented 98% of the oil constituents. The prevalent constituents were monoterpenes with eight dominant compounds being identified: borneol (10.3%, β-pinene (9%, camphor (7.9%, α-pinene (6%, camphene (4%, 1.8-cineole (3.8%, α-limonene (3.5% and β-caryophyllene (3%. The essential oil showed considerable acetylcholinesterase inhibitory activity (IC50=0.28±0.06 µg/mL, comparable with that of galanthamine. Study of antioxidant activity strongly suggested that the hydrogen atom transfer reaction was preferable over the electron transfer (ORAC=175.0±0.40 µM Trolox equivalents/g oil and FRAP=1.45±0.21 mM Trolox equivalents/g oil. The essential oil showed moderate antifungal and antibacterial activities against Candida albicans and Gram-positive bacteria, whereas it was almost inactive against the investigated Gram-negative strains. The results suggested that the essential oil of Bulgarian S. tomentosa could be considered as a prospective active ingredient for prevention of oxidative stress-related and neurodegenerative disorders in aromatherapy. Because of the high antioxidant capacity, the oil could be considered as natural supplement or antioxidant in cosmetics and food products.

  8. Genetic and correlation analysis of oleoresin chemical components in slash pine.

    Science.gov (United States)

    Zhang, S; Jiang, J; Luan, Q

    2016-08-29

    This is the first comprehensive study of the genetic analysis of the majority of oleoresin components of slash pine (Pinus elliottii). Pine oleoresin, the resin secreted from the pine tree, is a raw material widely used in industrial products. The objective of this study was to explore the genetic variation and correlation between the major oleoresin components of 50 open pollinated families of slash pine. The individual narrow-sense heritability of the 23 oleoresin components and genetic correlations between them were estimated using the residual maximum likelihood in the flexible mixed modeling program, ASReml-R. A high heritability of 0.424 was observed for β-pinene. Moderate levels of heritability were estimated for β-phellandrene, methyl abietate, estragole, 15-hydroxy-dehydroabietic acid, and isopimaric acid methyl ester at 0.303, 0.294, 0.27, 0.258, and 0.2, respectively. The heritabilities for pimaric acid methyl ester, abieta-8, 13-diene-18-oic acid methyl ester, sandaracopimaric acid, methyl ester, and camphene were relatively low and ranged from 0.11 to 0.17. Many negative genetic correlations were observed as unfavorable while the corresponding phenotypic correlations presented no significant relationships or positive phenotypic correlations. However, the heritabilities and genetic correlations showed that single or multiple component selections and improvement, directly or indirectly, were effective. We postulate that genetic parameters estimated in this study will work as a reference in breeding programs of oleoresin components, especially in slash pine.

  9. Volatile sulfur production by pig cecal bacteria in batch culture and screening inhibitors of sulfate reducing bacteria.

    Science.gov (United States)

    Arakawa, T; Ishikawa, Y; Ushida, K

    2000-08-01

    We studied the effects of specific inhibitors of methanogenesis (2-bromoethane sulfonate, BES) and sulfate reduction (sodium molybdate) on volatile sulfur production in batch cultures of pig cecal bacteria. The volatile sulfur concentration in headspace gas was determined by flame-photometric detector gas chromatography. BES stimulated production of hydrogen sulfide (H2S) and methanethiol, and sodium molybdate completely inhibited the production of these volatile sulfur compounds. The results indicated that dissimilate sulfate reduction is mainly responsible for volatile sulfur production in the hindgut. Therefore the extracts of herbs, food colors, and aroma chemicals were tested for their inhibitory effects on H2S production by a dissimilatory sulfate-reducing bacteria. Desulfovibrio desulfuricans DSM642. H2S was measured by the chromatography of the headspace gas, using a flame photometric detector. Of 306 herbal extracts tested, 69 extracts from 38 herbs inhibited H2S production at 1.0 mg/mL. Sisymbrium officinale (hedge mustard) was the most potent inhibitor. Six pigments inhibited H2S release. Erythrosine and rose bengal showed inhibitory effects at 0.01 mg/mL. Peppermint oil and 96 aroma chemicals were assayed for their effects on H2S release. Thirty-two aroma chemicals suppressed H2S production at 0.1 mg/mL, and camphene, 1-decanol, and 2-nonanone were effective at 0.01 mg/mL.

  10. {alpha}-Pinene conversion by modified-kaolinitic clay

    Energy Technology Data Exchange (ETDEWEB)

    Volzone, C. [CETMIC-Centro de Tecnologia de Recursos Minerales y Ceramica-(CONICET-CIC), C.C. 49, Cno. Centenario y 506 (1897) M.B. Gonnet, Prov., Buenos Aires (Argentina)]. E-mail: volzcris@netverk.com.ar; Masini, O. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Comelli, N.A. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Grzona, L.M. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina); Ponzi, E.N. [CINDECA (CONICET-UNLP) calle 47 No. 257 (1900) La Plata, Prov., Buenos Aires (Argentina); Ponzi, M.I. [INTEQUI (CONICET-UNSL), Facultad de Ingenieria y Ciencias Economico Sociales, 25 de Mayo 384, V. Mercedes, Prov., San Luis (Argentina)

    2005-10-15

    The isomerization of {alpha}-pinene using natural kaolinitic clay before and after different treatments was studied in this work. The kaolinite is a clay material constituted by phyllosilicate 1:1 layer (one sheet of tetrahedral silicon and one sheet of octahedral alumina). The clay was treated at different times using 6.0 N solution of sulfuric acid previous heating to 500 or 700 K. The materials were characterized by X-ray diffraction, by chemical analyses and acidity measurements. The catalytic reactions were carried out at 373 K in a reactor batch with condenser and stirrer. Samples were taken at regular intervals, and reactants and products were quantitatively analyzed with a gas chromatograph after separation of the individual compounds. Conversions of alpha pinene between 67 and 94%, and selectivities in camphene and in limonene of 65 and 23%, respectively, were obtained with the clay treated at different conditions. The structural and textural changes of the clay by the treatments influenced on catalytic reactions.

  11. Volatile Constituents of Three Invasive Weeds of Himalayan Region

    Directory of Open Access Journals (Sweden)

    Rajendra C. Padalia

    2010-04-01

    Full Text Available The volatile constituents of three most common aromatic exotic weeds viz. Lantana camara L., Eupatorium adenophorum Spreng and Ageratum conyzoides L. of the Uttarakhand, India were analyzed by GC and GC-MS. The essential oil of Lantana camara L. was dominated by sesquiterpenoids (70.8% represented by sesquiterpene hydrocarbons (68.7% with germacrene D (27.9%, germacrene B (16.3%, b-caryophyllene (9.6%, b-selinene (6.2%, α-humulene (5.8% as major constituents. Other constituents in significant amount were sabinene (5.6% and 1,8-cineole (4.8%. Amorphenes viz. amorph-4-en-7-ol (9.6%, 3-acetoxyamorpha-4,7(11-dien-8-one (7.8% and amorph-4,7(11-dien-8-one (5.7% were identified as the marker constituents of Eupatorium adenophorum Spreng along with p-cymene (16.6%, bornyl acetate (15.6% and camphene (8.9%. On the contrary, the essential oil of Ageratum conyzoides L. was characterized by the presence of high percentages of ageratochromene (precocene II, 42.5%, β-caryophyllene (20.7%, demethoxyageratochromene (precocene I, 16.7%, a-humulene (6.6% and p-cymene (3.3%.

  12. Differential Essential Oil Composition and Morphology between Perennial Satureja species Growing in Spain

    Directory of Open Access Journals (Sweden)

    David García-Rellán

    2015-06-01

    Full Text Available Chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of thirty six samples of perennial Spanish savouries (Satureja montana L., Satureja innota (Pau G. López, Satureja cuneifolia Ten. and Satureja intricata Lange, was investigated by GC and GC-MS. A total of 72 compounds accounting between 98.25-99.55% of the total oil were identified. High content of carvacrol (59.72±1.50% followed by g -terpinene (17.40±1.11% were found in S.montana essential oils. S. cuneifolia yielded an oil rich in camphor (45.04±1.67% and camphene (12.42±1.71% whereas S. innota produces an essential oil with linalool (23.94±7.58% or geraniol (8.62±3.45% according to the locality of collection and S. intricata showed chemical polymorphism with camphor (16.02±1.75%, as the main compound followed with populations with myrcene (8.46±1.46% and populations with g -terpinene (8.22±1.33%. Although the morphological affinity between S. innota, S.cuneifolia and S. intricata could lead to consider the subspecies level, the phytochemical discriminant analysis support the taxonomic classification of Flora Iberica which ranks these taxa into species.

  13. In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components

    Directory of Open Access Journals (Sweden)

    Gian Luigi Rana

    2012-02-01

    Full Text Available Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare, previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products.

  14. Altered host plant volatiles are proxies for sex pheromones in the gall wasp Antistrophus rufus.

    Science.gov (United States)

    Tooker, John F; Koenig, Wilfried A; Hanks, Lawrence M

    2002-11-26

    We describe a previously uncharacterized function for changes in plant chemistry induced by phytophagous insects: to provide cues for mate location. Larvae of the gall wasp Antistrophus rufus Gillette (Hymenoptera: Cynipidae) feed within inconspicuous galls inside the flowering stems of the prairie perennials Silphium laciniatum L. and Silphium terebinthinaceum Jacquin (Asteraceae). Adult male A. rufus emerge before females and are challenged with locating mates that are sequestered within dead plant stems that occur in a matrix of dead vegetation. Allozyme studies revealed complete reproductive isolation between wasp subpopulations in the two plant species. In laboratory bioassays, males responded only to their natal plant species, antennating the stem surface. Males from S. laciniatum also responded to hexane extracts of S. laciniatum stems, and extracts contained much higher concentrations of monoterpenes (alpha-pinene, beta-pinene, and camphene) than did S. terebinthinaceum. Ratios of "+" and "-" enantiomers of alpha- and beta-pinene approximated 50:50 for nongalled S. laciniatum stems but strongly differed from 50:50 in galled stems, with "+" and "-" enantiomers strongly dominant in different plants. In bioassays, male wasps from S. laciniatum responded to a synthetic blend of the monoterpenes in enantiomeric ratios characteristic of galled stems. Male A. rufus rely entirely on olfaction to locate females within stems in a complex prairie habitat, and gall wasps themselves apparently influence the plant to modify ratios of monoterpene enantiomers. These plant volatiles serve as a signal for males, acting as a sex pheromone proxy for females concealed within plant tissues.

  15. Influence of Binasal and Uninasal Inhalations of Essential Oil of Abies koreana Twigs on Electroencephalographic Activity of Human

    Science.gov (United States)

    Seo, Min; Sowndhararajan, Kandhasamy

    2016-01-01

    Objectives. The present work investigates the effect of essential oil from the twigs of Abies koreana on electroencephalographic (EEG) activity of human brain in order to understand the influence of binasal and uninasal inhalations. Methods. To accomplish this study, the essential oil from the twigs of A. koreana (AEO) was isolated by steam distillation and the EEG readings were recorded using QEEG-8 system from 8 grounding electrodes according to the International 10-20 System. Results. D-Limonene (25.29%), bornyl acetate (19.31%), camphene (12.48%), α-pinene (11.88%), β-pinene (6.45%), and eudesm-7(11)-en-ol (5.38%) were the major components in the essential oil. In the EEG study, the absolute alpha (left frontal and right parietal) and absolute fast alpha (right parietal) values significantly increased during the binasal inhalation of AEO. In the uninasal inhalation, absolute beta and theta values decreased significantly, especially in the right frontal and left and right parietal regions. The results revealed that the AEO produced different EEG power spectrum changes according to the nostril difference. Conclusion. The changes in EEG values due to the inhalation of AEO may contribute to the enhancement of relaxation (binasal inhalation) and alertness/attention (right uninasal inhalation) states of brain which could be used in aromatherapy treatments. PMID:28042202

  16. Effects of gamma irradiation on the yields of volatile extracts of Angelica gigas Nakai

    Science.gov (United States)

    Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kwon, Joog-Ho; Kim, Kyong-Su

    2007-11-01

    The study was carried out to determine the effects of gamma irradiation on the volatile flavor components including essential oils, of Angelica gigas Nakai. The volatile organic compounds from non- and irradiated A. gigas Nakai at doses of 1, 3, 5, 10 and 20 kGy were extracted by a simultaneous steam distillation and extraction (SDE) method and identified by GC/MS analysis. A total of 116 compounds were identified and quantified from non- and irradiated A. gigas Nakai. The major volatile compounds were identified 2,4,6-trimethyl heptane, α-pinene, camphene, α-limonene, β-eudesmol, α-murrolene and sphatulenol. Among these compounds, the amount of essential oils in non-irradiated sample were 77.13%, and the irradiated samples at doses of 1, 3, 5, 10 and 20 kGy were 84.98%, 83.70%, 83.94%, 82.84% and 82.58%, respectively. Oxygenated terpenes such as β-eudesmol, α-eudesmol, and verbenone were increased after irradiation but did not correlate with the irradiation dose. The yields of active substances such as essential oil were increased after irradiation; however, the yields of essential oils and the irradiation dose were not correlated. Thus, the profile of composition volatiles of A. gigas Nakai did not change with irradiation.

