WorldWideScience

Sample records for campbelli auditory laterality

  1. Social and emotional values of sounds influence human (Homo sapiens and non-human primate (Cercopithecus campbelli auditory laterality.

    Directory of Open Access Journals (Sweden)

    Muriel Basile

    Full Text Available The last decades evidenced auditory laterality in vertebrates, offering new important insights for the understanding of the origin of human language. Factors such as the social (e.g. specificity, familiarity and emotional value of sounds have been proved to influence hemispheric specialization. However, little is known about the crossed effect of these two factors in animals. In addition, human-animal comparative studies, using the same methodology, are rare. In our study, we adapted the head turn paradigm, a widely used non invasive method, on 8-9-year-old schoolgirls and on adult female Campbell's monkeys, by focusing on head and/or eye orientations in response to sound playbacks. We broadcast communicative signals (monkeys: calls, humans: speech emitted by familiar individuals presenting distinct degrees of social value (female monkeys: conspecific group members vs heterospecific neighbours, human girls: from the same vs different classroom and emotional value (monkeys: contact vs threat calls; humans: friendly vs aggressive intonation. We evidenced a crossed-categorical effect of social and emotional values in both species since only "negative" voices from same class/group members elicited a significant auditory laterality (Wilcoxon tests: monkeys, T = 0 p = 0.03; girls: T = 4.5 p = 0.03. Moreover, we found differences between species as a left and right hemisphere preference was found respectively in humans and monkeys. Furthermore while monkeys almost exclusively responded by turning their head, girls sometimes also just moved their eyes. This study supports theories defending differential roles played by the two hemispheres in primates' auditory laterality and evidenced that more systematic species comparisons are needed before raising evolutionary scenario. Moreover, the choice of sound stimuli and behavioural measures in such studies should be the focus of careful attention.

  2. Validation of an auditory sensory reinforcement paradigm: Campbell's monkeys (Cercopithecus campbelli) do not prefer consonant over dissonant sounds.

    Science.gov (United States)

    Koda, Hiroki; Basile, Muriel; Olivier, Marion; Remeuf, Kevin; Nagumo, Sumiharu; Blois-Heulin, Catherine; Lemasson, Alban

    2013-08-01

    The central position and universality of music in human societies raises the question of its phylogenetic origin. One of the most important properties of music involves harmonic musical intervals, in response to which humans show a spontaneous preference for consonant over dissonant sounds starting from early human infancy. Comparative studies conducted with organisms at different levels of the primate lineage are needed to understand the evolutionary scenario under which this phenomenon emerged. Although previous research found no preference for consonance in a New World monkey species, the question remained opened for Old World monkeys. We used an experimental paradigm based on a sensory reinforcement procedure to test auditory preferences for consonant sounds in Campbell's monkeys (Cercopithecus campbelli campbelli), an Old World monkey species. Although a systematic preference for soft (70 dB) over loud (90 dB) control white noise was found, Campbell's monkeys showed no preference for either consonant or dissonant sounds. The preference for soft white noise validates our noninvasive experimental paradigm, which can be easily reused in any captive facility to test for auditory preferences. This would suggest that human preference for consonant sounds is not systematically shared with New and Old World monkeys. The sensitivity for harmonic musical intervals emerged probably very late in the primate lineage.

  3. Diagnosing Dyslexia: The Screening of Auditory Laterality.

    Science.gov (United States)

    Johansen, Kjeld

    A study investigated whether a correlation exists between the degree and nature of left-brain laterality and specific reading and spelling difficulties. Subjects, 50 normal readers and 50 reading disabled persons native to the island of Bornholm, had their auditory laterality screened using pure-tone audiometry and dichotic listening. Results…

  4. Lateralization of auditory-cortex functions.

    Science.gov (United States)

    Tervaniemi, Mari; Hugdahl, Kenneth

    2003-12-01

    In the present review, we summarize the most recent findings and current views about the structural and functional basis of human brain lateralization in the auditory modality. Main emphasis is given to hemodynamic and electromagnetic data of healthy adult participants with regard to music- vs. speech-sound encoding. Moreover, a selective set of behavioral dichotic-listening (DL) results and clinical findings (e.g., schizophrenia, dyslexia) are included. It is shown that human brain has a strong predisposition to process speech sounds in the left and music sounds in the right auditory cortex in the temporal lobe. Up to great extent, an auditory area located at the posterior end of the temporal lobe (called planum temporale [PT]) underlies this functional asymmetry. However, the predisposition is not bound to informational sound content but to rapid temporal information more common in speech than in music sounds. Finally, we obtain evidence for the vulnerability of the functional specialization of sound processing. These altered forms of lateralization may be caused by top-down and bottom-up effects inter- and intraindividually In other words, relatively small changes in acoustic sound features or in their familiarity may modify the degree in which the left vs. right auditory areas contribute to sound encoding.

  5. Lateralization, connectivity and plasticity in the human central auditory system

    NARCIS (Netherlands)

    Langers, DRM; van Dijk, P; Backes, WH

    2005-01-01

    Although it is known that responses in the auditory cortex are evoked predominantly contralateral to the side of stimulation, the lateralization of responses at lower levels in the human central auditory system has hardly been studied. Furthermore, little is known on the functional interactions

  6. Opposite brain laterality in analogous auditory and visual tests.

    Science.gov (United States)

    Oltedal, Leif; Hugdahl, Kenneth

    2017-11-01

    Laterality for language processing can be assessed by auditory and visual tasks. Typically, a right ear/right visual half-field (VHF) advantage is observed, reflecting left-hemispheric lateralization for language. Historically, auditory tasks have shown more consistent and reliable results when compared to VHF tasks. While few studies have compared analogous tasks applied to both sensory modalities for the same participants, one such study by Voyer and Boudreau [(2003). Cross-modal correlation of auditory and visual language laterality tasks: a serendipitous finding. Brain Cogn, 53(2), 393-397] found opposite laterality for visual and auditory language tasks. We adapted an experimental paradigm based on a dichotic listening and VHF approach, and applied the combined language paradigm in two separate experiments, including fMRI in the second experiment to measure brain activation in addition to behavioural data. The first experiment showed a right-ear advantage for the auditory task, but a left half-field advantage for the visual task. The second experiment, confirmed the findings, with opposite laterality effects for the visual and auditory tasks. In conclusion, we replicate the finding by Voyer and Boudreau (2003) and support their interpretation that these visual and auditory language tasks measure different cognitive processes.

  7. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Auditory lateralization of conspecific and heterospecific vocalizations in cats.

    Science.gov (United States)

    Siniscalchi, Marcello; Laddago, Serena; Quaranta, Angelo

    2016-01-01

    Auditory lateralization in response to both conspecific and heterospecific vocalizations (dog vocalizations) was observed in 16 tabby cats (Felis catus). Six different vocalizations were used: cat "purring," "meowing" and "growling" and dog typical vocalizations of "disturbance," "isolation" and "play." The head-orienting paradigm showed that cats turned their head with the right ear leading (left hemisphere activation) in response to their typical-species vocalization ("meow" and "purring"); on the other hand, a clear bias in the use of the left ear (right hemisphere activation) was observed in response to vocalizations eliciting intense emotion (dogs' vocalizations of "disturbance" and "isolation"). Overall these findings suggest that auditory sensory domain seems to be lateralized also in cat species, stressing the role of the left hemisphere for intraspecific communication and of the right hemisphere in processing threatening and alarming stimuli.

  9. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    OpenAIRE

    Lotfi, Yones; Moosavi, Abdollah; Abdollahi, Farzaneh Zamiri; BAKHSHI, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim o...

  10. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC - University Medical Center Rotterdam, Department of Radiology, Hs 224, Rotterdam (Netherlands); Kovacs, Silvia; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [University Hospitals of the Catholic University Leuven, Department of Radiology, Leuven (Belgium); Ridder, Dirk de [University of Antwerp, Department of Neurosurgery, Edegem (Belgium)

    2007-08-15

    Tinnitus is hypothesized to be an auditory phantom phenomenon resulting from spontaneous neuronal activity somewhere along the auditory pathway. We performed fMRI of the entire auditory pathway, including the inferior colliculus (IC), the medial geniculate body (MGB) and the auditory cortex (AC), in 42 patients with tinnitus and 10 healthy volunteers to assess lateralization of fMRI activation. Subjects were scanned on a 3T MRI scanner. A T2*-weighted EPI silent gap sequence was used during the stimulation paradigm, which consisted of a blocked design of 12 epochs in which music presented binaurally through headphones, which was switched on and off for periods of 50 s. Using SPM2 software, single subject and group statistical parametric maps were calculated. Lateralization of activation was assessed qualitatively and quantitatively. Tinnitus was lateralized in 35 patients (83%, 13 right-sided and 22 left-sided). Significant signal change (P{sub corrected} < 0.05) was found bilaterally in the primary and secondary AC, the IC and the MGB. Signal change was symmetrical in patients with bilateral tinnitus. In patients with lateralized tinnitus, fMRI activation was lateralized towards the side of perceived tinnitus in the primary AC and IC in patients with right-sided tinnitus, and in the MGB in patients with left-sided tinnitus. In healthy volunteers, activation in the primary AC was left-lateralized. Our paradigm adequately visualized the auditory pathways in tinnitus patients. In lateralized tinnitus fMRI activation was also lateralized, supporting the hypothesis that tinnitus is an auditory phantom phenomenon. (orig.)

  11. Lateralization of Auditory rhythm length in temporal lobe lessions

    NARCIS (Netherlands)

    Alpherts, W.C.J.; Vermeulen, J.; Franken, M.L.O.; Hendriks, M.P.H.; Veelen, C.W.M. van; Rijen, P.C. van

    2002-01-01

    In the visual modality, short rhythmic stimuli ha c been proven to he better processed (sequentially) by the left hemisphere, while longer rhythms appear to he better (holistically) processed by the right hemisphere. This study was set up to see it the same holds in the auditory modality. The rhythm

  12. Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus

    DEFF Research Database (Denmark)

    Sweet, Robert A; Dorph-Petersen, Karl-Anton; Lewis, David A

    2005-01-01

    The goal of the present study was to determine whether the architectonic criteria used to identify the core, lateral belt, and parabelt auditory cortices in macaque monkeys (Macaca fascicularis) could be used to identify homologous regions in humans (Homo sapiens). Current evidence indicates...

  13. Hemispheric laterality assessment with dichotic digits testing in dyslexia and auditory processing disorder.

    Science.gov (United States)

    Iliadou, Vassiliki; Kaprinis, Stergios; Kandylis, Dimitrios; Kaprinis, George St

    2010-03-01

    One of the widely used tests to evaluate functional asymmetry of cerebral hemispheres is the dichotic listening test with the usually prevailing right ear advantage. The current study aims at assessing hemispheric laterality in an adult sample of individuals with dyslexia, with auditory processing disorder (APD), and adults experiencing comorbidity of the two mentioned disorders against a control group with normal hearing and absence of learning disabilities. Results exhibit a right hemispheric dominance for the control and APD group, a left hemispheric dominance for the group diagnosed with both dyslexia and APD, and absence of dominance for the dyslexia group. Assessment of laterality was repeatable and produced stable results, indicating a true deficit. A component of auditory processing, specifically the auditory performance in competing acoustic signals, seems to be deficient in all three groups, and laterality of hemispheric functions influenced at least for auditory-language stimuli in the two of the three groups, one being adults with dyslexia and the other being adults with comorbidity of dyslexia and APD.

  14. Mood modulates auditory laterality of hemodynamic mismatch responses during dichotic listening.

    Directory of Open Access Journals (Sweden)

    Lisa Schock

    Full Text Available Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI. Faces expressing emotions (sad/happy/neutral were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing.

  15. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  16. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  17. Albino and pink-eyed dilution mutants in the Russian dwarf hamster Phodopus campbelli.

    Science.gov (United States)

    Robinson, R

    1996-01-01

    The coat color mutant genes albino (c) and pink eyed dilution (p) are described in the dwarf hamster species Phodopus campbelli. Both genes are inherited as redessive to normal. Tests for linkage between the two genes gave negative results. The apparent absence of linkage is contrasted with linkage between homologous alleles c and p in other species of rodents.

  18. Mechanosensory Lateral Line Nerve Projections to Auditory Neurons in the Dorsal Descending Octaval Nucleus in the Goldfish, Carassius auratus.

    Science.gov (United States)

    McCormick, Catherine A; Gallagher, Shannon; Cantu-Hertzler, Evan; Woodrick, Scarlet

    2016-01-01

    The nucleus medialis is the main first-order target of the mechanosensory lateral line (LL) system. This report definitively demonstrates that mechanosensory LL inputs also terminate in the ipsilateral dorsal portion of the descending octaval nucleus (dDO) in the goldfish. The dDO, which is the main first-order auditory nucleus in bony fishes, includes neurons that receive direct input from the otolithic end organs of the inner ear and project to the auditory midbrain. There are two groups of such auditory projection neurons: medial and lateral. The medial and the lateral groups in turn contain several neuronal populations, each of which includes one or more morphological cell types. In goldfish, the exclusively mechanosensory anterior and posterior LL nerves terminate only on specific cell types of auditory projection neurons in the lateral dDO group. Single neurons in the lateral dDO group may receive input from both anterior and posterior LL nerves. It is possible that some of the lateral dDO neurons that receive LL input also receive input from one or more of the otolithic end organs. These results are consistent with functional studies demonstrating low frequency acoustic sensitivity of the mechanosensory LL in teleosts, and they reveal that the anatomical substrate for sensory integration of otolithic and LL inputs is present at the origin of the central ascending auditory pathway in an otophysine fish. © 2016 S. Karger AG, Basel.

  19. Lateralization of Music Processing with Noises in the Auditory Cortex: An fNIRS Study

    Directory of Open Access Journals (Sweden)

    Hendrik eSantosa

    2014-12-01

    Full Text Available The present study is to determine the effects of background noise on the hemispheric lateralization in music processing by exposing fourteen subjects to four different auditory environments: music segments only, noise segments only, music+noise segments, and the entire music interfered by noise segments. The hemodynamic responses in both hemispheres caused by the perception of music in 10 different conditions were measured using functional near-infrared spectroscopy. As a feature to distinguish stimulus-evoked hemodynamics, the difference between the mean and the minimum value of the hemodynamic response for a given stimulus was used. The right-hemispheric lateralization in music processing was about 75% (instead of continuous music, only music segments were heard. If the stimuli were only noises, the lateralization was about 65%. But, if the music was mixed with noises, the right-hemispheric lateralization has increased. Particularly, if the noise was a little bit lower than the music (i.e., music level 10~15%, noise level 10%, the entire subjects showed the right-hemispheric lateralization: This is due to the subjects’ effort to hear the music in the presence of noises. However, too much noise has reduced the subjects’ discerning efforts.

  20. Evaluation of auditory lateralization ability and its development in normal children with 8 to 11 years of age

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2014-10-01

    Full Text Available Background and Aim: Auditory lateralization is a binaural phenomenon that is the result of processing of interaural time and intensity cues in the central auditory system. The main advantage of this phenomenon in human is understanding speech in noisy environments due to the auditory sciene analysis and cocktail party effects . The aim of the present study was to assess the auditory lateralization ability in normal children.Methods: Participants were 80 normal school age children (8-11 years of both genders, 42 girls and 38 boys. Lateralization functions were determined by interaural time difference (ITD ranging from -880 to +880 µs and interaural intensity difference (IID ranging from -10 to +10 dB for high-pass and low-pass noise.Results: Interaural intensity difference lateralization functions were linear , while the interaural time difference lateralization functions were S-shaped with a clear linear component from -220 to +220 µs and with an asymptote from -440 to -880 µs and +440 to +880 µs. Generally, interaural intensity difference errors were significantly less than interaural time difference tasks (p<0.0001. Age effect was only present in interaural time difference tasks (p=0.001.Conclusion: According to these results, children with the age of 11 years performed better in lateralization using interaural time difference cues compared to other children; whereas there was no difference in performance in all ages when using interaural intensity difference cues.

  1. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Directory of Open Access Journals (Sweden)

    Christo ePantev

    2012-06-01

    Full Text Available Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG. Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for three hours inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus - tailor-made notched music training (TMNMT. By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs were significantly reduced after training. The subsequent short-term (5 days training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies > 8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy are planned. A goal is to transfer this novel, completely non-invasive, and low-cost treatment approach for tonal tinnitus into routine clinical practice.

  2. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  3. Auditory conflict resolution correlates with medial-lateral frontal theta/alpha phase synchrony.

    Science.gov (United States)

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters "A" or "O". They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60-110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.

  4. Modulatory effects of spectral energy contrasts on lateral inhibition in the human auditory cortex: an MEG study.

    Directory of Open Access Journals (Sweden)

    Alwina Stein

    Full Text Available We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG. In the first experiment, five acoustic masking stimuli (MS, consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch. N1m and auditory steady state responses (ASSR, evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.

  5. Modulatory effects of spectral energy contrasts on lateral inhibition in the human auditory cortex: an MEG study.

    Science.gov (United States)

    Stein, Alwina; Engell, Alva; Okamoto, Hidehiko; Wollbrink, Andreas; Lau, Pia; Wunderlich, Robert; Rudack, Claudia; Pantev, Christo

    2013-01-01

    We investigated the modulation of lateral inhibition in the human auditory cortex by means of magnetoencephalography (MEG). In the first experiment, five acoustic masking stimuli (MS), consisting of noise passing through a digital notch filter which was centered at 1 kHz, were presented. The spectral energy contrasts of four MS were modified systematically by either amplifying or attenuating the edge-frequency bands around the notch (EFB) by 30 dB. Additionally, the width of EFB amplification/attenuation was varied (3/8 or 7/8 octave on each side of the notch). N1m and auditory steady state responses (ASSR), evoked by a test stimulus with a carrier frequency of 1 kHz, were evaluated. A consistent dependence of N1m responses upon the preceding MS was observed. The minimal N1m source strength was found in the narrowest amplified EFB condition, representing pronounced lateral inhibition of neurons with characteristic frequencies corresponding to the center frequency of the notch (NOTCH CF) in secondary auditory cortical areas. We tested in a second experiment whether an even narrower bandwidth of EFB amplification would result in further enhanced lateral inhibition of the NOTCH CF. Here three MS were presented, two of which were modified by amplifying 1/8 or 1/24 octave EFB width around the notch. We found that N1m responses were again significantly smaller in both amplified EFB conditions as compared to the NFN condition. To our knowledge, this is the first study demonstrating that the energy and width of the EFB around the notch modulate lateral inhibition in human secondary auditory cortical areas. Because it is assumed that chronic tinnitus is caused by a lack of lateral inhibition, these new insights could be used as a tool for further improvement of tinnitus treatments focusing on the lateral inhibition of neurons corresponding to the tinnitus frequency, such as the tailor-made notched music training.

  6. ERP Indications for Sustained and Transient Auditory Spatial Attention with Different Lateralization Cues

    Science.gov (United States)

    Widmann, Andreas; Schröger, Erich

    The presented study was designed to investigate ERP effects of auditory spatial attention in sustained attention condition (where the to-be-attended location is defined in a blockwise manner) and in a transient attention condition (where the to-be-attended location is defined in a trial-by-trial manner). Lateralization in the azimuth plane was manipulated (a) via monaural presentation of l- and right-ear sounds, (b) via interaural intensity differences, (c) via interaural time differences, (d) via an artificial-head recording, and (e) via free-field stimulation. Ten participants were delivered with frequent Nogo- and infrequent Go-Stimuli. In one half of the experiment participants were instructed to press a button if they detected a Go-stimulus at a predefined side (sustained attention), in the other half they were required to detect Go-stimuli following an arrow-cue at the cued side (transient attention). Results revealed negative differences (Nd) between ERPs elicited by to-be-attended and to-be-ignored sounds in all conditions. These Nd-effects were larger for the sustained than for the transient attention condition indicating that attentional selection according to spatial criteria is improved when subjects can focus to one and the same location for a series of stimuli.

  7. Music-induced cortical plasticity and lateral inhibition in the human auditory cortex as foundations for tonal tinnitus treatment

    Science.gov (United States)

    Pantev, Christo; Okamoto, Hidehiko; Teismann, Henning

    2012-01-01

    Over the past 15 years, we have studied plasticity in the human auditory cortex by means of magnetoencephalography (MEG). Two main topics nurtured our curiosity: the effects of musical training on plasticity in the auditory system, and the effects of lateral inhibition. One of our plasticity studies found that listening to notched music for 3 h inhibited the neuronal activity in the auditory cortex that corresponded to the center-frequency of the notch, suggesting suppression of neural activity by lateral inhibition. Subsequent research on this topic found that suppression was notably dependent upon the notch width employed, that the lower notch-edge induced stronger attenuation of neural activity than the higher notch-edge, and that auditory focused attention strengthened the inhibitory networks. Crucially, the overall effects of lateral inhibition on human auditory cortical activity were stronger than the habituation effects. Based on these results we developed a novel treatment strategy for tonal tinnitus—tailor-made notched music training (TMNMT). By notching the music energy spectrum around the individual tinnitus frequency, we intended to attract lateral inhibition to auditory neurons involved in tinnitus perception. So far, the training strategy has been evaluated in two studies. The results of the initial long-term controlled study (12 months) supported the validity of the treatment concept: subjective tinnitus loudness and annoyance were significantly reduced after TMNMT but not when notching spared the tinnitus frequencies. Correspondingly, tinnitus-related auditory evoked fields (AEFs) were significantly reduced after training. The subsequent short-term (5 days) training study indicated that training was more effective in the case of tinnitus frequencies ≤ 8 kHz compared to tinnitus frequencies >8 kHz, and that training should be employed over a long-term in order to induce more persistent effects. Further development and evaluation of TMNMT therapy

  8. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Martina Wengenroth

    Full Text Available BACKGROUND: Individuals with the rare genetic disorder Williams-Beuren syndrome (WS are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. METHODOLOGY/PRINCIPAL FINDINGS: Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. CONCLUSIONS/SIGNIFICANCE: There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  9. Phonetic detail and lateralization of reading-related inner speech and of auditory and somatosensory feedback processing during overt reading.

    Science.gov (United States)

    Kell, Christian A; Darquea, Maritza; Behrens, Marion; Cordani, Lorenzo; Keller, Christian; Fuchs, Susanne

    2017-01-01

    Phonetic detail and lateralization of inner speech during covert sentence reading as well as overt reading in 32 right-handed healthy participants undergoing 3T fMRI were investigated. The number of voiceless and voiced consonants in the processed sentences was systematically varied. Participants listened to sentences, read them covertly, silently mouthed them while reading, and read them overtly. Condition comparisons allowed for the study of effects of externally versus self-generated auditory input and of somatosensory feedback related to or independent of voicing. In every condition, increased voicing modulated bilateral voice-selective regions in the superior temporal sulcus without any lateralization. The enhanced temporal modulation and/or higher spectral frequencies of sentences rich in voiceless consonants induced left-lateralized activation of phonological regions in the posterior temporal lobe, regardless of condition. These results provide evidence that inner speech during reading codes detail as fine as consonant voicing. Our findings suggest that the fronto-temporal internal loops underlying inner speech target different temporal regions. These regions differ in their sensitivity to inner or overt acoustic speech features. More slowly varying acoustic parameters are represented more anteriorly and bilaterally in the temporal lobe while quickly changing acoustic features are processed in more posterior left temporal cortices. Furthermore, processing of external auditory feedback during overt sentence reading was sensitive to consonant voicing only in the left superior temporal cortex. Voicing did not modulate left-lateralized processing of somatosensory feedback during articulation or bilateral motor processing. This suggests voicing is primarily monitored in the auditory rather than in the somatosensory feedback channel. Hum Brain Mapp 38:493-508, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. The head turn paradigm to assess auditory laterality in cats: influence of ear position and repeated sound presentation

    Directory of Open Access Journals (Sweden)

    Wiebke S. Konerding

    2017-10-01

    Full Text Available In most humans, speech is predominantly processed by the left hemisphere. This auditory laterality was formerly thought to be an exclusive human characteristic, but is now suggested to have pre-human origins. In studies on auditory laterality in nonhuman animals, the head turn paradigm has become very popular due to its non-invasive character. Although there are implications that the head turn direction indicates functional dominance of the contralateral hemisphere in processing a given sound, the validity of the paradigm is under debate. To validate the paradigm via comparison with imaging or electrophysiological methods, it is first necessary to establish turning biases at the individual level. Recently, the domestic cat, a common model in hearing research, has been found to show turning biases at the group level. To assess individual turning asymmetries in cats, we repeatedly presented kitten isolation calls and assessed whether differences in conveyed arousal changed the previously described left-wards lateralisation of conspecific vocalizations. Based on responses to 50 playback presentations (25 of high and 25 of low arousal, we calculated individual head turn indices. Based on the total data set, we found no consistent individual turning bias, irrespective of call category or sex of the receiver. Although the playback paradigm was chosen carefully to reduce any effects of lateralized loudness perception or changes in motivation due to habituation, individual head turn biases changed significantly in concordance with habituation to repeated playback-presentations and was predictable by small deflections in ear position prior to listening. When splitting the data set according to a decline in responsiveness after seven playback presentations, we revealed an initial left turning bias for most of our subjects (i.e., significant at the group level. We propose that this left turning bias is related to right hemisphere dominance in processes

  11. The head turn paradigm to assess auditory laterality in cats: influence of ear position and repeated sound presentation.

    Science.gov (United States)

    Konerding, Wiebke S; Zimmermann, Elke; Bleich, Eva; Hedrich, Hans-Jürgen; Scheumann, Marina

    2017-01-01

    In most humans, speech is predominantly processed by the left hemisphere. This auditory laterality was formerly thought to be an exclusive human characteristic, but is now suggested to have pre-human origins. In studies on auditory laterality in nonhuman animals, the head turn paradigm has become very popular due to its non-invasive character. Although there are implications that the head turn direction indicates functional dominance of the contralateral hemisphere in processing a given sound, the validity of the paradigm is under debate. To validate the paradigm via comparison with imaging or electrophysiological methods, it is first necessary to establish turning biases at the individual level. Recently, the domestic cat, a common model in hearing research, has been found to show turning biases at the group level. To assess individual turning asymmetries in cats, we repeatedly presented kitten isolation calls and assessed whether differences in conveyed arousal changed the previously described left-wards lateralisation of conspecific vocalizations. Based on responses to 50 playback presentations (25 of high and 25 of low arousal), we calculated individual head turn indices. Based on the total data set, we found no consistent individual turning bias, irrespective of call category or sex of the receiver. Although the playback paradigm was chosen carefully to reduce any effects of lateralized loudness perception or changes in motivation due to habituation, individual head turn biases changed significantly in concordance with habituation to repeated playback-presentations and was predictable by small deflections in ear position prior to listening. When splitting the data set according to a decline in responsiveness after seven playback presentations, we revealed an initial left turning bias for most of our subjects (i.e., significant at the group level). We propose that this left turning bias is related to right hemisphere dominance in processes like vigilance

  12. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    Science.gov (United States)

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cercopithecus campbelli

    African Journals Online (AJOL)

    DR GATSING

    2Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), 01 BP 1303 Abidjan 01, Côte d'Ivoire. 3UFR Lettre, Sciences de l'Homme et de la Société, Université de Paris 13, France, .... occupant préférentiellement le plus petit îlot et un de douze individus occupant essentiellement le plus grand des îlots. Nous.

  14. Auditory event-related potentials measured in kindergarten predict later reading problems at school age.

    Science.gov (United States)

    Hämäläinen, Jarmo A; Guttorm, Tomi K; Richardson, Ulla; Alku, Paavo; Lyytinen, Heikki; Leppänen, Paavo H T

    2013-01-01

    Identifying children at risk for reading problems or dyslexia at kindergarten age could improve support for beginning readers. Brain event-related potentials (ERPs) were measured for temporally complex pseudowords and corresponding non-speech stimuli from 6.5-year-old children who participated in behavioral literacy tests again at 9 years in the second grade. Children who had reading problems at school age had larger N250 responses to speech and non-speech stimuli particularly at the left hemisphere. The brain responses also correlated with reading skills. The results suggest that atypical auditory and speech processing are a neural-level risk factor for future reading problems. [Supplementary material is available for this article. Go to the publisher's online edition of Developmental Neuropsychology for the following free supplemental resources: Sound files used in the experiments. Three speech sounds and corresponding non-speech sounds with short, intermediate, and long gaps].

  15. Infant temperament and the brainstem auditory evoked response in later childhood.

    Science.gov (United States)

    Woodward, S A; McManis, M H; Kagan, J; Deldin, P; Snidman, N; Lewis, M; Kahn, V

    2001-07-01

    Brainstem auditory evoked responses (BAERs) were evaluated on 10-12-year-old children (N = 56) who had been classified as high or low reactive to unfamiliar stimuli at 4 months of age. BAER measurement was selected because high reactive infants tend to become inhibited or fearful young children, and adult introverts have a faster latency to wave V of the BAER than do extroverts. Children previously classified as high reactive at 4 months had larger wave V components than did low reactive children, a finding that possibly suggests greater excitability in projections to the inferior colliculus. The fact that a fundamental feature of brainstem activity differentiated preadolescent children belonging to two early temperamental groups supports the value of gathering physiological data in temperament research.

  16. Effects of laterality and pitch height of an auditory accessory stimulus on horizontal response selection: the Simon effect and the SMARC effect.

    Science.gov (United States)

    Nishimura, Akio; Yokosawa, Kazuhiko

    2009-08-01

    In the present article, we investigated the effects of pitch height and the presented ear (laterality) of an auditory stimulus, irrelevant to the ongoing visual task, on horizontal response selection. Performance was better when the response and the stimulated ear spatially corresponded (Simon effect), and when the spatial-musical association of response codes (SMARC) correspondence was maintained-that is, right (left) response with a high-pitched (low-pitched) tone. These findings reveal an automatic activation of spatially and musically associated responses by task-irrelevant auditory accessory stimuli. Pitch height is strong enough to influence the horizontal responses despite modality differences with task target.

  17. Synaptic Plasticity and NO-cGMP-PKG Signaling Coordinately Regulate ERK-Driven Gene Expression in the Lateral Amygdala and in the Auditory Thalamus Following Pavlovian Fear Conditioning

    Science.gov (United States)

    Ota, Kristie T.; Monsey, Melissa S.; Wu, Melissa S.; Young, Grace J.; Schafe, Glenn E.

    2010-01-01

    We have recently hypothesized that NO-cGMP-PKG signaling in the lateral nucleus of the amygdala (LA) during auditory fear conditioning coordinately regulates ERK-driven transcriptional changes in both auditory thalamic (MGm/PIN) and LA neurons that serve to promote pre- and postsynaptic alterations at thalamo-LA synapses, respectively. In the…

  18. Screening LGI1 in a cohort of 26 lateral temporal lobe epilepsy patients with auditory aura from Turkey detects a novel de novo mutation.

    Science.gov (United States)

    Kesim, Yesim F; Uzun, Gunes Altiokka; Yucesan, Emrah; Tuncer, Feyza N; Ozdemir, Ozkan; Bebek, Nerses; Ozbek, Ugur; Iseri, Sibel A Ugur; Baykan, Betul

    2016-02-01

    Autosomal dominant lateral temporal lobe epilepsy (ADLTE) is an autosomal dominant epileptic syndrome characterized by focal seizures with auditory or aphasic symptoms. The same phenotype is also observed in a sporadic form of lateral temporal lobe epilepsy (LTLE), namely idiopathic partial epilepsy with auditory features (IPEAF). Heterozygous mutations in LGI1 account for up to 50% of ADLTE families and only rarely observed in IPEAF cases. In this study, we analysed a cohort of 26 individuals with LTLE diagnosed according to the following criteria: focal epilepsy with auditory aura and absence of cerebral lesions on brain MRI. All patients underwent clinical, neuroradiological and electroencephalography examinations and afterwards they were screened for mutations in LGI1 gene. The single LGI1 mutation identified in this study is a novel missense variant (NM_005097.2: c.1013T>C; p.Phe338Ser) observed de novo in a sporadic patient. This is the first study involving clinical analysis of a LTLE cohort from Turkey and genetic contribution of LGI1 to ADLTE phenotype. Identification of rare LGI1 gene mutations in sporadic cases supports diagnosis as ADTLE and draws attention to potential familial clustering of ADTLE in suggestive generations, which is especially important for genetic counselling. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hear You Later Alligator: How delayed auditory feedback affects non-musically trained people’s strumming

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Knoche, Hendrik

    2017-01-01

    Many musical instruments exhibit an inherent latency or delayed auditory feedback (DAF) between actuator activation and the occurrence of sound. We investigated how DAF (73ms and 250ms) affects musically trained (MT) and non-musically trained (NMT) people’s ability to synchronize the audible strum...... of an actuated guitar to a metronome at 60bpm and 120bpm. The long DAF matched a subdivision of the overall tempo. We compared their performance using two different input devices with feedback before or on activation. While 250ms DAF hardly affected musically trained participants, non-musically trained...... participants’ performance declined substantially both in mean synchronization error and its spread. Neither tempo nor input devices affected performance....

  20. Embryo cryopreservation and in vitro culture of preimplantation embryos in Campbell's hamster (Phodopus campbelli).

    Science.gov (United States)

    Amstislavsky, Sergei; Brusentsev, Eugeny; Kizilova, Elena; Igonina, Tatyana; Abramova, Tatyana; Rozhkova, Irina

    2015-04-01

    The aims of this study were to compare different protocols of Campbell's hamster (Phodopus campbelli) embryos freezing-thawing and to explore the possibilities of their in vitro culture. First, the embryos were flushed from the reproductive ducts 2 days post coitum at the two-cell stage and cultured in rat one-cell embryo culture medium (R1ECM) for 48 hours. Most (86.7%) of the two-cell embryos developed to blastocysts in R1ECM. Second, the embryos at the two- to eight-cell stages were flushed on the third day post coitum. The eight-cell embryos were frozen in 0.25 mL straws according to standard procedures of slow cooling. Ethylene glycol (EG) was used either as a single cryoprotectant or in a mixture with sucrose. The survival of frozen-thawed embryos was assessed by double staining with fluorescein diacetate and propidium iodide. The use of EG as a single cryoprotectant resulted in fewer alive embryos when compared with control (fresh embryos), but combined use of EG and sucrose improved the survival rate after thawing. Furthermore, granulocyte-macrophage colony-stimulating factor rat (2 ng/mL) improved the rate of the hamster frozen-thawed embryo development in vitro by increasing the final cell number and alleviating nuclear fragmentation. Our data show the first attempt in freezing and thawing Campbell's hamster embryos and report the possibility of successful in vitro culture for this species in R1ECM supplemented with granulocyte-macrophage colony-stimulating factor. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Context and Auditory Fear are Differentially Regulated by HDAC3 Activity in the Lateral and Basal Subnuclei of the Amygdala.

    Science.gov (United States)

    Kwapis, Janine L; Alaghband, Yasaman; López, Alberto J; White, André O; Campbell, Rianne R; Dang, Richard T; Rhee, Diane; Tran, Ashley V; Carl, Allison E; Matheos, Dina P; Wood, Marcelo A

    2017-05-01

    Histone acetylation is a fundamental epigenetic mechanism that is dynamically regulated during memory formation. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) compete to modulate histone acetylation, allowing for rapid changes in acetylation in response to a learning event. HDACs are known to be powerful negative regulators of memory formation, but it is not clear whether this function depends on HDAC enzymatic activity per se. Here, we tested whether the enzymatic activity of an individual Class I HDAC, HDAC3, has a role in fear memory formation in subregions of the hippocampus and amygdala. We found that fear conditioning drove expression of the immediate early genes cFos and Nr4a2 in the hippocampus, which coincided with reduced HDAC3 occupancy at these promoters. Using a dominant-negative, deacetylase-dead point mutant virus (AAV-HDAC3(Y298H)-v5), we found that selectively blocking HDAC3 deacetylase activity in either the dorsal hippocampus or basal nucleus of the amygdala enhanced context fear without affecting tone fear. Blocking HDAC3 activity in the lateral nucleus of the amygdala, on the other hand, enhanced tone, but not context fear memory. These results show for the first time that the enzymatic activity of HDAC3 functions to negatively regulate fear memory formation. Further, HDAC3 activity regulates different aspects of fear memory in the basal and lateral subregions of the amygdala. Thus, the deacetylase activity of HDAC3 is a powerful negative regulator of fear memory formation in multiple subregions of the fear circuit.

  2. The recurrence of Vogelgnathus campbelli-dominated conodont faunas in the Viséan and early Namurian of the Cantabrian Mts (Spain): a reflection of sea-level fluctuations?

    NARCIS (Netherlands)

    Boogaard, van den M.

    1992-01-01

    The conodont faunas from the Viséan and lower Namurian limestone succession in the Cantabrian Mts are mainly characterised by abundant Gnathodus spp. and minor amounts of Lochriea spp. However, Gnathodus and Lochriea are four times largely or almost completely replaced by Vogelgnathus campbelli,

  3. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  4. Auditory Reserve and the Legacy of Auditory Experience

    OpenAIRE

    Skoe, Erika; Kraus, Nina

    2014-01-01

    Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence o...

  5. Sound lateralization ability of patients with bilateral microtia and atresia after bilateral reconstruction of auricles and external auditory canals and fitting of new canal-type hearing aids to replace a bone conduction hearing aid.

    Science.gov (United States)

    Kaga, Kimitaka; Asato, Hirotaka

    2017-04-01

    Each of eight patients with bilateral microtia and atresia underwent bilateral reconstruction of the auricles and external auditory canals and were fitted bilateral canal-type hearing aids in the operated ears to replace a bone conduction hearing aid. The ability to discriminate inter-aural intensity difference (IID) and even inter-aural time difference (ITD) was retained in all these patients. This study studied the post-operative sound lateralization ability of patients with bilateral microtia and atresia after total reconstruction of both auricles and external auditory canals, followed by fitting of bilateral canal-type hearing aids. Eight patients with bilateral microtia and atresia ranging in age from 13-43 years were recruited in this study. Each of them underwent bilateral reconstruction of the auricles and external auditory canals and were fitted canal-type hearing aids in both the operated ears to replace a bone conduction hearing aid. A sound lateralization test was conducted to determine IID and ITD discrimination ability thresholds. In all the patients, the IID discrimination ability thresholds of the patients were more than 3-fold those of the controls, the ITD discrimination ability threshold was more than 5-fold those of controls, and binaural hearing was retained.

  6. Comparison of auditory deficits associated with neglect and auditory cortex lesions.

    Science.gov (United States)

    Gutschalk, Alexander; Brandt, Tobias; Bartsch, Andreas; Jansen, Claudia

    2012-04-01

    In contrast to lesions of the visual and somatosensory cortex, lesions of the auditory cortex are not associated with self-evident contralesional deficits. Only when two or more stimuli are presented simultaneously to the left and right, contralesional extinction has been observed after unilateral lesions of the auditory cortex. Because auditory extinction is also considered a sign of neglect, clinical separation of auditory neglect from deficits caused by lesions of the auditory cortex is challenging. Here, we directly compared a number of tests previously used for either auditory-cortex lesions or neglect in 29 controls and 27 patients suffering from unilateral auditory-cortex lesions, neglect, or both. The results showed that a dichotic-speech test revealed similar amounts of extinction for both auditory cortex lesions and neglect. Similar results were obtained for words lateralized by inter-aural time differences. Consistent extinction after auditory cortex lesions was also observed in a dichotic detection task. Neglect patients showed more general problems with target detection but no consistent extinction in the dichotic detection task. In contrast, auditory lateralization perception was biased toward the right in neglect but showed considerably less disruption by auditory cortex lesions. Lateralization of auditory-evoked magnetic fields in auditory cortex was highly correlated with extinction in the dichotic target-detection task. Moreover, activity in the right primary auditory cortex was somewhat reduced in neglect patients. The results confirm that auditory extinction is observed with lesions of the auditory cortex and auditory neglect. A distinction can nevertheless be made with dichotic target-detection tasks, auditory-lateralization perception, and magnetoencephalography. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  8. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    Science.gov (United States)

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  9. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem.

    Science.gov (United States)

    Franken, Tom P; Smith, Philip H; Joris, Philip X

    2016-01-01

    The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar

  10. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  11. In Vivo Whole-cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem

    Directory of Open Access Journals (Sweden)

    Tom P Franken

    2016-08-01

    Full Text Available The lateral nucleus of the trapezoid body (LNTB is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB, In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB. These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone

  12. Looming biases in monkey auditory cortex.

    Science.gov (United States)

    Maier, Joost X; Ghazanfar, Asif A

    2007-04-11

    Looming signals (signals that indicate the rapid approach of objects) are behaviorally relevant signals for all animals. Accordingly, studies in primates (including humans) reveal attentional biases for detecting and responding to looming versus receding signals in both the auditory and visual domains. We investigated the neural representation of these dynamic signals in the lateral belt auditory cortex of rhesus monkeys. By recording local field potential and multiunit spiking activity while the subjects were presented with auditory looming and receding signals, we show here that auditory cortical activity was biased in magnitude toward looming versus receding stimuli. This directional preference was not attributable to the absolute intensity of the sounds nor can it be attributed to simple adaptation, because white noise stimuli with identical amplitude envelopes did not elicit the same pattern of responses. This asymmetrical representation of looming versus receding sounds in the lateral belt auditory cortex suggests that it is an important node in the neural network correlate of looming perception.

