WorldWideScience

Sample records for camera count rate

  1. High count rate gamma camera with independent modules

    Science.gov (United States)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2015-11-01

    Advances in nuclear medical imaging are based on the improvements of the detector's performance. Generally the research is focussed on the spatial resolution improvement. However, another important parameter is the acquisition time that can significantly affect performance in some clinical investigation (e.g. first-pass cardiac studies). At present, there are several clinical imaging systems which are able to solve these diagnostic requirements, such as the D-SPECT Cardiac Imaging System (Spectrum Dynamics) or the Nucline Cardiodesk Medical Imaging System (Mediso). Actually, these solutions are organ-specific dedicated systems, while it would be preferable having general purpose planar detectors with high counting rate. Our group has recently introduced the use of scintillation matrices whose size is equal to the overall area of a position sensitive photomultiplier tube (PSPMT) in order to design a modular gamma camera. This study allowed optimising the overall pixel identification by improving and controlling the light collection efficiency of each PSPMT. Although we achieved a solution for the problems about the dead area at the junction of the PSPMTs when they are set side by side. In this paper, we propose a modular gamma camera design as the basis to build large area detectors. The modular detector design allows us to achieve better counting performance. In this approach, each module that is made of one or more PSPMTs, can actually acquire data independently and simultaneously, increasing the overall detection efficiency. To verify the improvement in count rate capability we have built two detectors with a field of view of ~ 5 × 5cm2, by using four R8900-C12 PSPMTs (Hamamatsu Photonics K.K.). Each PSPMT was coupled to a dedicated discrete scintillation structure designed to obtain a good homogeneity, high imaging performance and high efficiency. One of the detectors was designed as a standard gamma camera, while the other was composed by four independent

  2. A Calibration of NICMOS Camera 2 for Low Count Rates

    Science.gov (United States)

    Rubin, D.; Aldering, G.; Amanullah, R.; Barbary, K.; Dawson, K. S.; Deustua, S.; Faccioli, L.; Fadeyev, V.; Fakhouri, H. K.; Fruchter, A. S.; Gladders, M. D.; de Jong, R. S.; Koekemoer, A.; Krechmer, E.; Lidman, C.; Meyers, J.; Nordin, J.; Perlmutter, S.; Ripoche, P.; Schlegel, D. J.; Spadafora, A.; Suzuki, N.

    2015-05-01

    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z\\gt 1 SNe Ia. Unlike conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count rates. However, observations at faint count rates rely on extrapolations. Here instead, we provide a new zero-point calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with the Wide Field Camera 3 (WFC3) in the low count-rate regime using z∼ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR spectral energy distributions, uniform colors, and their extended nature gives a superior signal-to-noise ratio at the same count rate than would stars. The use of extended objects also allows greater tolerances on point-spread function profiles. We find space telescope magnitude zero points (after the installation of the NICMOS cooling system, NCS) of 25.296\\+/- 0.022 for F110W and 25.803\\+/- 0.023 for F160W, both in agreement with the calibration extrapolated from count rates ≳1000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843\\+/- 0.025 for F110W and 25.498\\+/- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zero points. To avoid human bias, our cross-calibration was “blinded” in that the fitted zero-point differences were hidden until the analysis was finalized. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, under programs

  3. A Calibration of NICMOS Camera 2 for Low Count-Rates

    CERN Document Server

    Rubin, D; Amanullah, R; Barbary, K; Dawson, K S; Deustua, S; Faccioli, L; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gladders, M D; de Jong, R S; Koekemoer, A; Krechmer, E; Lidman, C; Meyers, J; Nordin, J; Perlmutter, S; Ripoche, P; Schlegel, D J; Spadafora, A; Suzuki, N; Project, The Supernova Cosmology

    2015-01-01

    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count-rates. However observations at faint count-rates rely on extrapolations. Here instead, we provide a new zeropoint calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with WFC3 in the low count-rate regime using z ~ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR SEDs, uniform colors, and their extended nature gives superior signal-to-noise at the same count rate than would stars. The use of extended objects also allows greater tolerances on PSF profiles. We find ST magnitude zeropoints (after the installation of the NICMOS cooling system, NCS) of 25....

  4. Pedestrian Counting with Occlusion Handling Using Stereo Thermal Cameras

    Directory of Open Access Journals (Sweden)

    Miklas S. Kristoffersen

    2016-01-01

    Full Text Available The number of pedestrians walking the streets or gathered in public spaces is a valuable piece of information for shop owners, city governments, event organizers and many others. However, automatic counting that takes place day and night is challenging due to changing lighting conditions and the complexity of scenes with many people occluding one another. To address these challenges, this paper introduces the use of a stereo thermal camera setup for pedestrian counting. We investigate the reconstruction of 3D points in a pedestrian street with two thermal cameras and propose an algorithm for pedestrian counting based on clustering and tracking of the 3D point clouds. The method is tested on two five-minute video sequences captured at a public event with a moderate density of pedestrians and heavy occlusions. The counting performance is compared to the manually annotated ground truth and shows success rates of 95.4% and 99.1% for the two sequences.

  5. Counting rate logarithmic circuits

    International Nuclear Information System (INIS)

    This paper describes the basic circuit and the design method for a multidecade logarithmic counting ratemeter. The method is based on the charging and discharging of several RC time constants. An F.E.T. switch is used and the drain current is converted into a proportional voltage by a current to voltage converter. The logarithmic linearity was estimated for 4 decades starting from 50 cps. This circuit can be used in several nuclear instruments like survey meters and counting systems. This circuits has been developed as part of campbell channel instrumentation. (author)

  6. Pedestrian Counting with Occlusion Handling Using Stereo Thermal Cameras

    DEFF Research Database (Denmark)

    Kristoffersen, Miklas Strøm; Dueholm, Jacob Velling; Gade, Rikke;

    2016-01-01

    complexity of scenes with many people occluding one another. To address these challenges, this paper introduces the use of a stereo thermal camera setup for pedestrian counting. We investigate the reconstruction of 3D points in a pedestrian street with two thermal cameras and propose an algorithm for...

  7. Compton suppression gamma-counting: The effect of count rate

    Science.gov (United States)

    Millard, H.T., Jr.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  8. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  9. Wide-field single photon counting imaging with an ultrafast camera and an image intensifier

    International Nuclear Information System (INIS)

    We are reporting a method for wide-field photon counting imaging using a CMOS camera with a 40 kHz frame rate coupled with a three-stage image intensifier mounted on a standard fluorescence microscope. This system combines high frame rates with single photon sensitivity. The output of the phosphor screen, consisting of single-photon events, is collected by a CMOS camera allowing to create a wide-field image with parallel positional and timing information of each photon. Using a pulsed excitation source and a luminescent sample, the arrival time of hundreds of photons can be determined simultaneously in many pixels with microsecond resolution.

  10. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    Science.gov (United States)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  11. Very high count rate gamma spectroscopy

    International Nuclear Information System (INIS)

    Recent improvements in the electronics that amplify and analyze gamma photon-induced pulses have made it possible for HPGe coaxial detectors to accept input rates of one-million, one-MeV gamma photons-per-second and still provide the spectroscopist with spectra that can be analyzed. Data are presented that illustrate peak area variances and changes in counting uncertainty statistics due to the greatly extended count rate range. Software algorithms are presented that allow gain shift and peak resolution to be adjusted automatically on a sample-by-sample basis. Relationships are developed between integrated count rate and the variances of full energy photon peak area and counting uncertainty when using the real time correction mode of pulse processing. Finally, the results of integrating hardware and software into a system are used to illustrate that quantitative gamma spectroscopy over counting rates of one- to one-million counts-per-second are achievable

  12. A photon counting CdTe gamma- and X-ray camera

    International Nuclear Information System (INIS)

    A photon counting CdTe imaging camera suitable for gamma- and X-ray detection has been developed and tested. The current full active imaging area of the gamma/X-ray camera covers 44x44 mm2. The camera is built of eight individual detector hybrids each consisting of a pixelated CdTe detector with dimensions of 22x11 mm2 and solder bump-bonded to a photon counting custom-designed application specific integrated circuit (ASIC). The ASICs are realized in a mixed signal, 0.35 μm 4 metal 2 poly CMOS process. The effective pixel size (image pixel pitch) is 0.5 mm. To enable higher count rate imaging and to achieve better position resolution in X-ray CT scanning each pixel is divided both on the CdTe detector and on the ASIC into two sub-pixels with dimensions 0.25x0.5 mm2. Every pixel circuit has two preamps each connected to one sub-pixel and feeding signal to a separate comparator. The digital pulses of the two distinct comparators are recorded by one common 8-bit counter. The amplifier offsets can be adjusted individually with 3-bit accuracy to compensate for process mismatch. A similar 3-bit gain tuning common to the two amplifiers in one pixel circuit is also implemented. A globally tuneable threshold voltage generated externally with high accuracy is used for energy discrimination. The camera can be operated both in the real time imaging mode with a maximum speed of 100 frames/s and in the accumulation mode with user adjustable counting time. Experimental data collected from a fully operational eight hybrid gamma/X-ray camera is presented and compared to simulated data. The camera exhibits excellent sensitivity and a dynamic range of 1:14,000,000. A sharp line spread function indicates the spatial resolution to be limited only by the pixel size (0.5 mm). A single pixel energy resolution of FWHM 4.7 keV at 122 keV (3.9%) was determined from measured 57Co spectra. The peak width of the spectrum combined from all pixels was somewhat larger due to calibration

  13. Dark count rates in the STIS MAMA

    Science.gov (United States)

    Cox, Colin

    2013-06-01

    The dark count rates in the STIS MAMA detectors have been monitored. This report covers the period since the Servicing Mission 4 of May 2009. We find both long-term and short-term variations which for the NUV side we express as a function of date and temperature. The NUV dark rate has declined significantly from its surprisingly high initial rate of 0.014 counts/pixel/s that was seen immediately after SM4. By October, 2012 it had dropped to an average value of about 0.002 counts/pixel/sec The behavior and characteristics of the FUV dark rate remain very similar to that seen in 2004, prior to the STIS side-2 failure and subsequent repair.

  14. Delta count-rate monitoring system

    International Nuclear Information System (INIS)

    A need for a more effective way to rapidly search for gamma-ray contamination over large areas led to the design and construction of a very sensitive gamma detection system. The delta count-rate monitoring system was installed in a four-wheel-drive van instrumented for environmental surveillance and accident response. The system consists of four main sections: (1) two scintillation detectors, (2) high-voltage power supply amplifier and single-channel analyzer, (3) delta count-rate monitor, and (4) count-rate meter and recorder. The van's 6.5-kW generator powers the standard nuclear instrument modular design system. The two detectors are mounted in the rear corners of the van and can be run singly or jointly. A solid-state bar-graph count-rate meter mounted on the dashboard can be read easily by both the driver and passenger. A solid-state strip chart recorder shows trends and provides a permanent record of the data. An audible alarm is sounded at the delta monitor and at the dashboard count-rate meter if a detected radiation level exceeds the set background level by a predetermined amount

  15. Towards a miniaturized photon counting laser altimeter and stereoscopic camera instrument suite for microsatellites

    OpenAIRE

    Moon, S.G.; Hannemann, S.; Collon, M.; Wielinga, K.; Kroesbergen, E.; Harris, J.; Gill, E.K.A.; Maessen, D.C.

    2009-01-01

    In the following we review the optimization for microsatellite deployment of a highly integrated payload suite comprising a high resolution camera, an additional camera for stereoscopic imaging, and a single photon counting laser altimeter. This payload suite, the `Stereo Imaging Laser Altimeter' SILAT has been designated for deployment aboard the FAST microsatellite formation mission for Earth observation. This instrument suite has been designed for a Jupiter mission, but has been redesigned...

  16. Exact and approximate Bayesian estimation of net counting rates

    International Nuclear Information System (INIS)

    The stochastic fluctuations in the number of disintegrations, which had already been studied experimentally by Rutherford and other investigators at the beginning of the twentieth century, make estimation of net counting rates in the presence of background counts a challenging statistical problem. Exact and approximate Bayesian estimates of net count rates using Poisson and normal distributions for the number of counts detected during varying counting intervals are derived. The posterior densities for the net count rate are derived and plotted for uniform priors. The graphs for the exact, Poisson based, and for the approximate posterior densities of the background and net count rates, resulting from the normal approximation to the Poisson distribution, were compared. No practical differences were found when the number of observed gross counts is large. Small numerical differences in the posterior expectations and standard deviation of the counting rates appeared when the number of observed counts was small. A table showing some of these numerical differences for different background and gross counts is included. A normal approximation to the Poisson is satisfactory for the analysis of counting data when the number of observed counts is large. Some caution has to be exercised when the number of observed counts is small. (author)

  17. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    International Nuclear Information System (INIS)

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10-2 seems possible in the near future. (author)

  18. Absolute calibration of an EMCCD camera by quantum correlation linking photon counting to analog regime

    OpenAIRE

    Avella, Alessio; Berchera, Ivano Ruo; Degiovanni, Ivo Pietro; Brida, Giorgio; Genovese, Marco

    2016-01-01

    We show how the same set-up and procedure, exploiting spatially multi-mode quantum correlations, allows the absolute calibration of a EMCCD camera from the analog regime down to the single photon counting level, just by adjusting the brightness of the quantum source. At single photon level EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regime demonstrating t...

  19. Quantitative gamma spectroscopy at very high counting rates

    International Nuclear Information System (INIS)

    Loss-free net peak areas at variable input rates of more than 690,000 c/s have been obtained by means of a high-rate gamma spectroscopy system with real-time compensation of counting losses, thus providing evidence for the feasibility of quantitative gamma spectroscopy at counting rates not attained until now. (orig.)

  20. Calibration and Characterization of Single Photon Counting Cameras for Short-Pulse Laser Experiments

    International Nuclear Information System (INIS)

    The photon counting efficiency of various CCD based cameras was studied as a function of x-ray energy and exposure. A pair of Spectral Instruments Model 800 CCD cameras fitted with 16 (micro)m thick back-illuminated CCDs were calibrated at low x-ray energy using two well established histogram methods, a standard pixel for pixel histogram and the single pixel event histogram method. In addition, two new thick substrate CCDs were evaluated for use at high energy. One was a commercially available Princeton Instruments LCX1300 deep depletion CCD camera while the other was a custom designed 650 (micro)m thick partially depleted CCD fitted to a SI 800 camera body. It is shown that at high x-ray energy, only a pixel-summing algorithm was able to derive spectral data due to the spreading of x-ray events over many pixels in the thicker substrate CCDs. This paper will describe the different algorithms used to extract spectra and the absolute detection efficiencies using these algorithms. These detectors will be very useful to detect high-energy x-ray photons from high-intensity short pulse laser interactions

  1. Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime

    Science.gov (United States)

    Avella, A.; Ruo-Berchera, I.; Degiovanni, I. P.; Brida, G.; Genovese, M.

    2016-04-01

    We show how the same set-up and procedure, exploiting spatially multi-mode quantum correlations, allows the absolute calibration of a EMCCD camera from the analog regime down to the single photon counting level, just by adjusting the brightness of the quantum source. At single photon level EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regime demonstrating that the efficiency estimated in the analog (bright) regime allows to accurately predict the detector behaviour in the photo-counting regime and vice-versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors and measurement techniques.

  2. Beam test results of high counting rate MRPCs at GSI

    International Nuclear Information System (INIS)

    The usage of electrodes made of semi-conductive glass is an inspiring way of improving the counting rate capability of resistive plate chamber. We developed 6 and 10-gap multi-gap resistive plate chambers (MRPCs) with low resistive silicate glass electrodes (bulk resistivity ∼1010 Ωcm) for applications in time-of-flight (TOF) at high counting rates. These two prototypes were tested with secondary irradiation from 2.5 GeV proton beam at GSI. Time resolutions below 90 ps and efficiencies above 90% were obtained at counting rates up to 28 kHz/cm2 for the 10-gap MRPC.

  3. Dark count rates in the STIS FUV MAMA

    Science.gov (United States)

    Cox, Colin

    2015-09-01

    Dark count rates in the STIS FUV MAMA are regularly monitored. The observation sequence was altered from an earlier method to measure the rate as a function of time and temperature shortly after the instrument is turned on. The dark rate exhibits an approximately quadratic de-pendence on temperature. A recommendation for estimating the observation-specific dark rate is given.

  4. Correction of count losses due to deadtime on a DST-XLi (SMVi-GE) camera during dosimetric studies in patients injected with iodine-131

    International Nuclear Information System (INIS)

    In dosimetric studies performed after therapeutic injection, it is essential to correct count losses due to deadtime on the gamma camera. This note describes four deadtime correction methods, one based on the use of a standard source without preliminary calibration, and three requiring specific calibration and based on the count rate observed in different spectrometric windows (20%, 20% plus a lower energy window and the full spectrum of 50-750 keV). Experiments were conducted on a phantom at increasingly higher count rates to check correction accuracy with the different methods. The error was less than +7% with a standard source, whereas count-rate-based methods gave more accurate results. On the assumption that the model was paralysable, preliminary calibration allowed an observed count rate curve to be plotted as a function of the real count rate. The use of the full spectrum led to a 3.0% underestimation for the highest activity imaged. As count losses depend on photon flux independent of energy, the use of the full spectrum during measurement allowed scatter conditions to be taken into account. A protocol was developed to apply this correction method to whole-body acquisitions. (author)

  5. Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime.

    Science.gov (United States)

    Avella, A; Ruo-Berchera, I; Degiovanni, I P; Brida, G; Genovese, M

    2016-04-15

    We show how the same setup and procedure, exploiting spatially multimode quantum correlations, allows the absolute calibration of an electron-multiplying charge-coupled (EMCCD) camera from the analog regime down to the single-photon-counting level, just by adjusting the brightness of the quantum source. At the single-photon level, an EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regimes demonstrating that the efficiency estimated in the analog (bright) regime allows us to accurately predict the detector behavior in the photocounting regime and vice versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors, and measurement techniques. PMID:27082359

  6. Reducing the Teen Death Rate. KIDS COUNT Indicator Brief

    Science.gov (United States)

    Shore, Rima; Shore, Barbara

    2009-01-01

    Life continues to hold considerable risk for adolescents in the United States. In 2006, the teen death rate stood at 64 deaths per 100,000 teens (13,739 teens) (KIDS COUNT Data Center, 2009). Although it has declined by 4 percent since 2000, the rate of teen death in this country remains substantially higher than in many peer nations, based…

  7. A Pulse Rate Estimation Algorithm Using PPG and Smartphone Camera.

    Science.gov (United States)

    Siddiqui, Sarah Ali; Zhang, Yuan; Feng, Zhiquan; Kos, Anton

    2016-05-01

    The ubiquitous use and advancement in built-in smartphone sensors and the development in big data processing have been beneficial in several fields including healthcare. Among the basic vitals monitoring, pulse rate monitoring is the most important healthcare necessity. A multimedia video stream data acquired by built-in smartphone camera can be used to estimate it. In this paper, an algorithm that uses only smartphone camera as a sensor to estimate pulse rate using PhotoPlethysmograph (PPG) signals is proposed. The results obtained by the proposed algorithm are compared with the actual pulse rate and the maximum error found is 3 beats per minute. The standard deviation in percentage error and percentage accuracy is found to be 0.68 % whereas the average percentage error and percentage accuracy is found to be 1.98 % and 98.02 % respectively. PMID:27067432

  8. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu; Vallerga, J.V.; McPhate, J.B.; Siegmund, O.H.W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 10{sup 4} simultaneous events can be detected with a spatial resolution of ~55 µm, while >10{sup 3} simultaneous events can be detected with <10 µm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×10{sup 8} particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10–20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  9. Technological innovations in high count-rate instrumentation

    International Nuclear Information System (INIS)

    Measurements at counting rates above 50,000 counts per second require specialized pulse processing electronics. New preamplifier technology incorporating an injection junction field effect transistor with integral reset gate provides superior throughput with better low energy resolution. Data acquisition at short peaking times permits maximum throughput with minimum pile-up. Over the past ten years, amplifier throughput of unpiled-up pulses improved. Now it is possible to correct the pulse amplitudes as they are processed, improving performance over older methods. Trapping and ballistic deficit are both greater in high rate measurements, where the shorter amplifier peaking times employed result in larger amplitude variations of the amplifier output pulse. Charge trapping may occur in any sized detector. The Goulding-Landis method corrects best for charge carrier trapping while the Hinshaw method works best for ballistic deficit effects. (author) 6 refs.; 10 figs.; 1 tab

  10. Can we properly model the neutron monitor count rate?

    Science.gov (United States)

    Gil, Agnieszka; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Mishev, Alexander L.; Corti, Claudio; Bindi, Veronica

    2015-09-01

    Neutron monitors provide continuous measurements of secondary nucleonic particles produced in the atmosphere by the primary cosmic rays and form the main tool to study the heliospheric modulation of cosmic rays. In order to study cosmic rays using the world network of neutron monitor and needs to be able to model the neutron monitor count rate. Earlier it was difficult because of the poorly known yield function, which has been essentially revisited recently. We have presented a verification of the new yield function of the standard neutron monitor (NM) using a recently released data on the direct in situ measurements of the galactic cosmic rays energy spectrum during 2006-2009 (the period of the record high cosmic ray flux) by Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics spaceborne spectrometer, and on NM latitude surveys performed during the period of 1994-2007, including periods of high solar activity. We found a very good agreement between the measured count rates of sea level NMs and the modeled ones in very different conditions: from low to high solar activity and from polar to tropical regions. This implies that the count rate of a sea level neutron monitor can be properly modeled in all conditions, using the new yield function.

  11. Flow rate calibration for absolute cell counting rationale and design.

    Science.gov (United States)

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  12. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    International Nuclear Information System (INIS)

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089–102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable

  13. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    Science.gov (United States)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  14. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a 'hybrid' detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping ('bowtie') filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors. PMID

  15. A high counting rate scintillation gamma spectrometer for Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    A scintillation gamma spectrometer stabilized by a feedback equipped with a reference light pulses source, a pulse generator (10 to 100 Hz) and a pile-up rejecter is proposed. The pile-up of light pulses on scintillation ones are eliminated by delaying the reference pulse start till the end of the scintillation pulse. If a scintillation pulse appears before the end of the reference pulse, the measured reference pulse amplitude value is ignored. The reference pulse amplitudes are measured by differential discriminator. If the reference light pulse amplitude is lower or higher than the discriminator window, the content of the up-down counter increases or decreases, respectively. A digital-to-analog converters produces an analogous signal, which controls the photomultiplier high voltage supply. The spectrometer operates at counting rates below 450 000 pulses/sec. (author)

  16. A count rate based contamination control standard for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  17. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  18. Visible light communication using mobile-phone camera with data rate higher than frame rate.

    Science.gov (United States)

    Chow, Chi-Wai; Chen, Chung-Yen; Chen, Shih-Hao

    2015-10-01

    Complementary Metal-Oxide-Semiconductor (CMOS) image sensors are widely used in mobile-phone and cameras. Hence, it is attractive if these image sensors can be used as the visible light communication (VLC) receivers (Rxs). However, using these CMOS image sensors are challenging. In this work, we propose and demonstrate a VLC link using mobile-phone camera with data rate higher than frame rate of the CMOS image sensor. We first discuss and analyze the features of using CMOS image sensor as VLC Rx, including the rolling shutter effect, overlapping of exposure time of each row of pixels, frame-to-frame processing time gap, and also the image sensor "blooming" effect. Then, we describe the procedure of synchronization and demodulation. This includes file format conversion, grayscale conversion, column matrix selection avoiding blooming, polynomial fitting for threshold location. Finally, the evaluation of bit-error-rate (BER) is performed satisfying the forward error correction (FEC) limit. PMID:26480122

  19. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera

    Science.gov (United States)

    Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.

    2007-05-01

    A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.

  20. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  1. A fast position sensitive microstrip-gas-chamber detector at high count rate operation

    Science.gov (United States)

    Dolbnya, I. P.; Alberda, H.; Hartjes, F. G.; Udo, F.; Bakker, R. E.; Konijnenburg, M.; Homan, E.; Cerjak, I.; Goedtkindt, P.; Bras, W.

    2002-11-01

    Testing of a newly developed position sensitive high count rate microstrip gas chamber (MSGC) detector at high count rate operation has been carried out at the Dutch-Belgian x-ray scattering beamline at the European Synchrotron Radiation Facility (Grenoble, France) with a high intensity x-ray beam. The measurements show local count rate capabilities up to approx4.5 x105 counts/s/channel. Experimental data taken with this detector are also shown. These tests show that both time resolution down to 1.5 ms/frame and a reliable operation at high counting rates can be achieved.

  2. High Rate Measurements of the Neutron Camera and Broadband Neutron Spectrometer at JET

    Science.gov (United States)

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Joffrin, E.; Kiptily, V.; Lerche, E.; Murari, A.; Plyusnin, V. V.; Popovichev, S.; Reux, C.; Riva, M.; Syme, D. B.

    The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). At JET, the neutron emission profile of Deuterium (D) or Deuterium-Tritium (DT) plasmas is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system (DAQ) based on Field Programmable Gated Array (FPGA). According to specifications, the DAQ is capable of high rate measurements up to 0.5 MCps. A new compact broadband spectrometer (KM12) based on BC501A organic liquid scintillating material was also installed in the same year and implements a similar DAQ as for KN3. This article illustrates the observations on the DAQ high count rate performance of both KN3 and KM12 in the latest JET D plasma experiments related to hybrid scenario and runaway electrons. For the latter, >1 MCps event rate was achieved with consequences on the behavior of the FPGA and on the reliability of the measurements.

  3. High Count Rate Neutron Detector Installation at JET

    OpenAIRE

    Binda, Federico

    2011-01-01

    The measurement of fusion power is of paramount importance for the control of a fusion reactor's operation. The neutron yield from the reactor is strictly related to the energy production. One of the methods employed at JET to measure the yield involves the use of the MPRu spectrometer together with the neutron camera. However the MPRu has an intrinsically low efficiency (about 10-6), which results in a poor time resolution. An improvement involving the installation of a NE213 detectorfor hig...

  4. Reducing the Child Poverty Rate. KIDS COUNT Indicator Brief

    Science.gov (United States)

    Shore, Rima; Shore, Barbara

    2009-01-01

    In 2007, nearly one in five or 18 percent of children in the U.S. lived in poverty (KIDS COUNT Data Center, 2009). Many of these children come from minority backgrounds. African American (35 percent), American Indian (33 percent) and Latino (27 percent) children are more likely to live in poverty than their white (11 percent) and Asian (12…

  5. Platelet Counts, MPV and PDW in Culture Proven and Probable Neonatal Sepsis and Association of Platelet Counts with Mortality Rate

    International Nuclear Information System (INIS)

    Objective: To determine frequency of thrombocytopenia and thrombocytosis, the MPV (mean platelet volume) and PDW (platelet distribution width) in patients with probable and culture proven neonatal sepsis and determine any association between platelet counts and mortality rate. Study Design: Descriptive analytical study. Place and Duration of Study: NICU, Fazle Omar Hospital, from January 2011 to December 2012. Methodology: Cases of culture proven and probable neonatal sepsis, admitted in Fazle Omar Hospital, Rabwah, were included in the study. Platelet counts, MPV and PDW of the cases were recorded. Mortality was documented. Frequencies of thrombocytopenia ( 450000/mm3) were ascertained. Mortality rates in different groups according to platelet counts were calculated and compared by chi-square test to check association. Results: Four hundred and sixty nine patients were included; 68 (14.5%) of them died. One hundred and thirty six (29%) had culture proven sepsis, and 333 (71%) were categorized as probable sepsis. Thrombocytopenia was present in 116 (24.7%), and thrombocytosis was present in 36 (7.7%) cases. Median platelet count was 213.0/mm3. Twenty eight (27.7%) patients with thrombocytopenia, and 40 (12.1%) cases with normal or raised platelet counts died (p < 0.001). Median MPV was 9.30, and median PDW was 12.30. MPV and PDW of the patients who died and who were discharged were not significantly different from each other. Conclusion: Thrombocytopenia is a common complication of neonatal sepsis. Those with thrombocytopenia have higher mortality rate. No significant difference was present between PDW and MPV of the cases who survived and died. (author)

  6. General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation

    International Nuclear Information System (INIS)

    The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate

  7. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    Science.gov (United States)

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported. PMID:19472638

  8. Lymphoscintigraphy of melanoma. Lymphatic channel activity guides localization of sentinel lymph nodes, and gamma camera imaging/counting confirms presence of radiotracer in excised nodes

    International Nuclear Information System (INIS)

    Lymphoscintigraphy has become a standard preoperative procedure to map the cutaneous lymphatic channel for progression of nodal metastasis of melanoma of the skin. Lymphoscintigraphy was employed to visualize lymphatic channels as a guide to identify sentinel lymph nodes (SLNs). Excised tissue was imaged with a gamma camera to verify the findings of presurgical lymphoscintigraphy. Percent counts of SLN(s) among the total counts of the excised melanoma tumor or scar tissue and SLN(s) were calculated. Eleven patients with cutaneous melanoma received four to ten intradermal injections of Tc-99m sulfur colloid at elual distances around the melanoma site. Images were made immediately after injection: 1 minute per image for 15 min; and then 5 minutes or 1,000,000 counts per image for 30 min. After surgery, the excised melanoma tumor or scar and SLN(s) were imaged/counted with a gamma camera. Percent counts of SLNs among the total counts of the excised melanoma tumor or scar tissue and SLNs were calculated. To validate the specimen count accuracy, an experimental phantom study was done. Linear lymphatic channels were identified between the injected sites and the SLNs in each patient. Gamma camera images demonstrated radioactivity in the SLNs of all patients, verifying the lymphoscintigraphy findings. Uptake in the SLNs of ten of the eleven patients ranged from 0.4 to 7.2% (mean 2.2%) of the total counts in excised tissue. We noted that a node with lower uptake should not be ignored because a lower percent of SLN activity does not necessarily rule out existing metastasis. In two of eleven patients, histopathologic showed metastases. One patient's melanoma on the middle back had lymphatic channel activity directed to both axillae. The results of the phantom study validated accuracy of our specimen counts. Because liner lymphatic channels existed between lymph nodes and the injected sites in all eleven patients, these lymphatic channels could be used as a guide for

  9. Bone and gallium scans in mastocytosis: correlation with count rates, radiography, and microscopy

    International Nuclear Information System (INIS)

    Mastocytosis (urticaria pigmentosa) was proven in a patient suffering from severe back pain. A bone scan showed diffusely increased bone activity. Count rates were also abnormally elevated over several areas of the skeleton. Radiographs were consistent with mastocytosis in bone

  10. Bone and gallium scans in mastocytosis: correlation with count rates, radiography, and microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ensslen, R.D. (Cross Cancer Inst., Edmonton, Alberta); Jackson, F.I.; Reid, A.M.

    1983-07-01

    Mastocytosis (urticaria pigmentosa) was proven in a patient suffering from severe back pain. A bone scan showed diffusely increased bone activity. Count rates were also abnormally elevated over several areas of the skeleton. Radiographs were consistent with mastocytosis in bone.

  11. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints.

    Science.gov (United States)

    Alpert, B K; Horansky, R D; Bennett, D A; Doriese, W B; Fowler, J W; Hoover, A S; Rabin, M W; Ullom, J N

    2013-05-01

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operation at 50% higher count rates than conventional filters while largely preserving sensor energy resolution. PMID:23742605

  12. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

    Energy Technology Data Exchange (ETDEWEB)

    Alpert, B. K.; Horansky, R. D.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Ullom, J. N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Hoover, A. S.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-05-15

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operation at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.

  13. Evaluation of safe use of 188Re-HEDP comparing urine data and whole body counting in gamma camera

    International Nuclear Information System (INIS)

    Cancer is the second more frequent cause of death, after cardiovascular disease, in developing countries. Most of adult patients with neoplasms will develop skeletal metastases that can lead to progressive pain. 188Re emits both beta particles suitable for therapy and a gamma ray (155 keV), adequate for diagnostic imaging in order to verify localization in the pain areas associated to metastatic process. The aim of this work was to correlate 188Re-HEDP dose estimations using biological samples and direct measures. All the patients had breast or prostate cancer, with bone metastases. Each patient received a tracer dose of 185 MBq of radiopharmaceutical. Urine samples were collected at 0-1, 1-2, 2-4 and, 4-6 hours post administration, and measured in dose calibrator. Whole body counts were acquired using a camera without collimator, window centered at 155 KeV, matrix 256 x 256, during 60 seconds. Data were obtained at 1 and 6 hours post administration with the patient in sitting position at 2 meter from the detector. Percentage of injected dose was calculated both for urine samples and image for each patient. The number of disintegrations was determined for organs in which higher concentration of activity was observed: those involved in the excretion, red marrow and the reminder of the body. Total doses were estimated using OLINDA/EXM software. Conclusions: Data showed that the organs chosen as more compromised during the tracer dose procedure received very low effective doses. A good correlation between calculations performed both for image and urine samples was obtained. Safety of the radiopharmaceutical was also verified using this method. (author)

  14. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    International Nuclear Information System (INIS)

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q0)/(q/q0), where (q/q0) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory

  15. Count rate determination for quality control of combined lung ventilation and perfusion scintigraphy. Case report

    International Nuclear Information System (INIS)

    We present the case of a 43-year-old male patient who suffered from a massive pulmonary embolism, induced by a peritoneovenous shunt of the Denver type. Calculation of the count rates of the ventilation and perfusion scintigraphy respectively showed a too low ventilation/perfusion ratio. After reinjection of additional 99mTc-MAA the second perfusion study showed further mismatch areals. Count rate ratio determination is essential as a clinical quality control. (orig.)

  16. Method and system of simulating nuclear power plant count rate for training purposes

    International Nuclear Information System (INIS)

    A method and system are described for the real-time simulation of the dynamic operation of a nuclear power plant in which nuclear flux rate counters are provided for monitoring the rate of nuclear fission of the reactor. The system utilizes apparatus that includes digital computer means for calculating data relating to the rate of nuclear fission of a simulated reactor model, which rate is controlled in accordance with the operation of control panel devices. A digital number from the computer corresponding to the flux rate controls an oscillator driven counter means to produce a pulse after a predetermined count. This pulse controls an oscillator driven polynomial counter to count a random number that controls a third counter in accordance with pulse from the first counter to produce a random fission count for operating the meters. (U.S.)

  17. A High Dose-Rate Gamma Irradiation Test of Passive Elements of Radiation- Tolerant Camera System

    International Nuclear Information System (INIS)

    In this paper, a high dose-rate gamma-ray irradiation test of passive elements, which are components of radiation-tolerant camera system, is described. In the overhaul period of the nuclear power plant, integrity of the neutron-irradiated fuel assembly is evaluated. Among the evaluation methods for the integrity of the neutron-irradiated fuel assembly during the normal operation cycle of the nuclear power plant, VT(visual test) of the four face of nuclear fuel assembly is a major concern. As the neutron-irradiated fuel assembly is a high dose-rate gamma-ray source, approximately a few kGy, radiation-hardened camera composed of vidicon tube-type image sensors is used in the VT. The VT of the four face of nuclear fuel assembly, which is a high dose-rate gamma source, is performed in the canal. The width of canal, d.., is about 1,500mm. As the distance, d2, between the fuel assembly (d3 , 224mm) and the camera system, assumed that the width of camera system is about 200mm, is short below one tenth shielding thickness of gamma-ray of water, about 660mm, a COTS CCD device can not be used directly. As the image resolution of the COTS CCD device is higher than vidicon-tube type image sensor, the VT of the four face of the nuclear fuel assembly is clearly performed, if assumed that the radiation-weakened CCD device is properly shielded from the high dose rate gamma-ray source. In this paper, it is assumed that a radiation-tolerant camera system, which are composed of COTS CCD camera, zoom lens, anti-reflection mirror, and visible window, is used in the VT of the nuclear fuel assembly. And the COTS CCD camera and zoom lens module are shielded from a high dose-rate gamma-ray source using the high-density material, lead or tungsten. The passive elements, mirror and visible window, which are placed in the optical path of CCD camera, are exposed to a high dose-rate gamma-ray source directly. So, the gamma ray irradiation characteristics of passive elements, is needed to test

  18. Accurate disintegration-rate measurement of 55Fe by liquid scintillation counting

    International Nuclear Information System (INIS)

    A method involving liquid scintillation counting is described for the accurate measurement of disintegration rate of 55Fe. The method is based on the use of calculated efficiency functions together with either of the nuclides 54Mn and 51Cr as internal standards for measurement of counting efficiencies by coincidence counting. The method was used by the NAC during a recent international intercomparison of radioactivity measurements, and a summary of the results obtained by nine participating laboratories is presented. A spread in results of several percent is evident

  19. Improved count rate corrections for highest data quality with PILATUS detectors

    OpenAIRE

    Trueb, P; Sobott, B. A.; Schnyder, R.; Loeliger, T.; Schneebeli, M.; Kobas, M.; Rassool, R.P.; Peake, D. J.; Broennimann, C.

    2012-01-01

    The PILATUS detector system is widely used for X-ray experiments at third-generation synchrotrons. It is based on a hybrid technology combining a pixelated silicon sensor with a CMOS readout chip. Its single-photon-counting capability ensures precise and noise-free measurements. The counting mechanism introduces a short dead-time after each hit, which becomes significant for rates above 106 photons s−1 pixel−1. The resulting loss in the number of counted photons is corrected for by applying c...

  20. Palm Beach Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    Science.gov (United States)

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of Palm Beach's Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…

  1. Imaging performance comparison between a LaBr3:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera

    International Nuclear Information System (INIS)

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3:Ce scintillator continuous crystal (49x49x5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14x14x1 mm3) with 256x256 square pixels and a pitch of 55 μm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 μm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  2. Real time heart rate variability assessment from android smartphone camera photoplethysmography: postural and device influences

    OpenAIRE

    Guede Fernández, Federico; Ferrer Mileo, Víctor; Ramos Castro, Juan José; Fernández Chimeno, Mireya; García González, Miguel Ángel

    2015-01-01

    The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time se...

  3. Gain stabilization of scintillation and Cerenkov spectrometers at high counting rates

    International Nuclear Information System (INIS)

    A photomultiplier gain stabilization system, capable of operation at rates well over 5x104 pulses/s, is described. Pile-up and dead-time effects, which hamper conventional systems at such rates, are minimized through the use of a fast-gated charge sensitive integrator directly coupled to the photomultiplier anode. Deviations in the time-averaged response to a reference light pulser are fed back to control the high-voltage supply. Rapid fluctuations due to variations in average dynode current are reduced through the use of active voltage divider chains. Stability, tested with a large NaI(Tl) crystal viewed by five photomultiplier tubes, is better than 0.7% over 24 h, and for counting rates changing from a few hundred counts/s to over 2x105 counts/s. (Auth.)

  4. Focus on sulfur count rates along marine sediment cores acquired by XRF Core Scanner

    OpenAIRE

    Chéron, Sandrine; Etoubleau, Joel; Bayon, Germain; Garziglia, Sebastien; Boissier, Audrey

    2016-01-01

    The aim of this study is to investigate the information provided by sulfur count rates obtained by X-ray fluorescence core scanner (XRF-CS) along sedimentary records. The analysis of two marine sediment cores from the Niger Delta margin shows that XRF-CS sulfur count rates obtained at the surface of split core sections with XRF-CS correlate with both direct quantitative pyrite concentrations, as inferred from X-ray powder diffraction (XRD) and sulfur determination by wavelength dispersive X-r...

  5. Statistical treatment of photon/electron counting; extending the linear dynamic range from the dark count rate to saturation

    OpenAIRE

    Kissick, David J.; Muir, Ryan D.; Simpson, Garth J.

    2010-01-01

    An experimentally simple photon counting method is demonstrated providing seven orders of magnitude in linear dynamic range (LDR) for a single photomultiplier tube (PMT) detector. In conventional photon/electron counting methods, the linear range is dictated by the agreement between the binomially distributed measurement of counted events and the underlying Poisson distribution of photons/electrons. By explicitly considering the lognormal probability distribution in voltage transients as a fu...

  6. High count rate γ-ray spectroscopy with LaBr3:Ce scintillation detectors

    International Nuclear Information System (INIS)

    The applicability of LaBr3:Ce detectors for high count rate γ-ray spectroscopy is investigated. A 3 in.×3 in. LaBr3:Ce detector is used in a test setup with radioactive sources to study the dependence of energy resolution and photo peak efficiency on the overall count rate in the detector. Digitized traces were recorded using a 500 MHz FADC and analysed with digital signal processing methods. Good performance is obtained using standard techniques up to about 500 kHz counting rate. A pile-up correction method is applied to the data in order to further improve the capabilities at even higher rates with a focus on recovering the losses in efficiency due to signal pile-up. It is shown that γ-ray spectroscopy can be performed with only moderate lossen in efficiency and high resolution at count rates even above 1 MHz and that the performance can be enhanced in the region between 500 kHz and 10 MHz by using the applied pile-up correction techniques.