  17. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki

    2014-01-01

    Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.

  18. High diversity of indigenous populations of dalmatian sage (Salvia officinalis L.) in essential-oil composition.

    Science.gov (United States)

    Jug-Dujaković, Marija; Ristić, Mihailo; Pljevljakušić, Dejan; Dajić-Stevanović, Zora; Liber, Zlatko; Hančević, Katarina; Radić, Tomislav; Satović, Zlatko

    2012-10-01

    Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential-oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis-thujone, camphor, trans-thujone, 1,8-cineole, β-pinene, camphene, borneol, and bornyl acetate) formed 78.13-87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β-pinene, β-pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans-thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis-thujone from those rich in trans-thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis-thujone; trans-tujone, and camphor/β-pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Chemical Composition, Antimicrobial Activity, and Mode of Action of Essential Oils against Paenibacillus larvae, Etiological Agent of American Foulbrood on Apis mellifera.

    Science.gov (United States)

    Pellegrini, María C; Alonso-Salces, Rosa M; Umpierrez, María L; Rossini, Carmen; Fuselli, Sandra R

    2017-04-01

    This study aimed to characterize the chemical composition of Aloysia polystachia, Acantholippia seriphioides, Schinus molle, Solidago chilensis, Lippia turbinata, Minthostachys mollis, Buddleja globosa, and Baccharis latifolia essential oils (EOs), and to evaluate their antibacterial activities and their capacity to provoke membrane disruption in Paenibacillus larvae, the bacteria that causes the American Foulbrood (AFB) disease on honey bee larvae. The relationship between the composition of the EOs and these activities on P. larvae was also analyzed. Monoterpenes were the most abundant compounds in all EOs. All EOs showed antimicrobial activity against P. larvae and disrupted the cell wall and cytoplasmic membrane of P. larvae provoking the leakage of cytoplasmic constituents (with the exception of B. latifolia EO). While, the EOs' antimicrobial activity was correlated most strongly to the content of pulegone, carvone, (Z)-β-ocimene, δ-cadinene, camphene, terpinen-4-ol, elemol, β-pinene, β-elemene, γ-cadinene, α-terpineol, and bornyl acetate; the volatiles that better explained the membrane disruption were carvone, limonene, cis-carvone oxide, pentadecane, trans-carvyl acetate, trans-carvone oxide, trans-limonene oxide, artemisia ketone, trans-carveol, thymol, and γ-terpinene (positively correlated) and biciclogermacrene, δ-2-carene, verbenol, α-pinene, and α-thujene (negatively correlated). The studied EOs are proposed as natural alternative means of control for the AFB disease. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment

    Science.gov (United States)

    de Gennaro, Gianluigi; de Gennaro, Lucrezia; Mazzone, Antonio; Porcelli, Francesca; Tutino, Maria

    2014-02-01

    Volatile organic compounds (VOCs) are common ingredients in cosmetic products which can impact human health. This study monitored 12 hairdressing salons in order to assess the individual exposure of the people working in or frequenting these environments as well as identify the main products or activities responsible for the presence of these compounds. In each site halogenated, oxygenated, aliphatic and aromatic compounds were monitored during the work week with diffusive samplers suitable for thermal desorption and analysed using GC-MS. The study of indoor-outdoor concentration ratios and a knowledge of the composition of most of the products, whether ecological or traditional, used in the hair salons verified the presence of compounds linked to hairdressing activities. In particular, compounds widely used in products for hair care as spray lacquer and foam (butane), shampoo, balms, hair masks and oils (camphene, camphor, limonene, eucalyptol, alpha pinene, 1-methoxy-2-propanol, n-butanol and menthol), and hair dye (benzyl alcohol, isopropanol, limonene, hexane and methyl ethyl ketone) were found at much higher levels inside rather than outside the salons (mean I/O > 10). The importance of this finding is linked to the potential health hazards of some of the VOCs detected. Integrated indicators of health risk were proposed in this study to assess the criticality level and rank the investigated environments accordingly. The results of this study indicate that the level of VOC concentrations was most affected by the type of products used while the size of the environment, the efficiency of air exchange and the number of customers had less impact on those levels.

  1. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale

    Energy Technology Data Exchange (ETDEWEB)

    Owen, S.M.; Boissard, C.; Hewitt, C.N. [Institute of Environmental and Natural Sciences, Lancaster University, Lancaster (United Kingdom). Department of Environmental Science

    2001-07-01

    Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, {alpha}-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species' emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505gha{sup -1}h{sup -1} (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring, respectively). Emissions of isoprene ranged from 0.3 to 505gha{sup -1}h{sup -1} (macchia in Italy in late spring and autumn, and riverside in Spain in late spring, respectively) and {alpha}-pinene emissions ranged from 0.51 to 52.92gha{sup -1}h{sup -1} (garrigue in Spain in late spring, and forest in France in autumn, respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Gemista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers. (author)

  2. Comparative GC-MS analysis of all Curcuma species grown in Sri Lanka by multivariate test

    Directory of Open Access Journals (Sweden)

    H.M.I.C. Herath

    2017-12-01

    Full Text Available Curcuma is clinically valuable genus in Traditional Medicine. People use various plants under the same vernacular name may lead to adulteration or substitution. Whole plants of Curcuma species were collected in 2016 in the flowering season. Voucher specimens of the plants were authenticated from the National Herbarium, Peradeniya. Essential oils were extracted from Clevenger’s apparatus and analyzed separately by GC-MS. The analyses were carried out with RTX WAX capillary column. Sampling and experiments were done according to WHO guidelines. One hundred sixty four phytochemicals were analyzed by simple correspondence and by cluster variable method. By cluster varibale as per phytochemicals present, mainly two groups were identified. C. albiflora and C. oligantha were identified as one group and the rest of the three plants were kept in the other group. A total of 64 constituents of essential oil obtained from whole plant of C. albiflora were identified by GC-MS, where α-pinene (10.87 %, caryophyllene oxide (8.85 %, alcanfor (5.12 %, aromadendrene oxide-(1 (4.81 %, n-hexadecanoic acid (4.74 %, α-famesene (3.93 %, camphene (3.52 %, and isoborneol (3.4 % were detected as major compounds. The essential oil of C. aromatica possesses 7–methanoazulene (13.75 % and curcumene (25.71%. Caryophyllene (15.07%, phytol (13.38%, humulene (8.24%, elemene (6.11%, caryophyllene oxide (5.82% were found in C. oligantha. This preliminary study has identified chemical markers present in all Curcuma species grown in Sri Lanka.

  3. Activité antioxydante et anti-candidosique de l’huile essentielle de Laurus nobilis L. provenant de la région d’El Kala (Nord–Est Algérien

    Directory of Open Access Journals (Sweden)

    Amira OUIBRAHIM

    2015-12-01

    Full Text Available L’huile essentielle extraite de Laurus nobilis L. par hydrodistillation a fourni un rendement de 0,7%. L’analyse de l’huile essentielle par CG/SM a permis l’identification de 17 composants, principalement des monoterpènes. 1,8 cinéole (36,31%, β-linalol (22.52%, eugenol-methylether (9.17% et camphene (7.37% ont constitué les composés majoritaires avec un total de 96,95%. L’activité antioxydante in vitro a été évaluée à travers trois méthodes: le test de piégeage du radical libre DPPH avec un IC50 de 1,55 ± 0,14 mg/ml ; le test de blanchiment de β-carotène qui a permis d’enregistrer un pourcentage d’inhibition de la peroxydation lipidique de 41,97% et finalement l’évaluation du pouvoir réducteur qui s’est avéré faible par rapport à celui de l’acide ascorbique. L’activité anticantidosique a été testée sur 4 souches de Candida albicans en utilisant la méthode de dilution en milieu gélosé. Les quatre souches ont montré une sensibilité avec une CMI de 0,68 mg/ml pour les souches d’origine urinaire et vaginale et 1.08 mg/ml pour les Candida d’origine bucco-nasale. L’huile essentielle de Laurus nobilis originaire de la région d’El Kala a manifesté des propriétés antioxidantes modérées et des propriétés anticandidosiques.

  4. Assessment of Volatile Chemical Composition of the Essential Oil of Jatropha ribifolia (Pohl Baill by HS-SPME-GC-MS Using Different Fibers

    Directory of Open Access Journals (Sweden)

    Celia Eliane de Lara da Silva

    2013-01-01

    Full Text Available The chemical composition of essential oil and volatile obtained from the roots of Jatropha ribifolia (Pohl Baill was performed in this work. The Clevenger extractor was utilized in hydrodistillation of oil and chemical composition determined by gas chromatography coupled with mass spectrometry detector (GC-MS. The identification of compounds was confirmed by retention index (Kovats index obtained from a series of straight chain alkanes (C7–C30 and by comparison with NIST and ADAMS library. A total of 61 compounds were identified in essential oil by GC-MS. The extraction of volatile was performed also by the use of the solid phase microextraction (SPME with four different fibers. The essential oil extraction was extremely rapid (15 s to avoid saturation of the fiber and the MS detector. The majority of the composition of essential oil is the terpenes: β-pinene (major compound 9.16%, β-vatirene (8.34%, α-gurjunene (6.98%, α-pinene (6.35%, camphene (4.34%, tricyclene (3.79% and dehydro aromadendrene (3.52% it and aldehydes and alcohols. Through the SPME it was possible to determine the nine volatile compounds not identified in oil 2,3,4-trimethyl-2-cyclopenten-1-one, α-phellandrene, 3-carene, trans-p-mentha-2,8-dienol, pinocamphone, D-verbenon, 1,3,3-trimethyl-2-(2-methyl-cyclopropyl-cyclohexene, 2,4-diisocyanato-1-methylbenzene, and (6-hydroxymethyl-2,3-dimethylehenyl methanol.

  5. Composition and Comprehensive Antioxidant Activity of Ginger (Zingiber officinale) Essential Oil from Ecuador.

    Science.gov (United States)

    Höferl, Martina; Stoilova, Ivanka; Wanner, Juergen; Schmidt, Erich; Jirovetz, Leopold; Trifonova, Dora; Stanchev, Veselin; Krastanov, Albert

    2015-06-01

    In the present study, the chemical composition and antioxidant potential of an essential oil of ginger rhizomes from Ecuador was elucidated. The analysis of the essential oil by GC/FID/MS resulted in identification of 71 compounds, of which the main are citral (geranial 10.5% and neral 9.1%), α-zingiberene (17.4%), camphene (7.8%), α-farnesene (6.8%) and β-sesquiphellandrene (6.7%). The in vitro antioxidant activity of the essential oil expressed by IC50 in descending order is: hydroxyl radical (OH*) scavenging (0.0065 μg/mL) > chelating capacity (0.822 μg/mL) > 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS*+) scavenging (3.94 μg/mL) > xanthine oxidase inhibition (138.0 μg/mL) > oxygen radical (O2*) scavenging (404.0 μg/mL) > 2,2- diphenyl-1-picrylhydrazyl radical (DPPH*) scavenging (675 μg/mL). Lipid peroxidation inhibition of the essential oil was less efficient than butylhydroxytoluol (BHT) in both stages, i.e. hydroperoxide and malondialdehyde formation. In vivo studies in Saccharomyces cerevisiae demonstrated a significant dose-dependent increase in antioxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), blocking the oxidation processes in yeast cells. Moreover, ginger essential oil in concentrations of 1.6 mg/mL increases the viability of cells to oxidative stress induced by H2O2.

  6. Juice components and antioxidant capacity of four Tunisian Citrus varieties.

    Science.gov (United States)

    Tounsi, Moufida Saidani; Wannes, Wissem Aidi; Ouerghemmi, Ines; Jegham, Sabrine; Ben Njima, Yosra; Hamdaoui, Ghaith; Zemni, Hassene; Marzouk, Brahim

    2011-01-15

    Juices from four Citrus species of Tunisia were investigated mainly for quality parameters and antioxidant capacity. Citrus reticulata (mandarin) juice had the highest content of total flavonoids (85.33 mg CE L(-1)). The latter also occurred in high quantity (82.01 mg CE L(-1)) in Citrus lemon (lemon) juice which was also marked by its richness in total aroma (70.16 µg mL(-1)) and in total fatty acids (48.10 µg mL(-1)). Mandarin and lemon juices had the highest antioxidant activity, as determined b the β-carotene bleaching assay (26.67% and 22.67%, respectively). Citrus aurantium (bitter orange) juice was characterised by the highest content of total polyphenols (784.67 mg GAE L(-1)) and by the greatest inhibition of DPPH (96.10%). Citrus sinensis (blood orange) juice was only marked by the high quantity of ascorbic acid (36.90 mg mL(-1)). GC/MS analysis of juice aroma showed the predominance of limonene (48.85-69.59%) in mandarin and in bitter and blood oranges, but of camphene (89.05%) in lemon. GC analysis of juice fatty acids revealed their richness in oleic acid (23.13-39.52%). HPLC analysis of juice phenolics indicated the predominance of phenolic acids (73.13-86.40%). The Citrus species used in this study were considered valuable varieties from the point of view of antioxidant capacity and nutrition. Copyright © 2010 Society of Chemical Industry.