  13. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  14. Auditory Hallucination

    Directory of Open Access Journals (Sweden)

    MohammadReza Rajabi

    2003-09-01

    Full Text Available Auditory Hallucination or Paracusia is a form of hallucination that involves perceiving sounds without auditory stimulus. A common is hearing one or more talking voices which is associated with psychotic disorders such as schizophrenia or mania. Hallucination, itself, is the most common feature of perceiving the wrong stimulus or to the better word perception of the absence stimulus. Here we will discuss four definitions of hallucinations:1.Perceiving of a stimulus without the presence of any subject; 2. hallucination proper which are the wrong perceptions that are not the falsification of real perception, Although manifest as a new subject and happen along with and synchronously with a real perception;3. hallucination is an out-of-body perception which has no accordance with a real subjectIn a stricter sense, hallucinations are defined as perceptions in a conscious and awake state in the absence of external stimuli which have qualities of real perception, in that they are vivid, substantial, and located in external objective space. We are going to discuss it in details here.

  15. [Symptoms and diagnosis of auditory processing disorder].

    Science.gov (United States)

    Keilmann, A; Läßig, A K; Nospes, S

    2013-08-01

    The definition of an auditory processing disorder (APD) is based on impairments of auditory functions. APDs are disturbances in processes central to hearing that cannot be explained by comorbidities such as attention deficit or language comprehension disorders. Symptoms include difficulties in differentiation and identification of changes in time, structure, frequency and intensity of sounds; problems with sound localization and lateralization, as well as poor speech comprehension in adverse listening environments and dichotic situations. According to the German definition of APD (as opposed to central auditory processing disorder, CAPD), peripheral hearing loss or cognitive impairment also exclude APD. The diagnostic methodology comprises auditory function tests and the required diagnosis of exclusion. APD is diagnosed if a patient's performance is two standard deviations below the normal mean in at least two areas of auditory processing. The treatment approach for an APD depends on the patient's particular deficits. Training, compensatory strategies and improvement of the listening conditions can all be effective.

  16. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  17. BAER - brainstem auditory evoked response

    Science.gov (United States)

    ... auditory potentials; Brainstem auditory evoked potentials; Evoked response audiometry; Auditory brainstem response; ABR; BAEP ... Normal results vary. Results will depend on the person and the instruments used to perform the test.

  18. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  19. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Resizing Auditory Communities

    DEFF Research Database (Denmark)

    Kreutzfeldt, Jacob

    2012-01-01

    Heard through the ears of the Canadian composer and music teacher R. Murray Schafer the ideal auditory community had the shape of a village. Schafer’s work with the World Soundscape Project in the 70s represent an attempt to interpret contemporary environments through musical and auditory...

  1. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  2. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  3. Neurophysiological investigation of idiopathic acquired auditory-visual synesthesia.

    Science.gov (United States)

    Afra, Pegah; Anderson, Jeffrey; Funke, Michael; Johnson, Michael; Matsuo, Fumisuke; Constantino, Tawnya; Warner, Judith

    2012-01-01

    We present a case of acquired auditory-visual synesthesia and its neurophysiological investigation in a healthy 42-year-old woman. She started experiencing persistent positive and intermittent negative visual phenomena at age 37 followed by auditory-visual synesthesia. Her neurophysiological investigation included video-EEG, fMRI, and MEG. Auditory stimuli (700 Hz, 50 ms duration, 0.5 s ISI) were presented binaurally at 60 db above the hearing threshold in a dark room. The patient had bilateral symmetrical auditory-evoked neuromagnetic responses followed by an occipital-evoked field 16.3 ms later. The activation of occipital cortex following auditory stimuli may represent recruitment of existing cross-modal sensory pathways.

  4. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning

    Science.gov (United States)

    Strait, Dana L.; Kraus, Nina

    2013-01-01

    Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians’ subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model by which to study mechanisms of experience-dependent changes in auditory function in humans. PMID:23988583

  5. Effects of mitochondria-targeted plastoquinone derivative antioxidant (SkQ1) on demography of free-breeding Campbell dwarf hamsters (Phodopus campbelli) kept in outdoor conditions. reproduction and lifespan: explanation in the framework of ultimate loads.

    Science.gov (United States)

    Rogovin, K A; Khrushcheva, A M; Shekarova, O N; Ushakova, M V; Manskikh, V N; Sokolova, O V; Vasilieva, N Yu

    2014-10-01

    We studied demographic effects of the mitochondria-targeted antioxidant SkQ1 on free-breeding Campbell dwarf hamsters (Phodopus campbelli, Thomas, 1905, Rodentia, Cricetidae) in an outdoor vivarium with seasonally varying day length and temperatures. The animals were kept in pairs from their young age. We removed litters from parental cages at their age of 25 days. Experimental hamsters received daily 50 nmol/kg SkQ1 with water by oral dosing, whereas control animals received water. SkQ1 had no effect on the lifespan of either males or females in reproductive pairs. Mortality among females was higher than among males irrespective of SkQ1 treatment, this being related to higher costs of reproduction in females. However, SkQ1 accelerated breeding in pairs in the first half of the reproductive period of a year. Although there were no statistical differences in body mass of males and females between experimental and control animals during most of their life, SkQ1-receiving males had higher body mass at the end of their life. The opposite tendency was characteristic for old females. One-year-old males and females of the experimental and control groups showed no difference in intensity of immune response to sheep red blood cells. The dermal hypersensitivity response to phytohemagglutinin (test for T-cell immunity) was significantly higher in SkQ1-treated 1- and 1.5-year-old males. This was not true for females. There was a tendency toward increased density of the neutrophil population in blood in 1-year-old SkQ1-treated males. However, experimental males showed no difference from control males in the activity of the "peroxidase-endogenous hydrogen peroxide system" of neutrophils. The background level of stress estimated by the concentration of cortisol in blood serum was significantly lower in the SkQ1-treated males during autumn adaptive adjustment of the organism. A similar trend was also observed during the January frosts, when the background level of stress was

  6. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  7. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  8. Autosomal dominant partial epilepsy with auditory features: Defining the phenotype

    Science.gov (United States)

    Winawer, Melodie R.; Hauser, W. Allen; Pedley, Timothy A.

    2009-01-01

    The authors previously reported linkage to chromosome 10q22-24 for autosomal dominant partial epilepsy with auditory features. This study describes seizure semiology in the original linkage family in further detail. Auditory hallucinations were most common, but other sensory symptoms (visual, olfactory, vertiginous, and cephalic) were also reported. Autonomic, psychic, and motor symptoms were less common. The clinical semiology points to a lateral temporal seizure origin. Auditory hallucinations, the most striking clinical feature, are useful for identifying new families with this synome. PMID:10851389

  9. Aktiverende Undervisning i auditorier

    DEFF Research Database (Denmark)

    Parus, Judith

    Workshop om erfaringer og brug af aktiverende metoder i undervisning i auditorier og på store hold. Hvilke metoder har fungeret godt og hvilke dårligt ? Hvilke overvejelser skal man gøre sig.......Workshop om erfaringer og brug af aktiverende metoder i undervisning i auditorier og på store hold. Hvilke metoder har fungeret godt og hvilke dårligt ? Hvilke overvejelser skal man gøre sig....

  10. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  11. Functional properties of human auditory cortical fields

    Directory of Open Access Journals (Sweden)

    David L Woods

    2010-12-01

    Full Text Available While auditory cortex in non-human primates has been subdivided into multiple functionally-specialized auditory cortical fields (ACFs, the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of fMRI activations on the cortical surface to attended and nonattended tones of different frequency, location, and intensity. The limits of auditory cortex were defined by voxels that showed significant activations to nonattended sounds. Three centrally-located fields with mirror-symmetric tonotopic organization were identified and assigned to the three core fields of the primate model while surrounding activations were assigned to belt fields following procedures similar to those used in macaque fMRI studies. The functional properties of core, medial belt, and lateral belt field groups were then analyzed. Field groups were distinguished by tonotopic organization, frequency selectivity, intensity sensitivity, contralaterality, binaural enhancement, attentional modulation, and hemispheric asymmetry. In general, core fields showed greater sensitivity to sound properties than did belt fields, while belt fields showed greater attentional modulation than core fields. Significant distinctions in intensity sensitivity and contralaterality were seen between adjacent core fields A1 and R, while multiple differences in tuning properties were evident at boundaries between adjacent core and belt fields. The reliable differences in functional properties between fields and field groups suggest that the basic primate pattern of auditory cortex organization is preserved in humans. A comparison of the sizes of functionally-defined ACFs in humans and macaques reveals a significant relative expansion in human lateral belt fields implicated in the processing of speech.

  12. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    OpenAIRE

    Firszt, Jill B.; Reeder, Ruth M.; Holden, Timothy A.; Harold eBurton; Chole, Richard A.

    2013-01-01

    Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants), less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, ...

  13. Auditory hallucinations induced by trazodone

    Science.gov (United States)

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  14. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  15. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions.

  16. Onset dominance in lateralization.

    Science.gov (United States)

    Freyman, R L; Zurek, P M; Balakrishnan, U; Chiang, Y C

    1997-03-01

    Saberi and Perrott [Acustica 81, 272-275 (1995)] found that the in-head lateralization of a relatively long-duration pulse train could be controlled by the interaural delay of the single pulse pair that occurs at onset. The present study examined this further, using an acoustic pointer measure of lateralization, with stimulus manipulations designed to determine conditions under which lateralization was consistent with the interaural onset delay. The present stimuli were wideband pulse trains, noise-burst trains, and inharmonic complexes, 250 ms in duration, chosen for the ease with which interaural delays and correlations of select temporal segments of the stimulus could be manipulated. The stimulus factors studied were the periodicity of the ongoing part of the signal as well as the multiplicity and ambiguity of interaural delays. The results, in general, showed that the interaural onset delay controlled lateralization when the steady state binaural cues were relatively weak, either because the spectral components were only sparsely distributed across frequency or because the interaural time delays were ambiguous. Onset dominance can be disrupted by sudden stimulus changes within the train, and several examples of such changes are described. Individual subjects showed strong left-right asymmetries in onset effectiveness. The results have implications for understanding how onset and ongoing interaural delay cues contribute to the location estimates formed by the binaural auditory system.

  17. Octave effect in auditory attention

    National Research Council Canada - National Science Library

    Tobias Borra; Huib Versnel; Chantal Kemner; A. John van Opstal; Raymond van Ee

    2013-01-01

    ... tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone...

  18. How Do Batters Use Visual, Auditory, and Tactile Information about the Success of a Baseball Swing?

    Science.gov (United States)

    Gray, Rob

    2009-01-01

    Bat/ball contact produces visual (the ball leaving the bat), auditory (the "crack" of the bat), and tactile (bat vibration) feedback about the success of the swing. We used a batting simulation to investigate how college baseball players use visual, tactile, and auditory feedback. In Experiment 1, swing accuracy (i.e., the lateral separation…

  19. Auditory brainstem maturation in normal-hearing infants born preterm : a meta-analysis

    NARCIS (Netherlands)

    Stipdonk, Lottie W; Weisglas-Kuperus, Nynke; Franken, Marie-Christine Jp; Nasserinejad, Kazem; Dudink, Jeroen; Goedegebure, André

    2016-01-01

    AIM: Children born preterm often have neurodevelopmental problems later in life. Abnormal maturation of the auditory brainstem in the presence of normal hearing might be a marker for these problems. We conducted a meta-analysis of auditory brainstem response (ABR) latencies at term age to describe

  20. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  1. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  2. Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.

    Science.gov (United States)

    Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi

    2015-08-01

    To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Incidental auditory category learning.

    Science.gov (United States)

    Gabay, Yafit; Dick, Frederic K; Zevin, Jason D; Holt, Lori L

    2015-08-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in 1 of 4 possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from 1 of 4 distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. (c) 2015 APA, all rights reserved).

  4. Modelling auditory attention.

    Science.gov (United States)

    Kaya, Emine Merve; Elhilali, Mounya

    2017-02-19

    Sounds in everyday life seldom appear in isolation. Both humans and machines are constantly flooded with a cacophony of sounds that need to be sorted through and scoured for relevant information-a phenomenon referred to as the 'cocktail party problem'. A key component in parsing acoustic scenes is the role of attention, which mediates perception and behaviour by focusing both sensory and cognitive resources on pertinent information in the stimulus space. The current article provides a review of modelling studies of auditory attention. The review highlights how the term attention refers to a multitude of behavioural and cognitive processes that can shape sensory processing. Attention can be modulated by 'bottom-up' sensory-driven factors, as well as 'top-down' task-specific goals, expectations and learned schemas. Essentially, it acts as a selection process or processes that focus both sensory and cognitive resources on the most relevant events in the soundscape; with relevance being dictated by the stimulus itself (e.g. a loud explosion) or by a task at hand (e.g. listen to announcements in a busy airport). Recent computational models of auditory attention provide key insights into its role in facilitating perception in cluttered auditory scenes.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  5. Auditory Channel Problems.

    Science.gov (United States)

    Mann, Philip H.; Suiter, Patricia A.

    This teacher's guide contains a list of general auditory problem areas where students have the following problems: (a) inability to find or identify source of sound; (b) difficulty in discriminating sounds of words and letters; (c) difficulty with reproducing pitch, rhythm, and melody; (d) difficulty in selecting important from unimportant sounds;…

  6. Auditory Space Perception in Left- and Right-Handers

    Science.gov (United States)

    Ocklenburg, Sebastian; Hirnstein, Marco; Hausmann, Markus; Lewald, Jorg

    2010-01-01

    Several studies have shown that handedness has an impact on visual spatial abilities. Here we investigated the effect of laterality on auditory space perception. Participants (33 right-handers, 20 left-handers) completed two tasks of sound localization. In a dark, anechoic, and sound-proof room, sound stimuli (broadband noise) were presented via…

  7. Auditory neuroscience: Balancing excitation and inhibition during development.

    Science.gov (United States)

    King, Andrew J

    2010-09-28

    Two recent studies have described how the coupling of excitatory and inhibitory inputs to neurons in the auditory cortex changes during development. This process is driven by experience and, once complete, may limit the plasticity of the cortex in later life. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Modulation of Auditory Responses to Speech vs. Nonspeech Stimuli during Speech Movement Planning.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2016-01-01

    Previously, we showed that the N100 amplitude in long latency auditory evoked potentials (LLAEPs) elicited by pure tone probe stimuli is modulated when the stimuli are delivered during speech movement planning as compared with no-speaking control conditions. Given that we probed the auditory system only with pure tones, it remained unknown whether the nature and magnitude of this pre-speech auditory modulation depends on the type of auditory stimulus. Thus, here, we asked whether the effect of speech movement planning on auditory processing varies depending on the type of auditory stimulus. In an experiment with nine adult subjects, we recorded LLAEPs that were elicited by either pure tones or speech syllables when these stimuli were presented prior to speech onset in a delayed-response speaking condition vs. a silent reading control condition. Results showed no statistically significant difference in pre-speech modulation of the N100 amplitude (early stages of auditory processing) for the speech stimuli as compared with the nonspeech stimuli. However, the amplitude of the P200 component (later stages of auditory processing) showed a statistically significant pre-speech modulation that was specific to the speech stimuli only. Hence, the overall results from this study indicate that, immediately prior to speech onset, modulation of the auditory system has a general effect on early processing stages but a speech-specific effect on later processing stages. This finding is consistent with the hypothesis that pre-speech auditory modulation may play a role in priming the auditory system for its role in monitoring auditory feedback during speech production.

  9. Auditory pathways: anatomy and physiology.

    Science.gov (United States)

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.

  10. Auditory Neuropathy: Findings of Behavioral, Physiological and Neurophysiological Tests

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadi

    2006-12-01

    Full Text Available Background and Aim: Auditory neuropathy (AN can be diagnosed by abnormal auditory brainstem response (ABR, in the presence of normal cochlear microphonic (CM and otoacoustic emissions (OAEs.The aim of this study was to investigate the ABR and other electrodiagnostic test results of 6 patients suspicious to AN with problems in speech recognition. Materials and Methods: this cross sectional study was conducted on 6 AN patients with different ages evaluated by pure tone audiometry, speech discrimination score (SDS , immittance audiometry. ElectroCochleoGraphy , ABR, middle latency response (MLR, Late latency response (LLR, and OAEs. Results: Behavioral pure tone audiometric tests showed moderate to profound hearing loss. SDS was so poor which is not in accordance with pure tone thresholds. All patients had normal tympanogram but absent acoustic reflexes. CMs and OAEs were within normal limits. There was no contra lateral suppression of OAEs. None of cases had normal ABR or MLR although LLR was recorded in 4. Conclusion: All patients in this study are typical cases of auditory neuropathy. Despite having abnormal input, LLR remains normal that indicates differences in auditory evoked potentials related to required neural synchrony. These findings show that auditory cortex may play a role in regulating presentation of deficient signals along auditory pathways in primary steps.

  11. Entrainment to an auditory signal: Is attention involved?

    Science.gov (United States)

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Auditory object cognition in dementia

    Science.gov (United States)

    Goll, Johanna C.; Kim, Lois G.; Hailstone, Julia C.; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J.; Warren, Jason D.

    2011-01-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n = 21), progressive nonfluent aphasia (PNFA; n = 5), logopenic progressive aphasia (LPA; n = 7) and aphasia in association with a progranulin gene mutation (GAA; n = 1), and in healthy age-matched controls (n = 20). Based on a cognitive framework treating complex sounds as ‘auditory objects’, we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  13. Hearing suppression induced by electrical stimulation of human auditory cortex.

    Science.gov (United States)

    Fenoy, Albert J; Severson, Meryl A; Volkov, Igor O; Brugge, John F; Howard, Matthew A

    2006-11-06

    In the course of performing electrical stimulation functional mapping (ESFM) in neurosurgery patients, we identified three subjects who experienced hearing suppression during stimulation of sites within the superior temporal gyrus (STG). One of these patients had long standing tinnitus that affected both ears. In all subjects, auditory event related potentials (ERPs) were recorded from chronically implanted intracranial electrodes and the results were used to localize auditory cortical fields within the STG. Hearing suppression sites were identified within anterior lateral Heschl's gyrus (HG) and posterior lateral STG, in what may be auditory belt and parabelt fields. Cortical stimulation suppressed hearing in both ears, which persisted beyond the period of electrical stimulation. Subjects experienced other stimulation-evoked perceptions at some of these same sites, including symptoms of vestibular activation and alteration of audio-visual speech processing. In contrast, stimulation of presumed core auditory cortex within posterior medial HG evoked sound perceptions, or in one case an increase in tinnitus intensity, that affected the contralateral ear and did not persist beyond the period of stimulation. The current results confirm a rarely reported experimental observation, and correlate the cortical sites associated with hearing suppression with physiologically identified auditory cortical fields.

  14. Early hominin auditory capacities.

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.

  15. Early hominin auditory capacities

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  16. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks.

    Directory of Open Access Journals (Sweden)

    Sven eVanneste

    2012-05-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external sound source. It is characterized by sensory components such as the perceived loudness, the lateralization, the tinnitus type (pure tone, noise-like and associated emotional components, such as distress and mood changes. Source localization of qEEG data demonstrate the involvement of auditory brain areas as well as several non-auditory brain areas such as the anterior cingulate cortex (dorsal and subgenual, auditory cortex (primary and secondary, dorsal lateral prefrontal cortex, insula, supplementary motor area, orbitofrontal cortex (including the inferior frontal gyrus, parahippocampus, posterior cingulate cortex and the precuneus, in different aspects of tinnitus. Explaining these non-auditory brain areas as constituents of separable subnetworks, each reflecting a specific aspect of the tinnitus percept increases the explanatory power of the non-auditory brain areas involvement in tinnitus. Thus the unified percept of tinnitus can be considered an emergent property of multiple parallel dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature.

  17. Neural dynamics of phonological processing in the dorsal auditory stream.

    Science.gov (United States)

    Liebenthal, Einat; Sabri, Merav; Beardsley, Scott A; Mangalathu-Arumana, Jain; Desai, Anjali

    2013-09-25

    Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects performed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concurrently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL), and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80-100 ms), consistent with a direct influence of articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors.

  18. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    OpenAIRE

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impair...

  19. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  20. A lateralized functional auditory network is involved in anuran ...

    Indian Academy of Sciences (India)

    Connections from the telencephalon to ipsilateral mesencephalon inresponse to white noise were the highest in the non-reproductive stage while those to advertisement calls were the highestin reproductive stage, implying the attention resources and living strategy shift when entered the reproductive season.Finally, these ...

  1. A lateralized functional auditory network is involved in anuran ...

    Indian Academy of Sciences (India)

    2016-10-05

    Oct 5, 2016 ... Right ear advantage (REA) exists in many land vertebrates in which the right ear and left hemisphere preferentially process conspecific acoustic stimuli such as those related to sexual selection. Although ecological and neural mechanisms for sexual selection have been widely studied, the brain networks ...

  2. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    Science.gov (United States)

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  3. Auditory and non-auditory effects of noise on health

    NARCIS (Netherlands)

    Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.A.; Stansfeld, S.

    2013-01-01

    Noise is pervasive in everyday life and can cause both auditory and non-auditory health eff ects. Noise-induced hearing loss remains highly prevalent in occupational settings, and is increasingly caused by social noise exposure (eg, through personal music players). Our understanding of molecular

  4. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  5. Later loont

    NARCIS (Netherlands)

    Emous, van R.A.

    2007-01-01

    Uit een inventarisatie van de Animal Sciences Group van het hanenmanagement blijkt dat er geen verschillen zijn in technische resultaten tussen koppels vleeskuikenouderdieren die voor of na 20 weken leeftijd zijn overgeplaatst. Wel is later overplaatsen financieel aantrekkelijk voor de vermeerderaar

  6. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  7. The Perception of Auditory Motion

    Science.gov (United States)

    Leung, Johahn

    2016-01-01

    The growing availability of efficient and relatively inexpensive virtual auditory display technology has provided new research platforms to explore the perception of auditory motion. At the same time, deployment of these technologies in command and control as well as in entertainment roles is generating an increasing need to better understand the complex processes underlying auditory motion perception. This is a particularly challenging processing feat because it involves the rapid deconvolution of the relative change in the locations of sound sources produced by rotational and translations of the head in space (self-motion) to enable the perception of actual source motion. The fact that we perceive our auditory world to be stable despite almost continual movement of the head demonstrates the efficiency and effectiveness of this process. This review examines the acoustical basis of auditory motion perception and a wide range of psychophysical, electrophysiological, and cortical imaging studies that have probed the limits and possible mechanisms underlying this perception. PMID:27094029

  8. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  9. CT findings of the osteoma of the external auditory canal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ha Young; Song, Chang Joon; Yoon, Chung Dae; Park, Mi Hyun; Shin, Byung Seok [Chungnam National University, School of Medicine, Daejeon (Korea, Republic of)

    2006-07-15

    We wanted to report the CT image findings of the osteoma of the external auditory canal. Temporal bone CT scanning was performed on eight patients (4 males and 4 females aged between 8 and 41 years) with pathologically proven osteoma of the external auditory canal after operation, and the findings of the CT scanning were retrospectively reviewed. Not only did we analyze the size, shape, distribution and location of the osteomas, we also analyzed the relationship between the lesion and the tympanosqumaous or tympanomastoid suture line, and the changes seen on the CT scan images for the patients who were able to undergo follow-up. All the lesions of the osteoma of the external auditory canal were unilateral, solitary, pedunculated bony masses. In five patients, the osteomas occurred on the left side and for the other three patients, the osteomas occurred on the right side. The average size of the osteoma was 0.6 cm with the smallest being 0.5 cm and the largest being 1.2 cm. Each of the lesions was located at the osteochondral junction in the terminal part of the osseous external ear canal. The stalk of the osteoma of the external auditory canal was found to have occurred in the anteroinferior wall in five cases (63%), in the anterosuperior wall (the tympanosqumaous suture line) in two cases (25%), and in the anterior wall in one case. The osteoma of the external auditory canal was a compact form in five cases and it was a cancellous form in three cases. One case of the cancellous form was changed into a compact form 35 months later due to the advanced ossification. Osteoma of the external auditory canal developed in a unilateral and solitary fashion. The characteristic image findings show that it is attached to the external auditory canal by its stalk. Unlike our common knowledge about its occurrence, osteoma mostly occurred in the tympanic wall, and this is regardless of the tympanosquamous or tympanomastoid suture line.

  10. Subcortical auditory structures in the Mongolian gerbil: I. Golgi architecture.

    Science.gov (United States)

    Mylius, Judith; Brosch, Michael; Scheich, Henning; Budinger, Eike

    2013-04-15

    By means of the Golgi-Cox and Nissl methods we investigated the cyto- and fiberarchitecture as well as the morphology of neurons in the subcortical auditory structures of the Mongolian gerbil (Meriones unguiculatus), a frequently used animal model in auditory neuroscience. We describe the divisions and subdivisions of the auditory thalamus including the medial geniculate body, suprageniculate nucleus, and reticular thalamic nucleus, as well as of the inferior colliculi, nuclei of the lateral lemniscus, superior olivary complex, and cochlear nuclear complex. In this study, we 1) confirm previous results about the organization of the gerbil's subcortical auditory pathway using other anatomical staining methods (e.g., Budinger et al. [2000] Eur J Neurosci 12:2452-2474); 2) add substantially to the knowledge about the laminar and cellular organization of the gerbil's subcortical auditory structures, in particular about the orientation of their fibrodendritic laminae and about the morphology of their most distinctive neuron types; and 3) demonstrate that the cellular organization of these structures, as seen by the Golgi technique, corresponds generally to that of other mammalian species, in particular to that of rodents. Copyright © 2012 Wiley Periodicals, Inc.

  11. Training-induced plasticity of auditory localization in adult mammals.

    Directory of Open Access Journals (Sweden)

    Oliver Kacelnik

    2006-04-01

    Full Text Available Accurate auditory localization relies on neural computations based on spatial cues present in the sound waves at each ear. The values of these cues depend on the size, shape, and separation of the two ears and can therefore vary from one individual to another. As with other perceptual skills, the neural circuits involved in spatial hearing are shaped by experience during development and retain some capacity for plasticity in later life. However, the factors that enable and promote plasticity of auditory localization in the adult brain are unknown. Here we show that mature ferrets can rapidly relearn to localize sounds after having their spatial cues altered by reversibly occluding one ear, but only if they are trained to use these cues in a behaviorally relevant task, with greater and more rapid improvement occurring with more frequent training. We also found that auditory adaptation is possible in the absence of vision or error feedback. Finally, we show that this process involves a shift in sensitivity away from the abnormal auditory spatial cues to other cues that are less affected by the earplug. The mature auditory system is therefore capable of adapting to abnormal spatial information by reweighting different localization cues. These results suggest that training should facilitate acclimatization to hearing aids in the hearing impaired.

  12. The impact of maternal smoking on fast auditory brainstem responses.

    Science.gov (United States)

    Kable, Julie A; Coles, Claire D; Lynch, Mary Ellen; Carroll, Julie

    2009-01-01

    Deficits in auditory processing have been posited as one of the underlying neurodevelopmental consequences of maternal smoking during pregnancy that leads to later language and reading deficits. Fast auditory brainstem responses were used to assess differences in the sensory processing of auditory stimuli among infants with varying degrees of prenatal cigarette exposure. Maternal report of consumption of cigarettes and blood samples were collected in the hospital to assess exposure levels and participants were then seen at 6-months. To participate in the study, all infants had to pass the newborn hearing exam or a clinically administered ABR and have no known health problems. After controlling for participant age, maternal smoking during pregnancy was negatively related to latency of auditory brainstem responses. Of several potential covariates, only perinatal complications and maternal alcohol use were also related to latency of the ABR responses and maternal smoking level accounted for significant unique variance after controlling for these factors. These results suggest that the relationship between maternal smoking may lead to disruption in the sensory encoding of auditory stimuli.

  13. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    DEFF Research Database (Denmark)

    Arnfred, Sidse M

    2006-01-01

    ABSTRACT : Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400.Difference waves have mostly been employed in studies of later event...

  14. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder

    Directory of Open Access Journals (Sweden)

    Veema Lodhia

    2014-02-01

    Full Text Available Auditory Scene Analysis provides a useful framework for understanding atypical auditory perception in autism. Specifically, a failure to segregate the incoming acoustic energy into distinct auditory objects might explain the aversive reaction autistic individuals have to certain auditory stimuli or environments. Previous research with non-autistic participants has demonstrated the presence of an Object Related Negativity (ORN in the auditory event related potential that indexes pre-attentive processes associated with auditory scene analysis. Also evident is a later P400 component that is attention dependent and thought to be related to decision-making about auditory objects. We sought to determine whether there are differences between individuals with and without autism in the levels of processing indexed by these components. Electroencephalography (EEG was used to measure brain responses from a group of 16 autistic adults, and 16 age- and verbal-IQ-matched typically-developing adults. Auditory responses were elicited using lateralized dichotic pitch stimuli in which inter-aural timing differences create the illusory perception of a pitch that is spatially separated from a carrier noise stimulus. As in previous studies, control participants produced an ORN in response to the pitch stimuli. However, this component was significantly reduced in the participants with autism. In contrast, processing differences were not observed between the groups at the attention-dependent level (P400. These findings suggest that autistic individuals have difficulty segregating auditory stimuli into distinct auditory objects, and that this difficulty arises at an early pre-attentive level of processing.

  15. Central Auditory Maturation and Behavioral Outcome in Children with Auditory Neuropathy Spectrum Disorder who Use Cochlear Implants

    Science.gov (United States)

    Cardon, Garrett; Sharma, Anu

    2013-01-01

    Objective We examined cortical auditory development and behavioral outcomes in children with ANSD fitted with cochlear implants (CI). Design Cortical maturation, measured by P1 cortical auditory evoked potential (CAEP) latency, was regressed against scores on the Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS). Implantation age was also considered in relation to CAEP findings. Study Sample Cross-sectional and longitudinal samples of 24 and 11 children, respectively, with ANSD fitted with CIs. Result P1 CAEP responses were present in all children after implantation, though previous findings suggest that only 50-75% of ANSD children with hearing aids show CAEP responses. P1 CAEP latency was significantly correlated with participants' IT-MAIS scores. Furthermore, more children implanted before age two years showed normal P1 latencies, while those implanted later mainly showed delayed latencies. Longitudinal analysis revealed that most children showed normal or improved cortical maturation after implantation. Conclusion Cochlear implantation resulted in measureable cortical auditory development for all children with ANSD. Children fitted with CIs under age two years were more likely to show age-appropriate CAEP responses within 6 months after implantation, suggesting a possible sensitive period for cortical auditory development in ANSD. That CAEP responses were correlated with behavioral outcome highlights their clinical decision-making utility. PMID:23819618

  16. Central auditory maturation and behavioral outcome in children with auditory neuropathy spectrum disorder who use cochlear implants.

    Science.gov (United States)

    Cardon, Garrett; Sharma, Anu

    2013-09-01

    We examined cortical auditory development and behavioral outcomes in children with ANSD fitted with cochlear implants (CI). Cortical maturation, measured by P1 cortical auditory evoked potential (CAEP) latency, was regressed against scores on the infant toddler meaningful auditory integration scale (IT-MAIS). Implantation age was also considered in relation to CAEP findings. Cross-sectional and longitudinal samples of 24 and 11 children, respectively, with ANSD fitted with CIs. P1 CAEP responses were present in all children after implantation, though previous findings suggest that only 50-75% of ANSD children with hearing aids show CAEP responses. P1 CAEP latency was significantly correlated with participants' IT-MAIS scores. Furthermore, more children implanted before age two years showed normal P1 latencies, while those implanted later mainly showed delayed latencies. Longitudinal analysis revealed that most children showed normal or improved cortical maturation after implantation. Cochlear implantation resulted in measureable cortical auditory development for all children with ANSD. Children fitted with CIs under age two years were more likely to show age-appropriate CAEP responses within six months after implantation, suggesting a possible sensitive period for cortical auditory development in ANSD. That CAEP responses were correlated with behavioral outcome highlights their clinical decision-making utility.

  17. Auditory hallucinations treated by radio headphones.

    Science.gov (United States)

    Feder, R

    1982-09-01

    A young man with chronic auditory hallucinations was treated according to the principle that increasing external auditory stimulation decreases the likelihood of auditory hallucinations. Listening to a radio through stereo headphones in conditions of low auditory stimulation eliminated the patient's hallucinations.

  18. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  19. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Science.gov (United States)

    Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin

    2015-01-01

    Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  20. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy?

    Science.gov (United States)

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Friederici, Angela D

    2015-12-01

    Literacy acquisition is highly associated with auditory processing abilities, such as auditory discrimination. The event-related potential Mismatch Response (MMR) is an indicator for cortical auditory discrimination abilities and it has been found to be reduced in individuals with reading and writing impairments and also in infants at risk for these impairments. The goal of the present study was to analyze the relationship between auditory speech discrimination in infancy and writing abilities at school age within subjects, and to determine when auditory speech discrimination differences, relevant for later writing abilities, start to develop. We analyzed the MMR registered in response to natural syllables in German children with and without writing problems at two points during development, that is, at school age and at infancy, namely at age 1 month and 5 months. We observed MMR related auditory discrimination differences between infants with and without later writing problems, starting to develop at age 5 months-an age when infants begin to establish language-specific phoneme representations. At school age, these children with and without writing problems also showed auditory discrimination differences, reflected in the MMR, confirming a relationship between writing and auditory speech processing skills. Thus, writing problems at school age are, at least, partly grounded in auditory discrimination problems developing already during the first months of life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  2. Seizure semiology in autosomal dominant epilepsy with auditory features, due to novel LGI1 mutations.

    Science.gov (United States)

    Sadleir, Lynette G; Agher, Dahbia; Chabrol, Elodie; Elkouby, Léa; Leguern, Eric; Paterson, Sarah J; Harty, Rosie; Bellows, Susannah T; Berkovic, Samuel F; Scheffer, Ingrid E; Baulac, Stéphanie

    2013-12-01

    Mutations in LGI1 are found in 50% of families with autosomal dominant epilepsy with auditory features (ADEAF). In ADEAF, family members have predominantly lateral temporal lobe seizures but mesial temporal lobe semiology may also occur. We report here three families with novel LGI1 mutations (p.Ile82Thr, p.Glu225*, c.432-2_436del). Seven affected individuals reported an auditory aura and one a visual aura. A 10-year old boy described a cephalic aura followed by an unpleasant taste and oral automatisms without auditory, visual or psychic features. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  4. Auditory-olfactory synesthesia coexisting with auditory-visual synesthesia.

    Science.gov (United States)

    Jackson, Thomas E; Sandramouli, Soupramanien

    2012-09-01

    Synesthesia is an unusual condition in which stimulation of one sensory modality causes an experience in another sensory modality or when a sensation in one sensory modality causes another sensation within the same modality. We describe a previously unreported association of auditory-olfactory synesthesia coexisting with auditory-visual synesthesia. Given that many types of synesthesias involve vision, it is important that the clinician provide these patients with the necessary information and support that is available.

  5. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  6. The olivocochlear reflex strength and cochlear sensitivity are independently modulated by auditory cortex microstimulation.

    Science.gov (United States)

    Dragicevic, Constantino D; Aedo, Cristian; León, Alex; Bowen, Macarena; Jara, Natalia; Terreros, Gonzalo; Robles, Luis; Delano, Paul H

    2015-04-01

    In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity.

  7. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  8. Auditory Processing Training in Learning Disability

    OpenAIRE

    Nívea Franklin Chaves Martins; Hipólito Virgílio Magalhães Jr

    2006-01-01

    The aim of this case report was to promote a reflection about the importance of speech-therapy for stimulation a person with learning disability associated to language and auditory processing disorders. Data analysis considered the auditory abilities deficits identified in the first auditory processing test, held on April 30,2002 compared with the new auditory processing test done on May 13,2003,after one year of therapy directed to acoustic stimulation of auditory abilities disorders,in acco...

  9. Multiple Mechanosensory Modalities Influence Development of Auditory Function

    OpenAIRE

    Horowitz, Seth S.; Tanyu, Leslie H.; Simmons, Andrea Megela

    2007-01-01

    Sensory development can be dependent on input from multiple modalities. During metamorphic development, ranid frogs exhibit rapid reorganization of pathways mediating auditory, vestibular, and lateral line modalities as the animal transforms from an aquatic to an amphibious form. Here we show that neural sensitivity to the underwater particle motion component of sound follows a different developmental trajectory than that of the pressure component. Throughout larval stages, cells in the media...

  10. Relationship between auditory processing and affective prosody in schizophrenia.

    Science.gov (United States)

    Jahshan, Carol; Wynn, Jonathan K; Green, Michael F

    2013-02-01

    Patients with schizophrenia have well-established deficits in their ability to identify emotion from facial expression and tone of voice. In the visual modality, there is strong evidence that basic processing deficits contribute to impaired facial affect recognition in schizophrenia. However, few studies have examined the auditory modality for mechanisms underlying affective prosody identification. In this study, we explored links between different stages of auditory processing, using event-related potentials (ERPs), and affective prosody detection in schizophrenia. Thirty-six schizophrenia patients and 18 healthy control subjects received tasks of affective prosody, facial emotion identification, and tone matching, as well as two auditory oddball paradigms, one passive for mismatch negativity (MMN) and one active for P300. Patients had significantly reduced MMN and P300 amplitudes, impaired auditory and visual emotion recognition, and poorer tone matching performance, relative to healthy controls. Correlations between ERP and behavioral measures within the patient group revealed significant associations between affective prosody recognition and both MMN and P300 amplitudes. These relationships were modality specific, as MMN and P300 did not correlate with facial emotion recognition. The two ERP waves accounted for 49% of the variance in affective prosody in a regression analysis. Our results support previous suggestions of a relationship between basic auditory processing abnormalities and affective prosody dysfunction in schizophrenia, and indicate that both relatively automatic pre-attentive processes (MMN) and later attention-dependent processes (P300) are involved with accurate auditory emotion identification. These findings provide support for bottom-up (e.g., perceptually based) cognitive remediation approaches. Published by Elsevier B.V.

  11. Assessment and analysis of human laterality for manipulation and communication using the Rennes Laterality Questionnaire.

    Science.gov (United States)

    Prieur, Jacques; Barbu, Stéphanie; Blois-Heulin, Catherine

    2017-08-01

    Despite significant scientific advances, the nature of the left-hemispheric systems involved in language (speech and gesture) and manual actions is still unclear. To date, investigations of human laterality focused mainly on non-communication functions. Although gestural laterality data have been published for infants and children, relatively little is known about laterality of human gestural communication. This study investigated human laterality in depth considering non-communication manipulation actions and various gesture types involving hands, feet, face and ears. We constructed an online laterality questionnaire including 60 items related to daily activities. We collected 317 594 item responses by 5904 randomly selected participants. The highest percentages of strong left-lateralized (6.76%) and strong right-lateralized participants (75.19%) were for manipulation actions. The highest percentages of mixed left-lateralized (12.30%) and ambidextrous (50.23%) participants were found for head-related gestures. The highest percentage of mixed right-lateralized participants (55.33%) was found for auditory gestures. Every behavioural category showed a significant population-level right-side bias. More precisely, participants were predominantly right-lateralized for non-communication manual actions, for visual iconic, visual symbolic, visual deictic (with and without speech), tactile and auditory manual gestures as well as for podial and head-related gestures. Our findings support previous studies reporting that humans have left-brain predominance for gestures and complex motor activities such as tool-use. Our study shows that the Rennes Laterality Questionnaire is a useful research instrument to assess and analyse human laterality for both manipulation and communication functions.

  12. Selective attention impairment in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Volpato, Chiara; Prats Sedano, Maria Angeles; Silvoni, Stefano; Segato, Nicoletta; Cavinato, Marianna; Merico, Antonio; Piccione, Francesco; Palmieri, Arianna; Birbaumer, Niels

    2016-01-01

    Objective of this study was to evaluate attentional control mechanisms in amyotrophic lateral sclerosis (ALS) using an auditory event-related potentials (ERPs) paradigm. Fifteen mild to moderate ALS patients and 15 healthy controls were administered a brief neuropsychological test battery and an ERPs paradigm assessing selective attention. Four types of auditory stimuli were presented in random order: short standard (200 Hz, 200 ms), long standard (200 Hz, 500 ms), short deviant (1000 Hz, 200 ms) and long deviant (1000 Hz, 500 ms). Participants had to respond to the long deviant stimuli only. During the task the electroencephalogram (EEG) was recorded. The N200, P300 and re-orienting negativity (RON) ERP components were analysed. Compared to controls ALS patients showed reduced amplitudes and delayed latencies of N200, P300 and RON. These results could be attributable to both an alteration in change detection resulting in a reduction of the allocation and re-orientation of attentional resources or a general slowing or reduction of neural processing efficiency in the same system. The ERPs results support the hypothesis that ALS involves extramotor cognitive functions including auditory attentional processing at all processing stages, early (200 ms) and late (300-600 ms). These data prove the usefulness and sensitivity of the auditory ERPs in detection of cognitive functions in ALS patients.