  7. Readout of superconducting nanowire single-photon detectors at high count rates

    CERN Document Server

    Kerman, Andrew J; Molnar, Richard J; Dauler, Eric A

    2013-01-01

    Superconducting nanowire single-photon detectors are set apart from other photon counting technologies above all else by their extremely high speed, with few-ten-ps timing resolution, and recovery times $\\tau_R\\lesssim$10 ns after a detection event. In this work, however, we identify in the conventional electrical readout scheme a nonlinear interaction between the detector and its readout which can make stable, high-efficiency operation impossible at count rates even an order-of-magnitude less than $\\tau_R^{-1}$. We present detailed experimental confirmation of this, and a theoretical model which quantitatively explains our observations. Finally, we describe an improved readout which circumvents this problem, allowing these detectors to be operated stably at high count rates, with a detection efficiency penalty determined purely by their inductive reset time.

  8. Real time heart rate variability assessment from Android smartphone camera photoplethysmography: Postural and device influences.

    Science.gov (United States)

    Guede-Fernandez, F; Ferrer-Mileo, V; Ramos-Castro, J; Fernandez-Chimeno, M; Garcia-Gonzalez, M A

    2015-08-01

    The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing. PMID:26737985

  9. High energy resolution x-ray spectrometer for high count rate XRF applications

    International Nuclear Information System (INIS)

    A new x-ray spectrometer has been constructed which incorporates a novel large area, low capacitance Si(Li) detector and a low noise JFET (junction field effect transistor) pr- eamplifier. The spectrometer operates at high count rates without the conventional compromise in energy resolution. For example, at an amplifier peaking time of 1 μsec and a throughput count rate of 145,000 counts sec-1, the energy resolution at 5.9 key is 220 eV FWHM. Commercially available spectrometers utilizing conventional geometry Si(Li) detectors with areas equivalent to the new detector have resolutions on the order of 540 eV under the same conditions. Conventional x-ray spectrometers offering high energy resolution must employ detectors with areas one-tenth the size of the new LBL detector (20 mm2 compared with 200 mm2). However, even with the use of the smaller area detectors, the energy resolution of a commercial system is typically limited to approximately 300 eV (again, at 1 μsec and 5.9 keV) due to the noise of the commercially available JFET'S. The new large area detector is useful in high count rate applications, but is also useful in the detection of weak photon signals, in which it is desirable to subtend as large an angle of the available photon flux as possible, while still maintaining excellent energy resolution. X-ray fluorescence data from the new spectrometer is shown in comparison to a commercially available system in the analysis of a dilute multi-element material, and also in conjunction with high count rate synchrotron EXAMS applications

  10. Count rate balance method of measuring sediment transport of sand beds by radioactive tracers

    International Nuclear Information System (INIS)

    Radioactive tracers are applied to the direct measurement of the sediment transport rate of sand beds. The theoretical measurement formula is derived: the variation of the count rate balance is inverse of that of the transport thickness. Simultaneously the representativeness of the tracer is critically studied. The minimum quantity of tracer which has to be injected in order to obtain a correct statistical definition of count rate given by a low number of grains 'seen' by the detector is then studied. A field experiment was made and has let to study the technological conditions for applying this method: only the treatment of results is new, the experiment itself is carried out with conventional techniques applied with great care. (author)

  11. Statistical treatment of photon/electron counting: extending the linear dynamic range from the dark count rate to saturation.

    Science.gov (United States)

    Kissick, David J; Muir, Ryan D; Simpson, Garth J

    2010-12-15

    An experimentally simple photon counting method is demonstrated providing 7 orders of magnitude in linear dynamic range (LDR) for a single photomultiplier tube (PMT) detector. In conventional photon/electron counting methods, the linear range is dictated by the agreement between the binomially distributed measurement of counted events and the underlying Poisson distribution of photons/electrons. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons present and the Poisson distribution of photons, observed counts for a given threshold can be related to the mean number of photons well beyond the conventional limit. Analytical expressions are derived relating counts and photons that extend the linear range to an average of ∼11 photons arriving simultaneously with a single threshold. These expressions can be evaluated numerically for multiple thresholds extending the linear range to the saturation point of the PMT. The peak voltage distributions are experimentally shown to follow a Poisson weighted sum of log-normal distributions that can all be derived from the single photoelectron voltage peak-height distribution. The LDR that results from this method is compared to conventional single photon counting (SPC) and to signal averaging by analog to digital conversion (ADC). PMID:21114249

  12. Improved count rate corrections for highest data quality with PILATUS detectors.

    Science.gov (United States)

    Trueb, P; Sobott, B A; Schnyder, R; Loeliger, T; Schneebeli, M; Kobas, M; Rassool, R P; Peake, D J; Broennimann, C

    2012-05-01

    The PILATUS detector system is widely used for X-ray experiments at third-generation synchrotrons. It is based on a hybrid technology combining a pixelated silicon sensor with a CMOS readout chip. Its single-photon-counting capability ensures precise and noise-free measurements. The counting mechanism introduces a short dead-time after each hit, which becomes significant for rates above 10(6) photons s(-1) pixel(-1). The resulting loss in the number of counted photons is corrected for by applying corresponding rate correction factors. This article presents the results of a Monte Carlo simulation which computes the correction factors taking into account the detector settings as well as the time structure of the X-ray beam at the synchrotron. The results of the simulation show good agreement with experimentally determined correction factors for various detector settings at different synchrotrons. The application of accurate rate correction factors improves the X-ray data quality acquired at high photon fluxes. Furthermore, it is shown that the use of fast detector settings in combination with an optimized time structure of the X-ray beam allows for measurements up to rates of 10(7) photons s(-1) pixel(-1). PMID:22514168

  13. Respiratory rate estimation from the built-in cameras of smartphones and tablets.

    Science.gov (United States)

    Nam, Yunyoung; Lee, Jinseok; Chon, Ki H

    2014-04-01

    This paper presents a method for respiratory rate estimation using the camera of a smartphone, an MP3 player or a tablet. The iPhone 4S, iPad 2, iPod 5, and Galaxy S3 were used to estimate respiratory rates from the pulse signal derived from a finger placed on the camera lens of these devices. Prior to estimation of respiratory rates, we systematically investigated the optimal signal quality of these 4 devices by dividing the video camera's resolution into 12 different pixel regions. We also investigated the optimal signal quality among the red, green and blue color bands for each of these 12 pixel regions for all four devices. It was found that the green color band provided the best signal quality for all 4 devices and that the left half VGA pixel region was found to be the best choice only for iPhone 4S. For the other three devices, smaller 50 × 50 pixel regions were found to provide better or equally good signal quality than the larger pixel regions. Using the green signal and the optimal pixel regions derived from the four devices, we then investigated the suitability of the smartphones, the iPod 5 and the tablet for respiratory rate estimation using three different computational methods: the autoregressive (AR) model, variable-frequency complex demodulation (VFCDM), and continuous wavelet transform (CWT) approaches. Specifically, these time-varying spectral techniques were used to identify the frequency and amplitude modulations as they contain respiratory rate information. To evaluate the performance of the three computational methods and the pixel regions for the optimal signal quality, data were collected from 10 healthy subjects. It was found that the VFCDM method provided good estimates of breathing rates that were in the normal range (12-24 breaths/min). Both CWT and VFCDM methods provided reasonably good estimates for breathing rates that were higher than 26 breaths/min but their accuracy degraded concomitantly with increased respiratory rates

  14. Characteristic Count Rate Profiles for a Rotating Modulator Gamma-Ray Imager

    CERN Document Server

    Budden, Brent S; Case, Gary L; Cherry, Michael L

    2011-01-01

    Rotating modulation is a technique for indirect imaging in the hard x-ray and soft gamma-ray energy bands, which may offer an advantage over coded aperture imaging at high energies. A rotating modulator (RM) consists of a single mask of co-planar parallel slats typically spaced equidistance apart, suspended above an array of circular non-imaging detectors. The mask rotates, temporally modulating the transmitted image of the object scene. The measured count rate profiles of each detector are folded modulo the mask rotational period, and the object scene is reconstructed using pre-determined characteristic modulation profiles. The use of Monte Carlo simulation to derive the characteristic count rate profiles is accurate but computationally expensive; an analytic approach is preferred for its speed of computation. We present both the standard and a new advanced characteristic formula describing the modulation pattern of the RM; the latter is a more robust description of the instrument response developed as part ...

  15. Effect of recirculation and regional counting rate on reliability of noninvasive bicompartmental CBF measurements

    International Nuclear Information System (INIS)

    Based on data from routine intravenous Xe133-rCBF studies in 50 patients, using Obrist's algorithm the effect of counting rate statistics and amount of recirculating activity on reproducibility of results was investigated at five simulated counting rate levels. Dependence of the standard deviation of compartmental and noncompartmental flow parameters on recirculation and counting rate was determined by multiple linear regression analysis. Those regression equations permit determination of the optimum accuracy that may be expected from individual flow measurements. Mainly due to a delay of the start-of-fit time an exponential increase in standard deviation of flow measurements was observed as recirculation increased. At constant start-of-fit, however, a linear increase in standard deviation of compartmental flow parameters only was found, while noncompartmental results remained constant. Therefore, and in regard to other studies of potential sources of error, an upper limit of 2.5 min for the start-of-fit time and usage of noncompartmental flow parameters for measurements affected by high recirculation are suggested

  16. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    Science.gov (United States)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  17. The Hubble Space Telescope Wide Field Camera 3 Early Release Science Data: Panchromatic Faint Object Counts From 0.2-2 Micron To Ab=26-27 Mag

    Science.gov (United States)

    Windhorst, Rogier A.; McCarthy, P.; Cohen, S.; Ryan, R.; Driver, S.; Hathi, N.; Koekemoer, A.; Mechtley, M.; O'Connell, R.; Rutkowski, M.; Yan, H.; SOC, WFC3

    2010-01-01

    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the GOODS-South field. The new WFC3 ERS data provide calibrated, drizzled mosaics with FHWM=0.07--0.15" in the near-UV (filters F225W, F275W, and F336W) and near-IR (F098W, F125W, and F160W) in typically 2 orbits per filter. Together with the existing HST/ACS GOODS-S mosaics in the BVi'z' filters, the 10-band ERS data cover 40-50 sq. arcmin to AB=26-27.0 mag (10-sigma for point sources). In this poster, we describe the: (1) scientific rationale, data taking and reduction procedures of the WFC3 ERS mosaics; (2) object cataloging and star-galaxy separation techniques used in these 10 different filters; (3) reliability and completeness of the 10-band object catalogs from the ERS mosaics; (4) object counts in 10 different filters from 0.2-1.7 microns to AB=26.0-27.0 mag; and (5) the full-color 10-band ERS images. We discuss the panchromatic structure for a variety of interesting ERS objects at intermediate redshifts (z=0.5-3), including examples of galaxies with nuclear star-forming rings, bars, or weak AGN activity, UV-dropout galaxies at redshifts z=2-3, and objects of other interesting appearance. The 10-band panchromatic ERS data base is very rich in morphological structure at all restframe wavelengths where young or older stars shine during the peak epoch in the cosmic star-formation rate (at z=1-2). This work is based on ERS observations made by the WFC3 Scientific Oversight Committee. We are grateful to the Space Telescope Science Institute Director for awarding Director's Discretionary time for this program. Support for HST program 11359 was provided by NASA through grants GO-11359.0*.A from STScI, which is operated by AURA under NASA contract NAS 5-26555. We dedicate this paper to the memory of the STS-107 Columbia Shuttle astronauts, and of Dr. Rodger Doxsey.

  18. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    International Nuclear Information System (INIS)

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1∼3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a dose

  19. A liquid xenon radioisotope camera.

    Science.gov (United States)

    Zaklad, H.; Derenzo, S. E.; Muller, R. A.; Smadja, G.; Smits, R. G.; Alvarez, L. W.

    1972-01-01

    A new type of gamma-ray camera is discussed that makes use of electron avalanches in liquid xenon and is currently under development. It is shown that such a radioisotope camera promises many advantages over any other existing gamma-ray cameras. Spatial resolution better than 1 mm and counting rates higher than one million C/sec are possible. An energy resolution of 11% FWHM has recently been achieved with a collimated Hg-203 source using a parallel-plate ionization chamber containing a Frisch grid.

  20. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    Science.gov (United States)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  1. Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals.

    Science.gov (United States)

    Lázaro, Jesús; Nam, Yunyoung; Gil, Eduardo; Laguna, Pablo; Chon, Ki H

    2015-11-01

    A method for deriving respiratory rate from smartphone-camera-acquired pulse photoplethysmographic (SCPPG) signal is presented. Our method exploits respiratory information by examining the pulse wave velocity and dispersion from the SCPPG waveform and we term these indices as the pulse width variability (PWV). A method to combine information from several derived respiration signals is also presented and it is used to combine PWV information with other methods such as pulse amplitude variability (PAV), pulse rate variability (PRV), and respiration-induced amplitude and frequency modulations (AM and FM) in SCPPG signals.Evaluation is performed on a database containing SCPPG signals recorded from 30 subjects during controlled respiration experiments at rates from 0.2 to 0.6 Hz with an increment of 0.1 Hz, using three different devices: iPhone 4S, iPod 5, and HTC One M8. Results suggest that spontaneous respiratory rates (0.2-0.4 Hz) can be estimated from SCPPG signals by the PWV- and PRV-based methods with low relative error (median of order 0.5% and interquartile range of order 2.5%). The accuracy can be improved by combining PWV and PRV with other methods such as PAV, AM and/or FM methods. Combination of these methods yielded low relative error for normal respiratory rates, and maintained good performance at higher rates (0.5-0.6 Hz) when using the iPhone 4S or iPod 5 devices. PMID:26450762

  2. Extraction of correlated count rates using various gate generation techniques: Part II Experiment

    International Nuclear Information System (INIS)

    This paper presents an experimental comparison of different neutron pulse train analysis methods developed to extract correlated count rates from the detected neutron arrival times. This work comprises a sequel to the previous paper (Part I Theory) , where the complete formalism of different analysis methods was presented. In the current paper, the signal triggered inspection (STI), randomly triggered inspection (RTI) and MIXED techniques (implemented in current shift register hardware) are compared using list mode data acquired from series of 252Cf sources. In addition, three techniques of randomly triggered inspection are investigated: gates generated at fixed clock frequency, i.e., consecutive (non-overlapping) gates and overlapping gates (known as fast accidentals sampling (FAS)), as well as gates generated after a long delay following each trigger pulse (delayed-signal gates). The average correlated count rates (singles (S), doubles (D) and triples (T)) are extracted using the STI, RTI and MIXED analysis techniques and compared to demonstrate their equivalence. In addition, an influence of different gate generation and pulse train analysis techniques on the precision of the measured S, D and T rates is investigated.

  3. A model of the high count rate performance of NaI(Tl)-based PET detectors

    International Nuclear Information System (INIS)

    A detailed model of the response of large-area NaI(Tl) detectors used in PET and their triggering and data acquisition electronics has been developed. This allows one to examine the limitations of the imaging system's performance due to degradation in the detector performance from light pile-up and deadtime from triggering and event processing. Comparisons of simulation results to measurements from the HEAD PENN-PET scanner have been performed to validate the Monte Carlo model. The model was then used to predict improvements in the high count rate performance of the HEAD PENN-PET scanner using different signal integration times, light response functions, and detectors

  4. A main amplifier and peak hold circuit for periodic sampling of high count rate

    International Nuclear Information System (INIS)

    A main amplifier circuit used for the telescope detector array was studies. The main amplifier circuit was mainly constituted by an integrated op amp chip ADA4851-4, and used for the voltage signal amplification and shaping. At the same time, a peak hold circuit was designed based on the restoration chip OPA615, used for periodically sampling the voltage signals and maintaining the amplitudes. 16 independent main amplifier and peak hold circuits constituted a high-density voltage signal processing electronic system. The system's signal processing performance, such as error and count rate, was better than the requirements of charged particle detection experiments. (authors)

  5. Study of the counting rate capability of MRPC detectors built with soda lime glass

    Science.gov (United States)

    Forster, R.; Margoto Rodríguez, O.; Park, W.; Rodríguez Rodríguez, A.; Williams, M. C. S.; Zichichi, A.; Zuyeuski, R.

    2016-09-01

    We report the results of three MRPC detectors built with soda lime glass and tested in the T10 beam line at CERN. The detectors consist of a stack of 280 μm thick glass sheets with 6 gaps of 220 μm . We built two identical MRPCs, except one had the edges of glass treated with resistive paint. A third detector was built with one HV electrode painted as strips. The detectors' efficiency and time resolution were studied at different particle flux in a pulsed beam environment. The results do not show any improvement with the painted edge technique at higher particle flux. We heated the MRPCs up to 40 °C to evaluate the influence of temperature in the rate capability. Results from this warming has indicated an improvement on the rate capability. The dark count rates show a significant dependence with the temperature.

  6. Digital signal processing gamma-ray spectrometers in high count rate applications

    International Nuclear Information System (INIS)

    In gamma-ray spectrometry the digital signal processing devices conquer the market of digital electronics. Most digital devices have some advantages, especially concerning their capability of full software control via standard connections. In our laboratories we operate DSP based systems for some years. From this experience some further main advantages were observed as stability of the energy calibration and linearity of the energy calibration over a large range of energies. The suppliers often argue that DSP based systems also have advantages concerning higher throughputs and are therefore useful especially in high count rate applications. To examine this. the performance of a digital signal processing gamma-ray spectrometry system was compared with a high end analogous device in a field of high count rate applications. Both systems were exposed to high gamma-ray fluxes. The performance was evaluated by means of dead time, dead time correction, energy resolution, energy stability and throughput. The description of the measurements and the results are presented in the following. (orig.)

  7. Electronics for the European XFEL: AGIPD a high frame rate camera

    International Nuclear Information System (INIS)

    The European free electron laser (EuXFEL) facility will generate coherent and intense X-ray flashes at rates up to 27 000 per second. X-rays flashes are generated by passing bunches of electrons, accelerated to 17.5GeV by a superconducting linear accelerator, through magnetic undulators in which electrons emit X-ray flashes by a SASE lasing process. Each flash is intense enough to produce a full diffractive picture of scattering targets, such as biological molecules, which, when reconstructed, will allow new insights into material structure and dynamics. Dedicated two dimensional area camera systems, e.g. AGIPD, are being developed to record up to 5000 images/second with a resolution of 1Mega-Pixel and a dynamic range of 0-104 photons/pixel. This talk will present the accelerator and detector techniques used and will emphasis the electronics developments being made.

  8. The Determination of Components of Radioactive Decay Mixtures by Computer Analysis of Count-Rate Data

    International Nuclear Information System (INIS)

    The components of a mixture of n radioactive isotopes can be determined from the change in activity with time provided that the activity of at least n-1 components changes significantly during the period of observation, either by direct decay or by the growth of decay products. ft is possible to predict a set of possible components for each mixture encountered, based on considerations such as the origin and history of the mixture and the separation chemistry and counting technique(s) used. If such considerations are properly applied, the set of possible components will include all of the actual components in the mixture. The appropriate growth and/or decay equations can then be formulated and solved simultaneously to obtain each component, or the mixture can be resolved graphically by extrapolations of the linear portions of the total decay-growth curve. However, when the number of components is large and/or when complex decay schemes are involved, these two techniques either cannot be applied or the errors associated with the estimates cannot be assessed. Selection of decay components by a least-squares procedure provides better estimates than solution by simultaneous equations alone. Consequently, a least-squares Fortran computer programme (designated CORD) has been developed which solves the general problem: given the times and counts per unit time from a sample, the possible radioisotopic parents and decay schemes and all associated decay constants and detection efficiencies compute the amount of each parent actually present at a predetermined zero time. In addition, the programme yields the amounts of the parents and daughters present at all data times. Initially used with bioassay and environmental samples, the programme has been specifically designed for analysing count-rate data obtained by non-spectroscopic alpha- or beta-counting. However, it should be adaptable to total gamma and spectroscopic data, provided the energy ranges over which these

  9. Radiation Dose-Rate Extraction from the Camera Image of Quince 2 Robot System using Optical Character Recognition

    International Nuclear Information System (INIS)

    In the case of the Japanese Quince 2 robot system, 7 CCD/CMOS cameras were used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. The Quince 2 robot measured radiation in the unit 2 reactor building refueling floor of the Fukushima nuclear power plant. The CCD camera with wide field-of-view (fisheye) lens reads indicator of the dosimeter loaded on the Quince 2 robot, which was sent to carry out investigating the unit 2 reactor building refueling floor situation. The camera image with gamma ray dose-rate information is transmitted to the remote control site via VDSL communication line. At the remote control site, the radiation information in the unit 2 reactor building refueling floor can be perceived by monitoring the camera image. To make up the radiation profile in the surveyed refueling floor, the gamma ray dose-rate information in the image should be converted to numerical value. In this paper, we extract the gamma ray dose-rate value in the unit 2 reactor building refueling floor using optical character recognition method

  10. Performance of Drift-Tube Detectors at High Counting Rates for High-Luminosity LHC Upgrades

    CERN Document Server

    Bittner, Bernhard; Kortner, Oliver; Kroha, Hubert; Manfredini, Alessandro; Nowak, Sebastian; Ott, Sebastian; Richter, Robert; Schwegler, Philipp; Zanzi, Daniele; Biebel, Otmar; Hertenberger, Ralf; Ruschke, Alexander; Zibell, Andre

    2016-01-01

    The performance of pressurized drift-tube detectors at very high background rates has been studied at the Gamma Irradiation Facility (GIF) at CERN and in an intense 20 MeV proton beam at the Munich Van-der-Graaf tandem accelerator for applications in large-area precision muon tracking at high-luminosity upgrades of the Large Hadron Collider (LHC). The ATLAS muon drifttube (MDT) chambers with 30 mm tube diameter have been designed to cope with and neutron background hit rates of up to 500 Hz/square cm. Background rates of up to 14 kHz/square cm are expected at LHC upgrades. The test results with standard MDT readout electronics show that the reduction of the drift-tube diameter to 15 mm, while leaving the operating parameters unchanged, vastly increases the rate capability well beyond the requirements. The development of new small-diameter muon drift-tube (sMDT) chambers for LHC upgrades is completed. Further improvements of tracking e?ciency and spatial resolution at high counting rates will be achieved with ...

  11. Analysis of GRACE Range-rate Residuals with Emphasis on Reprocessed Star-Camera Datasets

    Science.gov (United States)

    Goswami, S.; Flury, J.; Naeimi, M.; Bandikova, T.; Guerr, T. M.; Klinger, B.

    2015-12-01

    Since March 2002 the two GRACE satellites orbit the Earth at rela-tively low altitude. Determination of the gravity field of the Earth including itstemporal variations from the satellites' orbits and the inter-satellite measure-ments is the goal of the mission. Yet, the time-variable gravity signal has notbeen fully exploited. This can be seen better in the computed post-fit range-rateresiduals. The errors reflected in the range-rate residuals are due to the differ-ent sources as systematic errors, mismodelling errors and tone errors. Here, weanalyse the effect of three different star-camera data sets on the post-fit range-rate residuals. On the one hand, we consider the available attitude data andon other hand we take the two different data sets which has been reprocessedat Institute of Geodesy, Hannover and Institute of Theoretical Geodesy andSatellite Geodesy, TU Graz Austria respectively. Then the differences in therange-rate residuals computed from different attitude dataset are analyzed inthis study. Details will be given and results will be discussed.

  12. High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera.

    Science.gov (United States)

    Dragojević, Tanja; Bronzi, Danilo; Varma, Hari M; Valdes, Claudia P; Castellvi, Clara; Villa, Federica; Tosi, Alberto; Justicia, Carles; Zappa, Franco; Durduran, Turgut

    2015-08-01

    Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions. PMID:26309751

  13. Two dimensional localization of electrons and positrons under high counting rate

    International Nuclear Information System (INIS)

    The construction of two wire chambers for the experiment E831 at Fermilab is reported. Each chamber includes three wire planes - one anode and two orthogonal cathodes - in which the wires operate as independent proportional counters. One of the chambers is rotated with respect to the other, so that four position coordinates may be encoded for a charged particle crossing both chambers. Spatial resolution is determined by the wire pitch: 1 mm for cathodes, 2 mm for anodes. 320 electronic channels are involved in the detection system readout. Global counting rates in excess to 107 events per second have been measured, while the average electron-positron beam intensity may be as high as 3 x 107 events per second. (author)

  14. Frequency-domain multiplexing development for high-count-rate microcalorimeters

    International Nuclear Information System (INIS)

    Future X-ray telescopes like XEUS will require a microcalorimeter array capable of handling a high photon-count-rate (250cps per pixel, τeff=100μs). This requirement, combined with an energy resolution of 1-2eV and an energy range up to 3keV, leads to very demanding requirements for the readout bandwidth and dynamic range. We discuss the development of a frequency-domain multiplexing (FDM) compatible TES bias circuit and bias and readout electronics, and focus on the effects of nonlinearity of the system. Furthermore, we compare between the experimentally observed IV characteristics of a TES under AC and DC bias

  15. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    Science.gov (United States)

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhäuser, R.; Günther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-01

    Next-generation γ beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 1013 γ/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses (˜120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a γ pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 1018 γ/s, thus introducing major challenges in view of pile-up. Novel γ optics will be applied to monochromatize the γ beam to ultimately ΔE/E˜10-6. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding γ detectors, e.g. based on advanced scintillator technology (e.g. LaBr3(Ce)) allow for measurements with count rates as high as 106-107 γ/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr3 detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  16. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    Energy Technology Data Exchange (ETDEWEB)

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N. [Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Fakultaet f. Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching, Germany and Max-Planck-Institute f. Quantum Optics, Garching (Germany); IFIN-HH, Bucharest-Magurele (Romania); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Max-Planck-Institute f. Quantum Optics, Garching (Germany); Institut Laue-Langevin, Grenoble (France); Physik Department E12,Technische Universitaet Muenchen, Garching (Germany); Institut f. Kernphysik, Technische Universitaet Darmstadt (Germany)

    2012-07-09

    Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  17. Construction and Test of Muon Drift Tube Chambers for High Counting Rates

    CERN Document Server

    Schwegler, Philipp; Dubbert, Jörg

    2010-01-01

    Since the start of operation of the Large Hadron Collider (LHC) at CERN on 20 November 2009, the instantaneous luminosity is steadily increasing. The muon spectrometer of the ATLAS detector at the LHC is instrumented with trigger and precision tracking chambers in a toroidal magnetic field. Monitored Drift-Tube (MDT) chambers are employed as precision tracking chambers, complemented by Cathode Strip Chambers (CSC) in the very forward region where the background counting rate due to neutrons and γ's produced in shielding material and detector components is too high for the MDT chambers. After several upgrades of the CERN accelerator system over the coming decade, the instantaneous luminosity is expected to be raised to about five times the LHC design luminosity. This necessitates replacement of the muon chambers in the regions with the highest background radiation rates in the so-called Small Wheels, which constitute the innermost layers of the muon spectrometer end-caps, by new detectors with higher rate cap...

  18. Opinion rating of comparison photographs of television pictures from CCD cameras under irradiation

    International Nuclear Information System (INIS)

    As part of the development of a general method of testing the effects of gamma radiation on CCD television cameras, this is a report of an experimental study on the optimisation of still photographic representation of video pictures recorded before and during camera irradiation. (author)

  19. Calibration and correction of sweep rate nonlinearity of the streak camera

    International Nuclear Information System (INIS)

    A method for etalon design is reported, which is used for the calibration for sweep nonlinearity of streak camera and the test of its dynamic range with appropriate etalon, and the method of intensity correction dot by dot, the sweep nonlinearity of C1587 streak camera has been calibrated and automatically corrected by computer

  20. Efficiency corrections for the γ-γ coincidence counting rates measured by the multi-detector correlation system

    International Nuclear Information System (INIS)

    A new method of determination of the efficiency corrections for the γ-γ coincidence rates measured by the multi-detector system is described. The method uses the random coincidence counting rates and is based on two assumptions: a) the counting rates of both true and random coincidences for a given pair of γ-quanta are proportional to the efficiencies of the registration of γ-quanta in the detectors; b) there is no correlation between the gammas which coincide at random. Results of the test of the method applied to the multi-detector correlation system are presented. (orig.)

  1. Development of a time resolution and position sensitive Multi-Gap Multi-Strip RPC for high counting rate experiments

    International Nuclear Information System (INIS)

    A full differential strip readout multi-gap RPC was developed to meet high counting rate and high multiplicity requirements of a high collision rate experiments as Compressed Baryonic Matter at the future FAIR facility. The Multi-Gap, Multi-Strip Resistive Plate Chamber (MGMSRPC) is a completely symmetric two stack structure with time resolution around 50 ps and a detection efficiency better than 95%. A very good efficiency and time resolution at counting rates exceeding the CBM-TOF requirements is obtained using low resistivity (∼ 1010 Ωcm) glass electrodes.

  2. Development of the neutron source evaluation method and predictor of SRM/SRNM count rate in BWR simulator

    International Nuclear Information System (INIS)

    The source range monitors (SRMs) and the start-up range neutron monitors (SRNMs) are important instruments from the BWR criticality safety viewpoints. There is a limitation of the minimum count rate (3cps) to guarantee the normality of the SRMs/SRNMs. After the long outage, this limitation is critical for the fuel shuffling due to the decay of the neutron sources in the fuel. The neutron source intensity evaluation method based on a micro burn-up model and the predictor function of the SRM/SRNM count rate are developed in AETNA01, GNF's three-dimensional neutronic-thermal hydraulic boiling water reactor (BWR) core simulator. These new functions are validated through the comparisons between operating BWR's measured data after shutdown and during shuffling. Through these comparisons, high accuracy of the SRM/SRNM count rate predictor of AETNA01 was presented. (author)

  3. Development of Fast High-Resolution Muon Drift-Tube Detectors for High Counting Rates

    CERN Document Server

    Bittner, B; Horvat, S; Kortner, O; Kroha, H; Legger, F; Richter, R; Adomeit, S; Biebel, O; Engl, A; Hertenberger, R; Rauscher, F; Zibell, A

    2016-01-01

    Pressurized drift-tube chambers are e?cient detectors for high-precision tracking over large areas. The Monitored Drift-Tube (MDT) chambers of the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) reach a spatial resolution of 35 micons and almost 100% tracking e?ciency with 6 layers of 30 mm diameter drift tubes operated with Ar:CO2 (93:7) gas mixture at 3 bar and a gas gain of 20000. The ATLAS MDT chambers are designed to cope with background counting rates due to neutrons and gamma-rays of up to about 300 kHz per tube which will be exceeded for LHC luminosities larger than the design value of 10-34 per square cm and second. Decreasing the drift-tube diameter to 15 mm while keeping the other parameters, including the gas gain, unchanged reduces the maximum drift time from about 700 ns to 200 ns and the drift-tube occupancy by a factor of 7. New drift-tube chambers for the endcap regions of the ATLAS muon spectrometer have been designed. A prototype chamber consisting of 12 times 8 l...

  4. A rotation-symmetric, position-sensitive annular detector for maximum counting rates

    International Nuclear Information System (INIS)

    The Germanium Wall is a semiconductor detector system containing up to four annular position sensitive ΔE-detectors from high purity germanium (HPGe) planned to complement the BIG KARL spectrometer in COSY experiments. The first diode of the system, the Quirl-detector, has a two dimensional position sensitive structure defined by 200 Archimedes' spirals on each side with opposite orientation. In this way about 40000 pixels are defined. Since each spiral element detects almost the same number of events in an experiment the whole system can be optimized for maximal counting rates. This paper describes a test setup for a first prototype of the Quirl-detector and the results of test measurements with an α-source. The detector current and the electrical separation of the spiral elements were measured. The splitting of signals due to the spread of charge carriers produced by an incident ionizing particle on several adjacent elements was investigated in detail and found to be twice as high as expected from calculations. Its influence on energy and position resolution is discussed. Electronic crosstalk via signal wires and the influence of noise from the magnetic spectrometer has been tested under experimental conditions. Additionally, vacuum feedthroughs based on printed Kapton foils pressed between Viton seals were fabricated and tested successfully concerning their vacuum and thermal properties. (orig.)

  5. Analysis of geomagnetic storm variations and count-rate of cosmic ray muons recorded at the Brazilian southern space observatory

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Everton [University of Sao Paulo, USP, Institute of Astronomy, Geophysics and Atmospheric Sciences, IAG/USP, Department of Geophysics, Sao Paulo, SP (Brazil); Savian, Jairo Francisco [Space Science Laboratory of Santa Maria, LACESM/CT, Southern Regional Space Research Center, CRS/INPE, MCT, Santa Maria, RS (Brazil); Silva, Marlos Rockenbach da; Lago, Alisson dal; Trivedi, Nalin Babulal [National Institute for Space Research, INPE/MCT, Division of Space Geophysics, DGE, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: efrigo@iag.usp.br, E-mail: savian@lacesm.ufsm.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: marlos@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: trivedi@dge.inpe.br [Southern Regional Space Research Center, CRS/INPE, MCT, Santa Maria, RS (Brazil)

    2007-07-01

    An analysis of geomagnetic storm variations and the count rate of cosmic ray muons recorded at the Brazilian Southern Space Observatory -OES/CRS/INPE-MCT, in Sao Martinho da Serra, RS during the month of November 2004, is presented in this paper. The geomagnetic measurements are done by a three component low noise fluxgate magnetometer and the count rates of cosmic ray muons are recorded by a muon scintillator telescope - MST, both instruments installed at the Observatory. The fluxgate magnetometer measures variations in the three orthogonal components of Earth magnetic field, H (North-South), D (East-West) and Z (Vertical), with data sampling rate of 0.5 Hz. The muon scintillator telescope records hourly count rates. The arrival of a solar disturbance can be identified by observing the decrease in the muon count rate. The goal of this work is to describe the physical morphology and phenomenology observed during the geomagnetic storm of November 2004, using the H component of the geomagnetic field and vertical channel V of the multi-directional muon detector in South of Brazil. (author)

  6. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions

    International Nuclear Information System (INIS)

    This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2–2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8–5.1 mm FWHM), sensitivity (7.3 cps kBq–1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241–609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies. (paper)

  7. High Count-Rate Studies of Small-Pitch Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Lee, S. J.; Bandler, S. R.; Busch, S. E.; Adams, J. S.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassel, E. J.

    2014-08-01

    We are developing kilo-pixel arrays of small-pitch transition-edge sensors for high spectral-resolving, high count-rate applications in astrophysics and solar physics measurements. We have fabricated and tested pixels that are m in size on a silicon substrate with an X-ray flux of counts per second (cps) per pixel. The X-ray pulses were recorded and analyzed in various ways to obtain high throughput with good energy resolution. We have demonstrated 2.3 eV FWHM resolution with 99.6 % throughput for a 6-keV X-ray flux of 100 cps.

  8. Cities with camera-equipped taxicabs experience reduced taxicab driver homicide rates: United States, 1996–2010

    OpenAIRE

    Chaumont Menéndez, Cammie; Amandus, Harlan; Damadi, Parisa; Wu, Nan; Konda, Srinivas; Hendricks, Scott

    2014-01-01

    Background Driving a taxicab remains one of the most dangerous occupations in the United States, with leading homicide rates. Although safety equipment designed to reduce robberies exists, it is not clear what effect it has on reducing taxicab driver homicides. Findings Taxicab driver homicide crime reports for 1996 through 2010 were collected from 20 of the largest cities (>200,000) in the United States: 7 cities with cameras installed in cabs, 6 cities with partitions installed, and 7 citie...

  9. New Institutional Mechanism in China Facilitating the Global Sustainability--Environment to Be Counted in Officials' Performance Rating

    Institute of Scientific and Technical Information of China (English)

    Ren Jingming; Wang Rusong

    2004-01-01

    Having argued the importance of China's sustainable development in global sustainability, the authors review the achievements of China in sustainable development, especially its institutional construction. Environment to be counted in official's political performance rating system is thought of as a new institutional mechanism in China facilitating its sustainable development and then global sustainability. Then its significance is narrated and visions in future are envisioned. In the end, certain concrete suggestions for the rating system are given in a practical way.

  10. Determination of vanadium by instrumental neutron activation analysis using a high counting-rate γ-ray spectrometer

    International Nuclear Information System (INIS)

    In instrumental neutron activation analysis (INAA), high performance gamma ray spectrometry is indispensable for calculating the analysis values of good accuracy. In this research, as the measuring method at high rate of count, the gamma ray spectrometry by using the pulse pile-up rejector (PUR) which can remove pulse pile-up with the instrument was investigated. Moreover, in order to compensate the radioactivity attenuation at the time of the measurement at high rate of count, the function that the rate of dead time every 1 s in the measurement can be recorded was added to a gamma ray spectrometer. The performance of this spectrometer and the quantification of V in living body samples, that are mussels and tea leaves are reported. (K.I.)

  11. Unintentional carbon monoxide poisoning hospitalization and emergency department counts and rates by county, year, and fire-relatedness among California residents,2000-2007

    Data.gov (United States)

    California Environmental Health Tracking Program — This dataset contains case counts, rates, and confidence intervals of unintentional carbon monoxide poisoning (CO) inpatient hospitalizations and emergency...

  12. Estimated average annual rate of change of CD4(+) T-cell counts in patients on combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Mocroft, Amanda; Phillips, Andrew N; Ledergerber, Bruno;

    2010-01-01

    ,000 copies/ml. By contrast, among patients taking a non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimen, the CD4(+) T-cell count significantly decreased when the viral load was 500-9,999 copies/ml (-18.6 cells/mm(3), 95% CI -33.8--3.5) and decreased at a faster rate when the viral load was...

  13. Global Anisotropy of Space and experimental investigation of changes in $\\beta$-decay count rate of radioactive elements

    CERN Document Server

    Baurov, Yu A; Kushniruk, V F; Sobolev, Yu G; Baurov, Yu.A.; Sobolev, Yu.G.

    1998-01-01

    The results of experimental investigations of changes in beta-decay count rate of radioactive elements, are presented, and an explanation of those on the base of a new physical conception of forming the observed three-dimensional space from a finite set of one-dimensional discrete vectorial objects (byuons), containing the cosmological vectorial potential, a new fundamental vectorial constant, is given. In the theory, the vector direction corresponds with that of the axis of Universe rotation being discussed in literature.

  14. Study of semi-conductor spectrometers for high counting rates. Application to the study of the reaction 31P (p, α0): Ep < 2 MeV

    International Nuclear Information System (INIS)

    The study of nuclear reactions involving particles of low charge (E 31P shows which are the factors limiting the resolving power. In the second part we examine the various types of spectrometer which can be used in the case of a high count-rate. We have built an apparatus which can be used for carrying out spectrometry on particles produced by nuclear reactions, for a total, count-rate of 105 counts/sec. (author)

  15. Time-resolved two-photon excitation fluorescence spectroscopy and microscopy using a high repetition rate streak camera

    Institute of Scientific and Technical Information of China (English)

    LIU Li-xin; QU Ju-le; LIN Zi-yang; WANG Lei; FU Zhe; GUO Bao-ping; NIU Han-ben

    2007-01-01

    We present a time-resolved two-photon excitation fluorescence spectroscopy and a simultaneous time- and spectrumresolved multifocal multiphoton microscopy system that is based on a high repetition rate picosecond streak camera for providing time- and spectrum- resolved measurement and imaging in biomedicine. The performance of the system is tested and characterized by the fluorescence spectrum and lifetime analysis of several standard fluorescent dyes and their mixtures.Spectrum-resolved fluorescence lifetime images of fluorescence beads are obtained. Potential applications of the system include clinical diagnostics and cell biology etc.

  16. Progress in gamma-camera quality control

    International Nuclear Information System (INIS)

    The latest developments in the art of quality control of gamma cameras are emphasized in a simple historical manner. The exhibit describes methods developed by the Bureau of Radiological Health (BRH) in comparison with previously accepted techniques for routine evaluation of gamma-camera performance. Gamma cameras require periodic testing of their performance parameters to ensure that their optimum imaging capability is maintained. Quality control parameters reviewed are field uniformity, spatial distortion, intrinsic and spatial resolution, and temporal resolution. The methods developed for the measurement of these parameters are simple, not requiring additional electronic equipment or computers. The data has been arranged in six panels as follows: schematic diagrams of the most important test patterns used in nuclear medicine; field uniformity; regional displacements in transmission pattern image; spatial resolution using the BRH line-source phantom; instrinsic resolution using the BRH Test Pattern; and Temporal resolution and count losses at high counting rates

  17. Evaluation of efficiency of a semiconductor gamma camera

    CERN Document Server

    Otake, H; Takeuchi, Y

    2002-01-01

    We evaluation basic characteristics of a compact type semiconductor gamma camera (eZ-SCOPE AN) of Cadmium Zinc Telluride (CdZnTe). This new compact gamma camera has 256 semiconductors representing the same number of pixels. Each semiconductor is 2 mm square and is located in 16 lines and rows on the surface of the detector. The specific performance characteristics were evaluated in the study referring to National Electrical Manufactures Association (NEMA) standards; intrinsic energy resolution, intrinsic count rate performance, integral uniformity, system planar sensitivity, system spatial resolution, and noise to the neighboring pixels. The intrinsic energy resolution measured 5.7% as full width half maximum (FWHM). The intrinsic count rate performance ranging from 17 kcps to 1,285 kcps was evaluated, but the highest intrinsic count rate was not observed. Twenty percents count loss was recognized at 1,021 kcps. The integral uniformity was 1.3% with high sensitivity collimator. The system planar sensitivity w...