  7. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    Science.gov (United States)

    Mäki, Mari; Heinonsalo, Jussi; Hellén, Heidi; Bäck, Jaana

    2017-03-01

    statistical model, based on prevailing temperature, seasonality, vegetation effect, and the interaction of these parameters, explained 43 % of the monoterpene fluxes, and 34-46 % of individual α-pinene, camphene, β-pinene, and Δ3-carene fluxes.

  8. Chemical composition and pharmacological properties of the essential oils obtained seasonally from Lippia thymoides.

    Science.gov (United States)

    Silva, Fabrício Souza; Menezes, Pedro Modesto Nascimento; de Sá, Pedro Guilherme Souza; Oliveira, André Luís de Santana; Souza, Eric Alencar Araújo; Almeida, Jackson Roberto Guedes da Silva; de Lima, Julianeli Tolentino; Uetanabaro, Ana Paula Trovatti; Silva, Tânia Regina dos Santos; Peralta, Edna Dória; Lucchese, Angélica Maria

    2016-01-01

    Lippia thymoides Mart. & Schauer (Verbenaceae) is used in folk medicine to treat wounds, fever, bronchitis, rheumatism, headaches, and weakness. This study determinates the chemical composition of essential oils from L. thymoides, obtained at during each of the four seasons and correlates with pharmacological properties. Essential oils were obtained by hydrodistillation and analyzed by gas chromatography coupled to mass spectroscopy (GC-MS). Antioxidant activity was determined by DPPH free radical scavenging and β-carotene bleaching methods. The antimicrobial assays were performed by minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) methods. Isolated rat aorta and uterus, and guinea-pig trachea were utilized to evaluate relaxant potential in pre-contracted smooth muscle. Essential oils from leaves of L. thymoides had the sesquiterpene β-caryophyllene (17.22-26.27%) as the major constituent followed by borneol (4.45-7.36%), camphor (3.22-8.61%), camphene (2.64-5.66%), and germacrene D (4.72-6.18%). In vitro assays showed that these essential oils do not have antioxidant activity, have antimicrobial selectivity to Gram-positive bacteria Staphylococcus aureus (MIC = 0.004 mg/mL and MMC = 0.26-10.19 mg/mL) and Micrococcus luteus (MIC = 0.03 mg/mL and MMC = 8.43 mg/mL), relax isolated rat aorta (EC50 = 305-544 μg/mL, with endothelium; and EC50 = 150-283 μg/mL, without endothelium), and uterus (EC50 = 74-257 μg/mL), and minor potency, isolated guinea-pig trachea. Lippia thymoides is a source of natural products of pharmaceutical interest, being necessary additional studies to determine the substances involved in the biological activities.

  9. Volatile organic compounds obtained by in vitro callus cultivation of Plectranthus ornatus Codd. (Lamiaceae).

    Science.gov (United States)

    Passinho-Soares, Helna C; Meira, Paloma R; David, Juceni P; Mesquita, Paulo R R; do Vale, Ademir E; de M Rodrigues, Frederico; de P Pereira, Pedro A; de Santana, José Raniere F; de Oliveira, Fabio S; de Andrade, Jailson B; David, Jorge M

    2013-08-26

    Plectranthus spp (Lamiaceae) are plants of economic importance because they are sources of aromatic essential oils and are also cultivated and several species of this genus are used as folk medicines. This paper describes the effects of different concentrations of the 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) on the induction of callus from nodal segments of Plectranthus ornatus Codd and in the production of volatile organic compounds (monoterpenes and sesquiterpenes). The 20 and 40 day calli were subjected to solid phase micro extraction (HS-SPME) and submitted to GCMS analysis. Variations in VOCs between the samples were observed and, a direct relationship was observed between of the major constituent detected (α-terpinyl acetate) and the monoterpenes α-thujene, α-pinene, β-pinene, camphene, sabinene and α-limonene that were present in the volatile fractions. Besides α-terpinyl acetate, isobornyl acetate and α-limonene were also major constituents. Variations were observed in VOCs in the analyzed periods. The best cultivation media for the production of VOCs was found to be MS0 (control). Moderate success was achieved by treatment with 2.68 µM and 5:37 µM NAA (Group 2). With 2,4-D (9.0 µM), only the presence of α-terpinyl acetate and isocumene were detected and, with 2.26 µM of 2,4-D was produced mainly α-terpinyl acetate, α-thujene and β-caryophyllene (16.2%). The VOC profiles present in P. ornatus were interpreted using PCA and HCA. The results permitted us to determine the best cultivation media for VOC production and, the PCA and HCA analysis allowed us to recognize four groups among the different treatments from the compounds identified in this set of treatments.

  10. Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes.

    Science.gov (United States)

    Keskitalo; Pehu; Simon

    2001-03-01

    Air-dried flower heads of 20 Finnish tansy genotypes were extracted with petroleum ether and analyzed using GC-MS. A total of 55 volatile compounds were detected, and 53 were identified. Of the tansy genotypes studied, 15 were well defined and five were mixed chemotypes. Complete linkage analysis differentiated the populations into six clusters. The most frequently found monoterpene was camphor with or without several satellite compounds such as camphene, 1,8-cineole, pinocamphone, chrysanthenyl acetate, bornyl acetate and isobornyl acetate. In 13 genotypes, camphor concentration exceeded 18.5% and in seven genotypes, camphor was less than 7.2%. Other chemotypes rich in trans thujone, artemisia ketone, 1,8-cineole, or davadone-D were also identified. Davadone-D and a mixed chemotype, containing tricyclene and myrcene, were identified from a Finnish tansy for the first time. Geographically, most chemotypes containing camphor originated from Central Finland, whereas chemotypes without camphor such as artemisia ketone, davadone D and myrcene-tricyclene originated from South or Southwest Finland. Morphologically, the 20 tansy chemotypes based on the groups formed from complete linkage cluster analysis, were compared. The group containing the highest concentration of camphor chemotypes had the tallest shoots. The groups consisting from chemotypes containing davadone-D or artemisia ketone, which originated from Southwest Finland, produced the highest number of flower heads, had the tallest corymb, and were last to flower. Also, the group consisting from chemotypes with a high concentration of camphor and originated from South Finland started to flower late. The correlation between the genetic distance matrices based on RAPD patterns reported previously (Keskitalo et al., 1998. Theo. Appl. Genet. 96, 1141-1150.) and the chemical distance matrices of the present study of the same tansy genotypes was highly significant (0.41, P<0.0001).

  11. Volatile Organic Compounds Obtained by in Vitro Callus Cultivation of Plectranthus ornatus Codd. (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Fabio S. de Oliveira

    2013-08-01

    Full Text Available Plectranthus spp (Lamiaceae are plants of economic importance because they are sources of aromatic essential oils and are also cultivated and several species of this genus are used as folk medicines. This paper describes the effects of different concentrations of the 2,4-dichlorophenoxyacetic acid (2,4-D and 1-naphthaleneacetic acid (NAA on the induction of callus from nodal segments of Plectranthus ornatus Codd and in the production of volatile organic compounds (monoterpenes and sesquiterpenes. The 20 and 40 day calli were subjected to solid phase micro extraction (HS-SPME and submitted to GCMS analysis. Variations in VOCs between the samples were observed and, a direct relationship was observed between of the major constituent detected (α-terpinyl acetate and the monoterpenes α-thujene, α-pinene, β-pinene, camphene, sabinene and α-limonene that were present in the volatile fractions. Besides α-terpinyl acetate, isobornyl acetate and α-limonene were also major constituents. Variations were observed in VOCs in the analyzed periods. The best cultivation media for the production of VOCs was found to be MS0 (control. Moderate success was achieved by treatment with 2.68 µM and 5:37 µM NAA (Group 2. With 2,4-D (9.0 µM, only the presence of α-terpinyl acetate and isocumene were detected and, with 2.26 µM of 2,4-D was produced mainly α-terpinyl acetate, α-thujene and β-caryophyllene (16.2%. The VOC profiles present in P. ornatus were interpreted using PCA and HCA. The results permitted us to determine the best cultivation media for VOC production and, the PCA and HCA analysis allowed us to recognize four groups among the different treatments from the compounds identified in this set of treatments.

  12. Study on the volatile oil contents of Annona glabra L., Annona squamosa L., Annona muricata L. and Annona reticulata L., from Vietnam.

    Science.gov (United States)

    Thang, T D; Dai, D N; Hoi, T M; Ogunwande, I A

    2013-01-01

    The volatile compounds identified from four species of Annona from Vietnam are being reported. The oils were obtained from aliquots of plant samples by steam distillation and subjected to GC and GC-MS analysis. The main compounds of Annona glabra L., were β-caryophyllene (21.5%) germacrene D (17.7%), α-cadinol (5.4%) and β-elemene (5.2%). Annona squamosa L., comprised mainly of α-pinene (1.0-11.9%), limonene (0.8-11.7%), β-cubebene (0.5-13.0%), β-caryophyllene (11.6-24.5%), spathulenol (0.8-9.0%), caryophyllene oxide (1.0-10.6%) and α-cadinol (3.3-7.8%). The significant constituents of Annona muricata L., were α-pinene (9.4%), β-pinene (20.6%), ρ-mentha-2,4(8)-diene (9.8%), β-elemene (9.1%) and germacrene D (18.1%). However, camphene (0.2-6.6%), α-copaene (2.0-7.3%), β-elemene (5.9-16.6%), β-caryophyllene (8.3-14.9%), β-bisabolene (0.4-10.2%), δ-cadinene (1.7-4.8%) and germacrene D (9.3-22.8%) were the main compounds common to samples of Annona reticulata L. There were significant amounts of sabinene (11.2% and 2.7%; leaf and stem bark) and bicycloelemene (9.6% and 6.1%; stem and bark).

  13. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman.

    Science.gov (United States)

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-05-01

    To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.

  14. Mass propagation and essential oil analysis of Artemisia vulgaris.

    Science.gov (United States)

    Govindaraj, Sujatha; Kumari, Bollipo Diana Ranjitha; Cioni, Pier Luigi; Flamini, Guido

    2008-03-01

    Artemisia vulgaris L. (Mugwort) is a threatened and valuable medicinal plant. Attempts have been made in this research to mass propagate its plantlets through in vitro liquid culture technology using Murashige and Skoog (MS) basal medium supplemented with 6-benzyl adenine (BA) (0.44-8.88 microM). Initially, 22.6 shoots (99.9% shooting frequency) developed from shoot tip explants cultured in MS with 4.44 microM BA at 100 ml flask capacity. This was further subcultured at increasing flask capacity (150, 250, and 500 ml) for shoot proliferation. Of the different concentrations of BA and flask capacities tested, 4.44 microM BA and 500 ml flask capacity were found to produce a maximum of 85.5 shoots after 30 d of culture. Shoot proliferation was found to increase with increasing flask capacity whereas shoot number decreased with increasing BA concentration (>4.44 microM). Individual shoots were isolated and rooted on MS medium containing 8.56 microM indole-3-acetic acid (IAA). Then the plantlets were acclimatized under standard laboratory conditions and later under greenhouse conditions. Fresh leaves were collected from greenhouse-grown plants and subjected to essential oil analysis by the simultaneous distillation and extraction method. GC-MS results revealed the presence of 88 components and the extracted oil was rich in camphor (16.8%), alpha-thujone (11.3%), germacrene D (7.2%), camphene (6.5%), 1,8-cineole (5.8%) and beta-caryophyllene (5.4%). This in vitro strategy can be a reliable method for the steady production of a large number of plants for essential oil production, which is reported for the first time for A. vulgaris.

  15. Changes in the essential oil content and terpene composition of rosemary (Rosmarinus officinalis L. by using plant biostimulants

    Directory of Open Access Journals (Sweden)

    Amir FOROUTAN NIA

    2016-04-01

    Full Text Available Plant biostimulants can stimulate the increase of growth, metabolism and the biosynthesis of metabolites in plants. This study investigated the changes of rosemary essential oil and its components composition under use of biostimulants for the possible reduction in use of chemical fertilizers. Treatments included biostimulants based on amino acids in four formulations, Aminolforte, Kadostim, Humiforte, and Fosnutren (each of them at 0.75 and 1.5 L ha-1, and application of N.P.K fertilizer as a control treatment (by applied complete fertilizer at 100 kg per hectar with proportion of 15:8:15 percentage of N:P:K in the fertilizer. Results showed that the essential oil content and its components were significantly affected by biostimulants application. The maximum content of essential oil was obtained at 1.5 L ha-1 Humiforte and both concentrations of Aminolforte. While, the highest content of α-pinene, 1,8-cineole, and camphor as major components of rosemary essential oil were obtained at 1.5 L ha-1 Fosnutren. In addition, the maximum content of linalool, z-pinocamphone, bornyl acetate, and caryophyllene oxide were observed at 1.5 L ha-1 Fosnutren.Although, the highest content of myrcene and verbenone was obtained in the treatment with N.P.K fertilizer, but the maximum contents of β-pinene, camphene, borneol, and α-terpineol were related to the both concentrations of Aminolforte.We can conclude that biostimulants based on amino acids can be an effective alternative in reducing the use of chemical fertilizer and increasing the quantity and quality of rosemary essential oil.