  13. Depth-Dependent Temporal Response Properties in Core Auditory Cortex

    Science.gov (United States)

    Christianson, G. Björn; Sahani, Maneesh; Linden, Jennifer F.

    2013-01-01

    The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, and found systematic depth dependencies in responses to second-and-later noise bursts in slow (1–10 bursts/s) trains of noise bursts. At all depths, responses to noise bursts within a train usually decreased with increasing train rate; however, the rolloff with increasing train rate occurred at faster rates in more superficial layers. Moreover, in some recordings from mid-to-superficial layers, responses to noise bursts within a 3–4 bursts/s train were stronger than responses to noise bursts in slower trains. This non-monotonicity with train rate was especially pronounced in more superficial layers of the anterior auditory field, where responses to noise bursts within the context of a slow train were sometimes even stronger than responses to the noise burst at train onset. These findings may reflect depth dependence in suppression and recovery of cortical activity following a stimulus, which we suggest could arise from laminar differences in synaptic depression at feedforward and recurrent synapses. PMID:21900562

  14. Effect of handedness on auditory attentional performance in ADHD students

    Directory of Open Access Journals (Sweden)

    Schmidt SL

    2017-12-01

    Full Text Available Sergio L Schmidt,1,2 Ana Lucia Novais Carvaho,3 Eunice N Simoes2 1Department of Neurophysiology, State University of Rio de Janeiro, Rio de Janeiro, 2Neurology Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, 3Department of Psychology, Fluminense Federal University, Niteroi, Brazil Abstract: The relationship between handedness and attentional performance is poorly understood. Continuous performance tests (CPTs using visual stimuli are commonly used to assess subjects suffering from attention deficit hyperactivity disorder (ADHD. However, auditory CPTs are considered more useful than visual ones to evaluate classroom attentional problems. A previous study reported that there was a significant effect of handedness on students’ performance on a visual CPT. Here, we examined whether handedness would also affect CPT performance using only auditory stimuli. From an initial sample of 337 students, 11 matched pairs were selected. Repeated ANOVAs showed a significant effect of handedness on attentional performance that was exhibited even in the control group. Left-handers made more commission errors than right-handers. The results were interpreted considering that the association between ADHD and handedness reflects that consistent left-handers are less lateralized and have decreased interhemispheric connections. Auditory attentional data suggest that left-handers have problems in the impulsive/hyperactivity domain. In ADHD, clinical therapeutics and rehabilitation must take handedness into account because consistent sinistrals are more impulsive than dextrals. Keywords: attention, ADHD, consistent left-handers, auditory attention, continuous performance test

  15. [Auditory threshold for white noise].

    Science.gov (United States)

    Carrat, R; Thillier, J L; Durivault, J

    1975-01-01

    The liminal auditory threshold for white noise and for coloured noise was determined from a statistical survey of a group of 21 young people with normal hearing. The normal auditory threshold for white noise with a spectrum covering the whole of the auditory field is between -- 0.57 dB +/- 8.78. The normal auditory threshold for bands of filtered white noise (coloured noise with a central frequency corresponding to the pure frequencies usually employed in tonal audiometry) describes a typical curve which, instead of being homothetic to the usual tonal curves, sinks to low frequencies and then rises. The peak of this curve is replaced by a broad plateau ranging from 750 to 6000 Hz and contained in the concavity of the liminal tonal curves. The ear is therefore less sensitive but, at limited acoustic pressure, white noise first impinges with the same discrimination upon the whole of the conversational zone of the auditory field. Discovery of the audiometric threshold for white noise constitutes a synthetic method of measuring acuteness of hearing which considerably reduces the amount of manipulation required.

  16. Cdc42-dependent structural development of auditory supporting cells is required for wound healing at adulthood

    DEFF Research Database (Denmark)

    Anttonen, Tommi; Kirjavainen, Anna; Belevich, Ilya

    2012-01-01

    Cdc42 regulates the initial establishment of cytoskeletal and junctional structures, but only little is known about its role at later stages of cellular differentiation. We studied Cdc42's role in vivo in auditory supporting cells, epithelial cells with high structural complexity. Cdc42 inactivat......Cdc42 regulates the initial establishment of cytoskeletal and junctional structures, but only little is known about its role at later stages of cellular differentiation. We studied Cdc42's role in vivo in auditory supporting cells, epithelial cells with high structural complexity. Cdc42...

  17. Attention fine-tunes auditory-motor processing of speech sounds.

    Science.gov (United States)

    Möttönen, Riikka; van de Ven, Gido M; Watkins, Kate E

    2014-03-12

    The earliest stages of cortical processing of speech sounds take place in the auditory cortex. Transcranial magnetic stimulation (TMS) studies have provided evidence that the human articulatory motor cortex contributes also to speech processing. For example, stimulation of the motor lip representation influences specifically discrimination of lip-articulated speech sounds. However, the timing of the neural mechanisms underlying these articulator-specific motor contributions to speech processing is unknown. Furthermore, it is unclear whether they depend on attention. Here, we used magnetoencephalography and TMS to investigate the effect of attention on specificity and timing of interactions between the auditory and motor cortex during processing of speech sounds. We found that TMS-induced disruption of the motor lip representation modulated specifically the early auditory-cortex responses to lip-articulated speech sounds when they were attended. These articulator-specific modulations were left-lateralized and remarkably early, occurring 60-100 ms after sound onset. When speech sounds were ignored, the effect of this motor disruption on auditory-cortex responses was nonspecific and bilateral, and it started later, 170 ms after sound onset. The findings indicate that articulatory motor cortex can contribute to auditory processing of speech sounds even in the absence of behavioral tasks and when the sounds are not in the focus of attention. Importantly, the findings also show that attention can selectively facilitate the interaction of the auditory cortex with specific articulator representations during speech processing.

  18. Developmental evaluation of atypical auditory sampling in dyslexia: Functional and structural evidence.

    Science.gov (United States)

    Lizarazu, Mikel; Lallier, Marie; Molinaro, Nicola; Bourguignon, Mathieu; Paz-Alonso, Pedro M; Lerma-Usabiaga, Garikoitz; Carreiras, Manuel

    2015-12-01

    Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information at either syllabic- or phonemic-rates is still under debate. In addition, whereas neuroanatomical alterations in auditory regions have been documented in dyslexic readers, whether and how these structural anomalies are linked to auditory sampling and reading deficits remains poorly understood. In this study, we measured auditory neural synchronization at different frequencies corresponding to relevant phonological spectral components of speech in children and adults with and without dyslexia, using magnetoencephalography. Furthermore, structural MRI was used to estimate cortical thickness of the auditory cortex of participants. Dyslexics showed atypical brain synchronization at both syllabic (slow) and phonemic (fast) rates. Interestingly, while a left hemispheric asymmetry in cortical thickness was functionally related to a stronger left hemispheric lateralization of neural synchronization to stimuli presented at the phonemic rate in skilled readers, the same anatomical index in dyslexics was related to a stronger right hemispheric dominance for neural synchronization to syllabic-rate auditory stimuli. These data suggest that the acoustic sampling deficit in development dyslexia might be linked to an atypical specialization of the auditory cortex to both low and high frequency amplitude modulations. © 2015 Wiley Periodicals, Inc.

  19. Auditory and visual novelty processing in normally-developing Kenyan children

    Science.gov (United States)

    Kihara, Michael; Hogan, Alexandra M.; Newton, Charles R.; Garrashi, Harrun H.; Neville, Brian R.; de Haan, Michelle

    2010-01-01

    Objective The aim of this study was to describe the normative development of the electrophysiological response to auditory and visual novelty in children living in rural Kenya. Methods We examined event-related potentials (ERPs) elicited by novel auditory and visual stimuli in 178 normally-developing children aged 4–12 years (86 boys, mean 6.7 years, SD 1.8 years and 92 girls, mean 6.6 years, SD 1.5 years) who were living in rural Kenya. Results The latency of early components (auditory P1 and visual N170) decreased with age and their amplitudes also tended to decrease with age. The changes in longer-latency components (Auditory N2, P3a and visual Nc, P3a) were more modality-specific; the N2 amplitude to novel stimuli decreased with age and the auditory P3a increased in both latency and amplitude with age. The Nc amplitude decreased with age while visual P3a amplitude tended to increase, though not linearly. Conclusions The changes in the timing and magnitude of early-latency ERPs likely reflect brain maturational processes. The age-related changes to auditory stimuli generally occurred later than those to visual stimuli suggesting that visual processing matures faster than auditory processing. Significance ERPs may be used to assess children’s cognitive development in rural areas of Africa. PMID:20080442

  20. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    Science.gov (United States)

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Interactions between "what" and "when" in the auditory system: temporal predictability enhances repetition suppression.

    Science.gov (United States)

    Costa-Faidella, Jordi; Baldeweg, Torsten; Grimm, Sabine; Escera, Carles

    2011-12-14

    Neural activity in the auditory system decreases with repeated stimulation, matching stimulus probability in multiple timescales. This phenomenon, known as stimulus-specific adaptation, is interpreted as a neural mechanism of regularity encoding aiding auditory object formation. However, despite the overwhelming literature covering recordings from single-cell to scalp auditory-evoked potential (AEP), stimulation timing has received little interest. Here we investigated whether timing predictability enhances the experience-dependent modulation of neural activity associated with stimulus probability encoding. We used human electrophysiological recordings in healthy participants who were exposed to passive listening of sound sequences. Pure tones of different frequencies were delivered in successive trains of a variable number of repetitions, enabling the study of sequential repetition effects in the AEP. In the predictable timing condition, tones were delivered with isochronous interstimulus intervals; in the unpredictable timing condition, interstimulus intervals varied randomly. Our results show that unpredictable stimulus timing abolishes the early part of the repetition positivity, an AEP indexing auditory sensory memory trace formation, while leaving the later part (≈ >200 ms) unaffected. This suggests that timing predictability aids the propagation of repetition effects upstream the auditory pathway, most likely from association auditory cortex (including the planum temporale) toward primary auditory cortex (Heschl's gyrus) and beyond, as judged by the timing of AEP latencies. This outcome calls for attention to stimulation timing in future experiments regarding sensory memory trace formation in AEP measures and stimulus probability encoding in animal models.

  2. When and where of auditory spatial processing in cortex: a novel approach using electrotomography.

    Directory of Open Access Journals (Sweden)

    Jörg Lewald

    Full Text Available The modulation of brain activity as a function of auditory location was investigated using electro-encephalography in combination with standardized low-resolution brain electromagnetic tomography. Auditory stimuli were presented at various positions under anechoic conditions in free-field space, thus providing the complete set of natural spatial cues. Variation of electrical activity in cortical areas depending on sound location was analyzed by contrasts between sound locations at the time of the N1 and P2 responses of the auditory evoked potential. A clear-cut double dissociation with respect to the cortical locations and the points in time was found, indicating spatial processing (1 in the primary auditory cortex and posterodorsal auditory cortical pathway at the time of the N1, and (2 in the anteroventral pathway regions about 100 ms later at the time of the P2. Thus, it seems as if both auditory pathways are involved in spatial analysis but at different points in time. It is possible that the late processing in the anteroventral auditory network reflected the sharing of this region by analysis of object-feature information and spectral localization cues or even the integration of spatial and non-spatial sound features.

  3. Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude

    Science.gov (United States)

    Halder, Sebastian; Hammer, Eva Maria; Kleih, Sonja Claudia; Bogdan, Martin; Rosenstiel, Wolfgang; Birbaumer, Niels; Kübler, Andrea

    2013-01-01

    Objective Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. Methods Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. Results Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. Conclusions Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. Significance Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. PMID:23457444

  4. Prediction of auditory and visual p300 brain-computer interface aptitude.

    Directory of Open Access Journals (Sweden)

    Sebastian Halder

    Full Text Available OBJECTIVE: Brain-computer interfaces (BCIs provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. METHODS: Forty healthy participants performed an electroencephalography (EEG based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. RESULTS: Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. CONCLUSIONS: Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. SIGNIFICANCE: Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population.

  5. Devices and Procedures for Auditory Learning.

    Science.gov (United States)

    Ling, Daniel

    1986-01-01

    The article summarizes information on assistive devices (hearing aids, cochlear implants, tactile aids, visual aids) and rehabilitation procedures (auditory training, speechreading, cued speech, and speech production) to aid the auditory learning of the hearing impaired.(DB)

  6. Auditory adaptation improves tactile frequency perception

    NARCIS (Netherlands)

    Crommett, L.E.; Pérez Bellido, A.; Yau, J.M.

    2017-01-01

    Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals

  7. Auditory learning: a developmental method.

    Science.gov (United States)

    Zhang, Yilu; Weng, Juyang; Hwang, Wey-Shiuan

    2005-05-01

    Motivated by the human autonomous development process from infancy to adulthood, we have built a robot that develops its cognitive and behavioral skills through real-time interactions with the environment. We call such a robot a developmental robot. In this paper, we present the theory and the architecture to implement a developmental robot and discuss the related techniques that address an array of challenging technical issues. As an application, experimental results on a real robot, self-organizing, autonomous, incremental learner (SAIL), are presented with emphasis on its audition perception and audition-related action generation. In particular, the SAIL robot conducts the auditory learning from unsegmented and unlabeled speech streams without any prior knowledge about the auditory signals, such as the designated language or the phoneme models. Neither available before learning starts are the actions that the robot is expected to perform. SAIL learns the auditory commands and the desired actions from physical contacts with the environment including the trainers.

  8. Auditory presentation of experimental data

    Science.gov (United States)

    Lunney, David; Morrison, Robert C.

    1990-08-01

    Our research group has been working for several years on the development of auditory alternatives to visual graphs, primarily in order to give blind science students and scientists access to instrumental measurements. In the course of this work we have tried several modes for auditory presentation of data: synthetic speech, tones of varying pitch, complex waveforms, electronic music, and various non-musical sounds. Our most successful translation of data into sound has been presentation of infrared spectra as musical patterns. We have found that if the stick spectra of two compounds are visibly different, their musical patterns will be audibly different. Other possibilities for auditory presentation of data are also described, among them listening to Fourier transforms of spectra, and encoding data in complex waveforms (including synthetic speech).

  9. Context effects on auditory distraction

    Science.gov (United States)

    Chen, Sufen; Sussman, Elyse S.

    2014-01-01

    The purpose of the study was to test the hypothesis that sound context modulates the magnitude of auditory distraction, indexed by behavioral and electrophysiological measures. Participants were asked to identify tone duration, while irrelevant changes occurred in tone frequency, tone intensity, and harmonic structure. Frequency deviants were randomly intermixed with standards (Uni-Condition), with intensity deviants (Bi-Condition), and with both intensity and complex deviants (Tri-Condition). Only in the Tri-Condition did the auditory distraction effect reflect the magnitude difference among the frequency and intensity deviants. The mixture of the different types of deviants in the Tri-Condition modulated the perceived level of distraction, demonstrating that the sound context can modulate the effect of deviance level on processing irrelevant acoustic changes in the environment. These findings thus indicate that perceptual contrast plays a role in change detection processes that leads to auditory distraction. PMID:23886958

  10. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  11. Octave effect in auditory attention.

    Science.gov (United States)

    Borra, Tobias; Versnel, Huib; Kemner, Chantal; van Opstal, A John; van Ee, Raymond

    2013-09-17

    After hearing a tone, the human auditory system becomes more sensitive to similar tones than to other tones. Current auditory models explain this phenomenon by a simple bandpass attention filter. Here, we demonstrate that auditory attention involves multiple pass-bands around octave-related frequencies above and below the cued tone. Intriguingly, this "octave effect" not only occurs for physically presented tones, but even persists for the missing fundamental in complex tones, and for imagined tones. Our results suggest neural interactions combining octave-related frequencies, likely located in nonprimary cortical regions. We speculate that this connectivity scheme evolved from exposure to natural vibrations containing octave-related spectral peaks, e.g., as produced by vocal cords.

  12. ALS (Amyotrophic Lateral Sclerosis)

    Science.gov (United States)

    ... Disorders » Patient & Caregiver Education » Fact Sheets Amyotrophic Lateral Sclerosis (ALS) Fact Sheet What is amyotrophic lateral sclerosis? ... I get more information? What is amyotrophic lateral sclerosis? Amyotrophic lateral sclerosis (ALS) is a group of ...

  13. Odors bias time perception in visual and auditory modalities

    Directory of Open Access Journals (Sweden)

    Zhenzhu eYue

    2016-04-01

    Full Text Available Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 ms or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor. The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a

  14. Odors Bias Time Perception in Visual and Auditory Modalities.

    Science.gov (United States)

    Yue, Zhenzhu; Gao, Tianyu; Chen, Lihan; Wu, Jiashuang

    2016-01-01

    Previous studies have shown that emotional states alter our perception of time. However, attention, which is modulated by a number of factors, such as emotional events, also influences time perception. To exclude potential attentional effects associated with emotional events, various types of odors (inducing different levels of emotional arousal) were used to explore whether olfactory events modulated time perception differently in visual and auditory modalities. Participants were shown either a visual dot or heard a continuous tone for 1000 or 4000 ms while they were exposed to odors of jasmine, lavender, or garlic. Participants then reproduced the temporal durations of the preceding visual or auditory stimuli by pressing the spacebar twice. Their reproduced durations were compared to those in the control condition (without odor). The results showed that participants produced significantly longer time intervals in the lavender condition than in the jasmine or garlic conditions. The overall influence of odor on time perception was equivalent for both visual and auditory modalities. The analysis of the interaction effect showed that participants produced longer durations than the actual duration in the short interval condition, but they produced shorter durations in the long interval condition. The effect sizes were larger for the auditory modality than those for the visual modality. Moreover, by comparing performance across the initial and the final blocks of the experiment, we found odor adaptation effects were mainly manifested as longer reproductions for the short time interval later in the adaptation phase, and there was a larger effect size in the auditory modality. In summary, the present results indicate that odors imposed differential impacts on reproduced time durations, and they were constrained by different sensory modalities, valence of the emotional events, and target durations. Biases in time perception could be accounted for by a framework of

  15. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2009-01-03

    Previous studies have shown that the functional development of auditory system is substantially influenced by the structure of environmental acoustic inputs in early life. In our present study, we investigated the effects of early auditory enrichment with music on rat auditory discrimination learning. We found that early auditory enrichment with music from postnatal day (PND) 14 enhanced learning ability in auditory signal-detection task and in sound duration-discrimination task. In parallel, a significant increase was noted in NMDA receptor subunit NR2B protein expression in the auditory cortex. Furthermore, we found that auditory enrichment with music starting from PND 28 or 56 did not influence NR2B expression in the auditory cortex. No difference was found in the NR2B expression in the inferior colliculus (IC) between music-exposed and normal rats, regardless of when the auditory enrichment with music was initiated. Our findings suggest that early auditory enrichment with music influences NMDA-mediated neural plasticity, which results in enhanced auditory discrimination learning.

  16. Auditory feedback blocks memory benefits of cueing during sleep.

    Science.gov (United States)

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-10-28

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep.

  17. Auditory Hallucinations Nomenclature and Classification

    NARCIS (Netherlands)

    Blom, Jan Dirk; Sommer, Iris E. C.

    Introduction: The literature on the possible neurobiologic correlates of auditory hallucinations is expanding rapidly. For an adequate understanding and linking of this emerging knowledge, a clear and uniform nomenclature is a prerequisite. The primary purpose of the present article is to provide an

  18. Auditory Risk of Air Rifles

    Science.gov (United States)

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  19. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. Nigel: A Severe Auditory Dyslexic

    Science.gov (United States)

    Cotterell, Gill

    1976-01-01

    Reported is the case study of a boy with severe auditory dyslexia who received remedial treatment from the age of four and progressed through courses at a technical college and a 3-year apprenticeship course in mechanics by the age of eighteen. (IM)

  1. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick Statistics About Voice, Speech, Language Speech and Language Developmental Milestones What Is Voice? What Is Speech? What Is Language? ... communication provides better outcomes for children with cochlear implants University of Texas at Dallas ...

  2. Functional maps of human auditory cortex: effects of acoustic features and attention.

    Directory of Open Access Journals (Sweden)

    David L Woods

    Full Text Available BACKGROUND: While human auditory cortex is known to contain tonotopically organized auditory cortical fields (ACFs, little is known about how processing in these fields is modulated by other acoustic features or by attention. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging (fMRI and population-based cortical surface analysis to characterize the tonotopic organization of human auditory cortex and analyze the influence of tone intensity, ear of delivery, scanner background noise, and intermodal selective attention on auditory cortex activations. Medial auditory cortex surrounding Heschl's gyrus showed large sensory (unattended activations with two mirror-symmetric tonotopic fields similar to those observed in non-human primates. Sensory responses in medial regions had symmetrical distributions with respect to the left and right hemispheres, were enlarged for tones of increased intensity, and were enhanced when sparse image acquisition reduced scanner acoustic noise. Spatial distribution analysis suggested that changes in tone intensity shifted activation within isofrequency bands. Activations to monaural tones were enhanced over the hemisphere contralateral to stimulation, where they produced activations similar to those produced by binaural sounds. Lateral regions of auditory cortex showed small sensory responses that were larger in the right than left hemisphere, lacked tonotopic organization, and were uninfluenced by acoustic parameters. Sensory responses in both medial and lateral auditory cortex decreased in magnitude throughout stimulus blocks. Attention-related modulations (ARMs were larger in lateral than medial regions of auditory cortex and appeared to arise primarily in belt and parabelt auditory fields. ARMs lacked tonotopic organization, were unaffected by acoustic parameters, and had distributions that were distinct from those of sensory responses. Unlike the gradual adaptation seen for sensory responses

  3. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.

    Science.gov (United States)

    Profant, O; Škoch, A; Balogová, Z; Tintěra, J; Hlinka, J; Syka, J

    2014-02-28

    Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. Three parameters were evaluated by morphometry: the volume of the gray matter, the surface area of the gyrus and the thickness of the cortex. In all experimental groups the surface area and gray matter volume were larger on the left side in Heschl's gyrus and planum temporale and slightly larger in the gyrus frontalis superior, whereas they were larger on the right side in the primary visual cortex. Almost all of the measured parameters were significantly smaller in the elderly subjects in Heschl's gyrus, planum temporale and gyrus frontalis superior. Aging did not change the side asymmetry (laterality) of the gyri. In the central part of the auditory pathway above the inferior colliculus, a trend toward an effect of aging was present in the axial vector of the diffusion (L1) variable of DTI, with increased values observed in elderly subjects. A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes. Copyright © 2013 IBRO. Published by Elsevier Ltd

  5. Eye movement preparation causes spatially-specific modulation of auditory processing: new evidence from event-related brain potentials.

    Science.gov (United States)

    Gherri, Elena; Driver, Jon; Eimer, Martin

    2008-08-11

    To investigate whether saccade preparation can modulate processing of auditory stimuli in a spatially-specific fashion, ERPs were recorded for a Saccade task, in which the direction of a prepared saccade was cued, prior to an imperative auditory stimulus indicating whether to execute or withhold that saccade. For comparison, we also ran a conventional Covert Attention task, where the same cue now indicated the direction for a covert endogenous attentional shift prior to an auditory target-nontarget discrimination. Lateralised components previously observed during cued shifts of attention (ADAN, LDAP) did not differ significantly across tasks, indicating commonalities between auditory spatial attention and oculomotor control. Moreover, in both tasks, spatially-specific modulation of auditory processing was subsequently found, with enhanced negativity for lateral auditory nontarget stimuli at cued versus uncued locations. This modulation started earlier and was more pronounced for the Covert Attention task, but was also reliably present in the Saccade task, demonstrating that the effects of covert saccade preparation on auditory processing can be similar to effects of endogenous covert attentional orienting, albeit smaller. These findings provide new evidence for similarities but also some differences between oculomotor preparation and shifts of endogenous spatial attention. They also show that saccade preparation can affect not just vision, but also sensory processing of auditory events.

  6. High-frequency ex vivo ultrasound imaging of the auditory system.

    NARCIS (Netherlands)

    Brown, J.A.; Torbatian, Z.; Adamson, R.B.; Wijhe, R. Van; Pennings, R.J.E.; Lockwood, G.R.; Bance, M.L.

    2009-01-01

    A 50MHz array-based imaging system was used to obtain high-resolution images of the ear and auditory system. This previously described custom built imaging system (Brown et al. 2004a, 2004b; Brown and Lockwood 2005) is capable of 50 microm axial resolution, and lateral resolution varying from 80

  7. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    Science.gov (United States)

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  8. Auditory event files: integrating auditory perception and action planning.

    Science.gov (United States)

    Zmigrod, Sharon; Hommel, Bernhard

    2009-02-01

    The features of perceived objects are processed in distinct neural pathways, which call for mechanisms that integrate the distributed information into coherent representations (the binding problem). Recent studies of sequential effects have demonstrated feature binding not only in perception, but also across (visual) perception and action planning. We investigated whether comparable effects can be obtained in and across auditory perception and action. The results from two experiments revealed effects indicative of spontaneous integration of auditory features (pitch and loudness, pitch and location), as well as evidence for audio-manual stimulus-response integration. Even though integration takes place spontaneously, features related to task-relevant stimulus or response dimensions are more likely to be integrated. Moreover, integration seems to follow a temporal overlap principle, with features coded close in time being more likely to be bound together. Taken altogether, the findings are consistent with the idea of episodic event files integrating perception and action plans.

  9. The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties

    Directory of Open Access Journals (Sweden)

    Schwellnus Britta

    2008-07-01

    Full Text Available Abstract Background The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae. Results The auditory cortical area of P. discolor is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 μm and a medio-lateral distance of about 7000 μm on the flattened cortical surface. The auditory cortices of ten adult P. discolor were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions. Based on neurophysiological and neuroanatomical criteria, the auditory cortex of P. discolor could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only. Conclusion The auditory cortex of P. discolor resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The

  10. The auditory brainstem is a barometer of rapid auditory learning.

    Science.gov (United States)

    Skoe, E; Krizman, J; Spitzer, E; Kraus, N

    2013-07-23

    To capture patterns in the environment, neurons in the auditory brainstem rapidly alter their firing based on the statistical properties of the soundscape. How this neural sensitivity relates to behavior is unclear. We tackled this question by combining neural and behavioral measures of statistical learning, a general-purpose learning mechanism governing many complex behaviors including language acquisition. We recorded complex auditory brainstem responses (cABRs) while human adults implicitly learned to segment patterns embedded in an uninterrupted sound sequence based on their statistical characteristics. The brainstem's sensitivity to statistical structure was measured as the change in the cABR between a patterned and a pseudo-randomized sequence composed from the same set of sounds but differing in their sound-to-sound probabilities. Using this methodology, we provide the first demonstration that behavioral-indices of rapid learning relate to individual differences in brainstem physiology. We found that neural sensitivity to statistical structure manifested along a continuum, from adaptation to enhancement, where cABR enhancement (patterned>pseudo-random) tracked with greater rapid statistical learning than adaptation. Short- and long-term auditory experiences (days to years) are known to promote brainstem plasticity and here we provide a conceptual advance by showing that the brainstem is also integral to rapid learning occurring over minutes. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  13. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  14. Turning down the noise: the benefit of musical training on the aging auditory brain.

    Science.gov (United States)

    Alain, Claude; Zendel, Benjamin Rich; Hutka, Stefanie; Bidelman, Gavin M

    2014-02-01

    Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing sensitivity), play a critical role in governing hearing abilities late into life. Current training regimens aimed to improve central auditory processing abilities have experienced limited success in promoting listening benefits. Interestingly, recent studies suggest that in young adults, musical training positively modifies neural mechanisms, providing robust, long-lasting improvements to hearing abilities as well as to non-auditory tasks that engage cognitive control. These results offer the encouraging possibility that musical training might be used to counteract age-related changes in auditory cognition commonly observed in older adults. Here, we reviewed studies that have examined the effects of age and musical experience on auditory cognition with an emphasis on auditory scene analysis. We infer that musical training may offer potential benefits to complex listening and might be utilized as a means to delay or even attenuate declines in auditory perception and cognition that often emerge later in life. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  16. Perception of Complex Auditory Patterns.

    Science.gov (United States)

    1987-11-02

    and Piercy, M. (1973). Defects of non - verbal auditory perception in children with developmental aphasia . Nature (London), 241, 468-469. Watson, C.S...LII, zS 4p ETV I Hearing and Communication Laboratory Department of Speech and Hearing Sciences 7 Indiana University Bloomington, Indiana 47405 Final...Technical Report Air Force Office of Scientific Research AFOSR-84-0337 September 1, 1984 to August 31, 1987 Hearing and Communication Laboratory

  17. Auditory based neuropsychology in neurosurgery.

    Science.gov (United States)

    Wester, Knut

    2008-04-01

    In this article, an account is given on the author's experience with auditory based neuropsychology in a clinical, neurosurgical setting. The patients that were included in the studies are patients with traumatic or vascular brain lesions, patients undergoing brain surgery to alleviate symptoms of Parkinson's disease, or patients harbouring an intracranial arachnoid cyst affecting the temporal or the frontal lobe. The aims of these investigations were to collect information about the location of cognitive processes in the human brain, or to disclose dyscognition in patients with an arachnoid cyst. All the patients were tested with the DL technique. In addition, the cyst patients were subjected to a number of non-auditory, standard neuropsychological tests, such as Benton Visual Retention Test, Street Gestalt Test, Stroop Test and Trails Test A and B. The neuropsychological tests revealed that arachnoid cysts in general cause dyscognition that also includes auditory processes, and more importantly, that these cognition deficits normalise after surgical removal of the cyst. These observations constitute strong evidence in favour of surgical decompression.

  18. Auditory brainstem implant program development.

    Science.gov (United States)

    Schwartz, Marc S; Wilkinson, Eric P

    2017-08-01

    Auditory brainstem implants (ABIs), which have previously been used to restore auditory perception to deaf patients with neurofibromatosis type 2 (NF2), are now being utilized in other situations, including treatment of congenitally deaf children with cochlear malformations or cochlear nerve deficiencies. Concurrent with this expansion of indications, the number of centers placing and expressing interest in placing ABIs has proliferated. Because ABI placement involves posterior fossa craniotomy in order to access the site of implantation on the cochlear nucleus complex of the brainstem and is not without significant risk, we aim to highlight issues important in developing and maintaining successful ABI programs that would be in the best interests of patients. Especially with pediatric patients, the ultimate benefits of implantation will be known only after years of growth and development. These benefits have yet to be fully elucidated and continue to be an area of controversy. The limited number of publications in this area were reviewed. Review of the current literature was performed. Disease processes, risk/benefit analyses, degrees of evidence, and U.S. Food and Drug Administration approvals differ among various categories of patients in whom auditory brainstem implantation could be considered for use. We suggest sets of criteria necessary for the development of successful and sustaining ABI programs, including programs for NF2 patients, postlingually deafened adult nonneurofibromatosis type 2 patients, and congenitally deaf pediatric patients. Laryngoscope, 127:1909-1915, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Hemispheric asymmetry in the auditory facilitation effect in dual-stream rapid serial visual presentation tasks.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeshima

    Full Text Available Even though auditory stimuli do not directly convey information related to visual stimuli, they often improve visual detection and identification performance. Auditory stimuli often alter visual perception depending on the reliability of the sensory input, with visual and auditory information reciprocally compensating for ambiguity in the other sensory domain. Perceptual processing is characterized by hemispheric asymmetry. While the left hemisphere is more involved in linguistic processing, the right hemisphere dominates spatial processing. In this context, we hypothesized that an auditory facilitation effect in the right visual field for the target identification task, and a similar effect would be observed in the left visual field for the target localization task. In the present study, we conducted target identification and localization tasks using a dual-stream rapid serial visual presentation. When two targets are embedded in a rapid serial visual presentation stream, the target detection or discrimination performance for the second target is generally lower than for the first target; this deficit is well known as attentional blink. Our results indicate that auditory stimuli improved target identification performance for the second target within the stream when visual stimuli were presented in the right, but not the left visual field. In contrast, auditory stimuli improved second target localization performance when visual stimuli were presented in the left visual field. An auditory facilitation effect was observed in perceptual processing, depending on the hemispheric specialization. Our results demonstrate a dissociation between the lateral visual hemifield in which a stimulus is projected and the kind of visual judgment that may benefit from the presentation of an auditory cue.

  20. Changes in auditory perceptions and cortex resulting from hearing recovery after extended congenital unilateral hearing loss

    Directory of Open Access Journals (Sweden)

    Jill B Firszt

    2013-12-01

    Full Text Available Monaural hearing induces auditory system reorganization. Imbalanced input also degrades time-intensity cues for sound localization and signal segregation for listening in noise. While there have been studies of bilateral auditory deprivation and later hearing restoration (e.g. cochlear implants, less is known about unilateral auditory deprivation and subsequent hearing improvement. We investigated effects of long-term congenital unilateral hearing loss on localization, speech understanding, and cortical organization following hearing recovery. Hearing in the congenitally affected ear of a 41 year old female improved significantly after stapedotomy and reconstruction. Pre-operative hearing threshold levels showed unilateral, mixed, moderately-severe to profound hearing loss. The contralateral ear had hearing threshold levels within normal limits. Testing was completed prior to, and three and nine months after surgery. Measurements were of sound localization with intensity-roved stimuli and speech recognition in various noise conditions. We also evoked magnetic resonance signals with monaural stimulation to the unaffected ear. Activation magnitudes were determined in core, belt, and parabelt auditory cortex regions via an interrupted single event design. Hearing improvement following 40 years of congenital unilateral hearing loss resulted in substantially improved sound localization and speech recognition in noise. Auditory cortex also reorganized. Contralateral auditory cortex responses were increased after hearing recovery and the extent of activated cortex was bilateral, including a greater portion of the posterior superior temporal plane. Thus, prolonged predominant monaural stimulation did not prevent auditory system changes consequent to restored binaural hearing. Results support future research of unilateral auditory deprivation effects and plasticity, with consideration for length of deprivation, age at hearing correction, degree and type

  1. Spatial auditory attention is modulated by tactile priming.

    Science.gov (United States)

    Menning, Hans; Ackermann, Hermann; Hertrich, Ingo; Mathiak, Klaus

    2005-07-01

    Previous studies have shown that cross-modal processing affects perception at a variety of neuronal levels. In this study, event-related brain responses were recorded via whole-head magnetoencephalography (MEG). Spatial auditory attention was directed via tactile pre-cues (primes) to one of four locations in the peripersonal space (left and right hand versus face). Auditory stimuli were white noise bursts, convoluted with head-related transfer functions, which ensured spatial perception of the four locations. Tactile primes (200-300 ms prior to acoustic onset) were applied randomly to one of these locations. Attentional load was controlled by three different visual distraction tasks. The auditory P50m (about 50 ms after stimulus onset) showed a significant "proximity" effect (larger responses to face stimulation as well as a "contralaterality" effect between side of stimulation and hemisphere). The tactile primes essentially reduced both the P50m and N100m components. However, facial tactile pre-stimulation yielded an enhanced ipsilateral N100m. These results show that earlier responses are mainly governed by exogenous stimulus properties whereas cross-sensory interaction is spatially selective at a later (endogenous) processing stage.

  2. Music training alters the course of adolescent auditory development.

    Science.gov (United States)

    Tierney, Adam T; Krizman, Jennifer; Kraus, Nina

    2015-08-11

    Fundamental changes in brain structure and function during adolescence are well-characterized, but the extent to which experience modulates adolescent neurodevelopment is not. Musical experience provides an ideal case for examining this question because the influence of music training begun early in life is well-known. We investigated the effects of in-school music training, previously shown to enhance auditory skills, versus another in-school training program that did not focus on development of auditory skills (active control). We tested adolescents on neural responses to sound and language skills before they entered high school (pretraining) and again 3 y later. Here, we show that in-school music training begun in high school prolongs the stability of subcortical sound processing and accelerates maturation of cortical auditory responses. Although phonological processing improved in both the music training and active control groups, the enhancement was greater in adolescents who underwent music training. Thus, music training initiated as late as adolescence can enhance neural processing of sound and confer benefits for language skills. These results establish the potential for experience-driven brain plasticity during adolescence and demonstrate that in-school programs can engender these changes.

  3. The Syndrome of Enlarged Vestibule and Dysplasia of the Lateral Semicircular Canal in Congenital Deafness.

    Science.gov (United States)

    Lagundoye, S B; Martinson, F D; Fajemisin, A A

    1975-05-01

    A 5-year-old deaf-mute girl was shown on petrous bone tomography to have bilateral enlarged vestibules with assimilation of the lateral semicircular cannals, bilateral absence of the cochlea, aplasia of the left internal auditory canal with only the facial nerve compartment being present, and hypoplasia of the right internal auditory canal. The embryological basis of these inner ear abnormalities is discussed.

  4. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Goto, Tetsu; Sanefuji, Wakako; Yamamoto, Tomoka; Sakai, Saeko; Uchida, Hiroyuki; Hirata, Masayuki; Mohri, Ikuko; Yorifuji, Shiro; Taniike, Masako

    2012-01-25

    The aim of this study was to investigate the differential responses of the primary auditory cortex to auditory stimuli in autistic spectrum disorder with or without auditory hypersensitivity. Auditory-evoked field values were obtained from 18 boys (nine with and nine without auditory hypersensitivity) with autistic spectrum disorder and 12 age-matched controls. Autistic disorder with hypersensitivity showed significantly more delayed M50/M100 peak latencies than autistic disorder without hypersensitivity or the control. M50 dipole moments in the hypersensitivity group were larger than those in the other two groups [corrected]. M50/M100 peak latencies were correlated with the severity of auditory hypersensitivity; furthermore, severe hypersensitivity induced more behavioral problems. This study indicates auditory hypersensitivity in autistic spectrum disorder as a characteristic response of the primary auditory cortex, possibly resulting from neurological immaturity or functional abnormalities in it. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  5. Left auditory cortex is involved in pairwise comparisons of the direction of frequency modulated tones

    Directory of Open Access Journals (Sweden)

    Nicole eAngenstein

    2013-07-01

    Full Text Available Evaluating series of complex sounds like those in speech and music requires sequential comparisons to extract task-relevant relations between subsequent sounds. With the present functional magnetic resonance imaging (fMRI study, we investigated whether sequential comparison of a specific acoustic feature within pairs of tones leads to a change in lateralized processing in the auditory cortex of humans. For this we used the active categorization of the direction (up versus down of slow frequency modulated (FM tones. Several studies suggest that this task is mainly processed in the right auditory cortex. These studies, however, tested only the categorization of the FM direction of each individual tone. In the present study we ask the question whether the right lateralized processing changes when, in addition, the FM direction is compared within pairs of successive tones. For this we use an experimental approach involving contralateral noise presentation in order to explore the contributions made by the left and right auditory cortex in the completion of the auditory task. This method has already been applied to confirm the right-lateralized processing of the FM direction of individual tones. In the present study, the subjects were required to perform, in addition, a sequential comparison of the FM-direction in pairs of tones. The results suggest a division of labor between the two hemispheres such that the FM direction of each individual tone is mainly processed in the right auditory cortex whereas the sequential comparison of this feature between tones in a pair is probably performed in the left auditory cortex.

  6. Auditory neuropathy/Auditory dyssynchrony - An underdiagnosed condition: A case report with review of literature

    OpenAIRE

    Vinish Agarwal; Saurabh Varshney; Sampan Singh Bist; Sanjiv Bhagat; Sarita Mishra; Vivek Jha

    2012-01-01

    Auditory neuropathy (AN)/auditory dyssynchrony (AD) is a very often missed diagnosis, hence an underdiagnosed condition in clinical practice. Auditory neuropathy is a condition in which patients, on audiologic evaluation, are found to have normal outer hair cell function and abnormal neural function at the level of the eighth nerve. These patients, on clinical testing, are found to have normal otoacoustic emissions, whereas auditory brainstem response audiometry reveals the absence of neural ...

  7. The Identification and Remediation of Auditory Problems

    Science.gov (United States)

    Kottler, Sylvia B.

    1972-01-01

    Procedures and sample activities are provided for both identifying and training children with auditory perception problems related to sound localization, sound discrimination, and sound sequencing. (KW)

  8. Human Factors Military Lexicon: Auditory Displays

    National Research Council Canada - National Science Library

    Letowski, Tomasz

    2001-01-01

    .... In addition to definitions specific to auditory displays, speech communication, and audio technology, the lexicon includes several terms unique to military operational environments and human factors...