  18. Investigations of the variation of the detection probability of gamma cameras

    International Nuclear Information System (INIS)

    It is shown that in the wide-spread measurement of camera properties by flooding, inhomogeneities in the counting rates are mostly due to inhomogeneities in the imaging characteristics. Correction by flooding measurements is therefore not practicable for the evaluation of ROI measurements. Anger cameras should be tested by point source measurements. (ORU)

  19. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  20. Single software platform used for high speed data transfer implementation in a 65k pixel camera working in single photon counting mode

    International Nuclear Information System (INIS)

    Integrated circuits designed for specific applications generally use non-standard communication methods. Hybrid pixel detector readout electronics produces a huge amount of data as a result of number of frames per seconds. The data needs to be transmitted to a higher level system without limiting the ASIC's capabilities. Nowadays, the Camera Link interface is still one of the fastest communication methods, allowing transmission speeds up to 800 MB/s. In order to communicate between a higher level system and the ASIC with a dedicated protocol, an FPGA with dedicated code is required. The configuration data is received from the PC and written to the ASIC. At the same time, the same FPGA should be able to transmit the data from the ASIC to the PC at the very high speed. The camera should be an embedded system enabling autonomous operation and self-monitoring. In the presented solution, at least three different hardware platforms are used—FPGA, microprocessor with real-time operating system and the PC with end-user software. We present the use of a single software platform for high speed data transfer from 65k pixel camera to the personal computer

  1. Single software platform used for high speed data transfer implementation in a 65k pixel camera working in single photon counting mode

    Science.gov (United States)

    Maj, P.; Kasiński, K.; Gryboś, P.; Szczygieł, R.; Kozioł, A.

    2015-12-01

    Integrated circuits designed for specific applications generally use non-standard communication methods. Hybrid pixel detector readout electronics produces a huge amount of data as a result of number of frames per seconds. The data needs to be transmitted to a higher level system without limiting the ASIC's capabilities. Nowadays, the Camera Link interface is still one of the fastest communication methods, allowing transmission speeds up to 800 MB/s. In order to communicate between a higher level system and the ASIC with a dedicated protocol, an FPGA with dedicated code is required. The configuration data is received from the PC and written to the ASIC. At the same time, the same FPGA should be able to transmit the data from the ASIC to the PC at the very high speed. The camera should be an embedded system enabling autonomous operation and self-monitoring. In the presented solution, at least three different hardware platforms are used—FPGA, microprocessor with real-time operating system and the PC with end-user software. We present the use of a single software platform for high speed data transfer from 65k pixel camera to the personal computer.

  2. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    International Nuclear Information System (INIS)

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm3 Radcal® thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm3 calibrated ionization chamber to

  3. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoerner, Matthew R., E-mail: mrh5038@ufl.edu; Stepusin, Elliott J. [University of Florida, College of Medicine, P. O. Box 100374, Gainesville, Florida 32610 (United States); Hyer, Daniel E. [University of Iowa, 01615 Pomerantz Pavilion, Iowa City, Iowa 52242 (United States); Hintenlang, David E. [University of Florida, 1275 Center Drive, Biomedical Sciences Building JG-56 P. O. Box 116131, Gainesville, Florida 32611 (United States)

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  4. Streak camera time calibration procedures

    Science.gov (United States)

    Long, J.; Jackson, I.

    1978-01-01

    Time calibration procedures for streak cameras utilizing a modulated laser beam are described. The time calibration determines a writing rate accuracy of 0.15% with a rotating mirror camera and 0.3% with an image converter camera.

  5. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    Science.gov (United States)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  6. Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency

    CERN Document Server

    Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Zbinden, Hugo

    2013-01-01

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 {\\mu}s of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110${^o}$C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  7. 2Kx2K resolution element photon counting MCP sensor with >200 kHz event rate capability

    International Nuclear Information System (INIS)

    Siegmund Scientific undertook a NASA Small Business Innovative Research (SBIR) contract to develop a versatile, high-performance photon (or particle) counting detector combining recent technical advances in all aspects of Microchannel Plate (MCP) detector development in a low cost, commercially viable package that can support a variety of applications. The detector concept consists of a set of MCPs whose output electron pulses are read out with a crossed delay line (XDL) anode and associated high-speed event encoding electronics. The delay line anode allows high-resolution photon event centroiding at very high event rates and can be scaled to large formats (>40 mm) while maintaining good linearity and high temporal stability. The optimal sensitivity wavelength range is determined by the choice of opaque photocathodes. Specific achievements included: spatial resolution of 200 000 events s-1; local rates of >100 events s-1 per resolution element; event timing of -2 s-1)

  8. 2Kx2K resolution element photon counting MCP sensor with >200 kHz event rate capability

    CERN Document Server

    Vallerga, J V

    2000-01-01

    Siegmund Scientific undertook a NASA Small Business Innovative Research (SBIR) contract to develop a versatile, high-performance photon (or particle) counting detector combining recent technical advances in all aspects of Microchannel Plate (MCP) detector development in a low cost, commercially viable package that can support a variety of applications. The detector concept consists of a set of MCPs whose output electron pulses are read out with a crossed delay line (XDL) anode and associated high-speed event encoding electronics. The delay line anode allows high-resolution photon event centroiding at very high event rates and can be scaled to large formats (>40 mm) while maintaining good linearity and high temporal stability. The optimal sensitivity wavelength range is determined by the choice of opaque photocathodes. Specific achievements included: spatial resolution of 200 000 events s sup - sup 1; local rates of >100 events s sup - sup 1 per resolution element; event timing of <1 ns; and low background ...

  9. The Hubble Space Telescope Wide Field Camera 3 Early Release Science data: Panchromatic Faint Object Counts from 0.2-2 microns wavelength

    CERN Document Server

    Windhorst, Rogier A; Hathi, Nimish P; McCarthy, Patrick J; Ryan, Russell E; Jr.,; Yan, Haojing; Baldry, Ivan K; Driver, Simon P; Frogel, Jay A; Hill, David T; Kelvin, Lee S; Koekemoer, Anton M; Mechtley, Matt; O'Connell, Robert W; Robotham, Aaron S G; Rutkowski, Michael J; Seibert, Mark; Tuffs, Richard J; Balick, Bruce; Bond, Howard E; Bushouse, Howard; Calzetti, Daniela; Crockett, Mark; Disney, Michael J; Dopita, Michael A; Hall, Donald N B; Holtzman, Jon A; Kaviraj, Sugata; Kimble, Randy A; MacKenty, John W; Mutchler, Max; Paresce, Francesco; Saha, Abihit; Silk, Joseph I; Trauger, John; Walker, Alistair R; Whitmore, Bradley C; Young, Erick

    2010-01-01

    We describe the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) Early Release Science (ERS) observations in the Great Observatories Origins Deep Survey (GOODS) South field. The new WFC3 ERS data provide calibrated, drizzled mosaics in the mid-UV filters F225W, F275W, and F336W, as well as in the near-IR filters F098W (\\Ys), F125W (J), and F160W (H) in 1-2 HST orbits per filter. Together with the existing HST Advanced Camera for Surveys (ACS) GOODS-South mosaics in the BVi'z' filters, these panchromatic 10-band ERS data cover 40-50 square arcmin from from 0.2-1.7 \\mum\\ in wavelength at 0\\arcspt 07-0\\arcspt 15 FWHM resolution and 0\\arcspt 090 multidrizzled pixels to depths of AB\\cle 26.0-27.0 mag (5-sigma) for point sources, and AB\\cle 25.5-26.5 mag for compact galaxies. In this paper, we describe: a) the scientific rationale, and the data taking plus reduction procedures of the panchromatic 10-band ERS mosaics; b) the procedure of generating object catalogs across the 10 different ERS filters, and the ...

  10. Performance assessment of gamma cameras. Part 1

    International Nuclear Information System (INIS)

    The Dept. of Health and Social Security and the Scottish Home and Health Dept. has sponsored a programme of measurements of the important performance characteristics of 15 leading types of gamma cameras providing a routine radionuclide imaging service in hospitals throughout the UK. Measurements have been made of intrinsic resolution, system resolution, non-uniformity, spatial distortion, count rate performance, sensitivity, energy resolution and shield leakage. The main aim of this performance assessment was to provide sound information to the NHS to ease the task of those responsible for the purchase of gamma cameras. (U.K.)

  11. Leukocyte Count and Erythrocyte Sedimentation Rate as Diagnostic Factors in Febrile Convulsion

    OpenAIRE

    Ali Akbar Rahbarimanesh; Peyman Salamati; Mohammadreza Ashrafi; Manelie Sadeghi; Javad Tavakoli

    2011-01-01

    "nFebrile convulsion (FC) is the most common seizure disorder in childhood. white blood cell (WBC) and erythrocyte sedimentation rate (ESR) are commonly measured in FC. Trauma, vomiting and bleeding can also lead to WBC and ESR so the blood tests must carefully be interpreted by the clinician. In this cross sectional study 410 children(163 with FC), aged 6 months to 5 years, admitted to Bahrami Children hospital in the first 48 hours of their febrile disease, either with or without seizu...

  12. Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges

    Science.gov (United States)

    Gervino, G.; Mana, G.; Palmisano, C.

    2016-07-01

    The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the "best" spectroscopy data possible in every measurement situation. "Best" is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.

  13. Estimating the background count rate in the energy field from 0.55-2.75 MeV for Chang'E-1 gamma-ray spectrometer

    International Nuclear Information System (INIS)

    With a large geometrical area, the Gamma-ray spectrometer (GRS) onboard Chang'E-1 was designed to detect gamma rays from the moon. The scientific objective is to study the element information including both type and abundance by distinguishing the energy of gamma ray peak relative to elements and calculating the peak area counts. Regretfully, the cislunar spectrum of GRS was not collected. Nevertheless, we give a method to estimate the background count rate in the energy field from 0.55-2.75 MeV. A natural radioactivity count rate map in 2°×2° grids is shown after reducing the background count rate and the uncertainty of the result is discussed.

  14. Leukocyte count and erythrocyte sedimentation rate as diagnostic factors in febrile convulsion.

    Science.gov (United States)

    Rahbarimanesh, Ali Akbar; Salamati, Peyman; Ashrafi, Mohammadreza; Sadeghi, Manelie; Tavakoli, Javad

    2011-01-01

    Febrile convulsion (FC) is the most common seizure disorder in childhood. white blood cell (WBC) and erythrocyte sedimentation rate (ESR) are commonly measured in FC. Trauma, vomiting and bleeding can also lead to WBC and ESR so the blood tests must carefully be interpreted by the clinician. In this cross sectional study 410 children(163 with FC), aged 6 months to 5 years, admitted to Bahrami Children hospital in the first 48 hours of their febrile disease, either with or without seizure, were evaluated over an 18 months period. Age, sex, temperature; history of vomiting, bleeding or trauma; WBC, ESR and hemoglobin were recorded in all children. There was a significant increase of WBC (P<0.001) in children with FC so we can deduct that leukocytosis encountered in children with FC can be due to convulsion in itself. There was no significant difference regarding ESR (P=0.113) between the two groups. In fact, elevated ESR is a result of underlying pathology. In stable patients who don't have any indication of lumbar puncture, there's no need to assess WBC and ESR as an indicator of underlying infection. If the patient is transferred to pediatric ward and still there's no reason to suspect a bacterial infection, there is no need for WBC test. PMID:21960077

  15. Leukocyte Count and Erythrocyte Sedimentation Rate as Diagnostic Factors in Febrile Convulsion

    Directory of Open Access Journals (Sweden)

    Ali Akbar Rahbarimanesh

    2011-07-01

    Full Text Available "nFebrile convulsion (FC is the most common seizure disorder in childhood. white blood cell (WBC and erythrocyte sedimentation rate (ESR are commonly measured in FC. Trauma, vomiting and bleeding can also lead to WBC and ESR so the blood tests must carefully be interpreted by the clinician. In this cross sectional study 410 children(163 with FC, aged 6 months to 5 years, admitted to Bahrami Children hospital in the first 48 hours of their febrile disease, either with or without seizure, were evaluated over an 18 months period. Age, sex, temperature; history of vomiting, bleeding or trauma; WBC, ESR and hemoglobin were recorded in all children. There was a significant increase of WBC (P<0.001 in children with FC so we can deduct that leukocytosis encountered in children with FC can be due to convulsion in itself. There was no significant difference regarding ESR (P=0.113 between the two groups. In fact, elevated ESR is a result of underlying pathology. In stable patients who don't have any indication of lumbar puncture, there's no need to assess WBC and ESR as an indicator of underlying infection. If the patient is transferred to pediatric ward and still there's no reason to suspect a bacterial infection, there is no need for WBC test.

  16. Influence of the decay products of 222Rn on the background counting rate of a sensitive whole-body radioactive monitor

    International Nuclear Information System (INIS)

    The background counting rates of a sensitive whole-body radioactivity monitor and the decay products of 222Rn have been measured simultaneously. The background counting rate and the concentrations do not show a simple relationship because of the deposition of decay products on the surfaces in the shielded space of the monitor. 'Plate out' of decay products at concentrations of the order of 1 pCi/l has been clearly demonstrated. Contributions from airborne radioactivity and deposited radioactivity to the background counting rate are shown to be of the same order. Deposition of radioactivity due to the presence of electrostatic charges on the surface of polythene is shown to be reduced by covering it with a conducting foil. The increase in background counting rate when uncovered polythene phantoms are used in calibration work is demonstrated. It is recommended that the use of bare polythene phantoms must be discontinued in the light of this study. The advantage of high turnover rates of air into the shielded space to prevent accumulation of decay products of 222Rn is likely to be offset by the deposition of radioactivity on surfaces of synthetic materials used in the monitor. The small but variable contribution to the background counting rate from decay products of 222Rn is undesirable when scrupulous precautions are taken to reduce the traces of radioactive impurities in the materials used in fabricating the monitor. (Auth.)

  17. CD4 cell count and viral load-specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use

    DEFF Research Database (Denmark)

    Mocroft, Amanda; Phillips, Andrew N; Gatell, Jose;

    2013-01-01

    CD4 cell count and viral loads are used in clinical trials as surrogate endpoints for assessing efficacy of newly available antiretrovirals. If antiretrovirals act through other pathways or increase the risk of disease this would not be identified prior to licensing. The aim of this study was to ...... was to investigate the CD4 cell count and viral load-specific rates of fatal and nonfatal AIDS and non-AIDS events according to current antiretrovirals....

  18. Reliability of a 99sp(m)Tc-DTPA gamma camera technique for determination of single kidney glomerular filtration rate

    International Nuclear Information System (INIS)

    In a recent paper we described a method for calculation of single kidney glomerular filtration rate (SKGFR) from the 99sp(m)Tc-DTPA renogram obtained by gamma camera. In this paper the reliability of the method was compared to other methods for estimation of GFR in 20 unilaterally nephrectomized patients. The values for SKGFR obtained from the renograms and from the estimated endogenous creatinine clearances according to serum creatinine concentration and a nomogram were both accurate. The reliability of the renography method was significantly better judged by less variance in the estimates. SKGFR calculated from the plasma clearance of 51Cr-EDTA overestimated the renal clearance of inulin on an average by 11.3%. No difference was found in the variance of the values obtained from the renograms and from the plasma clearances of 51Cr-EDTA compared to the renal clearance of inulin. Apart from the inaccuracy in the GFR values calculated from the plasma clearance of 51Cr-EDTA, the reliability of these two methods was equal. (author)

  19. Hair medullary cell counts following low-dose-rate γ-and high-energy neutron irradiation

    International Nuclear Information System (INIS)

    Young adult Balb/c mice with hair follicles synchronously in the middle of the hair growth cycle received whole-body or partial-body doses of γ-radiation or neutron radiation. The follicles were analysed 3 days after irradiation in dose-response experiments, or at various times after a constant dose in time-course experiments, for changes in the number of cells in the forming medulla of the hair in the region just above the germinal matrix of the growing (anagen) hair follicle. Time-course experiments showed that 3 days after irradiating growing follicles (2 or 4 Gy of γ-rays or 1 or 2 Gy of neutrons), maximum reduction in the hair medullary cell count (HMCC) was observed. Survival curves were obtained for γ-rays over a range of dose-rates (4.0-0.0023 Gy/min) using total doses between 0.5 and 5.0 Gy. A survival curve was also obtained for 62 MeV neutrons at a dose-rate of 0.31 Gy/min and doses of 0.1-2.0 Gy. (author)

  20. Aspartic acid racemization rate in narwhal (Monodon monoceros eye lens nuclei estimated by counting of growth layers in tusks

    Directory of Open Access Journals (Sweden)

    Eva Garde

    2012-11-01

    Full Text Available Ages of marine mammals have traditionally been estimated by counting dentinal growth layers in teeth. However, this method is difficult to use on narwhals (Monodon monoceros because of their special tooth structures. Alternative methods are therefore needed. The aspartic acid racemization (AAR technique has been used in age estimation studies of cetaceans, including narwhals. The purpose of this study was to estimate a species-specific racemization rate for narwhals by regressing aspartic acid d/l ratios in eye lens nuclei against growth layer groups in tusks (n=9. Two racemization rates were estimated: one by linear regression (r2=0.98 based on the assumption that age was known without error, and one based on a bootstrap study, taking into account the uncertainty in the age estimation (r2 between 0.88 and 0.98. The two estimated 2kAsp values were identical up to two significant figures. The 2k Asp value from the bootstrap study was found to be 0.00229±0.000089 SE, which corresponds to a racemization rate of 0.00114−yr±0.000044 SE. The intercept of 0.0580±0.00185 SE corresponds to twice the (d/l0 value, which is then 0.0290±0.00093 SE. We propose that this species-specific racemization rate and (d/l0 value be used in future AAR age estimation studies of narwhals, but also recommend the collection of tusks and eyes of narwhals for further improving the (d/l0 and 2kAsp estimates obtained in this study.

  1. The breakdown of the power-law frequency distributions for the hard X-ray peak count rates of solar flares

    International Nuclear Information System (INIS)

    The frequency distribution for several characteristics of a solar flare obeys a power law only above a certain threshold, below which there is an apparent loss of small scale events presumably caused by limited instrumental sensitivity and the corresponding event selection bias. It is also possible that this deviation in the power law can have a physical origin in the source. We propose two fitting models incorporating a power law distribution with a low count rate cutoff plus a noise component for the frequency distribution of the hard X-ray peak count rate of all solar flare samples obtained with HXRBS/SMM and BATSE/CGRO observations. Our new fitting method produces the same power-law index as previously developed methods, a low cutoff of the power-law function and its corresponding noise level, which is consistent with measurements of the actual noise level of the hard X-ray count rate. We found that the fitted low cutoff appears to be related to the noise level, i.e., flares are only recognized when their peak count rate is 3σ greater than noise. Therefore, the fitted low cutoff, which is smaller than the aforementioned threshold, might be attributed to selection bias, and probably not to the actual count rate cutoff in flares at smaller scales. Whether or not the actual low cutoff physically exists needs to be checked by future observations with increased sensitivities

  2. Spectroscopic gamma camera for use in high dose environments

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Kometani, Yutaka; Suzuki, Yasuhiko; Umegaki, Kikuo

    2016-06-01

    We developed a pinhole gamma camera to measure distributions of radioactive material contaminants and to identify radionuclides in extraordinarily high dose regions (1000 mSv/h). The developed gamma camera is characterized by: (1) tolerance for high dose rate environments; (2) high spatial and spectral resolution for identifying unknown contaminating sources; and (3) good usability for being carried on a robot and remotely controlled. These are achieved by using a compact pixelated detector module with CdTe semiconductors, efficient shielding, and a fine resolution pinhole collimator. The gamma camera weighs less than 100 kg, and its field of view is an 8 m square in the case of a distance of 10 m and its image is divided into 256 (16×16) pixels. From the laboratory test, we found the energy resolution at the 662 keV photopeak was 2.3% FWHM, which is enough to identify the radionuclides. We found that the count rate per background dose rate was 220 cps h/mSv and the maximum count rate was 300 kcps, so the maximum dose rate of the environment where the gamma camera can be operated was calculated as 1400 mSv/h. We investigated the reactor building of Unit 1 at the Fukushima Dai-ichi Nuclear Power Plant using the gamma camera and could identify the unknown contaminating source in the dose rate environment that was as high as 659 mSv/h.

  3. Relationship of Total Motile Sperm Count and Percentage Motile Sperm to Successful Pregnancy Rates Following Intrauterine Insemination

    OpenAIRE

    Pasqualotto, Eleonora B.; Daitch, James A.; Hendin, Benjamin N.; Falcone, Tommaso; Thomas, Anthony J.; Nelson, David R; Agarwal, Ashok

    1999-01-01

    Purpose:This study sought (i) to investigate the relationship between postwash total motile sperm count and postwash percentage motile sperm in predicting successful intrauterine insemination and (ii) to determine the minimal postwash total motile sperm count required to achieve pregnancy with intrauterine insemination.

  4. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events.

    Science.gov (United States)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the 'ring' artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. PMID:26086713

  5. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    International Nuclear Information System (INIS)

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. (paper)

  6. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    Science.gov (United States)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset.

  7. Alternative Optimizations of X-ray TES Arrays: Soft X-rays, High Count Rates, and Mixed-Pixel Arrays

    Science.gov (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A.-D.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.

    2007-01-01

    We are developing arrays of superconducting transition-edge sensors (TES) for imaging spectroscopy telescopes such as the XMS on Constellation-X. While our primary focus has been on arrays that meet the XMS requirements (of which, foremost, is an energy resolution of 2.5 eV at 6 keV and a bandpass from approx. 0.3 keV to 12 keV), we have also investigated other optimizations that might be used to extend the XMS capabilities. In one of these optimizations, improved resolution below 1 keV is achieved by reducing the heat capacity. Such pixels can be based on our XMS-style TES's with the separate absorbers omitted. These pixels can added to an array with broadband response either as a separate array or interspersed, depending on other factors that include telescope design and science requirements. In one version of this approach, we have designed and fabricated a composite array of low-energy and broad-band pixels to provide high spectral resolving power over a broader energy bandpass than could be obtained with a single TES design. The array consists of alternating pixels with and without overhanging absorbers. To explore optimizations for higher count rates, we are also optimizing the design and operating temperature of pixels that are coupled to a solid substrate. We will present the performance of these variations and discuss other optimizations that could be used to enhance the XMS or enable other astrophysics experiments.

  8. Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP Code

    International Nuclear Information System (INIS)

    A MCNP simulation study for a prompt gamma neutron activation analysis system for on-line characterisation of cement raw materials has been carried out. A neutron source is located below a conveyor belt. Two detector banks were used: a lower bank positioned symmetrically around the source to detect γ-rays emitted downwards; an upper bank detects the radiation emitted upwards. The count rate of both detector banks for a given composition depends on the bulk density and water content. This paper reports a few corrections which linearise the dependence of the corrected count rate on the mass content

  9. Density and water content corrections in the gamma count rate of a PGNAA system for cement raw material analysis using the MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Carlos; Salgado, Jose [Nuclear and Technological Institute, Sacavem (Portugal); Leitao, Francisco [Technical Centre, Cimpor, Lisbon (Portugal)

    1998-05-11

    A MCNP simulation study for a prompt gamma neutron activation analysis system for on-line characterisation of cement raw materials has been carried out. A neutron source is located below a conveyor belt. Two detector banks were used: a lower bank positioned symmetrically around the source to detect {gamma}-rays emitted downwards; an upper bank detects the radiation emitted upwards. The count rate of both detector banks for a given composition depends on the bulk density and water content. This paper reports a few corrections which linearise the dependence of the corrected count rate on the mass content.

  10. Correspondence between the count rates of the various GM tube survey meters and the initial setting value based on OIL4

    International Nuclear Information System (INIS)

    After the Fukushima Daiichi Nuclear Power Station accident, the Nuclear Emergency Response Guidelines developed by the Nuclear Regulatory Authority of Japan has introduced Operational Interventional Levels (OILs). Particularly, OIL4 that is the screening level for decontamination against surface contaminations on the skin, clothes and others wad adopted, and the default OIL4 value is 13,000 cpm. The guideline mentions that conversion of count rate is necessary when using different models of GM tube survey meters. Thus, count rate measurements using a surface radiation source of 10 cm square were performed with four typical GM tube survey meters in this work, and the instrument efficiencies were compared. In addition, the dependences of the distance from the detector window of the GM tube survey meter to the source are also evaluated between 1 cm and 5 cm. The resulting count rates for OIL4 of the tested GM tubes survey meters varied between 7,000 and 9,000 cpm. Count rates were decreasing as distance from the source increased with the different ratios depending on the model of GM tube survey meter. The screening levels showed between 3,000 and 6,000 cpm when distance between the source and the detector windows were 5 cm. This study suggested the importance to evaluate the intrinsic characteristics of the model and to derive and appropriate screening level at a few centimeters from the screening object in order to detect contamination reliably. (author)

  11. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22

    Science.gov (United States)

    Silva, H. G.; Lopes, I.

    2016-07-01

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  12. Profile counting

    International Nuclear Information System (INIS)

    In ''profile counting'', a counter is moved progressively along the whole length of the body, and is so collimated that, at each position, it records the radioisotope content of the whole width of the body, but of only a short section of its length. If the counting rate at each position is plotted against the distance of the counter from the vertex of the head, the ''profile'' so obtained gives a rapid and quantitative measure of the radioisotope distribution throughout the body. When a suitable isotope is selectively concentrated in certain organs or tissues of the body, the profile will show peaks indicative of the sites and extent of such concentration, the organs concerned being identified by two-dimensional mapping, and profile counts continued to follow the turnover or changes of concentration in these organs. This technique has been used in the study of I131 concentration and metabolism in thyroid carcinomata, and its value in the management of the radioiodine treatment of such tumours will be discussed. It has also been used in examining the distribution of labelled thyroxine and triiodothyronine after intravenous administration, and of yttrium-90 oxide particles after intrapulmonary artery injection; and of other isotopes by gamma radiation or bremsstrahlung. The method gives a clinically convenient simplification of whole body mapping which lends itself particularly to the quantitative comparison of isotope distribution at different intervals after a radioisotope dose, or after successive doses. (author)

  13. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    OpenAIRE

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng; Oh, Jae-Won; Hong, Chein-Soo

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 t...

  14. Cell counting.

    Science.gov (United States)

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  15. Seal Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Database of seal counts from aerial photography. Counts by image, site, species, and date are stored in the database along with information on entanglements and...

  16. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... goal is not to limit carbohydrates in the diet completely, but to make ... with diabetes can better control their blood sugar if they ...

  17. STUDY OF ERYTHROCYTE SEDIMENTATION RATE,SERUM TOTAL PROTEIN, SERUM ALBUMIN,SERUM GLOBULIN AND RED BLOOD CELL COUNT IN DIFFERENT PHASES OF MENSTRUAL CYCLE

    OpenAIRE

    Shilpa,; Girish M; Patil, MR; Malipatil

    2014-01-01

    : BACKGROUND: Menstruation is a phenomenon unique to females and nearly universal experience in women's lives and is poorly understood. It is characterized by co-ordinate sequence of hormonal changes but the changes that occur in the distribution of hematological parameters, biochemical parameters have not been clearly established. AIMS: To compare Erythrocyte Sedimentation Rate (ESR), Serum total protein, Serum albumin, Serum globulin and Red Blood Cell count (RBC) in dif...

  18. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    International Nuclear Information System (INIS)

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable. - Highlights: • Dose rates from natural U, Th and K in bricks were determined for the purpose of TL dating. • Results from neutron activation analysis, alpha counting and X-ray fluorescence analysis were compared. • Good match was observed for K determination. • Systematically lower dose rates from U and Th

  19. Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

    CERN Document Server

    Petriş, M; Caragheorgheopol, G; Deppner, I; Frühauf, J; Herrmann, N; Kiš, M; Loizeau, P-A; Petrovici, M; Rǎdulescu, L; Simion, V; Simon, C

    2016-01-01

    Multi-gap RPC prototypes with readout on a multi-strip electrode were developed for the small polar angle region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The prototypes are based on low resistivity ($\\sim$10$^{10}$ $\\Omega$cm) glass electrodes for performing in high counting rate environment. The strip width/pitch size was chosen such to fulfill the impedance matching with the front-end electronics and the granularity requirements of the innermost zone of the CBM-TOF wall. The in-beam tests using secondary particles produced in heavy ion collisions on a Pb target at SIS18 - GSI Darmstadt and SPS - CERN were focused on the performance of the prototype in conditions similar to the ones expected at SIS100/FAIR. An efficiency larger than 98\\% and a system time resolution in the order of 70~-~80~ps were obtained in high counting rate and high multiplicity environment.

  20. Neutron Monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    CERN Document Server

    Maurin, D; Derome, L; Ghelfi, A; Hubert, G

    2014-01-01

    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation $\\phi$ (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10% level on $\\phi$ values. We find no clear ranking...

  1. A novel method for solving lithium carbonate pellet by binary-acid for tritium production rate measurement by liquid scintillation counting technique

    International Nuclear Information System (INIS)

    Lithium carbonate pellets are frequently used for estimation of tritium production rate in irradiated samples in fusion blanket neutronics experiment and the activity is measured by liquid scintillation counting technique. In this measurement, it is essential to solve the lithium carbonate pellet as much as possible and to mix the pellet solution into scintillation cocktail homogeneously at stable condition. For this purpose, a novel binary-acid method has been developed to solve lithium carbonate and to mix the pellet solution into scintillation cocktail. High solubility is attained by adopting two acids, HNO3 and CH3COOH, and a good compatibility of the pellet solution with scintillator is obtained by emulsion cocktail resulting in high counting efficiency. Defining a product of dissolved mass and counting efficiency as a Figure of Merit (FOM), the present method has higher FOM value than the conventional method and is extremely simple in a sample preparation procedure. In the present work, solubility, compatibility and counting efficiency were systematically examined for different mixing ratios of two acids, and the condition for a maximum FOM was determined. The FOM value of a factor of two higher than the conventional method was finally attained. (author)

  2. Camera calibration

    OpenAIRE

    Andrade-Cetto, J.

    2001-01-01

    This report is a tutorial on pattern based camera calibration for computer vision. The methods presented here allow for the computation of the intrinsic and extrinsic parameters of a camera. These methods are widely available in the literature, and they are only summarized here as an easy and comprehensive reference for researchers at the Institute and their collaborators.

  3. Gamma camera

    International Nuclear Information System (INIS)

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  4. Upgrading of analogue cameras using modern PC based computer

    International Nuclear Information System (INIS)

    Aim: The use of computers along with analogue cameras enables them to perform tasks involving time-activity parameters. The INFORMENU system converts a modern PC computer into a dedicated nuclear medicine computer system with a total cost affordable to emerging economic countries, and easily adaptable to all existing cameras. Materials and Methods: In collaboration with nuclear medicine physicians, an application including hardware and software was developed by a private firm. The system runs smoothly on Windows 98 and its operation is very easy. The main features are comparable to the brand commercial computer systems; such as image resolution until 1024 x 1024, low count loss at high count rate, uniformity correction, integrated graphical and text reporting, and user defined clinical protocols. Results: The system is used in more than 20 private and public institutions. The count loss is less than 1% in all the routine work, improvement of uniformity correction of 3-5 times, improved utility of the analogue cameras. Conclusion: The INFORMENU system improves the utility of analogue cameras permitting the inclusion of dynamic clinical protocols and quantifications, helping the development of the nuclear medicine practice. The operation and maintenance costs were lowered. The end users improve their knowledge of modern nuclear medicine

  5. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    Science.gov (United States)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  6. Aspartic acid racemization rate in narwhal (Monodon monoceros) eye lens nuclei estimated by counting of growth layers in tusks

    DEFF Research Database (Denmark)

    Garde, Eva; Heide-Jørgensen, Mads Peter; Ditlevsen, Susanne;

    2012-01-01

    ) technique has been used in age estimation studies of cetaceans, including narwhals. The purpose of this study was to estimate a species-specific racemization rate for narwhals by regressing aspartic acid D/L ratios in eye lens nuclei against growth layer groups in tusks (n=9). Two racemization rates were...

  7. STUDY OF ERYTHROCYTE SEDIMENTATION RATE,SERUM TOTAL PROTEIN, SERUM ALBUMIN,SERUM GLOBULIN AND RED BLOOD CELL COUNT IN DIFFERENT PHASES OF MENSTRUAL CYCLE

    Directory of Open Access Journals (Sweden)

    Shilpa

    2014-09-01

    Full Text Available : BACKGROUND: Menstruation is a phenomenon unique to females and nearly universal experience in women's lives and is poorly understood. It is characterized by co-ordinate sequence of hormonal changes but the changes that occur in the distribution of hematological parameters, biochemical parameters have not been clearly established. AIMS: To compare Erythrocyte Sedimentation Rate (ESR, Serum total protein, Serum albumin, Serum globulin and Red Blood Cell count (RBC in different phases of menstrual cycle. MATERIALS & METHODS: The present study was carried out on 100 healthy female medical students in the age group of 18 to 23years with normal menstrual cycle. E.S.R, Serum total protein, Serum albumin, Serum globulin and RBC count were studied on 2nd day MP(Menstrual Phase,11th day PP(Proliferative Phase, 22ndday SP(Secretory Phase of menstrual cycle using Wintergreen’s method, semi auto analyzer Erba chem-7(BCG Dye method for serum proteins, Hemo Auto analyzer SYSMEX KX-21 respectively. Statistical analysis was done using SPSS 17.0 Software. To compare means of two independent groups, student’s t- test for independent samples was used. RESULTS: The study revealed that ESR was significantly (P<0.01 higher in menstrual phase compared to proliferative phase. Serum total protein was significantly increased in Secretory Phase (SP compared to Menstrual Phase (MP (P<0.05. Serum albumin was significantly (P<0.05 increased in proliferative phase compared to secretory phase and menstrual phase. Serum globulin was significantly increased in SP compared to PP (P<0.05. Red blood cell count showed no significant changes during various phases of menstrual cycle. CONCLUSION: In the present study we found significantly low level of serum albumin and decreased RBC count though not significant increases rouleaux formation thus increasing ESR in the menstrual phase but serum globulin and serum total protein showed increase in secretory phase which does not

  8. Correlation between glomerular filtration rate with gamma camera and estimated serum creatinine clearance from Cockcroft and Gault's formula

    International Nuclear Information System (INIS)

    The purpose of the present study is to find out the correlation between the glomerular filtration rate (GFR by Gates gamma camera method) and serum creatinine clearance (SCrCl by Cockcroft and Gault's method) within ± 3 weeks’ time difference. Study design retrospectively in 59 patients with serum creatinine value calculated for SCrCl with Cockcroft and Gault's formula as an index parameter for kidney function underwent the 99m-Technitium labeled Di-ethyl Triamine Penta Acetic Acid (99mTc-DTPA) renogram with ECIL planar gamma camera. All data of 59 patients has been divided into Group- I, II, and III based on the time difference of serum creatinine test from 99mTc-DTPA renal GFR tests performed on the same subjects. Serum Creatinine test was carried out within ± 3 days, between ± 4 days and ± 7 days, and between ± 8 days and ± 21 days from the DTPA GFR Test performed in the Group-I, II, and III respectively. Correlation coefficient of Group-I (n = 15) patients showed 0.8198 and P value < 0.001 for GFR and S. Creatinine within ± 3 days. Group-II (n = 17) and Group-III (n = 27) patients having correlation coefficient 0.6194 and 0.589 and P value <0.01 respectively, within ± 21 days. The two methods gave almost identical estimate of GFR even at 3 weeks interval. Study concludes that SCrCl using Cockcroft and Gault's formula could serve as an instant, easy, and reliable method for assessing kidney function. SCrCl with Cockcroft and Gault's formula is more useful for rapid estimation of global GFR for those patients who are not accessible to DTPA renogram with gamma camera. Correlation can be established further with the prospective study in various renal pathophysiological conditions

  9. Determination of Pu content in a Spent Fuel Assembly by Measuring Passive Total Neutron count rate and Multiplication with the Differential Die-Away Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Henzl, Vladimir [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

    2012-07-13

    Inspired by approach of Bignan and Martin-Didier (ESARDA 1991) we introduce novel (instrument independent) approach based on multiplication and passive neutron. Based on simulations of SFL-1 the accuracy of determination of {sup tot}Pu content with new approach is {approx}1.3-1.5%. Method applicable for DDA instrument, since it can measure both multiplication and passive neutron count rate. Comparison of pro's & con's of measuring/determining of {sup 239}Pu{sub eff} and {sup tot}Pu suggests a potential for enhanced diversion detection sensitivity.

  10. Correction of counting rate drop at the end of blood pool ROI curves on the bases of the total visual field curve

    International Nuclear Information System (INIS)

    A correction method based on the constant total counting rate in the final diastolic phase is described. The method should be applied in cases without time standardisation. If Fourier techniques are used for curve smoothing and for the calculation of phase and amplitude images, also users who do not have list mode, hybrid mode or frame mode with direct correction will be able to apply the method of gated blood pool scanning. In fact, time correction at a later stage may even have some advantages. (orig.)

  11. Counting cormorants

    DEFF Research Database (Denmark)

    Bregnballe, Thomas; Carss, David N; Lorentsen, Svein-Håkon;

    2013-01-01

    This chapter focuses on Cormorant population counts for both summer (i.e. breeding) and winter (i.e. migration, winter roosts) seasons. It also explains differences in the data collected from undertaking ‘day’ versus ‘roost’ counts, gives some definitions of the term ‘numbers’, and presents two e...

  12. Evaluation of a dual-panel PET camera design to breast cancer imaging.

    Science.gov (United States)

    Zhang, Jin; Chinn, Gary; Foudray, Angela M K; Habte, Frezghi; Olcott, Peter; Levin, Craig S

    2006-01-01

    We are developing a novel, portable dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging. With a sensitive area of approximately 150 cm(2), this camera is based on arrays of lutetium oxyorthosilicate (LSO) crystals (1x1x3 mm(3)) coupled to 11x11-mm(2) position-sensitive avalanche photodiodes (PSAPD). GATE open source software was used to perform Monte Carlo simulations to optimize the parameters for the camera design. The noise equivalent counting (NEC) rate, together with the true, scatter, and random counting rates were simulated at different time and energy windows. Focal plane tomography (FPT) was used for visualizing the tumors at different depths between the two detector panels. Attenuation and uniformity corrections were applied to images. PMID:17646005

  13. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Petasecca, M.; Loo, K. J.; Safavi-Naeini, M.; Han, Z.; Metcalfe, P. E.; Lerch, M. L. F.; Qi, Y.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Meikle, S. [Brain and Mind Research Institute, University of Sydney, NSW 2006, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Pospisil, S.; Jakubek, J. [Institute of Experimental and Applied Physics, Czech Technical University of Prague, Prague (Czech Republic); Bucci, J. A. [St George Cancer Care Centre, St George Hospital, Kogarah, NSW 2217 (Australia); Zaider, M. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 (United States)

    2013-04-15

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real

  14. BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy

    International Nuclear Information System (INIS)

    Purpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5–3 mm for a 10–60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for

  15. Scintillation camera and positron camera

    International Nuclear Information System (INIS)

    A short description is given of earlier forms of the gamma-ray camera. The principle of operation of the scintillation camera is reviewed. Here the locations of scintillations occurring in a flat thallium-activated sodium iodide crystal are determined from the amount of light picked up by a number of phototubes simultaneously viewing the crystal. The signals from the phototubes are fed to a deflection computor circuit which reproduces the scintillations on a cathode-ray tube screen. There they are photographed by a conventional scope camera. Examples are shown of the resolution now obtained as shown by test phantoms. A discussion is presented of the camera's use in visualizing the thyroid in clinical practice. (author)

  16. Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  17. Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts.

    Directory of Open Access Journals (Sweden)

    Colin J Torney

    Full Text Available Accurate and on-demand animal population counts are the holy grail for wildlife conservation organizations throughout the world because they enable fast and responsive adaptive management policies. While the collection of image data from camera traps, satellites, and manned or unmanned aircraft has advanced significantly, the detection and identification of animals within images remains a major bottleneck since counting is primarily conducted by dedicated enumerators or citizen scientists. Recent developments in the field of computer vision suggest a potential resolution to this issue through the use of rotation-invariant object descriptors combined with machine learning algorithms. Here we implement an algorithm to detect and count wildebeest from aerial images collected in the Serengeti National Park in 2009 as part of the biennial wildebeest count. We find that the per image error rates are greater than, but comparable to, two separate human counts. For the total count, the algorithm is more accurate than both manual counts, suggesting that human counters have a tendency to systematically over or under count images. While the accuracy of the algorithm is not yet at an acceptable level for fully automatic counts, our results show this method is a promising avenue for further research and we highlight specific areas where future research should focus in order to develop fast and accurate enumeration of aerial count data. If combined with a bespoke image collection protocol, this approach may yield a fully automated wildebeest count in the near future.

  18. Estimating Thermal Energy Emission and Eruption Rates at Guatemalan Volcanoes Using Thermal Data From a FLIR Camera, ASTER and MODIS Data Sources

    Science.gov (United States)

    Bowman, L. J.; Kapelanczyk, L.; Colvin, A. S.; Matias, O.; Rose, W. I.