  16. Wild Sicilian rosemary: phytochemical and morphological screening and antioxidant activity evaluation of extracts and essential oils.

    Science.gov (United States)

    Napoli, Edoardo M; Siracusa, Laura; Saija, Antonella; Speciale, Antonio; Trombetta, Domenico; Tuttolomondo, Teresa; La Bella, Salvatore; Licata, Mario; Virga, Giuseppe; Leone, Raffaele; Leto, Claudio; Rubino, Laura; Ruberto, Giuseppe

    2015-07-01

    To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area-dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC-UV-DAD/ESI-MS, and the essential oils by GC-FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α-pinene and camphene among the monoterpene hydrocarbons and 1,8-cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the Folin-Ciocalteu (FC) colorimetric assay, the UV radiation-induced peroxidation in liposomal membranes (UV-IP test), and the scavenging activity of the superoxide radical (O$\\rm{{_{2}^{{^\\cdot} -}}}$). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical-scavenging activity. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Transdermal absorption enhancing effect of the essential oil of Rosmarinus officinalis on percutaneous absorption of Na diclofenac from topical gel.

    Science.gov (United States)

    Akbari, Jafar; Saeedi, Majid; Farzin, Davood; Morteza-Semnani, Katayoun; Esmaili, Zahra

    2015-01-01

    Rosemary essential oil has been used topically for several purposes (analgesic, anti acne, and anti-inflammatory) in Iranian traditional medicine. This investigation aimed to study the effect of essential oil of Rosmarinus officinalis L. (Lamiaceae) on the transdermal absorption of Na diclofenac from topical gel. Diclofenac sodium topical gel was prepared with HPMC K4M and Carbopol 934P as a gelling agent, and several vehicles. The most stable gel was chosen and enhancing effects of the essential oil with different concentrations (0.1, 0.5, and 1.0% w/w) on the permeation of diclofenac were evaluated. The anti-nociceptive effect of preparations was evaluated based on the formalin and tail flick tests in mice. The major constituents of the essential oil were 1,8-cineol (15.96%), α-pinene (13.38%), camphor (7.87%), bornyl acetate (6.54%), verbenone (5.82%), borneol (5.23%), camphene (4.96%), and (E)-caryophyllene (3.8%). Topical diclofenac containing 0.5% essential oil showed more analgesic effect after 25, 30, and 35 min (p < 0.001) than the reference drug in the tail flick test. The analgesic effect of preparation containing 1% essential oil was more than reference gel after 15 min (p < 0.05). This difference was observed after 20, 25, 30, 35, and 40 min (p < 0.001) too. Rosemary essential oil 1% promoted analgesic effect of drug in comparison with diclofenac gel in the formalin early phase (p < 0.05). The enhancing effect of rosemary was observed in 0.5 and 1% concentration (p < 0.05 and p < 0.001, respectively) in the late phase. This study proved the enhancing effect of 0.5 and 1% of rosemary essential oil on diclofenac percutaneous absorption.

  18. Terpene compound drug as medical expulsive therapy for ureterolithiasis: a meta-analysis.

    Science.gov (United States)

    Chua, Michael Erlano; Park, Jane Hyeon; Castillo, Josefino Cortez; Morales, Marcelino Lopeztan

    2013-04-01

    The aim of this study is to investigate the efficacy of terpene compound drug (pinene, camphene, borneol, anethole, fenchone and cineol in olive oil) in facilitating spontaneous passage of ureteral calculi through meta-analysis of randomized controlled trials (RCT). Systematic literature search on MEDLINE, EMBASE, OVID, Science Direct, Proquest, Google scholar, Cochrane Library databases and reference list of related literatures were done without language restriction. RCTs on ureterolithiasis medical expulsive therapy (MET) that compare terpene compound drug versus placebo/control group or alpha-blockers were identified. Articles retrieved were critically appraised by two independent reviewers according to Cochrane Collaboration recommendations. Data from included studies were extracted for calculation of risk ratio (RR) and 95 % confidence interval (CI). Effect estimates were pooled using Mantel-Haenszel method with random effect model. Inter-study heterogeneity and publication bias were assessed. The PRISMA guidelines for meta-analysis reporting were followed. Five RCTs (total of 344 subjects) of adequate methodological quality were included. Pooled effect estimates from homogenous studies showed that compared to placebo/control group, patients treated with terpene compound drug had significantly better ureteral calculi spontaneous expulsion rate (pooled RR: 1.34; 95 % CI 1.12, 1.61). Subgroup analysis of studies that compare terpene compound drug with alpha-blockers showed no significant difference (pooled RR: 0.79; 95 % CI 0.59, 1.06), while significant inter-study heterogeneity was noted. Only minor gastrointestinal adverse effect was reported on terpene compound drug use. The results suggest that terpene compound drug as MET is effective in augmenting spontaneous passage of ureterolithiasis. High quality large-scale RCTs comparing alpha-blockers and terpene compound drug are warranted to make a more definitive conclusion.

  19. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Beom-Su Kim

    2015-01-01

    Full Text Available The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale on Streptococcus mutans (S. mutans. To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%, β-caryophyllene (5.71%, α-thujone (5.46%, piperitone (5.27%, epi-sesquiphellandrene (5.16%, α-pinene (4.97%, 1,8-cineole (4.52%, β-pinene (4.45%, and camphene (4.19%. These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors.

  20. Study on gas chromatography-mass spectrometry fingerprint of Acanthopanax brachypus.

    Science.gov (United States)

    Hu, Haobin; Zheng, Xudong; Hu, Huaisheng; Wang, Ruirui; Wu, Yun

    2014-09-01

    As a peculiar folk medicinal plant, Acanthopanax brachypus was widely used to treat various diseases in China. At present, however, there is not a good quality standard for its quality evaluation. In this study, on the basis of the validation tests of precision, stability and repeatability, the chromatographic fingerprint of A. brachypus was established by using gas chromatography (GC)-flame ionization detector (FID) and GC-MS techniques, as well as computer aided similarity evaluation system. Thirty-two different batches of samples collected from the different producing regions and the different parts of A. brachypus were studied. The results showed that the dominant constituents of all oils were monoterpenes and sesquiterpenes, as well as oxygenated monoterpenes and sesquiterpenes. The fingerprinting profiles were found to be consistent for the fresh stem bark acquired from various production areas, 48 common peaks were determined, but the relative abundance of peaks was varied. β-Pinene, linalool, p-cymene, spathulenol, camphene, endo-borneol, verbenone, β-caryophyllene, γ-terpinene, germacrene-D, camphor, β-thujone and β-cadinene were the main constituents of the fresh stem bark oil. Except for the leaf, the chemical components among different medicinal parts of fresh plant were inconsistent with the stem bark. Besides, the varieties and relative levels of chemical components in the fresh stem bark were more abundant than in the dry counterpart. The GC-MS fingerprint can be successfully applied to distinguish the substitute or adulterant, and further assess the differences of A. brachypus grown in various areas of China. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Ju-Xin eRuan

    2016-05-01

    Full Text Available Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry (GC-MS detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate (MeJA, salicylic acid (SA and gibberellin (GA, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.

  2. Chemical Composition and in Vitro Antimicrobial, Cytotoxic, and Central Nervous System Activities of the Essential Oils of Citrus medica L. cv. ‘Liscia’ and C. medica cv. ‘Rugosa’ Cultivated in Southern Italy

    Directory of Open Access Journals (Sweden)

    Luigi Aliberti

    2016-09-01

    Full Text Available Citrus medica cv. ‘liscia’ and C. medica cv. ‘rugosa’ are two taxa of citron, belonging to the biodiversity of South Italy, in particular of Amalfi Coast, in the Campania region. The chemical composition of the essential oils (EOs from fruit peels of both C. medica cultivars was studied by gas chromatography (GC and gas chromatography-mass spectrometry (GC-MS analyses. In all, 100 compounds were identified, 82 for C. medica cv. ‘liscia’, accounting for 91.4% of the total oil, and 88 for C. medica cv. ‘rugosa’, accounting for 92.0% of the total oil. Monoterpene hydrocarbons are the main constituents in both oils of C. medica cv. ‘liscia’ (79.1% and C. medica cv. ‘rugosa’ (80.2%. In both oils, limonene (67.2%–62.8% and camphene (8.5%–10.9% are the main constituents. The antimicrobial activity of the EOs was assayed against some bacterial strains: Bacillus cereus (DSM 4313, Bacillus cereus (DSM 4384, Staphylococcus aureus (DSM 25693, Pseudomonas aeruginosa (ATCC 50071, and Escherichia coli (DSM 8579. Low concentrations of C. medica cv. ‘rugosa’ EO showed an inhibitory effect on P. aeruginosa and higher concentrations inhibited more B. cereus (4384 and E. coli than S. aureus. The cytotoxicity of the EO was evaluated against SH-SY5Y cell line. The influence of the EO on the expression of adenylate cyclase 1 (ADCY1 was also studied. The antimicrobial activity registered confirm their traditional uses as food preserving agents and led us to hypothesize the possible use of these oils as antimicrobials. The alterations in ADCY1 expression suggested a role for limonene in effects on the central nervous system.

  3. Assessment and implications of intraspecific and phenological variability in monoterpenes of Scots pine (Pinus sylvestris) foliage.

    Science.gov (United States)

    Thoss, Vera; O'Reilly-Wapstra, Julianne; Iason, Glenn R

    2007-03-01

    Scots pine populations contain individuals with widely differing amounts and composition of monoterpenes and exist as one of two chemotypes: with or without delta3-carene. We investigated the significance for ecological studies of two types of variation in monoterpenes: (1) the inherent variability in the concentration of monoterpenes or their relative amounts in needles of seedlings, saplings, and mature trees; and (2) phenological variation in developing needles. The relative composition of needle monoterpenes in 5-year-old saplings changed during the needle development period until the final composition was reached upon needle maturity. Changes in composition depended on chemotype. Needles of the "no-delta3-carene" chemotype had higher absolute concentrations of alpha-pinene, beta-pinene, camphene, and total monoterpenes than "delta3-carene" chemotype. For the "delta3-carene" chemotype, the relative concentration of delta3-carene during the needle growing season and immediately after emergence of seedlings was higher compared to that reached at needle maturity. Repeated removal of single needles (at weekly intervals during growth) from 5-year-old saplings did not influence the composition of monoterpenes. Within a natural Scots pine dominated woodland, 18% of mature Scots pines (N=574) belonged to the "no-delta3-carene" chemotype. Chemotypic variation within populations means that the statistical power with which differences in monoterpene concentrations can be detected is lower when sampling from the whole population compared to sampling within chemotypes. Reduction of this background variation and accounting for chiral variation if present, would significantly aid efficiency, interpretation, and understanding of processes in chemical and ecological research. One method for achieving this is the screening of plants for chemotypes before the establishment of experiments or field sampling regimes. We present a summary of suitable analytical methods for needle

  4. Biological effects of some natural and chemical compounds on the potato tuber moth, Phthorimaea operculella Zell. (Lepidoptera:Gelechiidae)

    Science.gov (United States)

    Sharaby, Aziza; Abdel-Rahman, H.; Moawad, S.