  9. Developing Auditory Measures of General Speediness

    Directory of Open Access Journals (Sweden)

    Ian T. Zajac

    2011-10-01

    Full Text Available This study examined whether the broad ability general speediness (Gs could be measured via the auditory modality. Existing and purpose-developed auditory tasks that maintained the cognitive requirements of established visually presented Gs markers were completed by 96 university undergraduates. Exploratory and confirmatory factor analyses showed that the auditory tasks combined with established visual measures to define latent Gs and reaction time factors. These findings provide preliminary evidence that suggests that if auditory tasks are developed that maintain the same cognitive requirements as existing visual measures, then they are likely to index similar cognitive processes.

  10. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional Changes in the Human Auditory Cortex in Ageing

    Science.gov (United States)

    Profant, Oliver; Tintěra, Jaroslav; Balogová, Zuzana; Ibrahim, Ibrahim; Jilek, Milan; Syka, Josef

    2015-01-01

    Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years) and compared the results with young subjects (presbycusis (EP) differed from the elderly group with mild presbycusis (MP) in hearing thresholds measured by pure tone audiometry, presence and amplitudes of transient otoacoustic emissions (TEOAE) and distortion-product oto-acoustic emissions (DPOAE), as well as in speech-understanding under noisy conditions. Acoustically evoked activity (pink noise centered around 350 Hz, 700 Hz, 1.5 kHz, 3 kHz, 8 kHz), recorded by BOLD fMRI from an area centered on Heschl’s gyrus, was used to determine age-related changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC) leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing. PMID:25734519

  12. Functional changes in the human auditory cortex in ageing.

    Directory of Open Access Journals (Sweden)

    Oliver Profant

    Full Text Available Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years and compared the results with young subjects (auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.

  13. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  14. Neural correlates of auditory temporal predictions during sensorimotor synchronization.

    Science.gov (United States)

    Pecenka, Nadine; Engel, Annerose; Keller, Peter E

    2013-01-01

    Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events) and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS) and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons). Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1) a distributed network of cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex) and (2) medial cortical areas (medial prefrontal cortex, posterior cingulate cortex). While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  15. Auditory Processing Disorders (APD): a distinct clinical disorder or not?

    NARCIS (Netherlands)

    Ellen de Wit

    2015-01-01

    Presentatie CPLOL congres Florence In this systematic review, six electronic databases were searched for peer-reviewed studies using the key words auditory processing, auditory diseases, central [Mesh], and auditory perceptual. Two reviewers independently assessed relevant studies by inclusion

  16. Computational Auditory Scene Analysis Based Perceptual and Neural Principles

    National Research Council Canada - National Science Library

    Wang, DeLiang

    2004-01-01

    .... This fundamental process of auditory perception is called auditory scene analysis. of particular importance in auditory scene analysis is the separation of speech from interfering sounds, or speech segregation...

  17. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  18. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  19. The influence of sleep on auditory learning: a behavioral study.

    Science.gov (United States)

    Gaab, Nadine; Paetzold, Miriam; Becker, Markus; Walker, Matthew P; Schlaug, Gottfried

    2004-03-22

    Evidence continues to support a role for sleep in delayed learning without further practice. Here we demonstrate the beneficial influence of sleep on auditory skill learning. Fifty-six subjects were randomly assigned to two groups, trained and tested on a pitch memory task three times across 24 h. The morning group was trained at 09.00 h, retested 12 h later that same day, and again after 12 h sleep. The evening group was trained at 21.00 h, retested 12 h immediately after sleep, and again 12 h later the next day. At retesting, both groups combined showed significant delayed learning only after sleep, but not across equivalent periods of wake, regardless of which came first. These data add to the growing literature describing sleep-dependent learning throughout sensory and motor domains.

  20. Active Auditory Mechanics in Insects

    Science.gov (United States)

    Robert, D.; Göpfert, M. C.

    2003-02-01

    Evidence is presented that hearing in some insects is an active process. Audition in mosquitoes is used for mate-detection and is supported by antennal receivers, whose sound-induced vibrations are transduced by Johnston's organs. Each of these sensory organs contains ca. 15,000 sensory neurons. As shown by mechanical analysis, a physiologically vulnerable mechanism is at work that nonlinearly enhances the sensitivity and frequency selectivity of antennal hearing. This process of amplification correlates with the electrical activity of the auditory mechanoreceptor units in Johnston's organ.

  1. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  2. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  3. Further Evidence of Auditory Extinction in Aphasia

    Science.gov (United States)

    Marshall, Rebecca Shisler; Basilakos, Alexandra; Love-Myers, Kim

    2013-01-01

    Purpose: Preliminary research ( Shisler, 2005) suggests that auditory extinction in individuals with aphasia (IWA) may be connected to binding and attention. In this study, the authors expanded on previous findings on auditory extinction to determine the source of extinction deficits in IWA. Method: Seventeen IWA (M[subscript age] = 53.19 years)…

  4. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  5. Auditory Midbrain Implant: A Review

    Science.gov (United States)

    Lim, Hubert H.; Lenarz, Minoo; Lenarz, Thomas

    2009-01-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  6. Early auditory preverbal skills development in Mandarin speaking children with cochlear implants.

    Science.gov (United States)

    Liu, Haihong; Jin, Xin; Li, Jing; Liu, Lulu; Zhou, Yi; Zhang, Jie; Ge, Wentong; Ni, Xin

    2015-01-01

    The purpose of this study was to investigate the development of auditory preverbal skills in Mandarin speaking infants/toddlers with cochlear implants (CIs). Participants were recruited from the Pediatric Audiology Center of Beijing Children's Hospital, Capital Medical University. A total of 33 children with severe-to-profound hearing loss who received CIs participated in the study. The evaluation tools were LittlEARS(®) Auditory Questionnaire (LEAQ) and self-designed demographic information questionnaire. Evaluations were administrated immediately after the CI was switched on (0-month), and at 1, 3, 6, 9, 12, 18, and 24-month intervals of CI use. The mean total scores of the LEAQ in 0, 1, 3, 6, 9, 12, 18, and 24-month were 1, 5, 10, 15, 21, 24, 30, and 33 points, respectively. The developmental trajectory of early auditory preverbal skills in the CI children was consistent with the published norm data of the LEAQ, and the expected value even slightly higher than the norms. Analysis showed that the parents' level of education and age of implantation influenced the final LEAQ score significantly (ANOVA, pskills improved dramatically after cochlear implantation in the first 2 years of implant use. Early implanted children exhibited a steeper and faster improvement in auditory preverbal developmental compared to the later implanted peers. This study described the developmental trajectories of preverbal auditory skills and confirmed the effectiveness of early implantation on the development of auditory preverbal skills. The results could provide guidance for auditory/speech rehabilitation in Mandarin speaking infants/toddlers who received CIs in their early age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. The representation of level and loudness in the central auditory system for unilateral stimulation.

    Science.gov (United States)

    Behler, Oliver; Uppenkamp, Stefan

    2016-10-01

    Loudness is the perceptual correlate of the physical intensity of a sound. However, loudness judgments depend on a variety of other variables and can vary considerably between individual listeners. While functional magnetic resonance imaging (fMRI) has been extensively used to characterize the neural representation of physical sound intensity in the human auditory system, only few studies have also investigated brain activity in relation to individual loudness. The physiological correlate of loudness perception is not yet fully understood. The present study systematically explored the interrelation of sound pressure level, ear of entry, individual loudness judgments, and fMRI activation along different stages of the central auditory system and across hemispheres for a group of normal hearing listeners. 4-kHz-bandpass filtered noise stimuli were presented monaurally to each ear at levels from 37 to 97dB SPL. One diotic condition and a silence condition were included as control conditions. The participants completed a categorical loudness scaling procedure with similar stimuli before auditory fMRI was performed. The relationship between brain activity, as inferred from blood oxygenation level dependent (BOLD) contrasts, and both sound level and loudness estimates were analyzed by means of functional activation maps and linear mixed effects models for various anatomically defined regions of interest in the ascending auditory pathway and in the cortex. Our findings are overall in line with the notion that fMRI activation in several regions within auditory cortex as well as in certain stages of the ascending auditory pathway might be more a direct linear reflection of perceived loudness rather than of sound pressure level. The results indicate distinct functional differences between midbrain and cortical areas as well as between specific regions within auditory cortex, suggesting a systematic hierarchy in terms of lateralization and the representation of level and

  8. Tactile feedback improves auditory spatial localization.

    Science.gov (United States)

    Gori, Monica; Vercillo, Tiziana; Sandini, Giulio; Burr, David

    2014-01-01

    Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014). To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback, or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject's forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially congruent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  9. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  10. Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics

    Directory of Open Access Journals (Sweden)

    Jan eBennemann

    2013-06-01

    Full Text Available The encoding of auditory spatial acuity (measured as the precision to distinguish between two spatially distinct stimuli by neural circuits in both auditory cortices is a matter of ongoing research. Here, the event-related potential mismatch negativity (MMN, a sensitive indicator of preattentive auditory change detection, was used to tap into the underlying mechanism of cortical representation of auditory spatial information. We characterized the MMN response affected by the degree of spatial deviance in lateral acoustic space using a passive oddball paradigm. Two stimulation conditions specifically focusing on the investigation of the mid- and far-lateral acoustic spcace were considered: (i 65° left standard position with deviant positions at 70°, 75°, and 80°; and (ii 95° left standard position with deviant positions at 90°, 85°, and 80°. Additonally, behavioral data on the minimum audible angle (MAA were acquired for the respective standard positions (65°, 95° left to quantify spatial discrimination in separating disctinct sound sources. The two measurements disclosed the linkage between the (preattentive MMN response and the (attentive behavioral threshold. At 65° spatial deviations as small as 5° reliably elicited MMNs. Thereby, the MMN amplitudes monotonously increased as a function of spatial deviation. At 95°, spatial deviations of 15° were necessary to elicit a valid MMN. The behavioral data, however, yielded no difference in mean MAA thresholds for position 65° and 95°. The different effects of laterality on MMN responses and MAA thresholds suggest a role of spatial selective attention mechanisms particulary relevant in active discrimination of neighbouring sound sources, especially in the lateral acoustic space.

  11. Resolution of lateral acoustic space assessed by electroencephalography and psychoacoustics.

    Science.gov (United States)

    Bennemann, Jan; Freigang, Claudia; Schröger, Erich; Rübsamen, Rudolf; Richter, Nicole

    2013-01-01

    The encoding of auditory spatial acuity (measured as the precision to distinguish between two spatially distinct stimuli) by neural circuits in both auditory cortices is a matter of ongoing research. Here, the event-related potential (ERP) mismatch negativity (MMN), a sensitive indicator of preattentive auditory change detection, was used to tap into the underlying mechanism of cortical representation of auditory spatial information. We characterized the MMN response affected by the degree of spatial deviance in lateral acoustic space using a passive oddball paradigm. Two stimulation conditions (SCs)-specifically focusing on the investigation of the mid- and far-lateral acoustic space-were considered: (1) 65° left standard position with deviant positions at 70, 75, and 80°; and (2) 95° left standard position with deviant positions at 90, 85, and 80°. Additionally, behavioral data on the minimum audible angle (MAA) were acquired for the respective standard positions (65, 95° left) to quantify spatial discrimination in separating distinct sound sources. The two measurements disclosed the linkage between the (preattentive) MMN response and the (attentive) behavioral threshold. At 65° spatial deviations as small as 5° reliably elicited MMNs. Thereby, the MMN amplitudes monotonously increased as a function of spatial deviation. At 95°, spatial deviations of 15° were necessary to elicit a valid MMN. The behavioral data, however, yielded no difference in mean MAA thresholds for position 65 and 95°. The different effects of laterality on MMN responses and MAA thresholds suggest a role of spatial selective attention mechanisms particularly relevant in active discrimination of neighboring sound sources, especially in the lateral acoustic space.

  12. Hear You Later Alligator

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Knoche, Hendrik

    2017-01-01

    Many musical instruments exhibit an inherent latency or delayed auditory feedback (DAF) between actuator activation and the occurrence of sound. We investigated how DAF (73ms and 250ms) affects musically trained (MT) and non-musically trained (NMT) people’s ability to synchronize the audible stru...... participants’ performance declined substantially both in mean synchronization error and its spread. Neither tempo nor input devices affected performance....

  13. Prior auditory information shapes visual category-selectivity in ventral occipito-temporal cortex.

    Science.gov (United States)

    Adam, Ruth; Noppeney, Uta

    2010-10-01

    Objects in our natural environment generate signals in multiple sensory modalities. This fMRI study investigated the influence of prior task-irrelevant auditory information on visually-evoked category-selective activations in the ventral occipito-temporal cortex. Subjects categorized pictures as landmarks or animal faces, while ignoring the preceding congruent or incongruent sound. Behaviorally, subjects responded slower to incongruent than congruent stimuli. At the neural level, the lateral and medial prefrontal cortices showed increased activations for incongruent relative to congruent stimuli consistent with their role in response selection. In contrast, the parahippocampal gyri combined visual and auditory information additively: activation was greater for visual landmarks than animal faces and landmark-related sounds than animal vocalizations resulting in increased parahippocampal selectivity for congruent audiovisual landmarks. Effective connectivity analyses showed that this amplification of visual landmark-selectivity was mediated by increased negative coupling of the parahippocampal gyrus with the superior temporal sulcus for congruent stimuli. Thus, task-irrelevant auditory information influences visual object categorization at two stages. In the ventral occipito-temporal cortex auditory and visual category information are combined additively to sharpen visual category-selective responses. In the left inferior frontal sulcus, as indexed by a significant incongruency effect, visual and auditory category information are integrated interactively for response selection. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Age-related dissociation of sensory and decision-based auditory motion processing

    Directory of Open Access Journals (Sweden)

    Alexandra Annemarie Ludwig

    2012-03-01

    Full Text Available Studies on the maturation of auditory motion processing in children have yielded inconsistent reports. The present study combines subjective and objective measurements to investigate how the auditory perceptual abilities of children change during development and whether these changes are paralleled by changes in the event-related brain potential (ERP.We employed the mismatch negativity (MMN to determine maturational changes in the discrimination of interaural time differences (ITD that generate lateralized moving auditory percepts. MMNs were elicited in children, teenagers, and adults, using a small and a large ITD at stimulus offset with respect to each subject’s discrimination threshold. In adults and teenagers large deviants elicited prominent MMNs, whereas small deviants at the behavioral threshold elicited only a marginal or no MMN. In contrast, pronounced MMNs for both deviant sizes were found in children. Behaviourally, however, most of the children showed higher discrimination thresholds than teens and adults.Although automatic ITD detection is functional, active discrimination is still limited in children. The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities.The study critically accounts for advanced understanding of children’s central auditory development.

  15. Relationship between brainstem auditory function during the neonatal period and depressed Apgar score.

    Science.gov (United States)

    Jiang, Ze Dong; Wilkinson, Andrew Robert

    2010-09-01

    To understand whether infants with depressed Apgar scores are at high risk of brainstem auditory impairment, we examined the relationship between brainstem auditory function during the neonatal period and depressed Apgar score. Brainstem auditory evoked responses (BAERs) were recorded from day 1 to day 30 in 145 term infants with Apgar scores Apgar score none of BAER response wave latencies and interpeak intervals during the first 15 days correlated significantly with the score. On day 30, all wave latencies but no intervals correlated negatively with the score (all p Apgar score, only on day 3 wave V latency and I-V and III-V intervals correlated negatively with the score (all p Apgar score, only III-V interval correlated negatively with the score (p Apgar scores. Wave V latency and I-V and III-V intervals on day 3 were all significantly longer in infants with 5-min Apgar scores 6. During the neonatal period, only on day 3 after birth a depressed 5-min Apgar score is an indicator associated with central auditory impairment. A depressed 1-min score may be associated with later peripheral auditory impairment.

  16. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  17. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  18. Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music.

    Science.gov (United States)

    Meyer, Martin; Elmer, Stefan; Baumann, Simon; Jancke, Lutz

    2007-01-01

    In this EEG study we sought to examine the neuronal underpinnings of short-term plasticity as a top-down guided auditory learning process. We hypothesized, that (i) auditory imagery should elicit proper auditory evoked effects (N1/P2 complex) and a late positive component (LPC). Generally, based on recent human brain mapping studies we expected (ii) to observe the involvement of different temporal and parietal lobe areas in imagery and in perception of acoustic stimuli. Furthermore we predicted (iii) that temporal regions show an asymmetric trend due to the different specialization of the temporal lobes in processing speech and non-speech sounds. Finally we sought evidence supporting the notion that short-term training is sufficient to drive top-down activity in brain regions that are not normally recruited by sensory induced bottom up processing. 18 non-musicians partook in a 30 channels based EEG session that investigated spatio-temporal dynamics of auditory imagery of "consonant-vowel" (CV) syllables and piano triads. To control for conditioning effects, we split the volunteers in two matched groups comprising the same conditions (visual, auditory or bimodal stimulation) presented in a slightly different serial order. Furthermore the study presents electromagnetic source localization (LORETA) of perception and imagery of CV- and piano stimuli. Our results imply that auditory imagery elicited similar electrophysiological effects at an early stage (N1/P2) as auditory stimulation. However, we found an additional LPC following the N1/P2 for auditory imagery only. Source estimation evinced bilateral engagement of anterior temporal cortex, which was generally stronger for imagery of music relative to imagery of speech. While we did not observe lateralized activity for the imagery of syllables we noted significantly increased rightward activation over the anterior supratemporal plane for musical imagery. Thus, we conclude that short-term top-down training based

  19. Primary Lateral Sclerosis

    Science.gov (United States)

    ... When symptoms begin, PLS may be mistaken for amyotrophic lateral sclerosis (ALS) or spastic paraplegia. Most neurologists follow an ... When symptoms begin, PLS may be mistaken for amyotrophic lateral sclerosis (ALS) or spastic paraplegia. Most neurologists follow an ...

  20. Lateral collateral ligament (image)

    Science.gov (United States)

    The lateral collateral ligament connects the end of the femur (thigh) to the top of the fibula (the thin bone that runs next to the shin bone). The lateral collateral ligament provides stability against varus stress. Varus stress is ...

  1. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  2. Looming auditory collision warnings for driving.

    Science.gov (United States)

    Gray, Rob

    2011-02-01

    A driving simulator was used to compare the effectiveness of increasing intensity (looming) auditory warning signals with other types of auditory warnings. Auditory warnings have been shown to speed driver reaction time in rear-end collision situations; however, it is not clear which type of signal is the most effective. Although verbal and symbolic (e.g., a car horn) warnings have faster response times than abstract warnings, they often lead to more response errors. Participants (N=20) experienced four nonlooming auditory warnings (constant intensity, pulsed, ramped, and car horn), three looming auditory warnings ("veridical," "early," and "late"), and a no-warning condition. In 80% of the trials, warnings were activated when a critical response was required, and in 20% of the trials, the warnings were false alarms. For the early (late) looming warnings, the rate of change of intensity signaled a time to collision (TTC) that was shorter (longer) than the actual TTC. Veridical looming and car horn warnings had significantly faster brake reaction times (BRT) compared with the other nonlooming warnings (by 80 to 160 ms). However, the number of braking responses in false alarm conditions was significantly greater for the car horn. BRT increased significantly and systematically as the TTC signaled by the looming warning was changed from early to veridical to late. Looming auditory warnings produce the best combination of response speed and accuracy. The results indicate that looming auditory warnings can be used to effectively warn a driver about an impending collision.

  3. Auditory Impairment in Young Type 1 Diabetics.

    Science.gov (United States)

    Hou, Yanlian; Xiao, Xiaoyan; Ren, Jianmin; Wang, Yajuan; Zhao, Faming

    2015-10-01

    More attention has recently been focused on auditory impairment of young type 1 diabetics. This study aimed to evaluate auditory function of young type 1 diabetics and the correlation between clinical indexes and hearing impairment. We evaluated the auditory function of 50 type 1 diabetics and 50 healthy subjects. Clinical indexes were measured along with analyzing their relation of auditory function. Type 1 diabetic patients demonstrated a deficit with elevated thresholds at right ear and left ear when compared to healthy controls (p p V and interwave I-V) and left ear (wave III, V and interwave I-III, I-V) in diabetic group significantly increased compared to those in control subjects (p p p p p <0.01). Type 1 diabetics exerted higher auditory threshold, slower auditory conduction time and cochlear impairment. HDL-cholesterol, diabetes duration, systemic blood pressure, microalbuminuria, GHbA1C, triglyceride, and age may affect the auditory function of type 1 diabetics. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  4. Functional imaging of auditory scene analysis.

    Science.gov (United States)

    Gutschalk, Alexander; Dykstra, Andrew R

    2014-01-01

    Our auditory system is constantly faced with the task of decomposing the complex mixture of sound arriving at the ears into perceptually independent streams constituting accurate representations of individual sound sources. This decomposition, termed auditory scene analysis, is critical for both survival and communication, and is thought to underlie both speech and music perception. The neural underpinnings of auditory scene analysis have been studied utilizing invasive experiments with animal models as well as non-invasive (MEG, EEG, and fMRI) and invasive (intracranial EEG) studies conducted with human listeners. The present article reviews human neurophysiological research investigating the neural basis of auditory scene analysis, with emphasis on two classical paradigms termed streaming and informational masking. Other paradigms - such as the continuity illusion, mistuned harmonics, and multi-speaker environments - are briefly addressed thereafter. We conclude by discussing the emerging evidence for the role of auditory cortex in remapping incoming acoustic signals into a perceptual representation of auditory streams, which are then available for selective attention and further conscious processing. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  6. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  7. Lateral flow strip assay

    Science.gov (United States)

    Miles, Robin R [Danville, CA; Benett, William J [Livermore, CA; Coleman, Matthew A [Oakland, CA; Pearson, Francesca S [Livermore, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  8. Neuromechanistic Model of Auditory Bistability.

    Directory of Open Access Journals (Sweden)

    James Rankin

    2015-11-01

    Full Text Available Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1. Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

  9. Change in functional connectivity in tinnitus and its relation with tinnitus laterality

    Energy Technology Data Exchange (ETDEWEB)

    Song, Eun Jee; Kim, Eui Jong; Choi, Woo Suk [Dept. of Radiology, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Chang Woo; Jahang, Geon Ho; Park, Moon Suh; Byun, Jae Yong; Park, Soon Chan [Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2016-12-15

    To identify potential differences in resting-state networks according to laterality of tinnitus using resting-state functional MRI (fMRI). A total of 83 age-matched subjects consisting of 19 patients with right-sided tinnitus (Rt-T), 22 patients with left-sided tinnitus (Lt-T), 22 patients with bilateral tinnitus (Bil-T), and 20 healthy controls underwent resting-state blood oxygenation-level dependent fMRI scans. Independent component analysis was used to obtain the functional connectivities in the auditory network (AN) and the default mode network (DMN), which were compared between each group using the voxel-wise one-way ANOVA. In addition, lateralization of the auditory cortex was assessed within each group using a region of interest (ROI). Comparisons between tinnitus groups showed unusual clusters with different functional connectivities in the AN and the DMN. The Rt-T group had large clusters with higher functional connectivity in the right middle temporal gyrus and temporopolar area compared with the Lt-/Bil-T and control groups. ROI analysis showed that the Rt-/Lt-T groups had dominant functional connectivity in the right auditory cortex and the Bil-T and control groups had left-dominant auditory connectivity. These results suggest that chronic tinnitus is related to aberrant laterality of the auditory cortex. These findings help clarify the neural mechanism of tinnitus and specify the targets for localization of treatment.

  10. Assessing the aging effect on auditory-verbal memory by Persian version of dichotic auditory verbal memory test

    Directory of Open Access Journals (Sweden)

    Zahra Shahidipour

    2014-01-01

    Conclusion: Based on the obtained results, significant reduction in auditory memory was seen in aged group and the Persian version of dichotic auditory-verbal memory test, like many other auditory verbal memory tests, showed the aging effects on auditory verbal memory performance.

  11. Use of auditory learning to manage listening problems in children

    OpenAIRE

    Moore, David R.; Halliday, Lorna F.; Amitay, Sygal

    2008-01-01

    This paper reviews recent studies that have used adaptive auditory training to address communication problems experienced by some children in their everyday life. It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications. Following strong claims that language and listening skills in children could be improved by auditory learning, researchers hav...

  12. AUDITORY REACTION TIME IN BASKETBALL PLAYERS AND HEALTHY CONTROLS

    OpenAIRE

    Ghuntla Tejas P.; Mehta Hemant B.; Gokhale Pradnya A.; Shah Chinmay J.

    2013-01-01

    Reaction is purposeful voluntary response to different stimuli as visual or auditory stimuli. Auditory reaction time is time required to response to auditory stimuli. Quickness of response is very important in games like basketball. This study was conducted to compare auditory reaction time of basketball players and healthy controls. The auditory reaction time was measured by the reaction time instrument in healthy controls and basketball players. Simple reaction time and choice reaction time...

  13. The utility of visual analogs of central auditory tests in the differential diagnosis of (central) auditory processing disorder and attention deficit hyperactivity disorder.

    Science.gov (United States)

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2011-09-01

    separated by at least 1 wk. Order of sessions (auditory, visual) and tests within each session were counterbalanced across participants. ANCOVAs (analyses of covariance) were used to examine effects of group, modality, and laterality (Dichotic/Dichoptic Digits) or response condition (auditory and visual patterning). In addition, planned univariate ANCOVAs were used to examine effects of group on intratest comparison measures (REA, HLD [Humming-Labeling Differential]). Children with both ADHD and (C)APD performed more poorly overall than typically developing children on all tasks, with the (C)APD group exhibiting the poorest performance on the auditory and visual patterns tests but the ADHD and (C)APD group performing similarly on the Dichotic/Dichoptic Digits task. However, each of the auditory and visual intratest comparison measures, when taken individually, was able to distinguish the (C)APD group from both the normal control and ADHD groups, whose performance did not differ from one another. Results underscore the importance of intratest comparison measures in the interpretation of central auditory tests (American Speech-Language-Hearing Association [ASHA], 2005 ; American Academy of Audiology [AAA], 2010). Results also support the "non-modular" view of (C)APD in which cross-modal deficits would be predicted based on shared neuroanatomical substrates. Finally, this study demonstrates that auditory tests alone are sufficient to distinguish (C)APD from supra-modal disorders, with cross-modal analogs adding little if anything to the differential diagnostic process. American Academy of Audiology.

  14. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  15. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  16. Processing of complex auditory patterns in musicians and nonmusicians.

    Science.gov (United States)

    Boh, Bastiaan; Herholz, Sibylle C; Lappe, Claudia; Pantev, Christo

    2011-01-01

    In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.

  17. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  18. Reconstructing speech from human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Brian N Pasley

    2012-01-01

    Full Text Available How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.

  19. Auditory Neuropathy Spectrum Disorder (ANSD) (For Parents)

    Science.gov (United States)

    ... to the inner row of hair cells or synapses between the inner hair cells and the auditory ... any other nerve-related problems. Ongoing speech and language testing . A child with ANSD needs regular visits ...

  20. Auditory Feedback and the Online Shopping Experience

    National Research Council Canada - National Science Library

    Ryann Reynolds-McIlnay

    2014-01-01

      The present research proposes that the presence of auditory feedback increases satisfaction with the shopping experience, confidence in the retailer, and the likelihood to return to the retailer...

  1. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  2. Childhood trauma and auditory verbal hallucinations

    NARCIS (Netherlands)

    Daalman, K.; Diederen, K. M. J.; Derks, E. M.; van Lutterveld, R.; Kahn, R. S.; Sommer, Iris E. C.

    2012-01-01

    Background. Hallucinations have consistently been associated with traumatic experiences during childhood. This association appears strongest between physical and sexual abuse and auditory verbal hallucinations (AVH). It remains unclear whether traumatic experiences mainly colour the content of AVH

  3. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  4. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  5. Effect of omega-3 on auditory system

    Directory of Open Access Journals (Sweden)

    Vida Rahimi

    2014-01-01

    Full Text Available Background and Aim: Omega-3 fatty acid have structural and biological roles in the body 's various systems . Numerous studies have tried to research about it. Auditory system is affected a s well. The aim of this article was to review the researches about the effect of omega-3 on auditory system.Methods: We searched Medline , Google Scholar, PubMed, Cochrane Library and SID search engines with the "auditory" and "omega-3" keywords and read textbooks about this subject between 19 70 and 20 13.Conclusion: Both excess and deficient amounts of dietary omega-3 fatty acid can cause harmful effects on fetal and infant growth and development of brain and central nervous system esspesially auditory system. It is important to determine the adequate dosage of omega-3.

  6. Auditory memory function in expert chess players

    OpenAIRE

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert...

  7. Mental concerts: musical imagery and auditory cortex.

    Science.gov (United States)

    Zatorre, Robert J; Halpern, Andrea R

    2005-07-07

    Most people intuitively understand what it means to "hear a tune in your head." Converging evidence now indicates that auditory cortical areas can be recruited even in the absence of sound and that this corresponds to the phenomenological experience of imagining music. We discuss these findings as well as some methodological challenges. We also consider the role of core versus belt areas in musical imagery, the relation between auditory and motor systems during imagery of music performance, and practical implications of this research.

  8. [Auditory performance analyses of cochlear implanted patients].

    Science.gov (United States)

    Ozdemir, Süleyman; Kıroğlu, Mete; Tuncer, Ulkü; Sahin, Rasim; Tarkan, Ozgür; Sürmelioğlu, Ozgür

    2011-01-01

    The aim of this study was to analyze the auditory performance development of cochlear implanted patients. The effects of age at implantation, gender, implanted ear and model of the cochlear implant on the patients' auditory performance were investigated. Twenty-eight patients (12 boys, 16 girls) with congenital prelingual hearing loss who underwent cochlear implant surgery at our clinic and a follow-up of at least 18 months were selected for the study. Listening Progress Profile (LiP), Monosyllable-Trochee-Polysyllable (MTP) and Meaningful Auditory Integration Scale (MAIS) tests were performed to analyze the auditory performances of the patients. To determine the effect of the age at implantation on the auditory performance, patients were assigned into two groups: group 1 (implantation age = or <60 months, mean 44.8 months) and group 2 (implantation age = or <60 months, mean 100.6 months). Group 2 had higher preoperative test scores than group 1 but after cochlear implant use, the auditory performance levels of the patients in group 1 improved faster and equalized to those of the patients in group 2 after 12-18 months. Our data showed that variables such as sex, implanted ear or model of the cochlear implant did not have any statistically significant effect on the auditory performance of the patients after cochlear implantation. We found a negative correlation between the implantation age and the auditory performance improvement in our study. We observed that children implanted at young age had a quicker language development and have had more success in reading, writing and other educational skills in the future.

  9. Sound-sensitive neurons innervate the ventro-lateral protocerebrum of the heliothine moth brain

    DEFF Research Database (Denmark)

    Pfuhl, Gerit; Zhao, Xin Cheng; Ian, Elena

    2014-01-01

    -sensitive neurons in the moth brain. During intracellular recordings from the lateral protocerebrum in the brain of three noctuid moth species, Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta, we found an assembly of neurons responding to transient sound pulses of broad bandwidth. The majority...... of the auditory neurons ascended from the ventral cord and ramified densely within the anterior region of the ventro-lateral protocerebrum. The physiological and morphological characteristics of these auditory neurons were similar. We detected one additional sound-sensitive neuron, a brain interneuron with its......Many noctuid moth species perceive ultrasound via tympanic ears that are located at the metathorax. Whereas the neural processing of auditory information is well studied at the peripheral and first synaptic level, little is known about the features characterizing higher order sound...

  10. How functional coupling between the auditory cortex and the amygdala induces musical emotion: a single case study.

    Science.gov (United States)

    Liégeois-Chauvel, Catherine; Bénar, Christian; Krieg, Julien; Delbé, Charles; Chauvel, Patrick; Giusiano, Bernard; Bigand, Emmanuel

    2014-11-01

    Music is a sound structure of remarkable acoustical and temporal complexity. Although it cannot denote specific meaning, it is one of the most potent and universal stimuli for inducing mood. How the auditory and limbic systems interact, and whether this interaction is lateralized when feeling emotions related to music, remains unclear. We studied the functional correlation between the auditory cortex (AC) and amygdala (AMY) through intracerebral recordings from both hemispheres in a single patient while she listened attentively to musical excerpts, which we compared to passive listening of a sequence of pure tones. While the left primary and secondary auditory cortices (PAC and SAC) showed larger increases in gamma-band responses than the right side, only the right side showed emotion-modulated gamma oscillatory activity. An intra- and inter-hemisphere correlation was observed between the auditory areas and AMY during the delivery of a sequence of pure tones. In contrast, a strikingly right-lateralized functional network between the AC and the AMY was observed to be related to the musical excerpts the patient experienced as happy, sad and peaceful. Interestingly, excerpts experienced as angry, which the patient disliked, were associated with widespread de-correlation between all the structures. These results suggest that the right auditory-limbic interactions result from the formation of oscillatory networks that bind the activities of the network nodes into coherence patterns, resulting in the emergence of a feeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Glial cell contributions to auditory brainstem development

    Directory of Open Access Journals (Sweden)

    Karina S Cramer

    2016-10-01

    Full Text Available Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of specialized auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes, and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits.

  12. Long Latency Auditory Evoked Potentials during Meditation.

    Science.gov (United States)

    Telles, Shirley; Deepeshwar, Singh; Naveen, Kalkuni Visweswaraiah; Pailoor, Subramanya

    2015-10-01

    The auditory sensory pathway has been studied in meditators, using midlatency and short latency auditory evoked potentials. The present study evaluated long latency auditory evoked potentials (LLAEPs) during meditation. Sixty male participants, aged between 18 and 31 years (group mean±SD, 20.5±3.8 years), were assessed in 4 mental states based on descriptions in the traditional texts. They were (a) random thinking, (b) nonmeditative focusing, (c) meditative focusing, and (d) meditation. The order of the sessions was randomly assigned. The LLAEP components studied were P1 (40-60 ms), N1 (75-115 ms), P2 (120-180 ms), and N2 (180-280 ms). For each component, the peak amplitude and peak latency were measured from the prestimulus baseline. There was significant decrease in the peak latency of the P2 component during and after meditation (Pmeditation facilitates the processing of information in the auditory association cortex, whereas the number of neurons recruited was smaller in random thinking and non-meditative focused thinking, at the level of the secondary auditory cortex, auditory association cortex and anterior cingulate cortex. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  13. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  14. Investigating bottom-up auditory attention

    Directory of Open Access Journals (Sweden)

    Emine Merve Kaya

    2014-05-01

    Full Text Available Bottom-up attention is a sensory-driven selection mechanism that directs perception towards a subset of the stimulus that is considered salient, or attention-grabbing. Most studies of bottom-up auditory attention have adapted frameworks similar to visual attention models whereby local or global contrast is a central concept in defining salient elements in a scene. In the current study, we take a more fundamental approach to modeling auditory attention; providing the first examination of the space of auditory saliency spanning pitch, intensity and timbre; and shedding light on complex interactions among these features. Informed by psychoacoustic results, we develop a computational model of auditory saliency implementing a novel attentional framework, guided by processes hypothesized to take place in the auditory pathway. In particular, the model tests the hypothesis that perception tracks the evolution of sound events in a multidimensional feature space, and flags any deviation from background statistics as salient. Predictions from the model corroborate the relationship between bottom-up auditory attention and statistical inference, and argues for a potential role of predictive coding as mechanism for saliency detection in acoustic scenes.

  15. Spectrotemporal dynamics of auditory cortical synaptic receptive field plasticity.

    Science.gov (United States)

    Froemke, Robert C; Martins, Ana Raquel O

    2011-09-01

    The nervous system must dynamically represent sensory information in order for animals to perceive and operate within a complex, changing environment. Receptive field plasticity in the auditory cortex allows cortical networks to organize around salient features of the sensory environment during postnatal development, and then subsequently refine these representations depending on behavioral context later in life. Here we review the major features of auditory cortical receptive field plasticity in young and adult animals, focusing on modifications to frequency tuning of synaptic inputs. Alteration in the patterns of acoustic input, including sensory deprivation and tonal exposure, leads to rapid adjustments of excitatory and inhibitory strengths that collectively determine the suprathreshold tuning curves of cortical neurons. Long-term cortical plasticity also requires co-activation of subcortical neuromodulatory control nuclei such as the cholinergic nucleus basalis, particularly in adults. Regardless of developmental stage, regulation of inhibition seems to be a general mechanism by which changes in sensory experience and neuromodulatory state can remodel cortical receptive fields. We discuss recent findings suggesting that the microdynamics of synaptic receptive field plasticity unfold as a multi-phase set of distinct phenomena, initiated by disrupting the balance between excitation and inhibition, and eventually leading to wide-scale changes to many synapses throughout the cortex. These changes are coordinated to enhance the representations of newly-significant stimuli, possibly for improved signal processing and language learning in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD.

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    Full Text Available Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH. The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  17. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD).

    Science.gov (United States)

    Orekhova, Elena V; Tsetlin, Marina M; Butorina, Anna V; Novikova, Svetlana I; Gratchev, Vitaliy V; Sokolov, Pavel A; Elam, Mikael; Stroganova, Tatiana A

    2012-01-01

    Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH). The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  18. The influence of botulinum toxin on auditory disturbances in hemifacial spasm.

    Science.gov (United States)

    Rudzińska, Monika; Wójcik, Magdalena; Zajdel, Katarzyna; Hydzik-Sobocińska, Karolina; Malec, Michalina; Hartel, Marcin; Składzień, Jacek; Szczudlik, Andrzej

    2012-01-01

    Hemifacial spasm (HFS) is frequently accompanied by other symptoms, such as visual and auditory disturbances or pain. The aim of the study was to assess the occurrence of auditory symptoms accompanying HFS using subjective and objective methods, their relation with other HFS symptoms, and their resolution after botulinum toxin (BTX-A) treatment. The occurrence of hypoacusis, ear clicks and tinnitus was assessed by questionnaire in 126 HFS patients from an electronic database which included medical data such as severity of HFS rated by clinical scale and magnetic resonance imaging focused on the presence of vascular nerve VII and VIII conflict. Forty consecutive patients treated with BTX-A and 24 controls matched by sex and age underwent laryngological examination including audiometry, tympanometry and acoustic middle ear reflex before injection and two weeks later. About 45.2% of patients complained of auditory disturbances (31.7% hypoacusis, 30.2% ear clicks and 7.1% tinnitus) on the side of HFS. Auditory disturbances correlated with severity of HFS symptoms but not with age, disease duration, or neurovascular conflict with nerves VII and VIII. We did not find abnormalities in audiometric and tympanometric assessment in patients in comparison with controls. No abnormalities were detected in brainstem evoked potentials comparing the sides with and without HFS symptoms. Tinnitus and absence of ipsilateral acoustic middle ear reflex occurred more often in patients with auditory symptoms than those without them. BTX-A treatment caused resolution of subjective acoustic symptoms without any improvement in audiometric assessment. Auditory disturbances accompanying HFS are probably caused by dysfunction of the Eustachian tube, which improves after BTX-A treatment.

  19. Atypical brain responses to auditory spatial cues in adults with autism spectrum disorder.

    Science.gov (United States)

    Lodhia, Veema; Hautus, Michael J; Johnson, Blake W; Brock, Jon

    2017-09-09

    The auditory processing atypicalities experienced by many individuals on the autism spectrum disorder might be understood in terms of difficulties parsing the sound energy arriving at the ears into discrete auditory 'objects'. Here, we asked whether autistic adults are able to make use of two important spatial cues to auditory object formation - the relative timing and amplitude of sound energy at the left and right ears. Using electroencephalography, we measured the brain responses of 15 autistic adults and 15 age- and verbal-IQ-matched control participants as they listened to dichotic pitch stimuli - white noise stimuli in which interaural timing or amplitude differences applied to a narrow frequency band of noise typically lead to the perception of a pitch sound that is spatially segregated from the noise. Responses were contrasted with those to stimuli in which timing and amplitude cues were removed. Consistent with our previous studies, autistic adults failed to show a significant object-related negativity (ORN) for timing-based pitch, although their ORN was not significantly smaller than that of the control group. Autistic participants did show an ORN to amplitude cues, indicating that they do not experience a general impairment in auditory object formation. However, their P400 response - thought to indicate the later attention-dependent aspects of auditory object formation - was missing. These findings provide further evidence of atypical auditory object processing in autism with potential implications for understanding the perceptual and communication difficulties associated with the condition. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners.