    2008-12-01

    Analysis of thermal images taken with a Forward-Looking Infrared camera has allowed us to establish a baseline data set for three open vent volcanoes in Guatemala that vary in composition from dacite (Santiaguito) to basalt (Fuego and Pacaya). This allows for the evaluation of eruption rates using remote sensing and provides satellite thermal remote sensing validations. The field data were collected during two field trips in 2008. The Santiaguito data have been atmospherically corrected and analyzed to allow estimates of the emitted thermal energy and also the equivalent eruption rate (Rose, et al 2008). Using similar techniques, data from Pacaya volcano were analyzed to obtain estimated emission of thermal energy along with observations of vent morphology. The long term goal is to employ a variety of thermal remote sensing tools, including data comparison from ASTER and MODIS sources, in order to closely monitor eruption rates at open vent volcanoes, such as Santiaguito, Fuego and Pacaya. Ultimately, eruption rate estimates at these volcanoes may lead to improved hazard forecasts.

  19. Asthma and myocardial infarction inpatient hospitalization and emergency room visit counts and rates by county, year and month of admission, age group, race/ethnicity and gender of California residents, 2000-2009.

    Data.gov (United States)

    California Environmental Health Tracking Program — This dataset contains case counts, rates, and confidence intervals of asthma (ICD9-CM 493.0-493.9) and myocardial infarction (ICD9-CM 410) inpatient...

  20. Double-stage low-pressure parallel plate avalanche counter. A high count rate charged particle detector

    International Nuclear Information System (INIS)

    This paper investigates the properties of a double-stage parallel plate avalanche counter (PPAC), operated at low gas pressures (5-20 Torr). Substantial improvement in the detector response to light particles, rate capability (∼1 MHz/mm2) and energy resolution were observed in comparison with those of conventional PPACs. The detector is a very attractive option for charged particles detection in intense accelerators. (author)

  1. Quality control evaluation of 'Gamma PF' interfaces performance for gamma cameras upgrading according to the IAEA TECDOC 602/S tests

    International Nuclear Information System (INIS)

    Aim: The International Atomic Energy Agency (IAEA) had developed a model project around the world in order to support the upgrading of old Gamma cameras, connecting them with modern PC computers through interfaces with image improving capabilities. The aim of this work was to evaluate the performance of 'Gamma PF' interfaces, installed in local area network, using the TECDOC 602/S Quality Control Tests. Materials and Methods: 3 interfaces were used. 2 of them working for count uniformity and energy corrections and other with only count uniformity correction. All of them were Gamma Camera Interface Card Gamma PF - version 97./, which country of origin is Slovenia. 3 Gamma cameras were used, Picker Dyna 415, Picker 312-C and Ohio Nuclear Sigma 410. One Server and four Olidata Computers were used, three of them were connected to the gamma cameras and the other was used for image processing workstation. The tests for evaluating gamma camera-computer system described in the TECDOC 602/S from IAEA were used. Results: A significant improvement in the field uniformity of all gamma cameras was obtained with the online correction system of interfaces. No effect was observed on Resolution. With bar phantoms the visualization is increased though the resolution didn't change. The count rate tests showed an important loss of count using the interfaces. This evaluation is congruent with the observations found in test for checking acquisition times, in static and dynamic modalities. There was no change in the evaluation of linearity. Conclusion: The interfaces were most powerful utility in the correction of uniformity of gamma camera fields, showing limited performance in other evaluation tests like resolution and linearity. The design and performance of these gamma cameras should be done in order to improve the management of counting loss and their system for static and dynamic acquisitions

  2. CCD Camera

    Science.gov (United States)

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  3. CD4 count and viral load specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use

    Directory of Open Access Journals (Sweden)

    A Mocroft

    2012-11-01

    Full Text Available Background CD4 and viral loads are used in clinical trials as surrogate endpoints for assessing efficacy of newly available antiretrovirals. If antiretrovirals act through other pathways or negatively affect the risk of disease this would not be identified prior to licensing. The aims of this study were to investigate the CD4 and viral load specific rates of fatal and non-fatal AIDS and non-AIDS events according to current antiretrovirals. Methods Poisson regression was used to compare overall events (fatal or non-fatal AIDS, non-AIDS or death, AIDS events (fatal and non-fatal or non-AIDS events (fatal or non-fatal for specific nucleoside pairs and third drugs used with>1000 person-years of follow-up (PYFU after January 1st 2001. Results 9801 patients were included. The median baseline date was January 2004 (interquartile range [IQR] January 2001–February 2007, age was 40.4 (IQR 34.6–47.3 years, and time since starting cART was 3.3 (IQR 0.9–5.1 years. At baseline, the median nadir CD4 was 162 (IQR 71–257/mm3, baseline CD4 was 390 (IQR 249–571/mm3, viral load was 1.9 (IQR 1.7–3.3 log10copies/ml and 2961 (30.2% had a prior AIDS diagnosis and 6.4 years prior to baseline. During 42372.5 PYFU, 1203 (437 AIDS and 766 non-AIDS events occurred. The overall event rate was 2.8 per 100 PYFU (95% confidence interval [CI] 2.7–3.0, of AIDS events was 1.0 (95% CI 0.9–1.1 and of non-AIDS events was 1.8 (95% CI 1.7–1.9. Of the AIDS events, 53 (12.1%were fatal as were 239 (31.2% of the non-AIDS events. After adjustment, there was weak evidence of a difference in the overall events rates between nucleoside pairs (global p-value=0.084, and third drugs (global p-value=0.031. Compared to zidovudine/lamivudine, patients taking abacavir/lamivudine (adjusted incidence rate ratio [aIRR] 1.22; 95% CI 0.99–1.49 and abacavir plus one other nucleoside (aIRR 1.51; 95% CI 1.14–2.02 had an increased incidence of overall events. Comparing the third drugs

  4. Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera

    International Nuclear Information System (INIS)

    We investigated a pinhole imaging system for independent in vivo monitoring and verification of high dose rate (HDR) brachytherapy treatment. The system consists of a high-resolution pinhole collimator, an x-ray fluoroscope, and a standard radiographic screen-film combination. Autofluoroscopy provides real-time images of the in vivo Ir-192 HDR source for monitoring the source location and movement, whereas autoradiography generates a permanent record of source positions on film. Dual-pinhole autoradiographs render stereo-shifted source images that can be used to reconstruct the source dwell positions in three dimensions. The dynamic range and spatial resolution of the system were studied with a polystyrene phantom using a range of source strengths and dwell times. For the range of source activity used in HDR brachytherapy, a 0.5 mm diameter pinhole produced sharp fluoroscopic images of the source within the dynamic range of the fluoroscope. With a source-to-film distance of 35 cm and a 400 speed screen-film combination, the same pinhole yielded well recognizable images of a 281.2 GBq (7.60 Ci) Ir-192 source for dwell times in the typical clinical range of 2 to 400 s. This 0.5 mm diameter pinhole could clearly resolve source positions separated by lateral displacements as small as 1 mm. Using a simple reconstruction algorithm, dwell positions in a phantom were derived from stereo-shifted dual-pinhole images and compared to the known positions. The agreement was better than 1 mm. A preliminary study of a patient undergoing HDR treatment for cervical cancer suggests that the imaging method is clinically feasible. Based on these studies we believe that the pinhole imaging method is capable of providing independent and reliable real-time monitoring and verification for HDR brachytherapy

  5. Star counts

    International Nuclear Information System (INIS)

    The number of stars counted along a particular line of sight depends on the spatial distribution of stars, the luminosity function, and the absorption. Thus star count programs designed to constrain or determine one or more of these functions. Early efforts to understand the structure of our Galaxy, including the fundamentals of stellar statistics, were largely based on work that involved star counts. Since then a growing appreciation has developed for the variety of forms the density function and the luminosity function can take, especially the recognition of different stellar populations, each with different density and luminosity functions. In the simplest formulation two distinct populations are considered: disk and halo. This suggests two distinct formation histories, but uncertainty in the picture remains. (Auth.)

  6. Determination of total Pu content in a Spent Fuel Assembly by Measuring Passive Neutron Count rate and Multiplication with the Differential Die-Away Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Henzl, Vladimir [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

    2012-07-18

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

  7. Count rate studies of a box-shaped PET breast imaging system comprised of position sensitive avalanche photodiodes utilizing monte carlo simulation.

    Science.gov (United States)

    Foudray, Angela M K; Habte, Frezghi; Chinn, Garry; Zhang, Jin; Levin, Craig S

    2006-01-01

    We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi). PMID:17645997

  8. Understanding Blood Counts

    Science.gov (United States)

    ... Lab and Imaging Tests Understanding Blood Counts Understanding Blood Counts Understanding Blood Counts SHARE: Print Glossary Blood cell counts give ... your blood that's occupied by red cells. Normal Blood Counts Normal blood counts fall within a range ...

  9. A user configurable data acquisition and signal processing system for high-rate, high channel count applications

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Arwa, E-mail: arwa.salim@eee.strath.ac.uk [University of Strathclyde, Scotland (United Kingdom); Crockett, Louise [University of Strathclyde, Scotland (United Kingdom); McLean, John; Milne, Peter [D-TACQ Solutions, Scotland (United Kingdom)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The development of a new digital signal processing platform is described. Black-Right-Pointing-Pointer The system will allow users to configure the real-time signal processing through software routines. Black-Right-Pointing-Pointer The architecture of the DRUID system and signal processing elements is described. Black-Right-Pointing-Pointer A prototype of the DRUID system has been developed for the digital chopper-integrator. Black-Right-Pointing-Pointer The results of acquisition on 96 channels at 500 kSamples/s per channel are presented. - Abstract: Real-time signal processing in plasma fusion experiments is required for control and for data reduction as plasma pulse times grow longer. The development time and cost for these high-rate, multichannel signal processing systems can be significant. This paper proposes a new digital signal processing (DSP) platform for the data acquisition system that will allow users to easily customize real-time signal processing systems to meet their individual requirements. The D-TACQ reconfigurable user in-line DSP (DRUID) system carries out the signal processing tasks in hardware co-processors (CPs) implemented in an FPGA, with an embedded microprocessor ({mu}P) for control. In the fully developed platform, users will be able to choose co-processors from a library and configure programmable parameters through the {mu}P to meet their requirements. The DRUID system is implemented on a Spartan 6 FPGA, on the new rear transition module (RTM-T), a field upgrade to existing D-TACQ digitizers. As proof of concept, a multiply-accumulate (MAC) co-processor has been developed, which can be configured as a digital chopper-integrator for long pulse magnetic fusion devices. The DRUID platform allows users to set options for the integrator, such as the number of masking samples. Results from the digital integrator are presented for a data acquisition system with 96 channels simultaneously acquiring data

  10. An investigation of performance parameters and evaluation procedures for scintillation cameras in medical radionuclide imaging

    International Nuclear Information System (INIS)

    The purpose of this thesis was to investigate scintillation camera performance parameters critically in order to establish an optimum integrated performance evaluation program. The emphasis was on developing quantitative procedures for efficient weekly quality control procedures. The investigation was conducted in three phases. In the first phase, scintillation camera performance parameters were surveyed to identify and select the most important parameters for performance evaluation. The selection of the parameters were based on the theory of the operation of scintillation cameras. The parameters selected were classified into four preliminary performance evaluation protocols. In the second phase, the following performance parameters were investigated: intrinsic energy and spatial resolution, intrinsic count rate characteristics, intrinsic uniformity and linearity, system spatial resolution, system sensitivity, system uniformity, multiple window spatial registration and parameters for the evaluation of a whole-body scanning option. The standardisation process included establishing the degree to which each parameter was being influenced by the relevant factors from the following list: input energy spectrum changes, acquisition count rate increases, the presence or absence of scatter medium, energy window width and position, source-detector geometry, count density, computer magnification and the activation of a high count rate mo de switch. In the third phase standardised parameters were implemented in the suggested performance evaluation protocols and the results evaluated

  11. Far-Ultraviolet Number Counts of Field Galaxies

    CERN Document Server

    Voyer, Elysse N; Teplitz, Harry I; Siana, Brian D; de Mello, Duilia F

    2011-01-01

    The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star-formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and small areas within the GOODS-North and -South fields. These data were obtained with the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts sample a FUV AB magnitude range from 21-29 and cover a total area of 15.9 arcmin^2, ~4 times larger than the most recent HST FUV study. Our FUV counts intersect bright FUV GALEX counts at 22.5 mag and they show good agreement with recent semi-analytic models based on dark matter "merger trees" by Somerville et al. (2011). We show that the number counts are ~35% lower than in previous HST studies that use smaller areas. The differences between these studies are likely the result of cosmic variance; our new data cover more lines of sight and more area than pre...

  12. CAOS-CMOS camera.

    Science.gov (United States)

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems. PMID:27410361

  13. Upgrading of analogue gamma cameras with PC based computer system

    International Nuclear Information System (INIS)

    Full text: Dedicated nuclear medicine computers for acquisition and processing of images from analogue gamma cameras in developing countries are in many cases faulty and technologically obsolete. The aim of the upgrading project of International Atomic Energy Agency (IAEA) was to support the development of the PC based computer system which would cost 5.000 $ in total. Several research institutions from different countries (China, Cuba, India and Slovenia) were financially supported in this development. The basic demands for the system were: one acquisition card an ISA bus, image resolution up to 256x256, SVGA graphics, low count loss at high count rates, standard acquisition and clinical protocols incorporated in PIP (Portable Image Processing), on-line energy and uniformity correction, graphic printing and networking. The most functionally stable acquisition system tested on several international workshops and university clinics was the Slovenian one with a complete set of acquisition and clinical protocols, transfer of scintigraphic data from acquisition card to PC through PORT, count loss less than 1 % at count rate of 120 kc/s, improvement of integral uniformity index by a factor of 3-5 times, reporting, networking and archiving solutions for simple MS network or server oriented network systems (NT server, etc). More than 300 gamma cameras in 52 countries were digitized and put in the routine work. The project of upgrading the analogue gamma cameras yielded a high promotion of nuclear medicine in the developing countries by replacing the old computer systems, improving the technological knowledge of end users on workshops and training courses and lowering the maintenance cost of the departments. (author)

  14. Performance characteristics of the novel PETRRA positron camera

    CERN Document Server

    Ott, R J; Erlandsson, K; Reader, A; Duxbury, D; Bateman, J; Stephenson, R; Spill, E

    2002-01-01

    The PETRRA positron camera consists of two 60 cmx40 cm annihilation photon detectors mounted on a rotating gantry. Each detector contains large BaF sub 2 scintillators interfaced to large area multiwire proportional chambers filled with a photo-sensitive vapour (tetrakis-(dimethylamino)-ethylene). The spatial resolution of the camera has been measured as 6.5+-1.0 mm FWHM throughout the sensitive field-of-view (FoV), the timing resolution is between 7 and 10 ns FWHM and the detection efficiency for annihilation photons is approx 30% per detector. The count-rates obtained, from a 20 cm diameter by 11 cm long water filled phantom containing 90 MBq of sup 1 sup 8 F, were approx 1.25x10 sup 6 singles and approx 1.1x10 sup 5 cps raw coincidences, limited only by the read-out system dead-time of approx 4 mu s. The count-rate performance, sensitivity and large FoV make the camera ideal for whole-body imaging in oncology.

  15. Left ventricular ejection fraction from gated SPET myocardial perfusion studies: a method based on the radial distribution of count rate density across the myocardial wall

    International Nuclear Information System (INIS)

    In this article a method based on the assumption that the average position of the myocardial wall can be localized by means of statistical analysis of the distribution count density, and not on edge detection, is used to measure LVEF. SPET myocardial perfusion images, gated in eight time bins, were recorded in 50 patients 60 min after the injection of 925 MBq technetium-99m tetrofosmin. Masking of non-myocardial structures and thresholding resulted in images in which only myocardial walls had significant non-zero values. The distance of the wall relative to the centre of the cavity was calculated in the three-dimentional space as the first moment of the count rate distribution along radii originating in the centre of the cavity. LVEF was calculated using, for each time bin, the sum of the cube of all distances as an estimate of the cavity volume. The method required minimal operator interventions and was successful in all patients, including those with severe perfusion defects. Intraobserver and interobserver variability was excellent, with regression coefficients of 0.97 and standard deviations of 4.5% and 4.7%, respectively. For 30 patients, the measurements were validated against planar equilibrium radionuclide angiography (ERNA) that was obtained within an interval of 1 week. LVEF ranged from 12% to 88%. Agreement between the two methods was excellent. The Bland-Altman analysis did not show any apparent trend in the differences between ERNA and gated SPET over a wide range of ejection fractions. The standard deviation of the differences was 3.1%. In addition no relationship was found between the two methods and the severity of perfusion defects. (orig.). With 7 figs

  16. Short on camera geometry and camera calibration

    OpenAIRE

    Magnusson, Maria

    2010-01-01

    We will present the basic theory for the camera geometry. Our goal is camera calibration and the tools necessary for this. We start with homogeneous matrices that can be used to describe geometric transformations in a simple manner. Then we consider the pinhole camera model, the simplified camera model that we will show how to calibrate. A camera matrix describes the mapping from the 3D world to a camera image. The camera matrix can be determined through a number of corresponding points measu...

  17. Anger camera dead time and its computer correction in dynamic radionuclide studies

    International Nuclear Information System (INIS)

    Several methods used for the measurement of the camera's dead time are described. Two program variants were dra wn up to create histograms of the course of radioactivity in the selected zones of interest during dynamic studies with computer correction of dead time; these variants are that part of the system of computer and control programs which were written for the Clincom device. The first variant performs the correction on the basis of recorded count rate in the whole display, while the second variant uses an additional reference source positioned in a suitable place of the cameras field of vision. (author)

  18. Observation of 511 keV peak high count rate in studying (n,x) and (g,x) reactions on terbium

    CERN Document Server

    Kadenko, I

    2011-01-01

    Experimental investigation of (n, x) and (g, x) reactions on Tb-159 with activation technique was carried out. Tb specimens of natural composition were irradiated with (d-d) and (d-t) neutrons using NG-300 neutron generator. Additionally the series of experiments were performed with application of M-30 microtrone as a source of electrons for bremsstrahlung spectra production with end point energies 7.5, 9.5, 11, 11.5, 12, 12.5, 16.5, and 18.5 MeV. Instrumental spectra of Tb specimens were measured with HPGe and Ge(Li) spectrometers. Within the main scope of nuclear reactions research and accurate {\\gamma}-spectrometry of Tb specimens a high count rate in 511 keV {\\gamma}-line peak was observed. The first-priority analysis of Tb specimen impurities was done with further attempts to explain a result of observations with reference to the specific nuclear properties of Tb which could appear due to complex GDR structure. The energy threshold of the process detected was determined around 12.2 MeV. The lower estimat...

  19. Quantitative clinical uptake measurements using conjugate counting

    International Nuclear Information System (INIS)

    While the use of conjugate counting for determination of organ uptake in human subjects has been extensively described, in the present study the determination of the organ uptake of ortho-iodohippurate presented several opportunities for validation of the in vivo counting data. Ortho-iodohippurate is distributed in the extracellular space, is largely extracted on each pass through the kidneys, and is not significantly deiodinated in vivo. Thus, the kidney uptake rate should be proportional to the blood level, the appearance rate of activity in the bladder is equal to the disappearance rate from the kidneys, and direct measurement of activity in the urine after voiding provides an internal standard for imaging measurements of bladder activity. Since the activity levels in the kidneys, bladder, and remainder of the body changed fairly rapidly, especially in the first 20 to 30 minutes following injection, posterior images of the trunk including kidneys and bladder were obtained continuously using a gamma camera fitted with a diverging collimator for 30 minutes and then at intervals for several hours. Simultaneous conjugate counting determinations were made using a whole body scanning system previously described at these meetings. Imaging data corrected for decay and adjacent background were fitted by least squares methods to curves representing a sum of exponentials, and the curves were normalized to the conjugate uptake measurements. The uptake curves of the kidneys and bladder matched well with the direct measurements of the urinary excretion. Data were collected in 16 normal subjects, and the estimated absorbed dose was calculated for the kidneys, the bladder and the remainder of the body for seven radioisotopes of iodine. 4 references, 6 figures, 2 tables

  20. Photon counting digital holography

    Science.gov (United States)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  1. Feasibility study on pinhole camera system for online dosimetry in boron neutron capture therapy

    International Nuclear Information System (INIS)

    The feasibility of a pinhole camera system for online dosimetry in boron neutron capture therapy (BNCT) was studied. A prototype system was designed and built. Prompt γ-rays from the 10B(n,α)7Li reaction from a phantom irradiated with neutrons were detected with the prototype system. An image was reconstructed from the experimental data. The reconstructed image showed a good separation of the two borated regions in the phantom. The counting rates and signal-to-noise ratio when using the system in actual BNCT applications are also discussed. - Author-Highlights: • The feasibility of a pinhole camera system for online dosimetry in BNCT was studied. • A prototype pinhole camera system for online dose imaging for BNCT was built. • Prompt γ-rays from a phantom irradiated with neutrons were detected. • The boron-10 reaction rate distribution was reconstructed from the experimental data

  2. Carica papaya Leaves Juice Significantly Accelerates the Rate of Increase in Platelet Count among Patients with Dengue Fever and Dengue Haemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Soobitha Subenthiran

    2013-01-01

    Full Text Available The study was conducted to investigate the platelet increasing property of Carica papaya leaves juice (CPLJ in patients with dengue fever (DF. An open labeled randomized controlled trial was carried out on 228 patients with DF and dengue haemorrhagic fever (DHF. Approximately half the patients received the juice, for 3 consecutive days while the others remained as controls and received the standard management. Their full blood count was monitored 8 hours for 48 hours. Gene expression studies were conducted on the ALOX 12 and PTAFR genes. The mean increase in platelet counts were compared in both groups using repeated measure ANCOVA. There was a significant increase in mean platelet count observed in the intervention group (P<0.001 but not in the control group 40 hours since the first dose of CPLJ. Comparison of mean platelet count between intervention and control group showed that mean platelet count in intervention group was significantly higher than control group after 40 and 48 hours of admission (P<0.01. The ALOX 12 (FC  =  15.00 and PTAFR (FC  =  13.42 genes were highly expressed among those on the juice. It was concluded that CPLJ does significantly increase the platelet count in patients with DF and DHF.

  3. Photon counting systems

    International Nuclear Information System (INIS)

    This paper is a review of the various photon counting systems, used in astronomy, at optical wavelengths. Technological differences between available devices are introduced according to the processes applied to these photoelectrons (multiplication and/or acceleration), and their impact targets (phosphors, photodetectors, resistive or conductive anodes...). Two detection processes are involved: threshold discrimination above noise for most types of devices, and analog measurement for systems using resistive and wedge-and-strip anodes. Devices currently used for astronomical observations are presented, and their performance characteristics. These devices are: photomultipliers, which are monopixel detectors, using multiplication with dynodes; images intensifiers cameras, most frequently read with CCDs; analog devices with resistive or wedge-and-strip anodes, behind microchannel plates (MCP); Digicons, using direct electronic bombardment; the MAMA detector, with coincidence anodes behind MCP; and then the PAPA detector using masks encoding readout. Dead time effects, which define the dynamic range are presented with some details. Finally, because of the improvement of low level readout noise devices (CCDs), the field of application of the photon counting techniques confines to the blue and the UV part of the spectrum, at low signal to noise ratios

  4. The Dark Energy Survey Camera (DECam)

    International Nuclear Information System (INIS)

    The Dark Energy Survey (DES) is a next generation optical survey aimed at understanding the expansion rate of the Universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera that will be mounted at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. CCD production has finished, yielding roughly twice the required 62 2k x 4k detectors. The construction of DECam is nearly finished. Integration and commissioning on a 'telescope simulator' of the major hardware and software components, except for the optics, recently concluded at Fermilab. Final assembly of the optical corrector has started at University College, London. Some components have already been received at CTIO. 'First-light' will be sometime in 2012. This oral presentation concentrates on the technical challenges involved in building DECam (and how we overcame them), and the present status of the instrument.

  5. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  6. Proactive PTZ Camera Control

    Science.gov (United States)

    Qureshi, Faisal Z.; Terzopoulos, Demetri

    We present a visual sensor network—comprising wide field-of-view (FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras—capable of automatically capturing closeup video of selected pedestrians in a designated area. The passive cameras can track multiple pedestrians simultaneously and any PTZ camera can observe a single pedestrian at a time. We propose a strategy for proactive PTZ camera control where cameras plan ahead to select optimal camera assignment and handoff with respect to predefined observational goals. The passive cameras supply tracking information that is used to control the PTZ cameras.

  7. Stress- and Growth Rate-Related Differences between Plate Count and Real-Time PCR Data during Growth of Listeria monocytogenes▿ †

    OpenAIRE

    Reichert-Schwillinsky, Franziska; Pin, Carmen; Dzieciol, Monika; Wagner, Martin; Hein, Ingeborg

    2009-01-01

    To assess the overestimation of bacterial cell counts in real-time PCR in relation to stress and growth phase, four different strains of L. monocytogenes were exposed to combinations of osmotic stress (0.5 to 8% [vol/vol] NaCl) and acid stress (pH 5 to 7) in a culture model at a growth temperature of 10°C or were grown under optimal conditions. Growth curves obtained from real-time PCR, optical density, and viable count data were compared. As expected, optical density data revealed entirely d...

  8. Simulation of the functioning of a gamma camera using Monte Carlo method; Simulacion del funcionamiento de una camara gamma mediante metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Oramas Polo, I.

    2014-07-01

    This paper presents the simulation of the gamma camera Park Isocam II by Monte Carlo code SIMIND. This simulation allows detailed assessment of the functioning of the gamma camera. The parameters evaluated by means of the simulation are: the intrinsic uniformity with different window amplitudes, the system uniformity, the extrinsic spatial resolution, the maximum rate of counts, the intrinsic sensitivity, the system sensitivity, the energy resolution and the pixel size. The results of the simulation are compared and evaluated against the specifications of the manufacturer of the gamma camera and taking into account the National Protocol for Quality Control of Nuclear Medicine Instruments of the Cuban Medical Equipment Control Center. The simulation reported here demonstrates the validity of the SIMIND Monte Carlo code to evaluate the performance of the gamma camera Park Isocam II and as result a computational model of the camera has been obtained. (Author)

  9. Performance of a direct detection camera for off-axis electron holography.

    Science.gov (United States)

    Chang, Shery L Y; Dwyer, Christian; Barthel, Juri; Boothroyd, Chris B; Dunin-Borkowski, Rafal E

    2016-02-01

    The performance of a direct detection camera (DDC) is evaluated in the context of off-axis electron holographic experiments in a transmission electron microscope. Its performance is also compared directly with that of a conventional charge-coupled device (CCD) camera. The DDC evaluated here can be operated either by the detection of individual electron events (counting mode) or by the effective integration of many such events during a given exposure time (linear mode). It is demonstrated that the improved modulation transfer functions and detective quantum efficiencies of both modes of the DDC give rise to significant benefits over the conventional CCD cameras, specifically, a significant improvement in the visibility of the holographic fringes and a reduction of the statistical error in the phase of the reconstructed electron wave function. The DDC's linear mode, which can handle higher dose rates, allows optimisation of the dose rate to achieve the best phase resolution for a wide variety of experimental conditions. For suitable conditions, the counting mode can potentially utilise a significantly lower dose to achieve a phase resolution that is comparable to that achieved using the linear mode. The use of multiple holograms and correlation techniques to increase the total dose in counting mode is also demonstrated. PMID:26630072

  10. Design study of a Compton camera for prompts-gamma imaging during ion beam therapy

    International Nuclear Information System (INIS)

    Ion beam therapy is an innovative radiotherapy technique using mainly carbon ion and proton irradiations. Its aim is to improve the current treatment modalities. Because of the sharpness of the dose distributions, a control of the dose if possible in real time is highly desirable. A possibility is to detect the prompt gamma rays emitted subsequently to the nuclear fragmentations occurring during the treatment of the patient. In a first time two different Compton cameras (double and single scattering) have been optimised by means of Monte Carlo simulations. The response of the camera to a photon point source with a realistic energy spectrum was studied. Then, the response of the camera to the irradiation of a water phantom by a proton beam was simulated. It was first compared with measurement performed with small-size detectors. Then, using the previous measurements, we evaluated the counting rates expected in clinical conditions. In the current set-up of the camera, these counting rates are pretty high. Pile up and random coincidences will be problematic. Finally we demonstrate that the detection system is capable to detect a longitudinal shift in the Bragg peak of ± 5 mm, even with the current reconstruction algorithm. (author)

  11. Large-field-of-view (LFOV) scintillation cameras

    International Nuclear Information System (INIS)

    Large-field-of-view scintillation cameras are general purpose, cost effective, imaging devices if one maximizes the use of the crystal with respect to the size of the object under study. This means using parallel-hole collimation for large-organ systems to reduce the number of views necessary to complete a study or to obtain a better appreciation of continuity of structure. A further increase in photon utilization is gained for small-organ imaging with converging collimators, which produce images with superior resolution and sensitivity to that obtained with equivalent parallel-hole collimators. The disadvantages of converging collimators, including decreasing field of view and distortion with depth, have been insignificant in light of the advantages gained. Larger detectors with converging collimation result in much higher photon input rates to the scintillation crystal in routine clinical studies than has occurred in the past. This requirement places added burdens on electronic circuitry of the cameras. Count rate processing capabilities of 200,000 counts per second are currently available and are necessary for present generation first-pass cardiovascular studies

  12. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm

    NARCIS (Netherlands)

    Li, D.D.U.; Arlt, J.; Tyndall, D.; Walker, R.; Richardson, J.; Stoppa, D.; Charbon, E.; Henderson, R.K.

    2011-01-01

    A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 μm compl

  13. CD4 cell count and viral load-specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use

    NARCIS (Netherlands)

    Mocroft, A.; Phillips, A.N.; Gatell, J.; Horban, A.; Ledergerber, B.; Zilmer, K.; Jevtovic, D.; Maltez, F.; Podlekareva, D.; Lundgren, J.D.; Burger, D.M.

    2013-01-01

    BACKGROUND: CD4 cell count and viral loads are used in clinical trials as surrogate endpoints for assessing efficacy of newly available antiretrovirals. If antiretrovirals act through other pathways or increase the risk of disease this would not be identified prior to licensing. The aim of this stud

  14. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    International Nuclear Information System (INIS)

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible

  15. Kids Count Data Sheet, 2000.

    Science.gov (United States)

    Annie E. Casey Foundation, Baltimore, MD.

    Data from the 50 United States are listed for 1997 from Kids Count in an effort to track state-by-state the status of children in the United States and to secure better futures for all children. Data include percent low birth weight babies; infant mortality rate; child death rate; rate of teen deaths by accident, homicide, and suicide; teen birth…

  16. Characterization of the Series 1000 Camera System

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J; Moody, J; Bell, P; Landen, O

    2004-04-07

    The National Ignition Facility requires a compact network addressable scientific grade CCD camera for use in diagnostics ranging from streak cameras to gated x-ray imaging cameras. Due to the limited space inside the diagnostic, an analog and digital input/output option in the camera controller permits control of both the camera and the diagnostic by a single Ethernet link. The system consists of a Spectral Instruments Series 1000 camera, a PC104+ controller, and power supply. The 4k by 4k CCD camera has a dynamic range of 70 dB with less than 14 electron read noise at a 1MHz readout rate. The PC104+ controller includes 16 analog inputs, 4 analog outputs and 16 digital input/output lines for interfacing to diagnostic instrumentation. A description of the system and performance characterization is reported.

  17. It's not the pixel count, you fool

    Science.gov (United States)

    Kriss, Michael A.

    2012-01-01

    The first thing a "marketing guy" asks the digital camera engineer is "how many pixels does it have, for we need as many mega pixels as possible since the other guys are killing us with their "umpteen" mega pixel pocket sized digital cameras. And so it goes until the pixels get smaller and smaller in order to inflate the pixel count in the never-ending pixel-wars. These small pixels just are not very good. The truth of the matter is that the most important feature of digital cameras in the last five years is the automatic motion control to stabilize the image on the sensor along with some very sophisticated image processing. All the rest has been hype and some "cool" design. What is the future for digital imaging and what will drive growth of camera sales (not counting the cell phone cameras which totally dominate the market in terms of camera sales) and more importantly after sales profits? Well sit in on the Dark Side of Color and find out what is being done to increase the after sales profits and don't be surprised if has been done long ago in some basement lab of a photographic company and of course, before its time.

  18. A high count rate one-dimensional position sensitive detector and a data acquisition system for time resolved X-ray scattering studies

    International Nuclear Information System (INIS)

    A curved multiwire proportional drift chamber has been built as a general purpose instrument for X-ray scattering and X-ray diffraction experiments with synchrotron radiation. This parallaxe-free one-dimensional linear position sensitive detector has a parallel readout with a double hit logic. The data acquisition system, installed as a part of the D11 camera at LURE-DCI, is designed to perform time slicing and cyclic experiments; it has been used with either the fast multiwire chamber or a standard position sensitive detector with delay line readout

  19. Quality assurance of gamma camera scintigraphy in Sweden

    International Nuclear Information System (INIS)

    This nationwide quality assurance project was undertaken during 1990. In total 81 cameras were checked. The mean age for the gamma cameras was 6.5±4.9 years, with the oldest one being 16 years. The uniformity and the spatial resolution of each camera were checked with a flood field and a bar fantom and for the 35 cameras dedicated and used for SPECT, the tomographic uniformity and the adjustment to the axis of rotation were explored with a cylindrical phantom and with a line source, respectively. The intercomparison of bone scintigraphy was performed with a novel transmission skeleton phantom with 18 simulated defects in the ribs and in the vertebrae. The number of counts in the images ranged from 0.16 to 1.1 million with a mean of 0.7 million counts. The local interpreters had been asked to make an assessment of 'their' skeleton images according to a specific protocol. The results can be summarised as follows: One third of the camera systems was classified as having inferior properties for planar imaging in general. For the SPECT system the adjustment of the center of the acquisition matrix to the radius of rotations was found to be adequate. The results from the skeleton study demonstrated considerable variation with the true positives (TP) ranging from 5 to 16 and the false positives (FP) ranging from 0 to 10. The average TP and FP of all 68 interpretations were 11.1 and 1.0, respectively. Due to the large variation of the detection rates, it was not possible to demonstrate clear relationships between the number of true positive findings of the individual interpreters and the camera quality indicators. From these results we concluded that the number of recorded events in a PA projection of the thoracic skeleton should exceed 800 000, and that the overall spatial resolution of the system has a clear impact on the detectability of small and low 'abnormal' uptakes. The image presentation system for hard-copies is crucial for high image quality. The videoscreen

  20. Domestic dogs in Atlantic forest preserves of south-eastern Brazil: a camera-trapping study on patterns of entrance and site occupancy rates.

    Science.gov (United States)

    Srbek-Araujo, A C; Chiarello, A G

    2008-11-01

    Presence of exotic species in forest remnants is a major concern for the conservation of wild species, not only on islands, where potential impact is higher. Although the problem is widespread and increasing, there are few studies on Neotropical forests. Here we quantify the occurrence of domestic dogs (Canis lupus familiaris) in an Atlantic forest reserve in south-eastern Brazil (Santa Lúcia Biological Station--SLBS). Throughout two years of monitoring with camera traps (2,142 camera-days), 25 records of 16 individual dogs were obtained in the interior of SLBS, making dogs the fourth most frequently recorded species of mammals in general and the first-ranking among Carnivora, ahead of the ocelot and puma, the top two terrestrial predators present in SLBS. Dogs entered the forest year round, in almost half of the sampled months (48%), and predominantly during daytime (89%). They were detected in various trails inside the reserve, but mostly in areas nearest to the reserve's border ( 0.05 in all cases), suggesting an erratic, non-seasonal pattern of entrance in the reserve. Data indicate that domestic dogs can be abundant and frequent visitors to little disturbed Atlantic forest reserves even when these are located in regions of low density of human population. The potential impact to native fauna is discussed. PMID:19197494

  1. Eosinophil count - absolute

    Science.gov (United States)

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  2. Action selection for single-camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J

    2010-01-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionall...

  3. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Christopher, E-mail: Christopher.Kurz@physik.uni-muenchen.de; Bauer, Julia [Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120 (Germany); Conti, Maurizio; Guérin, Laura; Eriksson, Lars [Siemens Healthcare Molecular Imaging, Knoxville, Tennessee 37932 (United States); Parodi, Katia [Heidelberg Ion-Beam Therapy Center and Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg 69120, Germany and Department of Experimental Physics – Medical Physics, Ludwig-Maximilians-University, Munich 85748 (Germany)

    2015-07-15

    Purpose: External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β{sup +}-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small number of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. Methods: The authors have acquired 30 subsequent PET scans of a cylindrical phantom emulating a patientlike activity pattern and spanning the entire patient counting regime in terms of true coincidences and random fractions (RFs). Accuracy and precision of activity quantification, image noise, and geometrical fidelity of the scanner have been investigated for various reconstruction algorithms and settings in order to identify a practical, well-suited reconstruction scheme for PET-based treatment verification. Truncated listmode data have been utilized for separating the effects of small true count numbers and high RFs on the reconstructed images. A corresponding simulation study enabled extending the results to an even wider range of counting statistics and to additionally investigate the impact of scatter coincidences. Eventually, the recommended

  4. Vacuum Camera Cooler

    Science.gov (United States)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  5. New gamma cameras in nuclear cardiology: D-SPECT; Les nouvelles gamma cameras en cardiologie nucleaire: D-Spect

    Energy Technology Data Exchange (ETDEWEB)

    Rouzet, F.; Bechara, T.; Ben Ali, K.; Nassar, P.; Grellier, J.F.; Burg, S.; Hyafil, F.; Le Guludec, D. [Service de medecine nucleaire, groupe hospitalier Bichat-Claude-Bernard, AP-HP, 75 - Paris (France)

    2010-08-15

    Over the past few years, advances in nuclear medicine aimed at decreasing both the duration and dosimetry of exams, without decreasing image quality. In this setting, Spectrum Dynamics (D-Spect) is a new generation gamma camera dedicated to cardiac scintigraphy. Its technology includes solid-state detectors based on pixelated semiconductors, region-centric (cardiac area) scanning, high-sensitivity collimators and resolution recovery. An additional particularity is the patient position during scanning. Phantom studies showed an improvement of sensitivity compared to conventional cameras, at the price of a loss in geometric resolution, which is compensated by resolution recovery. Semiconductors detectors provide a better energy resolution than conventional detectors suited to double isotope acquisitions, and a high count rate allowing dynamic acquisitions. Only few clinical studies are available so far, they suggest performances similar to that of conventional cameras obtained with acquisitions duration reduced to few minutes. The next step is to establish a trade-off between acquisition duration and dosimetry reduction. (authors)

  6. Harpicon camera for HDTV

    Science.gov (United States)

    Tanada, Jun

    1992-08-01

    Ikegami has been involved in broadcast equipment ever since it was established as a company. In conjunction with NHK it has brought forth countless television cameras, from black-and-white cameras to color cameras, HDTV cameras, and special-purpose cameras. In the early days of HDTV (high-definition television, also known as "High Vision") cameras the specifications were different from those for the cameras of the present-day system, and cameras using all kinds of components, having different arrangements of components, and having different appearances were developed into products, with time spent on experimentation, design, fabrication, adjustment, and inspection. But recently the knowhow built up thus far in components, , printed circuit boards, and wiring methods has been incorporated in camera fabrication, making it possible to make HDTV cameras by metbods similar to the present system. In addition, more-efficient production, lower costs, and better after-sales service are being achieved by using the same circuits, components, mechanism parts, and software for both HDTV cameras and cameras that operate by the present system.

  7. Digital Pinhole Camera

    Science.gov (United States)

    Lancor, Rachael; Lancor, Brian

    2014-01-01

    In this article we describe how the classic pinhole camera demonstration can be adapted for use with digital cameras. Students can easily explore the effects of the size of the pinhole and its distance from the sensor on exposure time, magnification, and image quality. Instructions for constructing a digital pinhole camera and our method for…

  8. A multidetector scintillation camera with 254 channels

    DEFF Research Database (Denmark)

    Sveinsdottir, E; Larsen, B; Rommer, P;

    1977-01-01

    A computer-based scintillation camera has been designed for both dynamic and static radionuclide studies. The detecting head has 254 independent sodium iodide crystals, each with a photomultiplier and amplifier. In dynamic measurements simultaneous events can be recorded, and 1 million total counts...... per second can be accommodated with less than 0.5% loss in any one channel. This corresponds to a calculated deadtime of 5 nsec. The multidetector camera is being used for 133Xe dynamic studies of regional cerebral blood flow in man and for 99mTc and 197 Hg static imaging of the brain....

  9. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen......- erate cinematographic game experiences reducing, however, the player’s feeling of agency. We propose a methodology to integrate the player in the camera control loop that allows to design and generate personalised cinematographic expe- riences. Furthermore, we present an evaluation of the afore......- mentioned methodology showing that the generated camera movements are positively perceived by novice asnd intermediate players....