    2009-01-01

    The olfactory reaction of larvae and moths was investigated towards 18 oils (6 natural oils and 12 commercial chemical oils). Some of these oils such as peppermint and camphor (natural oils) and eugenol and camphene (commercial oils) were repellent to both larvae and moths. Other oils such as strawberry and d-limonene were attractive to both larvae and moths. Some of the repellent oils were, therefore, tested for their effect on certain biological aspects of the insects. Eugenol and peppermint oils, each at the 0.01% conc., caused a significant depression in the fecundity of moth and decreased the percentage of egg hatchability. Eugenol oil was much more effective than peppermint oil at 1%. Dried (leaves, fruits or seeds) powder of 14 different plants species were tested in different concentrations with talcum powder (carrier material) against egg deposition. The results indicated that dried powders of Allium cepa, Curcuma longa, Colocasia antiqurum, Ocimum basilicum. Dodonaea viscose and Thuja orientalis played a highly significant role in reducing egg deposition. The most impressive effect was displayed by powders of D. viscose and A. cepa, which caused the highest depression in egg deposition as well as in the emerging offsprings. Ethanolic extracts of 11 plants indicated that extracts of Pithuranthos tortosus and Iphiona scabra caused the maximum inhibition of egg hatchability, followed by C. longa, Citrullus colocynthia and T. orientalis. Ethanolic extracts of Schinus terebenthiflius (leaves) and I. scabra caused the highest depression in the deposited eggs, as they played a remarkable role as ovipositor deterrents. The majority of the plant extracts at 1% conc. could protect potato tubers at different intervals according to the calculated tuber damage index as follows: Iphiopna > Pithuranthos > Curcuma > Schinus (fruits) Thuja > Schinus (leaves) > Dodonaea > Citrullus. PMID:23961036

  5. Control of resin production in Araucaria angustifolia, an ancient South American conifer.

    Science.gov (United States)

    Perotti, J C; da Silva Rodrigues-Corrêa, K C; Fett-Neto, A G

    2015-07-01

    Araucaria angustifolia is an ancient slow-growing conifer that characterises parts of the Southern Atlantic Forest biome, currently listed as a critically endangered species. The species also produces bark resin, although the factors controlling its resinosis are largely unknown. To better understand this defence-related process, we examined the resin exudation response of A. angustifolia upon treatment with well-known chemical stimulators used in fast-growing conifers producing both bark and wood resin, such as Pinus elliottii. The initial hypothesis was that A. angustifolia would display significant differences in the regulation of resinosis. The effect of Ethrel(®) (ET - ethylene precursor), salicylic acid (SA), jasmonic acid (JA), sulphuric acid (SuA) and sodium nitroprusside (SNP - nitric oxide donor) on resin yield and composition in young plants of A. angustifolia was examined. In at least one of the concentrations tested, and frequently in more than one, an aqueous glycerol solution applied on fresh wound sites of the stem with one or more of the adjuvants examined promoted an increase in resin yield, as well as monoterpene concentration (α-pinene, β-pinene, camphene and limonene). Higher yields and longer exudation periods were observed with JA and ET, another feature shared with Pinus resinosis. The results suggest that resinosis control is similar in Araucaria and Pinus. In addition, A. angustifolia resin may be a relevant source of valuable terpene chemicals, whose production may be increased by using stimulating pastes containing the identified adjuvants. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Seasonal variations in VOC emission rates from gorse (Ulex europaeus)

    Science.gov (United States)

    Boissard, C.; Cao, X.-L.; Juan, C.-Y.; Hewitt, C. N.; Gallagher, M.

    Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10-1300 μmol m-2 s-1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33-66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)-1 h-1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)-1 h-1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.

  7. Acute bioassays and hazard evaluation of representative contaminants detected in Great Lakes fish

    Science.gov (United States)

    Passino, Dora R. May; Smith, Stephen B.

    1987-01-01

    We have provided a hazard ranking for 19 classes of compounds representing many of the nearly 500 organic compounds identified by gas chromatography-mass spectrometry in lake trout (Salvelinus namaycush) and walleye (Stizostedion vitreum vitreum) from the Great Lakes and Lake St. Clair. We initially made a provisional hazard ranking based on available published and unpublished information on aquatic toxicity, bioaccumulation, occurrence and sources. Acute toxicity tests with Daphnia pulex at 17A°C in reconstituted hard water were performed with 30 compounds representative of the 19 classes that were highest in the provisional ranking. The resulting toxicity data, along with information on the compounds' occurrence in Great Lakes fish and their sources, were ranked and weighted and then used in calculating the revised hazard ranking. The 10 most hazardous classes, in descending order, are as follows (values shown are mean 48-h EC50s, in μ/ml): arene halides (e.g., polychlorinated biphenyls, DDT), 0.0011; phthalate esters, 0.133; chlorinated camphenes (toxaphene), 0.0082; polyaromatic hydrocarbons (PAHs; e.g., dimethylnaphthalene) and reduced derivatives, 1.01; chlorinated fused polycyclics (e.g., trans-nonachlor), 0.022; nitrogen-containing compounds (e.g., O-methylhydroxyl-amine), 1.35; alkyl halides (e.g., (bromomethyl)cyclohexene), 10.1; cyclic alkanes (e.g., cyclododecane), 20.9; silicon-containing compounds (e.g., dimethyldiethoxy silane), 1.25; and heterocyclic nitrogen compounds (e.g., nicotine), 2.48. We recommend that chronic bioassays be conducted with fish and invertebrates to determine the sublethal effects of the following classes of compounds, for which few toxicity data are available: PAHs, heterocyclic nitrogen compounds, other nitrogen-containing compounds, alkyl halides, cyclic alkanes and silicon-containing compounds. Information from these types of studies will aid researchers in determining the possible causal role these contaminants play in

  8. Phytochemical compositions and biological activities of essential oil from Xanthium strumarium L.

    Science.gov (United States)

    Sharifi-Rad, Javad; Hoseini-Alfatemi, Seyedeh Mahsan; Sharifi-Rad, Majid; Sharifi-Rad, Mehdi; Iriti, Marcello; Sharifi-Rad, Marzieh; Sharifi-Rad, Razieh; Raeisi, Sara

    2015-04-17

    The chemical composition of the essential oil (EO) from fresh cocklebur (Xanthium strumarium L.) leaves was investigated by GC-MS. The antimicrobial activity of the EO was tested against Gram-positive and Gram-negative bacteria and fungi. Scolicidal activity was assayed against Echinococcus granulosus protoscolices. In total, 34 compounds were identified, accounting for 98.96% of the EO. The main compounds in the EO were cis-β-guaiene (34.2%), limonene (20.3%), borneol (11.6%), bornyl acetate (4.5%), β-cubebene (3.8%), sabinene (3.6%), phytol (3.1%), β-selinene (2.8%), camphene (2.2%), α-cubebene (2.4%), β-caryophyllene (1.9%), α-pinene (1.8%) and xanthinin (1.04%). The antibacterial and antifungal screening of the EO showed that all assayed concentrations significantly inhibited the growth of Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger (MIC = 0.5 ± 0.1, 1.3 ± 0.0, 4.8 ± 0.0, 20.5 ± 0.3, 55.2 ± 0.0 and 34.3 ± 0.0 µg/mL, respectively). The scolicidal assay indicated that the EO exhibited a significant activity against E. granulosus protoscolices. To the best of our knowledge, this is the first report on the scolicidal activity of X. strumarium. Because of the emergence of antimicrobial drug resistance, the study of new effective natural chemotherapeutic agents, such as the X. strumarium EO, possibly with low side effects, represents a very promising approach in biomedical research.

  9. Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans.

    Science.gov (United States)

    Kim, Beom-Su; Park, Sun-Ju; Kim, Myung-Kon; Kim, Young-Hoi; Lee, Sang-Bong; Lee, Kwang-Hee; Choi, Na-Young; Lee, Young-Rae; Lee, Young-Eun; You, Yong-Ouk

    2015-01-01

    The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1-0.5 mg/mL and 0.25-0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors.

  10. Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning.

    Science.gov (United States)

    Pallozzi, Emanuele; Lusini, Ilaria; Cherubini, Lucia; Hajiaghayeva, Ramilla A; Ciccioli, Paolo; Calfapietra, Carlo

    2017-12-02

    In the Mediterranean ecosystem, wildfires are very frequent and the predicted future with a probable increase of fires could drastically modify the vegetation scenarios. Vegetation fires are an important source of gases and primary emissions of fine carbonaceous particles in the atmosphere. In this paper, we present gaseous and particulate emissions data from the combustion of different plant tissues (needles/leaves, branches and needle/leaf litter), obtained from one conifer (Pinus halepensis) and one deciduous broadleaf tree (Quercus pubescens). Both species are commonly found throughout the Mediterranean area, often subject to wildfires. Experiments were carried out in a combustion chamber continuously sampling emissions throughout the different phases of a fire (pre-ignition, flaming and smoldering). We identified and quantified 83 volatile organic compounds including important carcinogens that can affect human health. CO and CO2 were the main gaseous species emitted, benzene and toluene were the dominant aromatic hydrocarbons, methyl-vinyl-ketone and methyl-ethyl-ketone were the most abundant measured oxygenated volatile organic compounds. CO2 and methane emissions peaked during the flaming phase, while the peak of CO emissions occurred during the smoldering phase. Overall, needle/leaf combustion released a greater amount of volatile organic compounds into the atmosphere than the combustion of branches and litter. There were few differences between emissions from the combustion of the two tree species, except for some compounds. The combustion of P. halepensis released a great amount of monoterpenes as α-pinene, β-pinene, p-cymene, sabinene, 3-carene, terpinolene and camphene that are not emitted from the combustion of Q. pubescens. The combustion of branches showed the longest duration of flaming and peak of temperature. Data presented appear crucial for modeling with the intent of understanding the loss of C during different phases of fire and how

  11. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats

    Science.gov (United States)

    2013-01-01

    Background The present study described the phytochemical profile of Lavandula stoechas essential oils, collected in the area of Ain-Draham (North-West of Tunisia), as well as their protective effects against alloxan-induced diabetes and oxidative stress in rat. Methods Essential oils samples were obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC–MS. Rats were divided into four groups: Healthy Control (HC); Diabetic Control (DC); Healthy + Essential Oils (H + EO) and Diabetic + Essential Oils (D + EO). Antidiabetic and antioxidant activities were evaluated after subacute intraperitoneally injection of Lavandula stoechas essential oils (50 mg/kg b.w., i.p.) to rats during 15 days. Results The principal compounds detected are: D-Fenchone (29.28%), α-pinene (23.18%), Camphor (15.97%), Camphene (7.83%), Eucapur (3.29%), Limonene, (2.71%) Linalool, (2.01%) Endobornyl Acetate (1.03%). The essential oils also contained smaller percentages of Tricyclene, Cymene, Delta-Cadinene, Selina-3,7(11)-diene. Furthermore, we found that Lavandula stoechas essential oils significantly protected against the increase of blood glucose as well as the decrease of antioxidant enzyme activities induced by aloxan treatment. Subacute essential oils treatment induced a decrease of lipoperoxidation as well as an increase of antioxidant enzyme activities. Conclusions These findings suggested that lavandula stoechas essential oils protected against diabetes and oxidative stress induced by alloxan treatment. These effects are in partly due to its potent antioxidant properties. PMID:24373672

  12. Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM-41 Against Tetranychus urticae (Acari: Tetranychidae).

    Science.gov (United States)

    Ebadollahi, Asgar; Sendi, Jalal Jalali; Aliakbar, Alireza

    2017-12-05

    Inspite of well-established potentiality of plant essential oils as biopesticides, their environmentally low persistence is considered as a hindering obstacle for its commercialization. In the present study, chemical composition and toxicity of essential oils isolated from leaves of Thymus eriocalyx and Thymus kotschyanus were evaluated against two-spotted spider mite, Tetranychus urticae. The chemicals present in the crude oil were found to be thymol (28.83%), oleic acid (11.51%), palmitic acid (8.60%), borneol (5.72%), ρ-cymene (3.60%), and 1,8-cineole (3.57%) in the essential oil of T. eriocalyx, and camphene (35.59%), linalyl acetate (20.47%), linalool (14.75%), α-terpineol (13.87%), and geranyl acetate (3.07%) in the essential oil of T. kotschyanus. The essential oils had strong fumigant toxicity on the adult females of Te. urticae and their fumigation persistence was prolonged until 6 and 5 d, respectively, for T. eriocalyx and T. kotschyanus. Loading of essential oils in MCM-41 increased their stability and persistence was extended up to 20 and 18 d for T. eriocalyx and T. kotschyanus. Further, mite mortality increased from 80 to 203 mites by T. eriocalyx and from 58 to 186 mites by T. kotschyanus nanoencapsulated essential oils. Based on these results, nanoencapsulation of T. eriocalyx and T. kotschyanus essential oils in MCM-41 may be a useful method for their application in the management of Te. urticae. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Isoprene and terpenoid emissions from Abies alba: Identification and emission rates under ambient conditions

    Science.gov (United States)

    Pokorska, Olga; Dewulf, Jo; Amelynck, Crist; Schoon, Niels; Šimpraga, Maja; Steppe, Kathy; Van Langenhove, Herman

    2012-11-01

    In this study, biogenic volatile organic compound (BVOC) emissions from Abies alba were studied under ambient conditions in Flanders (Belgium). Emission patterns and rates were investigated from April till November 2010 by using the dynamic branch enclosure technique. The present work revealed that A. alba is an isoprene emitter, with isoprene accounting for 86-93% of total BVOC emissions, except during budburst (67%) in May. The emission spectrum of A. alba consisted of 27 compounds. Next to isoprene, the main emitted compounds were α-pinene, β-pinene, camphene and limonene. BVOC emissions showed a peak in June after development of the young needles, followed by a constant emission during summer months and September and a decrease in October. In all the samples isoprene was the most abundant compound with standardized emission rates between 27 μg g(dw)-1 h-1 in June and 4.6 μg g(dw)-1 h-1 in October, while the total standardized terpenoid emission rates ranged from 2.85 μg g(dw)-1 h-1 in June to 0.26 μg g(dw)-1 h-1 in October. The obtained average β coefficients according to the temperature dependent algorithm of Guenther et al. (1993) during April-June, July, August and September-October were as follows: for terpenoids 0.12 ± 0.03, 0.11 ± 0.05, 0.12 ± 0.04, 0.24 ± 0.01 K-1 and sesquiterpenes (SQTs) 0.09 ± 0.02, 0.11 ± 0.01, 0.10 ± 0.05, 0 K-1, respectively. Overall, isoprene detected in this study was never quantified in previous studies on A. alba and this finding could have a significant impact on the regional BVOCs budget. Therefore, the result of this study is very important for modeling and local air quality.