    Science.gov (United States)

    Park, Hyojin; Ince, Robin A A; Schyns, Philippe G; Thut, Gregor; Gross, Joachim

    2015-06-15

    Humans show a remarkable ability to understand continuous speech even under adverse listening conditions. This ability critically relies on dynamically updated predictions of incoming sensory information, but exactly how top-down predictions improve speech processing is still unclear. Brain oscillations are a likely mechanism for these top-down predictions [1, 2]. Quasi-rhythmic components in speech are known to entrain low-frequency oscillations in auditory areas [3, 4], and this entrainment increases with intelligibility [5]. We hypothesize that top-down signals from frontal brain areas causally modulate the phase of brain oscillations in auditory cortex. We use magnetoencephalography (MEG) to monitor brain oscillations in 22 participants during continuous speech perception. We characterize prominent spectral components of speech-brain coupling in auditory cortex and use causal connectivity analysis (transfer entropy) to identify the top-down signals driving this coupling more strongly during intelligible speech than during unintelligible speech. We report three main findings. First, frontal and motor cortices significantly modulate the phase of speech-coupled low-frequency oscillations in auditory cortex, and this effect depends on intelligibility of speech. Second, top-down signals are significantly stronger for left auditory cortex than for right auditory cortex. Third, speech-auditory cortex coupling is enhanced as a function of stronger top-down signals. Together, our results suggest that low-frequency brain oscillations play a role in implementing predictive top-down control during continuous speech perception and that top-down control is largely directed at left auditory cortex. This suggests a close relationship between (left-lateralized) speech production areas and the implementation of top-down control in continuous speech perception. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Directory of Open Access Journals (Sweden)

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  2. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study

    NARCIS (Netherlands)

    Stekelenburg, J.J.; Vroomen, J.

    2015-01-01

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one’s own motor actions. Auditory potentials

  3. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia.

    Science.gov (United States)

    Law, Jeremy M; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia.

  5. Multiple Mechanosensory Modalities Influence Development of Auditory Function

    Science.gov (United States)

    Horowitz, Seth S.; Tanyu, Leslie H.; Simmons, Andrea Megela

    2012-01-01

    Sensory development can be dependent on input from multiple modalities. During metamorphic development, ranid frogs exhibit rapid reorganization of pathways mediating auditory, vestibular, and lateral line modalities as the animal transforms from an aquatic to an amphibious form. Here we show that neural sensitivity to the underwater particle motion component of sound follows a different developmental trajectory than that of the pressure component. Throughout larval stages, cells in the medial vestibular nucleus show best frequencies to particle motion in the range from 15 to 65 Hz, with displacement thresholds of <10 μm. During metamorphic climax, best frequencies significantly increase, and sensitivity to lower-frequency (<25 Hz) stimuli tends to decline. These findings suggest that continued sensitivity to particle motion may compensate for the considerable loss of sensitivity to pressure waves observed during the developmental deaf period. Transport of a lipophilic dye from peripheral end organs to the dorsal medulla shows that fibers from the saccule in the inner ear and from the anterior lateral line both terminate in the medial vestibular nucleus. Saccular projections remain stable across larval development, whereas lateral line projections degenerate during metamorphic climax. Sensitivity to particle motion may be based on multimodal input early in development and on saccular input alone during the transition to amphibious life. PMID:17251417

  6. Efficacy of auditory training in elderly subjects

    Directory of Open Access Journals (Sweden)

    Aline Albuquerque Morais

    2015-05-01

    Full Text Available Auditory training (AT  has been used for auditory rehabilitation in elderly individuals and is an effective tool for optimizing speech processing in this population. However, it is necessary to distinguish training-related improvements from placebo and test-retest effects. Thus, we investigated the efficacy of short-term auditory training (acoustically controlled auditory training - ACAT in elderly subjects through behavioral measures and P300. Sixteen elderly individuals with APD received an initial evaluation (evaluation 1 - E1 consisting of behavioral and electrophysiological tests (P300 evoked by tone burst and speech sounds to evaluate their auditory processing. The individuals were divided into two groups. The Active Control Group [ACG (n=8] underwent placebo training. The Passive Control Group [PCG (n=8] did not receive any intervention. After 12 weeks, the subjects were  revaluated (evaluation 2 - E2. Then, all of the subjects underwent ACAT. Following another 12 weeks (8 training sessions, they underwent the final evaluation (evaluation 3 – E3. There was no significant difference between E1 and E2 in the behavioral test [F(9.6=0,.6 p=0.92, λ de Wilks=0.65] or P300 [F(8.7=2.11, p=0.17, λ de Wilks=0.29] (discarding the presence of placebo effects and test-retest. A significant improvement was observed between the pre- and post-ACAT conditions (E2 and E3 for all auditory skills according to the behavioral methods [F(4.27=0.18, p=0.94, λ de Wilks=0.97]. However, the same result was not observed for P300 in any condition. There was no significant difference between P300 stimuli. The ACAT improved the behavioral performance of the elderly for all auditory skills and was an effective method for hearing rehabilitation.

  7. Auditory sustained field responses to periodic noise

    Directory of Open Access Journals (Sweden)

    Keceli Sumru

    2012-01-01

    Full Text Available Abstract Background Auditory sustained responses have been recently suggested to reflect neural processing of speech sounds in the auditory cortex. As periodic fluctuations below the pitch range are important for speech perception, it is necessary to investigate how low frequency periodic sounds are processed in the human auditory cortex. Auditory sustained responses have been shown to be sensitive to temporal regularity but the relationship between the amplitudes of auditory evoked sustained responses and the repetitive rates of auditory inputs remains elusive. As the temporal and spectral features of sounds enhance different components of sustained responses, previous studies with click trains and vowel stimuli presented diverging results. In order to investigate the effect of repetition rate on cortical responses, we analyzed the auditory sustained fields evoked by periodic and aperiodic noises using magnetoencephalography. Results Sustained fields were elicited by white noise and repeating frozen noise stimuli with repetition rates of 5-, 10-, 50-, 200- and 500 Hz. The sustained field amplitudes were significantly larger for all the periodic stimuli than for white noise. Although the sustained field amplitudes showed a rising and falling pattern within the repetition rate range, the response amplitudes to 5 Hz repetition rate were significantly larger than to 500 Hz. Conclusions The enhanced sustained field responses to periodic noises show that cortical sensitivity to periodic sounds is maintained for a wide range of repetition rates. Persistence of periodicity sensitivity below the pitch range suggests that in addition to processing the fundamental frequency of voice, sustained field generators can also resolve low frequency temporal modulations in speech envelope.

  8. Auditory input shapes tonotopic differentiation of Kv1.1 expression in avian cochlear nucleus during late development.

    Science.gov (United States)

    Akter, Nargis; Adachi, Ryota; Kato, Akitoshi; Fukaya, Ryota; Kuba, Hiroshi

    2018-02-08

    Tonotopic differentiation is fundamental for signal processing in the auditory system. However, when and how this differentiation arises remains elusive. We addressed this issue using electrophysiology and immunohistochemistry in nucleus magnocellularis (NM) of chickens of both sexes, which is known to differ in the expression of Kv1.1 channels depending on characteristic frequency (CF). Just after hearing onset (embryonic day 12-14), Kv1 current gradually increased to a slightly larger extent in neurons with higher CF, causing a tonotopic difference of Kv1 current before hatch. However, after hatch, a much larger increase of Kv1 current occurred, particularly in higher-CF neurons, due to an augmentation of Kv1.1 expression at the plasma membrane. This later change in expression led to the large tonotopic difference of Kv1 current characteristic of mature animals. Attenuation of auditory input by inducing conductive or sensorineural hearing loss around hatch suppressed the differentiation in a level-dependent manner. Moreover, elevation of auditory input during embryonic periods could not reproduce the differentiation, suggesting that the capacity of neurons to drive Kv1.1 expression via auditory input develops in a cell-specific manner, thus underlying the frequency-specific expression of the channel within the nucleus. The results indicated that the tonotopic differentiation of Kv1.1 in NM is partially determined before hatch, but largely driven by afferent input after hatch. Our results highlight the importance of neuronal capacity for sound to drive ion channel expression as well as the level of auditory experience in the frequency tuning of brainstem auditory circuits. SIGNIFICANCE STATEMENT Tuning-frequency-specific expression of ion channels is a prerequisite for auditory system function, but its underlying mechanisms remain unclear. Here, we revealed in avian cochlear nucleus that the expression of Kv1.1 became more dependent on auditory input at a late

  9. Prolonged auditory brainstem responses in infants with autism

    Science.gov (United States)

    Miron, Oren; Ari‐Even Roth, Daphne; Gabis, Lidia V.; Henkin, Yael; Shefer, Shahar; Dinstein, Ilan

    2015-01-01

    Numerous studies have attempted to identify early physiological abnormalities in infants and toddlers who later develop autism spectrum disorder (ASD). One potential measure of early neurophysiology is the auditory brainstem response (ABR), which has been reported to exhibit prolonged latencies in children with ASD. We examined whether prolonged ABR latencies appear in infancy, before the onset of ASD symptoms, and irrespective of hearing thresholds. To determine how early in development these differences appear, we retrospectively examined clinical ABR recordings of infants who were later diagnosed with ASD. Of the 118 children in the participant pool, 48 were excluded due to elevated ABR thresholds, genetic aberrations, or old testing age, leaving a sample of 70 children: 30 of which were tested at 0–3 months, and 40 were tested at toddlerhood (1.5–3.5 years). In the infant group, the ABR wave‐V was significantly prolonged in those who later developed ASD as compared with case‐matched controls (n = 30). Classification of infants who later developed ASD and case‐matched controls using this measure enabled accurate identification of ASD infants with 80% specificity and 70% sensitivity. In the group of toddlers with ASD, absolute and interpeak latencies were prolonged compared to clinical norms. Findings indicate that ABR latencies are significantly prolonged in infants who are later diagnosed with ASD irrespective of their hearing thresholds; suggesting that abnormal responses might be detected soon after birth. Further research is needed to determine if ABR might be a valid marker for ASD risk. Autism Res 2016, 9: 689–695. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26477791

  10. Central conduction time in auditory brainstem response and ear advantage in dichotic listening across menstrual cycle.

    Science.gov (United States)

    Hu, Xu-Jun; Lau, Chi-Chuen

    2017-01-01

    The ovarian hormones fluctuate during the menstrual cycle in women. Such fluctuation of sex hormones, in particular estrogen, is believed to affect the central conduction time in auditory function as well as the language lateralization in cognitive function. However, findings are inconsistent. The underlying mechanisms are also unclear. This paper examined if there was any relation between the central conduction time and the language lateralization at different times during the menstrual cycle. Twenty young women with normal menstrual cycle were tested four times (5 to 7 days apart) across the menstrual cycle. The test battery included the electrophysiological measurement of auditory evoked response in brainstem and the speech performance in dichotic listening with monosyllables as stimulus pairs. The dichotic listening task was conducted under the non-forced, forced-right and forced-left attention. The central conduction time was defined by the time elapsed between two auditory elicited responses along the auditory pathway. The language lateralization in dichotic listening was expressed in ear advantage, which was the right-ear score minus the left-ear score. The results showed that the effects of test time were significant on both the central conduction time and the ear advantage under the forced-left attention. Overall, the interaural difference in the central conduction time correlates with the ear advantage (non-forced attention) at the beginning of the menstrual cycle. The change in central conduction time between two test times correlates significantly with the change in ear advantage under the non-forced and forced-left attention. Conclusively, the central conduction time depends on the time during the menstrual cycle, which in turn may affect the performance in dichotic listening.

  11. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans

    Directory of Open Access Journals (Sweden)

    Zhuang Cui

    2017-08-01

    Full Text Available The arrival of sound signals in the auditory cortex (AC triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC and extrinsic functional connectivity (eFC of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices. Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  12. Sensitivity to an Illusion of Sound Location in Human Auditory Cortex.

    Science.gov (United States)

    Higgins, Nathan C; McLaughlin, Susan A; Da Costa, Sandra; Stecker, G Christopher

    2017-01-01

    Human listeners place greater weight on the beginning of a sound compared to the middle or end when determining sound location, creating an auditory illusion known as the Franssen effect. Here, we exploited that effect to test whether human auditory cortex (AC) represents the physical vs. perceived spatial features of a sound. We used functional magnetic resonance imaging (fMRI) to measure AC responses to sounds that varied in perceived location due to interaural level differences (ILD) applied to sound onsets or to the full sound duration. Analysis of hemodynamic responses in AC revealed sensitivity to ILD in both full-cue (veridical) and onset-only (illusory) lateralized stimuli. Classification analysis revealed regional differences in the sensitivity to onset-only ILDs, where better classification was observed in posterior compared to primary AC. That is, restricting the ILD to sound onset-which alters the physical but not the perceptual nature of the spatial cue-did not eliminate cortical sensitivity to that cue. These results suggest that perceptual representations of auditory space emerge or are refined in higher-order AC regions, supporting the stable perception of auditory space in noisy or reverberant environments and forming the basis of illusions such as the Franssen effect.

  13. Sensitivity to an Illusion of Sound Location in Human Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Nathan C. Higgins

    2017-05-01

    Full Text Available Human listeners place greater weight on the beginning of a sound compared to the middle or end when determining sound location, creating an auditory illusion known as the Franssen effect. Here, we exploited that effect to test whether human auditory cortex (AC represents the physical vs. perceived spatial features of a sound. We used functional magnetic resonance imaging (fMRI to measure AC responses to sounds that varied in perceived location due to interaural level differences (ILD applied to sound onsets or to the full sound duration. Analysis of hemodynamic responses in AC revealed sensitivity to ILD in both full-cue (veridical and onset-only (illusory lateralized stimuli. Classification analysis revealed regional differences in the sensitivity to onset-only ILDs, where better classification was observed in posterior compared to primary AC. That is, restricting the ILD to sound onset—which alters the physical but not the perceptual nature of the spatial cue—did not eliminate cortical sensitivity to that cue. These results suggest that perceptual representations of auditory space emerge or are refined in higher-order AC regions, supporting the stable perception of auditory space in noisy or reverberant environments and forming the basis of illusions such as the Franssen effect.

  14. Auditory fMRI of Sound Intensity and Loudness for Unilateral Stimulation.

    Science.gov (United States)

    Behler, Oliver; Uppenkamp, Stefan

    2016-01-01

    We report a systematic exploration of the interrelation of sound intensity, ear of entry, individual loudness judgments, and brain activity across hemispheres, using auditory functional magnetic resonance imaging (fMRI). The stimuli employed were 4 kHz-bandpass filtered noise stimuli, presented monaurally to each ear at levels from 37 to 97 dB SPL. One diotic condition and a silence condition were included as control conditions. Normal hearing listeners completed a categorical loudness scaling procedure with similar stimuli before auditory fMRI was performed. The relationship between brain activity, as inferred from blood oxygenation level dependent (BOLD) contrasts, and both sound intensity and loudness estimates were analyzed by means of linear mixed effects models for various anatomically defined regions of interest in the ascending auditory pathway and in the cortex. The results indicate distinct functional differences between midbrain and cortical areas as well as between specific regions within auditory cortex, suggesting a systematic hierarchy in terms of lateralization and the representation of sensory stimulation and perception.

  15. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  16. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  17. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  18. Current status of auditory aging and anti-aging research.

    Science.gov (United States)

    Ruan, Qingwei; Ma, Cheng; Zhang, Ruxin; Yu, Zhuowei

    2014-01-01

    The development of presbycusis, or age-related hearing loss, is determined by a combination of genetic and environmental factors. The auditory periphery exhibits a progressive bilateral, symmetrical reduction of auditory sensitivity to sound from high to low frequencies. The central auditory nervous system shows symptoms of decline in age-related cognitive abilities, including difficulties in speech discrimination and reduced central auditory processing, ultimately resulting in auditory perceptual abnormalities. The pathophysiological mechanisms of presbycusis include excitotoxicity, oxidative stress, inflammation, aging and oxidative stress-induced DNA damage that results in apoptosis in the auditory pathway. However, the originating signals that trigger these mechanisms remain unclear. For instance, it is still unknown whether insulin is involved in auditory aging. Auditory aging has preclinical lesions, which manifest as asymptomatic loss of periphery auditory nerves and changes in the plasticity of the central auditory nervous system. Currently, the diagnosis of preclinical, reversible lesions depends on the detection of auditory impairment by functional imaging, and the identification of physiological and molecular biological markers. However, despite recent improvements in the application of these markers, they remain under-utilized in clinical practice. The application of antisenescent approaches to the prevention of auditory aging has produced inconsistent results. Future research will focus on the identification of markers for the diagnosis of preclinical auditory aging and the development of effective interventions. © 2013 Japan Geriatrics Society.

  19. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  20. Perceptual Plasticity for Auditory Object Recognition

    Directory of Open Access Journals (Sweden)

    Shannon L. M. Heald

    2017-05-01

    Full Text Available In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument, speaking (or playing rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we

  1. Anatomical Pathways for Auditory Memory in Primates

    Directory of Open Access Journals (Sweden)

    Monica Munoz-Lopez

    2010-10-01

    Full Text Available Episodic memory or the ability to store context-rich information about everyday events depends on the hippocampal formation (entorhinal cortex, subiculum, presubiculum, parasubiculum, hippocampus proper, and dentate gyrus. A substantial amount of behavioral-lesion and anatomical studies have contributed to our understanding of the organization of how visual stimuli are retained in episodic memory. However, whether auditory memory is organized similarly is still unclear. One hypothesis is that, like the ‘visual ventral stream’ for which the connections of the inferior temporal gyrus with the perirhinal cortex are necessary for visual recognition in monkeys, direct connections between the auditory association areas of the superior temporal gyrus and the hippocampal formation and with the parahippocampal region (temporal pole, perhirinal, and posterior parahippocampal cortices might also underlie recognition memory for sounds. Alternatively, the anatomical organization of memory could be different in audition. This alternative ‘indirect stream’ hypothesis posits that, unlike the visual association cortex, the majority of auditory association cortex makes one or more synapses in intermediate, polymodal areas, where they may integrate information from other sensory modalities, before reaching the medial temporal memory system. This review considers anatomical studies that can support either one or both hypotheses – focusing on anatomical studies on the primate brain that have reported not only direct auditory association connections with medial temporal areas, but, importantly, also possible indirect pathways for auditory information to reach the medial temporal lobe memory system.

  2. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  3. The Harmonic Organization of Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Xiaoqin eWang

    2013-12-01

    Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  4. The harmonic organization of auditory cortex

    Science.gov (United States)

    Wang, Xiaoqin

    2013-01-01

    A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544

  5. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  6. Amyotrophic Lateral Sclerosis (ALS)

    Science.gov (United States)

    ... Division of Neuroscience Director, NIH BRAIN Initiative® Health Scientist Administrator Channels Synapses Circuits Cluster Scientific Director, Division of Intramural Research Featured Director's Message menu search Enter Search Term Submit Search Amyotrophic Lateral Sclerosis ( ...

  7. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains using...... measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability....... The mean lateral angle of the internal acoustic canal was found to be larger in females (46.5°) than in males (43.4°). However, the difference was not statistically significant and the sex differences reported in previous studies were not substantiated. In light of the observed results, the lateral angle...

  8. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    Directory of Open Access Journals (Sweden)

    Christina M. Karns

    2015-06-01

    Full Text Available Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages.

  9. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    Science.gov (United States)

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  10. Source reliability in auditory health persuasion : Its antecedents and consequences

    NARCIS (Netherlands)

    Elbert, Sarah P.; Dijkstra, Arie

    2015-01-01

    Persuasive health messages can be presented through an auditory channel, thereby enhancing the salience of the source, making it fundamentally different from written or pictorial information. We focused on the determinants of perceived source reliability in auditory health persuasion by

  11. Intradermal melanocytic nevus of the external auditory canal.

    Science.gov (United States)

    Alves, Renato V; Brandão, Fabiano H; Aquino, José E P; Carvalho, Maria R M S; Giancoli, Suzana M; Younes, Eduado A P

    2005-01-01

    Intradermal nevi are common benign pigmented skin tumors. Their occurrence within the external auditory canal is uncommon. The clinical and pathologic features of an intradermal nevus arising within the external auditory canal are presented, and the literature reviewed.

  12. The effect of background music in auditory health persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    2013-01-01

    In auditory health persuasion, threatening information regarding health is communicated by voice only. One relevant context of auditory persuasion is the addition of background music. There are different mechanisms through which background music might influence persuasion, for example through mood

  13. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  14. Pathways of lateral spreading.

    Science.gov (United States)

    Jacobi, U; Schanzer, S; Weigmann, H-J; Patzelt, A; Vergou, T; Sterry, W; Lademann, J

    2011-01-01

    In the case of topically applied substances, usually both lateral spreading and competitive penetration into the skin occur in parallel. In the present study, the pathways of lateral spreading were studied quantitatively and visually. The local distribution and lateral spreading of the UV filter substance butyl methoxydibenzoylmethane applied in an o/w emulsion was studied on the forearm and the back. The tape stripping procedure was used to determine the recovery rates inside and outside the area of application. The skin characteristics of transepidermal water loss, pH value, hydration of the stratum corneum and sebum rate were determined at both anatomic sites. Photography and laser scanning microscopy were used to visually investigate the lateral spreading of topically applied dyes. On the back, a preferred direction of lateral spreading parallel to the body axis was observed. This result was caused by differences in the network of furrows. The furrows functioned as a pathway for lateral spreading, whereas the follicles formed a reservoir for the topically applied substance. Copyright © 2011 S. Karger AG, Basel.

  15. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    Prediction and assessment of low-frequency noise problems requires information about the auditory filter characteristics at low-frequencies. Unfortunately, data at low-frequencies is scarce and practically no results have been published for frequencies below 100 Hz. Extrapolation of ERB results...... from previous studies suggests the filter bandwidth keeps decreasing below 100 Hz, although at a relatively lower rate than at higher frequencies. Main characteristics of the auditory filter were studied from below 100 Hz up to 1000 Hz. Center frequencies evaluated were 50, 63, 125, 250, 500, and 1000...... Hz. The notched-noise method was used, with the noise masker at 40 dB spectral density. A rounded exponential auditory filter model (roex(p,r)) was used to fit the masking data. Preliminary data on 1 subject is discussed. Considering the system as a whole (e.g. without removing the assumed middle...

  16. Auditory Alterations in Children Infected by Human Immunodeficiency Virus Verified Through Auditory Processing Test.

    Science.gov (United States)

    Romero, Ana Carla Leite; Alfaya, Lívia Marangoni; Gonçales, Alina Sanches; Frizzo, Ana Claudia Figueiredo; Isaac, Myriam de Lima

    2017-01-01

    Introduction The auditory system of HIV-positive children may have deficits at various levels, such as the high incidence of problems in the middle ear that can cause hearing loss. Objective The objective of this study is to characterize the development of children infected by the Human Immunodeficiency Virus (HIV) in the Simplified Auditory Processing Test (SAPT) and the Staggered Spondaic Word Test. Methods We performed behavioral tests composed of the Simplified Auditory Processing Test and the Portuguese version of the Staggered Spondaic Word Test (SSW). The participants were 15 children infected by HIV, all using antiretroviral medication. Results The children had abnormal auditory processing verified by Simplified Auditory Processing Test and the Portuguese version of SSW. In the Simplified Auditory Processing Test, 60% of the children presented hearing impairment. In the SAPT, the memory test for verbal sounds showed more errors (53.33%); whereas in SSW, 86.67% of the children showed deficiencies indicating deficit in figure-ground, attention, and memory auditory skills. Furthermore, there are more errors in conditions of background noise in both age groups, where most errors were in the left ear in the Group of 8-year-olds, with similar results for the group aged 9 years. Conclusion The high incidence of hearing loss in children with HIV and comorbidity with several biological and environmental factors indicate the need for: 1) familiar and professional awareness of the impact on auditory alteration on the developing and learning of the children with HIV, and 2) access to educational plans and follow-up with multidisciplinary teams as early as possible to minimize the damage caused by auditory deficits.

  17. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  18. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    OpenAIRE

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2014-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it...

  19. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel

    A loudspeaker-based virtual auditory environment (VAE) has been developed to provide a realistic versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room reverberation. The VAE allows a full control...... of the acoustic scenario in order to systematically study the auditory processing of reverberant sounds. It is based on the ODEON software, which is state-of-the-art software for room acoustic simulations developed at Acoustic Technology, DTU. First, a MATLAB interface to the ODEON software has been developed...

  20. Hemispheric asymmetries for visual and auditory temporal processing: an evoked potential study.

    Science.gov (United States)

    Nicholls, Michael E R; Gora, John; Stough, Con K K

    2002-04-01

    Lateralization for temporal processing was investigated using evoked potentials to an auditory and visual gap detection task in 12 dextral adults. The auditory stimuli consisted of 300-ms bursts of white noise, half of which contained an interruption lasting 4 or 6 ms. The visual stimuli consisted of 130-ms flashes of light, half of which contained a gap lasting 6 or 8 ms. The stimuli were presented bilaterally to both ears or both visual fields. Participants made a forced two-choice discrimination using a bimanual response. Manipulations of the task had no effect on the early evoked components. However, an effect was observed for a late positive component, which occurred approximately 300-400 ms following gap presentation. This component tended to be later and lower in amplitude for the more difficult stimulus conditions. An index of the capacity to discriminate gap from no-gap stimuli was gained by calculating the difference waveform between these conditions. The peak of the difference waveform was delayed for the short-gap stimuli relative to the long-gap stimuli, reflecting decreased levels of difficulty associated with the latter stimuli. Topographic maps of the difference waveforms revealed a prominence over the left hemisphere. The visual stimuli had an occipital parietal focus whereas the auditory stimuli were parietally centered. These results confirm the importance of the left hemisphere for temporal processing and demonstrate that it is not the result of a hemispatial attentional bias or a peripheral sensory asymmetry.

  1. Auditory Perception of Statistically Blurred Sound Textures

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; MacDonald, Ewen; Dau, Torsten

    Sound textures have been identified as a category of sounds which are processed by the peripheral auditory system and captured with running timeaveraged statistics. Although sound textures are temporally homogeneous, they offer a listener with enough information to identify and differentiate...... sources. This experiment investigated the ability of the auditory system to identify statistically blurred sound textures and the perceptual relationship between sound textures. Identification performance of statistically blurred sound textures presented at a fixed blur increased over those presented...... as a gradual blur. The results suggests that the correct identification of sound textures is influenced by the preceding blurred stimulus. These findings draw parallels to the recognition of blurred images....

  2. The many facets of auditory display

    Science.gov (United States)

    Blattner, Meera M.

    1995-01-01

    In this presentation we will examine some of the ways sound can be used in a virtual world. We make the case that many different types of audio experience are available to us. A full range of audio experiences include: music, speech, real-world sounds, auditory displays, and auditory cues or messages. The technology of recreating real-world sounds through physical modeling has advanced in the past few years allowing better simulation of virtual worlds. Three-dimensional audio has further enriched our sensory experiences.

  3. Auditory brain-stem responses in adrenomyeloneuropathy.

    Science.gov (United States)

    Grimes, A M; Elks, M L; Grunberger, G; Pikus, A M

    1983-09-01

    We studied three patients with adrenomyeloneuropathy. Complete audiologic assessment was obtained: two patients showed unimpaired peripheral hearing and one showed a mild high-frequency hearing loss. Auditory brain-stem responses were abnormal in both ears of all subjects, with one subject showing no response above wave I, and the other two having significant wave I to III and wave III to V interval prolongations. We concluded that auditory brain-stem response testing provides a simple, valid, reliable method for demonstrating neurologic abnormality in adrenomyeloneuropathy even prior to evidence of clinical signs.

  4. Rhythmic walking interaction with auditory feedback

    DEFF Research Database (Denmark)

    Maculewicz, Justyna; Jylhä, Antti; Serafin, Stefania

    2015-01-01

    We present an interactive auditory display for walking with sinusoidal tones or ecological, physically-based synthetic walking sounds. The feedback is either step-based or rhythmic, with constant or adaptive tempo. In a tempo-following experiment, we investigate different interaction modes...... and auditory feedback, based on the MSE between the target and performed tempo, and the stability of the latter. The results indicate that the MSE with ecological sounds is comparable to that with the sinusoidal tones, yet ecological sounds are considered more natural. Adaptive conditions result in stable...

  5. AN EVALUATION OF AUDITORY LEARNING IN FILIAL IMPRINTING

    NARCIS (Netherlands)

    BOLHUIS, JJ; VANKAMPEN, HS

    The characteristics of auditory learning in filial imprinting in precocial birds are reviewed. Numerous studies have demonstrated that the addition of an auditory stimulus improves following of a visual stimulus. This paper evaluates whether there is genuine auditory imprinting, i.e. the formation

  6. Should Children with Auditory Processing Disorders Receive Services in Schools?

    Science.gov (United States)

    Lucker, Jay R.

    2012-01-01

    Many children with problems learning in school can have educational deficits due to underlying auditory processing disorders (APD). For these children, they can be identified as having auditory learning disabilities. Furthermore, auditory learning disabilities is identified as a specific learning disability (SLD) in the IDEA. Educators and…

  7. 21 CFR 874.1090 - Auditory impedance tester.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  8. Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…

  9. 76 FR 61655 - Definition of Part 15 Auditory Assistance Device

    Science.gov (United States)

    2011-10-05

    ... COMMISSION 47 CFR Part 15 Definition of Part 15 Auditory Assistance Device AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: This document proposes to amend the definition of ``auditory... definition restricts the use of part 15 auditory assistance devices that operate in the 72.0-73.0 MHz, 74.6...

  10. Laterality in living beings, hand dominance, and cerebral lateralization

    OpenAIRE

    Milenković Sanja; Paunović Katarina; Kocijančić Dušica

    2016-01-01

    To date, lateralization in living beings is a phenomenon almost mythologically unexplored. Scientists have proved that lateralization is not exclusively a human feature. Investigations in molecular biology, protein structure, mobility of bacteria, and intracellular lateralization in ciliates, shows important and universal nature of lateralization in living systems. Dominant lateralization implies the appearance of a dominant extremity, or a dominant sense d...

  11. A comparison of the brainstem auditory evoked response in healthy ears of unilaterally deaf dogs and bilaterally hearing dogs.

    Science.gov (United States)

    Plonek, M; Nicpoń, J; Kubiak, K; Wrzosek, M

    2017-03-01

    Auditory plasticity in response to unilateral deafness has been reported in various animal species. Subcortical changes occurring in unilaterally deaf young dogs using the brainstem auditory evoked response have not been evaluated yet. The aim of this study was to assess the brainstem auditory evoked response findings in dogs with unilateral hearing loss, and compare them with recordings obtained from healthy dogs. Brainstem auditory evoked responses (amplitudes and latencies of waves I, II, III, V, the V/I wave amplitude ratio, wave I-V, I-III and III-V interpeak intervals) were studied retrospectively in forty-six privately owned dogs, which were either unilaterally deaf or had bilateral hearing. The data obtained from the hearing ears in unilaterally deaf dogs were compared to values obtained from their healthy littermates. Statistically significant differences in the amplitude of wave III and the V/I wave amplitude ratio at 75 dB nHL were found between the group of unilaterally deaf puppies and the control group. The recordings of dogs with single-sided deafness were compared, and the results showed no statistically significant differences in the latencies and amplitudes of the waves between left- (AL) and right-sided (AR) deafness. The recordings of the brainstem auditory evoked response in canines with unilateral inborn deafness in this study varied compared to recordings from healthy dogs. Future studies looking into electrophysiological assessment of hearing in conjunction with imaging modalities to determine subcortical auditory plasticity and auditory lateralization in unilaterally deaf dogs are warranted.

  12. Dynamic-range compression affects the lateral position of sounds.

    Science.gov (United States)

    Wiggins, Ian M; Seeber, Bernhard U

    2011-12-01

    Dynamic-range compression acting independently at each ear in a bilateral hearing-aid or cochlear-implant fitting can alter interaural level differences (ILDs) potentially affecting spatial perception. The influence of compression on the lateral position of sounds was studied in normal-hearing listeners using virtual acoustic stimuli. In a lateralization task, listeners indicated the leftmost and rightmost extents of the auditory event and reported whether they heard (1) a single, stationary image, (2) a moving/gradually broadening image, or (3) a split image. Fast-acting compression significantly affected the perceived position of high-pass sounds. For sounds with abrupt onsets and offsets, compression shifted the entire image to a more central position. For sounds containing gradual onsets and offsets, including speech, compression increased the occurrence of moving and split images by up to 57 percentage points and increased the perceived lateral extent of the auditory event. The severity of the effects was reduced when undisturbed low-frequency binaural cues were made available. At high frequencies, listeners gave increased weight to ILDs relative to interaural time differences carried in the envelope when compression caused ILDs to change dynamically at low rates, although individual differences were apparent. Specific conditions are identified in which compression is likely to affect spatial perception. © 2011 Acoustical Society of America

  13. Laterally bendable belt conveyor

    Science.gov (United States)

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  14. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs

    Directory of Open Access Journals (Sweden)

    Abhilash ePonnath

    2014-07-01

    Full Text Available Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds or presented on a sound-by-sound basis (ms, experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses, excitability (spikes / acoustic stimulus to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted < 2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  15. The multi-level impact of chronic intermittent hypoxia on central auditory processing.

    Science.gov (United States)

    Wong, Eddie; Yang, Bin; Du, Lida; Ho, Wai Hong; Lau, Condon; Ke, Ya; Chan, Ying Shing; Yung, Wing Ho; Wu, Ed X

    2017-08-01

    During hypoxia, the tissues do not obtain adequate oxygen. Chronic hypoxia can lead to many health problems. A relatively common cause of chronic hypoxia is sleep apnea. Sleep apnea is a sleep breathing disorder that affects 3-7% of the population. During sleep, the patient's breathing starts and stops. This can lead to hypertension, attention deficits, and hearing disorders. In this study, we apply an established chronic intermittent hypoxemia (CIH) model of sleep apnea to study its impact on auditory processing. Adult rats were reared for seven days during sleeping hours in a gas chamber with oxygen level cycled between 10% and 21% (normal atmosphere) every 90s. During awake hours, the subjects were housed in standard conditions with normal atmosphere. CIH treatment significantly reduces arterial oxygen partial pressure and oxygen saturation during sleeping hours (relative to controls). After treatment, subjects underwent functional magnetic resonance imaging (fMRI) with broadband sound stimulation. Responses are observed in major auditory centers in all subjects, including the auditory cortex (AC) and auditory midbrain. fMRI signals from the AC are statistically significantly increased after CIH by 0.13% in the contralateral hemisphere and 0.10% in the ipsilateral hemisphere. In contrast, signals from the lateral lemniscus of the midbrain are significantly reduced by 0.39%. Signals from the neighboring inferior colliculus of the midbrain are relatively unaffected. Chronic hypoxia affects multiple levels of the auditory system and these changes are likely related to hearing disorders associated with sleep apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    Science.gov (United States)

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  18. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  19. Modification of EEG asymmetry induced by auditory biofeedback loop during REM sleep in man.

    Science.gov (United States)

    Sockeel, P; Mouze-Amady, M; Leconte, P

    1987-12-01

    Several studies have emphasized the relationship between (1) rapid eye movement sleep (REM sleep) and learning, and (2) between REM sleep and asymmetry in EEG activity. Since we have shown that obtaining operant conditioned responses via auditory biofeedback during REM sleep is feasible, we demonstrate here that REM contingent auditory stimulations (white noise stimulation or interruption of a continuous white noise stimulation) lead to differential changes in phasic and tonic components of REM sleep. Whereas during baseline nights a relative right activation is found in the medium bands of EEG frequencies, our procedure seems to induce a systematic interhemispheric change during experimental nights. A new approach to the information processing hypothesis during REM sleep is proposed in terms of functional lateralized modifications of the EEG.

  20. Physiological models of the lateral superior olive

    Science.gov (United States)

    2017-01-01

    In computational biology, modeling is a fundamental tool for formulating, analyzing and predicting complex phenomena. Most neuron models, however, are designed to reproduce certain small sets of empirical data. Hence their outcome is usually not compatible or comparable with other models or datasets, making it unclear how widely applicable such models are. In this study, we investigate these aspects of modeling, namely credibility and generalizability, with a specific focus on auditory neurons involved in the localization of sound sources. The primary cues for binaural sound localization are comprised of interaural time and level differences (ITD/ILD), which are the timing and intensity differences of the sound waves arriving at the two ears. The lateral superior olive (LSO) in the auditory brainstem is one of the locations where such acoustic information is first computed. An LSO neuron receives temporally structured excitatory and inhibitory synaptic inputs that are driven by ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to binaural acoustic differences. Here we examine seven contemporary models of LSO neurons with different levels of biophysical complexity, from predominantly functional ones (‘shot-noise’ models) to those with more detailed physiological components (variations of integrate-and-fire and Hodgkin-Huxley-type). These models, calibrated to reproduce known monaural and binaural characteristics of LSO, generate largely similar results to each other in simulating ITD and ILD coding. Our comparisons of physiological detail, computational efficiency, predictive performances, and further expandability of the models demonstrate (1) that the simplistic, functional LSO models are suitable for applications where low computational costs and mathematical transparency are needed, (2) that more complex models with detailed membrane potential dynamics are necessary for simulation studies where sub-neuronal nonlinear

  1. Physiological models of the lateral superior olive.

    Directory of Open Access Journals (Sweden)

    Go Ashida

    2017-12-01

    Full Text Available In computational biology, modeling is a fundamental tool for formulating, analyzing and predicting complex phenomena. Most neuron models, however, are designed to reproduce certain small sets of empirical data. Hence their outcome is usually not compatible or comparable with other models or datasets, making it unclear how widely applicable such models are. In this study, we investigate these aspects of modeling, namely credibility and generalizability, with a specific focus on auditory neurons involved in the localization of sound sources. The primary cues for binaural sound localization are comprised of interaural time and level differences (ITD/ILD, which are the timing and intensity differences of the sound waves arriving at the two ears. The lateral superior olive (LSO in the auditory brainstem is one of the locations where such acoustic information is first computed. An LSO neuron receives temporally structured excitatory and inhibitory synaptic inputs that are driven by ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to binaural acoustic differences. Here we examine seven contemporary models of LSO neurons with different levels of biophysical complexity, from predominantly functional ones ('shot-noise' models to those with more detailed physiological components (variations of integrate-and-fire and Hodgkin-Huxley-type. These models, calibrated to reproduce known monaural and binaural characteristics of LSO, generate largely similar results to each other in simulating ITD and ILD coding. Our comparisons of physiological detail, computational efficiency, predictive performances, and further expandability of the models demonstrate (1 that the simplistic, functional LSO models are suitable for applications where low computational costs and mathematical transparency are needed, (2 that more complex models with detailed membrane potential dynamics are necessary for simulation studies where sub

  2. Hemispheric asymmetry of auditory steady-state responses to monaural and diotic stimulation.

    Science.gov (United States)

    Poelmans, Hanne; Luts, Heleen; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2012-12-01

    Amplitude modulations in the speech envelope are crucial elements for speech perception. These modulations comprise the processing rate at which syllabic (~3-7 Hz), and phonemic transitions occur in speech. Theories about speech perception hypothesize that each hemisphere in the auditory cortex is specialized in analyzing modulations at different timescales, and that phonemic-rate modulations of the speech envelope lateralize to the left hemisphere, whereas right lateralization occurs for slow, syllabic-rate modulations. In the present study, neural processing of phonemic- and syllabic-rate modulations was investigated with auditory steady-state responses (ASSRs). ASSRs to speech-weighted noise stimuli, amplitude modulated at 4, 20, and 80 Hz, were recorded in 30 normal-hearing adults. The 80 Hz ASSR is primarily generated by the brainstem, whereas 20 and 4 Hz ASSRs are mainly cortically evoked and relate to speech perception. Stimuli were presented diotically (same signal to both ears) and monaurally (one signal to the left or right ear). For 80 Hz, diotic ASSRs were larger than monaural responses. This binaural advantage decreased with decreasing modulation frequency. For 20 Hz, diotic ASSRs were equal to monaural responses, while for 4 Hz, diotic responses were smaller than monaural responses. Comparison of left and right ear stimulation demonstrated that, with decreasing modulation rate, a gradual change from ipsilateral to right lateralization occurred. Together, these results (1) suggest that ASSR enhancement to binaural stimulation decreases in the ascending auditory system and (2) indicate that right lateralization is more prominent for low-frequency ASSRs. These findings may have important consequences for electrode placement in clinical settings, as well as for the understanding of low-frequency ASSR generation.

  3. Age-Dependent Mesial Temporal Lobe Lateralization in Language FMRI

    Science.gov (United States)

    Sepeta, Leigh N.; Berl, Madison M.; Wilke, Marko; You, Xiaozhen; Mehta, Meera; Xu, Benjamin; Inati, Sara; Dustin, Irene; Khan, Omar; Austermuehle, Alison; Theodore, William H.; Gaillard, William D.