  10. Development of an ultra-fast X-ray camera using hybrid pixel detectors

    International Nuclear Information System (INIS)

    The aim of the project whose work described in this thesis is part, was to design a high-speed X-ray camera using hybrid pixels applied to biomedical imaging and for material science. As a matter of fact the hybrid pixel technology meets the requirements of these two research fields, particularly by providing energy selection and low dose imaging capabilities. In this thesis, high frame rate X-ray imaging based on the XPAD3-S photons counting chip is presented. Within a collaboration between CPPM, ESRF and SOLEIL, three XPAD3 cameras were built. Two of them are being operated at the beamline of the ESRF and SOLEIL synchrotron facilities and the third one is embedded in the PIXSCAN II irradiation setup of CPPM. The XPAD3 camera is a large surface X-ray detector composed of eight detection modules of seven XPAD3-S chips each with a high-speed data acquisition system. The readout architecture of the camera is based on the PCI Express interface and on programmable FPGA chips. The camera achieves a readout speed of 240 images/s, with maximum number of images limited by the RAM memory of the acquisition PC. The performance of the device was characterized by carrying out several high speed imaging experiments using the PIXSCAN II irradiation setup described in the last chapter of this thesis. (author)

  11. Statistical evaluation of the flux cross-calibration of the XMM-Newton EPIC cameras

    CERN Document Server

    Mateos, S; Read, A M; Sembay, S

    2009-01-01

    The second XMM-Newton serendipitous source catalogue, 2XMM, provides the ideal data base for performing a statistical evaluation of the flux cross-calibration of the XMM-Newton European Photon Imaging Cameras (EPIC). We aim to evaluate the status of the relative flux calibration of the EPIC cameras on board XMM-Newton (MOS1, MOS2, and pn) and investigate the dependence of the calibration on energy, position in the field of view of the X-ray detectors, and lifetime of the mission. We compiled the distribution of flux percentage differences for large samples of 'good quality' objects detected with at least two of the EPIC cameras. The mean offset of the fluxes and dispersion of the distributions was then found by Gaussian fitting. Count rate to flux conversion was performed with a fixed spectral model. The impact on the results of varying this model was investigated. Excellent agreement was found between the two EPIC MOS cameras to better than 4% from 0.2 keV to 12.0 keV. MOS cameras register 7-9% higher flux t...

  12. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  13. Advances in photon counting for bioluminescence

    Science.gov (United States)

    Ingle, Martin B.; Powell, Ralph

    1998-11-01

    Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.

  14. Characterization of the exradin A18 chamber ionization according to the IEC70631 standards. This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances

    International Nuclear Information System (INIS)

    This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances. (Author)

  15. Testing the consistency of wildlife data types before combining them: the case of camera traps and telemetry.

    Science.gov (United States)

    Popescu, Viorel D; Valpine, Perry; Sweitzer, Rick A

    2014-04-01

    Wildlife data gathered by different monitoring techniques are often combined to estimate animal density. However, methods to check whether different types of data provide consistent information (i.e., can information from one data type be used to predict responses in the other?) before combining them are lacking. We used generalized linear models and generalized linear mixed-effects models to relate camera trap probabilities for marked animals to independent space use from telemetry relocations using 2 years of data for fishers (Pekania pennanti) as a case study. We evaluated (1) camera trap efficacy by estimating how camera detection probabilities are related to nearby telemetry relocations and (2) whether home range utilization density estimated from telemetry data adequately predicts camera detection probabilities, which would indicate consistency of the two data types. The number of telemetry relocations within 250 and 500 m from camera traps predicted detection probability well. For the same number of relocations, females were more likely to be detected during the first year. During the second year, all fishers were more likely to be detected during the fall/winter season. Models predicting camera detection probability and photo counts solely from telemetry utilization density had the best or nearly best Akaike Information Criterion (AIC), suggesting that telemetry and camera traps provide consistent information on space use. Given the same utilization density, males were more likely to be photo-captured due to larger home ranges and higher movement rates. Although methods that combine data types (spatially explicit capture-recapture) make simple assumptions about home range shapes, it is reasonable to conclude that in our case, camera trap data do reflect space use in a manner consistent with telemetry data. However, differences between the 2 years of data suggest that camera efficacy is not fully consistent across ecological conditions and make the case

  16. Automated Counting of Rice Planthoppers in Paddy Fields Based on Image Processing

    Institute of Scientific and Technical Information of China (English)

    YAO Qing; XIAN Ding-xiang; LIU Qing-jie; YANG Bao-jun; DIAO Guang-qiang; TANG Jian

    2014-01-01

    A quantitative survey of rice planthoppers in paddy ifelds is important to assess the population density and make forecasting decisions. Manual rice planthopper survey methods in paddy ifelds are time-consuming, fatiguing and tedious. This paper describes a handheld device for easily capturing planthopper images on rice stems and an automatic method for counting rice planthoppers based on image processing. The handheld device consists of a digital camera with WiFi, a smartphone and an extrendable pole. The surveyor can use the smartphone to control the camera, which is ifxed on the front of the pole by WiFi, and to photograph planthoppers on rice stems. For the counting of planthoppers on rice stems, we adopt three layers of detection that involve the following:(a) the ifrst layer of detection is an AdaBoost classiifer based on Haar features;(b) the second layer of detection is a support vector machine (SVM) classiifer based on histogram of oriented gradient (HOG) features;(c) the third layer of detection is the threshold judgment of the three features. We use this method to detect and count whiteback planthoppers (Sogatella furcifera) on rice plant images and achieve an 85.2%detection rate and a 9.6%false detection rate. The method is easy, rapid and accurate for the assessment of the population density of rice planthoppers in paddy ifelds.

  17. Advanced High-Definition Video Cameras

    Science.gov (United States)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  18. Measurement of disintegration rate and decay branching ratio for nuclide 192Ir with β-, EC mixing decays by using 4πβ-γ coincidence counting

    International Nuclear Information System (INIS)

    The absolute disintegration rates for nuclide 192Ir were measured with a 4πβ-γ (HPGe) coincidence apparatus by using parameter method and extrapolation method. The final uncertainties obtained were 0.4% and 0.5% respectively for a confidence level of 99.7%. The method with which both the disintegration rate and the decay branching ratio can be measured for nuclides with β- and EC mixing decays was proposed and described. The β- branching ratio in 192Ir decays was measured being 0.9572. The final uncertainties of disintegration rates and β- decay branching ratio with this method were 1.5% and 1.8% respectively

  19. EDICAM (Event Detection Intelligent Camera)

    International Nuclear Information System (INIS)

    Highlights: ► We present EDICAM's hardware modules. ► We present EDICAM's main design concepts. ► This paper will describe EDICAM firmware architecture. ► Operation principles description. ► Further developments. -- Abstract: A new type of fast framing camera has been developed for fusion applications by the Wigner Research Centre for Physics during the last few years. A new concept was designed for intelligent event driven imaging which is capable of focusing image readout to Regions of Interests (ROIs) where and when predefined events occur. At present these events mean intensity changes and external triggers but in the future more sophisticated methods might also be defined. The camera provides 444 Hz frame rate at full resolution of 1280 × 1024 pixels, but monitoring of smaller ROIs can be done in the 1–116 kHz range even during exposure of the full image. Keeping space limitations and the harsh environment in mind the camera is divided into a small Sensor Module and a processing card interconnected by a fast 10 Gbit optical link. This camera hardware has been used for passive monitoring of the plasma in different devices for example at ASDEX Upgrade and COMPASS with the first version of its firmware. The new firmware and software package is now available and ready for testing the new event processing features. This paper will present the operation principle and features of the Event Detection Intelligent Camera (EDICAM). The device is intended to be the central element in the 10-camera monitoring system of the Wendelstein 7-X stellarator

  20. Scinticor: A new digital gamma camera

    International Nuclear Information System (INIS)

    A new mobile gamma camera, Scinticor, has been developed with major improvements in design and performance. The instrument has a new scintillation detector which is a block of NaI (T1), (8x8x1'') optically divided into (20x20) elements with 115 photomuliplier tubes (PMT's) coupled to the scintillation exit glass of the crystal. Integrated hybrid circuits on each PMT transform the signal to a digital pulse which is the input to the digital positioning logic and dual window pulse height analyzer. Detector reliability is enhanced by automatic electronic tuning of each PMT. A new high sensitivity collimator provides 70% greater sensitivity than the present multi crystal collimator with same FWHM. The detector's special purpose array processor performs in real time (up to 100 frames/sec): ECG digitization, creation of first pass cardiac functional images and corrections for field uniformity, deadtime, radioactive decay, and environmental background. Data transmission to the mobile data processing console is via a 10Mb/s fiber optic link. Initial results indicate a major advance in collimated detector sensitivity and count rate with saturation over 1,000,000 cps. Energy resolution is 25% FWHM at 122 keV, Dynamic Edge Resolution is 3mm, Static Resoltion is 10mm. Initial clinical studies indicate this instrument is suitable for a wide range of dynamic studies

  1. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  2. The Big Pumpkin Count.

    Science.gov (United States)

    Coplestone-Loomis, Lenny

    1981-01-01

    Pumpkin seeds are counted after students convert pumpkins to jack-o-lanterns. Among the activities involved, pupils learn to count by 10s, make estimates, and to construct a visual representation of 1,000. (MP)

  3. Analytical multicollimator camera calibration

    Science.gov (United States)

    Tayman, W.P.

    1978-01-01

    Calibration with the U.S. Geological survey multicollimator determines the calibrated focal length, the point of symmetry, the radial distortion referred to the point of symmetry, and the asymmetric characteristiecs of the camera lens. For this project, two cameras were calibrated, a Zeiss RMK A 15/23 and a Wild RC 8. Four test exposures were made with each camera. Results are tabulated for each exposure and averaged for each set. Copies of the standard USGS calibration reports are included. ?? 1978.

  4. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  5. A new gamma camera for positron emission tomography

    International Nuclear Information System (INIS)

    This thesis describes the detection of annihiliation radiation employing a new principle: radiation is absorbed in a barium fluoride (BaF 2) crystal and the resulting scintillation light is detected in a multiwire proportional chamber filled with a photsensitive vapour. The application of such a detector for PET is new; the use of a high density fast scintillator in combination with a low pressure wire chamber offers a good detection efficiency and permits high count rates because of the small dead time. In this work, the physical background of the above detection mechanism is explored and the performance parameters of a gamma camera using this new principle, are determined. Furthermore, a comprehensive research on the scintillation mechanism and physical characteristics of the increasingly popular BaF 2 scintillator is presented. Also, a new class of ultraviolet (UV) scintillation materials, consisting of rare earth doped fluorides, is introduced. (author). 211 refs.; 30 figs.; 17 tabs

  6. Polarization encoded color camera.

    Science.gov (United States)

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  7. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  8. White Blood Cell Count

    Science.gov (United States)

    ... and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities PLEASE NOTE: Your web browser does not have JavaScript enabled. Unless you enable ... Share this page: Was this page helpful? Also known as: WBC Count; Leukocyte Count; White Count Formal name: White ...

  9. Determination of the uptake rates of the bone for 99m-Tc-methylendiphosphonate by means of gamma-camera-scintiscanning and checking its diagnostic value for various skeleton diseases

    International Nuclear Information System (INIS)

    A model of uptake of labelled phosphate in the bones was used to derive a method of calculating the uptake rates for 99m-Tc-MDP. The precondition was the measurement of the change in radioactivity by means of a gamma camera within the lumbal part of the spine over 1 hour. The method was applied on 49 patients (7 with healthy bones, 6 cases of hyperparathyreoidism, 10 of osteoprosis, 9 cases of osteomalacia, 1 case of hypoparathyreoidism, 10 cases of ankylosing spondylitis, 6 tumours affecting the skeleton). Osteomalacia, ankylosing spondylitis, tumours, and, in 50% of the cases, hyperparathyreoidism could be differentiated from normal findings more significantly than using conventional scintiscanning. The author's expectations were met by the method. It is suitable for diagnosing metabolic osteopathis and controlling therapy in circumscribed bone foci. (orig.)

  10. Electro-optical characterization of MPPC detectors for the ASTRI Cherenkov telescope camera

    International Nuclear Information System (INIS)

    This work addresses a systematic and in-depth electro-optical characterization of the Multi-Pixel Photon Counter (MPPC) sensors constituting the camera detection system at the focal plane of the ASTRI telescope prototype. The paper reports the experimental results of a large set of measurements on the MPPC devices in order to provide a reliable qualification of the detector performance and evaluate its compliance with the telescope focal plane requirements. In particular, breakdown voltage, internal gain, dark count rate, cross-talk and extra-charge probability, and absolute photon detection efficiency measurements are performed on the basic sensor device unit as a function of the detector operating conditions

  11. Photon counting compressive depth mapping

    CERN Document Server

    Howland, Gregory A; Ware, Matthew R; Howell, John C

    2013-01-01

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 x 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 x 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

  12. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    Czech Academy of Sciences Publication Activity Database

    Bártová, H.; Kučera, Jan; Musílek, L.; Trojek, T.

    2014-01-01

    Roč. 104, NOV (2014), s. 393-397. ISSN 0969-806X. [1st International Conference on Dosimetry and its Applications (ICDA). Prague, 23.6.2013-28.6.2013] R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : Alpha coutning * neutron activation analysis * X-ray fluorescence * thermoluminescence dating * dose rate Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.380, year: 2014

  13. A cylindrical SPECT camera with de-centralized readout scheme

    Energy Technology Data Exchange (ETDEWEB)

    Habte, F. E-mail: habte@physto.se; Stenstroem, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S.A

    2001-09-21

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  14. A cylindrical SPECT camera with de-centralized readout scheme

    Science.gov (United States)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  15. Preliminary assessment of a multiwire camera for quantitative autoradiography of tritium-labelled substances

    International Nuclear Information System (INIS)

    The authors have assessed a multiwire camera for the high speed, quantitative autoradiography of tritium-labelled substances in two-dimensional systems. Exposure times for 3H were typically 1000 times less than film-based methods, with a detection efficiency of 19 + - 3% for those beta particles predicted to escape into the sensitive region from uniformly 3H-labelled plastic segments of 30 μm thickness. The spatial resolving power was calculated to be 0.4 mm full width half maximum (FWHM), the background count rate was 1 CPM cm-2 and the lowest activity monitored for a biochemical study was 0.15 Bq cm-2. The camera is expected to have wide applications for detecting and quantifying biological substances in a wide range of separation media. (author)

  16. Camera Operator and Videographer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Television, video, and motion picture camera operators produce images that tell a story, inform or entertain an audience, or record an event. They use various cameras to shoot a wide range of material, including television series, news and sporting events, music videos, motion pictures, documentaries, and training sessions. Those who film or…

  17. The Circular Camera Movement

    DEFF Research Database (Denmark)

    Hansen, Lennard Højbjerg

    2014-01-01

    It has been an accepted precept in film theory that specific stylistic features do not express specific content. Nevertheless, it is possible to find many examples in the history of film in which stylistic features do express specific content: for instance, the circular camera movement is used...... circular camera movement. Keywords: embodied perception, embodied style, explicit narration, interpretation, style pattern, television style...

  18. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  19. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas...... detection, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  20. Feasibility of Radon projection acquisition for compressive imaging in MMW region based new video rate 16×16 GDD FPA camera

    Science.gov (United States)

    Levanon, Assaf; Konstantinovsky, Michael; Kopeika, Natan S.; Yitzhaky, Yitzhak; Stern, A.; Turak, Svetlana; Abramovich, Amir

    2015-05-01

    In this article we present preliminary results for the combination of two interesting fields in the last few years: 1) Compressed imaging (CI), which is a joint sensing and compressing process, that attempts to exploit the large redundancy in typical images in order to capture fewer samples than usual. 2) Millimeter Waves (MMW) imaging. MMW based imaging systems are required for a large variety of applications in many growing fields such as medical treatments, homeland security, concealed weapon detection, and space technology. Moreover, the possibility to create a reliable imaging in low visibility conditions such as heavy cloud, smoke, fog and sandstorms in the MMW region, generate high interest from military groups in order to be ready for new combat. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A system based on Glow Discharge Detector (GDD) Focal Plane Arrays (FPA) can be very efficient in real time imaging with significant results. The GDD is located in free space and it can detect MMW radiation almost isotropically. In this article, we present a new approach of reconstruction MMW imaging by rotation scanning of the target. The Collection process here, based on Radon projections allows implementation of the compressive sensing principles into the MMW region. Feasibility of concept was obtained as radon line imaging results. MMW imaging results with our resent sensor are also presented for the first time. The multiplexing frame rate of 16×16 GDD FPA permits real time video rate imaging of 30 frames per second and comprehensive 3D MMW imaging. It uses commercial GDD lamps with 3mm diameter, Ne indicator lamps as pixel detectors. Combination of these two fields should make significant improvement in MMW region imaging research, and new various of possibilities in compressing sensing technique.

  1. Ovarian response and cumulative live birth rate of women undergoing in-vitro fertilisation who had discordant anti-Mullerian hormone and antral follicle count measurements: a retrospective study.

    Directory of Open Access Journals (Sweden)

    Hang Wun Raymond Li

    Full Text Available OBJECTIVE: To evaluate ovarian response and cumulative live birth rate of women undergoing in-vitro fertilization (IVF treatment who had discordant baseline serum anti-Mullerian hormone (AMH level and antral follicle count (AFC. METHODS: This is a retrospective cohort study on 1,046 women undergoing the first IVF cycle in Queen Mary Hospital, Hong Kong. Subjects receiving standard IVF treatment with the GnRH agonist long protocol were classified according to their quartiles of baseline AMH and AFC measurements after GnRH agonist down-regulation and before commencing ovarian stimulation. The number of retrieved oocytes, ovarian sensitivity index (OSI and cumulative live-birth rate for each classification category were compared. RESULTS: Among our studied subjects, 32.2% were discordant in their AMH and AFC quartiles. Among them, those having higher AMH within the same AFC quartile had higher number of retrieved oocytes and cumulative live-birth rate. Subjects discordant in AMH and AFC had intermediate OSI which differed significantly compared to those concordant in AMH and AFC on either end. OSI of those discordant in AMH and AFC did not differ significantly whether either AMH or AFC quartile was higher than the other. CONCLUSIONS: When AMH and AFC are discordant, the ovarian responsiveness is intermediate between that when both are concordant on either end. Women having higher AMH within the same AFC quartile had higher number of retrieved oocytes and cumulative live-birth rate.

  2. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    International Nuclear Information System (INIS)

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  3. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dominjon, A., E-mail: a.dominjon@ipnl.in2p3.fr [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Ageron, M. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Billault, M.; Brunner, J. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Calabria, P. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Chabanat, E. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Chaize, D.; Doan, Q.T.; Guerin, C.; Houles, J.; Vagneron, L. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France)

    2012-12-11

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  4. Automated counting and analysis of etched tracks in CR-39 plastic

    International Nuclear Information System (INIS)

    An image analysis system has been set up which is capable of automated counting and analysis of etched nuclear particle tracks in plastic. The system is composed of an optical microscope, CCD camera, frame grabber, personal computer, monitor, and printer. The frame grabber acquires and displays images at video rate. It has a spatial resolution of 512 x 512 pixels with 8 bits of digitisation corresponding to 256 grey levels. The software has been developed for general image processing and adapted for the present purpose. Comparisons of automated and visual microscope counting of tracks in chemically etched CR-39 detectors are presented with emphasis on results of interest for practical radon measurements or neutron dosimetry, e.g. calibration factors, background track densities and variations in background. (author)

  5. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    Science.gov (United States)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  6. Counting techniques-statistics

    International Nuclear Information System (INIS)

    Referring to the determination of the activity of a given sample, the distribution of the counting results is analysed. The relation between the standard deviation and normal Gauss curve is studied. Student's -t-and X2 tests are presented in the systematic errors determination. Problems are discussed, such as: elimination of background radiation counting, optimum distribution of counting times, criterion of choice and adjustment of the equipment, as well as the elimination of doubtful results

  7. Perfecting the Photometric Calibration of the ACS CCD Cameras

    Science.gov (United States)

    Bohlin, Ralph C.

    2016-09-01

    Newly acquired data and improved data reduction algorithms mandate a fresh look at the absolute flux calibration of the charge-coupled device cameras on the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The goals are to achieve a 1% accuracy and to make this calibration more accessible to the HST guest investigator. Absolute fluxes from the CALSPEC1 database for three primary hot 30,000–60,000K WDs define the sensitivity calibrations for the Wide Field Channel (WFC) and High Resolution Channel (HRC) filters. The external uncertainty for the absolute flux is ˜1%, while the internal consistency of the sensitivities in the broadband ACS filters is ˜0.3% among the three primary WD flux standards. For stars as cool as K type, the agreement with the CALSPEC standards is within 1% at the WFC1-1K subarray position, which achieves the 1% precision goal for the first time. After making a small adjustment to the filter bandpass for F814W, the 1% precision goal is achieved over the full F814W WFC field of view for stars of K type and hotter. New encircled energies and absolute sensitivities replace the seminal results of Sirianni et al. that were published in 2005. After implementing the throughput updates, synthetic predictions of the WFC and HRC count rates for the average of the three primary WD standard stars agree with the observations to 0.1%.

  8. Structured light camera calibration

    Science.gov (United States)

    Garbat, P.; Skarbek, W.; Tomaszewski, M.

    2013-03-01

    Structured light camera which is being designed with the joined effort of Institute of Radioelectronics and Institute of Optoelectronics (both being large units of the Warsaw University of Technology within the Faculty of Electronics and Information Technology) combines various hardware and software contemporary technologies. In hardware it is integration of a high speed stripe projector and a stripe camera together with a standard high definition video camera. In software it is supported by sophisticated calibration techniques which enable development of advanced application such as real time 3D viewer of moving objects with the free viewpoint or 3D modeller for still objects.

  9. Camera as Cultural Critique

    DEFF Research Database (Denmark)

    Suhr, Christian

    2015-01-01

    What does the use of cameras entail for the production of cultural critique in anthropology? Visual anthropological analysis and cultural critique starts at the very moment a camera is brought into the field or existing visual images are engaged. The framing, distances, and interactions between...... researchers, cameras, and filmed subjects already inherently comprise analytical decisions. It is these ethnographic qualities inherent in audiovisual and photographic imagery that make it of particular value to a participatory anthropological enterprise that seeks to resist analytic closure and seeks instead...

  10. Health Physics counting room

    CERN Multimedia

    1970-01-01

    The Health Physics counting room, where the quantity of induced radioactivity in materials is determined. This information is used to evaluate possible radiation hazards from the material investigated.

  11. Determining Vision Graphs for Distributed Camera Networks Using Feature Digests

    Directory of Open Access Journals (Sweden)

    Cheng Zhaolin

    2007-01-01

    Full Text Available We propose a decentralized method for obtaining the vision graph for a distributed, ad-hoc camera network, in which each edge of the graph represents two cameras that image a sufficiently large part of the same environment. Each camera encodes a spatially well-distributed set of distinctive, approximately viewpoint-invariant feature points into a fixed-length "feature digest" that is broadcast throughout the network. Each receiver camera robustly matches its own features with the decompressed digest and decides whether sufficient evidence exists to form a vision graph edge. We also show how a camera calibration algorithm that passes messages only along vision graph edges can recover accurate 3D structure and camera positions in a distributed manner. We analyze the performance of different message formation schemes, and show that high detection rates ( can be achieved while maintaining low false alarm rates ( using a simulated 60-node outdoor camera network.

  12. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu; Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Jarvis, Lesley A.; Gladstone, David J. [Department of Medicine, Geisel School of Medicine and Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Pogue, Brian W., E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2015-02-15

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  13. Camera selection for real-time in vivo radiation treatment verification systems using Cherenkov imaging

    International Nuclear Information System (INIS)

    Purpose: To identify achievable camera performance and hardware needs in a clinical Cherenkov imaging system for real-time, in vivo monitoring of the surface beam profile on patients, as novel visual information, documentation, and possible treatment verification for clinicians. Methods: Complementary metal-oxide-semiconductor (CMOS), charge-coupled device (CCD), intensified charge-coupled device (ICCD), and electron multiplying-intensified charge coupled device (EM-ICCD) cameras were investigated to determine Cherenkov imaging performance in a clinical radiotherapy setting, with one emphasis on the maximum supportable frame rate. Where possible, the image intensifier was synchronized using a pulse signal from the Linac in order to image with room lighting conditions comparable to patient treatment scenarios. A solid water phantom irradiated with a 6 MV photon beam was imaged by the cameras to evaluate the maximum frame rate for adequate Cherenkov detection. Adequate detection was defined as an average electron count in the background-subtracted Cherenkov image region of interest in excess of 0.5% (327 counts) of the 16-bit maximum electron count value. Additionally, an ICCD and an EM-ICCD were each used clinically to image two patients undergoing whole-breast radiotherapy to compare clinical advantages and limitations of each system. Results: Intensifier-coupled cameras were required for imaging Cherenkov emission on the phantom surface with ambient room lighting; standalone CMOS and CCD cameras were not viable. The EM-ICCD was able to collect images from a single Linac pulse delivering less than 0.05 cGy of dose at 30 frames/s (fps) and pixel resolution of 512 × 512, compared to an ICCD which was limited to 4.7 fps at 1024 × 1024 resolution. An intensifier with higher quantum efficiency at the entrance photocathode in the red wavelengths [30% quantum efficiency (QE) vs previous 19%] promises at least 8.6 fps at a resolution of 1024 × 1024 and lower monetary

  14. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  15. The BCAM Camera

    CERN Document Server

    Hashemi, K S

    2000-01-01

    The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the The BCAM, or Boston CCD Angle Monitor, is a camera looking at one or more light sources. We describe the application of the BCAM to the ATLAS forward muon detector alignment system. We show that the camera's performance is only weakly dependent upon the brightness, focus and diameter of the source image. Its resolution is dominated by turbulence along the external light path. The camera electronics is radiation-resistant. With a field of view of ± 10 mrad, it tracks the bearing of a light source 16 m away with better than 3 µrad accuracy, well within the ATLAS requirements.

  16. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  17. Gamma ray camera

    International Nuclear Information System (INIS)

    An improved Anger-type gamma ray camera utilizes a proximity-type image intensifier tube. It has a greater capability for distinguishing between incident and scattered radiation, and greater spatial resolution capabilities

  18. Calculating concentration of inhaled radiolabeled particles from external gamma counting: External counting efficiency and attenuation coefficient of thorax

    International Nuclear Information System (INIS)

    We determined the overall external counting efficiency of radiolabeled particles deposited in the sheep lung. This efficiency permits the noninvasive calculation of the number of particles and microcuries from gamma-scintillation lung images of the live sheep. Additionally, we have calculated the attenuation of gamma radiation (120 keV) by the posterior chest wall and the gamma-scintillation camera collection efficiency of radiation emitted from the lung. Four methods were employed in our experiments: (1) by light microscopic counting of discrete carbonized polystyrene particles with a count median diameter (CMD) of 2.85 microns and tagged with cobalt-57, we delineated a linear relationship between the number of particles and the emitted counts per minute (cpm) detected by well scintillation counting; (2) from this conversion relationship we determined the number of particles inhaled and deposited in the lungs by scintillation counting fragments of dissected lung at autopsy; (3) we defined a linear association between the number of particles or microcuries contained in the lung and the emitted radiation as cpm detected by a gamma scintillation camera in the live sheep prior to autopsy; and (4) we compared the emitted radiation from the lungs of the live sheep to that of whole excised lungs in order to calculate the attenuation coefficient (ac) of the chest wall. The mean external counting efficiency was 4.00 X 10(4) particles/cpm (5.1 X 10(-3) microCi/cpm), the camera collection efficiency was 1 cpm/10(4) disintegrations per minute (dpm), and the ac had a mean of 0.178/cm. The external counting efficiency remained relatively constant over a range of particles and microcuries, permitting a more general use of this ratio to estimate number of particles or microcuries depositing after inhalation in a large mammalian lung if a similarly collimated gamma camera system is used

  19. Camera Calibration Using Silhouettes

    OpenAIRE

    Boyer, Edmond

    2005-01-01

    This report addresses the problem of estimating camera parameters from images where object silhouettes only are known. Several modeling applications make use of silhouettes, and while calibration methods are well known when considering points or lines matched along image sequences, the problem appears to be more difficult when considering silhouettes. However, such primitives encode also information on camera parameters by the fact that their associated viewing cones should present a common i...

  20. TOUCHSCREEN USING WEB CAMERA

    Directory of Open Access Journals (Sweden)

    Kuntal B. Adak

    2015-10-01

    Full Text Available In this paper we present a web camera based touchscreen system which uses a simple technique to detect and locate finger. We have used a camera and regular screen to achieve our goal. By capturing the video and calculating position of finger on the screen, we can determine the touch position and do some function on that location. Our method is very easy and simple to implement. Even our system requirement is less expensive compare to other techniques.

  1. Gamma camera system

    International Nuclear Information System (INIS)

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  2. Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera

    International Nuclear Information System (INIS)

    We have designed and developed a small field of view gamma camera, the eZ SCOPE, based on use of a CdZnTe semiconductor. This device utilises proprietary signal processing technology and an interface to a computer-based imaging system. The purpose of this study was to evaluate the performance of the eZ scope in comparison with currently employed gamma camera technology. The detector is a single wafer of 5-mm-thick CdZnTe that is divided into a 16 x 16 array (256 pixels). The sensitive area of the detector is a square of dimension 3.2 cm. Two parallel-hole collimators are provided with the system and have a matching (256 hole) pattern to the CdZnTe detector array: a low-energy, high-resolution parallel-hole (LEHR) collimator fabricated of lead and a low-energy, high-sensitivity parallel-hole (LEHS) collimator fabricated of tungsten. Performance measurements and the data analysis were done according to the procedures of the NEMA standard. We also studied the long-term stability of the system with continuous use and variations in ambient temperature. Results were as follows. Intrinsic energy resolution: 8.6% FWHM at 141 keV. Linearity: There was excellent linearity between the observed photopeaks and the known gamma ray energies for the given isotopes. Intrinsic system uniformity: For the central field of view, the integral uniformity and the differential uniformity were, respectively, 1.6% and 1.3% with the LEHR collimator and 1.9% and 1.2% with the LEHS collimator. System spatial resolution: The FWHM measurements made at the surface of the collimator were 2.2 mm (LEHR) and 2.9 mm (LEHS). Contrast test: The average S/N ratios (i.e. counts in the irradiated pixel divided by counts in the surrounding pixels) for the inner ring pixels (8)/outer ring pixels (16) using the LEHS collimator and LEHR collimator were 3.2%/0.2% and 3.7%/0.3%, respectively. Count rate characteristics: We could not determine the maximum count rate and the 20% loss count rate from these data

  3. Spacecraft camera image registration

    Science.gov (United States)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Chan, Fred N. T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A system for achieving spacecraft camera (1, 2) image registration comprises a portion external to the spacecraft and an image motion compensation system (IMCS) portion onboard the spacecraft. Within the IMCS, a computer (38) calculates an image registration compensation signal (60) which is sent to the scan control loops (84, 88, 94, 98) of the onboard cameras (1, 2). At the location external to the spacecraft, the long-term orbital and attitude perturbations on the spacecraft are modeled. Coefficients (K, A) from this model are periodically sent to the onboard computer (38) by means of a command unit (39). The coefficients (K, A) take into account observations of stars and landmarks made by the spacecraft cameras (1, 2) themselves. The computer (38) takes as inputs the updated coefficients (K, A) plus synchronization information indicating the mirror position (AZ, EL) of each of the spacecraft cameras (1, 2), operating mode, and starting and stopping status of the scan lines generated by these cameras (1, 2), and generates in response thereto the image registration compensation signal (60). The sources of periodic thermal errors on the spacecraft are discussed. The system is checked by calculating measurement residuals, the difference between the landmark and star locations predicted at the external location and the landmark and star locations as measured by the spacecraft cameras (1, 2).

  4. 注入前向运动精子数对人工授精临床妊娠率的影响%The influence of processed total motile sperm count on clinical pregnancy rate of intrauterine insemination

    Institute of Scientific and Technical Information of China (English)

    王明勇; 付莉; 廖运梅; 陈绍威; 王芳; 黄桂英; 毛熙光

    2014-01-01

    Objective To investigate the influence of processed total motile sperm (PTMS) count of husband on clinical pregnan-cy rate of intrauterine insemination(IUI) .Methods We retrospectively analyzed a total of 229 cycles of IUI among 131 patients in our hospital during the past three years .The cycles were divided into 5 groups according to the PTMS count :group A(0 .05) among five groups .Conclusion Ideal clinical pregnancy can be achieved when the PTMS count is between 3 × 106 and 5 × 106 .%目的:探讨注入前向运动精子总数对丈夫精液宫腔内人工授精(IUI)临床妊娠率的影响。方法回顾分析2010年4月至2013年4月在该院行IUI助孕治疗的不孕症夫妇131例患者,229个IUI周期,按宫腔内注入前向运动精子数(PTMS)分为5组:A组(<5×106),B组(5×106~<10×106),C组(10×106~<20×106),D组(20×106~<30×106),E组(≥30×106),比较组间临床妊娠率。结果131例患者IUI治疗,临床妊娠率为26.72%,229个周期,周期临床妊娠率为15.28%。周期临床妊娠率分别为A组23.08%、B组15%、C组18.18%、D组13.46%、E组13.48%。各组间差异无统计学意义(P>0.05)。

  5. Action selection for single-camera SLAM.

    Science.gov (United States)

    Vidal-Calleja, Teresa A; Sanfeliu, Alberto; Andrade-Cetto, Juan

    2010-12-01

    A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionally, the system has been ported to a mobile robotic platform, thus closing the control-estimation loop. To show the viability of the approach, simulations and experiments are presented for the unconstrained motion of a handheld camera and for the motion of a mobile robot with nonholonomic constraints. When combined with a path planner, the technique safely drives to a marked goal while, at the same time, producing an optimal estimated map. PMID:20350845

  6. Counting trees using symmetries

    CERN Document Server

    Bernardi, Olivier

    2012-01-01

    We present a new approach for counting trees, and we apply it to count multitype Cayley trees and to prove the multivariate Lagrange inversion formula. The gist of our approach is to exploit the symmetries of refined enumerative formulas: proving these symmetries is easy, and once the symmetries are proved the formulas follow effortlessly. Somewhat surprisingly, our formula for the generating function of multitype Cayley trees appears to be new, and implies certain recent results by Bousquet-M\\'elou and Chapuy. We also adapt our approach to recover known enumerative formulas for cacti counted according to their degree distribution.

  7. Sublattice Counting and Orbifolds

    CERN Document Server

    Hanany, Amihay; Reffert, Susanne

    2010-01-01

    Abelian orbifolds of C^3 are known to be encoded by hexagonal brane tilings. To date it is not known how to count all such orbifolds. We fill this gap by employing number theoretic techniques from crystallography, and by making use of Polya's Enumeration Theorem. The results turn out to be beautifully encoded in terms of partition functions and Dirichlet Series. The same methods apply to counting orbifolds of any toric non-compact Calabi-Yau singularity. As additional examples, we count the orbifolds of the conifold, of the L^{aba} theories, and of C^4.

  8. Sublattice counting and orbifolds

    Science.gov (United States)

    Hanany, Amihay; Orlando, Domenico; Reffert, Susanne

    2010-06-01

    Abelian orbifolds of mathbb{C}3 are known to be encoded by hexagonal brane tilings. To date it is not known how to count all such orbifolds. We fill this gap by employing number theoretic techniques from crystallography, and by making use of Polya's Enumeration Theorem. The results turn out to be beautifully encoded in terms of partition functions and Dirichlet series. The same methods apply to counting orbifolds of any toric non-compact Calabi-Yau singularity. As additional examples, we count the orbifolds of the conifold, of the L aba theories, and of mathbb{C}4.

  9. The Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Flaugher, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  10. The Dark Energy Camera

    CERN Document Server

    Flaugher, B; Honscheid, K; Abbott, T M C; Alvarez, O; Angstadt, R; Annis, J T; Antonik, M; Ballester, O; Beaufore, L; Bernstein, G M; Bernstein, R A; Bigelow, B; Bonati, M; Boprie, D; Brooks, D; Buckley-Geer, E J; Campa, J; Cardiel-Sas, L; Castander, F J; Castilla, J; Cease, H; Cela-Ruiz, J M; Chappa, S; Chi, E; Cooper, C; da Costa, L N; Dede, E; Derylo, G; DePoy, D L; de Vicente, J; Doel, P; Drlica-Wagner, A; Eiting, J; Elliott, A E; Emes, J; Estrada, J; Neto, A Fausti; Finley, D A; Flores, R; Frieman, J; Gerdes, D; Gladders, M D; Gregory, B; Gutierrez, G R; Hao, J; Holland, S E; Holm, S; Huffman, D; Jackson, C; James, D J; Jonas, M; Karcher, A; Karliner, I; Kent, S; Kessler, R; Kozlovsky, M; Kron, R G; Kubik, D; Kuehn, K; Kuhlmann, S; Kuk, K; Lahav, O; Lathrop, A; Lee, J; Levi, M E; Lewis, P; Li, T S; Mandrichenko, I; Marshall, J L; Martinez, G; Merritt, K W; Miquel, R; Munoz, F; Neilsen, E H; Nichol, R C; Nord, B; Ogando, R; Olsen, J; Palio, N; Patton, K; Peoples, J; Plazas, A A; Rauch, J; Reil, K; Rheault, J -P; Roe, N A; Rogers, H; Roodman, A; Sanchez, E; Scarpine, V; Schindler, R H; Schmidt, R; Schmitt, R; Schubnell, M; Schultz, K; Schurter, P; Scott, L; Serrano, S; Shaw, T M; Smith, R C; Soares-Santos, M; Stefanik, A; Stuermer, W; Suchyta, E; Sypniewski, A; Tarle, G; Thaler, J; Tighe, R; Tran, C; Tucker, D; Walker, A R; Wang, G; Watson, M; Weaverdyck, C; Wester, W; Woods, R; Yanny, B

    2015-01-01

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250 micron thick fully-depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2kx4k CCDs for imaging and 12 2kx2k CCDs for guiding and focus. The CCDs have 15 microns x15 microns pixels with a plate scale of 0.263 arc sec per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construct...

  11. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    In this project, radiation tolerant camera which tolerates 106 - 108 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  12. Camera Calibration: a USU Implementation

    OpenAIRE

    Ma, Lili; Chen, YangQuan; Moore, Kevin L.

    2003-01-01

    The task of camera calibration is to estimate the intrinsic and extrinsic parameters of a camera model. Though there are some restricted techniques to infer the 3-D information about the scene from uncalibrated cameras, effective camera calibration procedures will open up the possibility of using a wide range of existing algorithms for 3-D reconstruction and recognition. The applications of camera calibration include vision-based metrology, robust visual platooning and visual docking of mobil...

  13. Extrinsic recalibration in camera networks

    OpenAIRE

    Hermans, Chris; Dumont, Maarten; Bekaert, Philippe

    2007-01-01

    This work addresses the practical problem of keeping a camera network calibrated during a recording session. When dealing with real-time applications, a robust calibration of the camera network needs to be assured, without the burden of a full system recalibration at every (un)intended camera displacement. In this paper we present an efficient algorithm to detect when the extrinsic parameters of a camera are no longer valid, and reintegrate the displaced camera into the previously calibrated ...

  14. Selective-imaging camera

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Landa, Joseph; Cha, Jae H.; Krapels, Keith A.

    2015-05-01

    How can we design cameras that image selectively in Full Electro-Magnetic (FEM) spectra? Without selective imaging, we cannot use, for example, ordinary tourist cameras to see through fire, smoke, or other obscurants contributing to creating a Visually Degraded Environment (VDE). This paper addresses a possible new design of selective-imaging cameras at firmware level. The design is consistent with physics of the irreversible thermodynamics of Boltzmann's molecular entropy. It enables imaging in appropriate FEM spectra for sensing through the VDE, and displaying in color spectra for Human Visual System (HVS). We sense within the spectra the largest entropy value of obscurants such as fire, smoke, etc. Then we apply a smart firmware implementation of Blind Sources Separation (BSS) to separate all entropy sources associated with specific Kelvin temperatures. Finally, we recompose the scene using specific RGB colors constrained by the HVS, by up/down shifting Planck spectra at each pixel and time.

  15. Use of an in-field-of-view shield to improve count rate performance of the single crystal layer high-resolution research tomograph PET scanner for small animal brain scans

    International Nuclear Information System (INIS)

    The count rate performance of the single LSO crystal layer high-resolution research tomograph (HRRT-S) PET scanner is limited by the processing speed of its electronics. Therefore, the feasibility of using an in-field-of-view (in-FOV) shield to improve the noise equivalent count rates (NECR) for small animal brain studies was investigated. The in-FOV shield consists of a lead tube of 12 cm length, 6 cm inner diameter and 9 mm wall thickness. It is large enough to shield the activity in the body of a rat or mouse. First, the effect of this shield on NECR was studied. Secondly, a number of experiments were performed to assess the effects of the shield on the accuracy of transmission scan data and, next, on reconstructed activity distribution in the brain. For activities below 150 MBq NECR improved only by 5-10%. For higher activities NECR maxima of 1.2E4 cps at 200 MBq and 2.2E4 cps at 370 MBq were found without and with shield, respectively. Listmode data taken without shield, however, were corrupted for activities above 75 MBq due to data overrun problems (time tag losses) of the electronics. When the shield was used data overrun was avoided up to activities of 150 MBq. For the unshielded part of the phantom, transmission scan data were the same with and without shield. The estimated scatter contribution was approximately 8.5% without and 5.5% with shield. Reconstructed emission data showed a difference up to 5% in the unshielded part of the phantom at 5 mm or more from the edge of the shielding. Of this 5% about 3% results from the difference in the uncorrected scatter contribution. In conclusion, an in-FOV shield can be used successfully in an HRRT PET scanner to improve NECR and accuracy of small animal brain studies. The latter is especially important when high activities are required for tracers with low brain uptake or when multiple animals are scanned simultaneously. (note)

  16. Calorie count - Alcoholic beverages

    Science.gov (United States)

    ... you drink. Cocktails mixed with soda, cream, or ice cream can have especially high calorie counts. If you ... A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among ...