  14. Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season

    Science.gov (United States)

    Hakola, Hannele; Tarvainen, Virpi; Praplan, Arnaud P.; Jaars, Kerneels; Hemmilä, Marja; Kulmala, Markku; Bäck, Jaana; Hellén, Heidi

    2017-03-01

    We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C4-C10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C4-C10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)-1 h-1 for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)-1 h-1) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of α-pinene (25 ± 5 %) and β-pinene (7 ± 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90 % of the ozone reactivity most of the time, and about 70 % of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30 % most of the time.

  15. Mapping Terpenes over the Teakettle Experimental Forest

    Science.gov (United States)

    Tycner, J.; Ustin, S.; Grigsby, S.

    2015-12-01

    Terpenes are a category of biogenic volatile organic compounds (BVOC) produced by many plants, most notably coniferous plants. Commonly, these terpenes are aromatic compounds. The intensity of terpene emission varies depending greatly on light and temperature. Through remote sensing data as well as ASD spectroradiometry data this study focuses on locating sources of terpene emissions in the Teakettle Experimental Forest. These emissions are of particular concern because of their influence on the chemical concentration of the lower troposphere, as well as being an indicator of tree health. A novel approach has been designed through this study in order to locate and further understand these terpene emissions. Terpenes such as camphene have been reported to have subtle spectral features located at around 1.7 μm. For the first time, a map of terpene sources has been constructed by accentuating this particular feature. A continuum interpolated band ratio (CIBR) was used in order to compute a relative abundance of terpenes from the AVIRIS data. The CIBR equation showed promise, as terpenes were most strongly concentrated in areas of coniferous vegetation (a primary source of terpenes) and were less prominent over bodies of water or industrialized areas. The greatest concentrations were focused over treetops and other woody vegetation. Although it is known that terpenes have weak absorption features in the SWIR, there is little information available regarding the mapping of terpene emissions. This project addresses a novel approach to observing biochemical components in the lower troposphere and could potentially give more information to explain the health of forest ecosystems.

  16. Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis.

    Science.gov (United States)

    Tsaballa, Aphrodite; Nikolaidis, Alexandros; Trikka, Foteini; Ignea, Codruta; Kampranis, Sotirios C; Makris, Antonios M; Argiriou, Anagnostis

    2015-07-07

    Solanum elaeagnifolium, an invasive weed of the Solanaceae family, is poorly studied although it poses a significant threat to crops. Here the analysis of the transcriptome of S. elaeagnifolium is presented, as a means to explore the biology of this species and to identify genes related to its adaptation to environmental stress. One of the basic mechanisms by which plants respond to environmental stress is through the synthesis of specific secondary metabolites that protect the plant from herbivores and microorganisms, or serve as signaling molecules. One important such group of secondary metabolites are terpenes. By next-generation sequencing, the flower/leaf transcriptome of S. elaeagnifolium was sequenced and de novo assembled into 75,618 unigenes. Among the unigenes identified, several corresponded to genes involved in terpene biosynthesis; these included terpene synthases (TPSs) and genes of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways. Functional characterization of two of the TPSs showed that one produced the sesquiterpene (E)-caryophyllene and the second produced the monoterpene camphene. Analysis of wounded S. elaeagnifolium leaves has shown significant increase of the concentration of (E)-caryophyllene and geranyl linalool, two terpenes implicated in stress responses. The increased production of (E)-caryophyllene was matched to the induced expression of the corresponding TPS gene. Wounding also led to the increased expression of the putative 1-deoxy-D-xylulose-5-phosphate synthase 2 (DXS2) gene, a key enzyme of the MEP pathway, corroborating the overall increased output of terpene biosynthesis. The reported S. elaeagnifolium de novo transcriptome provides a valuable sequence database that could facilitate study of this invasive weed and contribute to our understanding of the highly diverse Solanaceae family. Analysis of genes and pathways involved in the plant's interaction with the environment will help to elucidate the

  17. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.

    Science.gov (United States)

    Giunta, A D; Runyon, J B; Jenkins, M J; Teich, M

    2016-08-01

    Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with consequences for wildfires. In this study, we measured chemical changes to Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) foliage in response to attack by Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) as trees die and crowns transitioned from green/healthy, to green-infested (year of attack), to yellow (year after attack), and red (2 yr after attack). We found large differences in volatile and within-needle terpene concentrations among crown classes and variation across a growing season. In general, emissions and concentrations of total and individual terpenes were greater for yellow and red needles than green needles. Douglas-fir beetle attack increased emissions and concentrations of terpene compounds linked to increased tree flammability in other conifer species and compounds known to attract beetles (e.g., [Formula: see text]-pinene, camphene, and D-limonene). There was little relationship between air temperature or within-needle concentrations of terpenes and emission of terpenes, suggesting that passive emission of terpenes (e.g., from dead foliage) does not fully explain changes in volatile emissions. The potential physiological causes and ecological consequences of these bark beetle-associated chemical changes are discussed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Quantifying environmental stress-induced emissions of algal isoprene and monoterpenes using laboratory measurements

    Science.gov (United States)

    Meskhidze, N.; Sabolis, A.; Reed, R.; Kamykowski, D.

    2015-02-01

    We report here production rates of isoprene and monoterpene compounds (α-pinene, β-pinene, camphene and d-limonene) from six phytoplankton monocultures as a function of irradiance and temperature. Irradiance experiments were carried out for diatom strains (Thalassiosira weissflogii and Thalassiosira pseudonana), prymnesiophyte strains (Pleurochrysis carterae), dinoflagellate strains (Karenia brevis and Prorocentrum minimum), and cryptophyte strains (Rhodomonas salina), while temperature experiments were carried out for diatom strains (Thalassiosira weissflogii and Thalassiosira pseudonana). Phytoplankton species, incubated in a climate-controlled room, were subject to variable light (90 to 900 μmol m-2 s-1) and temperature (18 to 30 °C) regimes. Compared to isoprene, monoterpene emissions were an order of magnitude lower at all light and temperature levels. Emission rates are normalized by cell count and Chlorophyll a (Chl a) content. Diatom strains were the largest emitters, with ~ 2 × 10-17 g(cell)-1h-1 (~ 35 μg (g Chl a)-1 h-1) for isoprene and ~ 5 × 10-19 g (cell)-1 h-1 (~ 1 μg (g Chl a)-1) h-1) for α-pinene. The contribution to the total monoterpene production was ~ 70% from α-pinene, ~ 20% for d-limonene, and 250 μmol m-2 s-1) irradiance. Measurements revealed different patterns for time-averaged emissions rates over two successive days. On the first day, most of the species showed a distinct increase in production rates within the first 4 h while, on the second day, the emission rates were overall higher, but less variable. The data suggest that enhanced amounts of isoprene and monoterpenes are emitted from phytoplankton as a result of perturbations in environmental conditions that cause imbalance in chloroplasts and force primary producers to acclimate physiologically. This relationship could be a valuable tool for development of dynamic ecosystem modeling approaches for global marine isoprene and monoterpene emissions based on phytoplankton

  19. Quantifying environmental stress induced emissions of algal isoprene and monoterpenes using laboratory measurements

    Science.gov (United States)

    Meskhidze, N.; Sabolis, A.; Reed, R.; Kamykowski, D.

    2014-09-01

    We report here production rates of isoprene and monoterpene compounds (α-pinene, β-pinene, camphene and d-limonene) from six phytoplankton monocultures as a function of irradiance and temperature. Irradiance experiments were carried out for diatom strains - Thalassiosira weissflogii and Thalassiosira pseudonana; prymnesiophyte strains - Pleurochrysis carterae; dinoflagellate strains - Karenia brevis and Prorocentrum minimum; cryptophyte strains - Rhodomonas salina, while temperature experiments were carried out for diatom strains - Thalassiosira weissflogii and Thalassiosira pseudonana. Phytoplankton species, incubated in a climate-controlled room, were subject to variable light (90 to 900 μmol m-2s-1) and temperature (18 to 30 °C) regimes. Compared to isoprene, monoterpene emissions were an order of magnitude lower at all light and temperature levels. Emission rates are normalized by cell count and Chlorophyll a (Chl a) content. Diatom strains were the largest emitters, with ~2x1017g (cell)-1h-1 (~35 μg (g Chl a)-1h-1) for isoprene and ~5x10-19 g (cell)-1h-1 (~1μg (g Chl a)-1) h-1) for α-pinene. The contribution to the total monoterpene production was ~70% from α-pinene, ~20% for d-limonene, and 250 μmol m-2s-1) irradiance. Measurements revealed different patterns for time-averaged emissions rates over two successive days. On the first day most of the species showed distinct increase in production rates within the first four hours, while on the second day the emission rates were overall higher, but less variable. The data suggest that enhanced amounts of isoprene and monoterpenes are emitted from phytoplankton as a result of perturbations in environmental conditions that cause disbalance in chloroplasts and forces primary producers to acclimate physiologically. This relationship could be a valuable tool for development of dynamic ecosystem modeling approaches for global marine isoprene and monoterpene emissions based on phytoplankton physiological

  20. Synergistic antibaterial activity of medicinal plants essential oils with biogenic silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Fatemeh Oroojalian

    2017-10-01

    Full Text Available Objective(s: Development of a nanobiosystem by using plant essential oils with green synthesized silver nanoparticles that present synergistic antibacterial activity for overcoming antibiotic resistance in pathogenic bacteria. Material and Methods: Essential oils (EOs of Kelussia odoratissima and Teucrium polium extracted by hydrodistillation were analyzed by gas chromatography-mass spectrometry (GC-MS. Then leaf aqueous extract of K. odoratissima prepared and used for green synthesise of silver nanoparticles (SNPs.  The oils, and the colloidal preparations of silver nanoparticles, were then subjected to microdilution technique using ELISA reader to determine their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC on Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli O157: H7, Salmonella enterica and Pseudomonas aeruginosa. The type of interaction between EO and SNPs was also determined by calculating the fractional inhibitory concentration index and isibologram type. Results: GC-MS analysis of K. odoratissima EO showed (Z-ligustilide, (Z-3-butylidene-phthalide,  limonene and β-phellandren as main constiuents, while T. polium EO has β-caryophylene, germacrene D, γ-cadinene, (Z-nerolidol, camphor, β-pinene, α- camphene, linalool and α-humulene. T. polium EO has more potent antibacterial property at MIC of 0.16-1.25 mg/ml compared to K. odoratissima (MIC of 0.3-2.5 mg/ml. Silver nanoparticles showed a potent antibacterial property (MIC of 0.006-0.025 mg/ml, and its colloidal suspension with plant EOs revealed a pathogen-dependent synergistic and additive effect based on calculated fractional inhibitory concentration index (FICi.

  1. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum).

    Science.gov (United States)

    El-Ghorab, Ahmed Hassan; Nauman, Muhammad; Anjum, Faqir Muhammad; Hussain, Shahzad; Nadeem, Muhammad

    2010-07-28

    Spices are the building blocks of flavor in foods. This research work was focused on two important spices, i.e., ginger and cumin. Ginger and cumin both are recognized for their antioxidant properties. So, this study was designed to evaluate the chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). The highest yield for volatile oil was obtained by the cumin sample, which was 2.52 +/- 0.11%, while the fresh ginger showed the lowest yield (0.31 +/- 0.08%). The analysis of volatile oils of fresh and dried ginger showed camphene, p-cineole, alpha-terpineol, zingiberene and pentadecanoic acid as major components, while the major components in cumin volatile oil were cuminal, gamma-terpinene and pinocarveol. In nonvolatile extracts the highest yield was obtained by the methanol extract of cumin (4.08 +/- 0.17% w/w), while the n-hexane extract of fresh ginger showed the lowest yield (0.52 +/- 0.03% w/w). Maximum total phenolic contents were observed in the methanol extract of fresh ginger (95.2 mg/g dry extract) followed by the hexane extract of fresh ginger (87.5 mg/g dry extract). The hexane extract of cumin showed the lowest total phenolic content (10.6 mg/g dry extract). The DPPH method showed the highest antioxidant activity for cumin essential oil (85.44 +/- 0.50%) followed by dried ginger essential oil (83.87 +/- 0.50%) and fresh ginger essential oil (83.03 +/- 0.54%). The FRAP of essential oils showed almost comparative results with DPPH. Cumin essential oil was found best in reducing Fe(3+) ions, followed by dried and fresh ginger. Our results suggest that both ginger and cumin can be used as potential sources of natural antioxidants in foods.