    2015-01-01

    Objective FMRI activation of the mesial temporal lobe (MTL) may be important for epilepsy surgical planning. We examined MTL activation and lateralization during language fMRI in children and adults with focal epilepsy. Methods 142 controls and patients with left hemisphere focal epilepsy (Pediatric: epilepsy, n = 17, mean age = 9.9 ± 2.0; controls, n = 48; mean age = 9.1 ± 2.6; Adult: epilepsy, n = 20, mean age = 26.7 ± 5.8; controls, n = 57, mean age = 26.2 ± 7.5) underwent 3T fMRI using a language task (auditory description decision task). Image processing and analyses were conducted in SPM8; ROIs included MTL, Broca’s area, and Wernicke’s area. We assessed group and individual MTL activation, and examined degree of lateralization. Results Patients and controls (pediatric and adult) demonstrated group and individual MTL activation during language fMRI. MTL activation was left lateralized for adults but less so in children (p’s < 0.005). Patients did not differ from controls in either age group. Stronger left-lateralized MTL activation was related to older age (p = 0.02). Language lateralization (Broca’s and Wernicke’s) predicted 19% of the variance in MTL lateralization for adults (p = 0.001), but not children. Significance Language fMRI may be used to elicit group and individual MTL activation. The developmental difference in MTL lateralization and its association with language lateralization suggests a developmental shift in lateralization of MTL function, with increased left lateralization across the age span. This shift may help explain why children have better memory outcomes following resection compared to adults. PMID:26696589

  4. Neurodynamics, tonality, and the auditory brainstem response.

    Science.gov (United States)

    Large, Edward W; Almonte, Felix V

    2012-04-01

    Tonal relationships are foundational in music, providing the basis upon which musical structures, such as melodies, are constructed and perceived. A recent dynamic theory of musical tonality predicts that networks of auditory neurons resonate nonlinearly to musical stimuli. Nonlinear resonance leads to stability and attraction relationships among neural frequencies, and these neural dynamics give rise to the perception of relationships among tones that we collectively refer to as tonal cognition. Because this model describes the dynamics of neural populations, it makes specific predictions about human auditory neurophysiology. Here, we show how predictions about the auditory brainstem response (ABR) are derived from the model. To illustrate, we derive a prediction about population responses to musical intervals that has been observed in the human brainstem. Our modeled ABR shows qualitative agreement with important features of the human ABR. This provides a source of evidence that fundamental principles of auditory neurodynamics might underlie the perception of tonal relationships, and forces reevaluation of the role of learning and enculturation in tonal cognition. © 2012 New York Academy of Sciences.

  5. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  6. Cancer of the external auditory canal

    DEFF Research Database (Denmark)

    Nyrop, Mette; Grøntved, Aksel

    2002-01-01

    OBJECTIVE: To evaluate the outcome of surgery for cancer of the external auditory canal and relate this to the Pittsburgh staging system used both on squamous cell carcinoma and non-squamous cell carcinoma. DESIGN: Retrospective case series of all patients who had surgery between 1979 and 2000. M...

  7. Neural Entrainment to Auditory Imagery of Rhythms

    Directory of Open Access Journals (Sweden)

    Haruki Okawa

    2017-10-01

    Full Text Available A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.

  8. Affective priming with auditory speech stimuli

    NARCIS (Netherlands)

    Degner, J.

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In

  9. Auditory risk estimates for youth target shooting.

    Science.gov (United States)

    Meinke, Deanna K; Murphy, William J; Finan, Donald S; Lankford, James E; Flamme, Gregory A; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W

    2014-03-01

    To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter's left ear. All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage.

  10. Auditory Neuropathy Spectrum Disorder: A Review

    Science.gov (United States)

    Norrix, Linda W.; Velenovsky, David S.

    2014-01-01

    Purpose: Auditory neuropathy spectrum disorder, or ANSD, can be a confusing diagnosis to physicians, clinicians, those diagnosed, and parents of children diagnosed with the condition. The purpose of this review is to provide the reader with an understanding of the disorder, the limitations in current tools to determine site(s) of lesion, and…

  11. Self-affirmation in auditory persuasion

    NARCIS (Netherlands)

    Elbert, Sarah; Dijkstra, Arie

    Persuasive health information can be presented through an auditory channel. Curiously enough, the effect of voice cues in health persuasion has hardly been studied. Research concerning visual persuasive messages showed that self-affirmation results in a more open-minded reaction to threatening

  12. Auditory object formation affects modulation perception

    DEFF Research Database (Denmark)

    Piechowiak, Tobias

    2005-01-01

    the target sound in time determine whether or not across-frequency modulation effects are observed. The results suggest that the binding of sound elements into coherent auditory objects precedes aspects of modulation analysis and imply a cortical locus involving integration times of several hundred...

  13. [Auditory processing in specific language disorder].

    Science.gov (United States)

    Idiazábal-Aletxa, M A; Saperas-Rodríguez, M

    2008-01-01

    Specific language impairment (SLI) is diagnosed when a child has difficulty in producing or understanding spoken language for no apparent reason. The diagnosis in made when language development is out of keeping with other aspects of development, and possible explanatory causes have been excluded. During the last years neurosciences have approached to the study of SLI. The ability to process two or more rapidly presented, successive, auditory stimuli is believed to underlie successful language acquisition. It has been proposed that SLI is the consequence of low-level abnormalities in auditory perception. Too, children with SLI show a specific deficit in automatic discrimination of syllables. Electrophysiological methods may reveal underlying immaturity or other abnormality of auditory processing even when behavioural thresholds look normal. There is much controversy about the role of such deficits in causing their language problems, and it has been difficult to establish solid, replicable findings in this area because of the heterogeneity in the population and because insufficient attention has been paid to maturational aspects of auditory processing.

  14. Auditory confrontation naming in Alzheimer's disease.

    Science.gov (United States)

    Brandt, Jason; Bakker, Arnold; Maroof, David Aaron

    2010-11-01

    Naming is a fundamental aspect of language and is virtually always assessed with visual confrontation tests. Tests of the ability to name objects by their characteristic sounds would be particularly useful in the assessment of visually impaired patients, and may be particularly sensitive in Alzheimer's disease (AD). We developed an auditory naming task, requiring the identification of the source of environmental sounds (i.e., animal calls, musical instruments, vehicles) and multiple-choice recognition of those not identified. In two separate studies mild-to-moderate AD patients performed more poorly than cognitively normal elderly on the auditory naming task. This task was also more difficult than two versions of a comparable visual naming task, and correlated more highly with Mini-Mental State Exam score. Internal consistency reliability was acceptable, although ROC analysis revealed auditory naming to be slightly less successful than visual confrontation naming in discriminating AD patients from normal participants. Nonetheless, our auditory naming task may prove useful in research and clinical practice, especially with visually impaired patients.

  15. Effects of Context on Auditory Stream Segregation

    Science.gov (United States)

    Snyder, Joel S.; Carter, Olivia L.; Lee, Suh-Kyung; Hannon, Erin E.; Alain, Claude

    2008-01-01

    The authors examined the effect of preceding context on auditory stream segregation. Low tones (A), high tones (B), and silences (-) were presented in an ABA-pattern. Participants indicated whether they perceived 1 or 2 streams of tones. The A tone frequency was fixed, and the B tone was the same as the A tone or had 1 of 3 higher frequencies.…

  16. The Goldilocks Effect in Infant Auditory Attention

    Science.gov (United States)

    Kidd, Celeste; Piantadosi, Steven T.; Aslin, Richard N.

    2014-01-01

    Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity limits on their cognitive resources restrict the quantity that they can encode. Previous research has established that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly examined infant…

  17. Auditory-motor coupling affects phonetic encoding.

    Science.gov (United States)

    Schmidt-Kassow, Maren; Thöne, Katharina; Kaiser, Jochen

    2017-11-27

    Recent studies have shown that moving in synchrony with auditory stimuli boosts attention allocation and verbal learning. Furthermore rhythmic tones are processed more efficiently than temporally random tones ('timing effect'), and this effect is increased when participants actively synchronize their motor performance with the rhythm of the tones, resulting in auditory-motor synchronization. Here, we investigated whether this applies also to sequences of linguistic stimuli (syllables). We compared temporally irregular syllable sequences with two temporally regular conditions where either the interval between syllable onsets (stimulus onset asynchrony, SOA) or the interval between the syllables' vowel onsets was kept constant. Entrainment to the stimulus presentation frequency (1 Hz) and event-related potentials were assessed in 24 adults who were instructed to detect pre-defined deviant syllables while they either pedaled or sat still on a stationary exercise bike. We found larger 1 Hz entrainment and P300 amplitudes for the SOA presentation during motor activity. Furthermore, the magnitude of the P300 component correlated with the motor variability in the SOA condition and 1 Hz entrainment, while in turn 1 Hz entrainment correlated with auditory-motor synchronization performance. These findings demonstrate that acute auditory-motor coupling facilitates phonetic encoding. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  19. fMRI of the auditory system: understanding the neural basis of auditory gestalt.

    Science.gov (United States)

    Di Salle, Francesco; Esposito, Fabrizio; Scarabino, Tommaso; Formisano, Elia; Marciano, Elio; Saulino, Claudio; Cirillo, Sossio; Elefante, Raffaele; Scheffler, Klaus; Seifritz, Erich

    2003-12-01

    Functional magnetic resonance imaging (fMRI) has rapidly become the most widely used imaging method for studying brain functions in humans. This is a result of its extreme flexibility of use and of the astonishingly detailed spatial and temporal information it provides. Nevertheless, until very recently, the study of the auditory system has progressed at a considerably slower pace compared to other functional systems. Several factors have limited fMRI research in the auditory field, including some intrinsic features of auditory functional anatomy and some peculiar interactions between fMRI technique and audition. A well known difficulty arises from the high intensity acoustic noise produced by gradient switching in echo-planar imaging (EPI), as well as in other fMRI sequences more similar to conventional MR sequences. The acoustic noise interacts in an unpredictable way with the experimental stimuli both from a perceptual point of view and in the evoked hemodynamics. To overcome this problem, different approaches have been proposed recently that generally require careful tailoring of the experimental design and the fMRI methodology to the specific requirements posed by the auditory research. The novel methodological approaches can make the fMRI exploration of auditory processing much easier and more reliable, and thus may permit filling the gap with other fields of neuroscience research. As a result, some fundamental neural underpinnings of audition are being clarified, and the way sound stimuli are integrated in the auditory gestalt are beginning to be understood.

  20. Auditory pathology in cri-du-chat (5p-) syndrome: phenotypic evidence for auditory neuropathy.

    Science.gov (United States)

    Swanepoel, D

    2007-10-01

    5p-(cri-du-chat syndrome) is a well-defined clinical entity presenting with phenotypic and cytogenetic variability. Despite recognition that abnormalities in audition are common, limited reports on auditory functioning in affected individuals are available. The current study presents a case illustrating the auditory functioning in a 22-month-old patient diagnosed with 5p- syndrome, karyotype 46,XX,del(5)(p13). Auditory neuropathy was diagnosed based on abnormal auditory evoked potentials with neural components suggesting severe to profound hearing loss in the presence of cochlear microphonic responses and behavioral reactions to sound at mild to moderate hearing levels. The current case and a review of available reports indicate that auditory neuropathy or neural dys-synchrony may be another phenotype of the condition possibly related to abnormal expression of the protein beta-catenin mapped to 5p. Implications are for routine and diagnostic specific assessments of auditory functioning and for employment of non-verbal communication methods in early intervention.

  1. Pre-Training Reversible Inactivation of the Basal Amygdala (BA Disrupts Contextual, but Not Auditory, Fear Conditioning, in Rats.

    Directory of Open Access Journals (Sweden)

    Elisa Mari Akagi Jordão

    Full Text Available The basolateral amygdala complex (BLA, including the lateral (LA, basal (BA and accessory basal (AB nuclei, is involved in acquisition of contextual and auditory fear conditioning. The BA is one of the main targets for hippocampal information, a brain structure critical for contextual learning, which integrates several discrete stimuli into a single configural representation. Congruent with the hodology, selective neurotoxic damage to the BA results in impairments in contextual, but not auditory, fear conditioning, similarly to the behavioral impairments found after hippocampal damage. This study evaluated the effects of muscimol-induced reversible inactivation of the BA during a simultaneous contextual and auditory fear conditioning training on later fear responses to both the context and the tone, tested separately, without muscimol administration. As compared to control rats micro-infused with vehicle, subjects micro-infused with muscimol before training exhibited, during testing without muscimol, significant reduction of freezing responses to the conditioned context, but not to the conditioned tone. Therefore, reversible inactivation of the BA during training impaired contextual, but not auditory fear conditioning, thus confirming and extending similar behavioral observations following selective neurotoxic damage to the BA and, in addition, revealing that this effect is not related to the lack of a functional BA during testing.

  2. Neurophysiological response selectivity for conspecific songs over synthetic sounds in the auditory forebrain of non-singing female songbirds.

    Science.gov (United States)

    Hauber, Mark E; Cassey, Phillip; Woolley, Sarah M N; Theunissen, Frederic E

    2007-07-01

    Female choice plays a critical role in the evolution of male acoustic displays. Yet there is limited information on the neurophysiological basis of female songbirds' auditory recognition systems. To understand the neural mechanisms of how non-singing female songbirds perceive behaviorally relevant vocalizations, we recorded responses of single neurons to acoustic stimuli in two auditory forebrain regions, the caudal lateral mesopallium (CLM) and Field L, in anesthetized adult female zebra finches (Taeniopygia guttata). Using various metrics of response selectivity, we found consistently higher response strengths for unfamiliar conspecific songs compared to tone pips and white noise in Field L but not in CLM. We also found that neurons in the left auditory forebrain had lower response strengths to synthetics sounds, leading to overall higher neural selectivity for song in neurons of the left hemisphere. This laterality effect is consistent with previously published behavioral data in zebra finches. Overall, our results from Field L are in parallel and from CLM are in contrast with the patterns of response selectivity reported for conspecific songs over synthetic sounds in male zebra finches, suggesting some degree of sexual dimorphism of auditory perception mechanisms in songbirds.

  3. Functional Connectivity Studies Of Patients With Auditory Verbal Hallucinations

    Directory of Open Access Journals (Sweden)

    Ralph E Hoffman

    2012-01-01

    Full Text Available Functional connectivity (FC studies of brain mechanisms leading to auditory verbal hallucinations (AVHs utilizing functional magnetic resonance imaging (fMRI data are reviewed. Initial FC studies utilized fMRI data collected during performance of various tasks, which suggested frontotemporal disconnection and/or source-monitoring.disturbances. Later FC studies have utilized resting (no-task fMRI data. These studies have produced a mixed picture of disconnection and hyperconnectivity involving different pathways associated with AVHs. Results of our most recent FC study of AVHs are reviewed in detail. This study suggests that the core mechanism producing AVHs involves not a single pathway, but a more complex functional loop. Components of this loop include Wernicke’s area and its right homologue, the left inferior frontal cortex, and the putamen. It is noteworthy that the putamen appears to play a critical role in the generation of spontaneous language, and in determining whether auditory stimuli are registered consciously as percepts. Excessive functional coordination linking this region with the Wernicke’s seed region in patients with schizophrenia could therefore generate an overabundance of potentially conscious language representations. In our model, intact FC in the other two legs of corticostriatal loop (Wernicke’s with left IFG, and left IFG with putamen appeared to allow this disturbance (common to schizophrenia overall to be expressed as a conscious hallucination of speech. Recommendations for future studies are discussed, including inclusion of multiple methodologies applied to the same subjects in order to compare and contrast different mechanistic hypotheses, utilizing EEG to better parse time-course of neural synchronization leading to AVHs, and ascertaining experiential subtypes of AVHs that may reflect distinct mechanisms.

  4. Auditory processing in autism spectrum disorder: Mismatch negativity deficits.

    Science.gov (United States)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher; Møllegaard Jepsen, Jens Richardt; Durston, Sarah; Cantio, Cathriona; Glenthøj, Birte; Bilenberg, Niels

    2017-06-22

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism are highly inconsistent, partly due to small sample sizes in the studies and differences in MMN paradigms. Therefore, in the current study, MMN and P3a amplitude were assessed in a relatively large sample of children with ASD, using a more extensive MMN paradigm and compared with that of typically developing children (TDC). Thirty-five children (aged 8-12 years) with ASD and 38 age and gender matched TDC were assessed with a MMN paradigm with three types of deviants, i.e., frequency, duration and a combination of these two. MMN elicited by duration and frequency-duration deviants was significantly reduced in the ASD group. P3a-amplitude elicited by duration deviants was significantly increased in the ASD group. Reduced MMN in children with ASD suggests that children with ASD may be less responsive to environmentally deviant stimuli at an early (sensory) level. P3a-amplitude was increased in ASD, implying a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...

  6. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  7. Articulatory movements modulate auditory responses to speech.

    Science.gov (United States)

    Agnew, Z K; McGettigan, C; Banks, B; Scott, S K

    2013-06-01

    Production of actions is highly dependent on concurrent sensory information. In speech production, for example, movement of the articulators is guided by both auditory and somatosensory input. It has been demonstrated in non-human primates that self-produced vocalizations and those of others are differentially processed in the temporal cortex. The aim of the current study was to investigate how auditory and motor responses differ for self-produced and externally produced speech. Using functional neuroimaging, subjects were asked to produce sentences aloud, to silently mouth while listening to a different speaker producing the same sentence, to passively listen to sentences being read aloud, or to read sentences silently. We show that that separate regions of the superior temporal cortex display distinct response profiles to speaking aloud, mouthing while listening, and passive listening. Responses in anterior superior temporal cortices in both hemispheres are greater for passive listening compared with both mouthing while listening, and speaking aloud. This is the first demonstration that articulation, whether or not it has auditory consequences, modulates responses of the dorsolateral temporal cortex. In contrast posterior regions of the superior temporal cortex are recruited during both articulation conditions. In dorsal regions of the posterior superior temporal gyrus, responses to mouthing and reading aloud were equivalent, and in more ventral posterior superior temporal sulcus, responses were greater for reading aloud compared with mouthing while listening. These data demonstrate an anterior-posterior division of superior temporal regions where anterior fields are suppressed during motor output, potentially for the purpose of enhanced detection of the speech of others. We suggest posterior fields are engaged in auditory processing for the guidance of articulation by auditory information. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Characterization of auditory synaptic inputs to gerbil perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    2015-08-01

    Full Text Available The representation of acoustic cues involves regions downstream from the auditory cortex (ACx. One such area, the perirhinal cortex (PRh, processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of GABA-A receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the auditory cortex.

  9. Multisensory Interactions between Auditory and Haptic Object Recognition

    DEFF Research Database (Denmark)

    Kassuba, Tanja; Menz, Mareike M; R�der, Brigitte

    2013-01-01

    they matched a target object to a sample object within and across audition and touch. By introducing a delay between the presentation of sample and target stimuli, it was possible to dissociate haptic-to-auditory and auditory-to-haptic matching. We hypothesized that only semantically coherent auditory...... and haptic object features activate cortical regions that host unified conceptual object representations. The left fusiform gyrus (FG) and posterior superior temporal sulcus (pSTS) showed increased activation during crossmodal matching of semantically congruent but not incongruent object stimuli. In the FG......, this effect was found for haptic-to-auditory and auditory-to-haptic matching, whereas the pSTS only displayed a crossmodal matching effect for congruent auditory targets. Auditory and somatosensory association cortices showed increased activity during crossmodal object matching which was, however, independent...

  10. "Ictal" lateralized periodic discharges.

    Science.gov (United States)

    Sen-Gupta, Indranil; Schuele, Stephan U; Macken, Micheal P; Kwasny, Mary J; Gerard, Elizabeth E

    2014-07-01

    Whether lateralized periodic discharges (LPDs) represent ictal or interictal phenomena, and even the circumstances in which they may represent one or the other, remains highly controversial. Lateralized periodic discharges are, however, widely accepted as being ictal when they are time-locked to clinically apparent symptoms. We sought to investigate the characteristics of "ictal" lateralized periodic discharges (ILPDs) defined by time-locked clinical symptoms in order to explore the utility of using this definition to dichotomize LPDs into "ictal" and "nonictal" categories. Our archive of all continuous EEG (cEEG) reports of adult inpatients undergoing prolonged EEG monitoring for nonelective indications between 2007 and 2011 was searched to identify all reports describing LPDs. Lateralized periodic discharges were considered ILPDs when they were reported as being consistently time-locked to clinical symptoms; LPDs lacking a clear time-locked correlate were considered to be "nonictal" lateralized periodic discharges (NILPDs). Patient charts and available neuroimaging studies were also reviewed. Neurophysiologic localization of LPDs, imaging findings, presence of seizures, discharge outcomes, and other demographic factors were compared between patients with ILPDs and those with NILPDs. p-Values were adjusted for false discovery rate (FDR). One thousand four hundred fifty-two patients underwent cEEG monitoring at our institution between 2007 and 2011. Lateralized periodic discharges were reported in 90 patients, 10 of whom met criteria for ILPDs. Nine of the patients with ILPDs demonstrated motor symptoms, and the remaining patient experienced stereotyped sensory symptoms. Ictal lateralized periodic discharges had significantly increased odds for involving central head regions (odds ratio [OR]=11; 95% confidence interval [CI]=2.16-62.6; p=0.018, FDR adjusted), with a trend towards higher proportion of lesions involving the primary sensorimotor cortex (p=0.09, FDR

  11. Impaired non-speech auditory processing at a pre-reading age is a risk-factor for dyslexia but not a predictor: An ERP study

    NARCIS (Netherlands)

    Plakas, A.; van Zuijen, T.; van Leeuwen, Theo; Thomson, J.M.; van der Leij, A.

    2013-01-01

    Impaired auditory sensitivity to amplitude rise time (ART) has been suggested to be a primary deficit in developmental dyslexia. The present study investigates whether impaired ART-sensitivity at a pre-reading age precedes and predicts later emerging reading problems in a sample of Dutch children.

  12. Impaired non-speech auditory processing at a pre-reading age is a risk-factor for dyslexia but not a predictor: an ERP study

    NARCIS (Netherlands)

    Plakas, A.; van Zuijen, T.; van Leeuwen, T.; Thomson, J.M.; van der Leij, A.

    2013-01-01

    Impaired auditory sensitivity to amplitude rise time (ART) has been suggested to be a primary deficit in developmental dyslexia. The present study investigates whether impaired ART-sensitivity at a pre-reading age precedes and predicts later emerging reading problems in a sample of Dutch children.

  13. Stochastic undersampling steepens auditory threshold/duration functions: Implications for understanding auditory deafferentation and aging

    Directory of Open Access Journals (Sweden)

    Frederic eMarmel

    2015-05-01

    Full Text Available It has long been known that some listeners experience hearing difficulties out of proportion with their audiometric losses. Notably, some older adults as well as auditory neuropathy patients have temporal-processing and speech-in-noise intelligibility deficits not accountable for by elevated audiometric thresholds. The study of these hearing deficits has been revitalized by recent studies that show that auditory deafferentation comes with aging and can occur even in the absence of an audiometric loss. The present study builds on the stochastic undersampling principle proposed by Lopez-Poveda and Barrios (2013 to account for the perceptual effects of auditory deafferentation. Auditory threshold/duration functions were measured for broadband noises that were stochastically undersampled to various different degrees. Stimuli with and without undersampling were equated for overall energy in order to focus on the changes that undersampling elicited on the stimulus waveforms, and not on its effects on the overall stimulus energy. Stochastic undersampling impaired the detection of short sounds ( 50 ms did not change or improved, depending on the degree of undersampling. The results for short sounds show that stochastic undersampling, and hence presumably deafferentation, can account for the steeper threshold/duration functions observed in auditory neuropathy patients and older adults with (near normal audiometry. This suggests that deafferentation might be diagnosed using pure-tone audiometry with short tones. It further suggests that that the auditory system of audiometrically normal older listeners might not be ‘slower than normal’, as is commonly thought, but simply less well afferented. Finally, the results for both short and long sounds support the probabilistic theories of detectability that challenge the idea that auditory threshold occurs by integration of sound energy over time.

  14. Lateral flow assays.

    Science.gov (United States)

    Koczula, Katarzyna M; Gallotta, Andrea

    2016-06-30

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Lateral flow assays

    Science.gov (United States)

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041

  16. Organization of auditory areas in the superior temporal gyrus of marmoset monkeys revealed by real-time optical imaging.

    Science.gov (United States)

    Nishimura, Masataka; Takemoto, Makoto; Song, Wen-Jie

    2017-11-28

    The prevailing model of the primate auditory cortex proposes a core-belt-parabelt structure. The model proposes three auditory areas in the lateral belt region; however, it may contain more, as this region has been mapped only at a limited spatial resolution. To explore this possibility, we examined the auditory areas in the lateral belt region of the marmoset using a high-resolution optical imaging technique. Based on responses to pure tones, we identified multiple areas in the superior temporal gyrus. The three areas in the core region, the primary area (A1), the rostral area (R), and the rostrotemporal area, were readily identified from their frequency gradients and positions immediately ventral to the lateral sulcus. Three belt areas were identified with frequency gradients and relative positions to A1 and R that were in agreement with previous studies: the caudolateral area, the middle lateral area, and the anterolateral area (AL). Situated between R and AL, however, we identified two additional areas. The first was located caudoventral to R with a frequency gradient in the ventrocaudal direction, which we named the medial anterolateral (MAL) area. The second was a small area with no obvious tonotopy (NT), positioned between the MAL and AL areas. Both the MAL and NT areas responded to a wide range of frequencies (at least 2-24 kHz). Our results suggest that the belt region caudoventral to R is more complex than previously proposed, and we thus call for a refinement of the current primate auditory cortex model.

  17. Context-dependent modulation of auditory processing by serotonin

    Science.gov (United States)

    Hurley, L.M.; Hall, I.C.

    2011-01-01

    Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that link behavioral state to neural responses to sound. The neuromodulator serotonin has many characteristics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send projections to most auditory regions. These projections release serotonin during particular behavioral contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. These diverse findings support a view of serotonin as a widespread mechanism for behaviorally relevant plasticity in the regulation of auditory processing. This view also accommodates models of how the same regulatory mechanism can have pathological consequences for auditory processing. PMID:21187135

  18. A Survey of auditory display in image-guided interventions.

    Science.gov (United States)

    Black, David; Hansen, Christian; Nabavi, Arya; Kikinis, Ron; Hahn, Horst

    2017-03-08

    This article investigates the current state of the art of the use of auditory display in image-guided medical interventions. Auditory display is a means of conveying information using sound, and we review the use of this approach to support navigated interventions. We discuss the benefits and drawbacks of published systems and outline directions for future investigation. We undertook a review of scientific articles on the topic of auditory rendering in image-guided intervention. This includes methods for avoidance of risk structures and instrument placement and manipulation. The review did not include auditory display for status monitoring, for instance in anesthesia. We identified 15 publications in the course of the search. Most of the literature (60%) investigates the use of auditory display to convey distance of a tracked instrument to an object using proximity or safety margins. The remainder discuss continuous guidance for navigated instrument placement. Four of the articles present clinical evaluations, 11 present laboratory evaluations, and 3 present informal evaluation (2 present both laboratory and clinical evaluations). Auditory display is a growing field that has been largely neglected in research in image-guided intervention. Despite benefits of auditory displays reported in both the reviewed literature and non-medical fields, adoption in medicine has been slow. Future challenges include increasing interdisciplinary cooperation with auditory display investigators to develop more meaningful auditory display designs and comprehensive evaluations which target the benefits and drawbacks of auditory display in image guidance.

  19. The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum).

    Science.gov (United States)

    Schweizer, H

    1981-09-01

    The connections of the inferior colliculus, the mammalian mid-brain auditory center, were determined in the greater horseshoe bat (Rhinolophus ferrumequinum), using the horseradish peroxidase method. In order to localize the auditory centers of this bat, brains were investigated with the aid of cell and fiber-stained material. The results show that most auditory centers are highly developed in this echolocating bat. However, the organization of the central auditory system does not generally differ from the mammalian scheme. This holds also for the organization of the superior olivary complex where a well-developed medial superior olivary nucleus was found. In addition to the ventral and dorsal nuclei of the lateral lemniscus a third well-developed nucleus has been defined which projects ipsilaterally to the inferior colliculus and which was called the intermediate nucleus of the lateral leminiscus. All nuclei of the central auditory pathway project ipsi-, contra-, or bilaterally to the central nucleus of the inferior colliculus with the exception of the medial nucleus of the trapezoid body and the medial geniculate body. The tonotopic organization of these projections and their possible functions are discussed in context with neurophysiological investigations.

  20. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  1. Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.

    Science.gov (United States)

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-02-01

    The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    Science.gov (United States)

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  3. Pure word deafness. (Auditory verbal agnosia).

    Science.gov (United States)

    Shoumaker, R D; Ajax, E T; Schenkenberg, T

    1977-04-01

    The selective inability to comprehend the spoken word, in the absence of aphasia or defective or defective hearing, is defined as pure word deafness (auditory verbal agnosia). Reported cases of this rare disorder have suggested the site of involvement to be strategically placed, interrupting fibers from left and right primary auditory receptive areas which project to Wernicke's are in the dominant hemisphere. Our patient is a 44-year-old male who suffered from an uncertain illness complicated by fever, jaundice and generalized seizures seven years previously. Following an apparent convulsion, the patient was noted to be unable to understand spoken language without loss of ability to recognize and respond to sounds or marked impairment of speech or reading. The evidence suggested bilateral cerebral hemisphere disease more marked on the right. The abrupt onset without progression is consistent with a vascular or ischemic etiology. Conclusions about the nature of the lesion and areas involved must await further studies and ultimately tissue examination.

  4. Simulating Auditory Hallucinations in a Video Game

    DEFF Research Database (Denmark)

    Weinel, Jonathan; Cunningham, Stuart

    2017-01-01

    In previous work the authors have proposed the concept of 'ASC Simulations': including audio-visual installations and experiences, as well as interactive video game systems, which simulate altered states of consciousness (ASCs) such as dreams and hallucinations. Building on the discussion...... of the authors' previous paper, where a large-scale qualitative study explored the changes to auditory perception that users of various intoxicating substances report, here the authors present three prototype audio mechanisms for simulating hallucinations in a video game. These were designed in the Unity video...... game engine as an early proof-of-concept. The first mechanism simulates 'selective auditory attention' to different sound sources, by attenuating the amplitude of unattended sources. The second simulates 'enhanced sounds', by adjusting perceived brightness through filtering. The third simulates...

  5. Implicit temporal expectation attenuates auditory attentional blink.

    Directory of Open Access Journals (Sweden)

    Dawei Shen

    Full Text Available Attentional blink (AB describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20% that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB.

  6. An Auditory Model with Hearing Loss

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    An auditory model based on the psychophysics of hearing has been developed and tested. The model simulates the normal ear or an impaired ear with a given hearing loss. Based on reviews of the current literature, the frequency selectivity and loudness growth as functions of threshold and stimulus...... level have been found and implemented in the model. The auditory model was verified against selected results from the literature, and it was confirmed that the normal spread of masking and loudness growth could be simulated in the model. The effects of hearing loss on these parameters was also...... in qualitative agreement with recent findings. The temporal properties of the ear have currently not been included in the model. As an example of a real-world application of the model, loudness spectrograms for a speech utterance were presented. By introducing hearing loss, the speech sounds became less audible...

  7. Binaural processing by the gecko auditory periphery

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Tang, Ye Zhong; Carr, Catherine E

    2011-01-01

    in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (around 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted...... from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al., 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions......Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion...

  8. Auditory environmental context affects visual distance perception.

    Science.gov (United States)

    Etchemendy, Pablo E; Abregú, Ezequiel; Calcagno, Esteban R; Eguia, Manuel C; Vechiatti, Nilda; Iasi, Federico; Vergara, Ramiro O

    2017-08-03

    In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.

  9. Anatomy and Physiology of the Auditory Tracts

    Directory of Open Access Journals (Sweden)

    Mohammad hosein Hekmat Ara

    1999-03-01

    Full Text Available Hearing is one of the excel sense of human being. Sound waves travel through the medium of air and enter the ear canal and then hit the tympanic membrane. Middle ear transfer almost 60-80% of this mechanical energy to the inner ear by means of “impedance matching”. Then, the sound energy changes to traveling wave and is transferred based on its specific frequency and stimulates organ of corti. Receptors in this organ and their synapses transform mechanical waves to the neural waves and transfer them to the brain. The central nervous system tract of conducting the auditory signals in the auditory cortex will be explained here briefly.

  10. [Non-auditory effects of noise].

    Science.gov (United States)

    Albera, Roberto; Bin, Ilaria; Cena, Manuele; Dagna, Federico; Giordano, Pamela; Sammartano, Azia

    2011-01-01

    Non-auditory effects of noise involve several systems and functions, the most important of which are the cardiovascular, the vestibular and the psychic. Although several studies correlated noise exposure to some pathologies, like hypertension and anxiety disorders, and recent analysis carried out on cavy explained part of their pathophysiology, their multiple causes and the variability of individual reactions are still important limits to their classification.

  11. Sonic morphology: Aesthetic dimensional auditory spatial awareness

    Science.gov (United States)

    Whitehouse, Martha M.

    The sound and ceramic sculpture installation, " Skirting the Edge: Experiences in Sound & Form," is an integration of art and science demonstrating the concept of sonic morphology. "Sonic morphology" is herein defined as aesthetic three-dimensional auditory spatial awareness. The exhibition explicates my empirical phenomenal observations that sound has a three-dimensional form. Composed of ceramic sculptures that allude to different social and physical situations, coupled with sound compositions that enhance and create a three-dimensional auditory and visual aesthetic experience (see accompanying DVD), the exhibition supports the research question, "What is the relationship between sound and form?" Precisely how people aurally experience three-dimensional space involves an integration of spatial properties, auditory perception, individual history, and cultural mores. People also utilize environmental sound events as a guide in social situations and in remembering their personal history, as well as a guide in moving through space. Aesthetically, sound affects the fascination, meaning, and attention one has within a particular space. Sonic morphology brings art forms such as a movie, video, sound composition, and musical performance into the cognitive scope by generating meaning from the link between the visual and auditory senses. This research examined sonic morphology as an extension of musique concrete, sound as object, originating in Pierre Schaeffer's work in the 1940s. Pointing, as John Cage did, to the corporeal three-dimensional experience of "all sound," I composed works that took their total form only through the perceiver-participant's participation in the exhibition. While contemporary artist Alvin Lucier creates artworks that draw attention to making sound visible, "Skirting the Edge" engages the perceiver-participant visually and aurally, leading to recognition of sonic morphology.

  12. Neural correlates of auditory scale illusion.

    Science.gov (United States)

    Kuriki, Shinya; Numao, Ryousuke; Nemoto, Iku

    2016-09-01

    The auditory illusory perception "scale illusion" occurs when ascending and descending musical scale tones are delivered in a dichotic manner, such that the higher or lower tone at each instant is presented alternately to the right and left ears. Resulting tone sequences have a zigzag pitch in one ear and the reversed (zagzig) pitch in the other ear. Most listeners hear illusory smooth pitch sequences of up-down and down-up streams in the two ears separated in higher and lower halves of the scale. Although many behavioral studies have been conducted, how and where in the brain the illusory percept is formed have not been elucidated. In this study, we conducted functional magnetic resonance imaging using sequential tones that induced scale illusion (ILL) and those that mimicked the percept of scale illusion (PCP), and we compared the activation responses evoked by those stimuli by region-of-interest analysis. We examined the effects of adaptation, i.e., the attenuation of response that occurs when close-frequency sounds are repeated, which might interfere with the changes in activation by the illusion process. Results of the activation difference of the two stimuli, measured at varied tempi of tone presentation, in the superior temporal auditory cortex were not explained by adaptation. Instead, excess activation of the ILL stimulus from the PCP stimulus at moderate tempi (83 and 126 bpm) was significant in the posterior auditory cortex with rightward superiority, while significant prefrontal activation was dominant at the highest tempo (245 bpm). We suggest that the area of the planum temporale posterior to the primary auditory cortex is mainly involved in the illusion formation, and that the illusion-related process is strongly dependent on the rate of tone presentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lesions in the external auditory canal

    Directory of Open Access Journals (Sweden)

    Priyank S Chatra

    2011-01-01

    Full Text Available The external auditory canal is an S- shaped osseo-cartilaginous structure that extends from the auricle to the tympanic membrane. Congenital, inflammatory, neoplastic, and traumatic lesions can affect the EAC. High-resolution CT is well suited for the evaluation of the temporal bone, which has a complex anatomy with multiple small structures. In this study, we describe the various lesions affecting the EAC.

  14. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  15. BALDEY: A database of auditory lexical decisions.

    Science.gov (United States)

    Ernestus, Mirjam; Cutler, Anne

    2015-01-01

    In an auditory lexical decision experiment, 5541 spoken content words and pseudowords were presented to 20 native speakers of Dutch. The words vary in phonological make-up and in number of syllables and stress pattern, and are further representative of the native Dutch vocabulary in that most are morphologically complex, comprising two stems or one stem plus derivational and inflectional suffixes, with inflections representing both regular and irregular paradigms; the pseudowords were matched in these respects to the real words. The BALDEY ("biggest auditory lexical decision experiment yet") data file includes response times and accuracy rates, with for each item morphological information plus phonological and acoustic information derived from automatic phonemic segmentation of the stimuli. Two initial analyses illustrate how this data set can be used. First, we discuss several measures of the point at which a word has no further neighbours and compare the degree to which each measure predicts our lexical decision response outcomes. Second, we investigate how well four different measures of frequency of occurrence (from written corpora, spoken corpora, subtitles, and frequency ratings by 75 participants) predict the same outcomes. These analyses motivate general conclusions about the auditory lexical decision task. The (publicly available) BALDEY database lends itself to many further analyses.

  16. Visual speech gestures modulate efferent auditory system.

    Science.gov (United States)

    Namasivayam, Aravind Kumar; Wong, Wing Yiu Stephanie; Sharma, Dinaay; van Lieshout, Pascal

    2015-03-01

    Visual and auditory systems interact at both cortical and subcortical levels. Studies suggest a highly context-specific cross-modal modulation of the auditory system by the visual system. The present study builds on this work by sampling data from 17 young healthy adults to test whether visual speech stimuli evoke different responses in the auditory efferent system compared to visual non-speech stimuli. The descending cortical influences on medial olivocochlear (MOC) activity were indirectly assessed by examining the effects of contralateral suppression of transient-evoked otoacoustic emissions (TEOAEs) at 1, 2, 3 and 4 kHz under three conditions: (a) in the absence of any contralateral noise (Baseline), (b) contralateral noise + observing facial speech gestures related to productions of vowels /a/ and /u/ and (c) contralateral noise + observing facial non-speech gestures related to smiling and frowning. The results are based on 7 individuals whose data met strict recording criteria and indicated a significant difference in TEOAE suppression between observing speech gestures relative to the non-speech gestures, but only at the 1 kHz frequency. These results suggest that observing a speech gesture compared to a non-speech gesture may trigger a difference in MOC activity, possibly to enhance peripheral neural encoding. If such findings can be reproduced in future research, sensory perception models and theories positing the downstream convergence of unisensory streams of information in the cortex may need to be revised.

  17. Mechanisms of auditory verbal hallucination in schizophrenia

    Directory of Open Access Journals (Sweden)

    Raymond eCho

    2013-11-01

    Full Text Available Recent work on the mechanisms underlying auditory verbal hallucination (AVH has been heavily informed by self-monitoring accounts that postulate defects in an internal monitoring mechanism as the basis of AVH. A more neglected alternative is an account focusing on defects in auditory processing, namely a spontaneous activation account of auditory activity underlying AVH. Science is often aided by putting theories in competition. Accordingly, a discussion that systematically contrasts the two models of AVH can generate sharper questions that will lead to new avenues of investigation. In this paper, we provide such a theoretical discussion of the two models, drawing strong contrasts between them. We identify a set of challenges for the self-monitoring account and argue that the spontaneous activation account has much in favor of it and should be the default account. Our theoretical overview leads to new questions and issues regarding the explanation of AVH as a subjective phenomenon and its neural basis. Accordingly, we suggest a set of experimental strategies to dissect the underlying mechanisms of AVH in light of the two competing models.

  18. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  19. Binaural processing by the gecko auditory periphery.

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine E

    2011-05-01

    Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼ 1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200-500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional.

  20. Sensorimotor Learning Enhances Expectations During Auditory Perception.

    Science.gov (United States)

    Mathias, Brian; Palmer, Caroline; Perrin, Fabien; Tillmann, Barbara

    2015-08-01

    Sounds that have been produced with one's own motor system tend to be remembered better than sounds that have only been perceived, suggesting a role of motor information in memory for auditory stimuli. To address potential contributions of the motor network to the recognition of previously produced sounds, we used event-related potential, electric current density, and behavioral measures to investigate memory for produced and perceived melodies. Musicians performed or listened to novel melodies, and then heard the melodies either in their original version or with single pitch alterations. Production learning enhanced subsequent recognition accuracy and increased amplitudes of N200, P300, and N400 responses to pitch alterations. Premotor and supplementary motor regions showed greater current density during the initial detection of alterations in previously produced melodies than in previously perceived melodies, associated with the N200. Primary motor cortex was more strongly engaged by alterations in previously produced melodies within the P300 and N400 timeframes. Motor memory traces may therefore interface with auditory pitch percepts in premotor regions as early as 200 ms following perceived pitch onsets. Outcomes suggest that auditory-motor interactions contribute to memory benefits conferred by production experience, and support a role of motor prediction mechanisms in the production effect. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Auditory Discrimination Learning: Role of Working Memory.