  17. 1996 : Track Count Protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of St. Vincent National Wildlife Refuge's Track Count Protocol is to provide an index to the population size of game animals inhabiting St. Vincent Island.

  18. Blood Count Tests

    Science.gov (United States)

    Your blood contains red blood cells (RBC), white blood cells (WBC), and platelets. Blood count tests measure the number and types of cells in your blood. This helps doctors check on your overall health. ...

  19. Counting Knights and Knaves

    Science.gov (United States)

    Levin,Oscar; Roberts, Gerri M.

    2013-01-01

    To understand better some of the classic knights and knaves puzzles, we count them. Doing so reveals a surprising connection between puzzles and solutions, and highlights some beautiful combinatorial identities.

  20. Housing Inventory Count

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the data communities reported to HUD about the nature of their dedicated homeless inventory, referred to as their Housing Inventory Count...

  1. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...... camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot...

  2. Artificial human vision camera

    Science.gov (United States)

    Goudou, J.-F.; Maggio, S.; Fagno, M.

    2014-10-01

    In this paper we present a real-time vision system modeling the human vision system. Our purpose is to inspire from human vision bio-mechanics to improve robotic capabilities for tasks such as objects detection and tracking. This work describes first the bio-mechanical discrepancies between human vision and classic cameras and the retinal processing stage that takes place in the eye, before the optic nerve. The second part describes our implementation of these principles on a 3-camera optical, mechanical and software model of the human eyes and associated bio-inspired attention model.

  3. The Star Formation Camera

    OpenAIRE

    Scowen, Paul A.; Jansen, Rolf; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and ...

  4. Design of Endoscopic Capsule With Multiple Cameras.

    Science.gov (United States)

    Gu, Yingke; Xie, Xiang; Li, Guolin; Sun, Tianjia; Wang, Dan; Yin, Zheng; Zhang, Pengfei; Wang, Zhihua

    2015-08-01

    In order to reduce the miss rate of the wireless capsule endoscopy, in this paper, we propose a new system of the endoscopic capsule with multiple cameras. A master-slave architecture, including an efficient bus architecture and a four level clock management architecture, is applied for the Multiple Cameras Endoscopic Capsule (MCEC). For covering more area of the gastrointestinal tract wall with low power, multiple cameras with a smart image capture strategy, including movement sensitive control and camera selection, are used in the MCEC. To reduce the data transfer bandwidth and power consumption to prolong the MCEC's working life, a low complexity image compressor with PSNR 40.7 dB and compression rate 86% is implemented. A chipset is designed and implemented for the MCEC and a six cameras endoscopic capsule prototype is implemented by using the chipset. With the smart image capture strategy, the coverage rate of the MCEC prototype can achieve 98% and its power consumption is only about 7.1 mW. PMID:25376042

  5. MOIRCS Deep Survey. I: DRG Number Counts

    CERN Document Server

    Kajisawa, M; Suzuki, R; Tokoku, C; Uchimoto, Y K; Yoshikawa, T; Akiyama, M; Ichikawa, T; Ouchi, M; Omata, K; Tanaka, I; Nishimura, T; Yamada, T; Kajisawa, Masaru; Konishi, Masahiro; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Yoshikawa, Tomohiro; Akiyama, Masayuki; Ichikawa, Takashi; Ouchi, Masami; Omata, Koji; Tanaka, Ichi; Nishimura, Tetsuo; Yamada, Toru

    2006-01-01

    We use very deep near-infrared imaging data taken with Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope to investigate the number counts of Distant Red Galaxies (DRGs). We have observed a 4x7 arcmin^2 field in the Great Observatories Origins Deep Survey North (GOODS-N), and our data reach J=24.6 and K=23.2 (5sigma, Vega magnitude). The surface density of DRGs selected by J-K>2.3 is 2.35+-0.31 arcmin^-2 at K22 is smaller than that expected from the number counts at the brighter magnitude. The result indicates that while there are many bright galaxies at 222 suggest that the mass-dependent color distribution, where most of low-mass galaxies are blue while more massive galaxies tend to have redder colors, had already been established at that epoch.

  6. MOIRCS Deep Survey. I: DRG Number Counts

    Science.gov (United States)

    Kajisawa, Masaru; Konishi, Masahiro; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka; Katsuno; Yoshikawa, Tomohiro; Akiyama, Masayuki; Ichikawa, Takashi; Ouchi, Masami; Omata, Koji; Tanaka, Ichi; Nishimura, Tetsuo; Yamada, Toru

    2006-12-01

    We used very deep near-infrared imaging data taken with the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope to investigate the number counts of Distant Red Galaxies (DRGs). We observed a 4' × 7' field in the Great Observatories Origins Deep Survey-North (GOODS-N), and our data reached J=24.6 and K=23.2 (5σ, Vega magnitude). The surface density of DRGs selected by J - K > 2.3 is 2.35 ± 0.31 arcmin-2 at K 22 is smaller than that expected from the number counts at the brighter magnitude. The result indicates that while there are many bright galaxies at 2 22 suggest that the mass-dependent color distribution, where most of the low-mass galaxies are blue, while more massive galaxies tend to have redder colors, had already been established at that epoch.

  7. An Adaptive Smoother for Counting Measurements

    International Nuclear Information System (INIS)

    Counting measurements associated with nuclear instruments are tricky to carry out due to the stochastic process of the radioactivity. Indeed events counting have to be processed and filtered in order to display a stable count rate value and to allow variations monitoring in the measured activity. Smoothers (as the moving average) are adjusted by a time constant defined as a compromise between stability and response time. A new approach has been developed and consists in improving the response time while maintaining count rate stability. It uses the combination of a smoother together with a detection filter. A memory of counting data is processed to calculate several count rate estimates using several integration times. These estimates are then sorted into the memory from short to long integration times. A measurement position, in terms of integration time, is then chosen into this memory after a detection test. An inhomogeneity into the Poisson counting process is detected by comparison between current position estimate and the other estimates contained into the memory in respect with the associated statistical variance calculated with homogeneous assumption. The measurement position (historical time) and the ability to forget an obsolete data or to keep in memory a useful data are managed using the detection test result. The proposed smoother is then an adaptive and a learning algorithm allowing an optimization of the response time while maintaining measurement counting stability and converging efficiently to the best counting estimate after an effective change in activity. This algorithm has also the specificity to be low recursive and thus easily embedded into DSP electronics based on FPGA or micro-controllers meeting 'real life' time requirements. (authors)

  8. Advanced Virgo phase cameras

    Science.gov (United States)

    van der Schaaf, L.; Agatsuma, K.; van Beuzekom, M.; Gebyehu, M.; van den Brand, J.

    2016-05-01

    A century after the prediction of gravitational waves, detectors have reached the sensitivity needed to proof their existence. One of them, the Virgo interferometer in Pisa, is presently being upgraded to Advanced Virgo (AdV) and will come into operation in 2016. The power stored in the interferometer arms raises from 20 to 700 kW. This increase is expected to introduce higher order modes in the beam, which could reduce the circulating power in the interferometer, limiting the sensitivity of the instrument. To suppress these higher-order modes, the core optics of Advanced Virgo is equipped with a thermal compensation system. Phase cameras, monitoring the real-time status of the beam constitute a critical component of this compensation system. These cameras measure the phases and amplitudes of the laser-light fields at the frequencies selected to control the interferometer. The measurement combines heterodyne detection with a scan of the wave front over a photodetector with pin-hole aperture. Three cameras observe the phase front of these laser sidebands. Two of them monitor the in-and output of the interferometer arms and the third one is used in the control of the aberrations introduced by the power recycling cavity. In this paper the working principle of the phase cameras is explained and some characteristic parameters are described.

  9. Make a Pinhole Camera

    Science.gov (United States)

    Fisher, Diane K.; Novati, Alexander

    2009-01-01

    On Earth, using ordinary visible light, one can create a single image of light recorded over time. Of course a movie or video is light recorded over time, but it is a series of instantaneous snapshots, rather than light and time both recorded on the same medium. A pinhole camera, which is simple to make out of ordinary materials and using ordinary…

  10. Photogrammetric camera calibration

    Science.gov (United States)

    Tayman, W.P.; Ziemann, H.

    1984-01-01

    Section 2 (Calibration) of the document "Recommended Procedures for Calibrating Photogrammetric Cameras and Related Optical Tests" from the International Archives of Photogrammetry, Vol. XIII, Part 4, is reviewed in the light of recent practical work, and suggestions for changes are made. These suggestions are intended as a basis for a further discussion. ?? 1984.

  11. Communities, Cameras, and Conservation

    Science.gov (United States)

    Patterson, Barbara

    2012-01-01

    Communities, Cameras, and Conservation (CCC) is the most exciting and valuable program the author has seen in her 30 years of teaching field science courses. In this citizen science project, students and community volunteers collect data on mountain lions ("Puma concolor") at four natural areas and public parks along the Front Range of Colorado.…

  12. The LSST Camera Overview

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Kirk; Kahn, Steven A.; Nordby, Martin; Burke, David; O' Connor, Paul; Oliver, John; Radeka, Veljko; Schalk, Terry; Schindler, Rafe; /SLAC

    2007-01-10

    The LSST camera is a wide-field optical (0.35-1um) imager designed to provide a 3.5 degree FOV with better than 0.2 arcsecond sampling. The detector format will be a circular mosaic providing approximately 3.2 Gigapixels per image. The camera includes a filter mechanism and, shuttering capability. It is positioned in the middle of the telescope where cross-sectional area is constrained by optical vignetting and heat dissipation must be controlled to limit thermal gradients in the optical beam. The fast, f/1.2 beam will require tight tolerances on the focal plane mechanical assembly. The focal plane array operates at a temperature of approximately -100 C to achieve desired detector performance. The focal plane array is contained within an evacuated cryostat, which incorporates detector front-end electronics and thermal control. The cryostat lens serves as an entrance window and vacuum seal for the cryostat. Similarly, the camera body lens serves as an entrance window and gas seal for the camera housing, which is filled with a suitable gas to provide the operating environment for the shutter and filter change mechanisms. The filter carousel can accommodate 5 filters, each 75 cm in diameter, for rapid exchange without external intervention.

  13. The world's fastest camera

    CERN Multimedia

    Piquepaille, Roland

    2006-01-01

    This image processor is not your typical digital camera. It took 6 years to 20 people and $6 million to build the "Regional Calorimeter Trigger"(RCT) which will be a component of the Compact Muon Solenoid (CMS) experiment, one of the detectors on the Large Hadron Collider (LHC) in Geneva, Switzerland (1 page)

  14. Taxonomic counts of cognition in the wild

    OpenAIRE

    Lefebvre, Louis

    2010-01-01

    In 1985, Kummer & Goodall pleaded for an ecology of intelligence and proposed that innovations might be a good way to measure cognition in the wild. Counts of innovation per taxonomic group are now available in hundreds of avian and primate species, as are counts of tactical deception, tool use and social learning. Robust evidence suggests that innovation rate and its neural correlates allow birds and mammals to cope better with environmental change. The positive correlations between taxonomi...

  15. Image Sensors Enhance Camera Technologies

    Science.gov (United States)

    2010-01-01

    In the 1990s, a Jet Propulsion Laboratory team led by Eric Fossum researched ways of improving complementary metal-oxide semiconductor (CMOS) image sensors in order to miniaturize cameras on spacecraft while maintaining scientific image quality. Fossum s team founded a company to commercialize the resulting CMOS active pixel sensor. Now called the Aptina Imaging Corporation, based in San Jose, California, the company has shipped over 1 billion sensors for use in applications such as digital cameras, camera phones, Web cameras, and automotive cameras. Today, one of every three cell phone cameras on the planet feature Aptina s sensor technology.

  16. MISR radiometric camera-by-camera Cloud Mask V004

    Data.gov (United States)

    National Aeronautics and Space Administration — This file contains the Radiometric camera-by-camera Cloud Mask dataset. It is used to determine whether a scene is classified as clear or cloudy. A new parameter...

  17. Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera

    OpenAIRE

    Mehran Sattari; Mohammad Saadatseresht; Mozhdeh Shahbazi; Saeid Homayouni

    2011-01-01

    Time-of-flight cameras, based on Photonic Mixer Device (PMD) technology, are capable of measuring distances to objects at high frame rates, however, the measured ranges and the intensity data contain systematic errors that need to be corrected. In this paper, a new integrated range camera self-calibration method via joint setup with a digital (RGB) camera is presented. This method can simultaneously estimate the systematic range error parameters as well as the interior and external orientatio...

  18. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222Rn and 226Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  19. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    Science.gov (United States)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  20. Low-cost imaging system for semi-automatic track counting

    International Nuclear Information System (INIS)

    This year a new semi-automatic track counting system for neutron dosimetry has become available from Image Technology, Inc., of Deer Park, New York. Tracks in CR-39 from proton recoils, either chemically etched or electro-chemically etched, can easily be counted when the system's video camera is coupled to an optical microscope with a low-power objective. An area of one square millimeter can be counted in less than three seconds. (author)

  1. Rainflow counting revisited

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H. [Deutsches Windenergie-Institut (Germany)

    1996-09-01

    As state of the art method the rainflow counting technique is presently applied everywhere in fatigue analysis. However, the author feels that the potential of the technique is not fully recognized in wind energy industries as it is used, most of the times, as a mere data reduction technique disregarding some of the inherent information of the rainflow counting results. The ideas described in the following aim at exploitation of this information and making it available for use in the design and verification process. (au)

  2. Computerized radioautographic grain counting

    International Nuclear Information System (INIS)

    In recent years, radiolabeling techniques have become fundamental assays in physiology and biochemistry experiments. They also have assumed increasingly important roles in morphologic studies. Characteristically, radioautographic analysis of structure has been qualitative rather than quantitative, however, microcomputers have opened the door to several methods for quantifying grain counts and density. The overall goal of this chapter is to describe grain counting using the Bioquant, an image analysis package based originally on the Apple II+, and now available for several popular microcomputers. The authors discuss their image analysis procedures by applying them to a study of development in the central nervous system

  3. Lightweight Electronic Camera for Research on Clouds

    Science.gov (United States)

    Lawson, Paul

    2006-01-01

    "Micro-CPI" (wherein "CPI" signifies "cloud-particle imager") is the name of a small, lightweight electronic camera that has been proposed for use in research on clouds. It would acquire and digitize high-resolution (3- m-pixel) images of ice particles and water drops at a rate up to 1,000 particles (and/or drops) per second.

  4. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  5. Design considerations for a high-spatial-resolution positron camera with dense-drift-space MWPC's

    International Nuclear Information System (INIS)

    A multiplane Positron Cameris is proposed, made of six MWPC modules arranged to form the lateral surface of a hexagonal prism. Each module (50 x 50 cm2) has a 2 cm thick lead-glass tube converter on both sides of a MWPC pressurized to 2 atm. Experimental measurements are presented to show how to reduce the parallax error by determining in which of the two converter layers the photon has interacted. The results of a detailed Monte Carlo calculation for the efficiency of this type of converter are shown to be in excellent agreement with the experimental measurements. The expected performance of the Positron Camera is presented: a true coincidence rate of 56,000 counts/s (with an equal accidental coincidence rate and a 30% Compton scatter contamination) and a spatial resolution better than 5.0 mm (FWHM) for a 400 μ Ci point-like source embedded in a 10 cm radius water phantom

  6. On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source

    International Nuclear Information System (INIS)

    The requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs

  7. On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source

    CERN Document Server

    Wang, Zhehui

    2015-01-01

    The requirements to achieve high detection efficiency (above 50\\%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-$\\mu$m thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  8. Gamma ray camera

    International Nuclear Information System (INIS)

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  9. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  10. Neutron emissivity profile camera diagnostics considering present and future tokamaks

    International Nuclear Information System (INIS)

    This thesis describes the neutron profile camera situated at JET. The profile camera is one of the most important neutron emission diagnostic devices operating at JET. It gives useful information of the total neutron yield rate but also about the neutron emissivity distribution. Data analysis was performed in order to compare three different calibration methods. The data was collected from the deuterium campaign, C4, in the beginning of 2001. The thesis also includes a section about the implication of a neutron profile camera for ITER, where the issue regarding interface difficulties is in focus. The ITER JCT (Joint Central Team) proposal of a neutron camera for ITER is studied in some detail

  11. Camera Surveillance Quadrotor

    OpenAIRE

    Hjelm, Emil; Yousif, Robert

    2015-01-01

    A quadrotor is a helicopter with four rotors placed at equal distance from the crafts centre of gravity, controlled by letting the different rotors generate different amount of thrust. It uses various sensors to stay stable in the air, correct readings from these sensors are therefore critical. By reducing vibrations, electromagnetic interference and external disturbances the quadrotor’s stability can increase. The purpose of this project is to analyse the feasibility of a quadrotor camera su...

  12. Research and implementation of high counting rate α-and β-particle radiation detecting method%高计数率α、β粒子辐射检测方法研究与实现

    Institute of Scientific and Technical Information of China (English)

    李文强; 杨裔剑侠; 杨录; 侯磊

    2013-01-01

    A radiation detecting method and system was developed,which can detect the a-and p-particles simultaneously with single detector. The ± 12 V and ±5 V DC power supply modules with ripple voltage less than 20mV were designed to increase the coupler output signal sensitivity. With the detecting circuit,the SNR is increased by 12. 1 dB and the recoil signal is restrained from -700 mV to under +200 mV. The crosstalk signal from the comparator is thoroughly restrained and the pole-zero cancellation circuits are also omitted. Two channel monostable triggers are used to realize the effective shielding of the a channel to β channel. The experiments results indicate that the count rate of the proposed detecting system can reach to 79% for β-particle radiation from 302 cps source,which is increased by 22% ,and the cross-talk ratio of β channel to a channel is 1% , which is decreased by 1% . While the count rate can reach to 54% for α-particle radiation from 6190 cps source,which increased by 9% ,and the cross-talk ratio of α channel to β channel is 12% , which is decreased by 17% .%提出一种用单探测器实现α、β粒子辐射同时检测的方法和系统.设计出纹波小于20 mV的±12 V、±5V直流电源,保证了耦合输出信号的灵敏度;改用检波电路将信噪比提高了12.1 dB,同时将反冲信号由-700 mV抑制到+200 mV以内,还彻底抑制了比较器产生的反串信号,省去“极零相消”电路.采用双路单稳态触发器实现α道对β道的有效屏蔽.经实测,本检测系统对302cps源的β粒子辐射计数率可达79%,提高了22%;β道对α道的串道比为1%,降低了1%;对6190eps源的α粒子辐射计数率可达54%,提高了9%;α道对β道的串道比为12%,降低了17%.

  13. Toward standardising gamma camera quality control procedures

    Science.gov (United States)

    Alkhorayef, M. A.; Alnaaimi, M. A.; Alduaij, M. A.; Mohamed, M. O.; Ibahim, S. Y.; Alkandari, F. A.; Bradley, D. A.

    2015-11-01

    Attaining high standards of efficiency and reliability in the practice of nuclear medicine requires appropriate quality control (QC) programs. For instance, the regular evaluation and comparison of extrinsic and intrinsic flood-field uniformity enables the quick correction of many gamma camera problems. Whereas QC tests for uniformity are usually performed by exposing the gamma camera crystal to a uniform flux of gamma radiation from a source of known activity, such protocols can vary significantly. Thus, there is a need for optimization and standardization, in part to allow direct comparison between gamma cameras from different vendors. In the present study, intrinsic uniformity was examined as a function of source distance, source activity, source volume and number of counts. The extrinsic uniformity and spatial resolution were also examined. Proper standard QC procedures need to be implemented because of the continual development of nuclear medicine imaging technology and the rapid expansion and increasing complexity of hybrid imaging system data. The present work seeks to promote a set of standard testing procedures to contribute to the delivery of safe and effective nuclear medicine services.

  14. The DRAGO gamma camera

    International Nuclear Information System (INIS)

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated 57Co source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45 deg. with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  15. The Star Formation Camera

    CERN Document Server

    Scowen, Paul A; Beasley, Matthew; Calzetti, Daniela; Desch, Steven; Fullerton, Alex; Gallagher, John; Lisman, Doug; Macenka, Steve; Malhotra, Sangeeta; McCaughrean, Mark; Nikzad, Shouleh; O'Connell, Robert; Oey, Sally; Padgett, Deborah; Rhoads, James; Roberge, Aki; Siegmund, Oswald; Shaklan, Stuart; Smith, Nathan; Stern, Daniel; Tumlinson, Jason; Windhorst, Rogier; Woodruff, Robert

    2009-01-01

    The Star Formation Camera (SFC) is a wide-field (~15'x19, >280 arcmin^2), high-resolution (18x18 mas pixels) UV/optical dichroic camera designed for the Theia 4-m space-borne space telescope concept. SFC will deliver diffraction-limited images at lambda > 300 nm in both a blue (190-517nm) and a red (517-1075nm) channel simultaneously. Our aim is to conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, and to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. This program addresses the origins and evolution of stars, galaxies, and cosmic structure and has direct relevance for the formation and survival of planetary systems like our Solar System and planets like Earth. We present the design and performance specifications resulting from the implementation study of the camera, conducted ...

  16. The DRAGO gamma camera

    Science.gov (United States)

    Fiorini, C.; Gola, A.; Peloso, R.; Longoni, A.; Lechner, P.; Soltau, H.; Strüder, L.; Ottobrini, L.; Martelli, C.; Lui, R.; Madaschi, L.; Belloli, S.

    2010-04-01

    In this work, we present the results of the experimental characterization of the DRAGO (DRift detector Array-based Gamma camera for Oncology), a detection system developed for high-spatial resolution gamma-ray imaging. This camera is based on a monolithic array of 77 silicon drift detectors (SDDs), with a total active area of 6.7 cm2, coupled to a single 5-mm-thick CsI(Tl) scintillator crystal. The use of an array of SDDs provides a high quantum efficiency for the detection of the scintillation light together with a very low electronics noise. A very compact detection module based on the use of integrated readout circuits was developed. The performances achieved in gamma-ray imaging using this camera are reported here. When imaging a 0.2 mm collimated C57o source (122 keV) over different points of the active area, a spatial resolution ranging from 0.25 to 0.5 mm was measured. The depth-of-interaction capability of the detector, thanks to the use of a Maximum Likelihood reconstruction algorithm, was also investigated by imaging a collimated beam tilted to an angle of 45° with respect to the scintillator surface. Finally, the imager was characterized with in vivo measurements on mice, in a real preclinical environment.

  17. What Counts as Evidence?

    Science.gov (United States)

    Dougherty Stahl, Katherine A.

    2014-01-01

    Each disciplinary community has its own criteria for determining what counts as evidence of knowledge in their academic field. The criteria influence the ways that a community's knowledge is created, communicated, and evaluated. Situating reading, writing, and language instruction within the content areas enables teachers to explicitly…

  18. Counting Hexagonal Lattice Animals

    OpenAIRE

    Mohammed, Mohamud

    2002-01-01

    We describe Maple packages for the automatic generation of generating functions(and series expansions) for counting lattice animals(fixed polyominoes), in the two-dimensional hexagonal lattice, of bounded but arbitrary width. Our Maple packages(complete with source code) are easy-to-use and available from my website.

  19. Counting on rectangular areas

    OpenAIRE

    Janjic, Milan

    2007-01-01

    In the first section of this paper we prove a theorem for the number of columns of a rectangular area that are identical to the given one. In the next section we apply this theorem to derive several combinatorial identities by counting specified subsets of a finite set.

  20. Practical Gamma Counting of Unirradiated Uranium-235

    International Nuclear Information System (INIS)

    During the fabrication of reactor fuel elements it is necessary to have assurance regarding the accuracy of the fabricator's uranium assignment within the specified tolerances. Destructive analysis of random samples is both expensive and time-consuming. Where the uranium-bearing components are suitable for gamma counting, a non-destructive method of assay can be used with greater efficiency and equal accuracy. The particular method described was used for checking fuel cores of nominal 30 wt.% enriched uranium in aluminium measuring about two inches square by 0.080 in. and 0.160 in. thick. The equipment was a basic Nal scintillation counter equipped with a single-channel analyser. The analyser, however, was operated with a very wide window covering both the 90-keV and 184-keV peaks characteristic of uranium-235. In practice, the threshold level acid the window opening, were adjusted to give the optimum maximum count rate as indicated by a ratemeter. The counting of a fuel core was then performed with the Nal crystal essentially unshielded and located several inches above the fuel core. The counting time was adjusted to yield a total count in the range of 105 to 106 in order to minimize the counting error. Effects due to variations in the counting geometry and to non-uniform uranium distribution were minimized by the relatively large separation of the crystal from the fuel core. Effects due to shifting of analyser window were minimized by use of a wide opening. To compensate for possible non-uniform uranium distribution through the thickness of a fuel core, each core was counted on both sides. The total count obtained in this manner was directly proportioned to the uranium-235 content of the fuel core. In application, the counting equipment was set up in the fabricator's plant and a number of production fuel cores were counted. The plotting of the total counts against the fabricator's uranium-235 assignment revealed an unexpected error in the fabricator's system

  1. Whole body counting of radon daughters

    International Nuclear Information System (INIS)

    This paper reports on five adult males that were exposed for one hour to radon and radon daughter products in an exposure chamber and subsequently measured for radon daughter product activity in the chest region by whole body counting methods. The gamma-ray detection rate was approximated by a single exponential with a 35 minute half period, consistent with the physical decay of a mixture of RaB and RaC. About half of the deposited activity was associated with internal deposition and half with external deposition on clothing, skin and hair. The average counting rate from radon daughters on clothing was 10 times the average from skin and hair. Under as well as outer clothing contributed substantially to the counting rate. A strong correlation was found between internal and external deposition indicating that total activity provides a useful index of internal deposition

  2. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  3. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    International Nuclear Information System (INIS)

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving 201Tl (n = 120) or 99mTc-sestamibi injected at low dose at stress (99mTc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress (99mTc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, 201Tl 92 %, 99mTc-Low 86 %, 99mTc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p 201Tl or 99mTc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  4. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  5. Spectral Camera based on Ghost Imaging via Sparsity Constraints.

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-01-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments. PMID:27180619

  6. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-05-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  7. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    Science.gov (United States)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-01-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments. PMID:27180619

  8. Fragments of approximate counting

    Czech Academy of Sciences Publication Activity Database

    Buss, S.R.; Kolodziejczyk, L.. A.; Thapen, Neil

    2014-01-01

    Roč. 79, č. 2 (2014), s. 496-525. ISSN 0022-4812 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : approximate counting * bounded arithmetic * ordering principle Subject RIV: BA - General Mathematics Impact factor: 0.541, year: 2014 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9287274&fileId=S0022481213000376

  9. The MARS Photon Processing Cameras for Spectral CT

    CERN Document Server

    Doesburg, Robert Michael Nicholas; Butler, APH; Renaud, PF

    This thesis is about the development of the MARS camera: a stan- dalone portable digital x-ray camera with spectral sensitivity. It is built for use in the MARS Spectral system from the Medipix2 and Medipix3 imaging chips. Photon counting detectors and Spectral CT are introduced, and Medipix is identified as a powerful new imaging device. The goals and strategy for the MARS camera are discussed. The Medipix chip physical, electronic and functional aspects, and ex- perience gained, are described. The camera hardware, firmware and supporting PC software are presented. Reports of experimental work on the process of equalisation from noise, and of tests of charge sum- ming mode, conclude the main body of the thesis. The camera has been actively used since late 2009 in pre-clinical re- search. A list of publications that derive from the use of the camera and the MARS Spectral scanner demonstrates the practical benefits already obtained from this work. Two of the publications are first- author, eight are co-authore...

  10. Factors affecting leukocyte count in healthy adults.

    Science.gov (United States)

    Carel, R S; Eviatar, J

    1985-09-01

    The relationships between white blood cell (WBC) count, smoking, and other health variables were determined among 35,000 apparently healthy men and women. The effect of smoking on the WBC count was greater than that of all other variables. The leukocyte level and the variance in WBC count values increased with increased smoking intensity. The relationship between smoking intensity and leukocyte level is expressed quantitatively by the following regression equation: WBC (10(3)/mm3) = 7.1 + 0.05(SM), where SM has seven values according to the smoking level. Multiple regression analysis with additional variables other than smoking did not much improve the predictive value of the equation. The effect of smoking on WBC count could be only partially explained by an inflammatory process, e.g., chronic bronchitis. Relationships of statistical significance (but mostly with r values of less than 0.10) were found between WBC count and the following variables: hemoglobin, heart rate, weight (or Quetelet index), cholesterol, uric acid, creatinine, sex, ethnic origin, systolic blood pressure, height, blood sugar, and diastolic blood pressure. The normal WBC count range for smokers differs from that of nonsmokers and is shifted to the right according to the smoking level. This may have both a diagnostic and prognostic significance in different clinical settings. PMID:4070192

  11. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  12. Stereoscopic camera design

    Science.gov (United States)

    Montgomery, David J.; Jones, Christopher K.; Stewart, James N.; Smith, Alan

    2002-05-01

    It is clear from the literature that the majority of work in stereoscopic imaging is directed towards the development of modern stereoscopic displays. As costs come down, wider public interest in this technology is expected to increase. This new technology would require new methods of image formation. Advances in stereo computer graphics will of course lead to the creation of new stereo computer games, graphics in films etc. However, the consumer would also like to see real-world stereoscopic images, pictures of family, holiday snaps etc. Such scenery would have wide ranges of depth to accommodate and would need also to cope with moving objects, such as cars, and in particular other people. Thus, the consumer acceptance of auto/stereoscopic displays and 3D in general would be greatly enhanced by the existence of a quality stereoscopic camera. This paper will cover an analysis of existing stereoscopic camera designs and show that they can be categorized into four different types, with inherent advantages and disadvantages. A recommendation is then made with regard to 3D consumer still and video photography. The paper will go on to discuss this recommendation and describe its advantages and how it can be realized in practice.

  13. The right to count does not always count

    DEFF Research Database (Denmark)

    Sodemann, Morten

    2013-01-01

    The best prescription against illness is learning to read and to count. People who are unable to count have a harder time learning to read. People who have difficulty counting make poorer decisions, are less able to combine information and are less likely to have a strategy for life...

  14. Lightweight, Compact, Long Range Camera Design

    Science.gov (United States)

    Shafer, Donald V.

    1983-08-01

    The model 700 camera is the latest in a 30-year series of LOROP cameras developed by McDonnell Douglas Astronautics Company (MDAC) and their predecessor companies. The design achieves minimum size and weight and is optimized for low-contrast performance. The optical system includes a 66-inch focal length, f/5.6, apochromatic lens and three folding mirrors imaging on a 4.5-inch square format. A three-axis active stabilization system provides the capability for long exposure time and, hence, fine grain films can be used. The optical path forms a figure "4" behind the lens. In front of the lens is a 45° pointing mirror. This folded configuration contributed greatly to the lightweight and compact design. This sequential autocycle frame camera has three modes of operation with one, two, and three step positions to provide a choice of swath widths within the range of lateral coverage. The magazine/shutter assembly rotates in relationship with the pointing mirror and aircraft drift angle to maintain film format alignment with the flight path. The entire camera is angular rate stabilized in roll, pitch, and yaw. It also employs a lightweight, electro-magnetically damped, low-natural-frequency spring suspension for passive isolation from aircraft vibration inputs. The combined film transport and forward motion compensation (FMC) mechanism, which is operated by a single motor, is contained in a magazine that can, depending on accessibility which is installation dependent, be changed in flight. The design also stresses thermal control, focus control, structural stiffness, and maintainability. The camera is operated from a remote control panel. This paper describes the leading particulars and features of the camera as related to weight and configuration.

  15. Death rates in HIV-positive antiretroviral-naive patients with CD4 count greater than 350 cells per microL in Europe and North America: a pooled cohort observational study

    DEFF Research Database (Denmark)

    Lodwick, Rebecca K; Sabin, Caroline A; Porter, Kholoud;

    2010-01-01

    Whether people living with HIV who have not received antiretroviral therapy (ART) and have high CD4 cell counts have higher mortality than the general population is unknown. We aimed to examine this by analysis of pooled data from industrialised countries....

  16. CalCOFI Egg Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish egg counts and standardized counts for eggs captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets], and...

  17. Growth Curve Models for Zero-Inflated Count Data: An Application to Smoking Behavior

    Science.gov (United States)

    Liu, Hui; Powers, Daniel A.

    2007-01-01

    This article applies growth curve models to longitudinal count data characterized by an excess of zero counts. We discuss a zero-inflated Poisson regression model for longitudinal data in which the impact of covariates on the initial counts and the rate of change in counts over time is the focus of inference. Basic growth curve models using a…

  18. Characterization of the exradin A18 chamber ionization according to the IEC70631 standards. This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances; Caracterizacion de la camara de ionizacion exradin A18 segun el estandar IEC70631. Estudio para haces de fotones sin filtro aplanador

    Energy Technology Data Exchange (ETDEWEB)

    Onses Segarra, A.; Puxeu Vaque, J.; Sancho Kolster, I.; Lizuain Arroyo, M. C.; Picon Olmos, C.

    2013-07-01

    This work aims at the characterization of the Exradin model (Standard Imaging) A18 ionization chamber, according to the international standard IEC 607311. Intends to use the camera Exradin A18 for the quality control of a linear accelerator VARIAN model TrueBeam with capacity to produce beams of photons of high energy, unfiltered flatter (in later FFF) with high dose absorbed by pulse rate, why is verified, according to the mentioned standard IEC 60731, even under conditions of high dose absorbed by pulse rate, the efficiency of ion collection from this camera is within tolerances. (Author)

  19. Alabama Kids Count 2001 Data Book.

    Science.gov (United States)

    Curtis, Apreill; Bogie, Don

    This Kids Count data book examines statewide trends in well-being for Alabama's children. The statistical portrait is based on 17 indicators in the areas of health, education, safety, and security. The indicators are: (1) infant mortality rate; (2) low weight births; (3) child health index; (4) births to unmarried teens; (5) first grade retention;…

  20. Alabama Kids Count 2002 Data Book.

    Science.gov (United States)

    Curtis, Apreill; Bogie, Don

    This Kids Count data book examines statewide trends in well-being of Alabamas children. The statistical portrait is based on 18 indicators in the areas of child health, education, safety, and security: (1) infant mortality rate; (2) low weight births; (3) child health index; (4) births to unmarried teens; (5) first grade retention; (6) school…

  1. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2016-01-01

    Full Text Available Gender information has many useful applications in computer vision systems, such as surveillance systems, counting the number of males and females in a shopping mall, accessing control systems in restricted areas, or any human-computer interaction system. In most previous studies, researchers attempted to recognize gender by using visible light images of the human face or body. However, shadow, illumination, and time of day greatly affect the performance of these methods. To overcome this problem, we propose a new gender recognition method based on the combination of visible light and thermal camera images of the human body. Experimental results, through various kinds of feature extraction and fusion methods, show that our approach is efficient for gender recognition through a comparison of recognition rates with conventional systems.

  2. Novel gamma cameras

    International Nuclear Information System (INIS)

    The gamma-ray cameras described are based on radiation imaging devices which permit the direct recording of the distribution of radioactive material from a radiative source, such as a human organ. They consist in principle of a collimator, a converter matrix converting gamma photons to electrons, and an electron image multiplier producing a multiplied electron output, and means for reading out the information. The electron image multiplier is a device which produces a multiplied electron image. It can be in principle, either gas avalanche electron multiplier or a multi-channel plate. The multi-channel plate employed is a novel device, described elsewhere. The three described embodiments, in which the converter matrix can be either of metal type or of scintillation crystal type, were designed and are being developed

  3. Neutron Imaging Camera

    Science.gov (United States)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  4. Focussed radiographic camera

    International Nuclear Information System (INIS)

    A radiographic camera of the form employing a scintillator for producing optical photons in response to incident gamma and x-radiation is described. A collimator is positioned between a subject emitting such radiation and the scintillator for guiding the radiation to the scintillator and a detector of optical photons for signaling the positions of points of impingement of quanta of the incident radiation upon the scintillator to produce an image of the subject. A Fresnel focussing means is located alongside the scintillator for directing the optical photons to the detector. The Fresnel focussing means takes the form of a segmented mirror at the front surface of the scintillator and a Fresnel lens at the back surface of the scintillator

  5. Counting RG flows

    Science.gov (United States)

    Gukov, Sergei

    2016-01-01

    Interpreting renormalization group flows as solitons interpolating between different fixed points, we ask various questions that are normally asked in soliton physics but not in renormalization theory. Can one count RG flows? Are there different "topological sectors" for RG flows? What is the moduli space of an RG flow, and how does it compare to familiar moduli spaces of (supersymmetric) dowain walls? Analyzing these questions in a wide variety of contexts — from counting RG walls to AdS/CFT correspondence — will not only provide favorable answers, but will also lead us to a unified general framework that is powerful enough to account for peculiar RG flows and predict new physical phenomena. Namely, using Bott's version of Morse theory we relate the topology of conformal manifolds to certain properties of RG flows that can be used as precise diagnostics and "topological obstructions" for the strong form of the C-theorem in any dimension. Moreover, this framework suggests a precise mechanism for how the violation of the strong C-theorem happens and predicts "phase transitions" along the RG flow when the topological obstruction is non-trivial. Along the way, we also find new conformal manifolds in well-known 4d CFT's and point out connections with the superconformal index and classifying spaces of global symmetry groups.

  6. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  7. Effect of a biological activated carbon filter on particle counts

    Institute of Scientific and Technical Information of China (English)

    Su-hua WU; Bing-zhi DONG; Tie-jun QIAO; Jin-song ZHANG

    2008-01-01

    Due to the importance of biological safety in drinking water quality and the disadvantages which exist in traditional methods of detecting typical microorganisms such as Cryptosporidium and Giardia,it is necessary to develop an alternative.Particle counts is a qualitative measurement of the amount of dissolved solids in water.The removal rate of particle counts was previously used as an indicator of the effectiveness of a biological activated carbon(BAC)filter in removing Cryptosporidium and Giardia.The particle counts in a BAC filter effluent over one operational period and the effects of BAC filter construction and operational parameters were investigated with a 10 m3/h pilot plant.The results indicated that the maximum particle count in backwash remnant water was as high as 1296 count/ml and it needed about 1.5 h to reduce from the maximum to less than 50 count/ml.During the standard filtration period,particle counts stay constant at less than 50 count/ml for 5 d except when influ-enced by sand filter backwash remnant water.The removal rates of particle counts in the BAC filter are related to characteristics of the carbon.For example,a columned carbon and a sand bed removed 33.3% and 8.5% of particles,respectively,while the particle counts in effluent from a cracked BAC filter was higher than that of the influent.There is no significant difference among particle removal rates with different filtration rates.High post-ozone dosage(>2 mg/L)plays an important role in particle count removal;when the dosage was 3 mg/L,the removal rates by carbon layers and sand beds decreased by 17.5% and increased by 9.5%,respectively,compared with a 2 mg/L dosage.

  8. Metal ion levels and lymphocyte counts

    DEFF Research Database (Denmark)

    Penny, Jeannette Ø; Varmarken, Jens-Erik; Ovesen, Ole;

    2013-01-01

    BACKGROUND AND PURPOSE: Wear particles from metal-on-metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above-average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) and...... investigated whether cobalt and chromium ions affected the lymphocyte counts. METHOD: In a randomized controlled trial, we followed 19 RHA patients and 19 THA patients. Lymphocyte subsets and chromium and cobalt ion concentrations were measured at baseline, at 8 weeks, at 6 months, and at 1 and 2 years....... RESULTS: The T-lymphocyte counts for both implant types declined over the 2-year period. This decline was statistically significant for CD3(+)CD8(+) in the THA group, with a regression coefficient of -0.04 × 10(9)cells/year (95% CI: -0.08 to -0.01). Regression analysis indicated a depressive effect of...