  2. Biochemical, physiological and climatic influence on the emission of isoprenoides from Grey Poplar (Populus x canescens (Aiton) Sm.) and Holm Oak (Quercus ilex L.); Biochemische, physiologische und klimatische Einfluesse auf die Isoprenoidemission der Graupappel (Populus x canescens (Aiton) Sm.) und der Steineiche (Quercus ilex L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, S.

    2007-05-15

    the expression rates of PcDXR or PcISPS. 4. Daytime variation of physiological and biochemical parameters of the monoterpene emission of Holm Oak was measured the same way as for Grey Poplar. Main components of the monoterpene emission were {alpha}-pinene, {beta}-pinene/sabinene, myrcene, camphene, limonene, p-cymol and {delta}-3-carene and also isoprene was detected. The leaf temperature showed strongest influence on monoterpene emission. 5. Light and temperature dependency of the isoprenoide emission was characterised for both plant species according to the Guenther algorithm (1997). 6. In order to test the influence of isoprene within or in the nearest surrounding of poplar leaves on the concentrations of superoxideanionradicals (O{sub 2}{sup -}) Nitrobluetetrazoliumchloride (NBT) was used to make them visible. Isoprene concentration was raised in the near surrounding of the leaf by isoprene fumigation. (orig.)

  3. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Bagora Bayala

    Full Text Available This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78% and β-caryophyllene (10.54% for Ocimum basilicum; 1, 8-cineol (31.22%, camphor (12.730%, α-pinene (6.87% and trans α-bergamotene (5.32% for Ocimum americanum; β-caryophyllene (21%, α-pinene (20.11%, sabinene (10.26%, β-pinene (9.22% and α-phellandrene (7.03% for Hyptis spicigera; p-cymene (25.27%, β-caryophyllene (12.70%, thymol (11.88, γ-terpinene (9.17% and thymyle acetate (7.64% for Lippia multiflora; precocene (82.10%for Ageratum conyzoides; eucalyptol (59.55%, α-pinene (9.17% and limonene (8.76% for Eucalyptus camaldulensis; arcurcumene (16.67%, camphene (12.70%, zingiberene (8.40%, β-bisabolene (7.83% and β-sesquiphellandrène (5.34% for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the

  4. Physico-chemical evaluation of Rosmarinus officinalis L. essential oils

    Directory of Open Access Journals (Sweden)

    Ana Cristina Atti-Santos

    2005-11-01

    Full Text Available Nineteen samples of Rosmarinus officinalis were extracted by steam distillation in a pilot plant and evaluated in terms of chemical compositions and physico-chemical characteristics. The volatile oil yields ranged from 0.37% (1999 harvest to 0.49% (1998 harvest. Twenty components were identified in the oils. The major components were alpha-pinene (40.55 to 45.10%, 1,8-cineole (17.40 to 19.35%, camphene (4.73 to 6.06% and verbenone (2.32 to 3.86%. The physico-chemical parameters averaged 0.8887 g/cm³ for specific gravity, 1.4689 for refractive index, and +11.82° for optical rotation, and there were no significant variations in either the chemical or physico-chemical data in the different years.Dezenove amostras de Rosmarinus officinalis foram extraídas por destilação por arraste a vapor em uma planta piloto e os óleos essenciais foram avaliados quanto a composição química e características físico-químicas. Os rendimentos de óleo essencial variaram de 0,37% (média de 1999 a 0,49% (média de 1998. Vinte componentes foram identificados nos óleos essenciais. Os componentes majoritários foram a-pineno (40,55 a 45,10%, 1,8-cineol (17,40 a 19,35%, canfeno (4,73 a 6,06% e verbenona (2,32 a 3,86%. A média por safra dos parâmetros físico-químicos avaliados resultaram em 0,8887g/cm³ para densidade específica, 1,4689 para índice de refração e +11,82º para rotação óptica, sendo que as variações encontradas para os parâmetros químicos e físico-químicos dos óleos essenciais não variaram significativamente em função do ano de produção.

  5. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Science.gov (United States)

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  6. Compostos voláteis de três cultivares de manga (Mangifera indica L. Volatile composition of three cultivars of mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    M.R.B. Franco

    2004-06-01

    Full Text Available Os compostos voláteis de três cultivares de manga (Haden, Tommy-Atkins e Keitt procedentes do Estado de São Paulo, foram isolados por uma técnica de headspace dinâmico, envolvendo sucção em polímero poroso. A separação da mistura complexa de voláteis foi efetuada por cromatografia gasosa de alta resolução. Alguns compostos voláteis foram identificados por cromatografia gasosa-espectrometria de massas e índices de Kovats. Os hidrocarbonetos monoterpênicos foram os compostos mais abundantes no headspace das amostras. Car-3-eno foi o componente majoritário dos cultivares Haden e Keitt, enquanto a Tommy-Atkins mostrou predominância de car-3-eno e alfa-pineno. Outros compostos identificados foram alfa-fencheno, alfa-canfeno, p-cimeno, beta-mirceno, beta-felandreno, limoneno, alfa-terpinoleno, beta-cariofileno e alfa-humuleno. Os três lotes analisados para cada cultivar mostraram grande homogeneidade, não havendo diferença significativa ao nível de 5%.The volatile compounds of three mango cultivars (Haden, Tommy-Atkins and Keitt, from the State of São Paulo, were isolated by a dynamic headspace technique involving suction on a porous polymer. The complex mixture of volatile compounds was separated by high-resolution gas chromatography. Some volatiles were identified by gas chromatography-mass spectrometry and Kovats Indices. The monoterpene hydrocarbons were the most abundant in the headspace of the fruits. Car-3-ene was the major component of the cultivars Haden and Keitt, while the Tommy Atkins mango exhibited predominance of two constituents, car-3-ene and alpha-pinene. Other identified compounds were alpha-fenchene, alpha-camphene, p-cimene, beta-mircene, beta-phellandrene, limonene, alpha-terpinolene, beta-caryophyllene e alpha-humulene. Samples of the same cultivar demonstrated great homogeneity, with no statistically significant difference being observed among the three lots analyzed for each cultivar.

  7. QUALITY COMPOSITION AND BIOLOGICAL SIGNIFICANCE OF THE BANGLADESHI AND CHINA GINGER (ZINGIBER OFFICINALE ROSC.

    Directory of Open Access Journals (Sweden)

    Sudam Nandi

    2013-04-01

    Full Text Available The essential oil of Zingiber officinale Rosc. was extracted from China and Bangladeshi varieties and yielded 0.21% and 0.23 % by hydro-distillation method on fresh weight basis respectively. Fifteen compounds were identified and quantified by GC-MS. The major constituents of China and Bangladeshi ginger essential oils were zingiberene 38.10 % and 41.49%, β-phellandrene 12.0% and 9.92%, α-citral 11.48% and 9.76 %, α-curcumene 9.22% and 11.58%, camphene 5.94% and 4.60% , β-bisabolene 4.39% and 5.0% respectively. The IC50 (DPPH method values were found 61.18 µg/mL and 56.71 µg/mL with the highest inhibition of 78.49 % and 80.77% and the LC50 values in the brine shrimp lethality cytotoxicity bioassay were found 0.4842 µg/mL and 0.7151 µg/mL in China and Bangladeshi ginger essential oil respectively. Both the essential oils showed significant activities against some gram positive, gram negative bacteria and fungi. The proximate composition of the China and Bangladeshi variety showed the ash (7.12±0.151, 8.15±0.18%, protein (5.47±0.19, 6.60±0.16%, crude fibre (4.32±0.10, 4.61±0.12%, carbohydrate (16..06±0.35, 18.38±0.41 and food energy (70.50±0.89, 81.74±1.01 kcal/100g. respectively. The elemental compositions of the both varieties were found rich in Ca, Mg, Fe, Al, Se, Na and K. These results indicate the quality composition of the two varieties may find interest in spice and culinary industries as well as in medicinal preparation.

  8. Chemical Composition, Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Essential Oils of Plants from Burkina Faso

    Science.gov (United States)

    Bayala, Bagora; Bassole, Imaël Henri Nestor; Gnoula, Charlemagne; Nebie, Roger; Yonli, Albert; Morel, Laurent; Figueredo, Gilles; Nikiema, Jean-Baptiste; Lobaccaro, Jean-Marc A.; Simpore, Jacques

    2014-01-01

    This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography–mass spectrometry and gas chromatography–flame ionization detector. Major constituents were α-terpineol (59.78%) and β-caryophyllene (10.54%) for Ocimum basilicum; 1, 8-cineol (31.22%), camphor (12.730%), α-pinene (6.87%) and trans α-bergamotene (5.32%) for Ocimum americanum; β-caryophyllene (21%), α-pinene (20.11%), sabinene (10.26%), β-pinene (9.22%) and α-phellandrene (7.03%) for Hyptis spicigera; p-cymene (25.27%), β-caryophyllene (12.70%), thymol (11.88), γ-terpinene (9.17%) and thymyle acetate (7.64%) for Lippia multiflora; precocene (82.10%)for Ageratum conyzoides; eucalyptol (59.55%), α-pinene (9.17%) and limonene (8.76%) for Eucalyptus camaldulensis; arcurcumene (16.67%), camphene (12.70%), zingiberene (8.40%), β-bisabolene (7.83%) and β-sesquiphellandrène (5.34%) for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides

  9. Biogenic emissions of volatile organic compounds from gorse (Ulex europaeus): Diurnal emission fluxes at Kelling Heath, England

    Science.gov (United States)

    Cao, X.-L.; Boissard, C.; Juan, A. J.; Hewitt, C. N.; Gallagher, M.

    1997-08-01

    Volatile organic compound (VOC) emission fluxes from Gorse (Ulex europaeus) were measured during May 30-31, 1995 at Kelling Heath in eastern England by using bag enclosure and gradient methods simultaneously. The enclosure measurements were made from branches at different stages of physiological development (flowering, after flowering, and mixed). Isoprene was found to represent 90% of the total VOC emissions, and its emission rates fluctuated from 6 ng (g dwt)-1 h-1 in the early morning to about 9700 ng(g dwt)-1 h-1 at midday. Averaged emission rates standardized to 20°C were 1625, 2120, and 3700 ng (g dwt)-1 h-1 for the new grown, "mixed," and flowering branch, respectively. Trans-ocimene and α-pinene were the main monoterpenes emitted and represented, on average, 47.6% and 36.9% of the total monoterpenes. Other monoterpenes, camphene, sabinene, β-pinene, myrcene, limonene and γ-terpinene, were positively identified but together represented less than 1.5% of the total VOC emissions from gorse. Maximum isoprene concentrations in air at the site were measured around midday at 2 m (174 parts per trillion by volume, or pptv) and 6 m (149 pptv), and minimum concentrations were measured during the night (8 pptv at both heights). Mean daytime α-pinene air concentrations of 141 and 60 pptv at 2 and 6 m height were determined, but trans-ocimene concentrations were less than the analytical detection limit (4 pptv), suggesting rapid chemical removal of this compound from air. The isoprene fluxes calculated by the micrometeorological gradient method showed a pattern similar to that of those calculated by the enclosure method, with isoprene emission rates maximum at midday (100 μg m-2 h-1) and not detectable during the nighttime. Assessment of the fraction of the site covered by gorse plants enabled an extrapolation of emission fluxes from the enclosure measurements. When averaged over the 2 day experiment, isoprene fluxes of 29.8 and 27.8 μg m-2 h-1 were obtained from

  10. Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae.

    Science.gov (United States)

    Pavela, Roman

    2015-10-01

    The efficacy of 30 aromatic compounds and their mutual binary combinations was assessed for acute toxicity against the larvae Culex quinquefasciatus. Based on comparison of the lethal doses, thymol and p-cymene were selected as the most effective (LD50 = 18 and 21 mg L(-1), respectively, and LD90 = 25 and 30 mg L(-1), respectively). Although the LD50 for terpinolene and trans-anethole was also estimated at 21 mg L(-1), their LD90 was significantly higher compared to the substances above (245 and 34 mg L(-1), respectively). In total, 435 binary combinations were tested, of which 249 combinations showed a significant synergistic effect, while 74 combinations showed a significant antagonistic effect on mortality. Only nine substances were identified as being able to create a synergistic effect with more than 20 substances: limonene, trans-anethole, 4-allylanisole, carvacrol, isoeugenol, menthone, carvone, borneol, and camphor. The highest synergistic effect on larval mortality was achieved for the combinations: eugenol and isoeugenol, carvone and carvacrol, carvone and 4-allylanisole, carvone and α-terpineol, carvone and menthone, limonene and trans-anethole, limonene and menthone, α-pinene and menthone, β-citronellol and menthone, carvacrol and 4-allylanisole, carvacrol and terpineol, α-terpinene and trans-anethole, camphor and menthone, camphene and menthone, and 4-allylanisole and menthone. Significant differences between achieved mortality and the mutual mixing ratio were found for the five selected binary mixtures that had shown the most significant synergistic effect in the previous tests. The mixture of limonene and trans-anethole showed the highest mortality, with the mixing ratio 1:1; the mixture of eugenol and isoeugenol caused 90.2% mortality, with the mixing ratio 1:3. One hundred percent mortality was achieved if carvacrol was contained in a mixture with carvone in a ratio >2. After a comparison of all our results, based on our experiments, we

  11. Essential oil yield and composition of ginger (Zingiber officinale Roscoe rhizomes after different drying periods Teor e composição de óleo essencial de rizomas de gengibre (Zingiber officinale Roscoe após diferentes períodos de secagem

    Directory of Open Access Journals (Sweden)

    I.C.M Dabague

    2011-01-01

    Full Text Available Ginger production in Paraná State, Brazil, has predominated in Morretes Municipality, with around 300 ha cultivated area. The aim of this work was to evaluate the essential oil yield and composition of ginger rhizomes produced in Morretes and subjected to different drying periods at room temperature. Experimental design was completely randomized, in a 5x5 factorial arrangement, with four replicates (four plants each, five origins and five drying periods at room temperature (0, 15, 30, 45 and 60 days. The essential oil was extracted by hydrodistillation in a Clevenger-type device for 3h and the constituents were analyzed by gas chromatography-mass spectrometry (GC/MS. The drying of ginger rhizomes at room temperature for up to 60 days decreased the essential oil yield in most origins. Geranial and neral levels were higher in all origins and as drying periods were longer. Geraniol and geranyl acetate levels decreased after drying in all origins, as well as eucalyptol, camphene, zingiberene and β-bisabolene in most origins.A produção de gengibre no Paraná concentra-se no município de Morretes, ocupando uma área de plantio de aproximadamente 300 ha. O objetivo deste trabalho foi avaliar o teor e a composição do óleo essencial de rizomas de gengibre produzidos em Morretes e submetidos a diferentes períodos de secagem em temperatura ambiente. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 5 x 5, com quatro repetições (quatro plantas por repetição, avaliando cinco procedências e cinco períodos de secagem a temperatura ambiente (0, 15, 30, 45 e 60 dias. As extrações de óleo essencial foram realizadas por hidrodestilação em aparelho graduado Clevenger durante três horas e a análise dos constituintes foi realizada por meio de cromatografia em fase gasosa acoplada à espectrometria de massas. A secagem de rizomas de gengibre em temperatura ambiente por até 60 dias resultou na diminuição de teores de

  12. Chemodiversity of a Scots pine stand and implications for terpene air concentrations

    Directory of Open Access Journals (Sweden)

    J. Bäck

    2012-02-01

    Full Text Available Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40–97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum. An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene

  13. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees.

    Science.gov (United States)

    Zheljazkov, Valtcho D; Astatkie, Tess; Jeliazkova, Ekaterina A; Schlegel, Vicki

    2012-01-01

    The objective of this study was to evaluate the effect of 15 distillation times (DT), ranging from 1.25 to 960 min, on oil yield, essential oil profiles, and antioxidant capacity of male J. scopulorum trees. Essential oil yields were 0.07% at 1.25 min DT and reached a maximum of 1.48% at 840 min DT. The concentrations of alpha-thujene (1.76-2.75%), alpha-pinene (2.9-8.7%), sabinene (45-74.7%), myrcene (2.4-3.4%), and para-cymene (0.8-3.1%) were highest at the shortest DT (1.5 to 5 min) and decreased with increasing DT. Cis-sabinene hydrate (0.5-0.97%) and linalool plus trans-sabinene (0.56-1.6%) reached maximum levels at 40 min DT. Maximum concentrations of limonene (2.3-2.8%) and pregeijerene-B (0.06-1.4%) were obtained at 360-480 min DT, and 4-terpinenol (0.7-5.7%) at 480 min DT. Alpha-terpinene (0.16-2.9%), gamma-terpinene (0.3-4.9%) and terpinolene (0.3-1.4%) reached maximum at 720 min DT. The concentrations of delta-cadinene (0.06-1.65%), elemol (0-6.0%), and 8-alpha-acetoxyelemol (0-4.4%) reached maximum at 840 min DT. The yield of the essential oil constituents increased with increasing DT. Only linalool/transsabinene hydrate reached a maximum yield at 360 min DT. Maximum yields of the following constituents were obtained at 720 min DT: alpha-thujene, alpha-pinene, camphene, sabinene, myrcene, alpha-terpinene, para-cimene, limonene, gamma-terpinene, terpinolene, and 4-terpinenol. At 840 min DT, cis-sabinene hydrate, prejeijerene-B, gamma muurolene, delta-cadinene, reached maximum. At 960 min DT, maximum yields of beta-pinene, elemol, alphaeudesmol/betaeudesmol, 8-alpha-acetoxyelemol were reached. These changes were adequately modeled by either the Michaelis-Menten or the Power (Convex) nonlinear regression models. Oils from the 480 min DT showed higher antioxidant activity compared to samples collected at 40, 160, or 960 min DT. These results show the potential for obtaining essential oils with various compositions and antioxidant capacity from male J

  14. PTR-MS analysis of reference and plant-emitted volatile organic compounds

    Science.gov (United States)

    Maleknia, Simin D.; Bell, Tina L.; Adams, Mark A.

    2007-05-01

    Proton transfer reaction-mass spectrometry (PTR-MS) was applied to the analysis of a series of volatile organic compounds (VOCs) that emit from various plants. These include a group of alcohols (methanol, ethanol and butanol), carbonyl-containing compounds (acetic acid, acetone and benzaldehyde), isoprene, acetonitrile, tetrahydrofuran (THF), pyrazine, toluene and xylene and a series of terpenes (p-cymene, camphene, 2-carene, limonene, [beta]-myrcene, [alpha]-pinene, [beta]-pinene, [gamma]-tepinene and terpinolene) and oxygen-containing terpenes (1,8-cineole and linalool). These mass spectral data were compared to an electron ionization (EI) database identifying that not all PTR-MS fragments were common to EI. PTR-MS studies of these reference compounds were utilized to identify VOCs emitted from Eucalyptus grandis leaf at a temperature range of 30-100 °C. In addition to protonated molecules (M + H)+, abundant proton-bound dimers or trimers were detected for alcohols, acetone, acetonitrile and THF. Abundant fragment ions attributed to the loss of water from these proton-bound clusters were also observed. The stability of butyl (C4H9+ m/z 57) and acetyl (CH3CO+ m/z 43) fragment ions directed the proton-transfer reactions of butanol and acetic acid. Abundant (M + H)+ ions were detected for pyrazine, THF, toluene and xylene, as well as for all terpenes except those containing oxygen. For linalool and 1,8-cineole, the loss of water generated an abundant fragment ion at m/z 137. PTR-MS fragmentation patterns for terpenes were proposed for m/z 81 (C6H9+), 93 (C7H9+), 95 (C7H11+), 107 (C8H11+), 109 (C8H13+), 119 (C9H11+), 121 (C9H13+) and 137 (loss of water for oxygen-containing terpenes; C10H17+). The relative abundances of (M + H)+ and fragments for all terpenes (except linalool) were dependent on the drift tube voltage and the optimum voltage for detection of molecular ions was different for various terpenes.

  15. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2013-02-01

    Full Text Available In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC, US, using two Fourier transform infrared spectrometer (FTIR systems and whole air sampling (WAS into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4–27.9% of non-methane organic compounds (NMOCs and ~ 21% of organic aerosol (mass basis suggests that they impacted secondary formation of ozone (O3, aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13–195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The

  16. Integrated system for rehabilitation of mine wastes and exploitation of added-value compounds from Cistus ladanifer

    Science.gov (United States)

    Santos, Erika S.; Balseiro-Romero, Maria; Abreu, Maria Manuela; Macías, Felipe

    2017-04-01

    The rehabilitation of mining areas with sulfide materials, both abandoned and active mines, is a priority because these areas are sources of acid mine drainage and multielemental contamination and, consequently, environmental and health risk. The combined use of Technosols and Phytostabilisation accelerates the area recovery, and ensures the sustainability at long-term of the physical, chemical and biological processes involved in the rehabilitation due to the functional complementarity of the components. Nowadays the rehabilitation strategy of contaminated areas must be based on circular economy, environmental improvements and economic approaches. Cistus ladanifer L. is an autochthones and spontaneous species that contributes to natural rehabilitation of contaminated soils from mining areas. Moreover, bioextracts obtained from C. ladanifer growing in São Domingos mining area (Iberian Pyrite Belt) presented several valuable compounds, which can provide an economic return by their use for fragrance and pharmaceutical approaches. This study aimed to evaluate, under controlled conditions, the efficiency of an integrated system for the rehabilitation of sulfide-rich and gossan tailings, which combines the application of Technosols and Phytostabilisation, and exploitation of added-value compounds from C. ladanifer bioextracts. The rehabilitation system comprised a surface layer of Technosol and a barrier of alkaline residues (biomass ashes and limestone wastes) that covered sulfide-rich wastes. Two Tecnosols composed of gossan wastes and different mixtures of agro-industrial wastes (from distilleries and greenhouse agriculture without any valorisation) at 150 Mg/ha were tested. In the Technosols was seeded C. ladanifer. After three years of plant growth, shoots biomass was quantified and used to obtain bioextracts (extraction with n-hexane). The organic composition of the bioextracts was determined and some compounds with added value (α-pinene, camphene, camphor

  17. Óleos essenciais de Cymbopogon nardus, Cinnamomum zeylanicum e Zingiber officinale: composição, atividades antioxidante e antibacteriana Essential oils of Cinnamomum zeylanicum, Cymbopogon nardus and Zingiber officinale: composition, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Milene Aparecida Andrade

    2012-06-01

    (Zingiber officinale essential oils. The essential oil extraction was performed by the using of hydrodistillation through the modified Clevenger apparatus, and identification and quantification of the constituents by the GC/MS and GC-FID analysis. Evaluation of antibacterial activity was performed by using agar well diffusion method, with Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 19117, Escherichia coli ATCC 11229, Salmonella Cholerasuis ATCC 6539 and Pseudomonas aeruginosa ATCC 15442. The antioxidant activity was evaluated by using β-carotene/linoleic acid system and the radical scavenging DPPH method. In chromatographic analysis the major constituents of C. nardus essential oil were citronellal (47.12%, geraniol (18.56% and citronellol (11.07%, in the C. zeylanicum essential oil were identified (E-cinnamaldehyde (77.72%, acetate (E-cinnamyl (5.99% and the monoterpenoid 1,8-cineole (4.66% as major components, and in Z. officinale the majority were geranial (25.06%, neral (16.47%, 1,8-cineole (10.98%, geraniol (8.51%, geranyl acetate (4.19% and camphene (4.30%. The essential oils showed antibacterial activity for both Gram-negative and Gram-positive microorganisms, and the most efficient was C. zeylanicum essential oil. The antioxidant activity was observed, when using β-carotene/ linoleic acid system, for C. nardus, followed by Z. officinale and C. zeylanicum and, when using DPPH test, activity was observed only for C. nardus.

  18. Essential oil of Lithraea molleoides (Vell.: chemical composition and antimicrobial activity Óleo essencial de Lithraea molleoides (Vell.: composição química e atividade antimicrobiana

    Directory of Open Access Journals (Sweden)

    Mario Tsunezi Shimizu

    2006-12-01

    Full Text Available Lithraea molleoides (Vell. (Anacardiaceae is a tree found in Brazil, Paraguay, Bolivia, Uruguay, Argentina and Chile. It is popularly used in the form of alcoholic extracts, decoctions and infusions for the treatment of cough, bronchitis, arthritis, diseases of the digestive system and as diuretic, tranquilizer, haemostatic and tonic agent. The objectives of this study were the extraction of the essential oil of the mature fruit, leaves and aerial parts of the plant and quantification of the yield thereof; the identification and quantification of the principal components of the essential oil and the determination of its antimicrobial activity against bacteria and yeast. The essential oil yield of the mature fruits was 1.0% but essential oil was not detected in leaves and flowery branches. The gas chromatograph-mass spectrometer (GC-MS analysis of the essential oil of the mature fruits detected the presence of limonene (89.89%, alpha-pinene (3.48%, beta-pinene (2.63%, alpha-terpineol (1.27%, myrcene (0.64%, sabinene hydrate (0.54%, 4-terpineol (0.28%, camphene (0.22% and delta-3-carene (0.13%. The essential oil was active against just a few of the Gram-positive bacteria and yeast tested and did not present antimicrobial activity against Gram-negative bacteria.Lithraea molleoides(Vell. (Anacardiaceae é uma árvore encontrada no Brasil, Paraguai, Bolívia, Uruguai, Argentina e Chile. É popularmente usada na forma de extrato alcoólico, decocção e infusão para o tratamento de tosse, bronquite, artrite, doenças do sistema digestivo, como diurético, tranqüilizante, hemostático e tônico. O objetivo do presente estudo foi a extração do óleo essencial dos frutos maduros, folhas e outras partes aéreas da planta e o rendimento do mesmo; a identificação e quantificação dos principais componentes e a determinação da atividade antimicrobiana. O rendimento do óleo essencial dos frutos maduros foi de 1%, entretanto, não foi encontrado

  19. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July