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    Full Text Available Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM. First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.

  2. Central auditory masking by an illusory tone.

    Science.gov (United States)

    Plack, Christopher J; Oxenham, Andrew J; Kreft, Heather A; Carlyon, Robert P

    2013-01-01

    Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated) between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  3. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  4. Binaural processing by the gecko auditory periphery

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2011-01-01

    Lizards have highly directional ears, owing to strong acoustical coupling of the eardrums and almost perfect sound transmission from the contralateral ear. To investigate the neural processing of this remarkable tympanic directionality, we combined biophysical measurements of eardrum motion in the Tokay gecko with neurophysiological recordings from the auditory nerve. Laser vibrometry shows that their ear is a two-input system with approximately unity interaural transmission gain at the peak frequency (∼1.6 kHz). Median interaural delays are 260 μs, almost three times larger than predicted from gecko head size, suggesting interaural transmission may be boosted by resonances in the large, open mouth cavity (Vossen et al. 2010). Auditory nerve recordings are sensitive to both interaural time differences (ITD) and interaural level differences (ILD), reflecting the acoustical interactions of direct and indirect sound components at the eardrum. Best ITD and click delays match interaural transmission delays, with a range of 200–500 μs. Inserting a mold in the mouth cavity blocks ITD and ILD sensitivity. Thus the neural response accurately reflects tympanic directionality, and most neurons in the auditory pathway should be directional. PMID:21325679

  5. Sleep and rest facilitate auditory learning.

    Science.gov (United States)

    Gottselig, J M; Hofer-Tinguely, G; Borbély, A A; Regel, S J; Landolt, H-P; Rétey, J V; Achermann, P

    2004-01-01

    Sleep is superior to waking for promoting performance improvements between sessions of visual perceptual and motor learning tasks. Few studies have investigated possible effects of sleep on auditory learning. A key issue is whether sleep specifically promotes learning, or whether restful waking yields similar benefits. According to the "interference hypothesis," sleep facilitates learning because it prevents interference from ongoing sensory input, learning and other cognitive activities that normally occur during waking. We tested this hypothesis by comparing effects of sleep, busy waking (watching a film) and restful waking (lying in the dark) on auditory tone sequence learning. Consistent with recent findings for human language learning, we found that compared with busy waking, sleep between sessions of auditory tone sequence learning enhanced performance improvements. Restful waking provided similar benefits, as predicted based on the interference hypothesis. These findings indicate that physiological, behavioral and environmental conditions that accompany restful waking are sufficient to facilitate learning and may contribute to the facilitation of learning that occurs during sleep.

  6. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  7. [The treatment of otosclerosis using laser assisted stapedotomy with mini incision in external auditory meatus].

    Science.gov (United States)

    Hao, Xinping; Chen, Shubin; Yu, Zilong; Liang, Fenghe; Li, Yongxin

    2016-03-01

    To investigate the feasibility of the treatment of otosclerosis using laser stapedotomy with mini incision in the external auditory meatus. Thirteen patients(15 ears) with otosclerosis evidence on clinic history. They were all operated using the laser assisted stapedotomy by mini incision in external auditory meatus because of the wide straight canal. Laser resection the tendo musculistapedius and anterior and postrior arch, breaking the articulatioincudostapedia, removing the stapes superstructure, making a hole of 6mm diameter in the rear of stapes footplate by laser drilling, implanting the corresponding length Piston artificial ossicle. All the surgeries were successful and the operation time was about one hour. There was only one patient manifested vertigo and nausea after the operation. But the symptoms improved three days later after the expectant treatment. All the incisions were healed in the externals. There was significant difference between the preoperative and postoperative PTA. The air conduct improved in every frequent and the bone conduct improved in 1 kHz, 2 kHz and 4 kHz. Laser assisted stapedotomy by mini incision in the external auditory meatus in patients having wide straight canal with otosclerosis can shorten the operation time, minimize the tissue damage, fasten the healing of the incision and reduce the complications postoperatively. In addition, the mini incision is beauty and easy to nurse.

  8. Novel approaches to treating sensorineural hearing loss. Auditory genetics and necessary factors for stem cell transplant.

    Science.gov (United States)

    Vlastarakos, Petros V; Nikolopoulos, Thomas P; Tavoulari, Evangelia; Kiprouli, Catherine; Ferekidis, Eleftherios

    2008-08-01

    Sensorineural hearing loss is a chronic disease, with a serious impact on human communication and quality of life. Exposure to various factors can lead to irreversible hearing impairment, as the auditory epithelium in humans comprises terminally differentiated cells. By contrast, the inner ear of lower vertebrates and invertebrates shows regenerative capacity. Efforts to regenerate the damaged human inner ear may involve renewed cell proliferation, or transplanting cells that can differentiate into sensory cells. Literature review. Animal studies, in vitro studies, retrospective-cohort studies, community-based case-controls, clinical guidelines, and review articles. Embryonic stem cells, inner ear stem cells, and stem cells from other tissues (i.e., neural tissue, hematopoietic system) may be candidates for restoring the auditory epithelium. Transcriptional regulation of p27kip1 is the primary determinant of terminal mitosis and the final number of postmitotic progenitors of hair and supporting cells. Basic helix-loop-helix transcription factor Math1 was found to be necessary and sufficient for the production of auditory hair cells. Notch signaling seems to play a major role in the regulation of Math1, through lateral inhibition. Brn3c, Gfi1, and Barhl1 are also specific transcription factors that have been implicated in hair cell maintenance and consequent survival. Evidence concerning development, maintenance, and regeneration of hair cells is still at an embryonic stage. Combined data, as attempted in the present study, will lead to a more successful management of deafness.

  9. Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus

    Science.gov (United States)

    Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.

    2014-01-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368

  10. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.

    Science.gov (United States)

    Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J

    2014-04-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity.

    Science.gov (United States)

    Banissy, Michael J; Sauter, Disa Anna; Ward, Jamie; Warren, Jane E; Walsh, Vincent; Scott, Sophie K

    2010-10-13

    Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination.

  12. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  13. Neural correlates of strategy use during auditory working memory in musicians and non-musicians.

    Science.gov (United States)

    Schulze, K; Mueller, K; Koelsch, S

    2011-01-01

    Working memory (WM) performance in humans can be improved by structuring and organizing the material to be remembered. For visual and verbal information, this process of structuring has been associated with the involvement of a prefrontal-parietal network, but for non-verbal auditory material, the brain areas that facilitate WM for structured information have remained elusive. Using functional magnetic resonance imaging, this study compared neural correlates underlying encoding and rehearsal of auditory WM for structured and unstructured material. Musicians and non-musicians performed a WM task on five-tone sequences that were either tonally structured (with all tones belonging to one tonal key) or tonally unstructured (atonal) sequences. Functional differences were observed for musicians (who are experts in the music domain), but not for non-musicians - The right pars orbitalis was activated more strongly in musicians during the encoding of unstructured (atonal) vs. structured (tonal) sequences. In addition, data for musicians showed that a lateral (pre)frontal-parietal network (including the right premotor cortex, right inferior precentral sulcus and left intraparietal sulcus) was activated during WM rehearsal of structured, as compared with unstructured, sequences. Our findings indicate that this network plays a role in strategy-based WM for non-verbal auditory information, corroborating previous results showing a similar network for strategy-based WM for visual and verbal information. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  14. Lateral cervical meningocele.

    Science.gov (United States)

    Sharma, V.; Newton, G.

    1992-01-01

    Lateral cervical meningocele is an extremely rare developmental anomaly. We could find only one such case protruding from an enlarged C2-3 intervertebral foramen. It may be confused with an extradural cyst or cystic hygroma. Direct needling may introduce infection and thereby pyogenic meningitis and so should be avoided. Similarly, incision and drainage may transform it into cerebrospinal fluid fistula. A computed tomography scan is the most fruitful form of investigation for confirmation and localization of the disease. A lumboperitoneal shunt or water tight closure of the dural sac at the neck is the recommended procedure of choice. PMID:1524732

  15. Landau-Kleffner syndrome: epileptic activity in the auditory cortex.

    Science.gov (United States)

    Paetau, R; Kajola, M; Korkman, M; Hämäläinen, M; Granström, M L; Hari, R

    1991-04-01

    The Landau-Kleffner syndrome (LKS) is characterized by electroencephalographic spike discharges and verbal auditory agnosia in previously healthy children. We recorded magnetoencephalographic (MEG) spikes in a patient with LKS, and compared their sources with anatomical information from magnetic resonance imaging. All spikes originated close to the left auditory cortex. The evoked responses were contaminated by spikes in the left auditory area and suppressed in the right--the latter responses recovered when the spikes disappeared. We suggest that unilateral discharges at or near the auditory cortex disrupt auditory discrimination in the affected hemisphere, and lead to suppression of auditory information from the opposite hemisphere, thereby accounting for the two main criteria of LKS.

  16. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  17. [Verbal auditory agnosia: SPECT study of the brain].

    Science.gov (United States)

    Carmona, C; Casado, I; Fernández-Rojas, J; Garín, J; Rayo, J I

    1995-01-01

    Verbal auditory agnosia are rare in clinical practice. Clinically, it characterized by impairment of comprehension and repetition of speech but reading, writing, and spontaneous speech are preserved. So it is distinguished from generalized auditory agnosia by the preserved ability to recognize non verbal sounds. We present the clinical picture of a forty-years-old, right handed woman who developed verbal auditory agnosic after an bilateral temporal ischemic infarcts due to atrial fibrillation by dilated cardiomyopathie. Neurophysiological studies by pure tone threshold audiometry: brainstem auditory evoked potentials and cortical auditory evoked potentials showed sparing of peripheral hearing and intact auditory pathway in brainstem but impaired cortical responses. Cranial CT-SCAN revealed two large hypodenses area involving both cortico-subcortical temporal lobes. Cerebral SPECT using 99mTc-HMPAO as radiotracer showed hypoperfusion just posterior in both frontal lobes nect to Roland's fissure and at level of bitemporal lobes just anterior to Sylvian's fissure.

  18. Auditory recognition memory is inferior to visual recognition memory.

    Science.gov (United States)

    Cohen, Michael A; Horowitz, Todd S; Wolfe, Jeremy M

    2009-04-07

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, however, auditory memory proved to be systematically inferior to visual memory. This suggests that there exists either a fundamental difference between auditory and visual stimuli, or, more plausibly, an asymmetry between auditory and visual processing.

  19. Auditory and visual memory in musicians and nonmusicians.

    Science.gov (United States)

    Cohen, Michael A; Evans, Karla K; Horowitz, Todd S; Wolfe, Jeremy M

    2011-06-01

    Numerous studies have shown that musicians outperform nonmusicians on a variety of tasks. Here we provide the first evidence that musicians have superior auditory recognition memory for both musical and nonmusical stimuli, compared to nonmusicians. However, this advantage did not generalize to the visual domain. Previously, we showed that auditory recognition memory is inferior to visual recognition memory. Would this be true even for trained musicians? We compared auditory and visual memory in musicians and nonmusicians using familiar music, spoken English, and visual objects. For both groups, memory for the auditory stimuli was inferior to memory for the visual objects. Thus, although considerable musical training is associated with better musical and nonmusical auditory memory, it does not increase the ability to remember sounds to the levels found with visual stimuli. This suggests a fundamental capacity difference between auditory and visual recognition memory, with a persistent advantage for the visual domain.

  20. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  1. Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory.

    Science.gov (United States)

    Kraus, Nina; Strait, Dana L; Parbery-Clark, Alexandra

    2012-04-01

    Musicians benefit from real-life advantages, such as a greater ability to hear speech in noise and to remember sounds, although the biological mechanisms driving such advantages remain undetermined. Furthermore, the extent to which these advantages are a consequence of musical training or innate characteristics that predispose a given individual to pursue music training is often debated. Here, we examine biological underpinnings of musicians' auditory advantages and the mediating role of auditory working memory. Results from our laboratory are presented within a framework that emphasizes auditory working memory as a major factor in the neural processing of sound. Within this framework, we provide evidence for music training as a contributing source of these abilities. © 2012 New York Academy of Sciences.

  2. Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development.

    Directory of Open Access Journals (Sweden)

    Sokol V Todi

    Full Text Available BACKGROUND: Myosin VIIA (MyoVIIA is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck, are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase. Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research.

  3. Cleft Palate Children: Performance In Auditory Processing Tests

    OpenAIRE

    Boscariol M.; Andre K.D.; Feniman M.R.

    2009-01-01

    Many children with auditory processing disorders have a high prevalence of otitis media, a middle ear alterations greatly prevalent in children with palatine and lip clefts. Aim: to check the performance of children with palate cleft alone (PC) in auditory processing tests. Prospective study. Materials and Methods: twenty children (7 to 11 years) with CP were submitted to sound location tests (SL), memory for verbal sounds (MSSV) and non verbal sounds in sequence (MSSNV), Revised auditory fus...

  4. Serotonin transporter gene polymorphisms and auditory hallucinations in psychosis.

    Science.gov (United States)

    Rivero, Olga; Sanjuan, Julio; Aguilar, Eduardo Jesús; Gonzalez, José Carlos; Molto, María Dolores; de Frutos, Rosa; Najera, Carmen

    2010-03-16

    To study the role of the serotonin transporter gene (SLC6A4) in the emotional processing of auditory hallucinations can be particularly important to better understand the pathophysiology of auditory hallucinations. Moreover, a poly-morphism located in this gene (5-HTTLPR) has been previously associated with different disorders related to altered emotional responses. The aim of this study was to evaluate the relationship between different polymorphisms of the SLC6A4 gene and different aspects of auditory hallucinations in schizophrenic patients, with a special consideration toward the emotional response to auditory hallucinations. Two samples of 224 patients with auditory hallucinations and 346 healthy subjects were studied. AH were assessed in patients through the PSYRATS scale for auditory hallucinations. Several polymorphisms located within the SLC6A4 gene were analysed through case-control comparisons as well as association analyses with different parameters of auditory hallucinations. No differences were found between patients and controls for any of the analysed polymorphisms (p > 0.05). However, the evaluation of auditory hallucinations parameters showed that the low expressing alleles of the 5-HTTLPR polymorphism were associated with higher levels of intensity of the distress caused by auditory hallucinations (p = 0.049 corrected for the item 'intensity of distress'). There was also a trend with the parameter disruption (p = 0.06 corrected). These two items of the PSYRATS scale are directly related to the emotional dimension of auditory hallucinations. In contrast, we did not observe any association with items related to other dimensions of auditory hallucinations. Our results support a possible role of the serotonin transporter in the emotional response to auditory hallucinations.

  5. Electrocorticographic activation within human auditory cortex during dialogue-based language and cognitive testing

    Directory of Open Access Journals (Sweden)

    Kirill Vadimovich Nourski

    2016-05-01

    Full Text Available Current models of cortical speech and language processing include multiple regions within the temporal lobe of both hemispheres. Human communication, by necessity, involves complex interactions between regions subserving speech and language processing with those involved in more general cognitive functions. To assess these interactions, we utilized an ecologically salient conversation-based approach. This approach mandates that we first clarify activity patterns at the earliest stages of cortical speech processing. Therefore, we examined high gamma (70-150 Hz responses within the electrocorticogram (ECoG recorded simultaneously from Heschl’s gyrus (HG and lateral surface of the superior temporal gyrus (STG. Subjects were neurosurgical patients undergoing evaluation for treatment of medically intractable epilepsy. They performed an expanded version of the Mini-mental state examination (MMSE, which included additional spelling, naming, and memory-based tasks. ECoG was recorded from HG and the STG using multicontact depth and subdural electrode arrays, respectively. Differences in high gamma activity during listening to the interviewer and the subject's self-generated verbal responses were quantified for each recording site and across sites within HG and STG. The expanded MMSE produced widespread activation in auditory cortex of both hemispheres. No significant difference was found between activity during listening to the interviewer's questions and the subject's answers in posteromedial HG (auditory core cortex. A different pattern was observed throughout anterolateral HG and posterior and middle portions of lateral STG (non-core auditory cortical areas, where activity was significantly greater during listening compared to speaking. No systematic task-specific differences in the degree of suppression during speaking relative to listening were found in posterior and middle STG. Individual sites could, however, exhibit task-related variability in

  6. Severe auditory processing disorder secondary to viral meningoencephalitis.

    Science.gov (United States)

    Pillion, Joseph P; Shiffler, Dorothy E; Hoon, Alexander H; Lin, Doris D M

    2014-06-01

    To describe auditory function in an individual with bilateral damage to the temporal and parietal cortex. Case report. A previously healthy 17-year old male is described who sustained extensive cortical injury following an episode of viral meningoencephalitis. He developed status epilepticus and required intubation and multiple anticonvulsants. Serial brain MRIs showed bilateral temporoparietal signal changes reflecting extensive damage to language areas and the first transverse gyrus of Heschl on both sides. The patient was referred for assessment of auditory processing but was so severely impaired in speech processing that he was unable to complete any formal tests of his speech processing abilities. Audiological assessment utilizing objective measures of auditory function established the presence of normal peripheral auditory function and illustrates the importance of the use of objective measures of auditory function in patients with injuries to the auditory cortex. Use of objective measures of auditory function is essential in establishing the presence of normal peripheral auditory function in individuals with cortical damage who may not be able to cooperate sufficiently for assessment utilizing behavioral measures of auditory function.

  7. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    ’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent......The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects...

  8. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    ’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent......The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects...

  9. Across frequency processes involved in auditory detection of coloration

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Kerketsos, P

    2008-01-01

    filterbank was designed to approximate auditory filter-shapes measured by Oxenham and Shera [JARO, 2003, 541-554], derived from forward masking data. The results of the present study demonstrate that a “purely” spectrum-based model approach can successfully describe auditory coloration detection even at high...... detection are investigated. Coloration detection thresholds were therefore measured as a function of reflection delay and stimulus bandwidth. In order to investigate the involved auditory mechanisms, an auditory model was employed that was conceptually similar to the peripheral weighting model [Yost, JASA...

  10. Auditory Startle Response in Firefighters Before and After Trauma Exposure

    National Research Council Canada - National Science Library

    Guthrie, Rachel M; Bryant, Richard A

    2005-01-01

    .... The present study reports the first prospective psychophysiological investigation, to the authors' knowledge, of posttraumatic stress responses by prospectively evaluating the auditory startle...

  11. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex.SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  12. Enhanced auditory temporal gap detection in listeners with musical training.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  13. An interactive model of auditory-motor speech perception.

    Science.gov (United States)

    Liebenthal, Einat; Möttönen, Riikka

    2017-12-18

    Mounting evidence indicates a role in perceptual decoding of speech for the dorsal auditory stream connecting between temporal auditory and frontal-parietal articulatory areas. The activation time course in auditory, somatosensory and motor regions during speech processing is seldom taken into account in models of speech perception. We critically review the literature with a focus on temporal information, and contrast between three alternative models of auditory-motor speech processing: parallel, hierarchical, and interactive. We argue that electrophysiological and transcranial magnetic stimulation studies support the interactive model. The findings reveal that auditory and somatomotor areas are engaged almost simultaneously, before 100 ms. There is also evidence of early interactions between auditory and motor areas. We propose a new interactive model of auditory-motor speech perception in which auditory and articulatory somatomotor areas are connected from early stages of speech processing. We also discuss how attention and other factors can affect the timing and strength of auditory-motor interactions and propose directions for future research. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Neurodynamics for auditory stream segregation: tracking sounds in the mustached bat's natural environment.

    Science.gov (United States)

    Kanwal, Jagmeet S; Medvedev, Andrei V; Micheyl, Christophe

    2003-08-01

    During navigation and the search phase of foraging, mustached bats emit approximately 25 ms long echolocation pulses (at 10-40 Hz) that contain multiple harmonics of a constant frequency (CF) component followed by a short (3 ms) downward frequency modulation. In the context of auditory stream segregation, therefore, bats may either perceive a coherent pulse-echo sequence (PEPE...), or segregated pulse and echo streams (P-P-P... and E-E-E...). To identify the neural mechanisms for stream segregation in bats, we developed a simple yet realistic neural network model with seven layers and 420 nodes. Our model required recurrent and lateral inhibition to enable output nodes in the network to 'latch-on' to a single tone (corresponding to a CF component in either the pulse or echo), i.e., exhibit differential suppression by the alternating two tones presented at a high rate (> 10 Hz). To test the applicability of our model to echolocation, we obtained neurophysiological data from the primary auditory cortex of awake mustached bats. Event-related potentials reliably reproduced the latching behaviour observed at output nodes in the network. Pulse as well as nontarget (clutter) echo CFs facilitated this latching. Individual single unit responses were erratic, but when summed over several recording sites, they also exhibited reliable latching behaviour even at 40 Hz. On the basis of these findings, we propose that a neural correlate of auditory stream segregation is present within localized synaptic activity in the mustached bat's auditory cortex and this mechanism may enhance the perception of echolocation sounds in the natural environment.

  15. Vocal differentiation parallels development of auditory saccular sensitivity in a highly soniferous fish.

    Science.gov (United States)

    Vasconcelos, Raquel O; Alderks, Peter W; Ramos, Andreia; Fonseca, Paulo J; Amorim, M Clara P; Sisneros, Joseph A

    2015-09-01

    Vocal differentiation is widely documented in birds and mammals but has been poorly investigated in other vertebrates, including fish, which represent the oldest extant vertebrate group. Neural circuitry controlling vocal behaviour is thought to have evolved from conserved brain areas that originated in fish, making this taxon key to understanding the evolution and development of the vertebrate vocal-auditory systems. This study examines ontogenetic changes in the vocal repertoire and whether vocal differentiation parallels auditory development in the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae). This species exhibits a complex acoustic repertoire and is vocally active during early development. Vocalisations were recorded during social interactions for four size groups (fry: 25 cm, standard length). Auditory sensitivity of juveniles and adults was determined based on evoked potentials recorded from the inner ear saccule in response to pure tones of 75-945 Hz. We show an ontogenetic increment in the vocal repertoire from simple broadband-pulsed 'grunts' that later differentiate into four distinct vocalisations, including low-frequency amplitude-modulated 'boatwhistles'. Whereas fry emitted mostly single grunts, large juveniles exhibited vocalisations similar to the adult vocal repertoire. Saccular sensitivity revealed a three-fold enhancement at most frequencies tested from small to large juveniles; however, large juveniles were similar in sensitivity to adults. We provide the first clear evidence of ontogenetic vocal differentiation in fish, as previously described for higher vertebrates. Our results suggest a parallel development between the vocal motor pathway and the peripheral auditory system for acoustic social communication in fish. © 2015. Published by The Company of Biologists Ltd.

  16. Musical training heightens auditory brainstem function during sensitive periods in development

    Directory of Open Access Journals (Sweden)

    Erika eSkoe

    2013-09-01

    Full Text Available Experience has a profound influence on how sound is processed in the brain. Yet little is known about how enriched experiences interact with developmental processes to shape neural processing of sound. We examine this question as part of a large cross-sectional study of auditory brainstem development involving more than 700 participants, 213 of whom were classified as musicians. We hypothesized that experience-dependent processes piggyback on developmental processes, resulting in a waxing-and-waning effect of experience that tracks with the undulating developmental baseline. This hypothesis led to the prediction that experience-dependent plasticity would be amplified during periods when developmental changes are underway (i.e., early and later in life and that the peak in experience-dependent plasticity would coincide with the developmental apex for each subcomponent of the auditory brainstem response. Consistent with our predictions, we reveal that musicians have heightened response features at distinctive times in the life span that coincide with periods of developmental change and climax. The effect of musicianship is also quite specific: we find that only select components of auditory brainstem activity are affected, with musicians having heightened function for onset latency, high frequency phase-locking, and response consistency, and with little effect observed for other measures, including lower frequency phase-locking and non-stimulus-related activity. By showing that musicianship imparts a neural signature that is especially evident during childhood and old age, our findings reinforce the idea that the nervous system’s response to sound is chiseled by how a person interacts with his specific auditory environment, with the effect of the environment wielding its greatest influence during certain privileged windows of development.

  17. The human auditory system: a timeline of development.

    Science.gov (United States)

    Moore, Jean K; Linthicum, Fred H

    2007-09-01

    This review traces the structural maturation of the human auditory system, and compares the timeline of anatomical development with cotemporaneous physiological and behavioral events. During the embryonic period, there is formation of basic structure at all levels of the system, i.e. the inner ear, the brainstem pathway, and the cortex. The second trimester is a time of rapid growth and development, and by the end of this period, the cochlea has acquired a very adult-like configuration. During the perinatal period, the brainstem reaches a mature state, and brainstem activity is reflected in behavioral responses to sound, including phonetic discrimination, and in evoked brainstem and early middle latency responses. The perinatal period is also the time of peak development of brainstem input to the cortex through the marginal layer, and of the long latency cortical potentials, the N(2) and mismatch negativity. In early childhood, from the sixth post-natal month to age five, there is progressive maturation of the thalamic projections to the cortex and of the longer latency Pa and P(1) evoked potentials. Later childhood, from six to twelve years, is the time of maturation of the superficial cortical layers and their intracortical connections, accompanied by appearance of the N(1) potential and improved linguistic discriminative abilities. Some consideration is given to the potential negative effects of deafness-induced sound deprivation during the perinatal period and childhood.

  18. P3a from auditory white noise stimuli.

    Science.gov (United States)

    Combs, Lindsey A; Polich, John

    2006-05-01

    P3a and P3b event-related brain potentials (ERPs) were elicited with an auditory 3-stimulus (target, distracter, standard) paradigm in which subjects responded only to the target. Distracter stimuli consisted of white noise, novel sounds, or a high frequency tone, with stimulus characteristics perceptually controlled. Task difficulty was varied as easy and hard by changing the pitch difference between the target and standard stimuli. Error rate was greater and response time longer for the hard task. P3a distracter amplitude was largest for the white noise and novel stimuli, with maximum amplitude over the central recording sites, and larger for the hard discrimination task. P3b target amplitude was unaffected by distracter type, maximum over the parietal recording sites, and smaller and later for the hard task. The findings indicate that white noise stimuli can produce reliable P3a components. White noise can be useful for clinical P3a applications, as it removes the variability of stimulus novelty.

  19. Lateral Flow Immunoassay.

    Science.gov (United States)

    Ching, Kathryn H

    2015-01-01

    Lateral flow immunoassays (LFIAs) are a staple in the field of rapid diagnostics. These small handheld devices require no specialized training or equipment to operate, and generate a result within minutes of sample application. They are an ideal format for many types of home test kits, for emergency responders and for food manufacturers and producers looking for a quick evaluation of a given sample. LFIAs rely on high quality monoclonal antibodies that recognize the analyte of interest. As monoclonal antibody technology becomes more accessible to smaller laboratories, there has been increased interest in developing LFIA prototypes for potential commercial manufacture. In this chapter, the basics of designing and building an LFIA prototype are described.

  20. Lateral conduction infrared photodetector

    Science.gov (United States)

    Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM

    2011-09-20

    A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

  1. Aspirin, 110 years later.

    Science.gov (United States)

    Patrono, C; Rocca, B

    2009-07-01

    Although conceived at the end of the 19th century as a synthetic analgesic agent with improved gastric tolerability vs. naturally occurring salicylates, acetylsalicylic acid (marketed as aspirin in 1899) turned out to be an ideal antiplatelet agent about 90 years later, following the understanding of its mechanism of action, the development of a mechanism-based biomarker for dose-finding studies, and the initiation of a series of appropriately sized, randomized clinical trials to test its efficacy and safety at low doses given once daily. At the turn of its 110th anniversary, aspirin continues to attract heated debates on a number of issues including (i) the optimal dose to maximize efficacy and minimize toxicity; (ii) the possibility that some patients may be 'resistant' to its antiplatelet effects; and (iii) the balance of benefits and risks in primary vs. secondary prevention.

  2. Creativity in later life.

    Science.gov (United States)

    Price, K A; Tinker, A M

    2014-08-01

    The ageing population presents significant challenges for the provision of social and health services. Strategies are needed to enable older people to cope within a society ill prepared for the impacts of these demographic changes. The ability to be creative may be one such strategy. This review outlines the relevant literature and examines current public health policy related to creativity in old age with the aim of highlighting some important issues. As well as looking at the benefits and negative aspects of creative activity in later life they are considered in the context of the theory of "successful ageing". Creative activity plays an important role in the lives of older people promoting social interaction, providing cognitive stimulation and giving a sense of self-worth. Furthermore, it is shown to be useful as a tool in the multi-disciplinary treatment of health problems common in later life such as depression and dementia. There are a number of initiatives to encourage older people to participate in creative activities such as arts-based projects which may range from visual arts to dance to music to intergenerational initiatives. However, participation shows geographical variation and often the responsibility of provision falls to voluntary organisations. Overall, the literature presented suggests that creative activity could be a useful tool for individuals and society. However, further research is needed to establish the key factors which contribute to patterns of improved health and well-being, as well as to explore ways to improve access to services. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Neural responses in songbird forebrain reflect learning rates, acquired salience, and stimulus novelty after auditory discrimination training

    Science.gov (United States)

    Phan, Mimi L.; Vicario, David S.

    2014-01-01

    How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. PMID:25475353

  4. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  5. Degraded auditory processing in a rat model of autism limits the speech representation in non-primary auditory cortex.

    Science.gov (United States)

    Engineer, C T; Centanni, T M; Im, K W; Borland, M S; Moreno, N A; Carraway, R S; Wilson, L G; Kilgard, M P

    2014-10-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc.

  6. Concurrent auditory perception difficulties in older adults with right hemisphere cerebrovascular accident

    OpenAIRE

    Talebi, Hossein; Moossavi, Abdollah; Faghihzadeh, Soghrat

    2014-01-01

    Background: Older adults with cerebrovascular accident (CVA) show evidence of auditory and speech perception problems. In present study, it was examined whether these problems are due to impairments of concurrent auditory segregation procedure which is the basic level of auditory scene analysis and auditory organization in auditory scenes with competing sounds. Methods: Concurrent auditory segregation using competing sentence test (CST) and dichotic digits test (DDT) was assessed and compared...

  7. Analysis of Lateral Rail Restraint.

    Science.gov (United States)

    1983-09-01

    This report deals with the analysis of lateral rail strength using the results of experimental investigations and a nonlinear rail response model. Part of the analysis involves the parametric study of the influence of track parameters on lateral rail...

  8. Reduced auditory segmentation potentials in first-episode schizophrenia.

    Science.gov (United States)

    Coffman, Brian A; Haigh, Sarah M; Murphy, Timothy K; Leiter-Mcbeth, Justin; Salisbury, Dean F

    2017-10-22

    Auditory scene analysis (ASA) dysfunction is likely an important component of the symptomatology of schizophrenia. Auditory object segmentation, the grouping of sequential acoustic elements into temporally-distinct auditory objects, can be assessed with electroencephalography through measurement of the auditory segmentation potential (ASP). Further, N2 responses to the initial and final elements of auditory objects are enhanced relative to medial elements, which may indicate auditory object edge detection (initiation and termination). Both ASP and N2 modulation are impaired in long-term schizophrenia. To determine whether these deficits are present early in disease course, we compared ASP and N2 modulation between individuals at their first episode of psychosis within the schizophrenia spectrum (FE, N=20) and matched healthy controls (N=24). The ASP was reduced by >40% in FE; however, N2 modulation was not statistically different from HC. This suggests that auditory segmentation (ASP) deficits exist at this early stage of schizophrenia, but auditory edge detection (N2 modulation) is relatively intact. In a subset of subjects for whom structural MRIs were available (N=14 per group), ASP sources were localized to midcingulate cortex (MCC) and temporal auditory cortex. Neurophysiological activity in FE was reduced in MCC, an area linked to aberrant perceptual organization, negative symptoms, and cognitive dysfunction in schizophrenia, but not temporal auditory cortex. This study supports the validity of the ASP for measurement of auditory object segmentation and suggests that the ASP may be useful as an early index of schizophrenia-related MCC dysfunction. Further, ASP deficits may serve as a viable biomarker of disease presence. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aging increases distraction by auditory oddballs in visual, but not auditory tasks.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-05-01

    Aging is typically considered to bring a reduction of the ability to resist distraction by task-irrelevant stimuli. Yet recent work suggests that this conclusion must be qualified and that the effect of aging is mitigated by whether irrelevant and target stimuli emanate from the same modalities or from distinct ones. Some studies suggest that aging is especially sensitive to distraction within-modality while others suggest it is greater across modalities. Here we report the first study to measure the effect of aging on deviance distraction in cross-modal (auditory-visual) and uni-modal (auditory-auditory) oddball tasks. Young and older adults were asked to judge the parity of target digits (auditory or visual in distinct blocks of trials), each preceded by a task-irrelevant sound (the same tone on most trials-the standard sound-or, on rare and unpredictable trials, a burst of white noise-the deviant sound). Deviant sounds yielded distraction (longer response times relative to standard sounds) in both tasks and age groups. However, an age-related increase in distraction was observed in the cross-modal task and not in the uni-modal task. We argue that aging might affect processes involved in the switching of attention across modalities and speculate that this may due to the slowing of this type of attentional shift or a reduction in cognitive control required to re-orient attention toward the target's modality.

  10. [Disturbance in processing auditory impulses from the ears: auditory processing disorder].

    Science.gov (United States)

    Koefoed-Nielsen, Birger; Andersen, Svend Erik Søgaard

    2007-04-30

    Over the last decade evidence on the existence of auditory processing disorder (APD) has increased. Therefore, it is now time to deal with the phenomenon in daily clinical work. This article gives information about APD, especially about problems with the definition of APD, diagnosing APD and the treatment.

  11. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  12. Effects of sequential streaming on auditory masking using psychoacoustics and auditory evoked potentials.

    Science.gov (United States)

    Verhey, Jesko L; Ernst, Stephan M A; Yasin, Ifat

    2012-03-01

    The present study was aimed at investigating the relationship between the mismatch negativity (MMN) and psychoacoustical effects of sequential streaming on comodulation masking release (CMR). The influence of sequential streaming on CMR was investigated using a psychoacoustical alternative forced-choice procedure and electroencephalography (EEG) for the same group of subjects. The psychoacoustical data showed, that adding precursors comprising of only off-signal-frequency maskers abolished the CMR. Complementary EEG data showed an MMN irrespective of the masker envelope correlation across frequency when only the off-signal-frequency masker components were present. The addition of such precursors promotes a separation of the on- and off-frequency masker components into distinct auditory objects preventing the auditory system from using comodulation as an additional cue. A frequency-specific adaptation changing the representation of the flanking bands in the streaming conditions may also contribute to the reduction of CMR in the stream conditions, however, it is unlikely that adaptation is the primary reason for the streaming effect. A neurophysiological correlate of sequential streaming was found in EEG data using MMN, but the magnitude of the MMN was not correlated with the audibility of the signal in CMR experiments. Dipole source analysis indicated different cortical regions involved in processing auditory streaming and modulation detection. In particular, neural sources for processing auditory streaming include cortical regions involved in decision-making. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Difficulties in Auditory Organization as a Cause of Reading Backwardness? An Auditory Neuroscience Perspective

    Science.gov (United States)

    Leong, Victoria; Goswami, Usha

    2017-01-01

    Over 30 years ago, it was suggested that difficulties in the "auditory organization" of word forms in the mental lexicon might cause reading difficulties. It was proposed that children used parameters such as rhyme and alliteration to organize word forms in the mental lexicon by acoustic similarity, and that such organization was…

  14. Auditory Distraction and Acclimatization to Hearing Aids.

    Science.gov (United States)

    Dawes, Piers; Munro, Kevin J

    It is widely recognized by hearing aid users and audiologists that a period of auditory acclimatization and adjustment is needed for new users to become accustomed to their devices. The aim of the present study was to test the idea that auditory acclimatization and adjustment to hearing aids involves a process of learning to "tune out" newly audible but undesirable sounds, which are described by new hearing aid users as annoying and distracting. It was hypothesized that (1) speech recognition thresholds in noise would improve over time for new hearing aid users, (2) distractibility to noise would reduce over time for new hearing aid users, (3) there would be a correlation between improved speech recognition in noise and reduced distractibility to background sounds, (4) improvements in speech recognition and distraction would be accompanied by self-report of reduced annoyance, and (5) improvements in speech recognition and distraction would be associated with higher general cognitive ability and more hearing aid use. New adult hearing aid users (n = 35) completed a test of aided speech recognition in noise (SIN) and a test of auditory distraction by background sound amplified by hearing aids on the day of fitting and 1, 7, 14, and 30 days post fitting. At day 30, participants completed self-ratings of the annoyance of amplified sounds. Daily hearing aid use was measured via hearing aid data logging, and cognitive ability was measured with the Wechsler Abbreviated Scale of Intelligence block design test. A control group of experienced hearing aid users (n = 20) completed the tests over a similar time frame. At day 30, there was no statistically significant improvement in SIN among new users versus experienced users. However, levels of hearing loss and hearing aid use varied widely among new users. A subset of new users with moderate hearing loss who wore their hearing aids at least 6 hr/day (n = 10) had significantly improved SIN (by ~3-dB signal to noise ratio

  15. Lateralization of gene expression in human language cortex.

    Science.gov (United States)

    Karlebach, Guy; Francks, Clyde

    2015-06-01

    Lateralization is an important aspect of the functional brain architecture for language and other cognitive faculties. The molecular genetic basis of human brain lateralization is unknown, and recent studies have suggested that gene expression in the cerebral cortex is bilaterally symmetrical. Here we have re-analyzed two transcriptomic datasets derived from post mortem human cerebral cortex, with a specific focus on superior temporal and auditory language cortex in adults. We applied an empirical Bayes approach to model differential left-right expression, together with gene ontology (GO) analysis and meta-analysis. There was robust and reproducible lateralization of individual genes and GO groups that are likely to fine-tune the electrophysiological and neurotransmission properties of cortical circuits, most notably synaptic transmission, nervous system development and glutamate receptor activity. Our findings anchor the cerebral biology of language to the molecular genetic level. Future research in model systems may determine how these molecular signatures of neurophysiological lateralization effect fine-tuning of cerebral cortical function, differently in the two hemispheres. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Multiprofessional committee on auditory health: COMUSA.

    Science.gov (United States)

    Lewis, Doris Ruthy; Marone, Silvio Antonio Monteiro; Mendes, Beatriz C A; Cruz, Oswaldo Laercio Mendonça; Nóbrega, Manoel de

    2010-01-01

    Created in 2007, COMUSA is a multiprofessional committee comprising speech therapy, otology, otorhinolaryngology and pediatrics with the aim of debating and countersigning auditory health actions for neonatal, lactating, preschool and school children, adolescents, adults and elderly persons. COMUSA includes representatives of the Brazilian Audiology Academy (Academia Brasileira de Audiologia or ABA), the Brazilian Otorhinolaryngology and Cervicofacial Surgery Association (Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico Facial or ABORL), the Brazilian Phonoaudiology Society (Sociedade Brasileira de Fonoaudiologia or SBFa), the Brazilian Otology Society (Sociedade Brasileira de Otologia or SBO), and the Brazilian Pediatrics Society (Sociedade Brasileira de Pediatria or SBP).