  9. CERN_DxCTA counting mode chip

    CERN Document Server

    Moraes, D; Nygård, E

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e−, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  10. Compact Optical Technique for Streak Camera Calibration

    International Nuclear Information System (INIS)

    The National Ignition Facility (NIF) is under construction at the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses1 (optical comb generators) that are suitable for temporal calibrations. These optical comb generators (Figure 1) are used with the LLNL optical streak cameras. They are small, portable light sources that produce a series of temporally short, uniformly spaced, optical pulses. Comb generators have been produced with 0.1, 0.5, 1, 3, 6, and 10-GHz pulse trains of 780-nm wavelength light with individual pulse durations of ∼25-ps FWHM. Signal output is via a fiber-optic connector. Signal is transported from comb generator to streak camera through multi-mode, graded-index optical fibers. At the NIF, ultra-fast streak-cameras are used by the Laser Fusion Program experimentalists to record fast transient optical signals. Their temporal resolution is unmatched by any other transient recorder. Their ability to spatially discriminate an image along the input slit allows them to function as a one-dimensional image recorder, time-resolved spectrometer, or multichannel transient recorder. Depending on the choice of photocathode, they can be made sensitive to photon energies from 1.1 eV to 30 keV and beyond. Comb generators perform two important functions for LLNL streak-camera users. First, comb generators are used as a precision time-mark generator for calibrating streak camera sweep rates. Accuracy is achieved by averaging many streak camera images of comb generator signals. Time-base calibrations with portable comb generators are easily done in both the calibration laboratory and in situ. Second, comb signals are applied

  11. LISS-4 camera for Resourcesat

    Science.gov (United States)

    Paul, Sandip; Dave, Himanshu; Dewan, Chirag; Kumar, Pradeep; Sansowa, Satwinder Singh; Dave, Amit; Sharma, B. N.; Verma, Anurag

    2006-12-01

    The Indian Remote Sensing Satellites use indigenously developed high resolution cameras for generating data related to vegetation, landform /geomorphic and geological boundaries. This data from this camera is used for working out maps at 1:12500 scale for national level policy development for town planning, vegetation etc. The LISS-4 Camera was launched onboard Resourcesat-1 satellite by ISRO in 2003. LISS-4 is a high-resolution multi-spectral camera with three spectral bands and having a resolution of 5.8m and swath of 23Km from 817 Km altitude. The panchromatic mode provides a swath of 70Km and 5-day revisit. This paper briefly discusses the configuration of LISS-4 Camera of Resourcesat-1, its onboard performance and also the changes in the Camera being developed for Resourcesat-2. LISS-4 camera images the earth in push-broom mode. It is designed around a three mirror un-obscured telescope, three linear 12-K CCDs and associated electronics for each band. Three spectral bands are realized by splitting the focal plane in along track direction using an isosceles prism. High-speed Camera Electronics is designed for each detector with 12- bit digitization and digital double sampling of video. Seven bit data selected from 10 MSBs data by Telecommand is transmitted. The total dynamic range of the sensor covers up to 100% albedo. The camera structure has heritage of IRS- 1C/D. The optical elements are precisely glued to specially designed flexure mounts. The camera is assembled onto a rotating deck on spacecraft to facilitate +/- 26° steering in Pitch-Yaw plane. The camera is held on spacecraft in a stowed condition before deployment. The excellent imageries from LISS-4 Camera onboard Resourcesat-1 are routinely used worldwide. Such second Camera is being developed for Resourcesat-2 launch in 2007 with similar performance. The Camera electronics is optimized and miniaturized. The size and weight are reduced to one third and the power to half of the values in Resourcesat

  12. Photon counting detector array algorithms for deep space optical communications

    Science.gov (United States)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  13. Measuring SO2 ship emissions with an ultraviolet imaging camera

    Science.gov (United States)

    Prata, A. J.

    2014-05-01

    Over the last few years fast-sampling ultraviolet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical emission rates ~ 1-10 kg s-1) and natural sources (e.g. volcanoes; typical emission rates ~ 10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and emission rates. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and emission rates of SO2 (typical emission rates ~ 0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the emission rates and path concentrations can be retrieved in real time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where SO2 emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and emission rates determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (> 10 Hz) from a single camera. Despite the ease of use and ability to determine SO2 emission rates from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes. A dual-camera system or a single, dual-filter camera is required in order to properly correct for the effects of particulates in ship plumes.

  14. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm3). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  15. Measuring rainfall with low-cost cameras

    Science.gov (United States)

    Allamano, Paola; Cavagnero, Paolo; Croci, Alberto; Laio, Francesco

    2016-04-01

    In Allamano et al. (2015), we propose to retrieve quantitative measures of rainfall intensity by relying on the acquisition and analysis of images captured from professional cameras (SmartRAIN technique in the following). SmartRAIN is based on the fundamentals of camera optics and exploits the intensity changes due to drop passages in a picture. The main steps of the method include: i) drop detection, ii) blur effect removal, iii) estimation of drop velocities, iv) drop positioning in the control volume, and v) rain rate estimation. The method has been applied to real rain events with errors of the order of ±20%. This work aims to bridge the gap between the need of acquiring images via professional cameras and the possibility of exporting the technique to low-cost webcams. We apply the image processing algorithm to frames registered with low-cost cameras both in the lab (i.e., controlled rain intensity) and field conditions. The resulting images are characterized by lower resolutions and significant distortions with respect to professional camera pictures, and are acquired with fixed aperture and a rolling shutter. All these hardware limitations indeed exert relevant effects on the readability of the resulting images, and may affect the quality of the rainfall estimate. We demonstrate that a proper knowledge of the image acquisition hardware allows one to fully explain the artefacts and distortions due to the hardware. We demonstrate that, by correcting these effects before applying the image processing algorithm, quantitative rain intensity measures are obtainable with a good accuracy also with low-cost modules.

  16. Gamma camera system

    International Nuclear Information System (INIS)

    The invention provides a composite solid state detector for use in deriving a display, by spatial coordinate information, of the distribution or radiation emanating from a source within a region of interest, comprising several solid state detector components, each having a given surface arranged for exposure to impinging radiation and exhibiting discrete interactions therewith at given spatially definable locations. The surface of each component and the surface disposed opposite and substantially parallel thereto are associated with impedence means configured to provide for each opposed surface outputs for signals relating the given location of the interactions with one spatial coordinate parameter of one select directional sense. The detector components are arranged to provide groupings of adjacently disposed surfaces mutually linearly oriented to exhibit a common directional sense of the spatial coordinate parameter. Means interconnect at least two of the outputs associated with each of the surfaces within a given grouping for collecting the signals deriving therefrom. The invention also provides a camera system for imaging the distribution of a source of gamma radiation situated within a region of interest

  17. Apparatus characterization as a standard for neutron correlation counting

    International Nuclear Information System (INIS)

    Neutron correlation counting has the property that the count rate is predictable from first principles. This allows, in certain instances, replacing standards of the conventional types with a careful characterization of the apparatus. Multiplication would have to be small, and the material well characterized. An instance where circumstances forced used of such a procedure, with excellent results, is described

  18. Important aspects of 14CO2 gas counting

    International Nuclear Information System (INIS)

    The major problems encountered when constructing a proportional counter for low background applications are discussed. They are: obtaining the low background count-rate, and the technology involved with the counter construction. In the case of CO2 counting the purification of the counter gas and the vacuum properties of the counter give additional problems

  19. Determining Vision Graphs for Distributed Camera Networks Using Feature Digests

    Directory of Open Access Journals (Sweden)

    Richard J. Radke

    2007-01-01

    Full Text Available We propose a decentralized method for obtaining the vision graph for a distributed, ad-hoc camera network, in which each edge of the graph represents two cameras that image a sufficiently large part of the same environment. Each camera encodes a spatially well-distributed set of distinctive, approximately viewpoint-invariant feature points into a fixed-length “feature digest” that is broadcast throughout the network. Each receiver camera robustly matches its own features with the decompressed digest and decides whether sufficient evidence exists to form a vision graph edge. We also show how a camera calibration algorithm that passes messages only along vision graph edges can recover accurate 3D structure and camera positions in a distributed manner. We analyze the performance of different message formation schemes, and show that high detection rates (>0.8 can be achieved while maintaining low false alarm rates (<0.05 using a simulated 60-node outdoor camera network.

  20. Camera Trajectory fromWide Baseline Images

    Science.gov (United States)

    Havlena, M.; Torii, A.; Pajdla, T.

    2008-09-01

    angle θ of its corresponding rays w.r.t. the optical axis as θ = ar 1+br2 . After a successful calibration, we know the correspondence of the image points to the 3D optical rays in the coordinate system of the camera. The following steps aim at finding the transformation between the camera and the world coordinate systems, i.e. the pose of the camera in the 3D world, using 2D image matches. For computing 3D structure, we construct a set of tentative matches detecting different affine covariant feature regions including MSER, Harris Affine, and Hessian Affine in acquired images. These features are alternative to popular SIFT features and work comparably in our situation. Parameters of the detectors are chosen to limit the number of regions to 1-2 thousands per image. The detected regions are assigned local affine frames (LAF) and transformed into standard positions w.r.t. their LAFs. Discrete Cosine Descriptors are computed for each region in the standard position. Finally, mutual distances of all regions in one image and all regions in the other image are computed as the Euclidean distances of their descriptors and tentative matches are constructed by selecting the mutually closest pairs. Opposed to the methods using short baseline images, simpler image features which are not affine covariant cannot be used because the view point can change a lot between consecutive frames. Furthermore, feature matching has to be performed on the whole frame because no assumptions on the proximity of the consecutive projections can be made for wide baseline images. This is making the feature detection, description, and matching much more time-consuming than it is for short baseline images and limits the usage to low frame rate sequences when operating in real-time. Robust 3D structure can be computed by RANSAC which searches for the largest subset of the set of tentative matches which is, within a predefined threshold ", consistent with an epipolar geometry. We use ordered sampling as

  1. Automatic Traffic Monitoring from an Airborne Wide Angle Camera System

    OpenAIRE

    Rosenbaum, Dominik; Charmette, Baptiste; Kurz, Franz; Suri, Sahil; Thomas, Ulrike; Reinartz, Peter

    2008-01-01

    We present an automatic traffic monitoring approach using data of an airborne wide angle camera system. This camera, namely the “3K-Camera”, was recently developed at the German Aerospace Center (DLR). It has a coverage of 8 km perpendicular to the flight direction at a flight height of 3000 m with a resolution of 45 cm and is capable to take images at a frame rate of up to 3 fps. Based on georeferenced images obtained from this camera system, a near real-time processing chain containing roa...

  2. Multidimensional time-correlated single photon counting

    Science.gov (United States)

    Becker, Wolfgang; Bergmann, Axel

    2006-10-01

    Time-correlated single photon counting (TCSPC) is based on the detection of single photons of a periodic light signal, measurement of the detection time of the photons, and the build-up of the photon distribution versus the time in the signal period. TCSPC achieves a near ideal counting efficiency and transit-time-spread-limited time resolution for a given detector. The drawback of traditional TCSPC is the low count rate, long acquisition time, and the fact that the technique is one-dimensional, i.e. limited to the recording of the pulse shape of light signals. We present an advanced TCSPC technique featuring multi-dimensional photon acquisition and a count rate close to the capability of currently available detectors. The technique is able to acquire photon distributions versus wavelength, spatial coordinates, and the time on the ps scale, and to record fast changes in the fluorescence lifetime and fluorescence intensity of a sample. Biomedical applications of advanced TCSPC techniques are time-domain optical tomography, recording of transient phenomena in biological systems, spectrally resolved fluorescence lifetime imaging, FRET experiments in living cells, and the investigation of dye-protein complexes by fluorescence correlation spectroscopy. We demonstrate the potential of the technique for selected applications.

  3. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  4. LAWRENCE RADIATION LABORATORY COUNTING HANDBOOK

    Energy Technology Data Exchange (ETDEWEB)

    Group, Nuclear Instrumentation

    1966-10-01

    The Counting Handbook is a compilation of operational techniques and performance specifications on counting equipment in use at the Lawrence Radiation Laboratory, Berkeley. Counting notes have been written from the viewpoint of the user rather than that of the designer or maintenance man. The only maintenance instructions that have been included are those that can easily be performed by the experimenter to assure that the equipment is operating properly.

  5. Coded aperture thermal neutron camera with asic-based pad readout

    International Nuclear Information System (INIS)

    A new generation of coded aperture neutron imagers is being developed at Brookhaven National Laboratory. The detector of the camera is a position sensitive thermal neutron chamber. The new device is a 3He-filled ionization chamber, which uses only anode and cathode planes. The anode is composed of an array of individual pads. The charge is collected on each of the individual 5 × 5 mm2 anode pads, (48 × 48 in total corresponding to a 24 × 24 cm2 sensitive area) and read out by application specific integrated circuits. The new design has several advantages for the field of coded aperture applications compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. The pad-based readout is event by event, thus capable of high count rates, and can perform data analysis and imaging on an event by event basis. The spatial resolution of the detector can be better than the pixel size by using charge sharing between adjacent pads. In this paper, we will report on the development and performance of the new, prototype pad-based neutron camera and present the first pad-based coded aperture images of thermalized neutron source. (author)

  6. When is pile-up important in the XMM-Newton EPIC cameras?

    Science.gov (United States)

    Jethwa, P.; Saxton, R.; Guainazzi, M.; Rodriguez-Pascual, P.; Stuhlinger, M.

    2015-09-01

    Context. Pile-up in X-ray charged couple device (CCD) detectors is defined as the reconstruction of independent events in the same detection cell as a single event during a read-out cycle. Pile-up can seriously compromise the spectral performance, modifying both the flux and the spectral shape of celestial sources. Aims: In this paper we define rigorous metrics to characterise the effect of pile-up in terms of flux loss and spectral distortion. Methods: We extend analytical formulae derived for pile-up on CCD detectors with the inclusion of the calibrated energy-dependence of the point spread function. We validated our analytical results through both Monte-Carlo simulations of the EPIC cameras on-board XMM-Newton and comparison with pile-up diagnostics in observed data. Results: We estimate new count rate levels corresponding to a given degree of flux loss and spectral distortion for each EPIC imaging acquisition mode and provide guidance to observers wishing to estimate these values in their own observations. Conclusions: We strongly recommend using these thresholds in planning future observations with the EPIC cameras.

  7. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  8. Exposure interlock for oscilloscope cameras

    Science.gov (United States)

    Spitzer, C. R.; Stainback, J. D. (Inventor)

    1973-01-01

    An exposure interlock has been developed for oscilloscope cameras which cuts off ambient light from the oscilloscope screen before the shutter of the camera is tripped. A flap is provided which may be selectively positioned to an open position which enables viewing of the oscilloscope screen and a closed position which cuts off the oscilloscope screen from view and simultaneously cuts off ambient light from the oscilloscope screen. A mechanical interlock is provided between the flap to be activated to its closed position before the camera shutter is tripped, thereby preventing overexposure of the film.

  9. SUMS Counts-Related Projects

    Data.gov (United States)

    Social Security Administration — Staging Instance for all SUMs Counts related projects including: Redeterminations/Limited Issue, Continuing Disability Resolution, CDR Performance Measures, Initial...

  10. Regional cerebral blood flow measurement using N-isopropyl-p-[123I] iodoamphetamine and rotating gamma camera emission computed tomography

    International Nuclear Information System (INIS)

    Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-[123I] Iodoamphetamine (123I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in μCi/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in μCi and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the countingrate ratio between peripheral and central regions of interests obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p123I-IMP and rotating gamma camera ECT and those from 133Xe inhalation method. rCBF measurement using 123I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional 133Xe clearance method. (author)

  11. On Single-scanline Camera Calibration

    OpenAIRE

    Horaud, Radu; Mohr, Roger; Lorecki, Boguslaw

    1993-01-01

    A method for calibrating single scanline CCD cameras is described. It is shown that the more classical 2D camera calibration techniques are necessary but not sufficient for solving the 1D camera calibration problem. A model for single scanline cameras is proposed, and a two-step procedure for estimating its parameters is provided. It is also shown how the extrinsic camera parameters can be determined geometrically without making explicit the intrinsic camera parameters. The accuracy of the ca...

  12. Inspecting rapidly moving surfaces for small defects using CNN cameras

    Science.gov (United States)

    Blug, Andreas; Carl, Daniel; Höfler, Heinrich

    2013-04-01

    A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or chatter marks with a lateral size of 100 μm in real time. Up to now, complex eddy current systems are used for quality control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data transport between camera and computer. This bottleneck is avoided by "cellular neural network" (CNN) cameras which enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on this novel analogue camera - computer system. The results show that computational speed and accuracy of the analogue computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz - depending on the number of defects to be detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the CNN based system outperforms conventional image processing systems by an order of magnitude.

  13. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    Science.gov (United States)

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  14. Computed neutron coincidence counting applied to passive waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R. [Nuclear Research Centre, Mol (Belgium)

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  15. Computed neutron coincidence counting applied to passive waste assay

    International Nuclear Information System (INIS)

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs

  16. Swiss requirements concerning gamma camera acceptance and status testing

    International Nuclear Information System (INIS)

    follow International standards set by either the National Electrical Manufacturers Association (NEMA) or the International Electrotechnical Commission (IEC). In practice, it appeared that the standards available at that time were not sufficiently precise to allow the technical staff from the manufacturers to perform these tests. Thus, acceptance and status tests performed were manufacturer dependent and could not allow the comparison of performances of different systems. This study presents these recommendations, shows their feasibility, evaluates the time and the material required and proposes slight modifications to simplify a few measurements. The background document of this work is the standard NEMA NU-1. The tests required in the framework of reception and status test (RT: acceptance (or reception) test and ST: Status test (six month frequency) are summarized. These new requirements will permit a uniform qualification of the gamma camera systems. A set of minimal acceptance tests is now available and requires two and a half hour acquisition time per head. For status test, the acquisition time can be reduced to one hour and a half per head, taking into account that the longer test (intrinsic homogeneity) is often required in the process of the maintenance. The main problem encountered during this study is the manipulation of very high activities when dealing with the assessment of the counting rate behaviour. To reduce exposure, manufacturer staff should be properly trained and the strict respect of the standard (let the source decrease) should be preferred since this test is only required for reception of the unit where time constraint is less of a problem. Concerning stability tests, one should control the homogeneity at least weekly and should check the picking and contamination of the system on a daily basis

  17. An Inexpensive Digital Infrared Camera

    Science.gov (United States)

    Mills, Allan

    2012-01-01

    Details are given for the conversion of an inexpensive webcam to a camera specifically sensitive to the near infrared (700-1000 nm). Some experiments and practical applications are suggested and illustrated. (Contains 9 figures.)

  18. Processing Gamma-Camera Data Obtained from an Off-Line System

    International Nuclear Information System (INIS)

    A system for off-line collection of data from a gamma camera in a form suitable for computer analysis is described. The co-ordinates from the gamma camera are digitized by analogue-to-digital convertors (6 bits in 10 μsec), buffered by two core stores (6 bits X 512 words), and then transferred to computer- compatible magnetic tape. There is no on-line display facility. The records are processed on a powerful batch-processing computer (CDC 6600). A program for carrying out detailed analysis of the data is described. The data are arranged as a series of 64 x 64 arrays on disc, one for each time interval. The program provides for the statistical smoothing of the random data, correction for the inherent non-uniformity of the gamma camera, and for printing the processed pictures by the computer as a series of density-graded symbols. Dynamic studies are carried out by monitoring the count-rate over specific regions, which may be regular or irregular. Irregular regions are specified by the co-ordinates of the boundary in terms of the 64 x 64 array printed on the picture. Control subroutines are used for carrying out the analysis for specific clinical procedures including kidney, heart and stomach investigations. These involve smoothing of statistical fluctuations of time curves and addition, subtraction and differentiation of time varying curves. In one case the computer has been programmed to identify the regions of interest for dynamic analysis. The program is designed for ease of operation. The relevant operations associated with each particular investigation can be selected by means of a small number of control cards. (author)

  19. Final Report for LDRD Project 02-FS-009 Gigapixel Surveillance Camera

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R E; Bennett, C L

    2010-04-20

    The threats of terrorism and proliferation of weapons of mass destruction add urgency to the development of new techniques for surveillance and intelligence collection. For example, the United States faces a serious and growing threat from adversaries who locate key facilities underground, hide them within other facilities, or otherwise conceal their location and function. Reconnaissance photographs are one of the most important tools for uncovering the capabilities of adversaries. However, current imaging technology provides only infrequent static images of a large area, or occasional video of a small area. We are attempting to add a new dimension to reconnaissance by introducing a capability for large area video surveillance. This capability would enable tracking of all vehicle movements within a very large area. The goal of our project is the development of a gigapixel video surveillance camera for high altitude aircraft or balloon platforms. From very high altitude platforms (20-40 km altitude) it would be possible to track every moving vehicle within an area of roughly 100 km x 100 km, about the size of the San Francisco Bay region, with a gigapixel camera. Reliable tracking of vehicles requires a ground sampling distance (GSD) of 0.5 to 1 m and a framing rate of approximately two frames per second (fps). For a 100 km x 100 km area the corresponding pixel count is 10 gigapixels for a 1-m GSD and 40 gigapixels for a 0.5-m GSD. This is an order of magnitude beyond the 1 gigapixel camera envisioned in our LDRD proposal. We have determined that an instrument of this capacity is feasible.

  20. Acceptance tests of a new gamma camera

    International Nuclear Information System (INIS)

    For best patient service, a QA programme is needed to produce quantitative/qualitative data and keep records of the results and equipment faults. Gamma cameras must be checked against the manufacturer's specifications.The service manual is usually useful to achieve this goal. Acceptance tests are very important not only to accept a new gamma camera system for routine clinical use but also to have a role in a reference for future measurements. In this study, acceptance tests were performed for a new gamma camera in our department. It is a General Electric MG system with two detectors, two collimators. They are low energy general purpose (LEGP) and medium energy general purpose (MEGP). All intrinsic calibrations and corrections were done by the service engineer at installation (PM tune, dynamic correction, energy calibration, geometric calibration, energy correction, linearity correction and second order corrections).After installation, calibrations and corrections, a close physical inspection of the mechanical and electrical safety aspects of the cameras were done by the responsible physicist of the department. The planar system is based on measurement of system uniformity, resolution/linearity and multiple window spatial registration. All test procedures were performed according to NEMA procedures developed by the manufacturer. Intrinsic uniformity: NEMA uniformity was done first by using service manual and then other isotope uniformities were acquired with 99mTc, 131I, 201Tl and 67Ga. They were evaluated qualitatively and quantitatively, but non-uniformities were observed, especially for detector II, The service engineers repeated all tests and made necessary corrections. We repeated all the intrinsic uniformity tests. 99mTc intrinsic images were also performed at 'no correction', 'no energy correction', 'no linearity correction', 'all correction' and '±10% off peak', and compared. Extrinsic uniformity: At the beginning, collimators were checked for defects

  1. Wide Dynamic Range CCD Camera

    Science.gov (United States)

    Younse, J. M.; Gove, R. J.; Penz, P. A.; Russell, D. E.

    1984-11-01

    A liquid crystal attenuator (LCA) operated as a variable neutral density filter has been attached to a charge-coupled device (CCD) imager to extend the dynamic range of a solid-state TV camera by an order of magnitude. Many applications are best served by a camera with a dynamic range of several thousand. For example, outside security systems must operate unattended with "dawn-to-dusk" lighting conditions. Although this can be achieved with available auto-iris lens assemblies, more elegant solutions which provide the small size, low power, high reliability advantages of solid state technology are now available. This paper will describe one such unique way of achieving these dynamic ranges using standard optics by making the CCD imager's glass cover a controllable neutral density filter. The liquid crystal attenuator's structure and theoretical properties for this application will be described along with measured transmittance. A small integrated TV camera which utilizes a "virtual-phase" CCD sensor coupled to a LCA will be described and test results for a number of the camera's optical and electrical parameters will be given. These include the following camera parameters: dynamic range, Modulation Transfer Function (MTF), spectral response, and uniformity. Also described will be circuitry which senses the ambient scene illuminance and automatically provides feedback signals to appropriately adjust the transmittance of the LCA. Finally, image photographs using this camera, under various scene illuminations, will be shown.

  2. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution.

    Science.gov (United States)

    Hirvonen, Liisa M; Festy, Frederic; Suhling, Klaus

    2014-10-01

    A 1 MHz frame rate complementary metal-oxide semiconductor (CMOS) camera was used in combination with an image intensifier for wide-field time-correlated single-photon counting (TCSPC) imaging. The system combines an ultrafast frame rate with single-photon sensitivity and was employed on a fluorescence microscope to image decays of ruthenium compound Ru(dpp) with lifetimes from around 1 to 5 μs. A submicrowatt excitation power over the whole field of view is sufficient for this approach, and compatibility with live-cell imaging was demonstrated by imaging europium-containing beads with a lifetime of 570 μs in living HeLa cells. A standard two-photon excitation scanning fluorescence lifetime imaging (FLIM) system was used to independently verify the lifetime for the europium beads. This approach brings together advantageous features for time-resolved live-cell imaging such as low excitation intensity, single-photon sensitivity, ultrafast camera frame rates, and short acquisition times. PMID:25360938

  3. Integrated counting system - user guide

    International Nuclear Information System (INIS)

    The facilities of a nucleonic counting system in one module in the standard 6000 series and its use in applications is described. Details are given of ways of employing the module for the rapid and low cost development of computer-based systems in nucleonic counting applications. (author)

  4. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    Science.gov (United States)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  5. A miniature VGA SWIR camera using MT6415CA ROIC

    Science.gov (United States)

    Eminoglu, Selim; Yilmaz, S. Gokhan; Kocak, Serhat

    2014-06-01

    This paper reports the development of a new miniature VGA SWIR camera called NanoCAM-6415, which is developed to demonstrate the key features of the MT6415CA ROIC such as high integration level, low-noise, and low-power in a small volume. The NanoCAM-6415 uses an InGaAs Focal Plane Array (FPA) with a format of 640 × 512 and pixel pitch of 15 μm built using MT6415CA ROIC. MT6415CA is a low-noise CTIA ROIC, which has a system-on-chip architecture, allows generation of all the required timing and biases on-chip in the ROIC without requiring any external components or inputs, thus enabling the development of compact and low-noise SWIR cameras, with reduced size, weight, and power (SWaP). NanoCAM-6415 camera supports snapshot operation using Integrate-Then-Read (ITR) and Integrate-While-Read (IWR) modes. The camera has three gain settings enabled by the ROIC through programmable Full-Well-Capacity (FWC) values of 10.000 e-, 20.000 e-, and 350.000 e- in the very high gain (VHG), high-gain (HG), and low-gain (LG) modes, respectively. The camera has an input referred noise level of 10 e- rms in the VHG mode at 1 ms integration time, suitable for low-noise SWIR imaging applications. In order to reduce the size and power of the camera, only 2 outputs out of 8 of the ROIC are connected to the external Analog-to-Digital Converters (ADCs) in the camera electronics, providing a maximum frame rate of 50 fps through a 26-pin SDR type Camera Link connector. NanoCAM-6415 SWIR camera without the optics measures 32 mm × 32 mm × 35 mm, weighs 45gr, and dissipates less than 1.8 W using a 5 V supply. These results show that MT6415CA ROIC can successfully be used to develop cameras for SWIR imaging applications where SWaP is a concern. Mikro-Tasarim has also developed new imaging software to demonstrate the functionality of this miniature VGA camera. Mikro-Tasarim provides tested ROIC wafers and also offers compact and easy-to-use test electronics, demo cameras, and hardware

  6. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  7. Hanford whole body counting manual

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs.

  8. Comparing spatial capture–recapture modeling and nest count methods to estimate orangutan densities in the Wehea Forest, East Kalimantan, Indonesia

    Science.gov (United States)

    Spehar, Stephanie N.; Loken, Brent; Rayadin, Yaya; Royle, J. Andrew

    2015-01-01

    Accurate information on the density and abundance of animal populations is essential for understanding species' ecology and for conservation planning, but is difficult to obtain. The endangered orangutan (Pongo spp.) is an example; due to its elusive behavior and low densities, researchers have relied on methods that convert nest counts to orangutan densities and require substantial effort for reliable results. Camera trapping and spatial capture–recapture (SCR) models could provide an alternative but have not been used for primates. We compared density estimates calculated using the two methods for orangutans in the Wehea Forest, East Kalimantan, Indonesia. Camera trapping/SCR modeling produced a density estimate of 0.16 ± 0.09–0.29 indiv/km2, and nest counts produced a density estimate of 1.05 ± 0.18–6.01 indiv/km2. The large confidence interval of the nest count estimate is probably due to high variance in nest encounter rates, indicating the need for larger sample size and the substantial effort required to produce reliable results using this method. The SCR estimate produced a very low density estimate and had a narrower but still fairly wide confidence interval. This was likely due to unmodeled heterogeneity and small sample size, specifically a low number of individual captures and recaptures. We propose methodological fixes that could address these issues and improve precision. A comparison of the overall costs and benefits of the two methods suggests that camera trapping/SCR modeling can potentially be a useful tool for assessing the densities of orangutans and other elusive primates, and warrant further investigation to determine broad applicability and methodological adjustments needed.

  9. Pulse pileup statistics for energy discriminating photon counting x-ray detectors

    International Nuclear Information System (INIS)

    Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N0, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analytically for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N0, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image

  10. BAE systems' SMART chip camera FPA development

    Science.gov (United States)

    Sengupta, Louise; Auroux, Pierre-Alain; McManus, Don; Harris, D. Ahmasi; Blackwell, Richard J.; Bryant, Jeffrey; Boal, Mihir; Binkerd, Evan

    2015-06-01

    BAE Systems' SMART (Stacked Modular Architecture High-Resolution Thermal) Chip Camera provides very compact long-wave infrared (LWIR) solutions by combining a 12 μm wafer-level packaged focal plane array (FPA) with multichip-stack, application-specific integrated circuit (ASIC) and wafer-level optics. The key innovations that enabled this include a single-layer 12 μm pixel bolometer design and robust fabrication process, as well as wafer-level lid packaging. We used advanced packaging techniques to achieve an extremely small-form-factor camera, with a complete volume of 2.9 cm3 and a thermal core weight of 5.1g. The SMART Chip Camera supports up to 60 Hz frame rates, and requires less than 500 mW of power. This work has been supported by the Defense Advanced Research Projects Agency's (DARPA) Low Cost Thermal Imager - Manufacturing (LCTI-M) program, and BAE Systems' internal research and development investment.

  11. Coincidence detection of photons of 511 keV from positon annihilation on a conventional gamma camera: optimization and analysis of potentialities

    International Nuclear Information System (INIS)

    The feasibility of acquiring clinical oncology studies on a gamma camera designed for the imaging of low energy single photons was investigated. The first prototype used two Nal(Tl) detectors of 40 cm by 30 cm with a 3/8 inch height and the second prototype was equipped with two large Nal(Tl) detectors of 40 cm by 54 cm with a 4/8 inch height. The optimization of such devices was mainly an optimization of the count rates obtained for reconstruct an image as a function of the angular axial aperture of the projections, with and without axial collimators. This optimization was performed experimentally using an anthropomorphic whole body phantom and the noise equivalent count rate as the figure of merit. An original correction for the random coincidences was also designed in order to optimize the contrast recovery and the contrast to noise ratio of small tumors (16 mm and 19 mm diameter). Finally, the optimal dose of FDG that can be injected to the subjects for an acquisition of that machine was determined and data acquired on an ECAT HR+ were compared with those acquired on the gamma camera for five subjects. (author)

  12. Autonomous single camera exploration

    OpenAIRE

    Vidal-Calleja, Teresa A.; Sanfeliu, Alberto; Andrade-Cetto, J.

    2006-01-01

    In this paper we present an active exploration strategy for a mobile robot navigating in 3D. The aim is to control a moving robot that autonomously builds a visual feature map while at the same time optimises its localisation in this map. The technique chooses the most appropriate commands maximising the information gain between prior states and measurements, while performing 6DOF bearing only SLAM at video rate. Maximising the mutual information helps the vehicle avoid ill-conditioned measur...

  13. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  14. The analysis of event rates using intervals

    OpenAIRE

    Jim Lemon

    2014-01-01

    Event interval analysis had historical antecedents in the past century, but the analysis of rates of events has been largely performed using counts of events. When the information content of intervals and counts of the same events are compared, it is clear that the information content of counts is sensitive to the number of events in a counting interval. The reduced information content of counts where the number of events in a counting interval is small may affect the analysis of event ra...

  15. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    corrections to be done at an even higher rate, more than one thousand times a second, and this is where OCam is essential. "The quality of the adaptive optics correction strongly depends on the speed of the camera and on its sensitivity," says Philippe Feautrier from the LAOG, France, who coordinated the whole project. "But these are a priori contradictory requirements, as in general the faster a camera is, the less sensitive it is." This is why cameras normally used for very high frame-rate movies require extremely powerful illumination, which is of course not an option for astronomical cameras. OCam and its CCD220 detector, developed by the British manufacturer e2v technologies, solve this dilemma, by being not only the fastest available, but also very sensitive, making a significant jump in performance for such cameras. Because of imperfect operation of any physical electronic devices, a CCD camera suffers from so-called readout noise. OCam has a readout noise ten times smaller than the detectors currently used on the VLT, making it much more sensitive and able to take pictures of the faintest of sources. "Thanks to this technology, all the new generation instruments of ESO's Very Large Telescope will be able to produce the best possible images, with an unequalled sharpness," declares Jean-Luc Gach, from the Laboratoire d'Astrophysique de Marseille, France, who led the team that built the camera. "Plans are now underway to develop the adaptive optics detectors required for ESO's planned 42-metre European Extremely Large Telescope, together with our research partners and the industry," says Hubin. Using sensitive detectors developed in the UK, with a control system developed in France, with German and Spanish participation, OCam is truly an outcome of a European collaboration that will be widely used and commercially produced. More information The three French laboratories involved are the Laboratoire d'Astrophysique de Marseille (LAM/INSU/CNRS, Université de Provence

  16. Earth's Radiation Belts: The View from Juno's Cameras

    Science.gov (United States)

    Becker, H. N.; Joergensen, J. L.; Hansen, C. J.; Caplinger, M. A.; Ravine, M. A.; Gladstone, R.; Versteeg, M. H.; Mauk, B.; Paranicas, C.; Haggerty, D. K.; Thorne, R. M.; Connerney, J. E.; Kang, S. S.

    2013-12-01

    Juno's cameras, particle instruments, and ultraviolet imaging spectrograph have been heavily shielded for operation within Jupiter's high radiation environment. However, varying quantities of >1-MeV electrons and >10-MeV protons will be energetic enough to penetrate instrument shielding and be detected as transient background signatures by the instruments. The differing shielding profiles of Juno's instruments lead to differing spectral sensitivities to penetrating electrons and protons within these regimes. This presentation will discuss radiation data collected by Juno in the Earth's magnetosphere during Juno's October 9, 2013 Earth flyby (559 km altitude at closest approach). The focus will be data from Juno's Stellar Reference Unit, Advanced Stellar Compass star cameras, and JunoCam imager acquired during coordinated proton measurements within the inner zone and during the spacecraft's inbound and outbound passages through the outer zone (L ~3-5). The background radiation signatures from these cameras will be correlated with dark count background data collected at these geometries by Juno's Ultraviolet Spectrograph (UVS) and Jupiter Energetic Particle Detector Instrument (JEDI). Further comparison will be made to Van Allen Probe data to calibrate Juno's camera results and contribute an additional view of the Earth's radiation environment during this unique event.

  17. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  18. {sup 18F}-FDG PET imaging with dual head gamma camera and co-incidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Quach, T.; Camden, B.M.; Chu, J.M.G. [Liverpool Health Services, Liverpool, NSW (Australia). Department of Nuclear Medicine and Clinical Ultrasound

    1998-06-01

    Full text: {sup 18F}-Fluorodeoxyglucose (FDG) positron tomography is based on the detection of two 511 keV photons which are produced 180 deg apart as a result of an annihilation of a positron and an electron. Apart from the dedicated PET scanner, dual head gamma camera designed for Co-incidence Detection (CD) can now perform `{sup 18}F-FDG PET studies. CD imaging involves using a dual head gamma camera to detect those photons which are 180 deg apart and fall within a timing window of 15 nsec. No collimators are required as a timing gate of 15 nsec is used. {sup 18}F-FDG studies are performed using an ADAC Solus Molecular Co-incidence Detection (MCD) dual head gamma camera. The patients are fasted from midnight but well hydrated before the scan. Prior to injection, the blood sugar levels (BSL) are measured. For optimal {sup 18}F-FDG uptake, the BSL should be less than 8.9 mmol/L. A dose of 200MBq of {sup 18}F-FDG is intravenously injected via a cannula. Scanning commences at 1 hour post injection. To perform a wholebody tomography of the torso, the patient must void before scanning to reduce bladder activity. Excessive bladder activity leads to significant image degradation, therefore the wholebody tomography is started from the pelvis. Depending on the patient torso length, either 2 or 3 tomographies are collected with a 50% overlap. Each tomography is collected for 40 seconds per step for 32 steps. To avoid attenuation from the upper limbs, the patient is positioned supine with the arms above the head. If a patient cannot tolerate this position, scanning with the arms by the side may be necessary since the scanning time may take up to 50 minutes. If the area of interest is the neck, scanning with the patient`s arms down by their sides is preferred, although attenuation will occur. To scan the brain, a circular tomography is performed using 32 steps at 80 seconds per step. For processing purposes, the Singles count rate for each detector must be between 800K and

  19. Active control for single camera SLAM

    OpenAIRE

    Vidal-Calleja, Teresa A.; Davison, Andrew J.; Andrade-Cetto, J.; Murray, David W

    2006-01-01

    In this paper we consider a single hand-held camera performing SLAM at video rate with generic 6DOF motion. The aim is to optimise both the localisation of the sensor and building of the feature map by computing the most appropriate control actions or movements. The actions belong to a discrete set (e.g. go forward, go left, go up, turn right, etc), and are chosen so as to maximise the mutual information gain between posterior states and measurements. Maximising the mutual information helps t...

  20. A positron camera for industrial application

    International Nuclear Information System (INIS)

    A positron camera for application to flow tracing and measurement in mechanical subjects is described. It is based on two 300 x 600 mm2 hybrid multiwire detectors; the cathodes are in the form of lead strips planted onto printed-circuit board, and delay lines are used to determine the location of photon interactions. Measurements of the positron detection efficiency (30 Hz μCi-1 for a centred unshielded source), the maximum data logging rate (3 kHz) and the spatial resolving power (point source response = 5.7 mm fwhm) are presented and discussed, and results from initial demonstration experiments are shown. (orig.)

  1. HPD camera development for the MAGIC project

    International Nuclear Information System (INIS)

    Today the Hybrid Photon Detector (HPD) is one of the few low light level sensors that can provide an excellent single and multiple photoelectron amplitude resolution. We developed HPDs with a GaAsP photocathode, namely the R9792U-40, together with Hamamatsu photonics. A peak quantum efficiency (QE) exceeds 50% and a pulse width is 2 nsec. In addition, the afterpulsing rate of these tubes is ∝300 times lower compared to that of conventional photomultiplier tubes (PMTs). Here we want to report on the recent progress of the HPD camera development. We also want to discuss the prospects of using it in the MAGIC telescope project

  2. Evolution of INO Uncooled Infrared Cameras Towards Very High Resolution Imaging

    Science.gov (United States)

    Bergeron, Alain; Jerominek, Hubert; Chevalier, Claude; Le Noc, Loïc; Tremblay, Bruno; Alain, Christine; Martel, Anne; Blanchard, Nathalie; Morissette, Martin; Mercier, Luc; Gagnon, Lucie; Couture, Patrick; Desnoyers, Nichola; Demers, Mathieu; Lamontagne, Frédéric; Lévesque, Frédéric; Verreault, Sonia; Duchesne, François; Lambert, Julie; Girard, Marc; Savard, Maxime; Châteauneuf, François

    2011-02-01

    Along the years INO has been involved in development of various uncooled infrared devices. Todays, the infrared imagers exhibit good resolutions and find their niche in numerous applications. Nevertheless, there is still a trend toward high resolution imaging for demanding applications. At the same time, low-resolution for mass market applications are sought for low-cost imaging solutions. These two opposite requirements reflect the evolution of infrared cameras from the origin, when only few pixel-count FPAs were available, to megapixel-count FPA of the recent years. This paper reviews the evolution of infrared camera technologies at INO from the uncooled bolometer detector capability up to the recent achievement of 1280×960 pixels infrared camera core using INO's patented microscan technology.

  3. Enabling photon counting detectors with dynamic attenuators

    Science.gov (United States)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  4. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  5. Cameras for semiconductor process control

    Science.gov (United States)

    Porter, W. A.; Parker, D. L.

    1977-01-01

    The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.

  6. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  7. Aerial camera auto focusing system

    Science.gov (United States)

    Wang, Xuan; Lan, Gongpu; Gao, Xiaodong; Liang, Wei

    2012-10-01

    Before the aerial photographic task, the cameras focusing work should be performed at first to compensate the defocus caused by the changes of the temperature, pressure etc. A new method of aerial camera auto focusing is proposed through traditional photoelectric self-collimation combined with image processing method. Firstly, the basic principles of optical self-collimation and image processing are introduced. Secondly, the limitations of the two are illustrated and the benefits of the new method are detailed. Then the basic principle, the system composition and the implementation of this new method are presented. Finally, the data collection platform is set up reasonably and the focus evaluation function curve is draw. The results showed that: the method can be used in the Aerial camera focusing field, adapt to the aviation equipment trends of miniaturization and lightweight .This paper is helpful to the further work of accurate and automatic focusing.

  8. Fundamental uncertainties in lung counting.

    Science.gov (United States)

    Kramer, Gary H; Hauck, Barry M

    2007-10-01

    The HML has investigated the effect the uncertainty introduced into an activity estimate from a lung count due to 1) replicate counts and 2) lung set variability. Replicate counts in the HML seem to only be affected by random statistics as the uncertainty can be predicted by Monte Carlo simulations. These findings from the lung set variability experiments suggest that a lung set has an unquantified uncertainty on its activity that adds a component to the uncertainty on the counting efficiency, and ultimately the activity estimate, as they can differ by as much as 30% at 17.5 keV or about 13% at 185.7 keV, when one is expecting only a 3% difference. PMID:17846529

  9. A commercial bacterial colony counter for semi-automatic track counting

    International Nuclear Information System (INIS)

    The information one must obtain from a solid state track detector depends on the specific application. The most common information need is the measurement of track density. The number of tracks per unit area is commonly used in neutron and alpha dosimetry, for example, to determine radiation dose. In recent years, a class of semi-automatic counting systems has become available for under $15,000. These systems, usually developed for bacterial colony counting, are capable of measuring track density. The basic instrument is designed to count relatively large objects with low magnification using an illuminated stage. However, track counting can be done with an accessory television camera coupled to an optical microscope. Tracks from electrochemical etching can be counted easily with objectives as low as 2X. (author)

  10. Counting Word Frequencies with Python

    OpenAIRE

    William J. Turkel; Adam Crymble

    2012-01-01

    Your list is now clean enough that you can begin analyzing its contents in meaningful ways. Counting the frequency of specific words in the list can provide illustrative data. Python has an easy way to count frequencies, but it requires the use of a new type of variable: the dictionary. Before you begin working with a dictionary, consider the processes used to calculate frequencies in a list.

  11. Counting Word Frequencies with Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available Your list is now clean enough that you can begin analyzing its contents in meaningful ways. Counting the frequency of specific words in the list can provide illustrative data. Python has an easy way to count frequencies, but it requires the use of a new type of variable: the dictionary. Before you begin working with a dictionary, consider the processes used to calculate frequencies in a list.

  12. How fast can quantum annealers count?

    International Nuclear Information System (INIS)

    We outline an algorithm for the quantum counting problem using adiabatic quantum computation (AQC). We show that the mechanism of quantum-adiabatic evolution may be utilized toward estimating the number of solutions to a problem, and not only to find them. Using local adiabatic evolution, a process in which the adiabatic procedure is performed at a variable rate, the problem of counting the number of marked items in an unstructured database is solved quadratically faster than the corresponding classical algorithm. The above algorithm provides further evidence for the potentially powerful capabilities of AQC as a paradigm for more efficient problem solving on a quantum computer, and may be used as the basis for solving more sophisticated problems. (paper)

  13. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise

    NARCIS (Netherlands)

    H. Kempe; A. Schwabe; F. Crémazy; P.J. Verschure; F.J. Bruggeman

    2015-01-01

    Transcriptional stochasticity can be measured by counting the number of mRNA molecules per cell. Cell-to-cell variability is best captured in terms of concentration rather than molecule counts, because reaction rates depend on concentrations. We combined single-molecule mRNA counting with single-cel

  14. Extragalactic number counts at 100 um, free from cosmic variance

    CERN Document Server

    Sibthorpe, B; Massey, R J; Roseboom, I G; van der Werf, P; Matthews, B C; Greaves, J S

    2012-01-01

    We use data from the Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre (DEBRIS) survey, taken at 100 um with the Photoconductor Array Camera and Spectrometer instrument on board the Herschel Space Observatory, to make a cosmic variance independent measurement of the extragalactic number counts. These data consist of 323 small-area mapping observations performed uniformly across the sky, and thus represent a sparse sampling of the astronomical sky with an effective coverage of ~2.5 deg^2. We find our cosmic variance independent analysis to be consistent with previous count measurements made using relatively small area surveys. Furthermore, we find no statistically significant cosmic variance on any scale within the errors of our data. Finally, we interpret these results to estimate the probability of galaxy source confusion in the study of debris discs.

  15. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  16. NV-CMOS HD camera for day/night imaging

    Science.gov (United States)

    Vogelsong, T.; Tower, J.; Sudol, Thomas; Senko, T.; Chodelka, D.

    2014-06-01

    SRI International (SRI) has developed a new multi-purpose day/night video camera with low-light imaging performance comparable to an image intensifier, while offering the size, weight, ruggedness, and cost advantages enabled by the use of SRI's NV-CMOS HD digital image sensor chip. The digital video output is ideal for image enhancement, sharing with others through networking, video capture for data analysis, or fusion with thermal cameras. The camera provides Camera Link output with HD/WUXGA resolution of 1920 x 1200 pixels operating at 60 Hz. Windowing to smaller sizes enables operation at higher frame rates. High sensitivity is achieved through use of backside illumination, providing high Quantum Efficiency (QE) across the visible and near infrared (NIR) bands (peak QE cinematography/broadcast systems, biofluorescence/microscopy imaging, day/night security and surveillance, and other high-end applications which require HD video imaging with high sensitivity and wide dynamic range. The camera comes with an array of lens mounts including C-mount and F-mount. The latest test data from the NV-CMOS HD camera will be presented.

  17. Standardization of 241Am by digital coincidence counting, liquid scintillation counting and defined solid angle counting

    CERN Document Server

    Balpardo, C; Rodrigues, D; Arenillas, P

    2010-01-01

    The nuclide 241Am decays by alpha emission to 237Np. Most of the decays (84.6 %) populate the excited level of 237Np with energy of 59.54 keV. Digital Coincidence Counting was applied to standardize a solution of 241Am by alpha-gamma coincidence counting with efficiency extrapolation. Electronic discrimination was implemented with a pressurized proportional counter and the results were compared with two other independent techniques: Liquid Scintillation Counting using the logical sum of double coincidences in a TDCR array and Defined Solid Angle Counting taking into account activity inhomogeneity in the active deposit. The results show consistency between the three methods within a limit of a 0.3%. An ampoule of this solution will be sent to the International Reference System (SIR) during 2009. Uncertainties were analysed and compared in detail for the three applied methods.

  18. Full Stokes polarization imaging camera

    Science.gov (United States)

    Vedel, M.; Breugnot, S.; Lechocinski, N.

    2011-10-01

    Objective and background: We present a new version of Bossa Nova Technologies' passive polarization imaging camera. The previous version was performing live measurement of the Linear Stokes parameters (S0, S1, S2), and its derivatives. This new version presented in this paper performs live measurement of Full Stokes parameters, i.e. including the fourth parameter S3 related to the amount of circular polarization. Dedicated software was developed to provide live images of any Stokes related parameters such as the Degree Of Linear Polarization (DOLP), the Degree Of Circular Polarization (DOCP), the Angle Of Polarization (AOP). Results: We first we give a brief description of the camera and its technology. It is a Division Of Time Polarimeter using a custom ferroelectric liquid crystal cell. A description of the method used to calculate Data Reduction Matrix (DRM)5,9 linking intensity measurements and the Stokes parameters is given. The calibration was developed in order to maximize the condition number of the DRM. It also allows very efficient post processing of the images acquired. Complete evaluation of the precision of standard polarization parameters is described. We further present the standard features of the dedicated software that was developed to operate the camera. It provides live images of the Stokes vector components and the usual associated parameters. Finally some tests already conducted are presented. It includes indoor laboratory and outdoor measurements. This new camera will be a useful tool for many applications such as biomedical, remote sensing, metrology, material studies, and others.

  19. Camera assisted multimodal user interaction

    Science.gov (United States)

    Hannuksela, Jari; Silvén, Olli; Ronkainen, Sami; Alenius, Sakari; Vehviläinen, Markku

    2010-01-01

    Since more processing power, new sensing and display technologies are already available in mobile devices, there has been increased interest in building systems to communicate via different modalities such as speech, gesture, expression, and touch. In context identification based user interfaces, these independent modalities are combined to create new ways how the users interact with hand-helds. While these are unlikely to completely replace traditional interfaces, they will considerably enrich and improve the user experience and task performance. We demonstrate a set of novel user interface concepts that rely on built-in multiple sensors of modern mobile devices for recognizing the context and sequences of actions. In particular, we use the camera to detect whether the user is watching the device, for instance, to make the decision to turn on the display backlight. In our approach the motion sensors are first employed for detecting the handling of the device. Then, based on ambient illumination information provided by a light sensor, the cameras are turned on. The frontal camera is used for face detection, while the back camera provides for supplemental contextual information. The subsequent applications triggered by the context can be, for example, image capturing, or bar code reading.

  20. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    A gamma camera is described with a plurality of photodetectors arranged for locating flashes of light produced by a scintillator in response to incident radiation. Masking material is arranged in a radially symmetric pattern on the front face of the scintillator about the axis of each photodetector to reduce the amount of internal reflection of optical photons induced by gamma ray photons

  1. Gamma camera with reflectivity mask

    International Nuclear Information System (INIS)

    In accordance with the present invention there is provided a radiographic camera comprising: a scintillator; a plurality of photodectors positioned to face said scintillator; a plurality of masked regions formed upon a face of said scintillator opposite said photdetectors and positioned coaxially with respective ones of said photodetectors for decreasing the amount of internal reflection of optical photons generated within said scintillator. (auth)

  2. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    Just like art historians have focused on e.g. composition or lighting, this dissertation takes a single stylistic parameter as its object of study: camera movement. Within film studies this localized avenue of middle-level research has become increasingly viable under the aegis of a perspective k...

  3. Hardware accelerator design for tracking in smart camera

    Science.gov (United States)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in video analysis. For video analysis, smart cameras needs to detect interesting moving objects, track such objects from frame to frame, and perform analysis of object track in real time. Therefore, the use of real-time tracking is prominent in smart cameras. The software implementation of tracking algorithm on a general purpose processor (like PowerPC) could achieve low frame rate far from real-time requirements. This paper presents the SIMD approach based hardware accelerator designed for real-time tracking of objects in a scene. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA. Resulted frame rate is 30 frames per second for 250x200 resolution video in gray scale.

  4. Cerenkov counting as a complement to liquid scintillation counting

    International Nuclear Information System (INIS)

    A commercially available spectrometer was calibrated for liquid scintillation (LS) and Cerenkov counting efficiency (CCE) using National Institute of Standards and Technology traceable solutions. The CCE increased linearly over a 3 order of magnitude range in 40K β activity, and by 42% per MeV as β-energies increased from 0.300 to 3.54 MeV, achieving a maximum value of 80% for 106Ru/106Rh The CCE can be enhanced by 10-15% when a wavelength shifter is used. A comparison of the data showed that the CCE was typically 20-50% less than the LS counting efficiency for β-particles with maximum energies >1 MeV. Applications that utilize sequential CCE and LS counting to quantitate activity concentrations are discussed for samples containing two β-emitting nuclides of differing energies. (Author)

  5. Single-particle cryo-EM data acquisition by using direct electron detection camera.

    Science.gov (United States)

    Wu, Shenping; Armache, Jean-Paul; Cheng, Yifan

    2016-02-01

    Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as 'movies' made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired. PMID:26546989

  6. Development of Finger Touch Position Detection System Methods Using Single Camera

    OpenAIRE

    Chen, Shenjing; Zhang, Lifeng

    2014-01-01

    We propose a new image processing-based finger touch position detection sensing method using a reflected image reflected on the screen. Using single camera by image processing to detect touch position has several significant advantages: (1) Installation of camera becomes easily (2) This system can reduce the failure rate to realize maintenance free operation. (2) This approach enables easy attachment and low-cost touch sensing. The problem when using single camera is impossible to detect the ...

  7. High quantum efficiency S-20 photocathodes for photon counting applications

    CERN Document Server

    Orlov, Dmitry A; Pinto, Serge Duarte; Glazenborg, Rene; Kernen, Emilie

    2016-01-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors.

  8. Single-pixel camera with one graphene photodetector.

    Science.gov (United States)

    Li, Gongxin; Wang, Wenxue; Wang, Yuechao; Yang, Wenguang; Liu, Lianqing

    2016-01-11

    Consumer cameras in the megapixel range are ubiquitous, but the improvement of them is hindered by the poor performance and high cost of traditional photodetectors. Graphene, a two-dimensional micro-/nano-material, recently has exhibited exceptional properties as a sensing element in a photodetector over traditional materials. However, it is difficult to fabricate a large-scale array of graphene photodetectors to replace the traditional photodetector array. To take full advantage of the unique characteristics of the graphene photodetector, in this study we integrated a graphene photodetector in a single-pixel camera based on compressive sensing. To begin with, we introduced a method called laser scribing for fabrication the graphene. It produces the graphene components in arbitrary patterns more quickly without photoresist contamination as do traditional methods. Next, we proposed a system for calibrating the optoelectrical properties of micro/nano photodetectors based on a digital micromirror device (DMD), which changes the light intensity by controlling the number of individual micromirrors positioned at + 12°. The calibration sensitivity is driven by the sum of all micromirrors of the DMD and can be as high as 10-5 A/W. Finally, the single-pixel camera integrated with one graphene photodetector was used to recover a static image to demonstrate the feasibility of the single-pixel imaging system with the graphene photodetector. A high-resolution image can be recovered with the camera at a sampling rate much less than Nyquist rate. The study was the first demonstration for ever record of a macroscopic camera with a graphene photodetector. The camera has the potential for high-speed and high-resolution imaging at much less cost than traditional megapixel cameras. PMID:26832270

  9. Hanford whole body counting manual

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  10. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  11. Negative Binomial Process Count and Mixture Modeling.

    Science.gov (United States)

    Zhou, Mingyuan; Carin, Lawrence

    2015-02-01

    The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters. PMID:26353243

  12. Replacing 16-mm film cameras with high-definition digital cameras

    Science.gov (United States)

    Balch, Kris S.

    1995-09-01

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  13. On the Count of Trees

    CERN Document Server

    Barcenas, Everardo; Layaida, Nabil; Schmitt, Alan

    2010-01-01

    Regular tree grammars and regular path expressions constitute core constructs widely used in programming languages and type systems. Nevertheless, there has been little research so far on frameworks for reasoning about path expressions where node cardinality constraints occur along a path in a tree. We present a logic capable of expressing deep counting along paths which may include arbitrary recursive forward and backward navigation. The counting extensions can be seen as a generalization of graded modalities that count immediate successor nodes. While the combination of graded modalities, nominals, and inverse modalities yields undecidable logics over graphs, we show that these features can be combined in a decidable tree logic whose main features can be decided in exponential time. Our logic being closed under negation, it may be used to decide typical problems on XPath queries such as satisfiability, type checking with relation to regular types, containment, or equivalence.

  14. Bayesian approach in MN low dose of radiation counting

    International Nuclear Information System (INIS)

    The Micronucleus assay in lymphocytes is a well established technique for the assessment of genetic damage induced by ionizing radiation. Due to the presence of a natural background of MN the net MN is obtained by subtracting this value to the gross value. When very low doses of radiation are given the induced MN is close even lower than the predetermined background value. Furthermore, the damage distribution induced by the radiation follows a Poisson probability distribution. These two facts pose a difficult task to obtain the net counting rate in the exposed situations. It is possible to overcome this problem using a bayesian approach, in which the selection of a priori distributions for the background and net counting rate plays an important role. In the present work we make a detailed analysed using bayesian theory to infer the net counting rate in two different situations: a) when the background is known for an individual sample, using exact value value for the background and Jeffreys prior for the net counting rate, and b) when the background is not known and we make use of a population background distribution as background prior function and constant prior for the net counting rate. (Author)

  15. Full Counting Statistics of Stationary Particle Beams

    CERN Document Server

    Kiukas, J; Werner, R F

    2010-01-01

    We present a general scheme for treating particle beams, including stationary beams, as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. We treat in detail a model of a source, creating particles in a fixed state, which then evolve under the free time evolution, and we determine the resulting stationary beam in the far field. In comparison to the one-particle picture we obtain a correction from Bose/Fermi statistics, which depends on the emission rate.

  16. Counting lattice animals in high dimensions

    Science.gov (United States)

    Luther, Sebastian; Mertens, Stephan

    2011-09-01

    We present an implementation of Redelemeier's algorithm for the enumeration of lattice animals in high-dimensional lattices. The implementation is lean and fast enough to allow us to extend the existing tables of animal counts, perimeter polynomials and series expansion coefficients in d-dimensional hypercubic lattices for 3 lattice animals of size n lattice animals of size n <= 14 and arbitrary d. We also use the enumeration data to compute numerical estimates for growth rates and exponents in high dimensions that agree very well with Monte Carlo simulations and recent predictions from field theory.

  17. Active neutron multiplicity counting of bulk uranium

    International Nuclear Information System (INIS)

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of 235U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, 235U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs

  18. Measurement of the performance of the gamma camera oscilloscope display

    International Nuclear Information System (INIS)

    In one common type of gamma camera display system, the positions at which the gamma photons are detected in the scintillation crystal are correlated with flashes on the face of a cathode-ray tube. A permanent record is obtained by integrating these flashes on a photographic film. There are problems in assessing the performance of the display system, since the photographic film is a non-linear recording medium, and the gamma camera itself does not always give the correct spatial position of each detected gamma photon. A computer simulation of the display has therefore been used to assess the best possible performance of the display system. The simulated test pattern represented a uniform background distribution of radioisotope on which was superimposed a circular disc of increased radioactivity. The target was imaged so as to have a rectangular count-density profile. Studies of the interaction between the display and different observers showed that an increase in the total number of background counts decreased the detection contrast. The results are compared with predictions from statistical theories. (U.K.)

  19. Characterization of the latest Birmingham modular positron camera

    International Nuclear Information System (INIS)

    Positron imaging techniques rely on the detection of the back-to-back annihilation photons arising from positron decay within the field of view of a positron camera. A standard technique, called positron emitting particle tracking (PEPT), uses a number of these detected events to rapidly determine the position of a positron emitting tracer particle introduced into the system under study. Conventionally, PEPT is performed using a positron camera with fixed geometry. Recently, however, a more flexible detection system (the modular positron camera) has been developed which allows customization of the detection geometry (i.e. allowed field-of-view) tailored for specific applications. Typically, PEPT is used to study particle dynamics, granular systems and multiphase flows. Presented in this paper are studies into the performance of the modular camera system, performed using a mixture of both Monte Carlo techniques and experimental validation. Studies of the stored event rate (and therefore particle location rate and location precision) have been performed and show a maximum data rate of 2.5 MHz, leading to particle location rates of 10 kHz with location precision of 0.5 mm in three dimensions

  20. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  1. Lytro camera technology: theory, algorithms, performance analysis

    Science.gov (United States)

    Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio

    2013-03-01

    The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.

  2. Leucograma, proteína C reativa, alfa-1 glicoproteína ácida e velocidade de hemossedimentação na apendicite aguda Leucocyte count, C reactive protein, alpha-1 acid glycoprotein and erithrocyte sedimmentation rate in acute appendicitis

    Directory of Open Access Journals (Sweden)

    Bruno Ramalho de Carvalho

    2003-03-01

    ína ácida e velocidade de hemossedimentação mostraram-se pouco sensíveis e específicos. CONCLUSÕES: O leucograma e a proteína C reativa apresentam-se alterados de forma significativa nos casos de apendicite aguda, independentemente do sexo ou da faixa etária. O leucograma e, principalmente, a proteína C reativa devem ser exames considerados em indivíduos com tempo de evolução sintomática superior a 24 horas. Valores aumentados, entretanto, devem ser somados e não substituir a avaliação clínica do médico examinador. Dosagens de velocidade de hemossedimentação e da alfa-1 glicoproteína ácida não trazem auxílio ao diagnóstico da apendicite aguda.BACKGROUND: The diagnosis of acute appendicitis is clinic, but in some cases, it can present unusual symptoms. The diagnostic difficulties still lead surgeons to unnecessary laparotomies, which reach rates from 15% to 40%. Laboratory exams, then, may become important to complement appendicitis diagnosis. The leucocyte count seems to be the most important value, but measurement of acute phase proteins, specially, the C-reactive protein, is object of several studies. PATIENTS AND METHODS: This was a prospective study, involving 63 patients submitted to appendecectomies for acute appendicitis suspicion, in "Hospital das Clínicas", Federal University of Uberlândia, MG, Brazil, in whose blood were made dosages of acute phase proteins and the leucocyte count. RESULTS: The sample was composed by 44 male and 19 female patients, and the majority of them was between 11 and 30 years of age. The flegmonous type was the most freqüent (52.4%. The leucocyte count was altered in 74.6% of the cases and C-reactive protein elevation was observed in 88.9%. The alfa-1 acid glycoprotein and the erithrocyte sedimmentation rate were predominantly normal. The C-reactive protein was augmented in more than 80% of the cases in all ages. Leucocyte count and C-reactive protein were altered in 80% of the patients with the limit of 24

  3. Sensitivity degradation of an anger camera operated in SPECT-like mode under the influence of a strong external magnetic field

    International Nuclear Information System (INIS)

    The purpose of this work was to experimentally determine the degradation in sensitivity of an Anger camera rotated in SPECT-like orbits around the transverse and sagittal planes of the magnetic field produced by a conventional, dual coil, 1 T electromagnet. A 74 photomultiplier Siemens Basicam Anger camera with a 29 cm radius crystal and an Isotrak 35 cm diameter, 46 MBq (1.25 mCi), Co-57 disk source attached to a low energy general purpose collimator, were used for all measurements. A custom made, air-cooled, dual coil, 1 T electromagnet was used to produce the external magnetic field. A map of the magnetic field was obtained by taking intensity measurements around the sagittal and transverse planes of the magnet. Camera sensitivity – defined as the measured count rate for a given activity of a radionuclide in a defined geometry – was first measured around the transverse plane at angles of 0°, 90°, and 270°, with, and without, the magnetic field present. At each angle, three 30 min measurements were made and the average count rate was calculated. A similar protocol was used for measurements upon rotation in the sagittal plane: counts per 30 min interval were measured for 20 angles, with a 15° increment between measurements. Camera sensitivity as a function of field strength was also determined by collecting counts over 30 min intervals at a fixed angle (90°) with magnet currents of 0.00 A, 2.65 A, and 5.30 A. In the transverse plane, at 0° under a field intensity of 21 mT, the loss in sensitivity was 18.14%, at 90° (B=37 mT) the loss was 30.5%, and at 270° (B=38 mT) the loss was 34.9%. Thus for rotation in the transverse plane, the sensitivity is monotonically reduced with an increase in field intensity. On rotation in the sagittal plane, sensitivity degradation ranged between 50.3% at a 22° angle, and 59.1% at 315°. Broad sensitivity peaks were observed at 105° and 195°, with minima at 60°, 135°, and 260°, consistent with our theoretical

  4. Sensitivity degradation of an anger camera operated in SPECT-like mode under the influence of a strong external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Galiano, Eduardo, E-mail: egalianoriveros@laurentian.ca; Aldarwish, Huda

    2014-11-01

    The purpose of this work was to experimentally determine the degradation in sensitivity of an Anger camera rotated in SPECT-like orbits around the transverse and sagittal planes of the magnetic field produced by a conventional, dual coil, 1 T electromagnet. A 74 photomultiplier Siemens Basicam Anger camera with a 29 cm radius crystal and an Isotrak 35 cm diameter, 46 MBq (1.25 mCi), Co-57 disk source attached to a low energy general purpose collimator, were used for all measurements. A custom made, air-cooled, dual coil, 1 T electromagnet was used to produce the external magnetic field. A map of the magnetic field was obtained by taking intensity measurements around the sagittal and transverse planes of the magnet. Camera sensitivity – defined as the measured count rate for a given activity of a radionuclide in a defined geometry – was first measured around the transverse plane at angles of 0°, 90°, and 270°, with, and without, the magnetic field present. At each angle, three 30 min measurements were made and the average count rate was calculated. A similar protocol was used for measurements upon rotation in the sagittal plane: counts per 30 min interval were measured for 20 angles, with a 15° increment between measurements. Camera sensitivity as a function of field strength was also determined by collecting counts over 30 min intervals at a fixed angle (90°) with magnet currents of 0.00 A, 2.65 A, and 5.30 A. In the transverse plane, at 0° under a field intensity of 21 mT, the loss in sensitivity was 18.14%, at 90° (B=37 mT) the loss was 30.5%, and at 270° (B=38 mT) the loss was 34.9%. Thus for rotation in the transverse plane, the sensitivity is monotonically reduced with an increase in field intensity. On rotation in the sagittal plane, sensitivity degradation ranged between 50.3% at a 22° angle, and 59.1% at 315°. Broad sensitivity peaks were observed at 105° and 195°, with minima at 60°, 135°, and 260°, consistent with our theoretical

  5. An optical metasurface planar camera

    CERN Document Server

    Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are 2D arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optical design by enabling complex low cost systems where multiple metasurfaces are lithographically stacked on top of each other and are integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here, we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has an f-number of 0.9, an angle-of-view larger than 60$^\\circ$$\\times$60$^\\circ$, and operates at 850 nm wavelength with large transmission. The camera exhibits high image quality, which indicates the potential of this technology to produce a paradigm shift in future designs of imaging systems for microscopy, photograp...

  6. Electronographic cameras for space astronomy.

    Science.gov (United States)

    Carruthers, G. R.; Opal, C. B.

    1972-01-01

    Magnetically-focused electronographic cameras have been under development at the Naval Research Laboratory for use in far-ultraviolet imagery and spectrography, primarily in astronomical and optical-geophysical observations from sounding rockets and space vehicles. Most of this work has been with cameras incorporating internal optics of the Schmidt or wide-field all-reflecting types. More recently, we have begun development of electronographic spectrographs incorporating an internal concave grating, operating at normal or grazing incidence. We also are developing electronographic image tubes of the conventional end-window-photo-cathode type, for far-ultraviolet imagery at the focus of a large space telescope, with image formats up to 120 mm in diameter.

  7. The Dark Energy Survey Camera

    Science.gov (United States)

    Flaugher, Brenna

    2012-03-01

    The Dark Energy Survey Collaboration has built the Dark Energy Camera (DECam), a 3 square degree, 520 Megapixel CCD camera which is being mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to carry out the 5000 sq. deg. Dark Energy Survey, using 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. Construction of DECam is complete. The final components were shipped to Chile in Dec. 2011 and post-shipping checkout is in progress in Dec-Jan. Installation and commissioning on the telescope are taking place in 2012. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.

  8. Sky camera geometric calibration using solar observations

    OpenAIRE

    Urquhart, B.; Kurtz, B; J. Kleissl

    2016-01-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun positio...

  9. Securing Embedded Smart Cameras with Trusted Computing

    OpenAIRE

    Thomas Winkler; Bernhard Rinner

    2011-01-01

    Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only ...

  10. Camera-trap study of ocelot and other secretive mammals in the northern Pantanal

    Science.gov (United States)

    Trolle, M.; Kery, M.

    2005-01-01

    Reliable information on abundance of the ocelot (Leopardus pardalis) is scarce. We conducted the first camera-trap study in the northern part of the Pantanal wetlands of Brazil, one of the wildlife hotspots of South America. Using capture-recapture analysis, we estimated a density of 0.112 independent individuals per km2 (SE 0.069). We list other mammals recorded with camera traps and show that camera-trap placement on roads or on trails has striking effects on camera-trapping rates.

  11. Filter characterization in digital cameras

    OpenAIRE

    Solli, Martin

    2004-01-01

    The use of spectrophotometers for color measurements on printed substrates is widely spread among paper producers as well as within the printing industry. Spectrophotometer measurements are precise, but time-consuming procedures and faster methods are desirable. Previously presented work on color calibration of flatbed scanners has shown that they can be used for fast color measurements with acceptable results. Furthermore, the rapid development of digital cameras has made it possible to tran...

  12. Graphic design of pinhole cameras

    Science.gov (United States)

    Edwards, H. B.; Chu, W. P.

    1979-01-01

    The paper describes a graphic technique for the analysis and optimization of pinhole size and focal length. The technique is based on the use of the transfer function of optical elements described by Scott (1959) to construct the transfer function of a circular pinhole camera. This transfer function is the response of a component or system to a pattern of lines having a sinusoidally varying radiance at varying spatial frequencies. Some specific examples of graphic design are presented.

  13. Implementation of an X ray image plate camera in characterisation and crystallisation studies of iron based alloys

    CERN Document Server

    Steer, W A

    2001-01-01

    Developed in the early 1980s, versatile X-ray storage phosphor screens have opened up new possibilities in diffraction instruments for crystallography. Originally adopted by high-pressure researchers using diamond-anvil cells and very small sample volumes, flat phosphor screens give great advantage because of their high intrinsic sensitivity. But less demanding applications still stand to benefit from increased throughput and enhanced count rates made possible by this technology. With this in mind the Curved Image Plate camera, a large radius (350mm and 185mm) Debye-Scherrer instrument primarily designed for use with capillary-contained powder samples had been devised. As a substantial part of this work, new software to pre-process the data, calibration procedures and modes of operation were developed to enable the full potential of the system to be realised. One particular application of the CIP camera is the comparative study of a large number of samples, for example as a function of heat treatment. Amorpho...

  14. Real-time holographic camera system

    Science.gov (United States)

    Bazhenov, Mikhail Y.; Grabovski, Vitaly V.; Stolyarenko, Alexandr V.; Zahaykevich, George A.

    1997-04-01

    The holographic camera system for surface-relief hologram multiple reversible registration is presented. Photosensitive media is a single-layer photothermoplastic polymer on a glass substrate with conductive layer. This exclude a charges accumulation in the polymer volume and permits to realize an efficient enhancement of latent electrostatic image and its fast pulse heating development. The processes of charging, photogeneration, carriers transport, fast development and erasing, image enhancement were studied in detail and optimized. In order to improve some defects of photothermoplastic recording, originating from influences of circumstances and recording conditions, some new processes were developed: (1) fast charging with pulses corona in closed dielectric volume, (2) optoelectronic enhancement of electrostatic image, and (3) fast pulsed development with automatically controlled temperature rate. The dust-proof recording camera with built-in highvoltage power supply, thermo- and photosensors was designed to meet the needs of real-time or multiple- exposure interferometry, holographic training recording, holographic storage systems, correlation investigations and pattern recognition.

  15. Solid-state array cameras.

    Science.gov (United States)

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  16. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. 16 CFR 501.1 - Camera film.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the...

  18. 21 CFR 892.1110 - Positron camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food... DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image the distribution of positron-emitting radionuclides in the...

  19. 21 CFR 886.1120 - Opthalmic camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Opthalmic camera. 886.1120 Section 886.1120 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1120 Opthalmic camera. (a) Identification. An ophthalmic camera is an AC-powered device intended to take photographs of the eye and the surrounding...

  20. Near-Infrared Photon-Counting Camera for High-Sensitivity Observations

    Science.gov (United States)

    Jurkovic, Michael

    2012-01-01

    The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.

  1. Vote Counting as Mathematical Proof

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Pattinson, Dirk

    then consists of a sequence (or tree) of rule applications and provides an independently checkable certificate of the validity of the result. This reduces the need to trust, or otherwise verify, the correctness of the vote counting software once the certificate has been validated. Using a rule...

  2. Verbal Counting in Bilingual Contexts

    Science.gov (United States)

    Donevska-Todorova, Ana

    2015-01-01

    Informal experiences in mathematics often include playful competitions among young children in counting numbers in as many as possible different languages. Can these enjoyable experiences result with excellence in the formal processes of education? This article discusses connections between mathematical achievements and natural languages within…

  3. Estimation of glomerular filtration rate from fractional renal uptake of sup(99m)Tc-DTPA

    International Nuclear Information System (INIS)

    Glomerular filtration rate (GFR) was estimated from fractional renal uptake (FRU) of sup(99m)DTPA using the gamma camera-digital computer system with attenuation correction for kidney depth. Forty-eight patients were studied, in whom 24 hour creatinine clearance (Ccr) were concomitantly obtained within a week of the study. A dose of 1-3 mCi of sup(99m)Tc-DTPA was rapidly injected intravenously into the patients who were prepositioned posteriorly before the gamma camera and the sequential 5 sec. frame data was stored for 20 min. in a 64 x 64 matrix form. Attenuation corrected total renal counts at various time intervals after tracer injection were obtained by ROI selection over renal scintigram followed by background subtraction and depth correction to compensate for gamma ray attenuation by the soft tissues. Our formula for determining kidney depth, obtained by ultrasonic scanning, is shown as follows. right kidney depth=16.55 (weight/height)+0.66 left kidney depth=17.05 (weight/hight)+0.13 Attenuation corrected total renal counts was divided by injected dose measured by the gamma camera (perinjection counts minus postinjection counts in syringe) and thus FRU was calculated. FRU at 1-2 min. was best correlated with Ccr (r=0.925, p<0.001). The formula for calculation of GFR was derived from the regression analysis. GFR=(FRU at 1-2 min.)x6.26+3.10 This method is highly valuable for estimating GFR rapidly and accurately. (author)

  4. Electronics for low-level counting using a microcomputer

    International Nuclear Information System (INIS)

    A low-cost electronic system for low-level radioactivity measurements is described. Counts of one or more detectors are handled by integrated amplifiers/quad-discriminators and anticoincidence units, interfaced to an 8-bit microcomputer with external printer which provide a maximum of 15 recording channels. Software effects a clock and counting timers, and furthermore data manipulation such as output tabulation and testing of counting statistics. Interrupt-controlled microprocessor input is realized at 80 μs electronic dead time. This system was implemented to adopt three gas counter detectors, each equipped with its own guard counter, and with five recording channels per detector, and it has performed extremely well over more than a year of continuous operation. Its expected count rate loss of less than 0.2% has been verified by observation. (orig.)

  5. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    Science.gov (United States)

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution. PMID:26835780

  6. Spectral evolution of galaxies. III - Cosmological predictions for the Space Telescope faint object camera

    Science.gov (United States)

    Bruzual A., G.

    1983-10-01

    The galactic spectral evolutionary models of Bruzual A. (1981) are employed to estimate parameters which will be observable by the wide-field camera and faint-object camera of the Space Telescope. The capabilities and bandpasses of the instruments are reviewed, and the results are presented in tables and graphs. Parameters calculated include the amplitude of the Lyman discontinuity at 912 A, stellar and galaxy rest-frame colors, color evolution, two-color diagrams as a function of redshift, luminosity evolution, surface brightness profiles, galaxy counts, and color and redshift distributions. In general, it is predicted that the space measurements will follow the trends noted in round-based observations.

  7. Detection of the optimal region of interest for camera oximetry.

    Science.gov (United States)

    Karlen, Walter; Ansermino, J Mark; Dumont, Guy A; Scheffer, Cornie

    2013-01-01

    The estimation of heart rate and blood oxygen saturation with an imaging array on a mobile phone (camera oximetry) has great potential for mobile health applications as no additional hardware other than a camera and LED flash enabled phone are required. However, this approach is challenging as the configuration of the camera can negatively influence the estimation quality. Further, the number of photons recorded with the photo detector is largely dependent on the optical path length, resulting in a non-homogeneous image. In this paper we describe a novel method to automatically detect the optimal region of interest (ROI) for the captured image to extract a pulse waveform. We also present a study to select the optimal camera settings, notably the white balance. The experiments show that the incandescent white balance mode is the preferable setting for camera oximetry applications on the tested mobile phone (Samsung Galaxy Ace). Also, the ROI algorithm successfully identifies the frame regions which provide waveforms with the largest amplitudes. PMID:24110175

  8. Visible camera imaging of plasmas in Proto-MPEX

    Science.gov (United States)

    Mosby, R.; Skeen, C.; Biewer, T. M.; Renfro, R.; Ray, H.; Shaw, G. C.

    2015-11-01

    The prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device being developed at Oak Ridge National Laboratory (ORNL). This machine plans to study plasma-material interaction (PMI) physics relevant to future fusion reactors. Measurements of plasma light emission will be made on Proto-MPEX using fast, visible framing cameras. The cameras utilize a global shutter, which allows a full frame image of the plasma to be captured and compared at multiple times during the plasma discharge. Typical exposure times are ~10-100 microseconds. The cameras are capable of capturing images at up to 18,000 frames per second (fps). However, the frame rate is strongly dependent on the size of the ``region of interest'' that is sampled. The maximum ROI corresponds to the full detector area, of ~1000x1000 pixels. The cameras have an internal gain, which controls the sensitivity of the 10-bit detector. The detector includes a Bayer filter, for ``true-color'' imaging of the plasma emission. This presentation will exmine the optimized camera settings for use on Proto-MPEX. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  9. Coincidence ion imaging with a fast frame camera

    International Nuclear Information System (INIS)

    A new time- and position-sensitive particle detection system based on a fast frame CMOS (complementary metal-oxide semiconductors) camera is developed for coincidence ion imaging. The system is composed of four major components: a conventional microchannel plate/phosphor screen ion imager, a fast frame CMOS camera, a single anode photomultiplier tube (PMT), and a high-speed digitizer. The system collects the positional information of ions from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of a PMT processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum of a PMT. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide

  10. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  11. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization.

    Directory of Open Access Journals (Sweden)

    Mattijs Elschot

    Full Text Available BACKGROUND: Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE. In yttrium-90 (90Y RE, scintigraphic images of technetium-99m (99mTc are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared. METHODOLOGY/PRINCIPAL FINDINGS: Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions. CONCLUSIONS/SIGNIFICANCE: The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies.

  12. Single Camera Calibration in 3D Vision

    OpenAIRE

    Caius SULIMAN; Puiu, Dan; Moldoveanu, Florin

    2009-01-01

    Camera calibration is a necessary step in 3D vision in order to extract metric information from 2D images. A camera is considered to be calibrated when the parameters of the camera are known (i.e. principal distance, lens distorsion, focal length etc.). In this paper we deal with a single camera calibration method and with the help of this method we try to find the intrinsic and extrinsic camera parameters. The method was implemented with succes in the programming and simulation environment M...

  13. HHEBBES! All sky camera system: status update

    Science.gov (United States)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  14. Modelling Virtual Camera Behaviour Through Player Gaze

    DEFF Research Database (Denmark)

    Picardi, Andrea; Burelli, Paolo; Yannakakis, Georgios N.

    2012-01-01

    In a three-dimensional virtual environment, aspects such as narrative and interaction largely depend on the placement and animation of the virtual camera. Therefore, virtual camera control plays a critical role in player experience and, thereby, in the overall quality of a computer game. Both game...... on the relationship between virtual camera, game-play and player behaviour. We run a game user experiment to shed some light on this relationship and identify relevant dif- ferences between camera behaviours through different game sessions, playing behaviours and player gaze patterns. Re- sults show that users can...... be efficiently profiled in dissimilar clusters according to camera control as part of their game- play behaviour....

  15. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  16. 3D camera tracking from disparity images

    Science.gov (United States)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  17. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  18. The Design of the Short Wavelength Camera for the CCAT Telescope

    Science.gov (United States)

    Stacey, Gordon J.; Parshley, S.; Nikola, T.; Dowell, C. D.; Adams, J. D.; Bertoldi, F.; Chapman, S.; Cortes, G.; Day, P.; Glenn, J.; Halpern, M.; Hollister, M.; Kovacs, A.; LeDuc, H.; McKenney, C.; Monroe, R.; Mroczkowski, T.; Nguyen, H. T.; Niemack, M.; Rajagopalan, G.; Radford, S. J.; Schaaf, R.; Scott, D.; Schoenwald, J.; Swenson, L.; Yoshida, H.; Zmuidzinas, J.

    2013-01-01

    We present the design for the Short Wavelength Camera (SWCam) that we are proposing for use on the 25 meter CCAT submillimeter telescope. SWCam utilizes the absorber-coupled MKID based detector arrays that are being developed at JPL, and will soon be tested in the MAKO camera on the CSO. The primary SWCam band is centered on the 350 um telluric window but we plan capabilities in the 450 and 200 um telluric windows as well. Due to the curvature of the CCAT focal plane, the camera is split into 7 sub-cameras - a central camera and six cameras in a closed-packed outer ring. Each silicon lens-based camera illuminates an array consisting of ~7750 pixels with a plate scale of 3”/pixel which corresponds to an image plane sampling of lambda/D per pixel at 350 um. The combined pixel count is ~ 54,000 and the effective instantaneous field of view is ~ 13’ in diameter. All the cameras are contained in a single closed-cycle cryostat simplifying the optical/cryo/mechanical systems. The system is expected to achieve a back-ground limited sensitivity ~20 to 30 mJy/sqrt(Hz) under good weather conditions 0.43 mm precipitatable water vapor burden), so that the SWCam on CCAT approaches (5 sigma) the expected confusion noise for distant infrared bright galaxies on CCAT (structure formation over cosmic time through large scale (10s of square degrees) surveys in the submm continuum bands. SWCam is a key part of a triad of instruments that enable this science, including a long wavelength camera (LWCam), and a broad-band direct detection spectrometer (X-Spec) - instruments also described within this session.

  19. A digital variable persistence oscilloscope for gamma cameras

    International Nuclear Information System (INIS)

    The system briefly described is intended as a direct replacement for the analogue persistence oscilloscope, particularly in systems without a computer processor. It uses digital and video techniques to produce an image quality suitable for use in positioning patients under the camera at a low cost (total cost of materials used, Pound500). The performance is superior to the analogue oscilloscope in that the image is displayed with 16 shades of grey. It incorporates an automatic brightness control which ensures that the image does not saturate at high count density, and the saturation can be changed manually allowing areas of low counts to be examined in the presence of high counts. The digital inability to store each single event as a dot which fades exponentially with time has been solved by adding each event into the appropriate cell of a digital display matrix, and then periodically dividing the contents of each image cell by two. The cells are addressed and divided in a pseudo-random pattern so that, to the observer, the whole image appears to fade smoothly and evenly. (U.K.)

  20. Bayesian Kernel Mixtures for Counts.

    Science.gov (United States)

    Canale, Antonio; Dunson, David B

    2011-12-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online. PMID:22523437