  17. Temporal coherence sensitivity in auditory cortex.

    Science.gov (United States)

    Barbour, Dennis L; Wang, Xiaoqin

    2002-11-01

    Natural sounds often contain energy over a broad spectral range and consequently overlap in frequency when they occur simultaneously; however, such sounds under normal circumstances can be distinguished perceptually (e.g., the cocktail party effect). Sound components arising from different sources have distinct (i.e., incoherent) modulations, and incoherence appears to be one important cue used by the auditory system to segregate sounds into separately perceived acoustic objects. Here we show that, in the primary auditory cortex of awake marmoset monkeys, many neurons responsive to amplitude- or frequency-modulated tones at a particular carrier frequency [the characteristic frequency (CF)] also demonstrate sensitivity to the relative modulation phase between two otherwise identically modulated tones: one at CF and one at a different carrier frequency. Changes in relative modulation phase reflect alterations in temporal coherence between the two tones, and the most common neuronal response was found to be a maximum of suppression for the coherent condition. Coherence sensitivity was generally found in a narrow frequency range in the inhibitory portions of the frequency response areas (FRA), indicating that only some off-CF neuronal inputs into these cortical neurons interact with on-CF inputs on the same time scales. Over the population of neurons studied, carrier frequencies showing coherence sensitivity were found to coincide with the carrier frequencies of inhibition, implying that inhibitory inputs create the effect. The lack of strong coherence-induced facilitation also supports this interpretation. Coherence sensitivity was found to be greatest for modulation frequencies of 16-128 Hz, which is higher than the phase-locking capability of most cortical neurons, implying that subcortical neurons could play a role in the phenomenon. Collectively, these results reveal that auditory cortical neurons receive some off-CF inputs temporally matched and some temporally

  18. Auditory function in Duane's retraction syndrome.

    Science.gov (United States)

    Ro, A; Chernoff, G; MacRae, D; Orton, R B; Cadera, W

    1990-01-15

    We obtained audiograms and auditory brainstem responses from 44 patients with Duane's retraction syndrome to assess the incidence and nature of hearing deficit. Of 44 patients, seven (15.9%) had evidence of hearing impairment. Three (6.8%) subjects had a temporary conductive hearing loss because of middle ear fluid, and another patient had hearing loss from Crouzon's disease. The remaining three (6.8%) patients demonstrated sensorineural hearing deficit. This hearing impairment was attributed to a cochlear lesion and not to a pontine lesion. We believe that the frequency of sensorineural hearing loss in these patients warrants hearing screening programs similar to those used for infants in neonatal intensive care units.

  19. Comorbid auditory processing disorder in developmental dyslexia.

    Science.gov (United States)

    King, Wayne M; Lombardino, Linda J; Crandell, Carl C; Leonard, Christiana M

    2003-10-01

    The primary objective of this study was to investigate the extent of comorbid auditory processing disorder (APD) in a group of adults with developmental dyslexia. An additional objective was to compare performance on auditory tasks to results from standardized tests of reading in an attempt to generate a clinically useful profile of developmental dyslexics with comorbid APD. A group of eleven persons with developmental dyslexia and 14 age- and intelligence-matched controls participated in the study. Behavioral audiograms, 226-Hz tympanograms, and word recognition scores were obtained binaurally from all subjects. Both groups were administered the frequency-pattern test (FPT) and duration-pattern test (DPT) monaurally (30 items per ear) in both the left and right ear. Gap detection results were obtained in both groups (binaural presentation) using narrowband noise centered at 1 kHz in an adaptive two-alternative forced-choice (2-AFC) paradigm. The FPT, DPT, and gap detection results were analyzed for interaural (where applicable), intergroup, and intragroup differences. Correlations between performance on the auditory tasks and the standardized tests of reading were examined. Additive logistic regression models were fit to the data to determine which auditory tests proved to be the best predictors of group membership. The persons with developmental dyslexia as a group performed significantly poorer than controls on both the FPT and DPT. Furthermore, the group differences were significant in both monaural conditions. On the FPT and DPT, five of the eleven participants with dyslexia performed below the widely used clinical criterion for APD of 70% correct in either ear. All five of these participants performed below criterion on the FPT, whereas four of the five additionally performed below 70% on the DPT. The data also were analyzed by fitting a series of stepwise logistic regression models, which indicated that gap detection did not significantly predict group

  20. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  1. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  2. Exploration of auditory P50 gating in schizophrenia by way of difference waves

    Directory of Open Access Journals (Sweden)

    Arnfred Sidse M

    2006-01-01

    Full Text Available Abstract Electroencephalographic measures of information processing encompass both mid-latency evoked potentials like the pre-attentive auditory P50 potential and a host of later more cognitive components like P300 and N400. Difference waves have mostly been employed in studies of later event related potentials but here this method along with low frequency filtering is applied exploratory on auditory P50 gating data, previously analyzed in the standard format (reported in Am J Psychiatry 2003, 160:2236-8. The exploration was motivated by the observation during visual peak detection that the AEP waveform was different in the patient group, although this was not reflected by the peak measures. The sample included un-medicated schizophrenia spectrum patients (n = 17 and healthy controls (n = 24. The patients had an attenuated difference P50. This attenuation was primarily seen in the sub-sample of patients with severe negative symptoms. The difference attenuation was due to low amplitude at the first stimulus. This suggests an abnormality in readiness more than an abnormality in gating in the patient group.

  3. From ear to hand: the role of the auditory-motor loop in pointing to an auditory source

    Directory of Open Access Journals (Sweden)

    Eric Olivier Boyer

    2013-04-01

    Full Text Available Studies of the nature of the neural mechanisms involved in goal-directed movements tend to concentrate on the role of vision. We present here an attempt to address the mechanisms whereby an auditory input is transformed into a motor command. The spatial and temporal organization of hand movements were studied in normal human subjects as they pointed towards unseen auditory targets located in a horizontal plane in front of them. Positions and movements of the hand were measured by a six infrared camera tracking system. In one condition, we assessed the role of auditory information about target position in correcting the trajectory of the hand. To accomplish this, the duration of the target presentation was varied. In another condition, subjects received continuous auditory feedback of their hand movement while pointing to the auditory targets. Online auditory control of the direction of pointing movements was assessed by evaluating how subjects reacted to shifts in heard hand position. Localization errors were exacerbated by short duration of target presentation but not modified by auditory feedback of hand position. Long duration of target presentation gave rise to a higher level of accuracy and was accompanied by early automatic head orienting movements consistently related to target direction. These results highlight the efficiency of auditory feedback processing in online motor control and suggest that the auditory system takes advantages of dynamic changes of the acoustic cues due to changes in head orientation in order to process online motor control. How to design an informative acoustic feedback needs to be carefully studied to demonstrate that auditory feedback of the hand could assist the monitoring of movements directed at objects in auditory space.

  4. A songbird forebrain area potentially involved in auditory ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    Auditory discrimination and learning in songbirds. 145. J. Biosci. 33(1) ... formation and/or storage. [Pinaud R and Terleph T A 2008 A songbird forebrain area potentially involved in auditory discrimination and memory formation; J. Biosci. ...... Otol. 96 101–112. Cynx J and Nottebohm F 1992 Role of gender, season, and.

  5. McGurk illusion recalibrates subsequent auditory perception

    NARCIS (Netherlands)

    Lüttke, C.S.; Ekman, M.; Gerven, M.A.J. van; Lange, F.P. de

    2016-01-01

    Visual information can alter auditory perception. This is clearly illustrated by the well-known McGurk illusion, where an auditory/aba/ and a visual /aga/ are merged to the percept of 'ada'. It is less clear however whether such a change in perception may recalibrate subsequent perception. Here we

  6. The effectiveness of the Auditory Steady State Response in ...

    African Journals Online (AJOL)

    This paper aims to provide a review of the emerging Auditory Steady State Response in light of existing procedures for diagnosis of hearing loss in infants. Determining the type, degree, and configuration of hearing loss in infants is a challenge requiring sophisticated electrophysiological equipment of which Auditory ...

  7. Auditory information processing in rat genotypes with different dopaminergic properties.

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Luijtelaar, E.L.J.M. van; Cools, A.R.; Ellenbroek, B.A.

    2001-01-01

    RATIONALE: Auditory filtering disturbances, as measured in the sensory gating and prepulse inhibition (PPI) paradigms, have been linked to aberrant auditory information processing and sensory overload in schizophrenic patients. In both paradigms, the response to the second stimulus (S2) is

  8. Auditory information processing in rat genotypes with different dopaminergic properties

    NARCIS (Netherlands)

    Bruin, N.M.W.J. de; Luijtelaar, E.L.J.M. van; Cools, A.R.; Ellenbroek, B.A.

    2001-01-01

    Rationale: Auditory filtering disturbances, as measured in the sensory gating and prepulse inhibition (PPI) paradigms, have been linked to aberrant auditory information processing and sensory overload in schizophrenic patients. In both paradigms, the response to the second stimulus (S2) is

  9. Auditory processing in autism spectrum disorder : Mismatch negativity deficits

    NARCIS (Netherlands)

    Vlaskamp, Chantal|info:eu-repo/dai/nl/413985679; Oranje, Bob|info:eu-repo/dai/nl/217177409; Madsen, Gitte Falcher; Møllegaard Jepsen, Jens Richardt; Durston, Sarah|info:eu-repo/dai/nl/243083912; Cantio, Cathriona; Glenthøj, Birte; Bilenberg, Niels

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism are

  10. Use of auditory learning to manage listening problems in children.

    Science.gov (United States)

    Moore, David R; Halliday, Lorna F; Amitay, Sygal

    2009-02-12

    This paper reviews recent studies that have used adaptive auditory training to address communication problems experienced by some children in their everyday life. It considers the auditory contribution to developmental listening and language problems and the underlying principles of auditory learning that may drive further refinement of auditory learning applications. Following strong claims that language and listening skills in children could be improved by auditory learning, researchers have debated what aspect of training contributed to the improvement and even whether the claimed improvements reflect primarily a retest effect on the skill measures. Key to understanding this research have been more circumscribed studies of the transfer of learning and the use of multiple control groups to examine auditory and non-auditory contributions to the learning. Significant auditory learning can occur during relatively brief periods of training. As children mature, their ability to train improves, but the relation between the duration of training, amount of learning and benefit remains unclear. Individual differences in initial performance and amount of subsequent learning advocate tailoring training to individual learners. The mechanisms of learning remain obscure, especially in children, but it appears that the development of cognitive skills is of at least equal importance to the refinement of sensory processing. Promotion of retention and transfer of learning are major goals for further research.

  11. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  12. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  13. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  14. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  15. Characteristics of Auditory Processing Disorders: A Systematic Review

    Science.gov (United States)

    de Wit, Ellen; Visser-Bochane, Margot I.; Steenbergen, Bert; van Dijk, Pim; van der Schans, Cees P.; Luinge, Margreet R.

    2016-01-01

    Purpose: The purpose of this review article is to describe characteristics of auditory processing disorders (APD) by evaluating the literature in which children with suspected or diagnosed APD were compared with typically developing children and to determine whether APD must be regarded as a deficit specific to the auditory modality or as a…

  16. Prevalence and correlates of auditory vocal hallucinations in middle childhood

    NARCIS (Netherlands)

    Bartels-Velthuis, A.A.; Jenner, J.A.; van de Willige, G.; van Os, J.; Wiersma, D.

    Background Hearing voices occurs in middle childhood, but little is known about prevalence, aetiology and immediate consequences. Aims To investigate prevalence, developmental risk factors and behavioural correlates of auditory vocal hallucinations in 7- and 8-year-olds. Method Auditory vocal

  17. Auditory Processing Theories of Language Disorders: Past, Present, and Future

    Science.gov (United States)

    Miller, Carol A.

    2011-01-01

    Purpose: The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. Method: A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory…

  18. Development of a central auditory test battery for adults.

    NARCIS (Netherlands)

    Neijenhuis, C.A.M.; Stollman, M.H.P.; Snik, A.F.M.; Broek, P. van den

    2001-01-01

    There is little standardized test material in Dutch to document central auditory processing disorders (CAPDs). Therefore, a new central auditory test battery was composed and standardized for use with adult populations and older children. The test battery comprised seven tests (words in noise,

  19. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    Science.gov (United States)

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  20. Estimating auditory filter bandwidth using distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    Rukjær, Andreas Harbo; Hauen, Sigurd van; Ordoñez Pizarro, Rodrigo Eduardo

    2017-01-01

    The basic frequency selectivity in the listener’s hearing is often characterized by auditory filters. These filters are determined through listening tests, which estimate the masking threshold as a function of frequency of the tone and the bandwidth of the masking sound. The auditory filters have...... at 1, 2, and 4 kHz for 10 young normal-hearing subjects....

  1. Auditory cortex involvement in emotional learning and memory.

    Science.gov (United States)

    Grosso, A; Cambiaghi, M; Concina, G; Sacco, T; Sacchetti, B

    2015-07-23

    Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Auditory responsive naming versus visual confrontation naming in dementia.

    Science.gov (United States)

    Miller, Kimberly M; Finney, Glen R; Meador, Kimford J; Loring, David W

    2010-01-01

    Dysnomia is typically assessed during neuropsychological evaluation through visual confrontation naming. Responsive naming to description, however, has been shown to have a more distributed representation in both fMRI and cortical stimulation studies. While naming deficits are common in dementia, the relative sensitivity of visual confrontation versus auditory responsive naming has not been directly investigated. The current study compared visual confrontation naming and auditory responsive naming in a dementia sample of mixed etiologies to examine patterns of performance across these naming tasks. A total of 50 patients with dementia of various etiologies were administered visual confrontation naming and auditory responsive naming tasks using stimuli that were matched in overall word frequency. Patients performed significantly worse on auditory responsive naming than visual confrontation naming. Additionally, patients with mixed Alzheimer's disease/vascular dementia performed more poorly on auditory responsive naming than did patients with probable Alzheimer's disease, although no group differences were seen on the visual confrontation naming task. Auditory responsive naming correlated with a larger number of neuropsychological tests of executive function than did visual confrontation naming. Auditory responsive naming appears to be more sensitive to effects of increased of lesion burden compared to visual confrontation naming. We believe that this reflects more widespread topographical distribution of auditory naming sites within the temporal lobe, but may also reflect the contributions of working memory and cognitive flexibility to performance.

  3. Entrainment to an auditory signal: Is attention involved?

    NARCIS (Netherlands)

    Kunert, R.; Jongman, S.R.

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of

  4. Strategy choice mediates the link between auditory processing and spelling.

    Directory of Open Access Journals (Sweden)

    Tru E Kwong

    Full Text Available Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes. Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  5. Strategy choice mediates the link between auditory processing and spelling.

    Science.gov (United States)

    Kwong, Tru E; Brachman, Kyle J

    2014-01-01

    Relations among linguistic auditory processing, nonlinguistic auditory processing, spelling ability, and spelling strategy choice were examined. Sixty-three undergraduate students completed measures of auditory processing (one involving distinguishing similar tones, one involving distinguishing similar phonemes, and one involving selecting appropriate spellings for individual phonemes). Participants also completed a modified version of a standardized spelling test, and a secondary spelling test with retrospective strategy reports. Once testing was completed, participants were divided into phonological versus nonphonological spellers on the basis of the number of words they spelled using phonological strategies only. Results indicated a) moderate to strong positive correlations among the different auditory processing tasks in terms of reaction time, but not accuracy levels, and b) weak to moderate positive correlations between measures of linguistic auditory processing (phoneme distinction and phoneme spelling choice in the presence of foils) and spelling ability for phonological spellers, but not for nonphonological spellers. These results suggest a possible explanation for past contradictory research on auditory processing and spelling, which has been divided in terms of whether or not disabled spellers seemed to have poorer auditory processing than did typically developing spellers, and suggest implications for teaching spelling to children with good versus poor auditory processing abilities.

  6. Simultanagnosia does not affect processes of auditory Gestalt perception.

    Science.gov (United States)

    Rennig, Johannes; Bleyer, Anna Lena; Karnath, Hans-Otto

    2017-05-01

    Simultanagnosia is a neuropsychological deficit of higher visual processes caused by temporo-parietal brain damage. It is characterized by a specific failure of recognition of a global visual Gestalt, like a visual scene or complex objects, consisting of local elements. In this study we investigated to what extend this deficit should be understood as a deficit related to specifically the visual domain or whether it should be seen as defective Gestalt processing per se. To examine if simultanagnosia occurs across sensory domains, we designed several auditory experiments sharing typical characteristics of visual tasks that are known to be particularly demanding for patients suffering from simultanagnosia. We also included control tasks for auditory working memory deficits and for auditory extinction. We tested four simultanagnosia patients who suffered from severe symptoms in the visual domain. Two of them indeed showed significant impairments in recognition of simultaneously presented sounds. However, the same two patients also suffered from severe auditory working memory deficits and from symptoms comparable to auditory extinction, both sufficiently explaining the impairments in simultaneous auditory perception. We thus conclude that deficits in auditory Gestalt perception do not appear to be characteristic for simultanagnosia and that the human brain obviously uses independent mechanisms for visual and for auditory Gestalt perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory-nerve ...

  8. Subdividing the beat: auditory and motor contributions to synchronization

    NARCIS (Netherlands)

    Loehr, J.D.; Palmer, C.

    2009-01-01

    THE CURRENT STUDY EXAMINED HOW AUDITORY AND kinematic information influenced pianists' ability to synchronize musical sequences with a metronome. Pianists performed melodies in which quarter-note beats were subdivided by intervening eighth notes that resulted from auditory information (heard tones),

  9. Auditory Memory deficit in Elderly People with Hearing Loss.

    Science.gov (United States)

    Shahidipour, Zahra; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Khosravifard, Elham

    2013-06-01

    Hearing loss is one of the most common problems in elderly people. Functional side effects of hearing loss are various. Due to the fact that hearing loss is the common impairment in elderly people; the importance of its possible effects on auditory memory is undeniable. This study aims to focus on the hearing loss effects on auditory memory. Dichotic Auditory Memory Test (DVMT) was performed on 47 elderly people, aged 60 to 80; that were divided in two groups, the first group consisted of elderly people with hearing range of 24 normal and the second one consisted of 23 elderly people with bilateral symmetrical ranged from mild to moderate Sensorineural hearing loss in the high frequency due to aging in both genders. Significant difference was observed in DVMT between elderly people with normal hearing and those with hearing loss (Pauditory verbal memory. This result depicts the importance of auditory intervention to make better communicational skills and therefore auditory memory in this population.

  10. Musical training and the role of auditory feedback during performance.

    Science.gov (United States)

    Pfordresher, Peter Q

    2012-04-01

    Recent research has shown that music training enhances music-related sensorimotor associations, such as the relationship between a key press on the keyboard and its associated musical pitch (auditory feedback). Such results suggest that the role of auditory feedback in performance may be based on learned associations that are task specific. Here, results from various studies will be presented that suggest that the real state of affairs is more complex. Several recent studies have shown similar effects of altered auditory feedback during piano performance for pianists and individuals with no piano training. Other recent research suggests dramatic differences between pianists and nonmusicians concerning the influence of auditory feedback on melody switching that suggest greater influence of auditory feedback among nonmusicians than pianists. Taken together, results suggest that musical training refines preexisting sensorimotor associations. © 2012 New York Academy of Sciences.

  11. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J

    2011-01-01

    The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography...... by aligning ultra-dense receptive field maps from the auditory cortex and thalamus of the mouse in vivo with the neural circuitry contained in the auditory thalamocortical slice in vitro. We observed precisely organized tonotopic maps of best frequency (BF) in the middle layers of AI and the anterior auditory...... field as well as in the ventral and medial divisions of the medial geniculate body (MGBv and MGBm, respectively). Tracer injections into distinct zones of the BF map in AI retrogradely labeled topographically organized MGBv projections and weaker, mixed projections from MGBm. Stimulating MGBv along...

  12. Validation of the LittlEARS Auditory Questionnaire in cochlear implanted infants and toddlers.

    Science.gov (United States)

    Obrycka, Anita; Lorens, Artur; Padilla García, José-Luis; Piotrowska, Anna; Skarzynski, Henryk

    2017-02-01

    not. On each of the five administrations of LEAQ, the item difficulty indices increased (meaning the items became easier) and over the series they progressively increased with a range of: 0.01-0.62, 0.03-0.92, 0.09-1.00, 0.26-1.00, and 0.52-1.00. At the same time, item-total correlations were in the ranges: 0.09-0.77, 0.26-0.62, 0.00-0.65, 0.00-0.65, and 0.00-0.67. Cronbach's alpha values were above 0.80 for all administrations. A positive correlation between LEAQ score and duration of HA use, and subsequent duration of CI use (hearing experience) was found. When the children were stratified into groups according to age at cochlear implantation, duration of HA use before implantation, and audibility provided by HAs prior to implantation, the differences between the groups were reflected in both their rate of auditory development and their LEAQ score. The interpretation of LEAQ scores from CI children in terms of auditory development was supported by the validity evidence of internal structure and from a logical relationship to other variables. (1) Psychometric properties - item difficulty, item-total correlations, and Cronbach's alpha values - indicate that LEAQ measures are highly consistent and reliably gauge the level of a CI child's auditory development. (2) There was a positive correlation between LEAQ scores and the duration of hearing experience with HAs and a later CI; similarly, there were significant differences between groups of children stratified according to the age at cochlear implantation, duration of HA use before implantation, and audibility provided by HAs prior to implantation, all of which demonstrate the expected relation between LEAQ score and concomitant variables. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Construct Validity of Auditory Verbal Learning Test.

    Science.gov (United States)

    Can, Handan; Doğutepe, Elvin; Torun Yazıhan, Nakşidil; Korkman, Hamdi; Erdoğan Bakar, Emel

    2016-01-01

    Auditory Verbal Learning Test (AVLT) is frequently used in neuropsychology literature to comprehensively assess the memory. The test measures verbal learning as immediate and delayed free recall, recognition, and retroactive and proactive interference. Adaptation of AVLT to the Turkish society has been completed, whereas research and development studies are still underway. The purpose of the present study is to investigate the construct validity of the test in order to contribute to the research and development process. In line with this purpose, the research data were obtained from 78 healthy participants aged between 20 and 69. The exclusion criteria included neurological and/or psychiatric disorders as well as untreated auditory/visual disorders. AVLT was administered to participants individually by two trained psychologists. Principal component analysis that is used to investigate the components represented by the AVLT scores consisted of learning, free recall and recognition, in line with the construct of the test. Distractors were also added to these two components in structural equation model. Analyses were carried out on descriptive level to establish the relatioships between age, education, gender and AVLT scores. These findings, which are consistent with the literature indicating that memory is affected by the developmental process, suggest that learning/free recall, recognition, and distractor scores of the AVLT demonstrate a component pattern consistent with theoretical knowledge. This conclusion suggests that AVLT is a valid measurement test for the Turkish society.

  14. Happiness increases distraction by auditory deviant stimuli.

    Science.gov (United States)

    Pacheco-Unguetti, Antonia Pilar; Parmentier, Fabrice B R

    2016-08-01

    Rare and unexpected changes (deviants) in an otherwise repeated stream of task-irrelevant auditory distractors (standards) capture attention and impair behavioural performance in an ongoing visual task. Recent evidence indicates that this effect is increased by sadness in a task involving neutral stimuli. We tested the hypothesis that such effect may not be limited to negative emotions but reflect a general depletion of attentional resources by examining whether a positive emotion (happiness) would increase deviance distraction too. Prior to performing an auditory-visual oddball task, happiness or a neutral mood was induced in participants by means of the exposure to music and the recollection of an autobiographical event. Results from the oddball task showed significantly larger deviance distraction following the induction of happiness. Interestingly, the small amount of distraction typically observed on the standard trial following a deviant trial (post-deviance distraction) was not increased by happiness. We speculate that happiness might interfere with the disengagement of attention from the deviant sound back towards the target stimulus (through the depletion of cognitive resources and/or mind wandering) but help subsequent cognitive control to recover from distraction. © 2015 The British Psychological Society.

  15. Common Misconceptions Regarding Pediatric Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Vasiliki Iliadou

    2018-01-01

    Full Text Available Pediatric hearing evaluation based on pure tone audiometry does not always reflect how a child hears in everyday life. This practice is inappropriate when evaluating the difficulties children experiencing auditory processing disorder (APD in school or on the playground. Despite the marked increase in research on pediatric APD, there remains limited access to proper evaluation worldwide. This perspective article presents five common misconceptions of APD that contribute to inappropriate or limited management in children experiencing these deficits. The misconceptions discussed are (1 the disorder cannot be diagnosed due to the lack of a gold standard diagnostic test; (2 making generalizations based on profiles of children suspected of APD and not diagnosed with the disorder; (3 it is best to discard an APD diagnosis when another disorder is present; (4 arguing that the known link between auditory perception and higher cognition function precludes the validity of APD as a clinical entity; and (5 APD is not a clinical entity. These five misconceptions are described and rebutted using published data as well as critical thinking on current available knowledge on APD.

  16. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  17. Auditory Preferences of Young Children with and without Hearing Loss for Meaningful Auditory-Visual Compound Stimuli

    Science.gov (United States)

    Zupan, Barbra; Sussman, Joan E.

    2009-01-01

    Experiment 1 examined modality preferences in children and adults with normal hearing to combined auditory-visual stimuli. Experiment 2 compared modality preferences in children using cochlear implants participating in an auditory emphasized therapy approach to the children with normal hearing from Experiment 1. A second objective in both…

  18. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...

  19. Auditory Masking Effects on Speech Fluency in Apraxia of Speech and Aphasia: Comparison to Altered Auditory Feedback

    Science.gov (United States)

    Jacks, Adam; Haley, Katarina L.

    2015-01-01

    Purpose: To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not…

  20. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements. The mi...

  1. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.

    Science.gov (United States)

    Kan, Alan; Litovsky, Ruth Y; Goupell, Matthew J

    2015-01-01

    In bilateral cochlear implant users, electrodes mapped to the same frequency range in each ear may stimulate different places in each cochlea due to an insertion depth difference of electrode arrays. This interaural place of stimulation mismatch can lead to problems with auditory image fusion and sensitivity to binaural cues, which may explain the large localization errors seen in many patients. Previous work has shown that interaural place of stimulation mismatch can lead to off-centered auditory images being perceived even though interaural time and level differences (ITD and ILD, respectively) were zero. Large interaural mismatches reduced the ability to use ITDs for auditory image lateralization. In contrast, lateralization with ILDs was still possible but the mapping of ILDs to spatial locations was distorted. This study extends the previous work by systematically investigating the effect of interaural place of stimulation mismatch on ITD and ILD sensitivity directly and examining whether "centering" methods can be used to mitigate some of the negative effects of interaural place of stimulation mismatch. Interaural place of stimulation mismatch was deliberately introduced for this study. Interaural pitch-matching techniques were used to identify a pitch-matched pair of electrodes across the ears approximately at the center of the array. Mismatched pairs were then created by maintaining one of the pitch-matched electrodes constant, and systematically varying the contralateral electrode by two, four, or eight electrode positions (corresponding to approximately 1.5, 3, and 6 mm of interaural place of excitation differences). The stimuli were 300 msec, constant amplitude pulse trains presented at 100 pulses per second. ITD and ILD just noticeable differences (JNDs) were measured using a method of constant stimuli with a two-interval, two-alternative forced choice task. The results were fit with a psychometric function to obtain the JNDs. In experiment I, ITD and

  2. Laterality in living beings, hand dominance, and cerebral lateralization

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2016-01-01

    Full Text Available To date, lateralization in living beings is a phenomenon almost mythologically unexplored. Scientists have proved that lateralization is not exclusively a human feature. Investigations in molecular biology, protein structure, mobility of bacteria, and intracellular lateralization in ciliates, shows important and universal nature of lateralization in living systems. Dominant lateralization implies the appearance of a dominant extremity, or a dominant sense during the performance of complex psychomotor activities. Hand dominance is usually defined as a tendency to use one hand rather than another to perform most activities and this is considered to be the most obvious example of cerebral lateralization and exclusive characteristic of humans. However, there are some exceptions in other species. The dominant hand is able to perform more complex and subtle manual tasks than the non-dominant hand, and this behavioral superiority is the absolute result of additional cerebral support. The asymmetry of brain organization was confirmed in rats, chimpanzees, dogs and birds, some fishes and lizards. The relationships between hand dominance with brain structure and function remain far from clear. For a long time, lateralization was considered unique to humans, but recently it has become clear that lateralization is a fundamental characteristic of the organization of brain and behavior in all vertebrates. It has been questioned to what extent lateralization in humans and other vertebrates may be comparable. [Projekat Ministarstva nauke Republike Srbije, br. 41020 i br. 175078

  3. Cosmetic Lateral Canthoplasty: Preserving the Lateral Canthal Angle

    Directory of Open Access Journals (Sweden)

    Yeon-Jun Kim

    2016-07-01

    Full Text Available Cosmetic lateral canthoplasty, in which the size of the eye is increased by extending the palpebral fissure and decreasing the degree of the eye slant, has become a prevalent procedure for East Asians. However, it is not uncommon for there to be complications or unfavorable results after the surgery. With this in mind, the authors have designed a surgical method to reduce complications in cosmetic lateral canthoplasty by preserving the lateral canthal angle. We discuss here the anatomy required for surgery, the surgical methods, and methods for reducing complications during cosmetic lateral canthoplasty.

  4. LATERAL SURVIVAL: AN OT ACCOUNT

    Directory of Open Access Journals (Sweden)

    Moira Yip

    2004-12-01

    Full Text Available When laterals are the targets of phonological processes, laterality may or may not survive. In a fixed feature geometry, [lateral] should be lost if its superordinate node is eliminated by either the spreading of a neighbouring node, or by coda neutralization. So if [lateral] is under Coronal (Blevins 1994, it should be lost under Place assimilation, and if [lateral] is under Sonorant Voicing (Rice & Avery 1991 it should be lost by rules that spread voicing. Yet in some languages lateral survives such spreading intact. Facts like these argue against a universal attachment of [lateral] under either Coronal or Sonorant Voicing, and in favour of an account in terms of markedness constraints on feature-co-occurrence (Padgett 2000. The core of an OT account is that IFIDENTLAT is ranked above whatever causes neutralization, such as SHARE-F or *CODAF. laterality will survive. If these rankings are reversed, we derive languages in which laterality is lost. The other significant factor is markedness. High-ranked feature co-occurrence constraints like *LATDORSAL can block spreading from affecting laterals at all.

  5. Auditory object salience: Human cortical processing of non-biological action sounds and their acoustic signal attributes

    Directory of Open Access Journals (Sweden)

    James W Lewis

    2012-05-01

    Full Text Available Whether viewed or heard, an object in action can be segmented from a background scene based on a number of different sensory cues. In the visual system, salient low-level attributes of an image are processed along parallel hierarchies, and involve intermediate stages, such as the lateral occipital cortices, wherein gross-level object form features are extracted prior to stages that show object specificity (e.g. for faces, buildings, or tools. In the auditory system, though relying on a rather different set of low-level signal attributes, a distinct acoustic event or auditory object can also be readily extracted from a background acoustic scene. However, it remains unclear whether cortical processing strategies used by the auditory system similarly extract gross-level aspects of acoustic object form that may be inherent to many real-world sounds. Examining mechanical and environmental action sounds, representing two distinct categories of non-biological and non-vocalization sounds, we had participants assess the degree to which each sound was perceived as a distinct object versus an acoustic scene. Using two functional magnetic resonance imaging (fMRI task paradigms, we revealed bilateral foci along the superior temporal gyri (STG showing sensitivity to the object-ness ratings of action sounds, independent of the category of sound and independent of task demands. Moreover, for both categories of sounds these regions also showed parametric sensitivity to spectral structure variations—a measure of change in entropy in the acoustic signals over time (acoustic form—while only the environmental sounds showed parametric sensitivity to mean entropy measures. Thus, similar to the visual system, the auditory system appears to include intermediate feature extraction stages that are sensitive to the acoustic form of action sounds, and may serve as a stage that begins to dissociate different categories of real-world auditory objects.

  6. Preschool children and adults flexibly shift their preferences for auditory versus visual modalities, but do not exhibit auditory dominance

    Science.gov (United States)

    Noles, Nicholaus S.; Gelman, Susan A.

    2012-01-01

    The goal of the present study is to evaluate the claim that young children display preferences for auditory stimuli over visual stimuli. This study is motivated by concerns that the visual stimuli employed in prior studies were considerably more complex and less distinctive than the competing auditory stimuli, resulting in an illusory preference for auditory cues. Across three experiments, preschool children and adults were trained to use paired audio-visual cues to predict the location of a target. At test, the cues were switched so that auditory cues indicated one location and visual cues indicated the opposite location. In contrast to prior studies, preschool age children did not exhibit auditory dominance. Instead, children and adults flexibly shifted their preferences as a function of the degree of contrast within each modality (with high contrast leading to greater use). PMID:22513210

  7. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  8. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...... no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...

  9. Reconstruction of lateral attic wall in acquired cholesteatoma

    Directory of Open Access Journals (Sweden)

    Erdoglija Milan

    2017-01-01

    Full Text Available Background/Aim. Attic cholesteatoma is an epithelial cystic pseudotumor which arises in the top compartment of the middle ear. Surgery is the only therapeutic treatment for attic cholesteatoma. The aim of this study was to analyze the surgical and audiological results in tympanoplasties that use a logical application of several techniques for the management of attic cholesteatoma. Our hypothesis was that the tympanoplasty technique with cartilage/bone reconstruction of the achieve better outcome than the tympanoplasty technique with only temporal fascia reconstruction of the lateral attic wall. Methods. This retrospective clinical study included 80 patients, aged 16–65 years, with attic cholesteatoma undergoing canal “wall up” tympanoplasty with lateral attic wall reconstruction, under general anesthesia in the Eear, Nose and Throat Clinic, Military Medical Academy in Belgrade between 2006 and 2010. The patients were divided into two groups according to the type of lateral attic wall reconstruction: the group I of 60 patients with cartilage/bone plus temporalis fascia lateral attic wall reconstruction and the group II of 20 patients with only temporal fascia lateral attic wall reconstruction. Postoperative follow-up examinations were done at least 5 years after the surgery. The χ2 test was used to compare postoperative sequelae for two groups of operated patients with lateral attic wall reconstruction. The independent and paired samples t-test of air conduction and air-bone gap were used to compare the results of preoperative and postoperative hearing tests. Results. The differences between hearing measurements of the two groups according to preoperative and postoperative auditory thresholds of the air conduction and the air-bone gap were considered no statistically significant. The difference between the two groups recarding to recurrent attic retraction pocket appearance and recurrence of cholesteatoma was considered statistically

  10. Amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Leigh P Nigel

    2009-02-01

    Full Text Available Abstract Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year and prevalence (average 5.2 per100,000 are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1. Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43 gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43

  11. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  12. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    cause auditory nerve fiber (ANF) deafferentation in predominantly low-spontaneous rate (SR) fibers. In the present study, auditory steadystate response (ASSR) level growth functions were measured to evaluate the applicability of ASSR to assess compression and the ability to code intensity fluctuations...... at high stimulus levels. Level growth functions were measured in normal-hearing adults at stimulus levels ranging from 20 to 90 dB SPL. To evaluate compression, ASSR were measured for multiple carrier frequencies simultaneously. To evaluate intensity coding at high intensities, ASSR were measured using....... The results indicate that the slope of the ASSR level growth function can be used to estimate peripheral compression simultaneously at four frequencies below 60 dB SPL, while the slope above 60 dB SPL may provide information about the integrity of intensity coding of low-SR fibers....

  13. [Pathophysiology of auditory and speech perception].

    Science.gov (United States)

    Dauman, René

    2009-05-20

    Auditory perception or hearing can be defined as the interpretation of sensory evidence, produced by the ears in response to sound, in terms of the events that caused the sound. We do not hear a window but we may hear a window closing. We do not hear a dog but we may hear a dog barking. And we do not hear a person but we may hear a person talking. Hearing impairment can result in anxiety or stress in everyday life. Pure-tone hearing loss (or threshold shift) is a measure of hearing impairment. Aging and excessive noise are the main causes of hearing impairment. Speech perception is another concept. The difference with the former is best illustrated by the disabled individual declaring "I can hear that someone is talking to me, but I don't understand what she says". Being unable to understand easily and clearly significant others, especially in understanding speech in a noisy environment, can give rise to considerable psychosocial and professional consequences (disability). Presbycusis is the decline in hearing sensitivity caused by the aging process at different levels of the auditory system. However, it is difficult to isolate age effects from other contributors to age-related hearing loss such as noise damage, genetic susceptibility, inflammatory otologic disorders, and ototoxic agents. Therefore, presbycusis and age-related hearing loss are often used synonymously. In this report pathophysiology is mostly described with regard to presbycusis, and the main peripheral types of presbycusis (sensory or Corti organ-related, strial, and neural) are summarized. An original experimental model of strial presbycusis, based on chronic application of furosemide at the round window, is further described. Central presbycusis is mainly determined by degeneration secondary to peripheral impairment (concept of deafferentation). Central auditory changes typically affect speed of processing and result in poorer speech understanding in noise or with rapid or degraded speech. Last

  14. The Study of Frequency Self Care Strategies against Auditory Hallucinations

    Directory of Open Access Journals (Sweden)

    Mahin Nadem

    2012-03-01

    Full Text Available Background: In schizophrenic clients, self-care strategies against auditory hallucinations can decrease disturbances results in hallucination. This study was aimed to assess frequency of self-care strategies against auditory hallucinations in paranoid schizophrenic patients, hospitalized in Shafa Hospital.Materials and Method: This was a descriptive study on 201 patients with paranoid schizophrenia hospitalized in psychiatry unit with convenience sampling in Rasht. The gathered data consists of two parts, first unit demographic characteristic and the second part, self- report questionnaire include 38 items about self-care strategies.Results: There were statistically significant relationship between demographic variables and knowledg effect and self-care strategies against auditory hallucinaions. Sex with phisical domain p0.07, marriage status with cognitive domain (p>0.07 and life status with behavioural domain (p>0.01. 53.2% of reported type of our auditory hallucinations were command hallucinations, furtheremore the most effective self-care strategies against auditory hallucinations were from physical domain and substance abuse (82.1% was the most effective strategies in this domain.Conclusion: The client with paranoid schizophrenia used more than physical domain strategies against auditory hallucinaions and this result highlight need those to approprait nursing intervention. Instruction and leading about selection the effective self-care strategies against auditory ha

  15. The human brain maintains contradictory and redundant auditory sensory predictions.

    Directory of Open Access Journals (Sweden)

    Marika Pieszek

    Full Text Available Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants' task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound as well as violations of the visual-auditory prediction (i.e., an incongruent sound elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]. Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.

  16. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  17. Dopaminergic medication alters auditory distractor processing in Parkinson's disease.

    Science.gov (United States)

    Georgiev, Dejan; Jahanshahi, Marjan; Dreo, Jurij; Čuš, Anja; Pirtošek, Zvezdan; Repovš, Grega

    2015-03-01

    Parkinson's disease (PD) patients show signs of cognitive impairment, such as executive dysfunction, working memory problems and attentional disturbances, even in the early stages of the disease. Though motor symptoms of the disease are often successfully addressed by dopaminergic medication, it still remains unclear, how dopaminergic therapy affects cognitive function. The main objective of this study was to assess the effect of dopaminergic medication on visual and auditory attentional processing. 14 PD patients and 13 matched healthy controls performed a three-stimulus auditory and visual oddball task while their EEG was recorded. The patients performed the task twice, once on- and once off-medication. While the results showed no significant differences between PD patients and controls, they did reveal a significant increase in P3 amplitude on- vs. off-medication specific to processing of auditory distractors and no other stimuli. These results indicate significant effect of dopaminergic therapy on processing of distracting auditory stimuli. With a lack of between group differences the effect could reflect either 1) improved recruitment of attentional resources to auditory distractors; 2) reduced ability for cognitive inhibition of auditory distractors; 3) increased response to distractor stimuli resulting in impaired cognitive performance; or 4) hindered ability to discriminate between auditory distractors and targets. Further studies are needed to differentiate between these possibilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.

    Science.gov (United States)

    Kikuchi, Yoshikazu; Okamoto, Tsuyoshi; Ogata, Katsuya; Hagiwara, Koichi; Umezaki, Toshiro; Kenjo, Masamutsu; Nakagawa, Takashi; Tobimatsu, Shozo

    2017-02-01

    In a previous magnetoencephalographic study, we showed both functional and structural reorganization of the right auditory cortex and impaired left auditory cortex function in people who stutter (PWS). In the present work, we reevaluated the same dataset to further investigate how the right and left auditory cortices interact to compensate for stuttering. We evaluated bilateral N100m latencies as well as indices of local and inter-hemispheric phase synchronization of the auditory cortices. The left N100m latency was significantly prolonged relative to the right N100m latency in PWS, while healthy control participants did not show any inter-hemispheric differences in latency. A phase-locking factor (PLF) analysis, which indicates the degree of local phase synchronization, demonstrated enhanced alpha-band synchrony in the right auditory area of PWS. A phase-locking value (PLV) analysis of inter-hemispheric synchronization demonstrated significant elevations in the beta band between the right and left auditory cortices in PWS. In addition, right PLF and PLVs were positively correlated with stuttering frequency in PWS. Taken together, our data suggest that increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization are electrophysiological correlates of a compensatory mechanism for impaired left auditory processing in PWS. Published by Elsevier B.V.

  19. Functional sex differences in human primary auditory cortex.

    Science.gov (United States)

    Ruytjens, Liesbet; Georgiadis, Janniko R; Holstege, Gert; Wit, Hero P; Albers, Frans W J; Willemsen, Antoon T M

    2007-12-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies.

  20. Effect of conductive hearing loss on central auditory function

    Directory of Open Access Journals (Sweden)

    Arash Bayat

    Full Text Available Abstract Introduction: It has been demonstrated that long-term Conductive Hearing Loss (CHL may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP. It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. Objective: This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. Methods: During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control, aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. Results: The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p = 0.004; left: p 0.05. Conclusion: The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended.